WO2007100958A1 - External device that continuously monitors for osdb and delivers audio stimulation therapy - Google Patents
External device that continuously monitors for osdb and delivers audio stimulation therapy Download PDFInfo
- Publication number
- WO2007100958A1 WO2007100958A1 PCT/US2007/061638 US2007061638W WO2007100958A1 WO 2007100958 A1 WO2007100958 A1 WO 2007100958A1 US 2007061638 W US2007061638 W US 2007061638W WO 2007100958 A1 WO2007100958 A1 WO 2007100958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subject
- respiration
- set forth
- osdb
- physiological parameter
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
- A61B5/14552—Details of sensors specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/022—Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/0816—Measuring devices for examining respiratory frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14542—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4806—Sleep evaluation
- A61B5/4818—Sleep apnoea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
- A61B5/6815—Ear
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
- A61B5/6815—Ear
- A61B5/6817—Ear canal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/683—Means for maintaining contact with the body
- A61B5/6838—Clamps or clips
Definitions
- OSDB Obstructive Sleep Disordered Breathing
- OSDB typically manifests OSDB.
- OSDB includes upper airway resistance syndrome, non-obstructive and obstructive sleep apneas and nocturnal Cheyne-Stokes breathing. While snoring is characterized by partial occlusion of the upper airway passage during sleep s the sleep apnea and Cheyne-Stokes breathing is normally characterized by intermittently complete occlusions.
- Sleep apnea is the most common piece of OSDB and is characterized by the absence of breathing for a certain period of time such as 30 to 45 seconds. Doctors estimate that about 18 million Americans suffer from sleep apnea.
- One cause for sleep apnea is an obstruction of the airway when the muscles of the tongue or uvula relax. Obesity and an abnormal amount of fat in the throat area are conducive to this condition.
- Another cause is a temporary cessation of the message from the brain that tells the diaphragm to breathe.
- sleep apnea with each period of breathlessness, which can be as many as twenty in an hour, the carbon dioxide level in the blood rises. There is a corresponding decrease in the blood oxygen levels.
- sleep apnea can cause high blood pressure and other cardiovascular disease, memory problems, weight gain, impotency, and headaches. If the sleep apnea is diagnosed and treated sooner, such problems might be avoided in some cases, or at least the damage might be reduced.
- Polysomnography is a standard diagnostic approach to detect the sleep apnea. It requires the person to stay overnight in the hospital for observation.
- a polysomnographic procedure involves tethered connections and monitoring of many parameters which makes it intensive, site dependent, and costly. Such approach is not practical for screening a large number of patients and thus the majority of patients suffering from OSDB remain undiagnosed.
- One approach to treat sleep apnea is to use a face mask and a small air compressor or fan that forces just enough air through the nasal passages to keep the nasal passages open during the night. But, although such a mask allows a good night's sleep, it causes physical discomfort to the person as well as makes the person prone to nasal congestion and infections.
- Another approach is to pace the heart at a faster rate, which stimulates the sleeper's breathing. Unfortunately, this requires an implantable pacemaker type device to the heart.
- Another approach is to pace or stimulate the muscles of the tongue or uvula from relaxation thus opening the constricted airway allowing the sleeper to resume breathing.
- this approach requires an implantable nerve or muscle stimulator.
- Another approach is to surgically remove a portion of the posterior tongue or uvula muscles so that when the muscles relax the airway remains sufficiently open to not totally occlude airflow.
- This approach requires a surgical procedure and has not been proven to be a long-term solution.
- the nerves are stimulated by a high voltage shock to the sleeper to condition the sleeper to resume breathing.
- a high voltage shock to the sleeper to condition the sleeper to resume breathing.
- the present application provides new and improved imaging apparatuses and methods, which overcome the above-referenced problems and others.
- a physiological parameter measuring device is disposed within or near an ear canal of a subject to non-invasively sense at least one physiological parameter of the subject which one physiological parameter is associated with at least one physiological condition of the subject.
- An analyzing device is operatively coupled to the physiological parameter measuring device to analyze the sensed physiological parameter and detect the physiological condition of the subject. Based on the detection and analysis of the physiological condition of the subject, a stimulating device stimulates the subject with the physiological parameter measuring device within or near the ear canal of the subject to mitigate the physiological condition of the subject.
- a method is disclosed. At least one physiological parameter of a sleeping subject is non-invasively sensed via an auditory canal of the subject, the physiological parameter being associated with at least one physiological condition of the subject. The sensed physiological parameter is analyzed to detect the physiological condition of the subject. In response to the detection of the physiological condition of the subject, the subject is stimulated so that the physiological condition of the subject is mitigated,
- a system for monitoring and treating obstructive sleep disordered breathing is disclosed.
- An in-the-ear sensing device is disposed within an ear canal of a subject to non-invasively sense at least one physiological parameter of the subject which one physiological parameter is associated with the OSDB.
- a monitoring device is operatively coupled to the in-the-ear sensing device to communicate with the in-the-ear sensing device.
- An analyzing device analyzes the sensed physiological parameter and detects an OSDB event.
- a device is disposed in the in-the-ear sensing device, which device, based on the detected
- OSDB event stimulates the subject to mitigate the OSDB event.
- FIGURE 1 is a diagrammatical illustration of a monitoring and therapy system
- FIGURE 2 is a diagrammatical illustration of an in-the-ear probe
- FIGURE 3 is an image of an in-the-ear probe attached to a behind-the-ear device.
- Polysomnography testing system 10 includes a monitoring device 12 that is configured to communicate with physiological measuring devices, such as an in-the-ear probe (ITE) 14, inserted in an ear or auditory canal of a subject or sleeper 16, for measuring one or more physiological parameters or signals, such as respiration, blood pressure, pulse oximetry or a level of Wood oxygen (SpO 2 ), heart or pulse rate, perfusion, and temperature, from within an ear or auditory canal.
- physiological measuring devices such as an in-the-ear probe (ITE) 14, inserted in an ear or auditory canal of a subject or sleeper 16 for measuring one or more physiological parameters or signals, such as respiration, blood pressure, pulse oximetry or a level of Wood oxygen (SpO 2 ), heart or pulse rate, perfusion, and temperature, from within an ear or auditory canal.
- ITE in-the-ear probe
- SpO 2 Wood oxygen
- OSDB Sleep Disordered Breathing
- the examples of the monitoring device 12 are a behind-the-ear (BTE) OSDB monitoring device 18 as shown in FIGURE 3, an on-a- coilar (OAC) device, and any other device suitable for interpreting the measurements and providing a suitable therapy as described below.
- the physiological parameters may be wirelessly transmitted by a wireless transceiver 22, for example, continuously, periodically at a predetermined rate, on-demand, and upon occurrence of an event, from the monitoring device 12 to a computerized unit or central station 24.
- the computerized unit 24 may be used to record the entire sleep activity and/or only the number and severity of OSDB events.
- the probe 14 includes a tube 30 that inserts into the ear canal of the subject 16.
- the tube 30 is suitably dimensioned to enter the ear canal to a suitable depth and adapts to various shaped ear canals, e.g., different diameter or contours.
- the tube 30 includes an end portion 32, which resides in the ear canal
- An inflatable balloon 40 surrounds the end portion 32 of the tube 30 or any other suitable portion of the tube 30.
- the inflatable balloon 40 supports one or more sensors 42 that are operatively coupled to a surface of the balloon 40 to measure physiological signals.
- sensors include light emitting diodes (LEDs), an infrared (IR) source, light detecting sensors, a pressure transducer, a microphone, a speaker, and a thermistor.
- the light detecting sensor is used to minimize or prevent absorption of light not indicative of the physiological process under measurement such as light from outside the ear or light emitted from another sensor located on the balloon 40.
- the inflatable balloon 40 is inflated to position the sensors 42 proximate to an appropriate tissue within the ear canal with adequate force and pressure to ensure close coupling of sensors with the tissue but without causing decreased perfusion or blanching of the tissue.
- the balloon is omitted and replaced with a spongy material that expands to correctly position the sensors.
- the sensors 42 are mounted about the end portion 32 of the tube 30 and could be moved into contact with the tissue once the tube 30 is inserted into the ear canal of the subject 16.
- sensors for measuring pulse rate and/or blood oxygen are positioned proximate to the ear canal tissue that is perfused with arterial blood supplied by branches of the External as well as the Internal Carotid Arteries, thus serving as a well perfused physiological site even if the body is experiencing peripheral shutdown due to shock or other conditions.
- sensors include an energy emitting means, such as an LED, which emits light into the tissue, and an energy detecting means that detects light transmission through the vascular tissue to determine pulse rate and/or blood oxygen levels.
- a temperature sensor such as a thermistor, is positioned proximate to the vascular tissue.
- sensors for sensing audio signals such as a microphone 44 are suitably positioned in relatively quite regions of the ear canal to mitigate sensing erroneous audio signals.
- microphone 44 can sense pulse pressure sounds and respiration.
- sensor(s) for producing audio signals such as a speaker 46, arc positioned in the ear canal to produce audio signals to restore the sleeper's breathing pattern as described below.
- the inflatable balloon 40 is also used to facilitate non-invasive measuring of the blood pressure.
- the inflatable balloon 40 is inflated until it occludes blood flow in a portion of the ear proximate a blood pressure sensor(s), such as a pressure transducer, operatively connected to the inflatable balloon 40.
- the pressure in the inflatable balloon 40 is then suitably released to deflate the inflatable balloon 40.
- a systolic and a diastolic blood pressure are obtained during inflation and/or deflation using an auscultatory approach via the microphone 42 operatively connected to the balloon 40 and/or an oscillometry approach via optical sensing components attached to the balloon 40.
- the probe 14 senses at least a respiration rate of the sleeper 16.
- the probe 14 senses at least one of a blood oxygen level (SpO 2 ) and the pulse rate of the sleeper 16.
- the probe 14 senses at least one of Sp ⁇ 2 and a blood pressure of the sleeper 16.
- blood oxygen level is highly correlated with the severity of the sleep apnea due to the cyclic depression of blood oxygen as the sleeper experiences repeated cycles of oxygen deprivation, analyzing the combination of the respiration rate, blood oxygen level and pulse rate substantially enhances diagnostics of the sleep apnea as compared to analyzing a single signal.
- An analyzing device 48 analyses the sensed information for sleep apnea, e.g. for absence of breathing. Typically, as the sleeper 16 goes into the sleep apnea, the respiration ceases and SpO 2 begins to decrease. The pulse rate typically begins to decrease also. In one embodiment, the analyzing device or algorithm or means 48 analyses combination of data which is received by measuring respiration, SpO 2 and the pulse rate, which makes the analysis less susceptible to noise and mistake. The analysis might vary from one sleeper to another depending on that sleeper's personal data and medical history. For example, the pulse rate and SpO 2 can be compared with thresholds, e.g. a sudden slowing of the pulse rate by 10 beats per minute and a SpO 2 dropping below 90.
- thresholds e.g. a sudden slowing of the pulse rate by 10 beats per minute and a SpO 2 dropping below 90.
- the simulating device 20 applies the stimulus to the sleeper 16. For example, for some subjects the stimulus is given after the respiration cessation of 10 seconds, while for others, the stimulus is given after the respiration cessation of 5 seconds, and in yet for others after a longer duration such as 30 or 45 seconds. As another example, for some sleepers the stimulus is given if the sleeper's pulse rate drops below a predetermined value. As another example, the respiration threshold varies dynamically with SpO 2 level or decreases in the pulse rate, e.g. carbon dioxide builds up in the blood shorter respiration cessations are tolerated.
- the stimulus is given via the speaker 46, which is, for example, a low power speaker which produces audible sounds that are loud enough to be heard by the user of the device, e.g. the sleeper 16, but are not audible outside of the ear canal of the sleeper 16.
- the stimulus is a sound or a person's voice that tells the sleeper 16 to start breathing, or to move, e.g. to turn on the side.
- Such stimulus is given subconsciously, by barely waking up the sleeper 16, if at all, only to resume breathing.
- Such stimulus occurs only a few seconds into the sleep apnea, thus significantly reducing the sleep apnea time. If the apnea persists, a louder voice or noise may be applied.
- the stimulating device is, for example, a low power speaker which produces audible sounds that are loud enough to be heard by the user of the device, e.g. the sleeper 16, but are not audible outside of the ear canal of the sleeper 16.
- the stimulating device 20 provides an external stimulus to the sleeper 16, e.g. near the sleeper's ear. If the monitoring device 12 determines that after the stimulus is given there has been no breathing for a predetermined period of time, such as i minute or more, and the saturation levels are decreasing, the stimulating device 20 progressively increases the intensity of the audio signal. If 5 after reaching the maximum stimulation signal strength, the monitoring device
- an external stimulating device 50 applies a shock to the neck area or behind the ear via, for example, the on-a-collar device.
- an external alarm 60 is provided which awakens, for example, a care provider.
- the tube 30 includes one or more passageways (not shown) that extend through the tube 30.
- passageways house sensor data, power, and control wires, provide a hermetically sealed channel for inflating/deflating the balloon 40, and/or allow pressure inside the ear to equalize with the environment during balloon inflation/deflation.
- the passageways isolate the wires from the inner ear environment, mitigating contamination of both the ear and the sensor wiring and provide a pressurized air conduit to the balloon 40.
- the ITE probe 14 is mechanically and electrically coupled to the exemplary behind-the-ear (BTE) device 18, together forming the complete OSDB monitoring device 12.
- the tube 30 and the BTE device 12 are formed as a single unit, while in another instance the tube 30 and the BTE device 12 are detachably connected. Such attachment can be through a fastening means including a threaded connector, a snap, a setscrew, an adhesive, a rivet, etc.
- An arm 72 provides support behind the ear and a battery 74 powers both devices.
- An optional sheath (not shown) can be placed over the tube 30 and/or balloon 40 to protect the ear and the structure/balloon/sensor assembly from contamination.
- the sheath can be semi-permeable to allow airflow, but prevent fluid from moving from one side of the sheath to the other side. In another aspect, the sheath prevents substantially all matter from moving from one side of the sheath to the other side.
- the structure/balloon/sensor assembly can be disposable, washable, and/or steril ⁇ zeable.
- the monitoring device 12 communicates with the central station or computerized unit 24 to receive, display, analyze, validate and forward via wire or wirelessly physiological measurements continuously over a network, spot-check received physiological measurements obtained by the in-the-ear probe and download such measurements to the central monitoring station 24, send information such as, physiological measurements, patient history, medical history, messages, notifications, alarms, and the like to an authorized individual, the central monitoring station, the polysomnography testing center, and the like.
- the central station or computerized unit 24 to receive, display, analyze, validate and forward via wire or wirelessly physiological measurements continuously over a network, spot-check received physiological measurements obtained by the in-the-ear probe and download such measurements to the central monitoring station 24, send information such as, physiological measurements, patient history, medical history, messages, notifications, alarms, and the like to an authorized individual, the central monitoring station, the polysomnography testing center, and the like.
- each associated with a corresponding subject communicates with the central station or computerized unit 24.
- the described embodiments have the ability to treat OSDB from within the ear using audio stimulation therapy.
- the audio stimulation therapy signal may be programmed to become progressive louder and louder until the sleeper either subconsciously or consciously is momentarily semi-awakened causing the sleeper to breath.
- the audio stimulation therapy signal can be directed at the sleeper only, allowing others to not be awakened.
- Monitoring and delivery of therapy for OSDB can be provided that does not consciously arouse the sleeper or cause discomfort or stress that leads to the person's incompliance and non-acceptance. An apnea prone sleeper's discomfort is greatly reduced because the annoying breathing mask is no longer required while sleeping.
- OSDB can be performed without tethered connections (air hose, physiological measurement cables) between the sleeper and external contraptions thus enabling sleeper's movement and position changes during the night.
- tethered connections air hose, physiological measurement cables
- the polysomnography diagnostic testing is simplified by eliminating all tethered attachments from external devices to the sleeper and by having all physiological measurements performed from a single site.
- the cost and complexity of Polysomnography is reduced, making it more practical for screening large numbers of people in Polysomnography Labs.
- Polysomnography diagnostic testing becomes practical to be performed within the homes of people allowing them to sleep and be tested in their normal sleeping environment. Additionally, it becomes practical to record the number and severity of OSDB events (corrected and non-corrected) within the home environment to evaluate the need for continuous monitoring for OSDB as well as evaluating the performance of such corrective devices.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Otolaryngology (AREA)
- Vascular Medicine (AREA)
- Pulmonology (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Ophthalmology & Optometry (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Orthopedics, Nursing, And Contraception (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07717561.0A EP1991115B1 (en) | 2006-02-28 | 2007-02-06 | External device that continuously monitors for osdb and delivers audio stimulation therapy |
CN2007800069217A CN101389268B (en) | 2006-02-28 | 2007-02-06 | External device that continuously monitors for osdb and delivers audio stimulation therapy |
US12/279,998 US8406884B2 (en) | 2006-02-28 | 2007-02-06 | External device that continuously monitors for OSDB and delivers audio stimulation therapy |
JP2008557441A JP5285434B2 (en) | 2006-02-28 | 2007-02-06 | External device that continuously monitors for OSDB and provides voice stimulation treatment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77748006P | 2006-02-28 | 2006-02-28 | |
US60/777,480 | 2006-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007100958A1 true WO2007100958A1 (en) | 2007-09-07 |
Family
ID=37998286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/061638 WO2007100958A1 (en) | 2006-02-28 | 2007-02-06 | External device that continuously monitors for osdb and delivers audio stimulation therapy |
Country Status (5)
Country | Link |
---|---|
US (1) | US8406884B2 (en) |
EP (1) | EP1991115B1 (en) |
JP (1) | JP5285434B2 (en) |
CN (1) | CN101389268B (en) |
WO (1) | WO2007100958A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1922989A3 (en) * | 2006-11-15 | 2008-10-29 | Johannes P. Buschmann | Method and device for the continuous mobile measuring of different vital signs in the outer auditory canal |
WO2010034054A1 (en) * | 2008-09-23 | 2010-04-01 | The Royal Alexandra Hospital For Children | A wireless code game enuresis alarm for the treatment of enuresis |
JP2010082227A (en) * | 2008-09-30 | 2010-04-15 | Terumo Corp | Measurement apparatus, information processing apparatus, and information processing method |
EP2238902A1 (en) * | 2009-04-03 | 2010-10-13 | General Electric Company | Ear wearable monitoring system |
WO2011032160A1 (en) * | 2009-09-14 | 2011-03-17 | Sleep Methods | System and method for training and promoting a conditioned reflex intervention during sleep |
JP2011523566A (en) * | 2008-05-02 | 2011-08-18 | ダイメディックス コーポレイション | Agitator for stimulating the central nervous system |
CN102225030A (en) * | 2011-05-11 | 2011-10-26 | 南通海联助眠科技产品有限公司 | Testing system for intelligent snore stopping pillow |
WO2012021617A2 (en) | 2010-08-10 | 2012-02-16 | Lyons Christopher T | System and method of detecting sleep disorders |
US8834347B2 (en) | 2008-08-22 | 2014-09-16 | Dymedix Corporation | Anti-habituating sleep therapy for a closed loop neuromodulator |
EP3072482A4 (en) * | 2013-11-22 | 2017-12-13 | Shenzhen Vvfly Electronics Co. Ltd. | Electronic snore-ceasing device and snore-ceasing method |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102415880B (en) * | 2003-10-09 | 2014-05-07 | 日本电信电话株式会社 | Living body information detection circuit and blood-pressure meter |
US8157730B2 (en) | 2006-12-19 | 2012-04-17 | Valencell, Inc. | Physiological and environmental monitoring systems and methods |
US8652040B2 (en) | 2006-12-19 | 2014-02-18 | Valencell, Inc. | Telemetric apparatus for health and environmental monitoring |
DE102007020038A1 (en) * | 2007-04-27 | 2008-10-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Evidence of apnea with blood pressure dependent detected signals |
US8251903B2 (en) | 2007-10-25 | 2012-08-28 | Valencell, Inc. | Noninvasive physiological analysis using excitation-sensor modules and related devices and methods |
US9750462B2 (en) | 2009-02-25 | 2017-09-05 | Valencell, Inc. | Monitoring apparatus and methods for measuring physiological and/or environmental conditions |
US8788002B2 (en) | 2009-02-25 | 2014-07-22 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
US8700111B2 (en) | 2009-02-25 | 2014-04-15 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
JP2011212167A (en) * | 2010-03-31 | 2011-10-27 | Japan Health Science Foundation | Transducer for inputting biological information, biological information transmitter, biological information monitoring device and biological information monitoring system |
CN102905620B (en) * | 2010-05-17 | 2015-05-13 | 皇家飞利浦电子股份有限公司 | System for estimating upper airway resistance and lung compliance employing induced central apneas |
US8888701B2 (en) | 2011-01-27 | 2014-11-18 | Valencell, Inc. | Apparatus and methods for monitoring physiological data during environmental interference |
US8482418B1 (en) | 2011-02-18 | 2013-07-09 | Pursuit Enterprises | Method and apparatus for monitoring and treatment of sleep-related conditions |
DE102011081815B4 (en) * | 2011-06-07 | 2018-04-26 | Cosinuss Gmbh | Sensor for measuring vital parameters in the ear canal |
WO2013016007A2 (en) | 2011-07-25 | 2013-01-31 | Valencell, Inc. | Apparatus and methods for estimating time-state physiological parameters |
EP3222210B1 (en) | 2011-08-02 | 2024-09-25 | Yukka Magic LLC | Systems and methods for variable filter adjustment by heart rate metric feedback |
PL2768345T3 (en) | 2011-10-20 | 2019-12-31 | Happiest Baby, Inc. | Infant calming/sleep-aid device |
WO2014057979A1 (en) * | 2012-10-12 | 2014-04-17 | Necカシオモバイルコミュニケーションズ株式会社 | Electronic apparatus, and alarm clock control method |
WO2014116924A1 (en) | 2013-01-28 | 2014-07-31 | Valencell, Inc. | Physiological monitoring devices having sensing elements decoupled from body motion |
CN105283219A (en) * | 2013-04-05 | 2016-01-27 | 瓦萨姆·艾哈迈德 | Devices and methods for airflow diagnosis and restoration |
AU2014296106B2 (en) | 2013-07-31 | 2020-02-27 | Hb Innovations, Inc. | Infant calming/sleep-aid, SIDS prevention device, and method of use |
US10463168B2 (en) | 2013-07-31 | 2019-11-05 | Hb Innovations Inc. | Infant calming/sleep-aid and SIDS prevention device with drive system |
DE102013222131A1 (en) | 2013-10-30 | 2015-04-30 | Cosinuss Gmbh | Elastic sensor for measuring vital paraments in the auditory canal |
US20150150498A1 (en) * | 2013-12-02 | 2015-06-04 | United Sciences, Llc | Sleep study |
US20150150499A1 (en) * | 2013-12-02 | 2015-06-04 | United Sciences, Llc | Administering a sleep disorder |
US20150150501A1 (en) * | 2013-12-02 | 2015-06-04 | United Sciences, Llc | Sleep disorder appliance compliance |
CA2949610A1 (en) | 2014-05-20 | 2015-11-26 | Bugatone Ltd. | Aural measurements from earphone output speakers |
US20160015280A1 (en) * | 2014-07-17 | 2016-01-21 | Elwha Llc | Epidermal electronics to monitor repetitive stress injuries and arthritis |
US10279200B2 (en) * | 2014-07-17 | 2019-05-07 | Elwha Llc | Monitoring and treating pain with epidermal electronics |
US10099053B2 (en) * | 2014-07-17 | 2018-10-16 | Elwha Llc | Epidermal electronics to monitor repetitive stress injuries and arthritis |
US10383550B2 (en) * | 2014-07-17 | 2019-08-20 | Elwha Llc | Monitoring body movement or condition according to motion regimen with conformal electronics |
US10279201B2 (en) * | 2014-07-17 | 2019-05-07 | Elwha Llc | Monitoring and treating pain with epidermal electronics |
US10390755B2 (en) * | 2014-07-17 | 2019-08-27 | Elwha Llc | Monitoring body movement or condition according to motion regimen with conformal electronics |
US9538921B2 (en) | 2014-07-30 | 2017-01-10 | Valencell, Inc. | Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same |
EP4360552A3 (en) | 2014-08-06 | 2024-07-10 | Yukka Magic LLC | Optical physiological sensor modules with reduced signal noise |
US9794653B2 (en) | 2014-09-27 | 2017-10-17 | Valencell, Inc. | Methods and apparatus for improving signal quality in wearable biometric monitoring devices |
USD780472S1 (en) | 2015-03-27 | 2017-03-07 | Happiest Baby, Inc. | Bassinet |
CN105055069A (en) * | 2015-07-28 | 2015-11-18 | 徐州天荣医疗通讯设备有限公司 | Blood oxygen monitoring snore stopper and snore stopping method |
US10945618B2 (en) | 2015-10-23 | 2021-03-16 | Valencell, Inc. | Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type |
WO2017070463A1 (en) | 2015-10-23 | 2017-04-27 | Valencell, Inc. | Physiological monitoring devices and methods that identify subject activity type |
CN105997330A (en) * | 2016-06-02 | 2016-10-12 | 徐州天荣医疗通讯设备有限公司 | Blood oxygen monitoring linkage anti-snoring pillow control system and anti-snoring method thereof |
WO2018009736A1 (en) | 2016-07-08 | 2018-01-11 | Valencell, Inc. | Motion-dependent averaging for physiological metric estimating systems and methods |
WO2018075566A1 (en) | 2016-10-17 | 2018-04-26 | Happiest Baby, Inc. | Infant calming/sleep-aid device |
CN106726090B (en) * | 2016-12-22 | 2021-11-23 | 北京品驰医疗设备有限公司 | Rechargeable snoring sleep apnea prevention system |
FR3063424A1 (en) * | 2017-03-01 | 2018-09-07 | Cesi Association | DEVICE FOR DETECTING AND TREATING SLEEP APNEA SYNDROME AND INTRA-AURICULAR HEAD |
USD866122S1 (en) | 2017-04-04 | 2019-11-12 | Hb Innovations Inc. | Wingless sleep sack |
EP3694404A4 (en) | 2017-10-09 | 2022-04-06 | The Joan and Irwin Jacobs Technion-Cornell Institute | Systems, apparatus, and methods for detection and monitoring of chronic sleep disorders |
CN209437238U (en) * | 2017-12-05 | 2019-09-27 | 深圳市汇顶科技股份有限公司 | Ear type device and electronic device |
CN111867410B (en) | 2018-02-21 | 2023-01-31 | Hb创新股份有限公司 | Infant sleeping clothes |
JP7141617B2 (en) * | 2018-07-10 | 2022-09-26 | Cyberdyne株式会社 | Physiological condition evaluation device |
WO2020146246A1 (en) * | 2019-01-07 | 2020-07-16 | Bose Corporation | In-ear biometric monitoring using photoplethysmography (ppg) |
US11497884B2 (en) | 2019-06-04 | 2022-11-15 | Hb Innovations, Inc. | Sleep aid system including smart power hub |
US20220280056A1 (en) * | 2019-07-26 | 2022-09-08 | The Regents Of The University Of Colorado, A Body Corporate | A wearable system for frequent and comfortable blood pressure monitoring from user's ear |
US20230397880A1 (en) * | 2020-12-15 | 2023-12-14 | ResMed Pty Ltd | Systems and methods for determining untreated health-related issues |
USD987657S1 (en) | 2021-06-15 | 2023-05-30 | Wesper Inc. | Display screen with animated graphical user interface |
CN114272008B (en) * | 2022-03-03 | 2022-05-24 | 深圳市心流科技有限公司 | Snoring intervention method and device, intelligent eyeshade and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6062216A (en) | 1996-12-27 | 2000-05-16 | Children's Medical Center Corporation | Sleep apnea detector system |
DE19904260A1 (en) | 1999-02-03 | 2000-11-02 | Dietmar Enderlein | Glasses for use by patient suffering from sleep apnea have sensors to detect symptoms of sleep disturbance, logic controlling elements and light element that can be triggered to wake patient up |
US6363270B1 (en) | 1995-04-11 | 2002-03-26 | Resmed Limited | Monitoring the occurrence of apneic and hypopneic arousals |
US20050061319A1 (en) | 2003-09-18 | 2005-03-24 | Cardiac Pacemakers, Inc. | Methods and systems for implantably monitoring external breathing therapy |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3696377A (en) * | 1970-07-15 | 1972-10-03 | Thomas P Wall | Antisnoring device |
US4644330A (en) | 1983-10-11 | 1987-02-17 | Dowling Anthony R | Anti-snoring device |
JPH0349748A (en) * | 1989-07-18 | 1991-03-04 | Minako Kobayashi | Snore preventing device |
US5673692A (en) * | 1995-02-03 | 1997-10-07 | Biosignals Ltd. Co. | Single site, multi-variable patient monitor |
US6473511B1 (en) | 1996-03-14 | 2002-10-29 | Sarnoff Corporation | Disposable hearing aid with integral power source |
US7010137B1 (en) | 1997-03-12 | 2006-03-07 | Sarnoff Corporation | Hearing aid |
US5853005A (en) | 1996-05-02 | 1998-12-29 | The United States Of America As Represented By The Secretary Of The Army | Acoustic monitoring system |
US6253871B1 (en) | 1997-03-12 | 2001-07-03 | Sarnoff Corporation | Disposable in-the-ear monitoring instrument using a flexible earmold and casing, and method of manufacture |
US6283915B1 (en) | 1997-03-12 | 2001-09-04 | Sarnoff Corporation | Disposable in-the-ear monitoring instrument and method of manufacture |
US6093158A (en) | 1997-05-15 | 2000-07-25 | Morris; Donald E. | Systems for modifying behavioral disorders |
AUPP030997A0 (en) * | 1997-11-10 | 1997-12-04 | Clift, Vaughan | Intra aural integrated vital signs monitor |
US6473651B1 (en) * | 1999-03-02 | 2002-10-29 | Advanced Bionics Corporation | Fluid filled microphone balloon to be implanted in the middle ear |
US6748275B2 (en) * | 1999-05-05 | 2004-06-08 | Respironics, Inc. | Vestibular stimulation system and method |
US6314324B1 (en) * | 1999-05-05 | 2001-11-06 | Respironics, Inc. | Vestibular stimulation system and method |
CN1148233C (en) * | 2000-08-11 | 2004-05-05 | 贵州省人民医院 | Heart physiological pace-maker/program control stimulation instrument having electrocardio mornitoring function |
US6808473B2 (en) * | 2001-04-19 | 2004-10-26 | Omron Corporation | Exercise promotion device, and exercise promotion method employing the same |
WO2002021894A2 (en) * | 2002-01-21 | 2002-03-21 | Phonak Ag | Method for the reconstruction of the geometry of the inner surface of a cavity |
US20030199945A1 (en) * | 2002-02-11 | 2003-10-23 | James Ciulla | Device and method for treating disordered breathing |
US20030195588A1 (en) * | 2002-04-16 | 2003-10-16 | Neuropace, Inc. | External ear canal interface for the treatment of neurological disorders |
US7438686B2 (en) * | 2003-01-10 | 2008-10-21 | Medtronic, Inc. | Apparatus and method for monitoring for disordered breathing |
US7160252B2 (en) * | 2003-01-10 | 2007-01-09 | Medtronic, Inc. | Method and apparatus for detecting respiratory disturbances |
US7460899B2 (en) * | 2003-04-23 | 2008-12-02 | Quiescent, Inc. | Apparatus and method for monitoring heart rate variability |
KR100571811B1 (en) * | 2003-05-09 | 2006-04-17 | 삼성전자주식회사 | Ear type measurement apparatus for bio signal |
WO2005020841A2 (en) | 2003-08-25 | 2005-03-10 | Sarnoff Corporation | Monitoring using signals detected from auditory canal |
WO2005034750A1 (en) * | 2003-10-07 | 2005-04-21 | Olympus Corporation | Sleep aspiration state measurement device |
US7041049B1 (en) * | 2003-11-21 | 2006-05-09 | First Principles, Inc. | Sleep guidance system and related methods |
JP4581480B2 (en) * | 2004-05-21 | 2010-11-17 | ソニー株式会社 | Respiratory information measuring method and apparatus |
US7635338B2 (en) * | 2004-07-21 | 2009-12-22 | Sensometrics As | Processing of continuous pressure-related signals derivable from a human or animal body or body cavity: methods, devices and systems |
US7748493B2 (en) * | 2006-06-14 | 2010-07-06 | Zmed Technologies, Inc. | Respiration stimulation |
-
2007
- 2007-02-06 JP JP2008557441A patent/JP5285434B2/en not_active Expired - Fee Related
- 2007-02-06 CN CN2007800069217A patent/CN101389268B/en active Active
- 2007-02-06 US US12/279,998 patent/US8406884B2/en active Active
- 2007-02-06 EP EP07717561.0A patent/EP1991115B1/en active Active
- 2007-02-06 WO PCT/US2007/061638 patent/WO2007100958A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6363270B1 (en) | 1995-04-11 | 2002-03-26 | Resmed Limited | Monitoring the occurrence of apneic and hypopneic arousals |
US6062216A (en) | 1996-12-27 | 2000-05-16 | Children's Medical Center Corporation | Sleep apnea detector system |
DE19904260A1 (en) | 1999-02-03 | 2000-11-02 | Dietmar Enderlein | Glasses for use by patient suffering from sleep apnea have sensors to detect symptoms of sleep disturbance, logic controlling elements and light element that can be triggered to wake patient up |
US20050061319A1 (en) | 2003-09-18 | 2005-03-24 | Cardiac Pacemakers, Inc. | Methods and systems for implantably monitoring external breathing therapy |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1922989A3 (en) * | 2006-11-15 | 2008-10-29 | Johannes P. Buschmann | Method and device for the continuous mobile measuring of different vital signs in the outer auditory canal |
JP2011523566A (en) * | 2008-05-02 | 2011-08-18 | ダイメディックス コーポレイション | Agitator for stimulating the central nervous system |
US8834346B2 (en) | 2008-08-22 | 2014-09-16 | Dymedix Corporation | Stimulus sequencer for a closed loop neuromodulator |
US8834347B2 (en) | 2008-08-22 | 2014-09-16 | Dymedix Corporation | Anti-habituating sleep therapy for a closed loop neuromodulator |
WO2010034054A1 (en) * | 2008-09-23 | 2010-04-01 | The Royal Alexandra Hospital For Children | A wireless code game enuresis alarm for the treatment of enuresis |
US20110199218A1 (en) * | 2008-09-23 | 2011-08-18 | Patrina Ha Yuen Caldwell | Wireless Code Game Enuresis Alarm for the Treatment of Enuresis |
AU2009295339B2 (en) * | 2008-09-23 | 2014-08-21 | The Sydney Children's Hospitals Network (Randwick And Westmead) | A wireless code game enuresis alarm for the treatment of enuresis |
US8648727B2 (en) | 2008-09-23 | 2014-02-11 | The Sydney Children's Hospitals Network (Randwick And Westmead) | Wireless code game enuresis alarm for the treatment of enuresis |
JP2010082227A (en) * | 2008-09-30 | 2010-04-15 | Terumo Corp | Measurement apparatus, information processing apparatus, and information processing method |
EP2238902A1 (en) * | 2009-04-03 | 2010-10-13 | General Electric Company | Ear wearable monitoring system |
US8574145B2 (en) | 2009-09-14 | 2013-11-05 | Sleep Methods, Inc. | System and method for training and promoting a conditioned reflex intervention during sleep |
WO2011032160A1 (en) * | 2009-09-14 | 2011-03-17 | Sleep Methods | System and method for training and promoting a conditioned reflex intervention during sleep |
WO2012021617A3 (en) * | 2010-08-10 | 2012-05-03 | Lyons Christopher T | System and method of detecting sleep disorders |
WO2012021617A2 (en) | 2010-08-10 | 2012-02-16 | Lyons Christopher T | System and method of detecting sleep disorders |
US9092965B2 (en) | 2010-08-10 | 2015-07-28 | Christopher Thomas Lyons | System and method of detecting sleep disorders |
US9368016B2 (en) | 2010-08-10 | 2016-06-14 | Christopher Thomas Lyons | System and method of detecting sleep disorders |
US10433794B2 (en) | 2010-08-10 | 2019-10-08 | Christopher Thomas Lyons | System and method of detecting sleep disorders |
US11696730B2 (en) | 2010-08-10 | 2023-07-11 | Christopher Thomas Lyons | System and method of detecting sleep disorders |
CN102225030A (en) * | 2011-05-11 | 2011-10-26 | 南通海联助眠科技产品有限公司 | Testing system for intelligent snore stopping pillow |
EP3072482A4 (en) * | 2013-11-22 | 2017-12-13 | Shenzhen Vvfly Electronics Co. Ltd. | Electronic snore-ceasing device and snore-ceasing method |
Also Published As
Publication number | Publication date |
---|---|
EP1991115A1 (en) | 2008-11-19 |
CN101389268A (en) | 2009-03-18 |
CN101389268B (en) | 2011-12-14 |
US8406884B2 (en) | 2013-03-26 |
EP1991115B1 (en) | 2013-04-24 |
US20100228315A1 (en) | 2010-09-09 |
JP2009528140A (en) | 2009-08-06 |
JP5285434B2 (en) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8406884B2 (en) | External device that continuously monitors for OSDB and delivers audio stimulation therapy | |
US6935335B1 (en) | System and method for treating obstructive sleep apnea | |
US8630712B2 (en) | Respiration stimulation | |
US7913691B2 (en) | Session-by-session adjustments of a device for treating sleep disordered breathing | |
WO2016073965A1 (en) | A device to detect, assess and treat snoring, sleep apneas and hypopneas | |
WO2016176668A1 (en) | Breathing disorder detection and treatment device and methods | |
US8378832B2 (en) | Breathing disorder treatment system and method | |
US20150150501A1 (en) | Sleep disorder appliance compliance | |
US20130109932A1 (en) | Systems and methods for pulmonary monitoring and treatment | |
US20150073232A1 (en) | Devices and methods for airflow diagnosis and restoration | |
US20100204614A1 (en) | Electronic snore recording device and associated methods | |
US20170143257A1 (en) | Determining a level of compliance using a device for treatment of disordered breathing | |
WO1988010108A1 (en) | Device for monitoring breathing during sleep and control of cpap treatment | |
WO1996028093A1 (en) | Apparatus and process for reducing the frequency and duration of apneic events | |
KR20060087852A (en) | Method and apparatus for diagnosing sleep apnea and treating according to sleep apnea type | |
US20230320893A1 (en) | Systems, apparatuses, and methods for treating bruxism, apnea, and sleep disorders | |
WO2024168249A1 (en) | Therapeutic oral appliance or device | |
CN116981400A (en) | System and method for determining untreated health-related problems | |
WO2019030419A1 (en) | Method for treating episodes of apnoea and/or hypopnea and system for detecting said episodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007717561 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008557441 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12279998 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780006921.7 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4954/CHENP/2008 Country of ref document: IN |