WO2007099855A1 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
WO2007099855A1
WO2007099855A1 PCT/JP2007/053306 JP2007053306W WO2007099855A1 WO 2007099855 A1 WO2007099855 A1 WO 2007099855A1 JP 2007053306 W JP2007053306 W JP 2007053306W WO 2007099855 A1 WO2007099855 A1 WO 2007099855A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
semiconductor layer
layer
light emitting
width
Prior art date
Application number
PCT/JP2007/053306
Other languages
English (en)
French (fr)
Inventor
Mitsuhiko Sakai
Tadahiro Okazaki
Ken Nakahara
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006051596A external-priority patent/JP2007234707A/ja
Priority claimed from JP2006078624A external-priority patent/JP2007258338A/ja
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to US12/224,524 priority Critical patent/US7781791B2/en
Priority to CN200780006915.1A priority patent/CN101395726B/zh
Priority to EP07714804A priority patent/EP2003704A1/en
Publication of WO2007099855A1 publication Critical patent/WO2007099855A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a semiconductor light emitting device having a semiconductor layer.
  • Patent Document 1 a semiconductor light emitting device having a structure in which a plurality of semiconductor layers containing GaN are stacked on a sapphire substrate has been proposed.
  • FIG. 20 shows an example of a semiconductor light emitting device manufactured by such a manufacturing method.
  • a p-GaN layer 92, an active layer 93, and an n-GaN layer 94 are stacked as a semiconductor layer on a support substrate 91 on which a p-side electrode 91a is formed. Structure.
  • the active layer 93 is a layer for amplifying light emitted by recombination of electrons injected from the n-GaN layer 94 and holes injected from the p-GaN layer 92. It is a multiple quantum well (hereinafter referred to as MQW) structure.
  • the semiconductor light emitting device X is configured to emit light from the upper surface of the n-GaN layer 94 and the side surface 97 of the n-GaN layer 94, the active layer 93, and the p-GaN layer 92.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-012916
  • Patent Document 2 JP 2003-168820 A
  • GaN forming the n-GaN layer 94, the active layer 93, and the p-GaN layer 92 has a relatively high refractive index of about 2.5.
  • the critical angle with air is as small as about 23 °.
  • Light having an incident angle with respect to the side surface 97 larger than the critical angle is totally reflected, and is not emitted outside the semiconductor light emitting element X. Therefore, in the semiconductor light emitting device X, the increase in luminance was hindered because the proportion of the light emitted appropriately by the active layer 93 was small.
  • the present invention has been conceived under the circumstances described above, and aims to increase brightness by increasing the amount of emitted light and increasing the proportion of emitted light.
  • An object of the present invention is to provide a semiconductor light emitting device capable of satisfying the requirements.
  • a semiconductor light-emitting device provided by the first aspect of the present invention includes a substrate, a p-type semiconductor layer supported by the substrate, and a position separated from the p-type semiconductor layer with respect to the substrate.
  • a semiconductor light emitting device comprising: an n-type semiconductor layer disposed; and an active layer disposed between the p-type semiconductor layer and the n-type semiconductor layer, wherein the n-type semiconductor layer has one side A rectangular n-side electrode having the same width as one of the widths of the n-type semiconductor layer is formed, and the n-type semiconductor layer has a thickness t satisfying the relationship of Formula 1 and the semiconductor light emitting
  • a plurality of convex portions are formed on the side surface extending in the stacking direction of the element, and the wavelength of light emitted from the active layer is obtained, and one of the n-type semiconductor layer and the p-type semiconductor layer is selected.
  • the convex portion has an average width W 1S W ⁇ ⁇ ⁇
  • W Width on the other side different from one of the ⁇ side electrodes
  • a semiconductor light-emitting device provided by the second aspect of the present invention includes a semiconductor, and a semiconductor light-emitting device including an n-type semiconductor layer, an active layer, and a p-type semiconductor layer stacked on the substrate. And a plurality of convex portions are formed on the side surface extending in the stacking direction of the semiconductor light emitting device, and the wavelength of light emitted from the active layer is obtained to determine the n-type semiconductor layer and the p When the refractive index of any one of the type semiconductor layers is n, the convex portion has an average width W force W ⁇ Zn of the bottom width.
  • At least one of the n-type semiconductor layer and the p-type semiconductor layer has a GaN force. According to such a configuration, it is possible to increase the light emission amount with respect to the input power amount by configuring the n-type semiconductor layer or the p-type semiconductor layer as an n -GaN layer or a p-GaN layer.
  • GaN is a material with a relatively high refractive index.
  • the convex portion extends in the laminating direction, and the cross-sectional shape thereof is a triangle or a semicircle. According to such a configuration, the plurality of convex portions can be shaped to appropriately emit light from the inside.
  • a semiconductor light-emitting device provided by the third aspect of the present invention includes a substrate, a p-type semiconductor layer supported by the substrate, and a position separated from the p-type semiconductor layer with respect to the substrate.
  • a semiconductor light emitting device comprising: an n-type semiconductor layer disposed; and an active layer disposed between the p-type semiconductor layer and the n-type semiconductor layer, wherein the n-type semiconductor layer includes a circle
  • An n-side electrode having a shape is formed, and the thickness of the n-type semiconductor layer satisfies the relationship of Equation 2. It is characterized by playing.
  • the representative length of the semiconductor light emitting element referred to in the present invention refers to, for example, a diameter in a circular shape and a length of one side in a rectangular shape.
  • the n-type semiconductor layer has a plurality of protrusions, and the n-type semiconductor layer has a thickness t in place of the relationship of Equation 2 above. To satisfy the relationship of Equation 3.
  • the n-type semiconductor layer also has an n-GaN force.
  • the semiconductor light emitting element can be configured to emit blue light or green light.
  • a semiconductor light-emitting device provided by the fourth aspect of the present invention includes a substrate, a p-type semiconductor layer supported by the substrate, and a position separated from the p-type semiconductor layer with respect to the substrate.
  • An n-type semiconductor layer disposed between the p-type semiconductor layer and the n-type semiconductor layer.
  • the n-type semiconductor layer is formed with a rectangular n-side electrode having one width that is the same as the one width of the n-type semiconductor layer.
  • the n-type semiconductor layer is characterized in that the thickness t satisfies the relationship of Equation 4. Picture Br where
  • the width of the n-type semiconductor layer is different from the width of the other
  • W the width of the other side different from the width of one of the n-side electrodes
  • the n-type semiconductor layer has a plurality of convex portions, and the thickness of the n-type semiconductor layer is changed to the relationship of Equation 4 above. To satisfy the relationship of Equation 5.
  • the n-type semiconductor layer also has n-GaN force.
  • the semiconductor light emitting element can be configured to emit blue light or green light.
  • FIG. 1 is an overall perspective view showing a first embodiment of a semiconductor light emitting device according to the present invention.
  • FIG. 2 is a plan view of the semiconductor light emitting device shown in FIG.
  • FIG. 3 is a sectional view taken along line m-m in FIG.
  • FIG. 4 is an enlarged cross-sectional view of a main part taken along line IV-IV in FIG.
  • FIG. 5 is an enlarged cross-sectional view of a main part showing a modification of a convex part.
  • FIG. 6 is an enlarged cross-sectional view of a main part showing another modification of the convex portion.
  • FIG. 7 is an overall perspective view showing a second embodiment of the semiconductor light emitting device according to the present invention.
  • FIG. 8 is an overall perspective view showing a third embodiment of the semiconductor light emitting device according to the present invention.
  • FIG. 9 is a sectional view taken along line IX—IX in FIG.
  • FIG. 10 is a cross-sectional view showing a fourth embodiment of a semiconductor light emitting element according to the present invention.
  • FIG. 11 is an enlarged perspective cross-sectional view of a main part of the semiconductor light emitting element shown in FIG.
  • FIG. 12 is a cross-sectional view showing a step of laminating a semiconductor layer on a sapphire substrate in the manufacturing process of the semiconductor light emitting device shown in FIG.
  • FIG. 13 is a cross-sectional view showing the etching process of the semiconductor layer in the manufacturing process of the semiconductor light emitting device shown in FIG.
  • FIG. 14 is a cross-sectional view showing a step of forming a reflective layer in the manufacturing process of the semiconductor light emitting element shown in FIG.
  • 15 is a cross-sectional view showing a step of peeling the sapphire substrate in the manufacturing process of the semiconductor light emitting device shown in FIG.
  • FIG. 16 is a cross-sectional view showing a fifth embodiment of the semiconductor light emitting device according to the present invention.
  • FIG. 17 is a cross-sectional view showing a process of forming a plurality of convex portions in the manufacturing process of the semiconductor light emitting device shown in FIG.
  • FIG. 18 is an enlarged perspective cross-sectional view of a relevant part showing a sixth embodiment of the semiconductor light emitting device according to the present invention.
  • FIG. 19 is a cross-sectional view showing a seventh embodiment of the semiconductor light emitting device according to the present invention.
  • FIG. 20 is a cross-sectional view showing an example of a conventional semiconductor light emitting device.
  • the semiconductor light emitting device A101 of the present embodiment includes a substrate 110, an n-GaN layer 120, an active layer 130, p-Ga. An N layer 140 and a ZnO electrode 150 are provided.
  • the semiconductor light emitting device A101 is particularly configured as a semiconductor light emitting device suitable for emitting blue light or green light.
  • the substrate 110 is made of, for example, sapphire and supports the n-GaN layer 120, the active layer 130, the p-GaN layer 140, and the ZnO electrode 150. In the present embodiment, the substrate 110 has a thickness of about 80 m. On the substrate 110, for example, a buffer layer (not shown) made of A1N, GaN, AlGaN or the like for relaxing lattice strain is formed.
  • the n-GaN layer 120 is made of an n-type semiconductor in which Si is doped into GaN, and is an example of the n-type semiconductor layer referred to in the present invention.
  • the n-GaN layer 120 has a thickness of about 3 to 6 ⁇ m.
  • the n-GaN layer 120 has a thickness of about 6 ⁇ m and a first layer 120a whose plan view dimensions are the same as the substrate 110, and a thickness of 0.2 m.
  • the second layer 120b having a size in plan view smaller than that of the substrate 110.
  • An n-side electrode 121 is formed on the upper surface of the first layer 120a in the figure.
  • the n-side electrode 121 is formed by stacking, for example, 100 A thick Ti and 2500 A thick A1.
  • the active layer 130 is a layer having an MQW structure including InGaN, for example, and is a layer for amplifying light emitted by recombination of electrons and holes.
  • InGaN a plurality of InGaN layers and a plurality of GaN layers are alternately stacked.
  • the InGaN layer has a band gap smaller than that of the n-GaN layer 120 because the In composition ratio is about 17%, and constitutes a well layer of the active layer 130.
  • the GaN layer forms a barrier layer of the active layer 130.
  • the active layer 130 is formed by laminating 8 layers each of a 30 A-thick InGaN layer and a 100 A-thick GaN layer, and the thickness is about 0.1 ⁇ m. Note that a superlattice layer (not shown) in which InGaN and GaN are alternately stacked for each atom is formed between the n-GaN layer 120 and the active layer 130 in order to reduce lattice strain. It has been.
  • the p-GaN layer 140 is made of a p-type semiconductor in which GaN is doped with Mg, and is an example of the p-type semiconductor layer referred to in the present invention.
  • the p-GaN layer 140 has a thickness of about 0.2 m.
  • the GaN layer is between the active layer 130 and the p-GaN layer 140. (Not shown) or an InGaN layer (not shown) having an In composition of about 0.1% is formed.
  • the ZnO electrode 150 is made of ZnO, which is one of transparent conductive oxides, and transmits light from the active layer 130.
  • ZnO electrode 150 has a relatively low resistivity of about 2 2 10 4 ⁇ cm by doping ZnO with Ga, and its thickness is about 0.1 to 2 / ⁇ ⁇ . ing.
  • a plurality of convex portions 171 are formed on the side surface 170 of the portion where the second layer 120b of the ⁇ -GaN layer 120, the active layer 130, and the p-GaN layer 140 are stacked.
  • the convex portion 171 extends in the stacking direction of the second layer 120b of the n-GaN layer 120, the active layer 130, and the p-GaN layer 140, and has a triangular cross section.
  • the plurality of convex portions 171 are formed on a flat surface portion excluding a curved surface portion formed on each corner portion of the side surface 170.
  • FIG. 4 is an enlarged cross-sectional view of the convex portion 171.
  • the average width W of the width W of the bottom of the protrusion 171 is W ⁇ ⁇ ⁇ It is supposed to satisfy.
  • the average width W is , About 1
  • the well layer of the active layer 130 is composed of a GaN layer that emits light having a peak wavelength of about 365 nm or more
  • the average width W is about 146 nm or more.
  • the height H is 2.5 / z m
  • the width W is 2.1 m
  • the apex angle is 46 °.
  • the semiconductor light emitting device A101 can be manufactured, for example, by the following manufacturing method.
  • the substrate 110 is introduced into a deposition chamber for MOCVD, and the deposition temperature, which is the temperature in the deposition chamber, is set to 1,100 ° C.
  • the deposition temperature which is the temperature in the deposition chamber, is set to 1,100 ° C.
  • TMG Tilgallium
  • SiH gas is simultaneously supplied to dope Si, which is an n-type dopant. This allows you to
  • n-GaN layer 120 is formed.
  • the film formation temperature is 700 to 800 ° C., for example, about 760 ° C., NH gas, H gas
  • TEG triethylgallium
  • TEG trimethylindium
  • MIn MIn
  • NH gas, H gas, N gas, and TMG gas are supplied in a state where the film forming temperature is set to 760 ° C.
  • an active layer 130 having an MQW structure can be obtained.
  • a resist film is formed on the p-GaN layer 140 by a photolithography technique.
  • This resist film has a shape capable of forming a plurality of convex portions 171 shown in FIG.
  • a side surface 170 having a plurality of convex portions 171 is formed.
  • a ZnO electrode 150 is formed on the p-GaN layer 140.
  • the n-side electrode 121 is formed on the first layer 120 a of the n-GaN layer 120.
  • the side in FIG. 1 and FIG. 3 can be directly or via the second layer 120b and the p-GaN layer 140 of the n-GaN layer 120.
  • the light traveling forward reaches the plurality of convex portions 171.
  • the plurality of convex portions 171 has an average width W satisfying the relationship of W ⁇ described above,
  • the ratio of the energy converted as light emitted as light is about 19.4%
  • the plurality of convex portions 171 In the case of the semiconductor light emitting device A101 provided with a ratio of emitted energy of 23.9% I was able to. That is, in the semiconductor light emitting device A101, by providing the plurality of convex portions 171 on the side surface 170, it is possible to emit more light from the active layer 130 than in the past. Thereby, the brightness of the semiconductor light emitting device A101 can be increased.
  • the refractive index n of GaN as the material is as high as about 2.5, the critical angle with the air is small in the layer 110 and layer 140. . For this reason, if the side surface 170 is a smooth surface, the proportion of the light that is totally reflected increases, and the increase in luminance is hindered.
  • the refractive index of GaN is adopted as the refractive index n used for W ⁇ .
  • the n-GaN layer 120 and the p-GaN layer 140 are suitable for increasing the output efficiency of 140 forces.
  • the plurality of convex portions 171 have a uniform cross-sectional shape in the stacking direction, they can be easily formed by the above-described etching or the like. Further, the convex section 171 having a triangular cross section also has a pair of surface forces inclined at a predetermined angle. For this reason, the partial inclination angle of the side surface 170 can be unified as a whole. This is suitable for uniformly emitting light from the inside of the semiconductor light emitting device A101.
  • FIGS 5-9 illustrate other embodiments of the present invention.
  • the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment.
  • FIG. 5 shows another example of the convex portion 171.
  • the convex portion 171 shown in the figure has a shape obtained by removing the top of the convex portion 171 having the above-described triangular triangular shape, and has a trapezoidal shape having a top surface 171a.
  • the convex portion 171 has a width W of 2 .: m and a height H of 2 m. Also according to the present embodiment, it is possible to improve the light emission efficiency from the second layer 120b of the n-GaN layer 120, the active layer 130, and the p-GaN layer 140.
  • FIG. 6 shows another example of the convex portion 171.
  • the illustrated convex portion 171 is different from the above-described example in that it has a semicircular cross section.
  • the convex portion 171 has a width W of 5. and a height of 2.5 / zm.
  • the ratio of the energy emitted as light of the second layer 120 b force of the n ⁇ GaN layer 120 could be 23.8%.
  • the convex portion referred to in the present invention is a concept including a triangular cross section, a trapezoidal cross section, and a semicircular cross section.
  • the convex portions are not limited to these shapes, and can be various shapes that satisfy the above-described average width condition.
  • FIG. 7 shows a second embodiment of the semiconductor light emitting device according to the present invention.
  • the semiconductor light emitting device A102 of this embodiment is different from the above-described embodiment in that a plurality of convex portions 171 are also formed on the substrate 110 and the first layer 120a of the n-GaN layer 120.
  • the convex portion 171 in the present embodiment has the same cross-sectional shape as the convex portion 171 shown in FIG.
  • Such a plurality of convex portions 171 can be formed by etching the substrate 110 and the n-GaN layer 120 or by dicing using a dicing blade in which a triangular groove is formed. it can.
  • the semiconductor light emitting device A103 of this embodiment is different from the above-described embodiment in that a plurality of cone-shaped convex portions 172 are formed. Further, the semiconductor light emitting device A103 is different in the stacked structure from the above-described embodiment.
  • the semiconductor light emitting device A103 includes a substrate 110, and an n-GaN layer 120, an active layer 130, and a p-GaN layer 140 stacked on one side of the substrate 110.
  • the substrate 110 is made of SiC and has a shape having a prismatic portion on the upper side in the drawing and a tapered portion on the lower side in the drawing.
  • An n-side electrode 121 is formed on the surface of the substrate 110 opposite to the surface on which the n-GaN layer 120 is formed.
  • a reflective layer 160 is formed on the lower surface of the p-GaN layer 140 in the figure.
  • the reflective layer 160 has a structure in which metal layers such as Al, Ti, Pt, and Au are laminated, and in this embodiment, the A1 layer is disposed on the uppermost layer of the reflective layer 160 in FIG. Yes. Since the A1 layer has a relatively high reflectance, the light emitted from the active layer 130 The function of reflecting upward in the figure is exhibited.
  • the reflective layer 160 can be used as a p-side electrode.
  • a plurality of convex portions 172 are formed on the side surface 170 of the semiconductor light emitting device A103. However, a plurality of convex portions 172 are not formed on the portion of the side surface 170 formed by the active layer 130.
  • the convex part 172 has a cone shape, the height is about 2.5 m, and the width is about 2 .: L m.
  • the plurality of convex portions 172 are formed by, for example, stacking the n-GaN layer 120, the active layer 130, and the p-GaN layer 140 on the substrate 110, and then forming the upper surface of the substrate 110, the lower surface of the p-GaN layer 140.
  • it can be formed by irradiating about 3.5 WZcm 2 of ultraviolet (UV) light for about 10 minutes while immersing it in about 4 molZl KOH solution at about 62 ° C with the active layer 130 covered with a mask. .
  • UV ultraviolet
  • the substrate 110 in the present embodiment can be used in the stacking direction. Even if it has an inclined surface, a plurality of convex portions referred to in the present invention can be appropriately provided.
  • a plurality of convex portions 172 be formed on at least the substrate 110 portion of the side surface 170. Further, it is preferable that the active layer 130 in the side surface 170 is smooth in order to increase the amount of light emitted from the active layer 130.
  • the force n-side electrode 121 that can improve the emission efficiency is provided on the upper surface of the first layer 120a of the n-GaN layer 120.
  • N-GaN layer 120 near the end away from n-side electrode 121 does not allow sufficient current to flow, making it difficult to recombine electrons and holes throughout active layer 130. It is difficult to emit light efficiently.
  • sufficient current does not flow near the end of the n-GaN layer 120 away from the n-side electrode 121, it is difficult to emit light efficiently with respect to input power. It is. [0052]
  • another embodiment for solving this problem will be described.
  • FIG. 10 shows a fourth embodiment of the semiconductor light emitting device according to the present invention.
  • the semiconductor light emitting device A201 of this embodiment includes a support substrate 210, a p-side electrode 221, a reflective layer 222, a mask layer 222, a ZnO electrode 224, a p-GaN layer 220, an active layer 230, an n-GaN layer 240, and n
  • the side electrode 241 is provided, and is configured to emit blue light or green light, for example.
  • the n-side electrode 241 has a circular shape.
  • the support substrate 210 supports the p-side electrode 221, the reflective layer 222, the mask layer 223, the ZnO electrode 224, the p-GaN layer 220, the active layer 230, the n-GaN layer 240, and the n-side electrode 241. ing.
  • the support substrate 210 is made of a material having a high thermal conductivity such as Cu or A1N. As a result, the support substrate 210 exhibits a function of radiating heat generated when the semiconductor light emitting element A201 is energized to the outside.
  • the p-side electrode 221 is formed over the entire upper surface of the support substrate 210 in the figure.
  • the p-side electrode 221 is made of, for example, Au—Sn or Au.
  • the reflective layer 222 has a structure in which, for example, Al, Ti, Pt, and Au are stacked in order in the upward force in the figure.
  • the reflection layer 222 can reflect light emitted from the active layer 230 upward in the figure.
  • the reflective layer 222 connects the p-side electrode 221 and the ZnO electrode 224 with each other. Ag may be used instead of A1.
  • Mask layer 223 is used as an etching mask when etching ZnO electrode 224, p-GaN layer 220, active layer 230, and n-GaN layer 240 in the manufacturing process of semiconductor light emitting device A201 described later. It is.
  • the mask layer 223 is made of SiO.
  • a plurality of through holes 223a are formed in the mask layer 223.
  • the plurality of through-holes 223a are for bringing the reflective layer 222 and the ZnO electrode 224 into contact with each other so as to conduct each other.
  • the plurality of through holes 223a are arranged concentrically around a point located directly below the n-side electrode 241.
  • the ZnO electrode 224 is made of ZnO, which is one of transparent conductive oxides, and allows the n-GaN layer 240 and the reflective layer 222 to conduct while allowing light from the active layer 230 to pass therethrough.
  • ZnO electrode 224 the resistivity has been a relatively low resistance of about 2 X 10- 4 ⁇ cm, a thickness of 1000 It is supposed to be about 20000 A!
  • the p-GaN layer 220 is a layer made of GaN doped with Mg, which is a p-type dopant, and is an example of a p-type semiconductor layer referred to in the present invention. Between the p-GaN layer 220 and the active layer 230, an undoped GaN layer (not shown) or an InGaN layer (not shown) containing about 1% In is formed.
  • the active layer 230 is a layer having an MQW structure containing InGaN, and is a layer for amplifying light emitted by recombination of electrons and holes.
  • the active layer 230 has a structure in which a plurality of InGaN layers are stacked. These InGaN layers have the composition In Ga N (
  • the layer composed of InGaN is the well layer, and the layer composed of InGaN force is the barrier layer.
  • a superlattice layer (not shown) made of InGaN doped with Si and GaN is formed between the active layer 230 and the n-GaN layer 240.
  • the n-GaN layer 240 is a layer made of GaN doped with Si, which is an n-type dopant, and is an example of the n-type semiconductor layer referred to in the present invention.
  • An n-side electrode 241 is formed on the n-GaN layer 240.
  • the n-side electrode 241 has a structure in which, for example, Al, Ti, Au or Al, Mo, Au are stacked in order from the n-GaN layer 240 side.
  • FIG. 11 is an enlarged perspective sectional view of a part of the n-GaN layer 240 and the n-side electrode 241.
  • the n-GaN layer 240 and the n-side electrode 241 are substantially circular.
  • the resistance dR when the current flows from r ⁇ r + dr is given by Equation 6.
  • p is the specific resistance of the n-GaN layer 240.
  • W is the diameter of the n-side electrode 241.
  • V the voltage
  • the ideal coefficient of the semiconductor light emitting device
  • the Boltzmann constant
  • the Boltzmann constant
  • the ideal coefficient ⁇ of GaN is a value that varies individually depending on the force of GaN, which is generally about 2 to 3, and the crystal growth state of GaN.
  • Equation 9 the voltage V at which the current I becomes lZe is Equation 10.
  • Equation 12 the thickness t required to set the current to lZe is expressed as Equation 12.
  • the thickness t should satisfy the relationship of Equation 13.
  • the representative length of the n-type semiconductor layer in the present invention refers to the diameter when these are circular, and refers to the length of one side when they are rectangular.
  • the specific resistance p is 7 8 X 10— 5 ⁇ cm
  • current density J is 2.5 X 10 6 A / m 2
  • ideality factor ⁇ is 2
  • Boltzmann coefficient ⁇ is 1. 38 X 10— 23 J / K
  • the thickness t of the n-GaN layer 240 may be 1 .: L m or more.
  • the sapphire substrate 250 is placed in a growth chamber for MOCVD. While supplying H gas into the growth chamber, the temperature in the growth chamber is set to about 1050 ° C.
  • a GaN buffer layer (not shown) is formed on the sapphire substrate 250 in a state where the film formation temperature, which is the temperature in the growth chamber, is about 600 ° C., and thereafter N-GaN layer 240 with Si as a dopant at a deposition temperature of about 1000 ° C, InGaN-GaN superlattice layer (not shown) with Si as a dopant, MQW active layer 230, and undoped GaN layer Alternatively, an InGaN layer (not shown) containing about 1% In is sequentially stacked. Next, a P—GaN layer 220 using Mg as a dopant is formed with the growth temperature slightly raised.
  • the p—GaN layer 220 is annealed to activate Mg. Then, the ZnO electrode 224 is formed by using MBE (Molecular Beam Epitaxy) method. Thereafter, a mask layer 223 having a SiO force is formed.
  • MBE Molecular Beam Epitaxy
  • a resist film 251 is formed by photolithography. Thereafter, the mask layer 223 is patterned by etching using the resist film 251 as a mask. Then, the resist film 251 is removed. Mesa etching is performed from the ZnO electrode 224 to the n-GaN layer 240 by ICO (inductively coupled plasma) etching using the mask layer 223.
  • ICO inductively coupled plasma
  • the mask layer 223 is formed by dry etching using CF gas.
  • Patter Jung is given to it. Thereby, a plurality of through holes 223a arranged concentrically for contacting the reflective layer 222 and the ZnO electrode 224 are formed in the mask layer 223. At this time, the ZnO electrode 224 functions as an etching stopper. After the plurality of through holes 223a are formed, a resist film 252 is formed. In addition, A1 or Ag is vapor-deposited, and Ti, Pt, and Au are sequentially laminated to form the metal layer 222A. Then, by removing the resist film 252 and a part of the metal layer 222A, the reflective layer 222 is formed.
  • a support substrate 210 is prepared, and a p-side electrode 221 made of Au—Sn or Au is formed on the support substrate 210.
  • the p-side electrode 221 and the reflective layer 222 are joined together by thermal compression.
  • a KrF laser oscillating at about 248 nm is irradiated through the sapphire substrate 250 toward the n-GaN layer 240.
  • the interface between the sapphire substrate 250 and the n-GaN layer 240 (the GaN buffer layer (not shown)) is rapidly heated.
  • the n-GaN layer 240 near the interface and the GaN buffer layer are dissolved, and the sapphire substrate 250 can be peeled off.
  • This process is generally called an LLO (Laser Lift Off) process.
  • a metal layer (not shown) made of Al, Ti, Au or Al, Mo, Au is formed on the n-GaN layer 240. By patterning the metal layer, an n-side electrode 241 shown in FIG. 10 is formed. Through the above steps, a semiconductor light emitting device A201 is obtained.
  • the current from the n-side electrode 241 causes the thickness of the n-GaN layer 240 to be reduced.
  • This current can be sufficiently spread in the in-plane direction of the n-GaN layer 240 before passing in the vertical direction.
  • the n-GaN layer 240, the active layer 230, and the p-GaN layer 220 are all covered. Current can flow. Therefore, it is possible to emit light reasonably using the entire active layer 230, and the light amount of the semiconductor light emitting element A201 can be increased.
  • the current flowing through the semiconductor light emitting element A201 flows through the n-side electrode 241 and the plurality of through holes 223a.
  • a plurality of through-holes 223a are arranged concentrically about the center located directly under the n-side electrode 241, so that the current flowing through the semiconductor light-emitting element A201 is easily spread in the width direction of the semiconductor light-emitting element A201. And speak. With such a configuration, it is possible to further promote the light emission of the active layer 230 as a whole.
  • FIG. 16 and FIG. 17 show a fifth embodiment of a semiconductor light emitting device according to the present invention and a method for manufacturing the same.
  • the same or similar elements as those of the above embodiment are denoted by the same reference numerals as those of the above embodiment.
  • a plurality of convex portions 240a are formed on the upper surface of the n-GaN layer 240 in the drawing.
  • the convex portion 240a has a cone shape.
  • the width Wc of the bottom of the convex portion 240a is the average of the width Wc when the peak wavelength of light emitted from the active layer 230 is ⁇ and the refractive index of the n-GaN layer 240 is ⁇ .
  • Wc ′ is about 184 nm or more.
  • the height of the convex portion 240a is approximately.
  • the thickness t of the n-GaN layer 240 satisfies the relationship of Equation 14 shown below.
  • Formula 14 is obtained by adding a (+ x) term to the right side of Formula 13. This increase in X corresponds to the height of the convex portion 240a described above.
  • the n-side electrode 241 is formed from the state shown in FIG. 15 as shown in FIG. In FIG. 15, the surface of the n GaN layer 240 after the sapphire substrate 250 is peeled off is not anisotropic in the Ga polar plane. It has N polar surface. In this state, as shown in FIG. 17, the n-GaN layer 240 is immersed in an about 4 mol Zl KOH solution at about 62 ° C. and irradiated with about 3.5 WZcm 2 of ultraviolet (UV) light for about 10 minutes.
  • UV ultraviolet
  • n-GaN layer 240 a plurality of convex portions 240a satisfying the above-described relationship between the average value Wc of the bottom surface width Wc can be formed on the surface of the n-GaN layer 240.
  • the thickness t of the n-GaN layer 240 can satisfy the relationship of Equation 14.
  • the amount of light emitted from the active layer 230 can be increased. Further, by forming a plurality of convex portions 240a on the surface of the n-GaN layer 240, the light of the active layer 230 is totally reflected on the surface of the n-GaN layer 240 and returns to the inside of the n-GaN layer 240. Can be suppressed. Therefore, it is suitable for increasing the light amount of the semiconductor light emitting device A202.
  • FIG. 10 the cross-sectional shape is shown in FIG. 10, the n-side electrode 241 has a rectangular shape, and the width of one of them (the width in the front and back direction in FIG. 10) force 3 ⁇ 4 of the GaN layer 240 One width (the width in the front and back direction in Fig. 10) is the same.
  • FIG. 18 is an enlarged perspective cross-sectional view of each of the n-side electrode 241 and the n-GaN layer 240 in the sixth embodiment.
  • a method for determining the thickness (length in the vertical direction in FIG. 10) t of the n-GaN layer 240 in this embodiment will be described.
  • Equation 18 the thickness t required to set the current to lZe is expressed as Equation 18.
  • the thickness t should satisfy the relationship of Equation 19.
  • n-GaN layers 240 are formed on the upper surface of the n-GaN layer 240 in the same manner as the configuration shown in FIG.
  • a configuration in which the convex portion 240a is formed may be employed.
  • the thickness t of the n-GaN layer 240 is determined by Equation 20.
  • the current flowing through the n-GaN layer 240 can be spread to the peripheral portion of the n-GaN layer 240, and the amount of light emission can be increased. Further, when a plurality of convex portions 240a are formed, it is possible to expect a further increase in the amount of light emission as described above. [0104] As described above, the thickness of the n-type semiconductor layer may be set to have the relationship shown in Formula 2 to 5 using the physical properties of the semiconductor material.
  • the plurality of convex portions of the first to third embodiments may be formed on the side surface. Good.
  • FIG. 19 shows a seventh embodiment of the semiconductor light emitting device according to the present invention.
  • Each of the n-side electrode 24 1, the n-GaN layer 240, the active layer 230, and the p-GaN layer 220 is partly shown.
  • FIG. In this semiconductor light emitting device a plurality of convex portions 271 similar to those in the first embodiment are formed on the side surface 270 of the n-GaN layer 240, the active layer 230, and the p-GaN layer 220 of the semiconductor light emitting device of the sixth embodiment. Is.
  • the amount of light emitted from the semiconductor light emitting element can be increased, and the ratio of the light emitted from the side surface 270 can be increased, thereby increasing the brightness of the semiconductor light emitting element. Can be achieved.
  • the shape of the plurality of convex portions 271 can be various shapes that satisfy the condition of the average width shown in the first embodiment. Further, as shown in the second embodiment, the plurality of convex portions 271 may be formed in other layers. Further, as shown in the third embodiment, the laminated structure of the semiconductor light emitting elements may be different.
  • the n-GaN layer 240 may have a plurality of convex portions 240a formed on the upper surface.
  • the semiconductor light emitting device according to the present invention is not limited to the above-described embodiment.
  • each part of the semiconductor light emitting device according to the present invention can be varied in design in various ways.
  • the n-type semiconductor layer and the p-type semiconductor layer referred to in the present invention are not limited to the n-GaN layer and the p-GaN layer, but may be any semiconductor layer that can inject electrons and holes into the active layer. Further, the active layer referred to in the present invention is not limited to the MQW structure.
  • the semiconductor light emitting device according to the present invention can be configured to emit light of various wavelengths such as white light in addition to blue and green light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 基板にp型半導体層(220)、活性層(230)、n型半導体層(240)がこの順に積層された半導体発光素子であって、上記n型半導体層(240)には、一方の幅が上記n型半導体層(240)の一方の幅と同一である矩形状のn側電極(241)が形成されており、上記n型半導体層(240)は、その厚さtが数式1の関係を満たし、上記半導体発光素子の積層方向に沿って延びる側面(270)には、複数の凸部(271)が形成されており、上記活性層(230)から発光される光の波長をλ、上記n型半導体層(240)および上記p型半導体層(220)のいずれかの屈折率をnとした場合に、上記凸部は、その底部の幅の平均幅WAが、WA≧λ/nとされている。   【数1】 ここで、 L:上記n型半導体層の一方の幅とは異なる他方の幅 T:絶対温度 W:上記n側電極の一方の幅とは異なる他方の幅 J0:上記n側電極と上記n型半導体層との接触部分における電流密度 e:素電荷 γ:ダイオードの理想係数 κB:ボルツマン定数 ρ:上記n型半導体層の比抵抗

Description

明 細 書
半導体発光素子
技術分野
[0001] 本発明は、半導体層を有する半導体発光素子に関する。
背景技術
[0002] 従来より、サファイア基板上に GaNを含む複数の半導体層が積層された構造を有 する半導体発光素子が提案されている (たとえば、特許文献 1)。
[0003] また、半導体発光素子の製造方法の一つとして、サファイア基板に半導体層を成 膜した後に、上記半導体層のうち上記サファイア基板とは反対側部分に支持基板を 接合し、レーザ光による加熱を利用して上記サファイア基板を剥離するという手法が 知られている (たとえば特許文献 2参照。;)。図 20は、このような製造方法によって製 造された半導体発光素子の一例を示している。同図に示された半導体発光素子 Xは 、 p側電極 91aが形成された支持基板 91上に、半導体層としての p— GaN層 92、活 性層 93、および n— GaN層 94が積層された構造とされている。 n— GaN層 94の上 面には n側電極 94aが形成されている。活性層 93は、 n— GaN層 94から注入された 電子と p - GaN層 92から注入された正孔とが再結合することにより発せられた光を増 幅するための層であり、たとえば重量子井戸(Multiple Quantum Well:以下 MQW)構 造とされている。半導体発光素子 Xは、 n— GaN層 94の上面と n— GaN層 94、活性 層 93、および p— GaN層 92の側面 97から光を出射することが可能に構成されている
[0004] 特許文献 1 :特開平 10— 012916号公報
特許文献 2 :特開 2003— 168820号公報
[0005] しかしながら、 n側電極 94aから注入された電子は、 n— GaN層 94の厚さ方向にお ける電位差によって n— GaN層 94を貫通してしまいやすい。このため、 n— GaN層 9 4の端部付近には、十分な電流が流れない。すると、活性層 93の全域において電子 と正孔とを再結合させることが困難となる。したがって、半導体発光素子 Xにおいては 、投入電力に対して効率よく発光させることが困難であり高輝度化が阻害されていた [0006] また、 n— GaN層 94、活性層 93、および p— GaN層 92を形成する GaNは、その屈 折率が約 2. 5と比較的高い。このため、空気との臨界角が約 23° 程度と小さい。側 面 97に対する入射角がこの臨界角よりも大きな光は、全反射されることとなり、半導 体発光素子 X外には出射されない。したがって、半導体発光素子 Xは、活性層 93〖こ よって発せられた光のうち適切に出射される光の割合が小さぐ高輝度化が阻害され ていた。
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、上記した事情のもとで考え出されたものであって、発光量を増加させ、 かつ、出射される光の割合を増カロさせることにより、高輝度化を図ることが可能な半導 体発光素子を提供することをその目的とする。
課題を解決するための手段
[0008] 本発明の第 1の側面によって提供される半導体発光素子は、基板と、上記基板に 支持された p型半導体層と、上記基板に対して上記 p型半導体層よりも離間した位置 に配置された n型半導体層と、上記 p型半導体層と上記 n型半導体層との間に配置さ れた活性層と、を備える半導体発光素子であって、上記 n型半導体層には、一方の 幅が上記 n型半導体層の一方の幅と同一である矩形状の n側電極が形成されており 、上記 n型半導体層は、その厚さ tが数式 1の関係を満たし、上記半導体発光素子の 積層方向に沿って延びる側面には、複数の凸部が形成されており、上記活性層から 発光される光の波長をえ、上記 n型半導体層および上記 p型半導体層のいずれかの 屈折率を nとした場合に、上記凸部は、その底部の幅の平均幅 W 1S W≥ λ Ζηと
A A
されて 、ることを特徴として!、る。
[数 1]
t_P ^.w(L_w^ ここで、
L:上記 n型半導体層の一方の幅とは異なる他方の幅 T:絶対温度
W:上記 η側電極の一方の幅とは異なる他方の幅
J:上記 n側電極と上記 n型半導体層との接触部分における電流密度
0
e: ^
y:ダイオードの理想係数
κ :ボルツマン定数
B
P:上記 n型半導体層の比抵抗
[0009] 本発明の第 2の側面によって提供される半導体発光素子は、基板と、上記基板に 積層された n型半導体層、活性層、および p型半導体層と、を備えた半導体発光素 子であって、上記半導体発光素子の積層方向に沿って延びる側面には、複数の凸 部が形成されており、上記活性層から発光される光の波長をえ、上記 n型半導体層 および上記 p型半導体層のいずれかの屈折率を nとした場合に、上記凸部は、その 底部の幅の平均幅 W力 W≥ λ Znとされていることを特徴としている。
A A
[0010] 本発明の好ましい実施の形態においては、上記 n型半導体層および上記 p型半導 体層の少なくともいずれか一方は、 GaN力もなる。このような構成によれば、上記 n型 半導体層または上記 p型半導体層を n— GaN層または p— GaN層として構成するこ とにより、投入電力量に対する発光量を増大させることが可能である。また、 GaNは 比較的屈折率が高い材質であるが、上述した数式を満たす平均幅 Wとされた複数
A
の凸部を備えることにより、上記活性層からの光が不当に全反射されてしまうことを回 避することができる。
[0011] 本発明の好ましい実施の形態においては、上記凸部は、上記積層方向に延びて おり、かつその断面形状が三角形または半円形とされている。このような構成によれ ば、上記複数の凸部を、内部からの光を適切に出射させる形状とすることができる。
[0012] 本発明の第 3の側面によって提供される半導体発光素子は、基板と、上記基板に 支持された p型半導体層と、上記基板に対して上記 p型半導体層よりも離間した位置 に配置された n型半導体層と、上記 p型半導体層と上記 n型半導体層との間に配置さ れた活性層と、を備える半導体発光素子であって、上記 n型半導体層には、円形状 の n側電極が形成されており、上記 n型半導体層は、その厚さ tが数式 2の関係を満 たすことを特徴としている。
[数 2]
、 fJaeW2 , ( L \
t≥— log—
sr w) ここで、
L:上記半導体発光素子の代表長さ
T:絶対温度
W:上記 n側電極の直径
J:上記 n側電極と上記 n型半導体層との接触部分における電流密度
0
e: ¾荷
y:ダイオードの理想係数
κ :ボルツマン定数
B
P:上記 n型半導体層の比抵抗
[0013] なお、本発明で言う上記半導体発光素子の代表長さとは、たとえば円形状におけ る直径、矩形状における 1辺の長さを指す。
[0014] 本発明の好ましい実施の形態においては、上記 n型半導体層には、複数凸部が形 成されており、上記 n型半導体層は、その厚さ tが上記数式 2の関係に代えて数式 3 の関係を満たす。
[数 3]
Figure imgf000006_0001
†dtし、 0. 1 /ζ πι≤χ≤3. O /z m
[0015] 本発明の好ましい実施の形態においては、上記 n型半導体層は、 n— GaN力もな る。このような構成によれば、上記半導体発光素子を、青色光あるいは緑色光を発光 可能に構成することができる。
[0016] 本発明の第 4の側面によって提供される半導体発光素子は、基板と、上記基板に 支持された p型半導体層と、上記基板に対して上記 p型半導体層よりも離間した位置 に配置された n型半導体層と、上記 p型半導体層と上記 n型半導体層との間に配置さ れた活性層と、を備える半導体発光素子であって、上記 n型半導体層には、一方の 幅が上記 n型半導体層の一方の幅と同一である矩形状の n側電極が形成されており 、上記 n型半導体層は、その厚さ tが数式 4の関係を満たすことを特徴としている。 画 Br ここで、
L:上記 n型半導体層の一方の幅とは異なる他方の幅
T:絶対温度
W:上記 n側電極の一方の幅とは異なる他方の幅
J:上記 n側電極と上記 n型半導体層との接触部分における電流密度
0
e: ^
y:ダイオードの理想係数
κ :ボルツマン定数
B
P:上記 n型半導体層の比抵抗
[0017] 本発明の好ましい実施の形態においては、上記 n型半導体層には、複数凸部が形 成されており、上記 n型半導体層は、その厚さ tが上記数式 4の関係に代えて数式 5 の関係を満たす。
[数 5]
t_fl ^.wiL _w\+ x
Figure imgf000007_0001
た^し、 0. 1 πι≤χ≤3. O /z m
[0018] 本発明の好ましい実施の形態においては、上記 n型半導体層は、 n— GaN力もな る。このような構成によれば、上記半導体発光素子を、青色光あるいは緑色光を発光 可能に構成することができる。
図面の簡単な説明
[0019] [図 1]本発明に係る半導体発光素子の第 1実施形態を示す全体斜視図である。
[図 2]図 1に示す半導体発光素子の平面図である。 [図 3]図 lの m— m線に沿う断面図である。
[図 4]図 3の IV— IV線に沿う要部拡大断面図である。
[図 5]凸部の一変形例を示す要部拡大断面図である。
[図 6]凸部の他の変形例を示す要部拡大断面図である。
[図 7]本発明に係る半導体発光素子の第 2実施形態を示す全体斜視図である。
[図 8]本発明に係る半導体発光素子の第 3実施形態を示す全体斜視図である。
[図 9]図 8の IX— IX線に沿う断面図である。
[図 10]本発明に係る半導体発光素子の第 4実施形態を示す断面図である。
[図 11]図 10に示す半導体発光素子の要部拡大斜視断面図である。
[図 12]図 10に示す半導体発光素子の製造工程において、サファイア基板に半導体 層を積層する工程を示す断面図である。
[図 13]図 10に示す半導体発光素子の製造工程において、半導体層のエッチングェ 程を示す断面図である。
[図 14]図 10に示す半導体発光素子の製造工程において、反射層を形成する工程を 示す断面図である。
[図 15]図 10に示す半導体発光素子の製造工程において、サファイア基板を剥離す る工程を示す断面図である。
[図 16]本発明に係る半導体発光素子の第 5実施形態を示す断面図である。
[図 17]図 16に示す半導体発光素子の製造工程にお!/、て、複数の凸部を形成するェ 程を示す断面図である。
[図 18]本発明に係る半導体発光素子の第 6実施形態を示す要部拡大斜視断面図で ある。
[図 19]本発明に係る半導体発光素子の第 7実施形態を示す断面図である。
[図 20]従来の半導体発光素子の一例を示す断面図である。
発明を実施するための最良の形態
[0020] 以下、本発明の好ましい実施の形態につき、図面を参照して具体的に説明する。
[0021] 図 1〜図 3は、本発明に係る半導体発光素子の第 1実施形態を示している。本実施 形態の半導体発光素子 A101は、基板 110、 n— GaN層 120、活性層 130、 p-Ga N層 140、および ZnO電極 150を備えている。半導体発光素子 A101は、特に青色 光または緑色光を発光するのに適した半導体発光素子として構成されている。
[0022] 基板 110は、たとえばサファイア製であり、 n— GaN層 120、活性層 130、 p-GaN 層 140、および ZnO電極 150を支持するためのものである。本実施形態においては 、基板 110は、その厚さが 80 m程度とされている。基板 110上には、たとえば格子 歪を緩和するための A1N、 GaN、 AlGaN等からなるバッファ層(図示略)が形成され ている。
[0023] n— GaN層 120は、 GaNに Siがドープされた n型半導体からなり、本発明で言う n 型半導体層の一例である。本実施形態においては、 n—GaN層 120は、その厚さが 3〜6 μ m程度とされている。図 3に示すように n—GaN層 120は、その厚さが 6 μ m 程度であってその平面視寸法が基板 110と同一とされた第 1層 120aと、その厚さが 0 . 2 m程度であってその平面視寸法が基板 110よりも小サイズとされた第 2層 120b とによって構成されている。第 1層 120aの図中上面には、 n側電極 121が形成されて いる。 n側電極 121は、たとえば 100 A厚の Tiおよび 2500 A厚の A1が積層されたも のである。
[0024] 活性層 130は、たとえば InGaNを含む MQW構造とされた層であり、電子と正孔と が再結合することにより発せられる光を増幅させるための層である。活性層 130は、 複数の InGaN層と複数の GaN層とが交互に積層されている。上記 InGaN層は、 In の組成比が 17%程度とされることにより、 n—GaN層 120よりもバンドギャップが小と されており、活性層 130の井戸層を構成している。上記 GaN層は、活性層 130のバリ ァ層を形成している。本実施形態においては、活性層 130は、 30 A厚の InGaN層と 100 A厚の GaN層とが 8層ずつ積層されており、その厚さが 0. 1 μ m程度とされてい る。なお、 n—GaN層 120と活性層 130との間には、格子歪を緩和することを目的とし て、 InGaNおよび GaNがー原子毎に交互に積層された超格子層(図示略)が形成さ れている。
[0025] p— GaN層 140は、 GaNに Mgがドープされた p型半導体からなり、本発明で言う p 型半導体層の一例である。本実施形態においては、 p— GaN層 140は、その厚さが 0. 2 m程度とされている。なお、活性層 130と p— GaN層 140との間には、 GaN層 (図示略)または Inの組成が 0. 1%程度の InGaN層(図示略)が形成されている。
[0026] ZnO電極 150は、透明導電酸化物のひとつである ZnOからなり、活性層 130から の光を透過させる。 ZnO電極 150は、 ZnOに Gaがドープされることによりその抵抗率 が約 2 Χ 104 Ω cmと比較的低抵抗とされており、その厚さが 0. 1〜2 /ζ πι程度とされ ている。
[0027] η— GaN層 120の第 2層 120b、活性層 130、および p— GaN層 140が積層された 部分の側面 170には、複数の凸部 171が形成されている。図 1に示すように、凸部 1 71は、 n— GaN層 120の第 2層 120b、活性層 130、および p— GaN層 140の積層 方向に延びており、断面三角形状とされている。図 2に示すように、複数の凸部 171 は、側面 170のうち各角部に形成された曲面部を除く平面部に形成されている。
[0028] 図 4は、凸部 171の拡大断面図である。活性層 130から発せられる光の波長をえ、 n GaN層 120および p— GaN層 140の屈折率を nとした場合、凸部 171の底部の 幅 Wの平均幅 Wは、 W≥ λ Ζηを満たすものとされている。たとえば、 InGaN層を
A A
井戸層とする活性層 130から発せられる光のピーク波長が 460nm (青色系)、 n— G aN層 120および p— GaN層 140の屈折率 nが約 2. 5である場合、平均幅 Wは、約 1
A
84nm以上となる。一方、活性層 130の井戸層力 ピーク波長が約 365nm以上の光 を発光する GaN層からなる場合、平均幅 Wは、約 146nm以上となる。本実施形態
A
においては、凸部 171は、その高さ Hが 2. 5 /z m、その幅 Wが 2. 1 m、その頂角が 46° とされている。
[0029] 半導体発光素子 A101は、たとえば以下のような製造方法によって製造することが できる。
[0030] まず、基板 110を MOCVD法用の成膜室内に導入し、成膜室内の温度である成膜 温度を 1, 100°Cとする。次に Hガスと Nガスとを上記成膜室内に流すことにより、基
2 2
板 110を洗浄する。
[0031] 次に、成膜温度を 1, 060°Cとした状態で、 NHガス、 Hガス、 Nガス、およびトリメ
3 2 2
チルガリウム(以下、 TMG)ガスを上記成膜室内に供給する。この際、 n型のドーパン トである Siのドープを行うために SiHガスを同時に供給する。これにより、基板 110上
4
に n - GaN層 120を形成する。 [0032] 次に、成膜温度を 700〜800°C、たとえば約 760°Cとした状態で、 NHガス、 Hガ
3 2 ス、 Nガス、トリェチルガリウム(以下、 TEG)ガスおよびトリメチルインジウム(以下、 T
2
MIn)ガスを上記成膜室内に供給する。これにより、 Inの組成比が 17%程度である 井戸層としての InGaN層を形成する。上記井戸層を形成した後は、成膜温度を 760 °Cとした状態で、 NHガス、 Hガス、 Nガス、および TMGガスを供給する。これにより
3 2 2
、ノ リア層としての GaN層を形成する。この後、上述した井戸層としての InGaN層お よびバリア層としての GaN層の形成を交互に行う。それぞれの層を 8層形成すること により、 MQW構造を有する活性層 130が得られる。
[0033] 次に、成膜温度を 1, 010°Cとした状態で、 NHガス、 Hガス、 Nガス、および TM
3 2 2
Gガスを供給する。この際、 p型のドーパントである Mgのドープを行うために、 Cp Mg
2 ガスを同時に供給する。これにより、 p— GaN層 140を形成する。
[0034] 次に、 p— GaN層 140上にフォトリソグラフィの手法によりレジスト膜を形成する。こ のレジスト膜は、図 2に示す複数の凸部 171を形成可能な形状とする。そして、上記 レジスト膜をマスクとして p— GaN層 140、活性層 130、および n— GaN層 120の第 2 層 120bに対してエッチングを施すことにより、複数の凸部 171を有する側面 170を 形成する。
[0035] この後は、 p— GaN層 140上に、 ZnO電極 150を形成する。また、 n— GaN層 120 の第 1層 120aに n側電極 121を形成する。以上の工程により、半導体発光素子 A10 1の製造が完了する。
[0036] 次に、半導体発光素子 A101の作用について説明する。
[0037] 本実施形態によれば、活性層 130から発せられた光のうち、直接あるいは n— GaN 層 120の第 2層 120bおよび p— GaN層 140を介して図 1および図 3における側方へ と進行する光は、複数の凸部 171に到達する。発明者の研究によれば、複数の凸部 171を、その平均幅 Wが上述した W≥ λ Ζηの関係を満たすものとすることにより、
A A
出射する光の割合を増加させることが可能であることが判明した。具体的には、側面 170を平滑とした半導体発光素子の場合は、光として変換されたエネルギーのうち光 として出射されるものの割合が 19. 4%程度であるのに対し、複数の凸部 171を設け た半導体発光素子 A101の場合は、出射されるエネルギーの割合を 23. 9%とする ことができた。すなわち、半導体発光素子 A101においては、側面 170に複数の凸 部 171を設けることにより、活性層 130からの光を従来よりも多く出射させることが可 能である。これにより、半導体発光素子 A101の高輝度化を図ることができる。
[0038] 特に、 11 0&?^層120ぉょび ー0&?^層140は、その材質である GaNの屈折率 n が約 2. 5程度と高いため、空気との間の臨界角が小さい。このため、側面 170が平 滑な面であると全反射されてしまう光の割合が大きくなり、高輝度化が阻害される。本 実施形態によれば、 W≥ λ Ζηに用いる屈折率 nとして GaNの屈折率を採用するこ
A
とにより、 n— GaN層 120および p - GaN層 140力らの出射効率を高めるのに適して いる。
[0039] 複数の凸部 171は、積層方向に一様な断面形状を有しているため、上述したエツ チングなどにより容易に形成することが可能である。また、断面三角形状の凸部 171 は、所定の角度に傾斜した 1対の面力もなる。このため、側面 170の部分的な傾斜角 度を全体的に統一させることができる。これは、半導体発光素子 A101の内部からの 光を均一に出射させるのに適して 、る。
[0040] 図 5〜図 9は、本発明の他の実施形態を示している。なお、これらの図において、上 記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している
[0041] 図 5は、凸部 171の他の例を示している。図示された凸部 171は、上述した断面三 角形状の凸部 171の頂部を除去した形状とされており、頂面 171 aを有する断面台 形状とされている。本実施形態においては、凸部 171は、その幅 Wが 2.: m、その 高さ Hが 2 mとされている。本実施形態によっても、 n— GaN層 120の第 2層 120b 、活性層 130、および p— GaN層 140からの光の射出効率を高めることが可能である
[0042] 図 6は、凸部 171の他の例を示している。図示された凸部 171は、断面半円形状と されている点が上述した例とは異なっている。凸部 171は、その幅 Wが 5. 、そ の高さが 2. 5 /z mとされている。このような凸部 171を形成することにより、たとえば n - GaN層 120の第 2層 120b力らの光として出射されるエネルギーの割合を 23. 8% とすることができた。 [0043] これらの実施形態力も理解されるように、本発明でいう凸部は、断面三角形状のほ かに断面台形状、断面半円形状のものなどを含む概念である。更に、凸部は、これら の形状に限定されず、上述した平均幅の条件を満たす様々な形状とすることができ る。
[0044] 図 7は、本発明に係る半導体発光素子の第 2実施形態を示して ヽる。本実施形態 の半導体発光素子 A102は、基板 110および、 n— GaN層 120の第 1層 120aにも、 複数の凸部 171が形成されている点が上述した実施形態と異なっている。本実施形 態における凸部 171は、図 4に示された凸部 171と同一の断面形状とされている。こ のような複数の凸部 171は、基板 110および n—GaN層 120に対してエッチングを施 すことや、三角溝が形成されたダイシングブレードを用いてダイシングすることなどに よって形成することができる。
[0045] このような実施形態によれば、活性層 130から n—GaN層 120の第 2層 120bを透 過して、 n—GaN層 120の第 1層 120aや基板 110に到達した光を、複数の凸部 171 を利用して適切に出射させることが可能である。したがって、半導体発光素子 A102 力もの出射光量をさらに多くすることが可能であり、半導体発光素子 A102の高輝度 化に好適である。
[0046] 図 8および図 9は、本発明に係る半導体発光素子の第 3実施形態を示している。本 実施形態の半導体発光素子 A103は、コーン状の複数の凸部 172が形成されてい る点が、上述した実施形態と異なっている。また、半導体発光素子 A103は、その積 層構造が上述した実施形態とは異なるものとされている。
[0047] 半導体発光素子 A103は、基板 110と、基板 110の片面側に積層された n—GaN 層 120、活性層 130、および p— GaN層 140とを備えている。基板 110は、 SiCから なり、図中上側の角柱状部分と図中下側のテーパ部分とを有する形状とされて 、る。 基板 110のうち n—GaN層 120が形成された面とは反対側の面には、 n側電極 121 が形成されている。また、 p— GaN層 140の図中下面には、反射層 160が形成され ている。反射層 160は、たとえば Al、 Ti、 Pt、 Auなどの金属層が積層された構造とさ れており、本実施形態においては、図 9における反射層 160の最上層に A1層が配置 されている。この A1層は比較的反射率が高いため、活性層 130から発せられた光を 図中上方へと反射する機能を発揮する。また、反射層 160は、 p側電極として用いる ことができる。
[0048] 半導体発光素子 A103の側面 170には、複数の凸部 172が形成されている。ただ し、側面 170のうち活性層 130によって形成されている部分には、複数の凸部 172は 形成されていない。凸部 172は、コーン状とされており、その高さが 2. 5 m程度、そ の幅が 2.: L m程度とされている。このような複数の凸部 172は、たとえば、基板 110 に n— GaN層 120、活性層 130、および p— GaN層 140を積層させた後に、基板 11 0の上面、 p— GaN層 140の下面および活性層 130をマスクによって覆った状態で 約 62°Cの約 4molZlの KOH溶液に浸漬させながら、約 3. 5WZcm2の紫外線(UV )光を約 10分間照射することにより形成することができる。
[0049] このような実施形態によっても、半導体発光素子 A103の高輝度化を図ることがで きる。複数の凸部 172をコーン形状とするとともに、 KOH溶液と紫外線とを利用して 複数の凸部を形成するという製造方法を採用することにより、本実施形態の基板 110 のように積層方向に対して傾斜した面を有して 、ても適切に本発明で言う複数の凸 部を設けることができる。半導体発光素子 A103の高輝度化には、側面 170のうち少 なくとも基板 110の部分に複数の凸部 172が形成されていることが好ましい。また、側 面 170のうち活性層 130の部分が平滑であることは、活性層 130からの発光量を増 大させるのに好ましい。
[0050] 以上のように、半導体発光素子の側面に上述した平均幅の条件を満たす複数の凸 部を形成した場合には、活性層からの光を従来よりも多く出射させることが可能であ る。これにより、半導体発光素子の発光量を増加させ、高輝度化を図ることができる。
[0051] ところで、上記の第 1及び第 2実施形態においては、出射効率を向上させることが できる力 n側電極 121が n— GaN層 120の第 1層 120aの上面に設けられているた め、 n— GaN層 120の n側電極 121から離れた端部付近には十分な電流が流れず、 活性層 130の全域において電子と正孔とを再結合させることが困難となり、投入電力 に対して効率よく発光させることが困難である。また、上記の第 3実施形態においても 、 n— GaN層 120の n側電極 121から離れた端部付近には十分な電流が流れないの で、投入電力に対して効率よく発光させることが困難である。 [0052] 以下に、この問題を解決するための、他の実施形態について説明する。
[0053] 図 10は、本発明に係る半導体発光素子の第 4実施形態を示している。本実施形態 の半導体発光素子 A201は、支持基板 210、 p側電極 221、反射層 222、マスク層 2 23、 ZnO電極 224、 p— GaN層 220、活性層 230、 n— GaN層 240、および n側電 極 241を備えており、たとえば青色光または緑色光などを発光可能に構成されている 。本実施形態においては、 n側電極 241は、円形状とされている。
[0054] 支持基板 210は、 p側電極 221、反射層 222、マスク層 223、 ZnO電極 224、 p— G aN層 220、活性層 230、 n— GaN層 240、および n側電極 241を支持している。支持 基板 210は、たとえば Cuまたは A1Nなどの熱伝導率が高 ヽ材質によって形成されて いる。これにより、支持基板 210は、半導体発光素子 A201が通電されることにより発 生する熱を外部へと放散する機能を発揮する。
[0055] p側電極 221は、支持基板 210の図中上面の全面にわたって形成されている。 p側 電極 221は、たとえば Au—Snまたは Auからなる。
[0056] 反射層 222は、図中上方力も順にたとえば Al、 Ti、 Pt、 Auが積層された構造とさ れている。比較的反射率が高い A1からなる層を有することにより、反射層 222は、活 性層 230から発せられた光を図中上方に向けて反射可能とされている。また、反射 層 222は、 p側電極 221と ZnO電極 224とを導通させている。上記 A1に代えて Agを 用いてもよい。
[0057] マスク層 223は、後述する半導体発光素子 A201の製造工程において、 ZnO電極 224、 p— GaN層 220、活性層 230、および n— GaN層 240をエッチングする際にェ ツチングマスクとして用いられるものである。マスク層 223は、たとえば SiOなどの誘
2 電体からなる。マスク層 223には、複数のスルーホール 223aが形成されている。複 数のスルーホール 223aは、反射層 222と ZnO電極 224とを接触させることにより互 いに導通させるためのものである。本実施形態においては、複数のスルーホール 22 3aは、 n側電極 241の直下に位置する点を中心とする同心円状に配置されている。
[0058] ZnO電極 224は、透明導電酸化物のひとつである ZnOからなり、活性層 230から の光を透過させつつ、 n— GaN層 240と反射層 222とを導通させている。 ZnO電極 2 24は、その抵抗率が約 2 X 10— 4 Ω cmと比較的低抵抗とされており、その厚さが 1000 〜20000 A程度とされて!/、る。
[0059] p— GaN層 220は、 p型のドーパントである Mgがドープされた GaNからなる層であ り、本発明で言う p型半導体層の一例である。 p— GaN層 220と活性層 230との間に は、アンドープの GaN層(図示略)または 1%程度の Inを含む InGaN層(図示略)が 形成されている。
[0060] 活性層 230は、 InGaNを含む MQW構造とされた層であり、電子と正孔とが再結合 することにより発せられる光を増幅させるための層である。活性層 230は、複数の InG aN層が積層された構造とされている。これらの InGaN層は、その組成が In Ga N (
X 1-X
0≤X≤0. 3)であるものと In Ga N (0≤Y≤0. 1、かつ Y≤X)であるものとの 2種
Υ 1-Υ
類とされている。 In Ga Nからなる層が井戸層であり、 In Ga N力もなる層がバリ
X 1-X Y 1-Y
ァ層である。これらの井戸層とバリア層とは、交互に積層されている。活性層 230と n — GaN層 240との間には、 Siがドープされた InGaNと GaNとからなる超格子層(図 示略)が形成されている。
[0061] n— GaN層 240は、 n型のドーパントである Siがドープされた GaNからなる層であり 、本発明で言う n型半導体層の一例である。 n—GaN層 240には、 n側電極 241が形 成されている。 n側電極 241は、たとえば n—GaN層 240側から順に Al、 Ti、 Auまた は Al、 Mo、 Auが積層された構造となっている。
[0062] ここで、 n— GaN層 240の厚さ tの決定方法について、図 11を参照しつつ以下に説 明する。図 11は、 n—GaN層 240および n側電極 241の一部ずつを拡大した斜視断 面図である。本図においては、 n— GaN層 240および n側電極 241が略円形状とさ れている。まず、電流が r→r+drへと流れるときの抵抗 dRは、数式 6で与えられる。
[0063] [数 6]
Figure imgf000016_0001
ここで、 pは n—GaN層 240の比抵抗である。
[0064] n側電極 241の端部力も n—GaN層 240の端部まで電流が進行することにより、電 流密度が lZeになる n— GaN層 240の直径を Lとすると、このときの n側電極 241の 端部から n—GaN層 240の端部までの抵抗 Rは、数式 7によって得られる。 [0065] [数 7]
pdr p , ( L
- ~ =— log
wn 2w -t 2M W ここで、 Wは n側電極 241の直径である。
[0066] 一方、 n側電極 241直下の電流密度を Jとすると、 n型電極 241から n— GaN層 240
0
を流れる電流 Iは、数式 8で表される。
[数 8]
Figure imgf000017_0001
[0067] また、 pn接合された半導体の順方向電流電圧特性によると、電流 Iは数式 9で表さ れる。
[0068] [数 9]
eV
= J0 exp ここで、 Vは電圧、 γは半導体発光素子の理想係数、 κ はボルツマン定数、 Τは
Β
絶対
温度である。たとえば、 GaNの理想係数 γは、一般的に 2〜3程度である力 GaNの 結晶成長状態などによって個別に変化する値である。
[0069] 数式 9より、電流 Iが lZeとなる電圧 Vは、数式 10となる。
[0070] [数 10]
γ =
e
[0071] 数式 7、数式 8および数式 10をオームの式 IR=Vに代入すると、数式 11が得られる 。これにより、電流を lZeとするのに必要な厚さ tは、数式 12として表される。
[0072] [数 11]
Figure imgf000017_0002
[数 12] L
γκΒΤ 2π
[0073] 以上より、 n— GaN層 240においてその面内方向に電流を十分に広げるためには
、厚さ tを数式 13の関係を満たすものとすればよい。
[0074] [数 13]
pJaeW2 '
t > ^ log ―
SpcBT &
[0075] 本発明でいう n型半導体層の代表長さとは、これらが円形状である場合にはその直 径を指し、これらが矩形状である場合には、その一辺の長さを指す。本実施形態に おいては、 n側電極 241の直径 Wが 100 μ m程度、 n— GaN層 240の直径または一 辺の長さ Lが 250 μ m程度であることにより、比抵抗 pが 7. 8 X 10— 5 Ω cm、電流密度 Jが 2. 5 X 106A/m2、理想係数 γが 2、ボルツマン係数 κ が 1. 38 X 10— 23J/K
0 B
molとすると、 n— GaN層 240の厚さ tは、 1.: L m以上とすればよい。
[0076] 次に、半導体発光素子 A201の製造方法について、図 12〜図 15を参照しつつ、 以下に説明する。
[0077] まず、サファイア基板 250を MOCVD法用の成長室内に載置する。この成長室内 に Hガスを供給しながら、この成長室内の温度を約 1, 050°Cとすることにより、サファ
2
ィァ基板 250を洗浄する。
[0078] 次に、 MOCVD法を用いて、上記成長室内の温度である成膜温度を約 600°Cとし た状態で、サファイア基板 250上に GaNバッファ層(図示略)を形成し、この後に成膜 温度を約 1000°Cとした状態で Siをドーパントとする n— GaN層 240、 Siをドーパント とする InGaN— GaNの超格子層(図示略)、 MQW活性層 230、およびアンドープの GaN層または約 1%の Inを含む InGaN層(図示略)を順次積層する。次いで、成長 温度を若干上昇させた状態で、 Mgをドーパントとする P— GaN層 220を形成する。 p — GaN層 220には、 Mgを活性化させるためのァニールを施す。そして、 MBE (Mole cular Beam Epitaxy:分子線エピタキシー)法を用いて、 ZnO電極 224を形成する。こ の後に、 SiO力もなるマスク層 223を形成する。
2
[0079] 次に、図 13に示すように、フォトリソグラフィー技術によりレジスト膜 251を形成する。 この後に、レジスト膜 251をマスクとして、エッチングによりマスク層 223にパターニン グを施す。そして、レジスト膜 251を除去する。マスク層 223を用いた ICO (誘導結合 型プラズマ)エッチングにより ZnO電極 224から n— GaN層 240までをメサエッチング する。
[0080] 次に、図 14に示すように、 CFガスを用いたドライエッチングにより、マスク層 223に
4
対してパターユングを施す。これにより、反射層 222と ZnO電極 224とを接触させるた めの同心円状に配置された複数のスルーホール 223aをマスク層 223に形成する。こ の際、 ZnO電極 224はエッチングストッパーとして機能する。複数のスルーホール 22 3aを形成した後は、レジスト膜 252を形成する。また、 A1あるいは Agを蒸着させ、さら に Ti、 Pt、 Auを順次積層することにより金属層 222Aを形成する。そして、レジスト膜 252と金属層 222Aの一部とを除去することにより、反射層 222を形成する。
[0081] 次に、図 15に示すように、支持基板 210を用意し、この支持基板 210上に Au— Sn または Auからなる p側電極 221を形成する。この p側電極 221と反射層 222とを熱圧 着によって接合する。この後に、約 248nmで発振する KrFレーザをサファイア基板 2 50を透して n— GaN層 240に向けて照射する。これにより、サファイア基板 250と n— GaN層 240との界面(上述した GaNバッファ層(図示略) )が急激に昇温される。そし て、この界面付近の n— GaN層 240と上記 GaNバッファ層とが溶解することとなり、サ ファイア基板 250を剥離することができる。この工程は、一般に LLO (Laser Lift Off) 工程と呼ばれる。
[0082] 次に、 n—GaN層 240上に Al、 Ti、 Auまたは Al、 Mo、 Auからなる金属層(図示略 )を形成する。この金属層に対してパターユングを施すことにより、図 10に示す n側電 極 241を形成する。以上の工程を経ることにより、半導体発光素子 A201が得られる
[0083] 次に、半導体発光素子 A201の作用について説明する。
[0084] 本実施形態によれば、 n— GaN層 240の厚さ tが数式 13の関係を満たすものとされ ていることにより、 n側電極 241からの電流が n—GaN層 240をその厚さ方向に通過 する前に、この電流を n—GaN層 240の面内方向に十分に広げることが可能である。 これにより、 n—GaN層 240、活性層 230、および p— GaN層 220それぞれの全域に 電流を流すことができる。したがって、活性層 230の全体を利用して合理的に発光さ せることが可能であり、半導体発光素子 A201の光量増加を図ることができる。
[0085] また、半導体発光素子 A201を流れる電流は、 n側電極 241と複数のスルーホール 223aとを流れる。複数のスルーホール 223aが n側電極 241の直下に位置する中心 についての同心円状配置とされていることにより、半導体発光素子 A201を流れる電 流が半導体発光素子 A201の幅方向に広げられやす ヽ構成となって ヽる。このよう な構成によって、活性層 230全体力もの発光をさらに促進することができる。
[0086] 図 16および図 17は、本発明に係る半導体発光素子の第 5実施形態およびその製 造方法を示している。なお、これらの図において、上記実施形態と同一または類似の 要素には、上記実施形態と同一の符号を付している。
[0087] 図 16に示された半導体発光素子 A202は、 n— GaN層 240の図中上面に複数の 凸部 240aが形成されている。凸部 240aは、コーン状とされている。本実施形態にお いては、凸部 240aの底部の幅 Wcは、活性層 230から発せられる光のピーク波長を λ、 n— GaN層 240の屈折率を ηとした場合に、幅 Wcの平均値 Wc,が Wc' = λ /η の関係を満たすものとされている。たとえば、活性層 230からの光のピーク波長えが 460nm、 n— GaN層 240の屈折率 nが約 2. 5である場合、 Wc'は約 184nm以上と なる。また、本実施形態においては、凸部 240aの高さは、 程度とされている。
[0088] 半導体発光素子 A202においては、 n— GaN層 240の厚さ tは、以下に示す数式 1 4の関係を満たすものとされている。
[0089] [数 14]
Figure imgf000020_0001
†dtし、 0. 1 /ζ πι≤χ≤3. O /z m
[0090] 数式 14は、数式 13の右辺に(+x)の項を付カ卩したものとなっている。この Xの増加 分は、上述した凸部 240aの高さに相当している。
[0091] 半導体発光素子 A202を製造するには、上述した図 15の状態から図 17に示すよう に n側電極 241を形成する。図 15においてサファイア基板 250が剥離された後の n GaN層 240の表面は、 Ga極性面ではなぐエッチングによって異方性が発生しや すい N極性面となっている。この状態で、図 17に示すように n—GaN層 240を約 62 °Cの約 4molZlの KOH溶液に浸漬させながら、約 3. 5WZcm2の紫外線 (UV)光 を約 10分間照射する。これにより、 n— GaN層 240の表面に、底面の幅 Wcの平均値 Wc,が上述した関係を満たす複数の凸部 240aを形成することができる。また、この 結果、 n—GaN層 240の厚さ tを、数式 14の関係を満たすものとすることができる。
[0092] このような実施形態によっても、活性層 230からの発光量を増カロさせることができる 。また、 n—GaN層 240の表面に複数の凸部 240aを形成することにより、活性層 230 力 の光が n—GaN層 240の表面において全反射されて n—GaN層 240内方へと 戻してしまうことを抑制することが可能である。したがって、半導体発光素子 A202の 光量増加を図るのに好適である。
[0093] 次に、 n側電極 241の形状および大きさが上述した実施形態とは異なる場合につい て、以下に説明する。第 6実施形態は、断面形状が図 10に示されるものであって、 n 側電極 241が矩形状であり、かつその一方の幅(図 10における紙面表裏方向の幅) 力 ¾ GaN層 240の一方の幅(図 10における紙面表裏方向の幅)と同一とされてい る。図 18は、第 6実施形態における n側電極 241および n— GaN層 240の一部ずつ の拡大斜視断面図である。以下に、本実施形態における n—GaN層 240の厚さ(図 10における上下方向の長さ) tの決定方法について説明する。
[0094] まず、 n側電極 241の端部から n—GaN層 240の端部まで電流が進行することによ り、電流密度が lZeになる n— GaN層 240の一方の幅とは異なる他方の幅(図 10に おける左右方向の幅)を L、 n— GaN層 240および n側電極 241の一方の幅を y、 n側 電極 241の一方の幅とは異なる他方の幅(図 10における左右方向の幅)を Wとすると 、このときの n側電極 241の端部から n— GaN層 240の端部までの抵抗 Rは、数式 15 によって得られる。
[0095] [数 15]
R 1^
ty 2
[0096] 一方、 n側電極 241直下の電流密度を Jとすると、 n型電極 241から n—GaN層 240
0
を流れる電流 Iは、数式 16で表される。 [数 16]
Figure imgf000022_0001
[0097] また、 ρη接合された半導体の順方向電流電圧特性によると、電流 Iは上述した数式 9で表される。また、電流 Iが lZeとなる電圧 Vは、上述した数式 10となる。数式 15、 数式 16および数式 10をオームの式 IR=Vに代入すると、数式 17が得られる。これに より、電流を lZeとするのに必要な厚さ tは、数式 18として表される。
[0098] [数 17]
p L - W T W _ γκΒΤ
^— J«y -— =
ty 2 e
[数 18]
j W_ L - W ep
° 2 2 γκΒΤ
[0099] 以上より、 n— GaN層 240においてその面内方向に電流を十分に広げるためには
、厚さ tを数式 19の関係を満たすものとすればよい。
[0100] [数 19]
Figure imgf000022_0002
[0101] また、 η側電極 241が矩形状であって η— GaN層 240と同一の幅を有する構成にお いて、図 16に示した構成と同様に n— GaN層 240の上面に複数の凸部 240aが形成 された構成としてもよい。この場合、 n— GaN層 240の厚さ tは、数式 20によって決定 する。
[0102] [数 20]
Figure imgf000022_0003
た^し、 0. 1 πι≤χ≤3. O /z m
[0103] これらの実施形態によっても、 n— GaN層 240を流れる電流を n— GaN層 240の周 縁部に広げることが可能であり、発光量の増加を図ることができる。また、複数の凸部 240aを形成した場合には、上述したようにさらなる発光量の増加が期待できる。 [0104] 以上のように、 n型半導体層の厚さは、その材質となる半導体の物性値を用いて数 式 2な ヽし 5に示す関係とすればよ!ヽ。
[0105] なお、第 6実施形態において、半導体発光素子の側面で全反射される光の割合を 減少させるために、その側面に第 1ないし第 3実施形態の複数の凸部を形成しても良 い。
[0106] 図 19は、本発明に係る半導体発光素子の第 7実施形態を示しており、 n側電極 24 1、 n— GaN層 240、活性層 230、および p— GaN層 220の一部ずつの拡大斜視断 面図である。この半導体発光素子は、第 6実施形態の半導体発光素子の n— GaN層 240、活性層 230、および p— GaN層 220の側面 270に第 1実施形態と同様の複数 の凸部 271を形成したものである。
[0107] この実施形態によれば、半導体発光素子の光量増加を図ることができるうえに、側 面 270より出射する光の割合を増カロさせることが可能であり、半導体発光素子の高輝 度化を図ることができる。
[0108] なお、複数の凸部 271の形状は、第 1実施形態で示した平均幅の条件を満たす様 々な形状とすることができる。また、複数の凸部 271は、第 2実施形態で示したように 、他の層にも形成されてもよい。また、第 3実施形態で示したように、半導体発光素子 の積層構造が異なっていても構わない。また、 n— GaN層 240の上面に複数の凸部 240aが形成された構成としてもょ 、。
[0109] 本発明に係る半導体発光素子は、上述した実施形態に限定されるものではない。
本発明に係る半導体発光素子の各部の具体的な構成は、種々に設計変更自在であ る。
[0110] 本発明で言う n型半導体層および p型半導体層は、 n— GaN層および p— GaN層 に限定されず、活性層に電子および正孔を注入可能な半導体層であればよい。また 、本発明で言う活性層は、 MQW構造に限定されない。本発明に係る半導体発光素 子は、青色および緑色光のほかに白色光など、様々な波長の光を発する構成とする ことができる。

Claims

請求の範囲 [1] 基板と、 上記基板に支持された P型半導体層と、 上記基板に対して上記 P型半導体層よりも離間した位置に配置された n型半導体層 と、 上記 P型半導体層と上記 n型半導体層との間に配置された活性層と、を備える半導 体発光素子であって、 上記 n型半導体層には、一方の幅が上記 n型半導体層の一方の幅と同一である矩 形状の n側電極が形成されており、 上記 n型半導体層は、その厚さ tが数式 1の関係を満たし、 上記半導体発光素子の積層方向に沿って延びる側面には、複数の凸部が形成さ れており、 上記活性層から発光される光の波長をえ、上記 n型半導体層および上記 p型半導 体層のいずれかの屈折率を nとした場合に、上記凸部は、その底部の幅の平均幅 W Aが、 とされていることを特徴とする、半導体発光素子。
[数 1] Βτ
ここで、
L:上記 n型半導体層の一方の幅とは異なる他方の幅
T:絶対温度
W:上記 n側電極の一方の幅とは異なる他方の幅
J:上記 n側電極と上記 n型半導体層との接触部分における電流密度
0
e: ^
7:ダイオードの理想係数
κ :ボルツマン定数 P:上記 n型半導体層の比抵抗
[2] 基板と、
上記基板に積層された n型半導体層、活性層、および p型半導体層と、を備えた半 導体発光素子であって、
上記半導体発光素子の積層方向に沿って延びる側面には、複数の凸部が形成さ れており、
上記活性層から発光される光の波長をえ、上記 n型半導体層および上記 p型半導 体層のいずれかの屈折率を nとした場合に、上記凸部は、その底部の幅の平均幅 W
Aが、
Figure imgf000025_0001
とされていることを特徴とする、半導体発光素子。
[3] 上記 n型半導体層および上記 p型半導体層の少なくともいずれか一方は、 GaNか らなる、請求項 2に記載の半導体発光素子。
[4] 上記凸部は、上記積層方向に延びており、かつその断面形状が三角形または半円 形とされている、請求項 2に記載の半導体発光素子。
[5] 基板と、
上記基板に支持された P型半導体層と、
上記基板に対して上記 P型半導体層よりも離間した位置に配置された n型半導体層 と、
上記 P型半導体層と上記 n型半導体層との間に配置された活性層と、を備える半導 体発光素子であって、
上記 n型半導体層には、円形状の n側電極が形成されており、
上記 n型半導体層は、その厚さ tが数式 2の関係を満たすことを特徴とする、半導体 発光素子。
[数 2]
、 ja ueW2 , , L:上記半導体発光素子の代表長さ
T:絶対温度
W:上記 n側電極の直径
J:上記 n側電極と上記 n型半導体層との接触部分における電流密度
0
e: ^
y:ダイオードの理想係数
κ :ボルツマン定数
B
P:上記 n型半導体層の比抵抗
[6] 上記 n型半導体層には、複数凸部が形成されており、
上記 n型半導体層は、その厚さ tが上記数式 2の関係に代えて数式 3の関係を満た す、請求項 5に記載の半導体発光素子。
[数 3]
/0eW2 ,
t >— log— \ + x
%γκΒΤ 。
た^し、 0. 1 πι≤χ≤3. O /z m
[7] 上記 n型半導体層は、 n—GaN力もなる、請求項 5に記載の半導体発光素子。
[8] 基板と、
上記基板に支持された P型半導体層と、
上記基板に対して上記 P型半導体層よりも離間した位置に配置された n型半導体層 と、
上記 P型半導体層と上記 n型半導体層との間に配置された活性層と、を備える半導 体発光素子であって、
上記 n型半導体層には、一方の幅が上記 n型半導体層の一方の幅と同一である矩 形状の n側電極が形成されており、
上記 n型半導体層は、その厚さ tが数式 4の関係を満たすことを特徴とする、半導体 発光素子。
Figure imgf000026_0001
ここで、
L:上記 n型半導体層の一方の幅とは異なる他方の幅
T:絶対温度
W:上記 n側電極の一方の幅とは異なる他方の幅
J:上記 n側電極と上記 n型半導体層との接触部分における電流密度
0
e: 電何
7:ダイオードの理想係数
κ :ボルツマン定数
B
P:上記 n型半導体層の比抵抗
[9] 上記 n型半導体層には、複数凸部が形成されており、
上記 n型半導体層は、その厚さ tが上記数式 4の関係に代えて数式 5の関係を満た す、請求項 8に記載の半導体発光素子。
[数 5]
t_fl ^_wtL_w\+x
Figure imgf000027_0001
†dtし、 0. 1/ζπι≤χ≤3. O/zm
[10] 上記 n型半導体層は、 n— GaN力もなる、請求項 8に記載の半導体発光素子。
PCT/JP2007/053306 2006-02-28 2007-02-22 半導体発光素子 WO2007099855A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/224,524 US7781791B2 (en) 2006-02-28 2007-02-22 Semiconductor light emitting element
CN200780006915.1A CN101395726B (zh) 2006-02-28 2007-02-22 半导体发光元件
EP07714804A EP2003704A1 (en) 2006-02-28 2007-02-22 Semiconductor light emitting element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-051596 2006-02-28
JP2006051596A JP2007234707A (ja) 2006-02-28 2006-02-28 半導体発光素子
JP2006078624A JP2007258338A (ja) 2006-03-22 2006-03-22 半導体発光素子
JP2006-078624 2006-03-22

Publications (1)

Publication Number Publication Date
WO2007099855A1 true WO2007099855A1 (ja) 2007-09-07

Family

ID=38458966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053306 WO2007099855A1 (ja) 2006-02-28 2007-02-22 半導体発光素子

Country Status (5)

Country Link
US (1) US7781791B2 (ja)
EP (1) EP2003704A1 (ja)
KR (1) KR20080087175A (ja)
TW (1) TW200802973A (ja)
WO (1) WO2007099855A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119640A1 (ja) * 2008-03-26 2009-10-01 パナソニック電工株式会社 半導体発光素子およびそれを用いる照明装置
JP2011521461A (ja) * 2008-05-20 2011-07-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 反射層を備えているオプトエレクトロニクス半導体チップ
JP2012114377A (ja) * 2010-11-26 2012-06-14 Mitsubishi Chemicals Corp 半導体発光素子
US8664684B2 (en) * 2010-08-31 2014-03-04 Micron Technology, Inc. Solid state lighting devices with improved contacts and associated methods of manufacturing

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI344707B (en) * 2007-04-20 2011-07-01 Huga Optotech Inc Semiconductor light-emitting device with high light extraction efficiency
US8368100B2 (en) 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
US8536584B2 (en) * 2007-11-14 2013-09-17 Cree, Inc. High voltage wire bond free LEDS
US8575633B2 (en) * 2008-12-08 2013-11-05 Cree, Inc. Light emitting diode with improved light extraction
US9634191B2 (en) * 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
JP5109742B2 (ja) * 2008-03-21 2012-12-26 サンケン電気株式会社 半導体発光装置
DE102008035784A1 (de) 2008-07-31 2010-02-11 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
KR101064081B1 (ko) * 2008-12-29 2011-09-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
TWI470823B (zh) * 2009-02-11 2015-01-21 Epistar Corp 發光元件及其製造方法
US20100327300A1 (en) 2009-06-25 2010-12-30 Koninklijke Philips Electronics N.V. Contact for a semiconductor light emitting device
KR100993094B1 (ko) 2010-02-01 2010-11-08 엘지이노텍 주식회사 발광소자 및 발광소자 패키지
CN101789477A (zh) * 2010-02-24 2010-07-28 中国科学院半导体研究所 全侧壁锯齿状粗化发光二极管芯片的制备方法
KR100999771B1 (ko) * 2010-02-25 2010-12-08 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
CN101814565A (zh) * 2010-03-02 2010-08-25 上海蓝光科技有限公司 一种发光二极管芯片的结构及其制造方法
CN101807644A (zh) * 2010-03-05 2010-08-18 厦门大学 一种高出光效率GaN基发光二极管的制备方法
KR101047720B1 (ko) 2010-04-23 2011-07-08 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR101039948B1 (ko) * 2010-04-23 2011-06-09 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
US8283652B2 (en) * 2010-07-28 2012-10-09 SemiLEDs Optoelectronics Co., Ltd. Vertical light emitting diode (VLED) die having electrode frame and method of fabrication
US8723160B2 (en) 2010-07-28 2014-05-13 SemiLEDs Optoelectronics Co., Ltd. Light emitting diode (LED) die having peripheral electrode frame and method of fabrication
CN101944564B (zh) * 2010-09-03 2013-06-05 湘能华磊光电股份有限公司 Led芯片及其制备方法
US8455882B2 (en) 2010-10-15 2013-06-04 Cree, Inc. High efficiency LEDs
KR20120100193A (ko) * 2011-03-03 2012-09-12 서울옵토디바이스주식회사 발광 다이오드 칩
CN102655195B (zh) * 2011-03-03 2015-03-18 赛恩倍吉科技顾问(深圳)有限公司 发光二极管及其制造方法
JP2013021250A (ja) * 2011-07-14 2013-01-31 Toshiba Corp 半導体発光素子
CN103594587B (zh) * 2013-10-21 2016-03-02 溧阳市东大技术转移中心有限公司 一种发光二极管打线电极的制造方法
USD826871S1 (en) 2014-12-11 2018-08-28 Cree, Inc. Light emitting diode device
KR102432226B1 (ko) * 2017-12-01 2022-08-12 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012916A (ja) 1996-06-25 1998-01-16 Hitachi Cable Ltd 発光素子
JPH10150220A (ja) * 1996-11-15 1998-06-02 Toyoda Gosei Co Ltd 半導体発光素子
JPH10200156A (ja) * 1996-12-28 1998-07-31 Sanken Electric Co Ltd 半導体発光素子
JPH11251629A (ja) * 1998-02-27 1999-09-17 Daido Steel Co Ltd 半導体発光素子の製造方法
JPH11274568A (ja) * 1998-02-19 1999-10-08 Hewlett Packard Co <Hp> Ledおよびledの組立方法
JP2000091638A (ja) * 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体発光素子
JP2002280608A (ja) * 2001-03-09 2002-09-27 Lumileds Lighting Us Llc 半導体発光デバイスおよびその作製方法
JP2002319708A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Ledチップおよびled装置
JP2003110136A (ja) * 2001-09-28 2003-04-11 Toyoda Gosei Co Ltd 発光素子
JP2003168820A (ja) 2001-12-03 2003-06-13 Sony Corp 剥離方法、レーザー光の照射方法及びこれらを用いた素子の製造方法
JP2005191514A (ja) * 2003-10-31 2005-07-14 Toyoda Gosei Co Ltd 発光素子および発光装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5779924A (en) * 1996-03-22 1998-07-14 Hewlett-Packard Company Ordered interface texturing for a light emitting device
US6885035B2 (en) * 1999-12-22 2005-04-26 Lumileds Lighting U.S., Llc Multi-chip semiconductor LED assembly
US6946788B2 (en) * 2001-05-29 2005-09-20 Toyoda Gosei Co., Ltd. Light-emitting element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012916A (ja) 1996-06-25 1998-01-16 Hitachi Cable Ltd 発光素子
JPH10150220A (ja) * 1996-11-15 1998-06-02 Toyoda Gosei Co Ltd 半導体発光素子
JPH10200156A (ja) * 1996-12-28 1998-07-31 Sanken Electric Co Ltd 半導体発光素子
JPH11274568A (ja) * 1998-02-19 1999-10-08 Hewlett Packard Co <Hp> Ledおよびledの組立方法
JPH11251629A (ja) * 1998-02-27 1999-09-17 Daido Steel Co Ltd 半導体発光素子の製造方法
JP2000091638A (ja) * 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体発光素子
JP2002280608A (ja) * 2001-03-09 2002-09-27 Lumileds Lighting Us Llc 半導体発光デバイスおよびその作製方法
JP2002319708A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Works Ltd Ledチップおよびled装置
JP2003110136A (ja) * 2001-09-28 2003-04-11 Toyoda Gosei Co Ltd 発光素子
JP2003168820A (ja) 2001-12-03 2003-06-13 Sony Corp 剥離方法、レーザー光の照射方法及びこれらを用いた素子の製造方法
JP2005191514A (ja) * 2003-10-31 2005-07-14 Toyoda Gosei Co Ltd 発光素子および発光装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119640A1 (ja) * 2008-03-26 2009-10-01 パナソニック電工株式会社 半導体発光素子およびそれを用いる照明装置
EP2259345A1 (en) * 2008-03-26 2010-12-08 Panasonic Electric Works Co., Ltd Semiconductor light emitting element and illuminating apparatus using the same
KR101240011B1 (ko) * 2008-03-26 2013-03-06 파나소닉 주식회사 반도체 발광 소자 및 이것을 이용하는 조명 장치
EP2259345A4 (en) * 2008-03-26 2013-07-17 Panasonic Corp SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND LIGHTING APPARATUS USING THE SAME
US8525204B2 (en) 2008-03-26 2013-09-03 Panasonic Corporation Semiconductor light emitting element and illuminating apparatus using the same
JP2011521461A (ja) * 2008-05-20 2011-07-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 反射層を備えているオプトエレクトロニクス半導体チップ
US8710512B2 (en) 2008-05-20 2014-04-29 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip comprising a reflective layer
US8664684B2 (en) * 2010-08-31 2014-03-04 Micron Technology, Inc. Solid state lighting devices with improved contacts and associated methods of manufacturing
US9691955B2 (en) 2010-08-31 2017-06-27 Micron Technology, Inc. Solid state lighting devices with improved contacts and associated methods of manufacturing
US10134968B2 (en) 2010-08-31 2018-11-20 Micron Technology, Inc. Solid state lighting devices with improved contacts and associated methods of manufacturing
US11843084B2 (en) 2010-08-31 2023-12-12 Micron Technology, Inc. Solid state lighting devices with improved contacts and associated methods of manufacturing
JP2012114377A (ja) * 2010-11-26 2012-06-14 Mitsubishi Chemicals Corp 半導体発光素子

Also Published As

Publication number Publication date
EP2003704A1 (en) 2008-12-17
US7781791B2 (en) 2010-08-24
TW200802973A (en) 2008-01-01
TWI335679B (ja) 2011-01-01
KR20080087175A (ko) 2008-09-30
US20090026468A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2007099855A1 (ja) 半導体発光素子
US9281439B2 (en) Nitride semiconductor element and method for producing same
US7745843B2 (en) Semiconductor light emitting device
JP5232972B2 (ja) 半導体発光素子及び半導体発光素子の製造方法
JP5829453B2 (ja) 半導体発光素子
JP2009502043A (ja) 光取り出し効率向上のための凹凸化高屈折率表面を有する青色発光ダイオード
JP2007150066A (ja) 窒化物半導体発光素子
JP2007165409A (ja) 半導体発光素子及び半導体発光素子の製造方法
JP2005244207A (ja) 窒化ガリウム系化合物半導体発光素子
JP2006303429A (ja) 垂直構造の窒化物半導体発光素子の製造方法
JP2010219502A (ja) 発光素子
JP4957130B2 (ja) 発光ダイオード
TW201036197A (en) Light emitting device having pillar structure with hollow structure and the forming method thereof
JP2013026451A (ja) 半導体発光素子
JP2006196543A (ja) 窒化物半導体発光素子およびその製造方法
CN101395726B (zh) 半导体发光元件
US20090001402A1 (en) Semiconductor element and method of making the same
JP2010251531A (ja) 半導体発光素子
JP2013239471A (ja) 発光ダイオード素子の製造方法
JP5298927B2 (ja) 発光素子
JP2009252836A (ja) 電流狭窄型半導体発光素子およびその製造方法
JP6008284B2 (ja) 半導体紫外発光素子
JP2013030606A (ja) 半導体発光素子
JP2007258338A (ja) 半導体発光素子
JP4969120B2 (ja) 半導体発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780006915.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12224524

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007714804

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087020518

Country of ref document: KR