WO2007099754A1 - Substrate for magnetic recording medium and method for manufacturing such substrate - Google Patents

Substrate for magnetic recording medium and method for manufacturing such substrate Download PDF

Info

Publication number
WO2007099754A1
WO2007099754A1 PCT/JP2007/052226 JP2007052226W WO2007099754A1 WO 2007099754 A1 WO2007099754 A1 WO 2007099754A1 JP 2007052226 W JP2007052226 W JP 2007052226W WO 2007099754 A1 WO2007099754 A1 WO 2007099754A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
coating layer
magnetic recording
recording medium
resin
Prior art date
Application number
PCT/JP2007/052226
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiharu Masaki
Hajime Kobayashi
Hideki Kawai
Satoshi Nakano
Shigeru Hosoe
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2008502685A priority Critical patent/JP5062167B2/en
Publication of WO2007099754A1 publication Critical patent/WO2007099754A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates

Definitions

  • Magnetic recording medium substrate and method for manufacturing the same
  • the present invention relates to a magnetic recording medium substrate used for a substrate of a magnetic disk recording apparatus and a method for manufacturing the same, and more particularly to a magnetic recording medium substrate using a nonmagnetic substrate whose surface is made of a resin. About.
  • an aluminum substrate or a glass substrate has been used for a magnetic disk recording device used in a computer or the like.
  • a metal magnetic thin film is formed on the substrate, and information is recorded by magnetizing the metal magnetic thin film with a magnetic head.
  • a magnetic head for reading magnetic recording information stored in a magnetic recording medium is configured to move in a state where the surface force of the magnetic recording medium floats. If there are irregularities on the surface of the magnetic recording medium, the irregularities and the magnetic head may collide with each other when the magnetic head moves, causing problems such as damage to the magnetic head and damage to the magnetic recording medium. In order to suppress the occurrence of such defects, the magnetic recording medium substrate is highly accurate during manufacture so that the surface thereof is a smooth surface! An attempt has been made to suppress the occurrence of surface irregularities as much as possible (for example, Patent Document 1, Patent Document 2, and Patent Document 3).
  • the aluminum plate is press-molded into a disk shape and then polished with high precision on the surface!
  • a polishing process and a cleaning process the surface is smoothed, and then a nickel-phosphorus (Ni-P) alloy is formed on the surface of the substrate by plating.
  • polishing and texturing are performed, and a magnetic layer of Co alloy is formed by sputtering to produce a magnetic recording medium.
  • a glass substrate When a glass substrate is used, a glass material is melted, and the molten glass is press-molded to produce a disk-shaped glass substrate. Then, the surface of the glass substrate is subjected to high-precision polishing IJ 'polishing and cleaning processes to smooth the surface, and then the surface is subjected to chemical strengthening treatment by ion exchange with an alkali molten salt, After the precision cleaning process, The magnetic recording medium is manufactured by applying a check and further forming a magnetic layer of a Co-based alloy by sputtering.
  • a soft magnetic layer is required between the magnetic layer and the substrate. Need to form.
  • a typical alloy of this soft magnetic layer is a nickel-cobalt (Ni-Co) alloy, and a nickel-cobalt alloy is formed on the substrate surface by plating.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-54965
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-55001
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-163740
  • the present invention solves the above-described problem, and for a magnetic recording medium capable of increasing the adhesion between the coating layer and the substrate while maintaining the coating layer formed on the substrate on a smooth surface.
  • the purpose is to provide a board.
  • the inventor of this application pays attention to the expansion coefficient of the substrate and the coating layer formed on the substrate, and divides the coating layer formed on the substrate surface into a plurality of regions. Coating layer and It has been found that the degree of adhesion can be increased.
  • a nonmagnetic base material having a disk-like surface and a disc-like shape is used as a substrate, and a coating layer divided into a plurality of regions is formed on the surface.
  • This is a substrate for a magnetic recording medium.
  • a second aspect of the present invention is a magnetic recording medium substrate according to the first aspect, characterized in that a plurality of regions are formed concentrically or Z and radially.
  • a third aspect of the present invention is a magnetic recording medium substrate according to the first aspect, wherein a plurality of regions are formed in a lattice shape.
  • a fourth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to third aspects, wherein the plurality of regions have a polygonal shape. is there.
  • a fifth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to fourth aspects, wherein the expansion coefficient of the substrate is A [ X10_5ZK ].
  • the area of each region of the coated layer is 1000 X (1 / A 2 ) [mm 2 ] or less.
  • a sixth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to fifth aspects, wherein the thickness D of the coating layer, and the regions and regions of the divided coating layers The distance dl between and the following satisfies the relationship 100 X thickness D ⁇ distance dl> thickness DZlO.
  • a seventh aspect of the present invention is a magnetic recording medium substrate according to any one of the first to sixth aspects, wherein the pattern of the region of the divided coating layer is chemical etching, physical It is formed by etching or physical / physical etching.
  • An eighth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to sixth aspects, wherein the pattern of the divided coating layer region is represented by a stamper on the surface of the coating layer. After forming irregularities on the surface, it is formed by chemical etching, physical etching, or physicochemical etching.
  • a ninth aspect of the present invention is for a magnetic recording medium according to any one of the first to eighth aspects.
  • the substrate is characterized in that the nonmagnetic base material is made of a resin.
  • a tenth aspect of the present invention is a substrate for a magnetic recording medium according to any one of the first to eighth aspects, wherein the nonmagnetic base material is made of glass or a nonmagnetic metal material. It is characterized by being.
  • a coating layer is formed on a nonmagnetic substrate having a disk shape, and chemical etching, physical etching, or physicochemical etching is performed on the coating layer.
  • a method for manufacturing a substrate for a magnetic recording medium wherein the coating layer is divided into a plurality of regions by performing a chin.
  • a coating layer is formed on a nonmagnetic substrate having a disk shape, and the surface of the coating layer is formed uneven by a stamper, and thereafter chemical etching, physical
  • a method for manufacturing a substrate for a magnetic recording medium in which a coating layer having projections and depressions is divided into a plurality of regions by performing physical etching or physical etching.
  • the present invention by dividing the coating layer formed on the substrate into a plurality of regions, even if the expansion coefficients of the substrate and the coating layer are different, excessive stress is applied to the coating layer. Therefore, the adhesion between the substrate and the coating layer can be increased.
  • FIG. 1 is a diagram showing a schematic configuration of a magnetic recording medium substrate according to an embodiment of the present invention.
  • FIG. 1 (a) is a top view of the substrate, and
  • FIG. 1 (b) is AA of the substrate. It is sectional drawing.
  • FIG. 2 is a top view of a substrate showing a modification of the magnetic recording medium substrate according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of a magnetic recording medium substrate according to an embodiment of the present invention.
  • FIG. 1 (a) is a top view of the substrate
  • FIG. 1 (b) is an AA view of the substrate. It is sectional drawing.
  • the substrate 2 has a disc shape and has a hole 5 in the center.
  • a coating layer 3 is formed on the substrate 2 to form a magnetic recording medium substrate 1.
  • the substrate 2 is made of a nonmagnetic material, and in this embodiment, a case where a resin is used as an example of the nonmagnetic material will be described.
  • the coating layer 3 is formed with concentric grooves 4A and radial grooves 4B.
  • the grooves 4A and 4B allow the coating layer 3 to be divided into a plurality of regions. It is divided.
  • the width dl (interval between regions) of the groove 4A is equal, and the interval d2 between the groove 4A and groove 4A is also equal. It is summer.
  • the width dl (space between the areas) of the groove 4B is also equal, and the angle between the groove 4B and the groove 4B is also equal.
  • three concentric grooves 4A are formed at equal intervals, and eight radial grooves 4B are formed every 45 °.
  • the number of grooves 4A and 4B and the interval between the grooves are the same. May be appropriately changed depending on conditions such as the size of the substrate 2, the material of the substrate 2, or the material of the coating layer 3.
  • the coating layer 3 is divided into a plurality of regions by the grooves 4A and 4B, the smoothness of the coating layer 3 is maintained without intentionally roughening the surface of the coating layer 3.
  • the adhesion between the substrate 2 and the covering layer 3 can be increased. In other words, even if the expansion coefficients of the substrate 2 and the coating layer 3 are different, the coating layer 3 is divided into a plurality of regions, so that excessive stress is not applied during or after the coating layer 3 is formed. In addition, it is possible to prevent peeling of the coating layer 3 and generation of cracks.
  • the degree of adhesion between the substrate 2 and the coating layer 3 can be increased. That is, the groove 4A and the groove 4B may have different widths, or the groove 4A and the groove 4B may have different widths. In addition, the interval between the grooves 4A may be different depending on the groove. May be different. In addition, since the grooves 4A and 4B divide the coating layer 3, the depths of the grooves 4A and 4B may be different if the depth of each of the grooves 4A and 4B is equal to or greater than the thickness D of the coating layer 3. May be.
  • the force by which the covering layer 3 is divided into a plurality of regions by two types of grooves, concentric grooves 4A and radial grooves 4B, is formed by forming one of the grooves.
  • the layer may be divided into a plurality of regions. Even in this case, it is possible to relax the stress applied to the coating layer and increase the adhesion between the coating layer and the substrate.
  • the width dl (interval between the regions) of the grooves 4A and 4B is 1 [m] or less. U prefer that. This is because the width dl of the grooves 4A and 4B is preferably narrow in order to increase the recording capacity of the magnetic recording medium.
  • the expansion coefficient of the substrate is A [X 10 _5 ZK]
  • the area of each divided coating layer 3 is preferably 1 000 X (1ZA 2 ) [mm 2 ] or less.
  • A 6
  • each divided area is preferably about 27.8 [mm 2 ] or less.
  • the thickness D of the coating layer 3 and the distance dl between the regions of the divided coating layer 3 satisfy the following expression.
  • region of the coating layer 3 can be enlarged, and it can prevent that each area
  • the material of the substrate 2 made of resin will be described.
  • various types of resin can be used in addition to thermoplastic resin, thermosetting resin, or active ray curable resin.
  • the substrate 2 made of resin has a thermoplastic resin, such as polycarbonate, polyetheretherketone resin (PEEK resin), cyclic polyolefin resin, methallyl styrene resin (MS resin), Polystyrene resin (PS resin), polyetherimide resin (PEI resin), ABS resin, polyester resin (PET resin, PBT resin, etc.), polyolefin resin (PE resin, PP resin, etc.) ), Polysulfone resin, polyethersulfone resin (PES resin), polyarylate resin, polyphenylene sulfide resin, polyamide resin, or acrylic resin Etc. can be used.
  • a thermoplastic resin such as polycarbonate, polyetheretherketone resin (PEEK resin), cyclic polyolefin resin, methallyl styrene resin (MS resin), Polystyrene resin (PS resin), polyetherimide resin (PEI resin), ABS resin, polyester resin (PET resin, PBT resin, etc.), polyolef
  • thermosetting resins examples include phenol resin, urea resin, unsaturated polyester resin (BMC resin, etc.), silicon resin, urethane resin, epoxy resin, polyimide resin, polyamide Imido resin or polybenzimidazole resin can be used.
  • BMC resin unsaturated polyester resin
  • PEN resin polyethylene naphthalate resin
  • an ultraviolet curable resin for example, an ultraviolet curable resin is used.
  • the ultraviolet curable resin include, for example, an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, Examples thereof include an ultraviolet curable epoxy resin, an ultraviolet curable silicon resin, and an ultraviolet curable acrylic resin.
  • a photosensitizer may be used in combination.
  • active rays can be irradiated, for example, in an inert gas atmosphere in order to reduce or remove the oxygen concentration.
  • actinic ray infrared rays, visible light, ultraviolet rays, and the like can be appropriately selected.
  • ultraviolet rays are particularly preferred, but are not particularly limited.
  • the curing reaction may be strengthened by heating during active ray irradiation or before and after.
  • the substrate 2 made of resin may use a liquid crystal polymer, an organic Z inorganic hybrid resin (for example, a polymer component incorporating silicon as a skeleton), or the like.
  • a liquid crystal polymer for example, an organic Z inorganic hybrid resin (for example, a polymer component incorporating silicon as a skeleton), or the like.
  • the resin listed above is an example of the resin used for the substrate 2, and the substrate according to the present invention is not limited to these resins. Two or more types of resin can be mixed to form a resin substrate, or different components can be adjacent to each other as separate layers.
  • a method of manufacturing the substrate 2 made of resin is performed by using a mold having a shape corresponding to the substrate 2, using an injection molding method, a casting molding method, a sheet molding method, an injection compression molding method, or a compression molding method. It can be produced by a forming method such as a method. Furthermore, if necessary, the substrate 2 may be manufactured by cutting, punching, or press-molding the formed substrate.
  • the dimensions of the inner diameter of the substrate 2, the outer At least one of the size of the diameter, the shape of the inner peripheral end, or the shape of the outer peripheral end can be formed simultaneously.
  • molds used in the injection molding method, etc. are manufactured in accordance with the inner and outer diameter dimensions of the substrate 2, and the inner and outer diameter dimensions are completed during resin molding by using these molds. Will be.
  • a mold is prepared according to the shape of the inner peripheral end of the substrate 2 and the shape of the outer peripheral end, and by using the mold, the shape of the inner peripheral end and the shape of the outer peripheral end are reduced. It will be formed at the time of molding.
  • the coating layer 3 a metal layer, a ceramic layer, a magnetic layer, a glass layer, or a composite layer (hybrid layer) of an inorganic layer and an organic layer is used.
  • Specific components of the coating layer include Ni (nickel), Fe (iron), Cu (copper), Ti (titanium), P (phosphorus), Co (cobalt), Si (silicon), Sn (tin) or Pd (palladium) and the like are included.
  • the coating layer 3 can be formed on the surface of the substrate 2 by a plating method such as electric plating or chemical plating. In addition, it can be formed by sputtering, vacuum deposition, CVD method, or the like. Also, a coating method such as a bar coating method, a dip coating (dipping and pulling up) method, a spin coating method, a spray method, or a printing method can be used.
  • the coating layer 3 is formed on the surface of the substrate 2 by plating or the like, a resist is formed on the coating layer 3, and a pattern is formed on the resist with a mask corresponding to the grooves 4A and 4B, and electron beam exposure is performed. Etch with FIB or FIB to form grooves 4A and 4B. Thereafter, the resist on the substrate is peeled off to obtain a magnetic recording medium substrate 1. In this way, the coating layer 3 can be divided into a plurality of regions according to the patterning process.
  • Examples of the etching method include chemical etching, physical etching, and physicochemical etching.
  • Chemical etching is a method of selectively etching a removal target using a chemical reaction.
  • Physical etching is a method of etching an object to be removed by causing accelerated argon ions to collide with the surface to be etched.
  • An example of physical etching is ion milling.
  • physicochemical etching is a method in which anisotropic etching is performed by using a chemical reaction between radicals (activated molecules and atoms having no charge) and a material to be etched and ion irradiation. Examples of physical chemical etching include RIE (Reactive Ion Etching).
  • the grooves 4A and 4B may be formed by physical etching or physical etching.
  • a magnetic layer such as a Co-based alloy is formed on the surface of the magnetic recording medium substrate 1 by sputtering or the like.
  • a soft magnetic layer is required between the magnetic layer and the substrate. Need to form.
  • a typical alloy for this soft magnetic layer is a nickel-cobalt (Ni-Co) alloy.
  • Ni—Co alloy By using a Ni—Co alloy as the covering layer 3, it can also function as a soft magnetic layer in a perpendicular magnetic recording medium.
  • the resin as a base material has a heat-resistant temperature or a glass transition temperature Tg as high as possible. Since the magnetic layer is formed on the resin substrate 2 by sputtering, it is desirable that the heat resistant temperature or the glass transition temperature Tg is equal to or higher than the sputtering temperature. For example, it is desirable to use a resin having a heat resistant temperature or a glass transition temperature Tg of 200 ° C or higher.
  • Representative resins having a glass transition temperature Tg of 200 ° C or higher include polyethersulfone resin (PES resin), polyetherimide resin (PEI resin), polyamideimide resin, and polyimide resin. , Polybenzimidazole resin, BMC resin, or liquid crystal polymer.
  • polyethersulfone resin (PES resin), Udel (Solve Devast Polymers), polyetherimide resin (PEI resin), Ultem (Japan GE Plastics), polyamideimide As resin, Torlon (Solveia Devast Polymers), polyimide resin (thermoplastic), Aurum (Mitsui Chemicals), polyimide (thermosetting), Upilex (Ube Industries), or polybenzimidazole PBlZCelazol e (Clariant Japan) is an example of rosin.
  • liquid crystal polymers include SUMIKASUPER LCP (Sumitomo Chemical), and polyether ether ketones as Victrex (Victrex MC).
  • a resin having a low hygroscopic property as the resin substrate 2 in order to prevent displacement from the magnetic head due to a dimensional change of the substrate due to moisture absorption.
  • resins with low hygroscopicity include polycarbonate and cyclic polyolefin resin.
  • the above description has been made by taking an example in which the substrate is made of a single resin, but the substrate is not limited to being made of a single resin, and may be made of metal or It may be configured by coating the surface of a non-magnetic material such as glass with a resin layer. In this case, as the nonmagnetic material coated with the resin, various materials applicable as a substrate such as a resin, metal, ceramics, glass, glass ceramics, or an organic-inorganic composite material can be used.
  • the substrate is composed of a single resin because the manufacturing process can be simplified.
  • FIG. 2 is a top view showing a modification of the magnetic recording medium substrate according to the embodiment of the present invention.
  • a magnetic recording medium substrate 10 according to Modification 1 includes a coating layer that is divided into a lattice pattern by grooves 12 on a substrate of a nonmagnetic material such as grease. 11 is formed. That is, the individual coating layers 11 after the division have a quadrangular shape.
  • the width of the groove 12 is equal, and the distance between the groove 12 and the groove 12 is also equal.
  • the number of the grooves 12 and the interval between the grooves 12 may be appropriately changed depending on conditions such as the size and material of the substrate.
  • the coating layer 11 is divided into a plurality of regions by the grooves 12, so that the smoothness of the coating layer 11 is maintained without intentionally roughening the coating layer 11, and the substrate and It becomes possible to increase the degree of adhesion with the coating layer 11.
  • the grooves 12 have the same width, even if the grooves 12 have different widths, the adhesion between the substrate and the coating layer 11 can be increased.
  • the interval between the groove 12 and the groove 12 may be different depending on the groove.
  • the area of each coating layer 11 may be the same or different depending on the location.
  • the conditions of the width of the groove 12 and the area of each divided covering layer 11 are the same as the conditions according to the above embodiment. (Modification 2)
  • FIG. Fig. 2 (b) shows a magnetic recording medium. Enlarge and show a part of the board!
  • a coating layer 20 divided into hexagonal shapes by grooves 21 is formed on a substrate of a nonmagnetic material such as resin. The widths of the grooves 21 are equal, and the areas of the individual coating layers 20 after division are also equal.
  • the degree of adhesion between the substrate and the coating layer 20 can be increased.
  • the degree of adhesion between the substrate and the coating layer 20 can be increased.
  • the area of each coating layer 20 may be the same or different depending on the location. The conditions of the width of the groove 21 and the area of each divided covering layer 20 are the same as the conditions according to the above embodiment.
  • FIG. Figure 2 (c) shows a magnified part of the magnetic recording medium substrate!
  • a coating layer 30 divided into a triangular shape by grooves 31 is formed on a substrate of a nonmagnetic material such as a resin.
  • the widths of the grooves 31 are equal, and the areas of the individual coating layers 30 after division are also equal.
  • the covering layer 30 is divided into a plurality of regions by the grooves 31, it is possible to increase the degree of adhesion between the substrate and the covering layer 30.
  • the width of each of the grooves 31 is different, the adhesion between the substrate and the coating layer 30 can be increased.
  • the area of each coating layer 30 may be the same or different depending on the location. The conditions of the width of the groove 31 and the area of each divided covering layer 30 are the same as the conditions according to the above embodiment.
  • the adhesion between the substrate and the coating layer can be increased. As a result, it is possible to prevent the covering layer from peeling off or cracking.
  • the shape of the covering layer is not limited to a triangular shape or a quadrangular shape, and even if the covering layer is divided into polygons of octagons or more, peeling of the covering layer and occurrence of cracks can be prevented.
  • the shape of the individual coating layers divided by the grooves is not limited to the above-described embodiment or modification, and may be a trapezoidal shape or a rounded shape. The same effect can be achieved.
  • Example 1 a specific example of the magnetic recording medium substrate 1 shown in FIG. 1 will be described.
  • the coating layer 3 divided by the concentric grooves 4A and the radial grooves 4B is formed on the substrate 2, and the degree of adhesion between the substrate 2 and the coating layer 3 is confirmed. did. (Substrate 2 molding)
  • Polyimide was used as a substrate material, and a resin substrate 2 was produced by injection molding.
  • Aurum made by Mitsui Engineering Co., Ltd. was used as a polyimide. The dimensions of this substrate 2 are shown below.
  • Substrate 2 thickness 0.4 [mm]
  • Ni layer was formed on the surface of the substrate 2 by sputtering the substrate 2. Thereafter, further, sputtering was performed to form a nickel-phosphorus (Ni—P) alloy layer (hereinafter referred to as “NiP layer”) on the Ni layer. The thickness of this NiP layer was 10 [nm]. These Ni layer and NiP layer correspond to the coating layer 3 formed on the substrate 2.
  • a resist is formed on the coating layer 3
  • a pattern is formed on the resist with a mask corresponding to the grooves 4A and 4B, and the groove is formed in the coating layer 3 by etching. 4A and 4B were formed.
  • Width of groove 4A (11: 1 [/ ⁇ ⁇ ]
  • each divided coating layer 3 is 1000 X (l ZA 2 ) [mm 2 ] or less
  • the maximum area of the coating layer 3 after the division is 45. 3mm 2 or less is preferable.
  • the maximum area of the coating layer 3 after division is 21.9 mm 2 as described above, which is a preferable area range.
  • a coating layer 3 was formed on a resin substrate 2 and the coating layer 3 was divided into a plurality of regions, and then the adhesion between the substrate 2 and the coating layer 3 was evaluated.
  • the test method and evaluation method for the degree of adhesion will be described.
  • a heat cycle test was conducted in which the substrate 2 (test sample) on which the coating layer 3 was formed was alternately put in and out of a high temperature bath maintained at 60 ° C. and a refrigerator chamber maintained at 5 ° C. Here, alternating turns were repeated 10 times.
  • thermal damage due to the difference in linear thermal expansion between the substrate 2 and the coating layer 3 was given to the test sample.
  • test samples were placed in a high-temperature bath and a refrigerator compartment for 10 minutes respectively, and the replacement from the high-temperature vessel to the refrigerator compartment and the change from the refrigerator compartment to the high-temperature vessel were performed within 10 seconds.
  • the surface of the coating layer 3 was visually observed and observed with an optical microscope, and it was confirmed whether the coating layer 3 was cracked, peeled or lifted.
  • Example 1 it was confirmed that the covering layer 3 had a high degree of adhesion between the substrate 2 and the covering layer 3 without peeling off from the substrate 2 or causing cracks in the covering layer 3.
  • Example 1 polyimide is used as the material for the substrate 2 made of resin, but the same effect can be obtained by using other resins described in the above embodiment. Further, the same effect can be obtained by laminating a layer having another component force such as a nickel-cobalt layer having a NiP layer as a coating layer.
  • Example 2 a specific example of the magnetic recording medium substrate 1 shown in FIG.
  • the dimensions of the individual coating layers 3 after the division were changed by changing the dimensions of the grooves 4A and 4B.
  • the same resin (polyimide) as in Example 1 was used for the resinous substrate 2 according to Example 2. (Board 2 dimensions)
  • Substrate 2 thickness 0.4 [mm]
  • Example 2 similarly to Example 1, a Ni layer and a NiP layer were formed as a coating layer 3 on a resin substrate 2 and the coating layer 3 was etched to be divided into a plurality of regions.
  • Width of groove 4A (11: 1 [/ ⁇ ⁇ ]
  • the maximum area of the divided coating layer 3 in this example is 20.0 mm 2 as described above, which is a preferable area range as in Example 1.
  • a coating layer 3 was formed on a resin substrate 2 and the coating layer 3 was divided into a plurality of regions, and then the adhesion between the substrate 2 and the coating layer 3 was evaluated by the same method as in Example 1. Also in this Example 2, it was confirmed that the coating layer 3 had a high degree of adhesion between the substrate 2 and the coating layer 3 without peeling off from the substrate 2 or cracking in the coating layer 3. .
  • Example 3 a specific example of the magnetic recording medium substrate 1 shown in FIG.
  • the dimensions of the individual coating layers 3 after the division were changed by changing the dimensions of the grooves 4A and 4B.
  • the same resin (polyimide) as in Example 1 was used for the resin substrate 2 according to Example 3.
  • Example 3 as in Example 1, a Ni layer and a NiP layer were formed as the coating layer 3 on the resin substrate 2 and the coating layer 3 was etched to be divided into a plurality of regions.
  • Width of groove 4A (11: 1 [/ ⁇ ⁇ ]
  • the maximum area of the coating layer 3 after division in this example is 19.2 mm 2 as described above, which is a preferable area range as in Example 1.
  • a coating layer 3 was formed on a resin substrate 2 and the coating layer 3 was divided into a plurality of regions, and then the adhesion between the substrate 2 and the coating layer 3 was evaluated by the same method as in Example 1. In Example 3 as well, it was confirmed that the coating layer 3 was not peeled off from the substrate 2 or cracked in the coating layer 3, and the adhesion between the substrate 2 and the coating layer 3 was high. .
  • Example 1 to Example 3 a comparative example for Example 1 to Example 3 will be described.
  • a Ni layer and a NiP layer were formed as coating layers on a resin-made (polyimide) substrate.
  • the degree of adhesion between the substrate and the coating layer was evaluated without dividing the coating layer into a plurality of regions.
  • the area of the coating layer is 46. 8 mm 2 , which is outside the preferred area range.
  • the degree of adhesion between the substrate and the coating layer was evaluated by the same method as in Examples 1 to 3. In this comparative example, peeling or cracking of the coating layer was confirmed. As described above, since the coating layer is not divided into a plurality of regions, excessive stress is applied to the coating layer due to different expansion coefficients of the substrate and the coating layer, and the coating layer peels off from the substrate cover. It is thought that cracks occurred in the coating layer.
  • Example 4 As in Example 1 to Example 3, by dividing the coating layer into a plurality of regions, it is possible to relieve the stress applied to the coating layer and prevent the coating layer from peeling or cracking. Become. (Example 4)
  • Example 4 a specific example of the magnetic recording medium substrate 10 shown in FIG. 2A will be described.
  • Example 4 as shown in FIG. 2 (a), the lattice-shaped coating layer 11 divided by the grooves 12 was formed on the substrate.
  • the same resin (polyimide) as in Example 1 was used for the resin substrate according to Example 4.
  • Example 4 similarly to Example 1, a Ni layer and a NiP layer were formed as a coating layer 11 on a resin substrate, and the coating layer 11 was etched to be divided into a plurality of regions.
  • Width of groove 12 1 [/ ⁇ ⁇ ]
  • the maximum area of the divided coating layer 11 in this example is 9 mm 2 as described above, which is a preferable area range as in Example 1. (Evaluation)
  • Example 4 After the coating layer 11 was formed on the resin substrate and the coating layer 11 was divided into a plurality of regions, the adhesion between the substrate and the coating layer 11 was evaluated by the same method as in Example 1. In Example 4 as well, it was confirmed that the coating layer 11 was strong in peeling off the substrate force and cracked in the coating layer 11, and the adhesion between the substrate and the coating layer 11 was high.
  • Example 5 a specific example of the magnetic recording medium substrate 10 shown in FIG.
  • the dimensions of the individual coating layers 11 after the division were changed by changing the dimensions of the grooves 12.
  • the same resin (polyimide) as in Example 1 was used as the resin substrate according to Example 5.
  • Example 5 similarly to Example 1, a Ni layer and a NiP layer were formed as a coating layer 11 on a resin substrate, and the coating layer 11 was etched to be divided into a plurality of regions.
  • Width of groove 12 1 [/ ⁇ ⁇ ]
  • the maximum area of the divided coating layer 11 in this example is 16 mm 2 as described above, which is a preferable area range as in Example 1.
  • the adhesion between the substrate and the coating layer 11 was evaluated by the same method as in Example 1. Also in this Example 5, the coating layer 11 peels off the substrate, and the coating layer 11 is cracked. It was confirmed that the adhesion between the substrate and the coating layer 11 was high.
  • Example 6 as in Example 4, a specific example of the magnetic recording medium substrate 10 shown in FIG.
  • Example 6 the dimensions of the individual coating layers 11 after the division were changed by changing the dimensions of the grooves 12.
  • the same resin (polyimide) as in Example 1 was used as the resin substrate according to Example 5.
  • Example 6 as in Example 1, a Ni layer and a NiP layer are formed as a coating layer 11 on a resin substrate, and the coating layer 11 is etched to be divided into a plurality of regions. did.
  • Width of groove 12 1 [/ ⁇ ⁇ ]
  • the maximum area of the divided coating layer 11 in this example is 25 mm 2 as described above, which is a preferable area range as in Example 1.
  • Example 6 After the coating layer 11 was formed on the resin substrate and the coating layer 11 was divided into a plurality of regions, the adhesion between the substrate and the coating layer 11 was evaluated by the same method as in Example 1. In Example 6 as well, it was confirmed that the coating layer 11 had a strong adhesion between the substrate and the coating layer 11 without causing the substrate force to peel off or cracking in the coating layer 11.
  • Example 4 to Example 6 by dividing the coating layer into a plurality of regions, stress applied to the coating layer can be relaxed, and peeling of the coating layer and generation of cracks can be prevented.
  • the coating layer formed on the resin substrate is divided into a plurality of regions so that the substrate and the substrate are covered. It was confirmed that the degree of adhesion with the covering layer can be increased.
  • the individual covering layers 20 are divided into hexagonal shapes, and as shown in FIG. 2 (c), the individual covering layers 30 are divided into triangular shapes.
  • the stress applied to the coating layer can be relaxed, and as a result, the peeling of the coating layer and the occurrence of cracks can be prevented.

Abstract

Provided is a substrate for a magnetic recording medium, by which adhesiveness between a coat layer formed on the substrate and the substrate is improved, while maintaining the coat layer smooth. The coat layer is formed on the surface of the substrate, and the coat layer is divided into a plurality of areas by concentric grooves and radial grooves. Since the coat layer is divided into areas, even when the expansion coefficient of the substrate is different from that of the coat layer, stress applied to the coat layer can be modified, and adhesiveness between the substrate and the coat layer is improved. Thus, generation of peeling and cracks of the coat layer can be prevented.

Description

明 細 書  Specification
磁気記録媒体用基板及びその製造方法  Magnetic recording medium substrate and method for manufacturing the same
技術分野  Technical field
[0001] この発明は、磁気ディスク記録装置の基板に用いられる磁気記録媒体用基板及び その製造方法に関し、特に、表面が榭脂により構成される非磁性の基板を用いた磁 気記録媒体用基板に関する。  TECHNICAL FIELD [0001] The present invention relates to a magnetic recording medium substrate used for a substrate of a magnetic disk recording apparatus and a method for manufacturing the same, and more particularly to a magnetic recording medium substrate using a nonmagnetic substrate whose surface is made of a resin. About.
背景技術  Background art
[0002] コンピュータなどに用いられる磁気ディスク記録装置には、従来力 アルミニウム基 板又はガラス基板が用いられている。そして、この基板上に金属磁気薄膜が形成さ れ、金属磁気薄膜を磁気ヘッドで磁化することにより情報が記録される。  [0002] Conventionally, an aluminum substrate or a glass substrate has been used for a magnetic disk recording device used in a computer or the like. A metal magnetic thin film is formed on the substrate, and information is recorded by magnetizing the metal magnetic thin film with a magnetic head.
[0003] また、磁気記録媒体に記憶された磁気記録情報を読み取るための磁気ヘッドは、 磁気記録媒体に対してその表面力 浮上した状態で移動するように構成されて 、る 。磁気記録媒体の表面に凹凸が存在すると、磁気ヘッドが移動するときにこれらの凹 凸と磁気ヘッドとが衝突し、磁気ヘッドの損傷、磁気記録媒体の傷つき等の不具合が 生じるおそれがある。このような不具合の発生を抑制するために、磁気記録媒体用基 板は、その表面が平滑面となるように製造時に高精度の研肖! 研磨処理が施され、表 面の凹凸の発生を極力抑える試みがなされている(例えば特許文献 1、特許文献 2、 及び特許文献 3)。  [0003] Further, a magnetic head for reading magnetic recording information stored in a magnetic recording medium is configured to move in a state where the surface force of the magnetic recording medium floats. If there are irregularities on the surface of the magnetic recording medium, the irregularities and the magnetic head may collide with each other when the magnetic head moves, causing problems such as damage to the magnetic head and damage to the magnetic recording medium. In order to suppress the occurrence of such defects, the magnetic recording medium substrate is highly accurate during manufacture so that the surface thereof is a smooth surface! An attempt has been made to suppress the occurrence of surface irregularities as much as possible (for example, Patent Document 1, Patent Document 2, and Patent Document 3).
[0004] 例えばアルミニウム基板を用いる場合、アルミニウム板をプレス成形して円盤状にし た後、表面に対して高精度の研肖! 研磨加工及び洗浄工程を施すことにより、表面を 平滑化し、続いて、めっき処理を施すことによりニッケル—リン (Ni-P)合金を基板の 表面に形成する。その後、研磨加工、テクスチャー加工を施し、さらにスパッタリング により Co系合金の磁性層を形成することで磁気記録媒体を製造している。  [0004] For example, when an aluminum substrate is used, the aluminum plate is press-molded into a disk shape and then polished with high precision on the surface! By applying a polishing process and a cleaning process, the surface is smoothed, and then a nickel-phosphorus (Ni-P) alloy is formed on the surface of the substrate by plating. After that, polishing and texturing are performed, and a magnetic layer of Co alloy is formed by sputtering to produce a magnetic recording medium.
[0005] また、ガラス基板を用いる場合、ガラス素材を溶融し、溶融したガラスをプレス成形 し、円盤状のガラス基板を作製する。そして、ガラス基板の表面に対して高精度の研 肖 IJ '研磨加工及び洗浄工程を施すことにより、表面を平滑化した後、アルカリの溶融 塩によるイオン交換によって表面をィ匕学強化処理し、精密洗浄工程を経た後、テクス チヤ一加ェを施し、さらにスパッタリングにより Co系合金の磁性層を形成することで磁 気記録媒体を製造している。 [0005] When a glass substrate is used, a glass material is melted, and the molten glass is press-molded to produce a disk-shaped glass substrate. Then, the surface of the glass substrate is subjected to high-precision polishing IJ 'polishing and cleaning processes to smooth the surface, and then the surface is subjected to chemical strengthening treatment by ion exchange with an alkali molten salt, After the precision cleaning process, The magnetic recording medium is manufactured by applying a check and further forming a magnetic layer of a Co-based alloy by sputtering.
[0006] また、高密度化技術として期待の大きい垂直磁気記録媒体においては、基板表面 に対して垂直に磁性体を並べる必要があり、そのためには、磁性層と基板との間に 軟磁性層を形成する必要がある。この軟磁性層の代表的な合金として、ニッケル一コ バルト(Ni— Co)合金があり、めっき処理を施すことによりニッケル コバルト合金を 基板表面に形成する。 [0006] In a perpendicular magnetic recording medium, which is highly expected as a high-density technology, it is necessary to arrange magnetic materials perpendicular to the substrate surface. For this purpose, a soft magnetic layer is required between the magnetic layer and the substrate. Need to form. A typical alloy of this soft magnetic layer is a nickel-cobalt (Ni-Co) alloy, and a nickel-cobalt alloy is formed on the substrate surface by plating.
[0007] ところで、磁気記録媒体用基板としてプラスチック基板などの榭脂製基板を採用す る試みがなされており、その榭脂製基板にめっき処理を施してニッケル合金層を形成 する試みがなされている。し力しながら、めっき処理によってプラスチック基板上に金 属層を成膜した場合、プラスチックと金属層とでは膨張係数が異なるため、金属層の 成膜時や成膜後に金属層が剥離したりヒビが入ったりする問題がある。このため、プ ラスチック基板と金属層との密着性を向上させるために金属層の表面を粗くして、金 属層をプラスチック基板の微細な凹凸に食い込ませることが行われている。  [0007] By the way, an attempt has been made to employ a resin substrate such as a plastic substrate as the magnetic recording medium substrate, and an attempt has been made to form a nickel alloy layer by plating the resin substrate. Yes. However, when a metal layer is formed on a plastic substrate by plating, the expansion coefficient differs between the plastic and the metal layer, so the metal layer may peel off or crack during or after the metal layer is formed. There is a problem that enters. For this reason, in order to improve the adhesion between the plastic substrate and the metal layer, the surface of the metal layer is roughened, and the metal layer is digged into the fine irregularities of the plastic substrate.
[0008] し力しながら、磁気記録媒体用基板には、その表面に平滑性が求められるため、金 属層の表面を粗くすると、磁気記録媒体用基板に求められる平滑性を満たすことが 困難になる。 [0008] However, since the surface of the magnetic recording medium substrate is required to have smoothness, it is difficult to satisfy the smoothness required for the magnetic recording medium substrate when the surface of the metal layer is roughened. become.
特許文献 1:特開 2003 - 54965号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-54965
特許文献 2:特開 2003 - 55001号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-55001
特許文献 3:特開 2000— 163740号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2000-163740
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] この発明は上記の問題に解決するものであり、基板上に形成される被覆層を平滑 面に維持しつつ、被覆層と基板との密着度を高めることが可能な磁気記録媒体用基 板を提供することを目的とする。 [0009] The present invention solves the above-described problem, and for a magnetic recording medium capable of increasing the adhesion between the coating layer and the substrate while maintaining the coating layer formed on the substrate on a smooth surface. The purpose is to provide a board.
課題を解決するための手段  Means for solving the problem
[0010] この出願に係る発明者は、基板とその基板上に形成される被覆層の膨張係数に着 目し、基板表面に形成される被覆層を複数の領域に分割することで、基板と被覆層と の密着度を高めることができることを見出した。 [0010] The inventor of this application pays attention to the expansion coefficient of the substrate and the coating layer formed on the substrate, and divides the coating layer formed on the substrate surface into a plurality of regions. Coating layer and It has been found that the degree of adhesion can be increased.
[0011] この発明の第 1の形態は、表面が榭脂により構成され、円盤状の形状を有する非磁 性の母材を基板とし、その表面に複数の領域に分けられた被覆層が形成されている ことを特徴とする磁気記録媒体用基板である。  [0011] In a first embodiment of the present invention, a nonmagnetic base material having a disk-like surface and a disc-like shape is used as a substrate, and a coating layer divided into a plurality of regions is formed on the surface. This is a substrate for a magnetic recording medium.
[0012] この発明の第 2の形態は、第 1の形態に係る磁気記録媒体用基板であって、複数 の領域が同心円状又は Z及び放射状に形成されていることを特徴とするものである  [0012] A second aspect of the present invention is a magnetic recording medium substrate according to the first aspect, characterized in that a plurality of regions are formed concentrically or Z and radially.
[0013] この発明の第 3の形態は、第 1の形態に係る磁気記録媒体用基板であって、複数 の領域が格子状に形成されていることを特徴とするものである。 A third aspect of the present invention is a magnetic recording medium substrate according to the first aspect, wherein a plurality of regions are formed in a lattice shape.
[0014] この発明の第 4の形態は、第 1から第 3のいずれかの形態に係る磁気記録媒体用 基板であって、複数の領域は多角形の形状を有することを特徴とするものである。  [0014] A fourth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to third aspects, wherein the plurality of regions have a polygonal shape. is there.
[0015] この発明の第 5の形態は、第 1から第 4のいずれかの形態に係る磁気記録媒体用 基板であって、基板の膨張係数を A[ X 10_5ZK]としたとき、分割された被覆層の 個々の領域の面積が、 1000 X (1/A2) [mm2]以下であることを特徴とするものであ る。 [0015] A fifth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to fourth aspects, wherein the expansion coefficient of the substrate is A [ X10_5ZK ]. The area of each region of the coated layer is 1000 X (1 / A 2 ) [mm 2 ] or less.
[0016] この発明の第 6の形態は、第 1から第 5のいずれかの形態に係る磁気記録媒体用 基板であって、被覆層の厚さ Dと、分割された被覆層の領域と領域との間隔 dlとが、 100 X厚さ D ≥ 間隔 dl > 厚さ DZlO の関係を満たすことを特徴とするもので ある。  [0016] A sixth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to fifth aspects, wherein the thickness D of the coating layer, and the regions and regions of the divided coating layers The distance dl between and the following satisfies the relationship 100 X thickness D ≥ distance dl> thickness DZlO.
[0017] この発明の第 7の形態は、第 1から第 6のいずれかの形態に係る磁気記録媒体用 基板であって、分割された被覆層の領域のパターンは、化学的エッチング、物理的 エッチング、又は物理ィ匕学的エッチングによって形成されたことを特徴とするものであ る。  [0017] A seventh aspect of the present invention is a magnetic recording medium substrate according to any one of the first to sixth aspects, wherein the pattern of the region of the divided coating layer is chemical etching, physical It is formed by etching or physical / physical etching.
[0018] この発明の第 8の形態は、第 1から第 6のいずれかの形態に係る磁気記録媒体用 基板であって、分割された被覆層の領域のパターンは、スタンパによって被覆層の表 面に凹凸を形成した後、化学的エッチング、物理的エッチング、又は物理化学的エツ チングにより形成されたことを特徴とするものである。  [0018] An eighth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to sixth aspects, wherein the pattern of the divided coating layer region is represented by a stamper on the surface of the coating layer. After forming irregularities on the surface, it is formed by chemical etching, physical etching, or physicochemical etching.
[0019] この発明の第 9の形態は、第 1から第 8のいずれかの形態に係る磁気記録媒体用 基板であって、非磁性の母材は榭脂により構成されていることを特徴とするものであ る。 [0019] A ninth aspect of the present invention is for a magnetic recording medium according to any one of the first to eighth aspects. The substrate is characterized in that the nonmagnetic base material is made of a resin.
[0020] この発明の第 10の形態は、第 1から第 8のいずれかの形態に係る磁気記録媒体用 基板であって、非磁性の母材はガラス、又は非磁性の金属材料で構成されているこ とを特徴とするものである。  [0020] A tenth aspect of the present invention is a substrate for a magnetic recording medium according to any one of the first to eighth aspects, wherein the nonmagnetic base material is made of glass or a nonmagnetic metal material. It is characterized by being.
[0021] この発明の第 11の形態は、円盤状の形状を有する非磁性の基板上に被覆層を形 成し、被覆層に対して、化学的エッチング、物理的エッチング、又は物理化学的エツ チングを施すことによって、被覆層を複数の領域に分割することを特徴とする磁気記 録媒体用基板の製造方法である。  In an eleventh aspect of the present invention, a coating layer is formed on a nonmagnetic substrate having a disk shape, and chemical etching, physical etching, or physicochemical etching is performed on the coating layer. According to another aspect of the present invention, there is provided a method for manufacturing a substrate for a magnetic recording medium, wherein the coating layer is divided into a plurality of regions by performing a chin.
[0022] この発明の第 12の形態は、円盤状の形状を有する非磁性の基板上に被覆層を形 成し、スタンパによって被覆層の表面を凹凸に形成し、その後、化学的エッチング、 物理的エッチング、又は物理ィ匕学的エッチングを施すことによって、凹凸が形成され た被覆層を複数の領域に分割することを特徴とする磁気記録媒体用基板の製造方 法である。  [0022] In a twelfth aspect of the present invention, a coating layer is formed on a nonmagnetic substrate having a disk shape, and the surface of the coating layer is formed uneven by a stamper, and thereafter chemical etching, physical According to another aspect of the present invention, there is provided a method for manufacturing a substrate for a magnetic recording medium, in which a coating layer having projections and depressions is divided into a plurality of regions by performing physical etching or physical etching.
発明の効果  The invention's effect
[0023] この発明によると、基板上に形成される被覆層を複数の領域に分割することで、基 板と被覆層との膨張係数が異なっても、被覆層に過剰な応力がカゝからないので、基 板と被覆層との密着度を高めることが可能となる。  [0023] According to the present invention, by dividing the coating layer formed on the substrate into a plurality of regions, even if the expansion coefficients of the substrate and the coating layer are different, excessive stress is applied to the coating layer. Therefore, the adhesion between the substrate and the coating layer can be increased.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]この発明の実施形態に係る磁気記録媒体用基板の概略構成を示す図であり、 図 1 (a)は基板の上面図、図 1 (b)は基板の A— A断面図である。  1 is a diagram showing a schematic configuration of a magnetic recording medium substrate according to an embodiment of the present invention. FIG. 1 (a) is a top view of the substrate, and FIG. 1 (b) is AA of the substrate. It is sectional drawing.
[図 2]この発明の実施形態に係る磁気記録媒体用基板の変形例を示す基板の上面 図である。  FIG. 2 is a top view of a substrate showing a modification of the magnetic recording medium substrate according to the embodiment of the present invention.
符号の説明  Explanation of symbols
[0025] 1、 10 磁気記録媒体用基板  [0025] 1, 10 Magnetic recording medium substrate
2 基板  2 Board
3、 11、 20、 30 被覆層  3, 11, 20, 30 Coating layer
4A、 4B、 12、 21、 31 溝 発明を実施するための最良の形態 4A, 4B, 12, 21, 31 groove BEST MODE FOR CARRYING OUT THE INVENTION
[0026] この発明の実施形態に係る磁気記録媒体用基板について図 1を参照して説明する 。図 1は、この発明の実施形態に係る磁気記録媒体用基板の概略構成を示す図であ り、図 1 (a)は基板の上面図であり、図 1 (b)は基板の A— A断面図である。  A magnetic recording medium substrate according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a schematic configuration of a magnetic recording medium substrate according to an embodiment of the present invention. FIG. 1 (a) is a top view of the substrate, and FIG. 1 (b) is an AA view of the substrate. It is sectional drawing.
[0027] 基板 2は円盤状の形状を有し、中央に孔 5が形成されている。この基板 2上に被覆 層 3が形成されて磁気記録媒体用基板 1となる。基板 2は非磁性材料により構成され ており、この実施形態では、非磁性材料の 1例として榭脂を用いた場合について説明 する。  The substrate 2 has a disc shape and has a hole 5 in the center. A coating layer 3 is formed on the substrate 2 to form a magnetic recording medium substrate 1. The substrate 2 is made of a nonmagnetic material, and in this embodiment, a case where a resin is used as an example of the nonmagnetic material will be described.
[0028] 図 1 (a)の上面図に示すように、被覆層 3には同心円状の溝 4Aと、放射状の溝 4B とが形成され、溝 4A、 4Bによって被覆層 3は複数の領域に分割されている。図 1 (b) の A— A断面図に示すように、この実施形態では溝 4Aの幅 dl (領域と領域との間隔 )は等しくなつており、溝 4Aと溝 4Aとの間隔 d2も等しくなつている。放射状の溝 4Bに ついても、溝 4Bの幅 dl (領域と領域との間隔)は等しくなつており、溝 4Bと溝 4Bとの なす角度も等しくなつている。  [0028] As shown in the top view of FIG. 1 (a), the coating layer 3 is formed with concentric grooves 4A and radial grooves 4B. The grooves 4A and 4B allow the coating layer 3 to be divided into a plurality of regions. It is divided. As shown in the A—A cross-sectional view of FIG. 1 (b), in this embodiment, the width dl (interval between regions) of the groove 4A is equal, and the interval d2 between the groove 4A and groove 4A is also equal. It is summer. As for the radial groove 4B, the width dl (space between the areas) of the groove 4B is also equal, and the angle between the groove 4B and the groove 4B is also equal.
[0029] この実施形態では、同心円状の溝 4Aは等間隔で 3本形成されており、放射状の溝 4Bは 45° ごとに 8本形成されている力 溝 4A、 4Bの本数や溝の間隔は、基板 2の 大きさ、基板 2の材料、又は被覆層 3の材料などの条件によって適宜変えれば良い。  [0029] In this embodiment, three concentric grooves 4A are formed at equal intervals, and eight radial grooves 4B are formed every 45 °. The number of grooves 4A and 4B and the interval between the grooves are the same. May be appropriately changed depending on conditions such as the size of the substrate 2, the material of the substrate 2, or the material of the coating layer 3.
[0030] 以上のように、溝 4A、 4Bによって被覆層 3が複数の領域に分割されていることで、 被覆層 3の表面を意図的に粗くせずに被覆層 3の平滑性を維持しつつ、基板 2と被 覆層 3との密着度を高めることが可能となる。つまり、基板 2と被覆層 3の膨張係数が 異なっていても、被覆層 3が複数の領域に分割されているため、被覆層 3の成膜時や 成膜後に過剰な応力が力からないので、被覆層 3の剥離や亀裂の発生を防止するこ とが可能となる。  [0030] As described above, since the coating layer 3 is divided into a plurality of regions by the grooves 4A and 4B, the smoothness of the coating layer 3 is maintained without intentionally roughening the surface of the coating layer 3. On the other hand, the adhesion between the substrate 2 and the covering layer 3 can be increased. In other words, even if the expansion coefficients of the substrate 2 and the coating layer 3 are different, the coating layer 3 is divided into a plurality of regions, so that excessive stress is not applied during or after the coating layer 3 is formed. In addition, it is possible to prevent peeling of the coating layer 3 and generation of cracks.
[0031] なお、この実施形態では溝 4A、 4Bの幅は等しくなつている力 幅が異なっていても 、基板 2と被覆層 3との密着度を高めることができる。つまり、溝 4Aと溝 4Bとで幅が異 なって 、たり、溝 4Aそれぞれの幅や溝 4Bのそれぞれの幅が異なって 、たりしても良 い。また、溝 4Aの間隔も、溝によって異なっていても良ぐ溝 4Bのなす角度が溝によ つて異なっていても良い。また、溝 4A及び 4Bは被覆層 3を分割するために、各溝 4A 及び 4Bの深さが被覆層 3の厚さ D以上であれば良ぐ各溝 4A及び 4Bの深さは異な つていても良い。 Note that in this embodiment, even when the widths of the grooves 4A and 4B are equal, the degree of adhesion between the substrate 2 and the coating layer 3 can be increased. That is, the groove 4A and the groove 4B may have different widths, or the groove 4A and the groove 4B may have different widths. In addition, the interval between the grooves 4A may be different depending on the groove. May be different. In addition, since the grooves 4A and 4B divide the coating layer 3, the depths of the grooves 4A and 4B may be different if the depth of each of the grooves 4A and 4B is equal to or greater than the thickness D of the coating layer 3. May be.
[0032] また、この実施形態では、同心円状の溝 4Aと放射状の溝 4Bの 2種類の溝によって 被覆層 3を複数の領域に分割している力 いずれか一方の溝を形成することによって 被覆層を複数の領域に分割しても良い。この場合であっても、被覆層に加わる応力 を緩和して、被覆層と基板との密着度を高めることが可能となる。  [0032] In this embodiment, the force by which the covering layer 3 is divided into a plurality of regions by two types of grooves, concentric grooves 4A and radial grooves 4B, is formed by forming one of the grooves. The layer may be divided into a plurality of regions. Even in this case, it is possible to relax the stress applied to the coating layer and increase the adhesion between the coating layer and the substrate.
[0033] なお、基板 2上に形成された被覆層 3の厚さ Dが 100[nm]の場合、溝 4A、 4Bの幅 dl (領域と領域との間隔)は 1 [ m]以下であることが好ま U、。磁気記録媒体の記 録容量を上げるためには、溝 4A、 4Bの幅 dlは狭い方が好ましいからである。また、 基板の膨張係数を A[ X 10_5ZK]としたとき、分割された個々の被覆層 3の面積は 1 000 X (1ZA2) [mm2]以下であることが好ましぐ例えば、 A=6のとき、分割された 個々の面積は約 27. 8 [mm2]以下であることが好ましい。これにより、基板 2と被覆層 3との密着度を高くすることができ、被覆層 3が基板 2から剥離したり、被覆層 3に亀裂 が生じたりすることを防止できる。 [0033] When the thickness D of the coating layer 3 formed on the substrate 2 is 100 [nm], the width dl (interval between the regions) of the grooves 4A and 4B is 1 [m] or less. U prefer that. This is because the width dl of the grooves 4A and 4B is preferably narrow in order to increase the recording capacity of the magnetic recording medium. Further, when the expansion coefficient of the substrate is A [X 10 _5 ZK], the area of each divided coating layer 3 is preferably 1 000 X (1ZA 2 ) [mm 2 ] or less. When A = 6, each divided area is preferably about 27.8 [mm 2 ] or less. As a result, the degree of adhesion between the substrate 2 and the coating layer 3 can be increased, and the coating layer 3 can be prevented from peeling off from the substrate 2 or from being cracked.
[0034] また、被覆層 3の厚さ Dと、分割された被覆層 3の領域と領域との間隔 dlとが、以下 の式を満たすことが好まし 、。  [0034] Further, it is preferable that the thickness D of the coating layer 3 and the distance dl between the regions of the divided coating layer 3 satisfy the following expression.
[0035] 100 X厚さ D ≥ 間隔 dl > 厚さ DZlO  [0035] 100 X thickness D ≥ spacing dl> thickness DZlO
これにより、被覆層 3の領域全体の面積を大きくすることができ、且つ個々の領域が 繋がることを防ぐことができる。  Thereby, the area of the whole area | region of the coating layer 3 can be enlarged, and it can prevent that each area | region is connected.
[0036] 次に、榭脂製の基板 2の材料について説明する。基板 2には、熱可塑性榭脂、熱硬 化性榭脂、又は活性線硬化性榭脂の他、様々な榭脂を用いることができる。  [0036] Next, the material of the substrate 2 made of resin will be described. For the substrate 2, various types of resin can be used in addition to thermoplastic resin, thermosetting resin, or active ray curable resin.
[0037] 例えば、榭脂製の基板 2には、熱可塑性榭脂として、例えば、ポリカーボネイト、ポリ エーテルエーテルケトン樹脂(PEEK榭脂)、環状ポリオレフイン榭脂、メタタリルスチ レン榭脂 (MS榭脂)、ポリスチレン榭脂 (PS榭脂)、ポリエーテルイミド榭脂 (PEI榭脂 )、 ABS榭脂、ポリエステル榭脂 (PET榭脂、 PBT榭脂など)、ポリオレフイン榭脂 (P E榭脂、 PP榭脂など)、ポリスルホン樹脂、ポリエーテルスルホン榭脂(PES榭脂)、ポ リアリレート榭脂、ポリフエ-レンサルファイド榭脂、ポリアミド榭脂、又は、アクリル榭脂 などを用いることができる。また、熱硬化性榭脂として、例えば、フエノール榭脂、ユリ ァ榭脂、不飽和ポリエステル榭脂 (BMC榭脂など)、シリコン榭脂、ウレタン榭脂、ェ ポキシ榭脂、ポリイミド榭脂、ポリアミドイミド榭脂、又は、ポリべンゾイミダゾール榭脂 などを用いることができる。その他、ポリエチレンナフタレート榭脂(PEN榭脂)などを 用!/、ることができる。 [0037] For example, the substrate 2 made of resin has a thermoplastic resin, such as polycarbonate, polyetheretherketone resin (PEEK resin), cyclic polyolefin resin, methallyl styrene resin (MS resin), Polystyrene resin (PS resin), polyetherimide resin (PEI resin), ABS resin, polyester resin (PET resin, PBT resin, etc.), polyolefin resin (PE resin, PP resin, etc.) ), Polysulfone resin, polyethersulfone resin (PES resin), polyarylate resin, polyphenylene sulfide resin, polyamide resin, or acrylic resin Etc. can be used. Examples of thermosetting resins include phenol resin, urea resin, unsaturated polyester resin (BMC resin, etc.), silicon resin, urethane resin, epoxy resin, polyimide resin, polyamide Imido resin or polybenzimidazole resin can be used. In addition, polyethylene naphthalate resin (PEN resin) can be used!
[0038] 活性線硬化性榭脂として、例えば、紫外線硬化性榭脂が用いられる。紫外線硬化 性榭脂としては、例えば、紫外線硬化性アクリルウレタン系榭脂、紫外線硬化性ポリ エステルアタリレート系榭脂、紫外線硬化性エポキシアタリレート系榭脂、紫外線硬化 性ポリオールアタリレート系榭脂、紫外線硬化性エポキシ榭脂、紫外線硬化シリコン 系榭脂、又は、紫外線硬化アクリル榭脂などを挙げることができる。  [0038] As the actinic radiation curable resin, for example, an ultraviolet curable resin is used. Examples of the ultraviolet curable resin include, for example, an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, Examples thereof include an ultraviolet curable epoxy resin, an ultraviolet curable silicon resin, and an ultraviolet curable acrylic resin.
[0039] また、塗説された硬化前の層に活性線を照射することによって硬化するときに、光 開始剤を用いて硬化反応を促進させることが好ましい。このとき光増感剤を併用して も良い。  [0039] In addition, when curing is performed by irradiating the coated layer before curing with active rays, it is preferable to accelerate the curing reaction using a photoinitiator. At this time, a photosensitizer may be used in combination.
[0040] また、空気中の酸素が上記硬化反応を抑制する場合は、酸素濃度を低下させる、 または除去するために、例えば不活性ガス雰囲気下で活性線を照射することもできる 。活性線としては、赤外線、可視光、紫外線などを適宜選択することができるが、特に 紫外線を選択することが好ましいが、特に限定されるものではない。また、活性線の 照射中、または前後に加熱によって硬化反応を強化させても良 、。  [0040] When oxygen in the air suppresses the curing reaction, active rays can be irradiated, for example, in an inert gas atmosphere in order to reduce or remove the oxygen concentration. As the actinic ray, infrared rays, visible light, ultraviolet rays, and the like can be appropriately selected. However, ultraviolet rays are particularly preferred, but are not particularly limited. In addition, the curing reaction may be strengthened by heating during active ray irradiation or before and after.
[0041] さらに、榭脂製の基板 2には、液晶ポリマー、有機 Z無機ハイブリッド榭脂 (例えば、 高分子成分にシリコンを骨格として取り込んだもの)などを用いても良い。なお、上記 に挙げた榭脂は基板 2に用いられる榭脂の一例であり、この発明に係る基板がこれら の榭脂に限定されることはない。 2種以上の榭脂を混合して榭脂製の基板としても良 ぐまた、別々の層として異なる成分を隣接させて基板としても良い。  [0041] Further, the substrate 2 made of resin may use a liquid crystal polymer, an organic Z inorganic hybrid resin (for example, a polymer component incorporating silicon as a skeleton), or the like. Note that the resin listed above is an example of the resin used for the substrate 2, and the substrate according to the present invention is not limited to these resins. Two or more types of resin can be mixed to form a resin substrate, or different components can be adjacent to each other as separate layers.
[0042] 榭脂製の基板 2の製造方法は、基板 2に対応した形状を有する金型を用いて、射 出成形法、注型成形法、シート成形法、射出圧縮成形法、又は圧縮成形法などの成 形法によって作製することができる。さらに、必要に応じて、成形した基板をカッテイン グし、打ち抜き、又はプレス成形を行って基板 2を製造しても良い。  [0042] A method of manufacturing the substrate 2 made of resin is performed by using a mold having a shape corresponding to the substrate 2, using an injection molding method, a casting molding method, a sheet molding method, an injection compression molding method, or a compression molding method. It can be produced by a forming method such as a method. Furthermore, if necessary, the substrate 2 may be manufactured by cutting, punching, or press-molding the formed substrate.
[0043] また、上記射出成形法などにより基板 2を成形することで、基板 2の内径の寸法、外 径の寸法、内周端部の形状、又は外周端部の形状の少なくとも 1つを同時に形成す ることができる。つまり、基板 2の内径の寸法や外径の寸法に合わせて、射出成形法 などに用いられる金型を作製し、その金型を用いることで、内径寸法や外径寸法が 榭脂成形時に完成されることになる。また、基板 2の内周端部の形状や外周端部の 形状に合わせて、金型を作製し、その金型を用いることで、内周端部の形状や外周 端部の形状が榭脂成形時に形成されることになる。 [0043] Further, by molding the substrate 2 by the injection molding method or the like, the dimensions of the inner diameter of the substrate 2, the outer At least one of the size of the diameter, the shape of the inner peripheral end, or the shape of the outer peripheral end can be formed simultaneously. In other words, molds used in the injection molding method, etc., are manufactured in accordance with the inner and outer diameter dimensions of the substrate 2, and the inner and outer diameter dimensions are completed during resin molding by using these molds. Will be. In addition, a mold is prepared according to the shape of the inner peripheral end of the substrate 2 and the shape of the outer peripheral end, and by using the mold, the shape of the inner peripheral end and the shape of the outer peripheral end are reduced. It will be formed at the time of molding.
[0044] 被覆層 3には、金属層、セラミック層、磁性層、ガラス層、又は、無機層と有機層との 複合層(ハイブリッド層)が用いられる。被覆層の具体的な成分として、 Ni (ニッケル) 、 Fe (鉄)、 Cu (銅)、 Ti (チタン)、 P (リン)、 Co (コバルト)、 Si (シリコン)、 Sn (錫)又 は Pd (パラジウム)などが含まれる。  [0044] As the coating layer 3, a metal layer, a ceramic layer, a magnetic layer, a glass layer, or a composite layer (hybrid layer) of an inorganic layer and an organic layer is used. Specific components of the coating layer include Ni (nickel), Fe (iron), Cu (copper), Ti (titanium), P (phosphorus), Co (cobalt), Si (silicon), Sn (tin) or Pd (palladium) and the like are included.
[0045] 被覆層 3は、電気めつき又は化学めつきなどのめつき法によって基板 2の表面上に 形成することが可能である。その他、スパッタリング、真空蒸着、又は CVD法などによ つても形成することが可能である。また、バーコート法、ディップコート (浸漬引き上げ) 法、スピンコート法、スプレー法、又は印刷法などの塗布法も用いることができる。  [0045] The coating layer 3 can be formed on the surface of the substrate 2 by a plating method such as electric plating or chemical plating. In addition, it can be formed by sputtering, vacuum deposition, CVD method, or the like. Also, a coating method such as a bar coating method, a dip coating (dipping and pulling up) method, a spin coating method, a spray method, or a printing method can be used.
[0046] めっき法などによって基板 2の表面上に被覆層 3を形成した後、レジストを被覆層 3 上に形成し、溝 4A、 4Bに対応したマスクによってレジストにパターンを形成し、電子 ビーム露光や FIBなどによってエッチングを行なって溝 4A、 4Bを形成する。その後、 基板上のレジストを剥離して磁気記録媒体用基板 1とする。このようにパター-ングェ 程によって被覆層 3を複数の領域に分割することができる。  [0046] After the coating layer 3 is formed on the surface of the substrate 2 by plating or the like, a resist is formed on the coating layer 3, and a pattern is formed on the resist with a mask corresponding to the grooves 4A and 4B, and electron beam exposure is performed. Etch with FIB or FIB to form grooves 4A and 4B. Thereafter, the resist on the substrate is peeled off to obtain a magnetic recording medium substrate 1. In this way, the coating layer 3 can be divided into a plurality of regions according to the patterning process.
[0047] エッチングの方法として、化学的エッチング、物理的エッチング、又は物理化学的 エッチングが挙げられる。化学的エッチングは、化学反応を利用して除去対象を選択 的にエッチングする方法である。物理的エッチングは、加速されたアルゴンイオンを エッチングの対象面に衝突させることで除去対象をエッチングする方法である。物理 的エッチングとして例えばイオンミリングが挙げられる。また、物理化学的エッチング は、ラジカル (電荷を持たない活性化された分子や原子)とエッチング対象の材料と の化学反応と、イオン照射と併用することで異方性エッチングを行なう方法である。物 理化学的エッチングとしては例えば RIE (Reactive Ion Etching)が挙げられる。  [0047] Examples of the etching method include chemical etching, physical etching, and physicochemical etching. Chemical etching is a method of selectively etching a removal target using a chemical reaction. Physical etching is a method of etching an object to be removed by causing accelerated argon ions to collide with the surface to be etched. An example of physical etching is ion milling. In addition, physicochemical etching is a method in which anisotropic etching is performed by using a chemical reaction between radicals (activated molecules and atoms having no charge) and a material to be etched and ion irradiation. Examples of physical chemical etching include RIE (Reactive Ion Etching).
[0048] また、スタンパによって被覆層の表面に凹凸を形成した後、化学的エッチング、物 理的エッチング、又は物理ィ匕学的エッチングによって溝 4A、 4Bを形成しても良い。 [0048] Further, after forming irregularities on the surface of the coating layer with a stamper, chemical etching, The grooves 4A and 4B may be formed by physical etching or physical etching.
[0049] この磁気記録媒体用基板 1を用いて磁気記録媒体を作製する場合、磁気記録媒 体用基板 1の表面上にスパッタリングなどにより Co系合金などの磁性層を形成して磁 気記録媒体とする。 When producing a magnetic recording medium using this magnetic recording medium substrate 1, a magnetic layer such as a Co-based alloy is formed on the surface of the magnetic recording medium substrate 1 by sputtering or the like. And
[0050] また、高密度化技術として期待の大きい垂直磁気記録媒体においては、基板表面 に対して垂直に磁性体を並べる必要があり、そのためには、磁性層と基板との間に 軟磁性層を形成する必要がある。この軟磁性層の代表的な合金として、ニッケル一コ バルト (Ni— Co)合金がある。被覆層 3として Ni— Co合金を用いることにより、垂直磁 気記録媒体における軟磁性層としての機能も果たすことが可能となる。  [0050] Further, in a perpendicular magnetic recording medium that is highly expected as a high-density technology, it is necessary to arrange magnetic materials perpendicular to the substrate surface. For this purpose, a soft magnetic layer is required between the magnetic layer and the substrate. Need to form. A typical alloy for this soft magnetic layer is a nickel-cobalt (Ni-Co) alloy. By using a Ni—Co alloy as the covering layer 3, it can also function as a soft magnetic layer in a perpendicular magnetic recording medium.
[0051] また、母材としての榭脂は、極力、耐熱温度又はガラス転移温度 Tgが高い方が望 ましい。榭脂製の基板 2にはスパッタリングにより磁性層が形成されるため、耐熱温度 又はガラス転移温度 Tgは、そのスパッタリングにおける温度以上であることが望まし い。例えば、耐熱温度又はガラス転移温度 Tgが 200°C以上である榭脂を用いること が望ましい。  [0051] Further, it is desirable that the resin as a base material has a heat-resistant temperature or a glass transition temperature Tg as high as possible. Since the magnetic layer is formed on the resin substrate 2 by sputtering, it is desirable that the heat resistant temperature or the glass transition temperature Tg is equal to or higher than the sputtering temperature. For example, it is desirable to use a resin having a heat resistant temperature or a glass transition temperature Tg of 200 ° C or higher.
[0052] ガラス転移温度 Tgが 200°C以上の代表的な榭脂として、ポリエーテルスルホン榭 脂 (PES榭脂)、ポリエーテルイミド榭脂 (PEI榭脂)、ポリアミドイミド榭脂、ポリイミド榭 脂、ポリべンゾイミダゾール榭脂、 BMC榭脂、又は、液晶ポリマーなどが挙げられる。 より具体的には、ポリエーテルスルホン榭脂(PES榭脂)として、ユーデル (ソルべィァ デバンストポリマーズ)、ポリエーテルイミド榭脂(PEI榭脂)として、ウルテム(日本 GE プラスチック)、ポリアミドイミド榭脂として、トーロン (ソルべィアデバンストポリマーズ)、 ポリイミド榭脂 (熱可塑性)として、オーラム(三井化学)、ポリイミド (熱硬化性)として、 ユーピレックス(宇部興産)、又は、ポリべンゾイミダゾール榭脂として、 PBlZCelazol e (クラリアントジャパン)が挙げられる。また、液晶ポリマーとして、スミカスーパー LCP (住友化学)、ポリエーテルエーテルケトンとして、ビクトレックス(ビクトレックス MC)が 挙げられる。  [0052] Representative resins having a glass transition temperature Tg of 200 ° C or higher include polyethersulfone resin (PES resin), polyetherimide resin (PEI resin), polyamideimide resin, and polyimide resin. , Polybenzimidazole resin, BMC resin, or liquid crystal polymer. More specifically, polyethersulfone resin (PES resin), Udel (Solve Devast Polymers), polyetherimide resin (PEI resin), Ultem (Japan GE Plastics), polyamideimide As resin, Torlon (Solveia Devast Polymers), polyimide resin (thermoplastic), Aurum (Mitsui Chemicals), polyimide (thermosetting), Upilex (Ube Industries), or polybenzimidazole PBlZCelazol e (Clariant Japan) is an example of rosin. In addition, liquid crystal polymers include SUMIKASUPER LCP (Sumitomo Chemical), and polyether ether ketones as Victrex (Victrex MC).
[0053] また、榭脂製の基板 2として、吸湿による基板の寸法変化による磁気ヘッドとの位置 ずれを防ぐために、吸湿性が少な 、榭脂を用いることが望ま 、。吸湿性の少な!/、榭 脂の代表としては、ポリカーボネイトや環状ポリオレフイン榭脂がある。 [0054] また、以上の説明は、基板が単一の榭脂により構成されているものを例として行つ たが、基板は単一の榭脂で構成されているものに限らず、金属やガラスなどの非磁 性材料の表面を榭脂層で被覆することにより構成されるものでも良い。この場合、榭 脂で被覆される非磁性材料としては、榭脂、金属、セラミックス、ガラス、ガラスセラミツ タス、又は、有機無機複合材など、基板として適用できる様々な素材を用いることが できる。 [0053] In addition, it is desirable to use a resin having a low hygroscopic property as the resin substrate 2 in order to prevent displacement from the magnetic head due to a dimensional change of the substrate due to moisture absorption. Typical examples of resins with low hygroscopicity include polycarbonate and cyclic polyolefin resin. [0054] Further, the above description has been made by taking an example in which the substrate is made of a single resin, but the substrate is not limited to being made of a single resin, and may be made of metal or It may be configured by coating the surface of a non-magnetic material such as glass with a resin layer. In this case, as the nonmagnetic material coated with the resin, various materials applicable as a substrate such as a resin, metal, ceramics, glass, glass ceramics, or an organic-inorganic composite material can be used.
[0055] なお、基板は単一の榭脂で構成されている方が、製造工程をより簡略ィ匕できるとい う効果があるため、好ましい。  [0055] Note that it is preferable that the substrate is composed of a single resin because the manufacturing process can be simplified.
[0056] この実施形態に係る磁気記録媒体用基板 1における被覆層 3の分割の例は 1例で あり、この発明は図 1に示す分割の例に限定されるものではない。ここで、上記実施 形態に係る磁気記録媒体用基板の変形例について図 2を参照して説明する。図 2は 、この発明の実施形態に係る磁気記録媒体用基板の変形例を示す上面図である。 (変形例 1)  [0056] An example of the division of the coating layer 3 in the magnetic recording medium substrate 1 according to this embodiment is one example, and the present invention is not limited to the division example shown in FIG. Here, a modification of the magnetic recording medium substrate according to the above embodiment will be described with reference to FIG. FIG. 2 is a top view showing a modification of the magnetic recording medium substrate according to the embodiment of the present invention. (Modification 1)
変形例 1について図 2 (a)を参照して説明する。例えば、図 2 (a)に示すように、変形 例 1に係る磁気記録媒体用基板 10は、榭脂などの非磁性材の基板上に、溝 12によ つて格子状に分割された被覆層 11が形成されている。つまり、分割後の個々の被覆 層 11は 4角形状の形状を有している。溝 12の幅は等しくなつており、溝 12と溝 12と の間隔も等しくなつている。溝 12の本数や溝 12の間隔は、基板の大きさや材料など の条件によって適宜変えれば良い。  Modification 1 will be described with reference to FIG. For example, as shown in FIG. 2 (a), a magnetic recording medium substrate 10 according to Modification 1 includes a coating layer that is divided into a lattice pattern by grooves 12 on a substrate of a nonmagnetic material such as grease. 11 is formed. That is, the individual coating layers 11 after the division have a quadrangular shape. The width of the groove 12 is equal, and the distance between the groove 12 and the groove 12 is also equal. The number of the grooves 12 and the interval between the grooves 12 may be appropriately changed depending on conditions such as the size and material of the substrate.
[0057] 以上のように、溝 12によって被覆層 11が複数の領域に分割されていることで、被覆 層 11を意図的に粗くせずに被覆層 11の平滑性を維持しつつ、基板と被覆層 11との 密着度を高めることが可能となる。なお、溝 12の幅は等しくなつているが、溝 12それ ぞれの幅が異なっていても基板と被覆層 11との密着度を高めることができる。また、 溝 12と溝 12との間隔は、溝によって異なっていても良い。さらに、個々の被覆層 11 の面積は同じであっても良ぐ場所によって異なっていても良い。溝 12の幅や分割さ れた個々の被覆層 11の面積の条件は、上記実施形態に係る条件と同じである。 (変形例 2) [0057] As described above, the coating layer 11 is divided into a plurality of regions by the grooves 12, so that the smoothness of the coating layer 11 is maintained without intentionally roughening the coating layer 11, and the substrate and It becomes possible to increase the degree of adhesion with the coating layer 11. Although the grooves 12 have the same width, even if the grooves 12 have different widths, the adhesion between the substrate and the coating layer 11 can be increased. Further, the interval between the groove 12 and the groove 12 may be different depending on the groove. Furthermore, the area of each coating layer 11 may be the same or different depending on the location. The conditions of the width of the groove 12 and the area of each divided covering layer 11 are the same as the conditions according to the above embodiment. (Modification 2)
次に、変形例 2について図 2 (b)を参照して説明する。図 2 (b)には、磁気記録媒体 用基板の一部分を拡大して示して!/ヽる。この変形例 2に係る磁気記録媒体用基板は 、榭脂などの非磁性材の基板上に、溝 21によって 6角形状に分割された被覆層 20 が形成されている。溝 21の幅は等しくなつており、分割後の個々の被覆層 20の面積 も等しくなつている。 Next, Modification 2 will be described with reference to FIG. Fig. 2 (b) shows a magnetic recording medium. Enlarge and show a part of the board! In the magnetic recording medium substrate according to the second modification, a coating layer 20 divided into hexagonal shapes by grooves 21 is formed on a substrate of a nonmagnetic material such as resin. The widths of the grooves 21 are equal, and the areas of the individual coating layers 20 after division are also equal.
[0058] 以上のように、溝 21によって被覆層 20が複数の領域に分割されていることで、基板 と被覆層 20との密着度を高めることが可能となる。なお、溝 21の幅は等しくなつてい る力 溝 21それぞれの幅が異なっていても基板と被覆層 20との密着度を高めること ができる。また、個々の被覆層 20の面積は同じであっても良ぐ場所によって異なつ ていても良い。溝 21の幅や分割された個々の被覆層 20の面積の条件は、上記実施 形態に係る条件と同じである。  As described above, since the coating layer 20 is divided into a plurality of regions by the grooves 21, the degree of adhesion between the substrate and the coating layer 20 can be increased. In addition, even if the width of each groove 21 is different, the degree of adhesion between the substrate and the coating layer 20 can be increased. Further, the area of each coating layer 20 may be the same or different depending on the location. The conditions of the width of the groove 21 and the area of each divided covering layer 20 are the same as the conditions according to the above embodiment.
(変形例 3)  (Modification 3)
次に、変形例 3について図 2 (c)を参照して説明する。図 2 (c)には、磁気記録媒体 用基板の一部分を拡大して示して!/ヽる。この変形例 3に係る磁気記録媒体用基板は 、榭脂などの非磁性材の基板上に、溝 31によって 3角形状に分割された被覆層 30 が形成されている。溝 31の幅は等しくなつており、分割後の個々の被覆層 30の面積 も等しくなつている。  Next, Modification 3 will be described with reference to FIG. Figure 2 (c) shows a magnified part of the magnetic recording medium substrate! In the magnetic recording medium substrate according to Modification 3, a coating layer 30 divided into a triangular shape by grooves 31 is formed on a substrate of a nonmagnetic material such as a resin. The widths of the grooves 31 are equal, and the areas of the individual coating layers 30 after division are also equal.
[0059] 以上のように、溝 31によって被覆層 30が複数の領域に分割されていることで、基板 と被覆層 30との密着度を高めることが可能となる。なお、溝 31の幅は等しくなつてい る力 溝 31それぞれの幅が異なっていても基板と被覆層 30との密着度を高めること ができる。また、個々の被覆層 30の面積は同じであっても良ぐ場所によって異なつ ていても良い。溝 31の幅や分割された個々の被覆層 30の面積の条件は、上記実施 形態に係る条件と同じである。  As described above, since the covering layer 30 is divided into a plurality of regions by the grooves 31, it is possible to increase the degree of adhesion between the substrate and the covering layer 30. In addition, even if the width of each of the grooves 31 is different, the adhesion between the substrate and the coating layer 30 can be increased. Further, the area of each coating layer 30 may be the same or different depending on the location. The conditions of the width of the groove 31 and the area of each divided covering layer 30 are the same as the conditions according to the above embodiment.
[0060] 変形例 1から変形例 3で説明したように、被覆層が 3角形状、 4角形状、又は 6角形 状に分割されていても、基板と被覆層との密着度を高めることができ、その結果、被 覆層の剥離や亀裂の発生を防止することが可能となる。なお、 3角形状や 4角形状な どの形状に限らず、 8角形以上の多角形に被覆層を分割しても、被覆層の剥離や亀 裂の発生を防止することができる。また、溝によって分割された個々の被覆層の形状 は、上記実施形態や変形例に限定されず、台形や丸みを帯びている形状であっても 同じ効果を奏することが可能である。 [0060] As described in Modification 1 to Modification 3, even when the coating layer is divided into a triangular shape, a quadrangular shape, or a hexagonal shape, the adhesion between the substrate and the coating layer can be increased. As a result, it is possible to prevent the covering layer from peeling off or cracking. In addition, the shape of the covering layer is not limited to a triangular shape or a quadrangular shape, and even if the covering layer is divided into polygons of octagons or more, peeling of the covering layer and occurrence of cracks can be prevented. In addition, the shape of the individual coating layers divided by the grooves is not limited to the above-described embodiment or modification, and may be a trapezoidal shape or a rounded shape. The same effect can be achieved.
[実施例]  [Example]
次に、この発明の実施形態に係る具体的な実施例について説明する。  Next, specific examples according to the embodiment of the present invention will be described.
(実施例 1)  (Example 1)
この実施例 1では、図 1に示す磁気記録媒体用基板 1の具体例について説明する。 この実施例 1では、図 1に示すように基板 2上に同心円状の溝 4Aと放射状の溝 4Bと によって分割された被覆層 3を形成し、基板 2と被覆層 3との密着度を確認した。 (基板 2の成形)  In Example 1, a specific example of the magnetic recording medium substrate 1 shown in FIG. 1 will be described. In Example 1, as shown in FIG. 1, the coating layer 3 divided by the concentric grooves 4A and the radial grooves 4B is formed on the substrate 2, and the degree of adhesion between the substrate 2 and the coating layer 3 is confirmed. did. (Substrate 2 molding)
基板の材料としてポリイミドを用い、射出成形により榭脂製の基板 2を作製した。ポリ イミドとして、オーラム (三井ィ匕学社製)を用いた。この基板 2の寸法を以下に示す。  Polyimide was used as a substrate material, and a resin substrate 2 was produced by injection molding. Aurum (made by Mitsui Engineering Co., Ltd.) was used as a polyimide. The dimensions of this substrate 2 are shown below.
[0061] 外径: 21. 6 [mm] [0061] Outer diameter: 21.6 [mm]
孔径: 6 [mm]  Hole diameter: 6 [mm]
基板 2の厚さ: 0. 4 [mm]  Substrate 2 thickness: 0.4 [mm]
基板の膨張係数 A:4.7 X 10_5ZK Board expansion coefficient A: 4.7 X 10 _5 ZK
(被覆層 3の成膜)  (Deposition of coating layer 3)
基板 2に対してスパッタリングを施すことにより、基板 2の表面に Ni層を形成した。そ の後、さらにスパッタリングを施すことにより、 Ni層上にニッケル一リン (Ni— P)合金層 (以下、「NiP層」と称する)を成膜した。この NiP層の厚さは、 10 [nm]となった。これ ら Ni層と NiP層が、基板 2上に形成された被覆層 3に相当する。  A Ni layer was formed on the surface of the substrate 2 by sputtering the substrate 2. Thereafter, further, sputtering was performed to form a nickel-phosphorus (Ni—P) alloy layer (hereinafter referred to as “NiP layer”) on the Ni layer. The thickness of this NiP layer was 10 [nm]. These Ni layer and NiP layer correspond to the coating layer 3 formed on the substrate 2.
(溝 4A、 4Bの形成)  (Formation of grooves 4A and 4B)
基板 2の表面上に被覆層 3を形成した後、レジストを被覆層 3上に形成し、溝 4A、 4 Bに対応したマスクによってレジストにパターンを形成し、エッチングすることで被覆層 3に溝 4A、 4Bを形成した。  After the coating layer 3 is formed on the surface of the substrate 2, a resist is formed on the coating layer 3, a pattern is formed on the resist with a mask corresponding to the grooves 4A and 4B, and the groove is formed in the coating layer 3 by etching. 4A and 4B were formed.
[0062] 被覆層 3、溝 4A、 4Bの寸法を以下に示す。 [0062] The dimensions of the coating layer 3 and the grooves 4A and 4B are shown below.
[0063] 溝 4Aの幅 (11 : 1 [ /ζ πι] [0063] Width of groove 4A (11: 1 [/ ζ πι]
溝 4Αの間隔 d2 : 3 [mm]  Distance between grooves 4 mm d2: 3 [mm]
溝 4Bの幅 dl : l [ m]  Width of groove 4B dl: l [m]
溝 4B間の角度 :45 [° ] 分割後の被覆層 3の最大面積 : 21. 9 [mm2] Angle between grooves 4B: 45 [°] Maximum area of cover layer 3 after division: 21.9 [mm 2 ]
ここで、前述のように、分割された個々の被覆層 3の好ましい面積は、 1000 X (l ZA2) [mm2]以下であることから、前記分割後の被覆層 3の最大面積は、 45. 3mm2 以下であることが好ましい。本実施例の、分割後の被覆層 3の最大面積は上記のよう に 21. 9mm2であり、好ましい面積の範囲である。 Here, as described above, since the preferable area of each divided coating layer 3 is 1000 X (l ZA 2 ) [mm 2 ] or less, the maximum area of the coating layer 3 after the division is 45. 3mm 2 or less is preferable. In this example, the maximum area of the coating layer 3 after division is 21.9 mm 2 as described above, which is a preferable area range.
(評価)  (Evaluation)
榭脂製の基板 2上に被覆層 3を形成し、その被覆層 3を複数の領域に分割した後、 基板 2と被覆層 3との密着度を評価した。ここで、密着度の試験方法及び評価方法に ついて説明する。被覆層 3を形成した基板 2 (試験サンプル)を、 60°Cに保持した高 温槽と 5°Cに保持した冷蔵室とに、交互に繰り返して出し入れするヒートサイクル試験 を実施した。ここでは、交互の出し入れを 10回繰り返した。このように、急激な温度差 を試験サンプルに加えることで、基板 2と被覆層 3との線熱膨張差による熱ダメージを 試験サンプルに与えた。試験サンプルを高温槽と冷蔵室にそれぞれ 10分間入れて おき、高温槽から冷蔵室への入れ替え、及び冷蔵室から高温槽への入れ替えを 10 秒以内で行った。ヒートサイクル試験後の評価は、目視及び光学顕微鏡による被覆 層 3の表面観察を行い、被覆層 3に亀裂、剥離、又は浮きなどが発生している力否か の確認を行った。  A coating layer 3 was formed on a resin substrate 2 and the coating layer 3 was divided into a plurality of regions, and then the adhesion between the substrate 2 and the coating layer 3 was evaluated. Here, the test method and evaluation method for the degree of adhesion will be described. A heat cycle test was conducted in which the substrate 2 (test sample) on which the coating layer 3 was formed was alternately put in and out of a high temperature bath maintained at 60 ° C. and a refrigerator chamber maintained at 5 ° C. Here, alternating turns were repeated 10 times. Thus, by applying a rapid temperature difference to the test sample, thermal damage due to the difference in linear thermal expansion between the substrate 2 and the coating layer 3 was given to the test sample. The test samples were placed in a high-temperature bath and a refrigerator compartment for 10 minutes respectively, and the replacement from the high-temperature vessel to the refrigerator compartment and the change from the refrigerator compartment to the high-temperature vessel were performed within 10 seconds. In the evaluation after the heat cycle test, the surface of the coating layer 3 was visually observed and observed with an optical microscope, and it was confirmed whether the coating layer 3 was cracked, peeled or lifted.
[0064] 実施例 1では、被覆層 3は基板 2から剥離したり、被覆層 3に亀裂が発生したりする ことがなぐ基板 2と被覆層 3との密着度が高いことが確認された。  [0064] In Example 1, it was confirmed that the covering layer 3 had a high degree of adhesion between the substrate 2 and the covering layer 3 without peeling off from the substrate 2 or causing cracks in the covering layer 3.
[0065] なお、この実施例 1では榭脂製の基板 2の材料としてポリイミドを用いたが、上記実 施形態で挙げた他の榭脂を用いても同様の効果を奏することができる。また、被覆層 を NiP層とした力 ニッケル一コバルト層などの他の成分力 なる層を積層しても同様 の効果を奏することができる。  In Example 1, polyimide is used as the material for the substrate 2 made of resin, but the same effect can be obtained by using other resins described in the above embodiment. Further, the same effect can be obtained by laminating a layer having another component force such as a nickel-cobalt layer having a NiP layer as a coating layer.
(実施例 2)  (Example 2)
この実施例 2では、実施例 1と同様に図 1に示す磁気記録媒体用基板 1の具体例に ついて説明する。この実施例 2では、溝 4A、 4Bの寸法を変えることで、分割後の個 々の被覆層 3の寸法を変えた。なお、この実施例 2に係る榭脂製の基板 2には、実施 例 1と同じ榭脂 (ポリイミド)を用いた。 (基板 2の寸法) In Example 2, a specific example of the magnetic recording medium substrate 1 shown in FIG. In Example 2, the dimensions of the individual coating layers 3 after the division were changed by changing the dimensions of the grooves 4A and 4B. The same resin (polyimide) as in Example 1 was used for the resinous substrate 2 according to Example 2. (Board 2 dimensions)
外径: 27. 4 [mm]  Outer diameter: 27.4 [mm]
孔径: 7 [mm]  Hole diameter: 7 [mm]
基板 2の厚さ: 0. 4 [mm]  Substrate 2 thickness: 0.4 [mm]
(被覆層 3の成膜)  (Deposition of coating layer 3)
この実施例 2においても実施例 1と同様に、榭脂製の基板 2上に被覆層 3として Ni 層と NiP層を形成し、被覆層 3をエッチングすることにより複数の領域に分割した。  In Example 2, similarly to Example 1, a Ni layer and a NiP layer were formed as a coating layer 3 on a resin substrate 2 and the coating layer 3 was etched to be divided into a plurality of regions.
[0066] 被覆層 3、溝 4A、 4Bの寸法を以下に示す。 [0066] The dimensions of the coating layer 3 and the grooves 4A and 4B are shown below.
[0067] 溝 4Aの幅 (11 : 1 [ /ζ πι] [0067] Width of groove 4A (11: 1 [/ ζ πι]
溝 4Αの間隔 d2 : 2[mm]  Distance between grooves 4 mm d2: 2 [mm]
溝 4Bの幅 dl : l [ m]  Width of groove 4B dl: l [m]
溝 4B間の角度 :45 [° ]  Angle between grooves 4B: 45 [°]
分割後の被覆層 3の最大面積 : 20. 0[mm2] Maximum area of coating layer 3 after division: 20.0 [mm 2 ]
ここで、本実施例の、分割後の被覆層 3の最大面積は上記のように 20. 0mm2で あり、実施例 1と同様に好ましい面積の範囲である。 Here, the maximum area of the divided coating layer 3 in this example is 20.0 mm 2 as described above, which is a preferable area range as in Example 1.
(評価)  (Evaluation)
榭脂製の基板 2上に被覆層 3を形成し、その被覆層 3を複数の領域に分割した後、 実施例 1と同じ方法によって基板 2と被覆層 3との密着度を評価した。この実施例 2に おいても、被覆層 3は基板 2から剥離したり、被覆層 3に亀裂が発生したりすることが なぐ基板 2と被覆層 3との密着度が高いことが確認された。  A coating layer 3 was formed on a resin substrate 2 and the coating layer 3 was divided into a plurality of regions, and then the adhesion between the substrate 2 and the coating layer 3 was evaluated by the same method as in Example 1. Also in this Example 2, it was confirmed that the coating layer 3 had a high degree of adhesion between the substrate 2 and the coating layer 3 without peeling off from the substrate 2 or cracking in the coating layer 3. .
(実施例 3)  (Example 3)
この実施例 3では、実施例 1と同様に図 1に示す磁気記録媒体用基板 1の具体例に ついて説明する。この実施例 3では、溝 4A、 4Bの寸法を変えることで、分割後の個 々の被覆層 3の寸法を変えた。なお、この実施例 3に係る榭脂製の基板 2には、実施 例 1と同じ榭脂 (ポリイミド)を用いた。  In Example 3, a specific example of the magnetic recording medium substrate 1 shown in FIG. In Example 3, the dimensions of the individual coating layers 3 after the division were changed by changing the dimensions of the grooves 4A and 4B. The same resin (polyimide) as in Example 1 was used for the resin substrate 2 according to Example 3.
(基板 2の寸法)  (Board 2 dimensions)
外径: 27. 4 [mm]  Outer diameter: 27.4 [mm]
孔径: 7 [mm] 基板 2の厚さ: 0. 4 [mm] Hole diameter: 7 [mm] Substrate 2 thickness: 0.4 [mm]
(被覆層 3の形成)  (Formation of coating layer 3)
この実施例 3においても、実施例 1と同様に、榭脂製の基板 2上に被覆層 3として Ni 層と NiP層を形成し、被覆層 3をエッチングすることにより複数の領域に分割した。  In Example 3, as in Example 1, a Ni layer and a NiP layer were formed as the coating layer 3 on the resin substrate 2 and the coating layer 3 was etched to be divided into a plurality of regions.
[0068] 被覆層 3、溝 4A、 4Bの寸法を以下に示す。 [0068] The dimensions of the coating layer 3 and the grooves 4A and 4B are shown below.
[0069] 溝 4Aの幅 (11 : 1 [ /ζ πι] [0069] Width of groove 4A (11: 1 [/ ζ πι]
溝 4Αの間隔 d2 : 3 [mm]  Distance between grooves 4 mm d2: 3 [mm]
溝 4Bの幅 dl : l [ m]  Width of groove 4B dl: l [m]
溝 4B間の角度:30[° ]  Angle between grooves 4B: 30 [°]
分割後の被覆層 3の最大面積:19. 2 [mm2] Maximum area of covering layer 3 after division: 19.2 [mm 2 ]
ここで、本実施例の、分割後の被覆層 3の最大面積は上記のように 19. 2mm2で あり、実施例 1と同様に好ましい面積の範囲である。 Here, the maximum area of the coating layer 3 after division in this example is 19.2 mm 2 as described above, which is a preferable area range as in Example 1.
(評価)  (Evaluation)
榭脂製の基板 2上に被覆層 3を形成し、その被覆層 3を複数の領域に分割した後、 実施例 1と同じ方法によって基板 2と被覆層 3との密着度を評価した。この実施例 3に おいても、被覆層 3は基板 2から剥離したり、被覆層 3に亀裂が生じたりすることがなく 、基板 2と被覆層 3との密着度が高いことが確認された。  A coating layer 3 was formed on a resin substrate 2 and the coating layer 3 was divided into a plurality of regions, and then the adhesion between the substrate 2 and the coating layer 3 was evaluated by the same method as in Example 1. In Example 3 as well, it was confirmed that the coating layer 3 was not peeled off from the substrate 2 or cracked in the coating layer 3, and the adhesion between the substrate 2 and the coating layer 3 was high. .
(比較例)  (Comparative example)
次に、上記実施例 1から実施例 3に対する比較例について説明する。この比較例で は、榭脂(ポリイミド)製の基板上に、被覆層として Ni層と NiP層を形成した。この比較 例では、被覆層を複数の領域に分割することなぐそのまま、基板と被覆層との密着 度を評価した。  Next, a comparative example for Example 1 to Example 3 will be described. In this comparative example, a Ni layer and a NiP layer were formed as coating layers on a resin-made (polyimide) substrate. In this comparative example, the degree of adhesion between the substrate and the coating layer was evaluated without dividing the coating layer into a plurality of regions.
(基板の寸法)  (Board dimensions)
外径: 27. 4 [mm]  Outer diameter: 27.4 [mm]
孔径: 7 [mm]  Hole diameter: 7 [mm]
基板の厚さ: 0. 4 [mm]  Substrate thickness: 0.4 [mm]
被覆層の厚さ: 10 [nm]  Cover layer thickness: 10 [nm]
本比較例では、被覆層を複数の領域に分割していないため、被覆層の面積は 46 8mm2となり、好ましい面積の範囲外である。 In this comparative example, since the coating layer is not divided into a plurality of regions, the area of the coating layer is 46. 8 mm 2 , which is outside the preferred area range.
(評価)  (Evaluation)
榭脂製の基板上に被覆層を形成した後、実施例 1から実施例 3と同じ方法によって 基板と被覆層との密着度を評価した。この比較例では、被覆層の剥離や亀裂が確認 された。このように、被覆層が複数の領域に分割されていないため、基板と被覆層と の膨張係数が異なることによって被覆層に過剰な応力が加わり、基板カゝら被覆層が 剥離し、また、被覆層に亀裂が発生したと考えられる。  After forming the coating layer on the resin-made substrate, the degree of adhesion between the substrate and the coating layer was evaluated by the same method as in Examples 1 to 3. In this comparative example, peeling or cracking of the coating layer was confirmed. As described above, since the coating layer is not divided into a plurality of regions, excessive stress is applied to the coating layer due to different expansion coefficients of the substrate and the coating layer, and the coating layer peels off from the substrate cover. It is thought that cracks occurred in the coating layer.
[0070] 実施例 1から実施例 3のように、被覆層を複数の領域に分割することで、被覆層に 加わる応力を緩和し、被覆層の剥離や亀裂の発生を防止することが可能となる。 (実施例 4) [0070] As in Example 1 to Example 3, by dividing the coating layer into a plurality of regions, it is possible to relieve the stress applied to the coating layer and prevent the coating layer from peeling or cracking. Become. (Example 4)
この実施例 4では、図 2 (a)に示す磁気記録媒体用基板 10の具体例について説明 する。この実施例 4では、図 2 (a)に示すように基板上に溝 12によって分割された格 子状の被覆層 11を形成した。なお、この実施例 4に係る榭脂製の基板には、実施例 1と同じ榭脂 (ポリイミド)を用いた。  In Example 4, a specific example of the magnetic recording medium substrate 10 shown in FIG. 2A will be described. In Example 4, as shown in FIG. 2 (a), the lattice-shaped coating layer 11 divided by the grooves 12 was formed on the substrate. The same resin (polyimide) as in Example 1 was used for the resin substrate according to Example 4.
(基板の寸法)  (Board dimensions)
外径: 21. 6 [mm]  Outer diameter: 21.6 [mm]
孔径: 6 [mm]  Hole diameter: 6 [mm]
基板の厚さ: 0. 4 [mm]  Substrate thickness: 0.4 [mm]
(被覆層 11の成膜)  (Deposition of coating layer 11)
この実施例 4においても実施例 1と同様に、榭脂製の基板上に被覆層 11として Ni 層と NiP層を形成し、その被覆層 11をエッチングすることにより複数の領域に分割し た。  In Example 4, similarly to Example 1, a Ni layer and a NiP layer were formed as a coating layer 11 on a resin substrate, and the coating layer 11 was etched to be divided into a plurality of regions.
[0071] 被覆層 11、溝 12の寸法を以下に示す。  [0071] The dimensions of the coating layer 11 and the groove 12 are shown below.
[0072] 溝 12の幅: 1 [ /ζ πι] [0072] Width of groove 12: 1 [/ ζ πι]
溝 12の間隔: 3 [mm]  Distance between grooves 12: 3 [mm]
分割後の被覆層 11の最大面積: 9 [mm2] Maximum area of the coating layer 11 after division: 9 [mm 2 ]
ここで、本実施例の、分割後の被覆層 11の最大面積は上記のように 9mm2であり 、実施例 1と同様に好ましい面積の範囲である。 (評価) Here, the maximum area of the divided coating layer 11 in this example is 9 mm 2 as described above, which is a preferable area range as in Example 1. (Evaluation)
榭脂製の基板上に被覆層 11を形成し、その被覆層 11を複数の領域に分割した後 、実施例 1と同じ方法によって基板と被覆層 11との密着度を評価した。この実施例 4 においても、被覆層 11は基板力 剥離したり、被覆層 11に亀裂が発生したりすること 力 く、基板と被覆層 11との密着度が高 、ことが確認された。  After the coating layer 11 was formed on the resin substrate and the coating layer 11 was divided into a plurality of regions, the adhesion between the substrate and the coating layer 11 was evaluated by the same method as in Example 1. In Example 4 as well, it was confirmed that the coating layer 11 was strong in peeling off the substrate force and cracked in the coating layer 11, and the adhesion between the substrate and the coating layer 11 was high.
(実施例 5)  (Example 5)
この実施例 5では、実施例 4と同様に図 2 (a)に示す磁気記録媒体用基板 10の具 体例について説明する。この実施例 5では、溝 12の寸法を変えることで、分割後の個 々の被覆層 11の寸法を変えた。なお、この実施例 5に係る榭脂製の基板は、実施例 1と同じ榭脂 (ポリイミド)を用いた。  In Example 5, a specific example of the magnetic recording medium substrate 10 shown in FIG. In Example 5, the dimensions of the individual coating layers 11 after the division were changed by changing the dimensions of the grooves 12. The same resin (polyimide) as in Example 1 was used as the resin substrate according to Example 5.
(基板の寸法)  (Board dimensions)
外径: 27. 4 [mm]  Outer diameter: 27.4 [mm]
孔径: 7 [mm]  Hole diameter: 7 [mm]
基板の厚さ: 0. 4 [mm]  Substrate thickness: 0.4 [mm]
(被覆層 11の成膜)  (Deposition of coating layer 11)
この実施例 5においても実施例 1と同様に、榭脂製の基板上に被覆層 11として Ni 層と NiP層を形成し、その被覆層 11をエッチングすることにより複数の領域に分割し た。  In Example 5, similarly to Example 1, a Ni layer and a NiP layer were formed as a coating layer 11 on a resin substrate, and the coating layer 11 was etched to be divided into a plurality of regions.
[0073] 被覆層 11、溝 12の寸法を以下に示す。  [0073] The dimensions of the coating layer 11 and the groove 12 are shown below.
[0074] 溝 12の幅: 1 [ /ζ πι] [0074] Width of groove 12: 1 [/ ζ πι]
溝 12の間隔: 4 [mm]  Distance between grooves 12: 4 [mm]
分割後の被覆層 11の最大面積: 16 [mm]  Maximum area of the coating layer 11 after division: 16 [mm]
ここで、本実施例の、分割後の被覆層 11の最大面積は上記のように 16mm2であ り、実施例 1と同様に好ましい面積の範囲である。 Here, the maximum area of the divided coating layer 11 in this example is 16 mm 2 as described above, which is a preferable area range as in Example 1.
(評価)  (Evaluation)
榭脂製の基板上に被覆層 11を形成し、その被覆層 11を複数の領域に分割した後 、実施例 1と同じ方法によって基板と被覆層 11との密着度を評価した。この実施例 5 においても、被覆層 11は基板力 剥離したり、被覆層 11に亀裂が発生したりすること 力 く、基板と被覆層 11との密着度が高 、ことが確認された。 After the coating layer 11 was formed on the resin substrate and the coating layer 11 was divided into a plurality of regions, the adhesion between the substrate and the coating layer 11 was evaluated by the same method as in Example 1. Also in this Example 5, the coating layer 11 peels off the substrate, and the coating layer 11 is cracked. It was confirmed that the adhesion between the substrate and the coating layer 11 was high.
(実施例 6)  (Example 6)
この実施例 6では、実施例 4と同様に図 2 (a)に示す磁気記録媒体用基板 10の具 体例について説明する。この実施例 6では、溝 12の寸法を変えることで、分割後の個 々の被覆層 11の寸法を変えた。なお、この実施例 5に係る榭脂製の基板は、実施例 1と同じ榭脂 (ポリイミド)を用いた。  In Example 6, as in Example 4, a specific example of the magnetic recording medium substrate 10 shown in FIG. In Example 6, the dimensions of the individual coating layers 11 after the division were changed by changing the dimensions of the grooves 12. The same resin (polyimide) as in Example 1 was used as the resin substrate according to Example 5.
(基板の寸法)  (Board dimensions)
外径: 27. 4 [mm]  Outer diameter: 27.4 [mm]
孔径: 7 [mm]  Hole diameter: 7 [mm]
基板の厚さ: 0. 4 [mm]  Substrate thickness: 0.4 [mm]
(被覆層 11の成膜)  (Deposition of coating layer 11)
この実施例 6にお 、ても実施例 1と同様に、榭脂製の基板上に被覆層 11として Ni 層と NiP層を形成し、その被覆層 11をエッチングすることにより複数の領域に分割し た。  In Example 6, as in Example 1, a Ni layer and a NiP layer are formed as a coating layer 11 on a resin substrate, and the coating layer 11 is etched to be divided into a plurality of regions. did.
[0075] 被覆層 11、溝 12の寸法を以下に示す。  [0075] The dimensions of the coating layer 11 and the groove 12 are shown below.
[0076] 溝 12の幅: 1 [ /ζ πι] [0076] Width of groove 12: 1 [/ ζ πι]
溝 12の間隔: 5 [mm]  Distance between grooves 12: 5 [mm]
分割後の被覆層 11の最大面積: 25 [mm2] Maximum area of the coating layer 11 after division: 25 [mm 2 ]
ここで、本実施例の、分割後の被覆層 11の最大面積は上記のように 25mm2であ り、実施例 1と同様に好ましい面積の範囲である。 Here, the maximum area of the divided coating layer 11 in this example is 25 mm 2 as described above, which is a preferable area range as in Example 1.
(評価)  (Evaluation)
榭脂製の基板上に被覆層 11を形成し、その被覆層 11を複数の領域に分割した後 、実施例 1と同じ方法によって基板と被覆層 11との密着度を評価した。この実施例 6 においても、被覆層 11は基板力 剥離したり、被覆層 11に亀裂が発生したりすること 力 く、基板と被覆層 11との密着度が高 、ことが確認された。  After the coating layer 11 was formed on the resin substrate and the coating layer 11 was divided into a plurality of regions, the adhesion between the substrate and the coating layer 11 was evaluated by the same method as in Example 1. In Example 6 as well, it was confirmed that the coating layer 11 had a strong adhesion between the substrate and the coating layer 11 without causing the substrate force to peel off or cracking in the coating layer 11.
[0077] 以上、実施例 4から実施例 6のように、被覆層を複数の領域に分割することで、被覆 層に加わる応力を緩和し、被覆層の剥離や亀裂の発生を防止することが可能となる なお、実施例 1から実施例 6で説明した条件以外の磁気記録媒体用基板であって も、榭脂製の基板上に形成された被覆層を複数の領域に分割することで、基板と被 覆層との密着度を高めることができることが確認された。例えば、図 2 (b)に示すように 個々の被覆層 20を 6角形状に分割した場合や、図 2 (c)に示すように個々の被覆層 30を 3角形状に分割した場合であっても、被覆層に加わる応力を緩和することができ 、その結果、被覆層の剥離や亀裂の発生を防止することが可能なことが確認された。 As described above, as in Example 4 to Example 6, by dividing the coating layer into a plurality of regions, stress applied to the coating layer can be relaxed, and peeling of the coating layer and generation of cracks can be prevented. Possible Even in the case of a magnetic recording medium substrate that does not meet the conditions described in Example 1 to Example 6, the coating layer formed on the resin substrate is divided into a plurality of regions so that the substrate and the substrate are covered. It was confirmed that the degree of adhesion with the covering layer can be increased. For example, as shown in FIG. 2 (b), the individual covering layers 20 are divided into hexagonal shapes, and as shown in FIG. 2 (c), the individual covering layers 30 are divided into triangular shapes. However, it was confirmed that the stress applied to the coating layer can be relaxed, and as a result, the peeling of the coating layer and the occurrence of cracks can be prevented.

Claims

請求の範囲 The scope of the claims
[1] 表面が榭脂により構成され、円盤状の形状を有する非磁性の母材を基板とし、前記 表面に複数の領域に分けられた被覆層が形成されていることを特徴とする磁気記録 媒体用基板。  [1] A magnetic recording characterized in that the surface is made of a resin, a non-magnetic base material having a disk shape is used as a substrate, and a coating layer divided into a plurality of regions is formed on the surface. Medium substrate.
[2] 前記複数の領域が同心円状又は Z及び放射状に形成されていることを特徴とする 請求の範囲第 1項に記載の磁気記録媒体用基板。  [2] The magnetic recording medium substrate according to [1], wherein the plurality of regions are formed concentrically, Z, and radially.
[3] 前記複数の領域が格子状に形成されて!、ることを特徴とする請求の範囲第 1項に 記載の磁気記録媒体用基板。 3. The magnetic recording medium substrate according to claim 1, wherein the plurality of regions are formed in a lattice shape!
[4] 前記複数の領域は多角形の形状を有することを特徴とする請求の範囲第 1項乃至 第 3項のいずれか 1項に記載の磁気記録媒体用基板。 [4] The magnetic recording medium substrate according to any one of claims 1 to 3, wherein the plurality of regions have a polygonal shape.
[5] 前記基板の膨張係数を A[ X 10"5/K]としたとき、前記分割された被覆層の個々 の領域の面積が、 1000 X (1/A2) [mm2]以下であることを特徴とする請求の範囲 第 1項乃至第 4項のいずれか 1項に記載の磁気記録媒体用基板。 [5] When the expansion coefficient of the substrate is A [X 10 " 5 / K], the area of each of the divided coating layers is 1000 X (1 / A 2 ) [mm 2 ] or less. The magnetic recording medium substrate according to any one of claims 1 to 4, wherein the magnetic recording medium substrate is provided.
[6] 前記被覆層の厚さ Dと、前記分割された被覆層の領域と領域との間隔 dlとが、 [6] The thickness D of the coating layer and the distance dl between the divided coating layer regions are as follows:
100 X厚さ D ≥ 間隔 dl > 厚さ DZlO  100 X thickness D ≥ distance dl> thickness DZlO
の関係を満たすことを特徴とする請求の範囲第 1項乃至第 5項のいずれか 1項に記 載の磁気記録媒体用基板。  The magnetic recording medium substrate according to any one of claims 1 to 5, wherein the following relationship is satisfied.
[7] 前記分割された被覆層の領域のパターンは、化学的エッチング、物理的エッチング[7] The pattern of the region of the divided covering layer is formed by chemical etching or physical etching.
、又は物理ィ匕学的エッチングによって形成されたことを特徴とする請求の範囲第 1項 乃至第 6項のいずれか 1項に記載の磁気記録媒体用基板。 7. The magnetic recording medium substrate according to claim 1, wherein the magnetic recording medium substrate is formed by physical etching.
[8] 前記分割された被覆層の領域のパターンは、スタンパによって被覆層の表面に凹 凸を形成した後、化学的エッチング、物理的エッチング、又は物理ィ匕学的エッチング により形成されたことを特徴とする請求の範囲第 1項乃至第 6項のいずれ力 1項に記 載の磁気記録媒体用基板。 [8] The pattern of the region of the divided coating layer is formed by chemical etching, physical etching, or physical etching after forming concaves and convexes on the surface of the coating layer with a stamper. The magnetic recording medium substrate according to any one of claims 1 to 6, wherein the force is any one of claims 1 to 6.
[9] 前記非磁性の母材は榭脂により構成されていることを特徴とする請求の範囲第 1項 乃至第 8項のいずれか 1項に記載の磁気記録媒体用基板。 [9] The magnetic recording medium substrate according to any one of [1] to [8], wherein the nonmagnetic base material is made of a resin.
[10] 前記非磁性の母材はガラス、又は非磁性の金属材料で構成されて ヽることを特徴 とする請求の範囲第 1項乃至第 8項のいずれか 1項に記載の磁気記録媒体用基板。 10. The magnetic recording medium according to any one of claims 1 to 8, wherein the nonmagnetic base material is made of glass or a nonmagnetic metal material. Substrate.
[11] 円盤状の形状を有する非磁性の基板上に被覆層を形成し、 [11] A coating layer is formed on a nonmagnetic substrate having a disk shape,
前記被覆層に対して、化学的エッチング、物理的エッチング、又は物理化学的エツ チングを施すことによって、前記被覆層を複数の領域に分割することを特徴とする磁 気記録媒体用基板の製造方法。  A method for manufacturing a substrate for a magnetic recording medium, wherein the coating layer is divided into a plurality of regions by subjecting the coating layer to chemical etching, physical etching, or physicochemical etching. .
[12] 円盤状の形状を有する非磁性の基板上に被覆層を形成し、  [12] A coating layer is formed on a nonmagnetic substrate having a disk shape,
スタンパによって前記被覆層の表面を凹凸に形成し、  The surface of the coating layer is formed uneven by a stamper,
その後、化学的エッチング、物理的エッチング、又は物理ィ匕学的エッチングを施す こと〖こよって、前記凹凸が形成された被覆層を複数の領域に分割することを特徴とす る磁気記録媒体用基板の製造方法。  Thereafter, chemical etching, physical etching, or physical etching is performed to divide the coating layer on which the irregularities are formed into a plurality of regions, and the substrate for a magnetic recording medium Manufacturing method.
PCT/JP2007/052226 2006-03-03 2007-02-08 Substrate for magnetic recording medium and method for manufacturing such substrate WO2007099754A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008502685A JP5062167B2 (en) 2006-03-03 2007-02-08 Substrate for magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-057162 2006-03-03
JP2006057162 2006-03-03

Publications (1)

Publication Number Publication Date
WO2007099754A1 true WO2007099754A1 (en) 2007-09-07

Family

ID=38458869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052226 WO2007099754A1 (en) 2006-03-03 2007-02-08 Substrate for magnetic recording medium and method for manufacturing such substrate

Country Status (2)

Country Link
JP (1) JP5062167B2 (en)
WO (1) WO2007099754A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536058A (en) * 1991-07-26 1993-02-12 Nkk Corp Magnetic disk substrate
JP2004171658A (en) * 2002-11-19 2004-06-17 Fuji Electric Holdings Co Ltd Substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium and method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890765A (en) * 1981-11-25 1983-05-30 Mitsubishi Electric Corp Semiconductor device
JP2619432B2 (en) * 1987-11-16 1997-06-11 株式会社リコー Magneto-optical disk
JPH041922A (en) * 1990-04-18 1992-01-07 Hitachi Ltd In-surface magnetic recording medium and magnetic storage device
JPH05159392A (en) * 1991-12-02 1993-06-25 Hitachi Ltd Magneto-optical recording medium and production thereof and recording and reproducing method and device using this medium
JP2001176059A (en) * 1999-12-16 2001-06-29 Fuji Electric Co Ltd Magnetic recording medium
US20020068198A1 (en) * 2000-12-05 2002-06-06 Kerfeld Donald J. Data storage media
JP2002298440A (en) * 2001-04-03 2002-10-11 Nec Corp Optical information recording medium and optical information recording/reproducing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536058A (en) * 1991-07-26 1993-02-12 Nkk Corp Magnetic disk substrate
JP2004171658A (en) * 2002-11-19 2004-06-17 Fuji Electric Holdings Co Ltd Substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium and method for manufacturing the same

Also Published As

Publication number Publication date
JP5062167B2 (en) 2012-10-31
JPWO2007099754A1 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
US6207247B1 (en) Method for manufacturing a molding tool used for sustrate molding
US20090075122A1 (en) Imprint mold structure, imprinting method using the same, and magnetic recording medium
US20070048553A1 (en) Substrate for magnetic information recording medium, and producing method of substrate for magnetic information recording medium
JP2009143221A (en) Manufacturing method and manufacturing apparatus for resin stamper and imprinting method, and magnetic recording medium and magnetic recording and reproducing device
US20080203053A1 (en) Method for manufacturing magnetic recording medium, stamper, transferring apparatus, and method for forming resin mask
US8052414B2 (en) Mold structure used to produce discrete track medium, imprinting method, method for producing discrete track medium, and discrete track medium
EP2028652A1 (en) Magnetic recording medium and production method thereof
US20100213642A1 (en) Resin stamper molding die and method for manufacturing resin stamper using the same
WO2007074645A1 (en) Magnetic recording medium substrate and magnetic recording medium
JP5062167B2 (en) Substrate for magnetic recording medium
JP4871063B2 (en) Insulating stamper and manufacturing method thereof
EP2006842A1 (en) Method for producing magnetic recording medium, magnetic recording medium, produced by the production method, and mold structure for use in the production method
JP4983268B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
JP2004171658A (en) Substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium and method for manufacturing the same
WO2007119306A1 (en) Substrate for magnetic recording medium, method for manufacturing such substrate and magnetic recording medium
EP2009624A1 (en) Method for producing magnetic recording medium, magnetic recording medium produced by the production method, and mold structure for use in the production method
US20080248333A1 (en) Mold structure, imprinting method using the same, magnetic recording medium and production method thereof
US20080220290A1 (en) Magnetic recording medium and manufacturing method for the same
JPWO2007099732A1 (en) MAGNETIC RECORDING MEDIUM SUBSTRATE, ITS MANUFACTURING METHOD, AND MAGNETIC RECORDING MEDIUM SUBSTRATE DIE
JP3871494B2 (en) How to create a stamper
WO2008047534A1 (en) Magnetic recording medium substrate, method for manufacturing the magnetic recording medium substrate, magnetic recording medium, and method for manufacturing the magnetic recording medium
US20090147405A1 (en) Method for manufacturing magnetic recording medium, magnetic recording medium manufactured by the same, and magnetic recording apparatus incorporating the magnetic recording medium
JP2009223999A (en) Mold member, injection molding mold, and manufacturing method of substrate for magnetic recording medium
TWI224785B (en) Magneto-optical recording medium and its manufacturing method
JP2008171499A (en) Projecting and recessed pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502685

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07713942

Country of ref document: EP

Kind code of ref document: A1