WO2007102478A1 - 周波数シンセサイザ、無線通信システム、及び半導体装置 - Google Patents

周波数シンセサイザ、無線通信システム、及び半導体装置 Download PDF

Info

Publication number
WO2007102478A1
WO2007102478A1 PCT/JP2007/054237 JP2007054237W WO2007102478A1 WO 2007102478 A1 WO2007102478 A1 WO 2007102478A1 JP 2007054237 W JP2007054237 W JP 2007054237W WO 2007102478 A1 WO2007102478 A1 WO 2007102478A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
transmission
transmission data
frequency synthesizer
signal
Prior art date
Application number
PCT/JP2007/054237
Other languages
English (en)
French (fr)
Inventor
Seiichiro Yoshida
Joji Hayashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/282,045 priority Critical patent/US20090098834A1/en
Priority to CN2007800079933A priority patent/CN101395802B/zh
Priority to JP2008503852A priority patent/JP4480097B2/ja
Priority to EP07737812A priority patent/EP2009797A1/en
Publication of WO2007102478A1 publication Critical patent/WO2007102478A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/12Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop
    • H03C3/0916Modifications of modulator for regulating the mean frequency using a phase locked loop with frequency divider or counter in the loop
    • H03C3/0925Modifications of modulator for regulating the mean frequency using a phase locked loop with frequency divider or counter in the loop applying frequency modulation at the divider in the feedback loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop
    • H03C3/0916Modifications of modulator for regulating the mean frequency using a phase locked loop with frequency divider or counter in the loop
    • H03C3/0933Modifications of modulator for regulating the mean frequency using a phase locked loop with frequency divider or counter in the loop using fractional frequency division in the feedback loop of the phase locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • H03L7/1974Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division
    • H03L7/1976Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division using a phase accumulator for controlling the counter or frequency divider

Definitions

  • Frequency synthesizer radio communication system, and semiconductor device
  • the present invention relates to a frequency synthesizer that performs transmission frequency modulation in wireless communication, a wireless communication system, and a semiconductor device, and more particularly to a technology that is effective in increasing functionality and reducing circuit area.
  • a frequency synthesizer divides the phase of a reference signal that serves as a reference for comparison and the output frequency of a voltage-controlled oscillator that oscillates at a frequency corresponding to an input control voltage by the frequency divider set in the variable frequency divider.
  • the phase of the divided signal obtained by the rotation is compared with a phase comparator, and the phase difference signal output corresponding to the magnitude of the phase difference signal is fed back as the control voltage of the voltage controlled oscillator.
  • the frequency of the output signal of the frequency synthesizer is obtained by multiplying the frequency of the divided signal by the frequency dividing number, that is, the frequency of the reference signal multiplied by the frequency dividing number.
  • the frequency dividing number that is, the frequency of the reference signal multiplied by the frequency dividing number.
  • the output frequency of the frequency synthesizer is determined by the frequency division number of the variable frequency divider. Therefore, when performing transmission frequency modulation, it corresponds to the transmission data.
  • a method of changing the frequency division number of the variable frequency divider is generally used.
  • IEEE JOURNAL OF SOLID is a method to change the frequency divider of the variable frequency divider.
  • a conventional frequency synthesizer that performs frequency modulation in wireless communication is configured as described above.
  • the frequency synthesizer is stored in advance in the ROM!
  • the frequency modulation was realized by adding the number of divisions corresponding to the center frequency.
  • the present invention was made to solve the above problems, and flexibly responds to various reference signal frequencies and frequency change widths for transmission data while suppressing an increase in circuit area.
  • An object of the present invention is to provide a frequency synthesizer that performs transmission frequency modulation that is capable of handling multi-level frequency modulation that can transmit multiple bits of transmission data, or a radio communication system and a semiconductor device. .
  • a frequency synthesizer is characterized by including a transmission modulator which is a circuit block for calculating a change amount of a frequency division number by a logic circuit.
  • a frequency synthesizer includes a voltage controlled oscillator that generates an output signal having a frequency corresponding to an input control voltage, and the voltage controlled oscillator power according to the input frequency division data.
  • a phase comparator for comparing and outputting a signal indicating the comparison result, and a low-pass filter for low-pass filtering the signal of the phase comparator power and outputting as a control voltage of the voltage-controlled oscillator,
  • the amount of change in the frequency divider is calculated, and the amount of change in the frequency divider is added to the center frequency division number setting value.
  • a transmission modulator for performing frequency modulation.
  • the transmission modulator calculates the amount of change in the frequency division using a logic circuit, the amount of change in the frequency division when the frequency of the reference signal changes to 2 times or 1Z2 times, etc. Can be easily calculated simply by performing a bit shift, and an increase in circuit area can be suppressed.
  • the transmission modulator includes a clock signal input terminal, and the clock signal to which the clock signal input terminal is also input is used to divide the frequency modulation process into a plurality of steps. If the amount of change in the frequency division number corresponding to is calculated, it is possible to reduce the narrow band of the transmission frequency spectrum.
  • the frequency synthesizer of the present invention having the above configuration, it is possible to realize a transmission modulation frequency synthesizer having a higher function than the conventional one with a small-scale circuit.
  • FIG. 1 (a) is a block diagram showing a configuration of a frequency synthesizer 100 according to the first embodiment of the present invention.
  • FIG. 1 (b) is a diagram showing an example of a specific configuration of transmission modulator 5a of the frequency synthesizer according to the first embodiment of the present invention.
  • FIG. 2 (a) is a diagram for explaining the process of frequency change in the frequency synthesizer 100 according to the first embodiment of the present invention.
  • FIG. 2 (b) is a diagram for explaining the process of frequency change in the frequency synthesizer 100 according to the first embodiment of the present invention.
  • FIG. 4 (a) is a block diagram showing a configuration of a frequency synthesizer 200 according to the second embodiment of the present invention.
  • FIG. 4 (b) is a diagram illustrating an example of a specific configuration of the transmission modulator 5b of the frequency synthesizer according to the second embodiment of the present invention.
  • FIG. 5 is a diagram showing a state of frequency modulation of quaternary FS K in the frequency synthesizer 200 according to Embodiment 2 of the present invention.
  • FIG. 6 (a) is a block diagram showing a configuration of a frequency synthesizer 300 according to the third embodiment of the present invention.
  • FIG. 6 (b) is a diagram illustrating an example of a specific configuration of transmission modulator 5c of the frequency synthesizer according to the third embodiment of the present invention.
  • FIG. 7 (a) is a block diagram showing a configuration of a frequency synthesizer 400 according to Embodiment 4 of the present invention.
  • FIG. 7 (b) is a diagram illustrating an example of a specific configuration of the transmission modulator 5d of the frequency synthesizer according to the fourth embodiment of the present invention.
  • FIG. 8 is a diagram showing a transmission data string in frequency synthesizer 400 according to Embodiment 4 of the present invention.
  • FIG. 9 is a diagram showing a relationship between a transmission data string and a transmission data clock in frequency synthesizer 400 according to Embodiment 4 of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a frequency synthesizer 500 according to Embodiment 5 of the present invention.
  • FIG. 11 is a block diagram showing a configuration of radio communication system 600 according to Embodiment 6 of the present invention.
  • FIG. 12 is a block diagram showing a configuration of radio communication system 700 according to Embodiment 7 of the present invention.
  • FIG. 13 is a block diagram showing the configuration of radio communication system 800 according to Embodiment 8 of the present invention.
  • FIG. 1 shows a configuration of a frequency synthesizer 100 according to Embodiment 1 of the present invention.
  • 1 is a phase comparator
  • 2 is a low-pass filter
  • 3 is a voltage controlled oscillator
  • 4 is a variable frequency divider
  • 5a is a transmission modulator.
  • Rf is a reference signal
  • Ot is an output signal
  • FD is a frequency division signal
  • N1 is frequency division number data
  • N2 is a frequency division number variation
  • CL is a clock signal
  • TD is transmission data.
  • the output signal Ot of the voltage controlled oscillator 3 that generates an output signal having a frequency corresponding to the input control voltage is output to the variable frequency divider 4 at the same time as being output as the output signal of the frequency synthesizer 100.
  • the variable frequency divider 4 divides the output signal Ot according to the input frequency division number data N1, and outputs this as the frequency division signal FD.
  • the frequency division data N1 is N,
  • the frequency division number data N is not limited to an integer, and may be a numerical value including a decimal part.
  • the phase comparator 1 compares the phase between the input reference signal Rf and the frequency-divided signal FD, and generates and outputs a signal la indicating the comparison result.
  • the signal la indicating the comparison result is low-pass filtered by passing through the low-pass filter 2 and input (feedback) to the voltage-controlled oscillator 3 as its control signal 2 a.
  • the frequency synthesizer 100 is characterized in that, in order to realize transmission frequency modulation, this basic frequency synthesizer includes a transmission modulator 5a.
  • transmission data TD that is 0 or 1 is input to the transmission modulator 5a.
  • the output frequency is determined from the center frequency.
  • the degree of change is set in advance. If Fdev is defined as the frequency variation of the center frequency force corresponding to this transmission data TD,
  • Fdev (reference signal frequency) X ⁇ ⁇
  • is the amount of change in the number of divisions according to the transmission data TD, and is usually a number including digits after the decimal point. That is, according to the value of the transmission data TD,
  • the frequency change amount is added to the frequency division data specifying the center frequency and input to the variable frequency divider 4.
  • Frequency modulation realized by the present invention includes not only frequency modulation (FM) for transmitting analog data, but also frequency shift modulation that is a frequency modulation method corresponding to digital transmission data. (FSK; Frequency Shift Keying) is also included.
  • the frequency change accompanying the change of the transmission data is not limited to one completed as shown in Fig. 2 (a), but is shown in Fig. 2 (b).
  • the transmission frequency spectrum can be narrow-banded by dividing the change in the frequency division number into a plurality of steps and calculating the amount of change in the frequency division number corresponding to each step. is there.
  • Fig. 3 (a) shows the transmission frequency spectrum when the frequency change is completed once as shown in Fig. 2 (a), and Fig. 3 (b) shows the frequency change in Fig. 2 (b ) Shows the transmission frequency spectrum when divided into multiple steps (16 times in this figure).
  • a method of dividing a frequency change associated with a change in transmission data into a plurality of steps and calculating a change amount of the frequency division number corresponding to each step is a wireless method using transmission frequency modulation. It can be said that it is an indispensable method for communication.
  • the narrow band effect of the transmission frequency spectrum has a problem that the greater the number of steps to be divided, the greater the effect that the effect is, and the larger the circuit area. Thus, there is a trade-off relationship between the effect of the narrow band and the circuit area. However, since the effect of the narrow band is weakened beyond 16 steps, it is considered optimal to divide into 16 steps. It is possible. However, the number of frequency change steps is not particularly limited.
  • the shape of the waveform connecting the divided frequency points is a GFSK or a sine waveform, it is considered that the effect of narrowband noise is high and preferable, but here the types of waveforms are particularly limited. It is desirable to select the most suitable one according to the allowable specifications of the system.
  • the time interval can be measured more accurately by using a clock signal having a constant force frequency to which a clock signal needs to be input.
  • a clock signal with a constant frequency it is considered optimal to use a frequency synthesizer reference signal, or a signal obtained by dividing the reference signal into an appropriate frequency, but this clock signal is particularly limited.
  • even a signal whose frequency is not constant and constantly changes can be used as a clock signal.
  • FIG. 1 (b) is a diagram showing an example of a specific configuration of the transmission synthesizer 5a of the frequency synthesizer according to the first embodiment.
  • 51 is a transition frequency width data table
  • 52 is a multiplier
  • 53 is A multi-step division coefficient calculation circuit
  • 54 is a multi-step division time interval calculation circuit
  • 55 is a time measurement counter.
  • the transition frequency width data table 51 outputs a transition frequency width that is preset according to a 0 or 1 signal of the transmission data TD.
  • the transition frequency width is always constant, so, for example, 0 is Fdev, and 1 is Fdev.
  • This transition frequency width indicates a frequency difference between the oscillation frequency before the transition and the oscillation frequency corresponding to the transmission data.
  • the multiplier 52 calculates the frequency change number ⁇ ⁇ . The specific formula is
  • the value obtained by multiplying the frequency change amount ⁇ ⁇ by a predetermined coefficient xl, x2 in each step Is output as the number of frequency division change ⁇ ⁇ ( ⁇ ). Further, in this plurality of steps, the time interval until the transition to the next step is measured by the time measurement counter 55.
  • the time measurement counter 55 counts the clock signal (usually the synthesizer reference signal CL) and shifts to the next step for the multi-step division coefficient calculation circuit 53 when the count value matches the set count end value.
  • Command signal Sn is output.
  • the multi-step division time interval count end value Sc is calculated by the multi-step division time interval calculation circuit 54 based on the reference signal frequency Rf and the multi-step division time interval designation signal Si. When the reference signal frequency Rf changes, the count value until a certain time is measured also changes, so the reference signal frequency Rf is also input.
  • the transmission modulator 5a divides the frequency division number change amount according to the transmission data TD into a plurality of steps and outputs it.
  • the transmission modulator 5a calculates the frequency change amount by the logic circuit
  • the conventional ROM force also generates the pulse response data.
  • a read circuit for designating an address or the like to read data from ROM is unnecessary, and the increase in circuit area can be greatly suppressed.
  • the reference signal When the frequency changes to 2 times, 1Z2 times, etc., the amount of change in the frequency division can be calculated easily by simply performing bit shift in the transmission modulator 5a. Can be greatly suppressed.
  • a transmission modulation that calculates the amount of change in the frequency dividing number of the variable frequency divider corresponding to the transmission data to be transmitted, adds the amount of change in the frequency dividing number to the frequency division number setting value of the center frequency, and performs frequency modulation.
  • a read circuit that reads the data from the ROM card by designating the ROM device and address is not required. The increase in circuit area can be greatly suppressed. That.
  • the amount of change in the frequency division number for obtaining the frequency of the different reference signals is transmitted.
  • the calculation can be easily performed only by performing bit shift in the transmission modulator, and the effect that the increase in the circuit area can be largely suppressed is also obtained.
  • FIG. 4 shows the configuration of the frequency synthesizer 200 according to the second embodiment of the present invention. is there.
  • Embodiment 2 is different from Embodiment 1 in that the transmission data input terminal 501 for inputting the transmission data TD of the transmission modulator 5b has multiple bits instead of one bit.
  • An input terminal 502 to which a value setting signal TDs is input is provided.
  • the transmission modulator 5b calculates the amount of frequency division change by a logic circuit.
  • adjacent transmission data is calculated. Since the corresponding frequency difference is constant, in this second embodiment, the amount of change in the number of divisions corresponding to the modulation pattern of each transmission data value is reduced by simply multiplying the amount of change in the number of divisions by an integer.
  • the circuit area can be calculated efficiently.
  • FIG. 4 (b) is a diagram showing an example of a specific configuration of the transmission synthesizer 5b of the frequency synthesizer according to the second embodiment.
  • the same reference numerals as those in FIG. 1 (b) are the same or equivalent.
  • Reference numeral 56 denotes a transition frequency width calculation circuit.
  • Transmission data TD power S1 bit signal is input as a multi-bit signal to the transmission modulator 5b of the frequency synthesizer according to the second embodiment.
  • the transition frequency width calculation circuit 56 calculates and outputs the transition frequency width Fdev based on the transmission data TD and the transmission data value setting signal TDs.
  • the operation after calculating the transition frequency width Fdev is the same as the operation of the transmission modulator 5a of the frequency synthesizer according to Embodiment 1 shown in FIG.
  • the transmission modulator includes a transmission data input terminal that receives a multi-bit input, and a transmission data value setting input terminal for setting the transmission data value.
  • the transmission data rate becomes faster and the multi-bit transmission modulation enables efficient data transmission.
  • the change amount of the division number is determined by a logic circuit in the transmission modulator 5b. Since the multi-bit transmission modulation operation can be performed only by calculating by multiplying by an integer, it is possible to cope with multi-level frequency modulation while largely suppressing an increase in circuit area.
  • FIG. 6 shows the configuration of a frequency synthesizer 300 according to Embodiment 3 of the present invention.
  • the third embodiment includes a 1-bit or multi-bit input terminal 503 to which the Fdev setting signal Fdevs for setting the frequency change amount Fdev is input to the transmission modulator 5c, as compared with the first embodiment. It is characterized by that.
  • the frequency synthesizer 300 including the transmission modulator according to the third embodiment calculates the amount of frequency division change by a logic circuit, it is efficiently divided in a small area by sharing the logic circuit.
  • the frequency change amount can be calculated. Therefore, it is possible to make the frequency change amount corresponding to transmission data variable while suppressing an increase in circuit area.
  • FIG. 6B is a diagram showing an example of a specific configuration of the transmission synthesizer 5c of the frequency synthesizer according to the third embodiment.
  • the same reference numerals as those in FIG. 1B are the same or equivalent.
  • Reference numeral 57 denotes a transition frequency width calculation circuit.
  • the transmission modulator 5b of the frequency synthesizer according to the third embodiment receives the Fdev setting signal Fdevs for setting the transmission data TD and the frequency change amount Fdev.
  • the transition frequency width calculation circuit 57 calculates and outputs the transition frequency width Fdev based on the input transmission data TD and the Fdev setting signal Fdevs.
  • the subsequent operation is the same as that of the transmission modulator 5a of the frequency synthesizer according to Embodiment 1 shown in FIG.
  • the transmission modulator 5c has a 1-bit or multi-bit input terminal for setting the frequency change amount Fdev.
  • the amount of frequency division change is calculated by the logic circuit in the transmission modulator 5c, so that the common circuit of the logic circuit can be obtained. As a result, the change in frequency can be calculated efficiently with a small area, and an increase in frequency change corresponding to transmission data can be obtained while suppressing an increase in circuit area.
  • FIG. 7 shows the configuration of a frequency synthesizer 400 according to Embodiment 4 of the present invention.
  • the fourth embodiment is characterized in that, compared to the first embodiment, the transmission modulator 5d is provided with a transmission data clock input terminal.
  • This transmission data clock is used to indicate when the external transmission data generator determines transmission data for the transmission modulator 5d. It is a signal to send out.
  • the transmission modulator 5d determines the transmission data at the timing synchronized with the rising edge or falling edge S of the data clock, and calculates the frequency change amount based on the data.
  • transmission frequency modulation can be performed if a change in transmission data can always be detected without a data clock. Also, even in the case of frequency modulation using multi-valued transmission data, if each bit is input independently from the same number of signal lines as the number of bits of transmission data, the same applies to each It is possible to perform transmission frequency modulation by always detecting changes in bit transmission data.
  • the transmission data is ⁇ 01 ⁇ only by detecting the change in the transmission data. , ⁇ 01 ⁇ will be recognized. Therefore, if there is such a misrecognition, communication cannot be performed normally.
  • FIG. 7 (b) is a diagram showing an example of a specific configuration of the transmission synthesizer 5d of the frequency synthesizer according to the fourth embodiment.
  • the same reference numerals as those in FIG. 1 (b) are the same or equivalent.
  • Reference numeral 58 is a parallel transmission data generation circuit
  • 59 is a transition frequency width calculation circuit.
  • Transmission data TD is serially input to transmission modulator 5d of the frequency synthesizer according to the fourth embodiment in synchronization with transmission data clock TDCL.
  • the transmission data input to the parallel transmission data generation circuit 58 is determined at the timing of the transmission data clock TDCL and input to the transition frequency width calculation circuit 59 as parallel transmission data TDp.
  • Transition frequency The number width calculation circuit 59 calculates and outputs the transition frequency width Fdev based on the transmission data TDp input in parallel and the transmission data value setting signal TDs.
  • the operation after calculating the transition frequency width Fdev is the same as the operation of the transmission modulator 5a of the frequency synthesizer according to the first embodiment shown in FIG.
  • the transmission modulator 5d includes a transmission data clock input terminal, and sends out a data clock together with the transmission data.
  • the transmission data is determined at the timing given by the data clock and the bit breaks are clearly defined, it is possible to recognize multi-bit transmission data normally, and the transmission data input line is set to 1 There is an effect that multi-level frequency modulation can be realized even in a bit state.
  • FIG. 10 shows the configuration of a frequency synthesizer 500 according to the fifth embodiment of the present invention.
  • the fifth embodiment is characterized in that the frequency synthesizer according to the first embodiment includes a sigma delta (also referred to as delta sigma) modulator 6.
  • a sigma delta also referred to as delta sigma
  • the sigma delta modulator 6 performs sigma delta modulation on the frequency division data to which the frequency change amount corresponding to the transmission data is added, and outputs the result as the frequency division number input of the variable frequency divider. By this delta-sigma modulation, quantization noise at the time of fractional division can be diffused to the high frequency side.
  • noise near the oscillation frequency has an undesirable effect such as leakage to an adjacent channel.
  • the noise component can be removed by a filter, and a frequency synthesizer having a highly accurate frequency spectrum can be realized.
  • the frequency synthesizer 500 of the fifth embodiment includes the sigma delta modulator 6. Therefore, the sigma delta modulator 6 supports the transmission data.
  • the divide-by-frequency data to which the divide-by-frequency change is added is sigma-delta-modulated and output as the divide-by number input of the variable divider. Noise component by diffusing This can be removed by a filter, and has the effect of realizing a frequency synthesizer having a highly accurate frequency spectrum.
  • the quantization noise diffusion method at the time of fractional frequency division is not limited to the sigma-delta modulation method, and it is needless to say that any other method may be used.
  • FIG. 11 shows the configuration of radio communication system 600 according to Embodiment 6 of the present invention.
  • the radio communication system 600 uses the transmission data generator 7 that generates transmission data and the power of the output signal output from the frequency synthesizer 100 to the frequency synthesizer 100 according to the first embodiment.
  • a power amplifier 8 for amplification and a transmission antenna 9 for wirelessly transmitting a signal amplified by the power amplifier 8 are provided.
  • radio communication system 600 of the sixth embodiment By forming radio communication system 600 of the sixth embodiment on the same semiconductor substrate, a radio communication system having a transmission frequency modulation function can be realized at low cost. Also, by changing the transmission frequency for a short time and immediately returning to the original frequency, only the phase of the transmission signal can be changed while the frequency remains constant. By applying this, phase modulation and simultaneously changing the amplification factor of the power amplifier 8 can realize polar modulation that simultaneously performs phase modulation and amplitude modulation.
  • the transmission data generator 7 that generates transmission data and the frequency synthesizer 100 output the frequency synthesizer 100 according to the first embodiment.
  • the power amplifier 8 that amplifies the power of the output signal and the transmission antenna 9 that wirelessly transmits the signal amplified by the power amplifier 8 are formed on the same semiconductor substrate.
  • a wireless communication system having a transmission frequency modulation function can be realized at low cost.
  • FIG. 12 shows the configuration of radio communication system 700 according to Embodiment 7 of the present invention.
  • the seventh embodiment is different from the sixth embodiment in that a receiving antenna 10 that receives a transmitted radio signal and a receiving circuit 11 that takes out the transmitted data also includes the radio signal power received by the receiving antenna 10. It is provided with.
  • the frequency synthesizer does not perform frequency modulation, and continues to output a constant frequency for each reception channel as a local oscillator.
  • radio communication system 700 By integrating radio communication system 700 according to the seventh embodiment on one semiconductor substrate, a radio communication system having a transmission frequency modulation function and a reception function can be realized at low cost. Become.
  • the reception antenna 10 that receives the transmitted wireless signal and the reception antenna 10 receive the wireless communication system 600 according to the sixth embodiment. Since the received radio signal power is also provided with the receiving circuit 11 for extracting the transmitted data, a radio communication system having a transmission frequency modulation function and a receiving function can be obtained by integrating the receiving circuit 11 on one semiconductor substrate. There is an effect that can be realized at low cost.
  • FIG. 13 shows the configuration of radio communication system 800 according to Embodiment 8 of the present invention.
  • the transmitting antenna 9 and the receiving antenna 10 are configured separately from each other in the seventh embodiment, but these antennas are connected to the transmitting / receiving antenna 13 using a transmission / reception switch 12 called a duplexer. It is characterized by the common use. As a result, the number of parts can be reduced, and a wireless communication system having a transmission frequency modulation function and a reception function can be realized at low cost.
  • the transmission antenna and the reception antenna are shared by the transmission / reception antenna 13 by using a transmission / reception switch called a duplexer, so that the number of parts is increased. Transmit frequency modulation function, and There is an effect that a wireless communication system having a reception function can be realized at low cost.
  • the radio communication system According to the frequency synthesizer, the radio communication system, or the semiconductor device according to the present invention, high-accuracy and high-performance transmission frequency modulation can be realized with a small circuit area, and communication is performed using frequency modulation or FSK modulation. It is useful for all types of wireless communication LSIs that perform the above. In particular, a radio communication system having various communication modes with respect to a change width of a transmission frequency and the number of bits of transmission data can obtain a great effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 無線通信における送信周波数変調において、回路面積の増大を抑制しつつ、複数ビットの送信データを有する多値周波数変調への対応を可能にする。  無線通信における送信周波数の変調を行う際、デジタルフィルタによる応答データを、送信変調器に内蔵された論理回路により計算する。これにより、分周数データの変化量が論理回路により計算されるため、応答データを格納するROMが不要となり、基準信号の周波数の変更や、複数ビットの送信データを有する多値周波数変調への対応の際にも、回路面積の増大を抑制することができる。  また、送信周波数の変調の過程を、クロックに同期したタイミングを用いて複数のステップに分割して行うことによって、送信信号スペクトラムの狭帯域化が可能となる。

Description

明 細 書
周波数シンセサイザ、無線通信システム、及び半導体装置
技術分野
[0001] 本発明は、無線通信における送信周波数変調を行う周波数シンセサイザ、無線通 信システム、及び半導体装置に関し、特に高機能化と、回路面積の縮小に有効な技 術に関するものである。
背景技術
[0002] 周波数シンセサイザは、比較の基準となる基準信号の位相と、入力される制御電圧 に対応した周波数で発振する電圧制御発振器の出力周波数を可変分周器に設定し た分周数で分周して得られた分周信号の位相とを、位相比較器で比較し、その位相 差信号の大きさに対応して出力される位相差信号を電圧制御発振器の制御電圧とし てフィードバックさせることにより、最終的に基準信号の周波数と、分周信号の周波数 がー致したところで定常状態となり、周波数同期した状態になるようにするものである
[0003] この時、周波数シンセサイザの出力信号の周波数は、分周信号の周波数に分周数 を乗じたもの、即ち、基準信号の周波数に分周数を乗じたものとなり、この方法によつ て所望の周波数を有する出力信号を得ることができる。
[0004] 基準信号の周波数を一定とした場合、周波数シンセサイザの出力周波数は、可変 分周器の分周数で決定されるため、送信周波数変調を行う際には、送信データに対 応して可変分周器の分周数を変化させる方法が一般に用いられている。
[0005] 可変分周器の分周数を変化させる方法として、 IEEE JOURNAL OF SOLID
-STATE CIRCUITS, VOL. 33, NO. 7, JULY 1998 pp. 998 An Agil e ISM Band Frequency Synthesizer with Built-in GMSK Data M odulation Fig. 4のような方法が提案されている。この論文に記載された方法では 、送信データの変化に対応するデジタルフィルタのパルス応答データを、予め ROM (Read Only Memory)装置に格納しておき、送信データの変化に応じて ROMか ら読み出したデータを分周数の変化分として扱い、設定した分周数と加算することに より、周波数変調を実現している。
非特許文献 1 :IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 7, JULY 1998 pp. 998 An Agile ISM Band Frequency Sy nthesizer with Built-in GMSK Data Modulation
発明の開示
発明が解決しょうとする課題
[0006] 従来の無線通信における周波数変調を行う周波数シンセサイザは、以上のように 構成されており、予め ROMに格納してお!、たデジタルフィルタのパルス応答データ を読み出して分周数の変化分として扱い、中心周波数に対応する分周数と加算する ことにより周波数変調を実現するものであった。
[0007] し力しながらこのような従来手法では、送信データの変化に対応するパルス応答デ ータが全て ROMに格納されているため、様々な基準信号の周波数への対応や、送 信データに対する周波数変化幅への対応数の増加に伴って、 ROM容量が膨大に なると共に、 ROM力もデータを読み出す回路も大きくなることから、回路面積の増大 が避けられな 、と 、う問題があった。
[0008] この発明は以上のような問題点を解消するためになされたもので、回路面積の増大 を抑制しつつ、様々な基準信号の周波数や、送信データに対する周波数変化幅に も柔軟に対応可能であり、さらに複数ビットの送信データを有する多値周波数変調へ の対応も可能である送信周波数変調を行う周波数シンセサイザ、あるいはさらに、無 線通信システム、及び半導体装置を提供することを目的とする。
課題を解決するための手段
[0009] 上記目的を達成するために、本発明にかかる周波数シンセサイザは、分周数の変 化量を論理回路により算出する回路ブロックである送信変調器を備えたことを特徴と する。
[0010] 即ち、本発明にかかる周波数シンセサイザは、入力される制御電圧に対応する周 波数を有する出力信号を発生する電圧制御発振器と、入力される分周数データに従 つて上記電圧制御発振器力 の出力信号を分周し、分周後の信号を出力する可変 分周器と、上記可変分周器からの出力信号と、入力される基準信号との間の位相を 比較し、比較結果を示す信号を出力する位相比較器と、上記位相比較器力ゝらの信 号を低域濾波し、上記電圧制御発振器の制御電圧として出力する低域通過フィルタ とを備え、さら〖こ、入力される送信データに対応して、上記可変分周器の分周数の変 化量を算出し、該分周数の変化量を中心周波数の分周数設定値に加算し、周波数 変調を行わせる送信変調器を備えた、ことを特徴とする。
[0011] 上記の構成では、送信変調器では、分周数の変化量を論理回路により算出するた め、基準信号の周波数が 2倍や 1Z2倍などに変化した場合、分周数の変化量はビッ トシフトを行うだけで容易に算出することができ、回路面積の増大を抑制することがで きる。
[0012] また、送信データの変化に対応する周波数変化幅の対応数を増やす場合にも、対 応可能な周波数変化幅の間隔を一定に設定しておけば、乗算器を用いて効率的に 分周数の変化量を算出可能であり、 ROMに全てのパルス応答データを格納してお く場合と比較して、回路面積の増大を抑制することができる。
[0013] これらの回路面積の抑制効果は、基準信号の周波数への対応数や、送信データ に対する周波数変化幅の対応数が多ければ多 、ほど、顕著なものが得られる。
[0014] さらに、上記送信変調器が、クロック信号入力端子を備え、該クロック信号入力端子 力も入力されるクロック信号を用いて、周波数変調の過程を複数のステップに分割し て行い、その各ステップに対応した分周数の変化量を算出するものとすれば、送信 周波数スペクトラムの狭帯域ィ匕を図ることができる。
発明の効果
[0015] 本発明に力かる周波数シンセサイザによれば、上記の構成を有することで、従来よ りも高機能な送信変調周波数シンセサイザを、小規模回路で実現することが可能とな る。
図面の簡単な説明
[0016] [図 1(a)]図 1 (a)は、本発明の実施の形態 1による周波数シンセサイザ 100の構成を 示すブロック図である。
[図 1(b)]図 1 (b)は、本発明の実施の形態 1による周波数シンセサイザの送信変調器 5aの具体的な構成の一例を示す図である。 [図 2(a)]図 2 (a)は、本発明の実施の形態 1による周波数シンセサイザ 100における周 波数変化の過程を説明するための図である。
[図 2(b)]図 2 (b)は、本発明の実施の形態 1による周波数シンセサイザ 100における 周波数変化の過程を説明するための図である。
[図 3(a)]図 3 (a)は、本発明の実施の形態 1による周波数シンセサイザ 100において、 周波数変調の過程を、複数のステップに分割して行うことによる効果を示す送信信号 スペクトラム図である。
[図 3(b)]図 3 (b)は、本発明の実施の形態 1による周波数シンセサイザ 100において、 周波数変調の過程を、複数のステップに分割して行うことによる効果を示す送信信号 スペクトラム図である。
[図 4(a)]図 4 (a)は、本発明の実施の形態 2による周波数シンセサイザ 200の構成を 示すブロック図である。
圆 4(b)]図 4 (b)は、本発明の実施の形態 2による周波数シンセサイザの送信変調器 5bの具体的な構成の一例を示す図である。
[図 5]図 5は、本発明の実施の形態 2による周波数シンセサイザ 200における 4値 FS Kの周波数変調の様子を示す図である。
[図 6(a)]図 6 (a)は、本発明の実施の形態 3による周波数シンセサイザ 300の構成を 示すブロック図である。
圆 6(b)]図 6 (b)は、本発明の実施の形態 3による周波数シンセサイザの送信変調器 5cの具体的な構成の一例を示す図である。
[図 7(a)]図 7 (a)は、本発明の実施の形態 4による周波数シンセサイザ 400の構成を 示すブロック図である。
圆 7(b)]図 7 (b)は、本発明の実施の形態 4による周波数シンセサイザの送信変調器 5dの具体的な構成の一例を示す図である。
[図 8]図 8は、本発明の実施の形態 4による周波数シンセサイザ 400における送信デ 一タ列を示す図である。
[図 9]図 9は、本発明の実施の形態 4による周波数シンセサイザ 400における送信デ ータ列と、送信データクロックとの関係を示す図である。 [図 10]図 10は、本発明の実施の形態 5による周波数シンセサイザ 500の構成を示す ブロック図である。
[図 11]図 11は、本発明の実施の形態 6による無線通信システム 600の構成を示すブ ロック図である。
[図 12]図 12は、本発明の実施の形態 7による無線通信システム 700の構成を示すブ ロック図である。
[図 13]図 13は、本発明の実施の形態 8による無線通信システム 800の構成を示すブ ロック図である。
符号の説明
1 位相比較器
2 低域通過フィルタ
3 電圧制御発振器
4 可変分周器
5 送信変調器
6 シグマデルタ変調器
7 送信データ生成器
8 パワーアンプ
9 送信アンテナ
10 受 f /ノアナ
11 受信回路
12 送受信切り替え器
13 受 ί 7ノフナ
発明を実施するための最良の形態
[0018] 以下、本発明の実施の形態について図面を参照しながら説明する。なお、ここで示 す実施の形態はあくまでも一例であり、必ずしもこれらの実施の形態に限定されるも のではない。
[0019] (実施の形態 1)
図 1は、本発明の実施の形態 1による周波数シンセサイザ 100の構成を示す。 図 1において、 1は位相比較器、 2は低域通過フィルタ、 3は電圧制御発振器、 4は 可変分周器、 5aは送信変調器である。
[0020] また、 Rfは基準信号、 Otは出力信号、 FDは分周信号、 N1は分周数データ、 N2 は分周数変化量、 CLはクロック信号、 TDは送信データである。
[0021] 次に、本実施の形態 1の周波数シンセサイザ 100の動作について説明する。
入力される制御電圧に対応する周波数を有する出力信号を発生する電圧制御発 振器 3の出力信号 Otは、本周波数シンセサイザ 100の出力信号として出力されると 同時に、可変分周器 4へ入力される。可変分周器 4は、入力される分周数データ N1 に従って、出力信号 Otを分周し、これを分周信号 FDとして出力する。ここで、分周数 データ N1を Nとすると、
[0022] (分周信号周波数) = (出力信号周波数) Z N
である。なお、ここで分周数データ Nは、整数とは限らず、小数部を含む数値でも良 い。
[0023] 位相比較器 1では、入力される基準信号 Rfと、分周信号 FDとの間の位相を比較し 、比較結果を示す信号 laを発生し出力する。比較結果を示す信号 laは、低域通過 フィルタ 2を通過することによって低域濾波され、電圧制御発振器 3にその制御信号 2 aとして入力(フィードバック)される。このようなフィードバック系を構築すること〖こより、 定常状態では、基準信号 Rfと、分周信号 FDの位相、及び周波数が一致した状態と なるので、
[0024] (基準信号周波数) = (出力信号周波数) Z N
即ち、
(出力信号周波数) = (基準信号周波数) X N
となる。以上が、基本的な周波数シンセサイザの動作原理である。
[0025] 本実施の形態 1による周波数シンセサイザ 100は、送信周波数変調を実現するた め、この基本的な周波数シンセサイザにおいて、送信変調器 5aを備えたことを特徴と する。
[0026] 2値の周波数変調の場合、送信変調器 5aには、 0又は 1である送信データ TDが入 力されるが、それぞれの送信データに対応して、出力周波数を中心周波数からどの 程度変化させるかが予め設定されている。この送信データ TDに応じた中心周波数 力 の周波数変化量を Fdevと定義すると、
[0027] Fdev = (基準信号周波数) X Δ Ν
となる。ここで、 Δ Νは送信データ TDに応じた分周数変化量であり、通常、小数点以 下の桁を含む数である。即ち、送信データ TDの値に従って、
[0028] Δ Ν = Fdev Z (基準信号周波数)
力 送信変調器 5aの内部の論理回路によって算出される。例えば、出力周波数が、 + Fdevだけ増加する場合を考えると、この分周数変化量が、中心周波数を指定する 分周数データに加算されて、可変分周器 4に入力されることにより、
[0029] (出力信号周波数) = (基準信号周波数) X (N+ Δ Ν)
= (基準信号周波数) X {N+FdevZ (基準信号周波数) }
= { (基準信号周波数) X N} +Fdev
となり、送信データに対応して、中心周波数から + Fdevだけ変化した周波数が出力 され、送信周波数変調が実現される。また、分周数変化量が— Δ Νであった場合は、 当然、中心周波数力 Fdevだけ変化した周波数が出力される。
[0030] なお、本発明により実現される周波数変調には、アナログデータを送信する周波数 変調(FM; Frequency Modulation)だけでなく、デジタル値の送信データに対応 した周波数変調方式である周波数偏移変調 (FSK; Frequency Shift Keying)も 含まれるのは、当然である。
[0031] また、送信データの変化に伴う周波数変化、即ち分周数変化は、図 2 (a)に示すよ うに 1回で完了するものに限定されるものではなぐ図 2 (b)に示すように、該分周数 変化を複数のステップに分割し、それぞれのステップに対応する分周数の変化量を 算出することによって、送信周波数スペクトラムを狭帯域ィ匕するようにすることも可能 である。
[0032] 図 3 (a)は、周波数変化を図 2 (a)に示すように 1回で完了した場合の送信周波数ス ぺクトラムを、図 3 (b)は、周波数変化を図 2 (b)に示すように複数のステップ (この図 の場合は 16回)に分割した場合の送信周波数スペクトラムを示している。
[0033] ここでの評価条件は、出力周波数 430MHz、 Fdev= 2. lkHz、送信データレート 2400bps, 2値 FSK変調である。図 3 (a)と比較して、図 3 (b)の方が、明らかに隣接 する周波数へのスペクトラムの広がりが抑制されており、狭帯域ィ匕がなされていること が分かる。
[0034] 無線通信においては、隣接チャンネルに対する送信信号の漏洩は誤動作の原因と なり、非常に大きな問題となるため、送信周波数スペクトラムはできるだけ狭帯域ィ匕し なければならない。そこで、本発明のように、送信データの変化に伴う周波数変化を 複数のステップに分割し、それぞれのステップに対応した分周数の変化量を算出す る方法は、送信周波数変調を用いた無線通信にお 、ては必須の方法であると言える
[0035] 送信周波数スペクトラムの狭帯域ィ匕の効果は、分割するステップ数が多いほど効果 が高いことが分力つている力 同時に回路面積が大きくなるという問題がある。このよ うに、狭帯域ィ匕の効果と回路面積とはトレードオフの関係にあるが、 16ステップを越 えると狭帯域ィ匕の効果が弱まることから、 16ステップに分割するのが最適と考えられ る。但し、ここで、周波数変化のステップ数は特に限定されるものではない。
[0036] また、分割された各周波数点を結んだ波形の形状を、 GFSKや正弦波形にすると 、狭帯域ィ匕の効果が高く好ましいものと考えられるが、ここで、波形の種類は特に限 定されるものではなぐシステムの許容スペックに応じて最適なものを選択することが 望まれる。
[0037] また、各ステップの時間間隔を決定するためには、クロック信号を入力する必要が ある力 周波数が一定のクロック信号を用いる方が時間間隔を正確に測定することが できる。周波数が一定のクロック信号としては、周波数シンセサイザの基準信号、若し くは該基準信号を適切な周波数に分周したものを用いるのが最適と考えられるが、こ こでこのクロック信号は特に限定されるものではなぐまた、周波数が一定でなく常に 変化するような信号であってもクロック信号として用いることができる。
[0038] さらに、送信データの変化に伴って周波数が変化し終わるまでの各ステップの時間 間隔は全て同一である必要は無ぐ例えば周波数変化量が大きい箇所では細かい 時間間隔で、逆に周波数変化量が小さ!、箇所では大き!、時間間隔で、各ステップの 時間間隔を設定するようにしてもょ ヽ。 [0039] 次に、本実施の形態 1による周波数シンセサイザの送信変調器 5aの具体例にっ 、 て説明する。
図 1 (b)は本実施の形態 1による周波数シンセサイザの送信変調器 5aの具体的な 構成の一例を示す図であり、図において、 51は遷移周波数幅データテーブル、 52 は乗算器、 53は複数ステップ分割係数計算回路、 54は複数ステップ分割時間間隔 計算回路、 55は時間計測カウンタである。
[0040] 遷移周波数幅データテーブル 51は、送信データ TDの 0又は 1の信号に応じて予 め設定された遷移周波数幅を出力する。ここでは、遷移周波数幅は常に一定である ので、例えば、 0の時— Fdev、 1の時 Fdevとなる。この遷移周波数幅は、遷移前の発 振周波数と、送信データに対応する発振周波数との周波数差を示す。次に乗算器 5 2によって分周数変化量 Δ Νが計算される。具体的な計算式は、
[0041] 分周数変化量 Δ Ν=遷移周波数幅 Fdev/基準信号周波数
である。続いてこの分周数変化量を複数のステップに分割して出力するために、複数 ステップ分割係数計算回路 53により、各ステップにおける分周数変化量 Δ Ν (η)を 計算する。具体的には、 Δ Ν (1) =χ1 Δ Ν、 Δ Ν (2) =χ2 Δ Ν、…というように分周 数変化量 Δ Νに所定の係数 xl, x2を掛けた値を各ステップにおける分周数変化量 Δ Ν (η)として出力する。また、この複数ステップにおいて、次のステップに移行する までの時間間隔を、時間計測カウンタ 55により計測する。時間計測カウンタ 55は、ク ロック信号 (通常はシンセサイザの基準信号 CL)をカウントし、カウント値が設定され たカウント終了値と一致した時に複数ステップ分割係数計算回路 53に対して次ステ ップ移行命令信号 Snを出力する。複数ステップ分割時間間隔カウント終了値 Scは、 基準信号周波数 Rfと複数ステップ分割時間間隔指定信号 Siを基に、複数ステップ 分割時間間隔計算回路 54により計算する。基準信号周波数 Rfが変化すると、ある 時間を計測するまでのカウント値も変化する事から、基準信号周波数 Rfも入力される 構成になっている。
以上の動作により送信変調器 5aは、送信データ TDに応じた分周数変化量を複数 ステップに分割して出力する。
[0042] 従来技術においても、各ステップにおける分周数の変化量を ROMに格納しておく ことによって、このような送信周波数スペクトラムの狭帯域ィ匕が行われていたが、この 方法では、ステップ数が多くなるに従って必要な ROM容量も比例して増加するため 、回路面積の増大が避けられな 、と 、う問題があった。
[0043] し力しながら、本実施の形態 1による周波数シンセサイザでは、送信変調器 5aにお いて、分周数変化量を論理回路により算出しているため、従来の ROM力もパルス応 答データを読み出す場合と比較して、 ROM装置のみならずアドレス等を指定して R OMからデータを読み出す読み出し回路も不要となり、回路面積の増大を大きく抑制 することができる。
[0044] さらに、様々な水晶発振子に対応するために、様々な基準信号の周波数への対応 を可能にする必要がある場合があるが、本実施の形態 1においては、例えば基準信 号の周波数が 2倍や 1Z2倍などに変化したような場合、分周数の変化量を送信変調 器 5aにおいてビットシフトを行うだけで容易に算出することができ、このような場合に も、回路面積の増大を大きく抑制することができる。
[0045] このような本実施の形態 1による周波数シンセサイザ 100によれば、電圧制御発振 器と、可変分周器と、可変分周器からの出力信号と入力される基準信号との間の位 相を比較し比較結果を示す信号を出力する位相比較器と、位相比較器力ゝらの信号 を低域濾波し電圧制御発振器の制御電圧として出力する低域通過フィルタとを備え 、さらに入力される送信データに対応して上記可変分周器の分周数の変化量を算出 し、該分周数の変化量を中心周波数の分周数設定値に加算し、周波数変調を行わ せる送信変調器を備えたものとしたので、従来の ROMカゝらパルス応答データを読み 出す場合と比較して、 ROM装置、及びアドレス等を指定して ROMカゝらデータを読み 出す読み出し回路が不要となり、回路面積の増大を大きく抑制することができる。
[0046] さらに、様々な水晶発振子に応じた様々な基準信号の周波数への対応を可能にす る場合においても、該異なる基準信号の周波数を得るための分周数の変化量を、送 信変調器においてビットシフトを行うだけで容易に算出することができ、やはり回路面 積の増大を大きく抑制することができる効果が得られる。
[0047] (実施の形態 2)
図 4は、本発明の実施の形態 2による周波数シンセサイザ 200の構成を示すもので ある。
本実施の形態 2は、実施の形態 1に比較して、送信変調器 5bの送信データ TDを 入力する送信データ入力端子 501が 1ビットでなく多ビットとなっていることと、送信デ ータ値設定信号 TDsが入力される入力端子 502を備えていることを特徴とする。
[0048] 無線通信においては、シンボル数が多いほど送信データレートが高速になり、効率 の良いデータ送信が可能となる。ところが、多ビットの送信変調では、周波数の変化 パターンが複数存在するため、従来例のような ROM力 パルス応答データを読み出 す方法では、周波数の変化パターンの数だけ、分周数変化量を ROMに格納してお 力なければならない。従って、従来例では、膨大な ROM容量が必要となるという問 題があった。
[0049] 一方、本実施の形態 2においては、送信変調器 5bにおいて、分周数変化量を論理 回路により算出しているものであり、通常の多値周波数変調では、隣り合う送信デー タに対応する周波数差は一定になっているため、本実施の形態 2では、分周数変化 量を整数倍するだけで、各送信データ値の変調パターンに対応する分周数変化量 を、小規模の回路面積でもって、効率的に算出することができる。
[0050] 図 4 (b)は本実施の形態 2による周波数シンセサイザの送信変調器 5bの具体的な 構成の一例を示す図であり、図において、図 1 (b)と同一符号は同一または相当部 分である。また、 56は遷移周波数幅計算回路である。
[0051] 本実施の形態 2による周波数シンセサイザの送信変調器 5bには、送信データ TD 力 S1ビットの信号ではなく多ビットの信号として入力される。遷移周波数幅計算回路 5 6は、送信データ TDと送信データ値設定信号 TDsに基づ ヽて遷移周波数幅 Fdev を計算し出力する。遷移周波数幅 Fdevを算出した以降の動作は図 1 (b)に示す実 施の形態 1による周波数シンセサイザの送信変調器 5aの動作と同じであるので説明 を省略する。
[0052] 例えば、図 5に示すように、 4値の FSKでは、送信データ値は 00、 01、 10、 11の 4 種類になるが、隣り合うデータに対応する周波数差を 2kHzとした場合、 00から他の どのデータに遷移した場合でも、周波数差は 2kHzの整数倍になる。よって、分周数 の変化量もある値を基にした整数倍になるので、算出に必要な回路面積を大幅に小 さくすることができる。この点、従来例のように ROMを用いる方法では、このような面 積の縮小効果は得られず、送信データのビット数の増加に伴って回路面積は増大す る一方で &)つ 7こ。
[0053] なお、図 5に示す送信データ値と、周波数との大小との対応関係はあくまで一例で あり、必ずしもこの対応関係に従う必要が無いのは勿論である。
[0054] また、以上では 4値の周波数変調を行うものを例としてあげたが、本発明は、 3値や 5値、若しくはそれ以上の送信データ値、を有する送信周波数変調を行うものにも適 用できるのは勿論である。
[0055] さらに、送信データ値設定入力端子 52により送信データ値の数を切り替えることに より、 4値から 2値、 2値から 4値、若しくはそれ以外の送信データ値への切り換えを随 時行うことができ、通信速度の切り換えを、即時に容易に行うことが可能である。
[0056] このような本実施の形態 2の周波数シンセサイザ 200では、送信変調器を、多ビット の入力を受ける送信データ入力端子と、該送信データ値を設定するための送信デー タ値設定入力端子とを備えたものとしたので、シンボル数が多!ヽほど送信データレー トが高速になり、効率の良いデータ送信が可能となる多ビットの送信変調において、 従来例のような ROMからパルス応答データを読み出す方法では、周波数の変化パ ターンの数に対応する膨大な ROM容量が必要であつたのに対し、本実施の形態 2 では、送信変調器 5bにおいて分周数変化量を論理回路により整数倍して算出する のみで、該多ビットの送信変調の動作が可能となるため、回路面積の増大を大きく抑 制しつつ多値周波数変調への対応を可能とできる効果がある。
[0057] (実施の形態 3)
図 6は、本発明の実施の形態 3による周波数シンセサイザ 300の構成を示すもので ある。
本実施の形態 3は、実施の形態 1に比較して、送信変調器 5cに、周波数の変化量 Fdevを設定する Fdev設定信号 Fdevsが入力される 1ビット、若しくは多ビットの入力 端子 503を備えることを特徴とする。
[0058] 従来例のように、 ROM力 パルス応答データを読み出す方法では、送信データに 対応する周波数変化量を可変にする場合、可変にした数に比例して多くの ROM容 量が必要となり、回路面積が膨大になるという問題があった。
[0059] 本実施の形態 3による送信変調器を含む周波数シンセサイザ 300は、分周数変化 量を論理回路により算出するものであるため、論理回路の共通化により、小面積で効 率的に分周数変化量を算出することができる。従って、回路面積の増大を抑制しつ つ、送信データに対応する周波数変化量を可変にすることが可能である。
[0060] 図 6 (b)は本実施の形態 3による周波数シンセサイザの送信変調器 5cの具体的な 構成の一例を示す図であり、図において、図 1 (b)と同一符号は同一または相当部 分である。また、 57は遷移周波数幅計算回路である。
[0061] 本実施の形態 3による周波数シンセサイザの送信変調器 5bには、送信データ TDと 周波数の変化量 Fdevを設定する Fdev設定信号 Fdevsが入力される。遷移周波数 幅計算回路 57は、入力された送信データ TDと Fdev設定信号 Fdevsに基づ ヽて遷 移周波数幅 Fdevを計算し出力する。以降の動作は図 1 (b)に示す実施の形態 1によ る周波数シンセサイザの送信変調器 5aと同じであるので説明を省略する。
[0062] このような本実施の形態 3の周波数シンセサイザ 300では、実施の形態 1に比較し て、送信変調器 5cに、周波数の変化量 Fdevを設定する 1ビット、若しくは多ビットの 入力端子を備えたものとしたので、従来例のように、 ROMからパルス応答データを読 み出す方法では、送信データに対応する周波数変化量を可変にする場合、可変に した数に比例して多くの ROM容量が必要となり、回路面積が膨大になるものであつ たが、本実施の形態 3においては、分周数変化量を、送信変調器 5cにおいて論理 回路により算出することにより、該論理回路の共通化によって小面積で、効率的に分 周数変化量を算出可能とでき、回路面積の増大を抑制しつつ、送信データに対応す る周波数変化量を可変とできるものが得られる効果がある。
[0063] (実施の形態 4)
図 7は、本発明の実施の形態 4による周波数シンセサイザ 400の構成を示すもので ある。
本実施の形態 4は、実施の形態 1に比較して、送信変調器 5dに、送信データクロッ ク入力端子を備えたことを特徴とする。この送信データクロックは、外部の送信データ 生成器が、送信変調器 5dに対して送信データを確定させるタイミングを示すために 送り出す信号である。送信変調器 5dは、データクロックの立ち上がり、若しくは立ち下 力 Sりに同期したタイミングで送信データを確定させ、そのデータに基づいて分周数変 化量を算出する。
[0064] 2値の送信データを用いた送信変調の場合は、データクロックが無くても送信デー タの変化を常に検出することができれば、送信周波数変調を行うことが可能である。 また、多値の送信データを用いた周波数変調の場合でも、複数ビットの送信データ 力 ビット数と同じ数の信号線から 1ビットずつ独立して入力されるような場合には、同 様に各ビットの送信データの変化を常に検出することによって、送信周波数変調を行 うことが可能である。
[0065] ところが、端子数の制約から、図 8に示すように、 1ビットの送信データ入力ラインで 複数ビットの送信データをシリアルに送らざるを得な 、場合がある。このような場合、 送信データだけでは、信号の無変化と、ビットの区切りとを、区別できない場合がある
[0066] 例えば図 9に示すように、 2ビットの送信データとして順に {01 }、 {00}、 { 11 }を送り たい場合、送信データの変化を検出するだけでは、送信データは {01 }、 {01 }と認識 されてしまう。したがって、このような誤認識があると、通信を正常に行うことができな い。
[0067] そこで、送信データと共にデータクロックを送り出し、例えば図 9中の矢印で示した タイミングで送信データを確定させることにより、ビット区切りを明確ィ匕することができ、 多ビットの送信データを、正常に認識することが可能となる。
[0068] 図 7 (b)は本実施の形態 4による周波数シンセサイザの送信変調器 5dの具体的な 構成の一例を示す図であり、図において、図 1 (b)と同一符号は同一または相当部 分である。また、 58はパラレル送信データ生成回路、 59は遷移周波数幅計算回路 である。
[0069] 本実施の形態 4による周波数シンセサイザの送信変調器 5dには、送信データクロッ ク TDCLに同期して送信データ TDがシリアル入力される。パラレル送信データ生成 回路 58に入力された送信データは送信データクロック TDCLのタイミングで確定され 、パラレル送信データ TDpとして遷移周波数幅計算回路 59に入力される。遷移周波 数幅計算回路 59は、パラレル入力された送信データ TDpと送信データ値設定信号 TDsに基づいて遷移周波数幅 Fdevを計算し出力する。遷移周波数幅 Fdevを算出 した以降の動作は図 1 (b)に示す実施の形態 1による周波数シンセサイザの送信変 調器 5aの動作と同じであるので説明を省略する。
[0070] このような本実施の形態 4の周波数シンセサイザ 400では、送信変調器 5dに送信 データクロック入力端子を備えたものとし、送信データと共にデータクロックを送り出し
、該データクロックにより与えられるタイミングで送信データを確定させてビット区切り を明確ィ匕するようにしたので、多ビットの送信データをも正常に認識することが可能と なり、送信データ入力ラインを 1ビットにした状態でも多値周波数変調を実現できるも のが得られる効果がある。
[0071] (実施の形態 5)
図 10は、本発明の実施の形態 5による周波数シンセサイザ 500の構成を示すもの である。
本実施の形態 5は、実施の形態 1による周波数シンセサイザにおいて、シグマデル タ (デルタシグマとも言う)変調器 6を備えたことを特徴とする。
[0072] シグマデルタ変調器 6は、送信データに対応する分周数変化量が加算された分周 数データを、シグマデルタ変調して可変分周器の分周数入力として出力する。このデ ルタシグマ変調によって、分数分周時の量子化ノイズを高域側に拡散することができ る。
[0073] 周波数シンセサイザにおいては、発振周波数近傍のノイズは、隣接チャンネルへの 漏洩など、好ましくない影響を及ぼす。しかし、この量子化ノイズを高域側に拡散する ことによって、ノイズ成分をフィルタにより除去することが可能となり、高精度な周波数 スペクトラムを有する周波数シンセサイザを実現することができる。
[0074] このような本実施の形態 5の周波数シンセサイザ 500では、実施の形態 1による周 波数シンセサイザにおいて、シグマデルタ変調器 6を備えたので、該シグマデルタ変 調器 6により、送信データに対応する分周数変化量が加算された分周数データをシ ダマデルタ変調して可変分周器の分周数入力として出力し、このデルタシグマ変調 によって分数分周時の量子化ノイズを高域側に拡散することにより、ノイズ成分をフィ ルタにより除去することが可能となり、高精度な周波数スペクトラムを有する周波数シ ンセサイザを実現できる効果がある。
[0075] なお、上記にぉ 、て、分数分周時の量子化ノイズの拡散方法は、シグマデルタ変 調方式に限らず、他のどのような方式を用いても良いことは勿論である。
[0076] (実施の形態 6)
図 11は、本発明の実施の形態 6による無線通信システム 600の構成を示すもので ある。
本実施の形態 6の無線通信システム 600は、実施の形態 1の周波数シンセサイザ 1 00に対して、送信データを生成する送信データ生成器 7と、周波数シンセサイザ 10 0から出力された出力信号の電力を増幅するパワーアンプ 8と、パワーアンプ 8により 増幅された信号を無線送信する送信アンテナ 9とを備えたことを特徴とする。
[0077] 本実施の形態 6の無線通信システム 600を、同一の半導体基板上に形成すること により、送信周波数変調機能を有する無線通信システムを廉価に実現することが可 能となる。また、送信周波数を短時間だけ変化させ、直ぐに元の周波数に戻すことに より、周波数が一定のまま、送信信号の位相だけを変化させることができる。これを応 用して、位相変調を行うと同時に、パワーアンプ 8の増幅度を変化させることにより、 位相変調と、振幅変調を同時に行うポーラ変調を実現することができる。
[0078] このような本実施の形態 6の無線通信システム 600では、実施の形態 1の周波数シ ンセサイザ 100に対して、送信データを生成する送信データ生成器 7と、周波数シン セサイザ 100から出力された出力信号の電力を増幅するパワーアンプ 8と、パワーァ ンプ 8により増幅された信号を無線送信する送信アンテナ 9とを備えたものとし、これ を同一の半導体基板上に形成するようにしたので、送信周波数変調機能を有する無 線通信システムを廉価に実現可能となる。
[0079] また、送信周波数を短時間だけ変化させ、直ぐに元の周波数に戻すようにすること により、周波数が一定のまま、送信信号の位相だけを変化させることができ、これを用 いて、位相変調を行うと同時に、パワーアンプ 8の増幅度を変化させることにより、位 相変調と振幅変調を同時に行うポーラ変調をも実現できるものを得られる効果がある [0080] (実施の形態 7)
図 12は、本発明の実施の形態 7による無線通信システム 700の構成を示すもので ある。
本実施の形態 7は、実施の形態 6に対して、送出された無線信号を受信する受信ァ ンテナ 10と、受信アンテナ 10により受信された無線信号力も送信されたデータを取り 出す受信回路 11とを備えたことを特徴とする。
[0081] なお、受信時には、周波数シンセサイザは周波数変調を行わず、局部発振器とし て受信チャンネル毎に一定の周波数を出し続けるものである。
[0082] 本実施の形態 7による無線通信システム 700を、 1つの半導体基板上に集積するこ とにより、送信周波数変調機能、及び受信機能を有する無線通信システムを、廉価 に実現することが可能となる。
[0083] このような本実施の形態 7の無線通信システム 700では、実施の形態 6の無線通信 システム 600に対して、送出された無線信号を受信する受信アンテナ 10と、受信アン テナ 10により受信された無線信号力も送信されたデータを取り出す受信回路 11とを 備えたものとしたので、これを 1つの半導体基板上に集積することにより、送信周波数 変調機能、及び受信機能を有する無線通信システムを、廉価に実現可能とできる効 果がある。
[0084] (実施の形態 8)
図 13は、本発明の実施の形態 8による無線通信システム 800の構成を示すもので ある。
本実施の形態 8は、実施の形態 7では送信アンテナ 9と、受信アンテナ 10を独立し た別々の構成としているが、デュプレクサと呼ばれる送受信切り替え器 12を用いてこ れらのアンテナを、送受信アンテナ 13に共通化したことを特徴とする。これにより、部 品点数を減らすことができ、送信周波数変調機能、及び受信機能を有する無線通信 システムを廉価に実現することが可能となる。
[0085] このような本実施の形態 8による無線通信システム 800では、デュプレクサと呼ばれ る送受信切り替え器を用いて、送信アンテナと、受信アンテナを、送受信アンテナ 13 に共通化したことにより、部品点数を減らすことができ、送信周波数変調機能、及び 受信機能を有する無線通信システムを廉価に実現可能となる効果が得られる。 産業上の利用可能性
本発明にかかる周波数シンセサイザ、無線通信システム、あるいは半導体装置によ れば、小規模の回路面積で高精度、且つ高機能な送信周波数変調を実現すること ができ、周波数変調、若しくは FSK変調で通信を行うあらゆる無線通信用 LSIに応 用して有用である。特に、送信周波数の変化幅や、送信データのビット数に、多様な 通信モードを有する無線通信システムにお 、て、絶大な効果を得ることができるもの である。

Claims

請求の範囲
[1] 入力される制御電圧に対応する周波数を有する出力信号を発生する電圧制御発 振器と、
入力される分周数データに従って上記電圧制御発振器力 の出力信号を分周し、 分周後の信号を出力する可変分周器と、
上記可変分周器からの出力信号と、入力される基準信号との間の位相を比較し、 比較結果を示す信号を発生して出力する位相比較器と、
上記位相比較器力ゝらの信号を低域濾波し、上記電圧制御発振器の制御電圧として 出力する低域通過フィルタと、
入力される送信データに対応して、上記可変分周器の分周数の変化量を算出し、 該分周数の変化量を中心周波数の分周数設定値に加算し、周波数変調を行わせる 送信変調器とを備えた、
ことを特徴とする周波数シンセサイザ。
[2] 請求項 1に記載の周波数シンセサイザにお 、て、
上記送信変調器は、クロック信号入力端子を備え、
該クロック信号入力端子力 入力されるクロック信号を用いて、周波数変調の過程 を複数のステップに分割して行 、、その各ステップに対応した分周数の変化量を算 出する、
ことを特徴とする周波数シンセサイザ。
[3] 請求項 2に記載の周波数シンセサイザにおいて、
前記周波数変調の過程を複数のステップに分割して行うのに用いるクロック信号は 、周波数が一定のクロック信号である、
ことを特徴とする周波数シンセサイザ。
[4] 請求項 1に記載の周波数シンセサイザにお 、て、
上記送信変調器は、複数ビットの送信データを有する多値周波数変調に対応した 分周数の変化量を算出する、
ことを特徴とする周波数シンセサイザ。
[5] 請求項 4に記載の周波数シンセサイザにお 、て、 前記送信データは、多値周波数変調の送信データ値を有する、
ことを特徴とする周波数シンセサイザ。
[6] 請求項 4に記載の周波数シンセサイザにお 、て、
上記送信変調器は、複数ビットの送信データが 1ビットの入力端子から連続的に入 力される、
ことを特徴とする周波数シンセサイザ。
[7] 請求項 1に記載の周波数シンセサイザにお 、て、
上記送信変調器は、送信データクロック入力端子を備え、
該送信データクロック入力端子から入力される送信データクロックに同期したタイミ ングで、送信データの値を判別する、
ことを特徴とする周波数シンセサイザ。
[8] 請求項 1に記載の周波数シンセサイザにお 、て、
上記送信変調器は、周波数変調時の周波数変化量を複数のパターンに設定し、 それぞれの周波数変化量に対応した分周数の変化量を算出する、
ことを特徴とする周波数シンセサイザ。
[9] 請求項 1に記載の周波数シンセサイザにお 、て、
上記送信変調器により変調された分周数データを、シグマデルタ変調して可変分 周器に出力するシグマデルタ変調器を備えた、
ことを特徴とする周波数シンセサイザ。
[10] 請求項 1に記載の周波数シンセサイザと、
上記電圧制御発振器の出力信号を増幅するパワーアンプと、
上記パワーアンプにより増幅された信号を送出する送信アンテナと、
送信データを生成し、前記周波数シンセサイザに送る送信データ生成器と、を備え 前記周波数シンセサイザより周波数変調された送信データ信号を、上記送信アン テナより無線送信する、
ことを特徴とする無線通信システム。
[11] 請求項 10に記載の無線通信システムにおいて、 上記パワーアンプの出力レベルを可変にすることによって、送信信号の位相変調と 、振幅変調を同時に行う、
ことを特徴とする無線通信システム。
[12] 請求項 11に記載の無線通信システムにお 、て、
送出された無線信号を受信する受信アンテナと、
上記受信アンテナにより受信された無線信号から、送信されたデータを取り出す受 信回路と、を備えた、
ことを特徴とする無線通信システム。
[13] 請求項 12に記載の無線通信システムにおいて、
上記送信アンテナ、および上記受信アンテナを、送信時、及び受信時に、切り替え る送受信切り替え器を、備えた、
ことを特徴とする無線通信システム。
[14] 請求項 10乃至 13のいずれかに記載の無線通信システムを、 1つの半導体基板上 に集積してなる、
ことを特徴とする半導体装置。
PCT/JP2007/054237 2006-03-07 2007-03-06 周波数シンセサイザ、無線通信システム、及び半導体装置 WO2007102478A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/282,045 US20090098834A1 (en) 2006-03-07 2007-03-06 Frequency synthesizer, radio communication system, and semiconductor device
CN2007800079933A CN101395802B (zh) 2006-03-07 2007-03-06 频率合成器、无线通信系统、以及半导体装置
JP2008503852A JP4480097B2 (ja) 2006-03-07 2007-03-06 周波数シンセサイザ、無線通信システム、及び半導体装置
EP07737812A EP2009797A1 (en) 2006-03-07 2007-03-06 Frequency synthesizer, wireless communication system, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-060832 2006-03-07
JP2006060832 2006-03-07

Publications (1)

Publication Number Publication Date
WO2007102478A1 true WO2007102478A1 (ja) 2007-09-13

Family

ID=38474905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054237 WO2007102478A1 (ja) 2006-03-07 2007-03-06 周波数シンセサイザ、無線通信システム、及び半導体装置

Country Status (5)

Country Link
US (1) US20090098834A1 (ja)
EP (1) EP2009797A1 (ja)
JP (1) JP4480097B2 (ja)
CN (1) CN101395802B (ja)
WO (1) WO2007102478A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795986B2 (en) * 2007-10-16 2010-09-14 Semiconductor Components Industries, Llc Multi-format all-digital modulator and method
JP6455002B2 (ja) * 2014-07-18 2019-01-23 セイコーエプソン株式会社 回路装置、送信モジュール、電子機器及び移動体
US10481179B2 (en) * 2015-06-30 2019-11-19 Tektronix, Inc. Automatic frequency prescaler
KR102194710B1 (ko) * 2016-11-28 2020-12-23 삼성전기주식회사 카메라 모듈의 액츄에이터
KR102059820B1 (ko) 2016-11-30 2019-12-27 삼성전기주식회사 카메라 모듈의 액츄에이터
JP6556889B2 (ja) * 2017-03-17 2019-08-07 アンリツ株式会社 スペクトラム拡散クロック発生器及びスペクトラム拡散クロック発生方法とパターン発生器及びパターン発生方法
JP7143646B2 (ja) * 2018-06-27 2022-09-29 オムロン株式会社 Rfid通信ユニット、rfid通信ユニットの制御方法、およびプログラム
CN110399008A (zh) * 2019-07-16 2019-11-01 武汉鑫诚欣科技有限公司 超短波及微波频段无线信号接收的频率合成器及方法
US11563607B2 (en) 2019-09-24 2023-01-24 Forkbeard Technologies AS Orthogonal frequency scheme for narrowband acoustic signaling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201123A (ja) * 2002-12-19 2004-07-15 Hitachi Kokusai Electric Inc 振幅変調送信機
JP2004260411A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd デジタル信号送受信機
JP2005072876A (ja) * 2003-08-22 2005-03-17 Matsushita Electric Ind Co Ltd 広帯域変調pllおよびその変調度調整方法
JP2005277459A (ja) * 2004-03-22 2005-10-06 Toshiba Corp デジタル位相同期ループ回路及びこのデジタル位相同期ループ回路の制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631466A (en) * 1985-04-25 1986-12-23 Westinghouse Electric Corp. Phase locked stepper motor controlled light chopper
JPH0614065A (ja) * 1992-06-26 1994-01-21 Nec Corp 多値fsk変調器
JP2000013256A (ja) * 1998-06-23 2000-01-14 Alps Electric Co Ltd 送信回路
DE60006346T2 (de) * 1999-12-13 2004-09-09 Matsushita Electric Industrial Co., Ltd., Kadoma Frequenzsynthetisierer mit gebrochenem Teilerverhältnis und Delta-Sigma Modulator zur Kontrolle des fraktionalen Teils
US6735181B1 (en) * 2000-06-26 2004-05-11 Atmel Corporation Wireless transceiver with subtractive filter compensating both transmit and receive artifacts
JP2006261714A (ja) * 2005-03-15 2006-09-28 Renesas Technology Corp 通信用半導体集積回路および携帯通信端末

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201123A (ja) * 2002-12-19 2004-07-15 Hitachi Kokusai Electric Inc 振幅変調送信機
JP2004260411A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd デジタル信号送受信機
JP2005072876A (ja) * 2003-08-22 2005-03-17 Matsushita Electric Ind Co Ltd 広帯域変調pllおよびその変調度調整方法
JP2005277459A (ja) * 2004-03-22 2005-10-06 Toshiba Corp デジタル位相同期ループ回路及びこのデジタル位相同期ループ回路の制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"An Agile ISM Band Frequency Synthesizer with Built-in GMSK Data Modulation", IEEE FOURNAL OF SOLID-STATE CIRCUITS, vol. 33, no. 7, July 1998 (1998-07-01), pages 998
IEEE FOURNAL OF SOLID-STATE CIRCUITS, vol. 33, no. 7, July 1998 (1998-07-01), pages 998

Also Published As

Publication number Publication date
JPWO2007102478A1 (ja) 2009-07-23
CN101395802B (zh) 2011-10-19
EP2009797A1 (en) 2008-12-31
US20090098834A1 (en) 2009-04-16
CN101395802A (zh) 2009-03-25
JP4480097B2 (ja) 2010-06-16

Similar Documents

Publication Publication Date Title
WO2007102478A1 (ja) 周波数シンセサイザ、無線通信システム、及び半導体装置
EP2905902B1 (en) Arbitrary Phase Trajectory Frequency Synthesizer
JP4214098B2 (ja) シグマデルタ送信回路及びそれを用いた送受信機
CN100466460C (zh) 调制器及其校正方法
CN107852163A (zh) 数字锁相环的两点注入式宽带直调
US6392493B1 (en) Fractional-N frequency synthesizer
KR101787720B1 (ko) 주파수 편이 변조 방식의 디지털 위상 동기 루프 회로 장치 및 그 제어 방법
WO2002080484A1 (en) Method of and apparatus for performing amplitude and phase modulation
WO2006118056A1 (ja) 2点変調型位相変調装置、ポーラ変調送信装置、無線送信装置及び無線通信装置
CN109586741A (zh) 调制指数调整
JP2006080909A (ja) 位相同期ループ回路
JP3852938B2 (ja) 広帯域変調pllおよびその変調度調整方法
US7495520B2 (en) Modulation device using frequency-shift keying
JPWO2007004465A1 (ja) 半導体装置およびそれを用いた無線回路装置
CN1937411A (zh) 用于锁相环系统中的信号滤波的系统和方法
WO2012093424A1 (ja) デルタシグマ変調型分数分周pll周波数シンセサイザおよびそれを備えた無線通信装置
US11356106B2 (en) Phase locked loop and electronic device including the same
TWI339049B (en) Gfsk/fsk modulation circuit and related method implemented in a digital manner
Nidhi et al. A 1.8 GHz wideband open-loop phase modulator with TDC based non-linearity calibration in 0.13 µm CMOS
JP2002044170A (ja) 任意波形信号発生装置
US8767876B2 (en) Filter offset compensation
JP2009284515A (ja) 位相同期ループ回路
Mayer et al. A 1 GHz/spl Sigma//spl Delta/noise shaper for all digital PLLs with multiband UMTS modulation capability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780007993.3

Country of ref document: CN

Ref document number: 2008503852

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12282045

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007737812

Country of ref document: EP