WO2007098034A2 - Mid-ir laser instrument for analyzing a gaseous sample and method for using the same - Google Patents
Mid-ir laser instrument for analyzing a gaseous sample and method for using the same Download PDFInfo
- Publication number
- WO2007098034A2 WO2007098034A2 PCT/US2007/004102 US2007004102W WO2007098034A2 WO 2007098034 A2 WO2007098034 A2 WO 2007098034A2 US 2007004102 W US2007004102 W US 2007004102W WO 2007098034 A2 WO2007098034 A2 WO 2007098034A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- tunable
- optical
- seed
- zgp
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 56
- 230000003287 optical effect Effects 0.000 claims abstract description 91
- 239000013078 crystal Substances 0.000 claims description 76
- 230000003595 spectral effect Effects 0.000 claims description 57
- 238000001514 detection method Methods 0.000 claims description 47
- 230000005855 radiation Effects 0.000 claims description 47
- 239000000835 fiber Substances 0.000 claims description 26
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 21
- 238000000862 absorption spectrum Methods 0.000 claims description 13
- 238000005086 pumping Methods 0.000 claims description 12
- 238000001228 spectrum Methods 0.000 claims description 12
- 229910005543 GaSe Inorganic materials 0.000 claims description 10
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 10
- 230000006641 stabilisation Effects 0.000 claims description 10
- 238000011105 stabilization Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 230000010355 oscillation Effects 0.000 claims description 7
- 229910052689 Holmium Inorganic materials 0.000 claims description 6
- 238000004476 mid-IR spectroscopy Methods 0.000 claims description 6
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910004613 CdTe Inorganic materials 0.000 claims 1
- 238000004364 calculation method Methods 0.000 claims 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims 1
- 235000013619 trace mineral Nutrition 0.000 claims 1
- 239000011573 trace mineral Substances 0.000 claims 1
- 229910001428 transition metal ion Inorganic materials 0.000 claims 1
- 239000000356 contaminant Substances 0.000 abstract 1
- 229910007475 ZnGeP2 Inorganic materials 0.000 description 57
- 239000007789 gas Substances 0.000 description 32
- 238000010899 nucleation Methods 0.000 description 31
- 102100025409 Orofacial cleft 1 candidate gene 1 protein Human genes 0.000 description 29
- 238000010521 absorption reaction Methods 0.000 description 23
- 238000013459 approach Methods 0.000 description 21
- 230000035945 sensitivity Effects 0.000 description 21
- 208000020816 lung neoplasm Diseases 0.000 description 19
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 18
- 201000005202 lung cancer Diseases 0.000 description 18
- 238000012544 monitoring process Methods 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 14
- 239000012071 phase Substances 0.000 description 14
- 238000004867 photoacoustic spectroscopy Methods 0.000 description 13
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 230000001427 coherent effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 238000011160 research Methods 0.000 description 11
- 239000000090 biomarker Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- SPSSULHKWOKEEL-UHFFFAOYSA-N 2,4,6-trinitrotoluene Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O SPSSULHKWOKEEL-UHFFFAOYSA-N 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 9
- 150000002430 hydrocarbons Chemical class 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000000015 trinitrotoluene Substances 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- DYSXLQBUUOPLBB-UHFFFAOYSA-N 2,3-dinitrotoluene Chemical compound CC1=CC=CC([N+]([O-])=O)=C1[N+]([O-])=O DYSXLQBUUOPLBB-UHFFFAOYSA-N 0.000 description 7
- 238000000180 cavity ring-down spectroscopy Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000004146 energy storage Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000012855 volatile organic compound Substances 0.000 description 7
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 208000019693 Lung disease Diseases 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 239000002360 explosive Substances 0.000 description 6
- 238000005457 optimization Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000007774 longterm Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 201000003883 Cystic fibrosis Diseases 0.000 description 4
- 208000006673 asthma Diseases 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 230000003859 lipid peroxidation Effects 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 206010036790 Productive cough Diseases 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000010006 flight Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000001307 laser spectroscopy Methods 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 210000003802 sputum Anatomy 0.000 description 3
- 208000024794 sputum Diseases 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- -1 zinc chalcogenides Chemical class 0.000 description 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 208000037273 Pathologic Processes Diseases 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 210000000038 chest Anatomy 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 235000013373 food additive Nutrition 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000007792 gaseous phase Substances 0.000 description 2
- 239000002920 hazardous waste Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000009304 pastoral farming Methods 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 230000009054 pathological process Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- PXGPLTODNUVGFL-NAPLMKITSA-N 8-epi-prostaglandin F2alpha Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)C[C@H](O)[C@H]1C\C=C/CCCC(O)=O PXGPLTODNUVGFL-NAPLMKITSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- 208000029523 Interstitial Lung disease Diseases 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000000559 atomic spectroscopy Methods 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 201000009267 bronchiectasis Diseases 0.000 description 1
- 238000013276 bronchoscopy Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000002575 chemical warfare agent Substances 0.000 description 1
- 208000023652 chronic gastritis Diseases 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009109 curative therapy Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003891 environmental analysis Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001413 far-infrared spectroscopy Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000101 novel biomarker Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 230000000886 photobiology Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 238000007430 reference method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/1702—Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/46—Sulfur-, selenium- or tellurium-containing compounds
- C30B29/48—AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/02—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion materials in the solid state
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/39—Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
- H01S3/0604—Crystal lasers or glass lasers in the form of a plate or disc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0627—Construction or shape of active medium the resonator being monolithic, e.g. microlaser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10084—Frequency control by seeding
- H01S3/10092—Coherent seed, e.g. injection locking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2383—Parallel arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/1702—Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
- G01N2021/1704—Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in gases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
- G01N2021/396—Type of laser source
- G01N2021/399—Diode laser
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/39—Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
- G02F1/392—Parametric amplification
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2301/00—Functional characteristics
- H01S2301/04—Gain spectral shaping, flattening
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/0014—Monitoring arrangements not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08004—Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
- H01S3/08009—Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08086—Multiple-wavelength emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094038—End pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094042—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094061—Shared pump, i.e. pump light of a single pump source is used to pump plural gain media in parallel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/105—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
- H01S3/1055—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1123—Q-switching
- H01S3/113—Q-switching using intracavity saturable absorbers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/161—Solid materials characterised by an active (lasing) ion rare earth holmium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/162—Solid materials characterised by an active (lasing) ion transition metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/162—Solid materials characterised by an active (lasing) ion transition metal
- H01S3/1623—Solid materials characterised by an active (lasing) ion transition metal chromium, e.g. Alexandrite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1628—Solid materials characterised by a semiconducting matrix
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2308—Amplifier arrangements, e.g. MOPA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2375—Hybrid lasers
Definitions
- the present invention relates to instrumentation that is able to measure biomarkers for early diagnosis and management of diseases.
- lung cancer is the most common cause of cancer-related mortality in both men and women in the United States. An estimated 173,700 Americans will receive a diagnosis of lung cancer every year with 164,440 of them expected to die of the disease, a mortality rate of over 90%. Survival rates for lung cancer have changed little over the past twenty-five years despite years of research, which is because most lung cancers are diagnosed at an advanced stage when curative treatment is no longer possible. Identifying lung cancer at the earliest stage is central to improving outcomes; even a small decrease in lung cancer mortality from effective screening of high-risk individuals would save thousands of lives each year.
- current screening techniques are used to improve the past screening techniques.
- YLF (2.05 ⁇ m) laser serves as an effective pump source of OPG-OPA system based on a high
- TM 2+ doped chalcogenides will be lasing with a great variety of possible regimes of oscillations, but with an additional significant advantage of being directly
- Figure 2 is a block diagram of the optical nose instrument of the present invention.
- Figures 7a-7b are phase matching curves for ZGP type I and II and CdSe type II
- TM 2+ transition-metal
- CnZnSe, ZnS and CdSe as broadly tunable continuous- wave (CW) lasers operating at room temperature over 2-3.5 ⁇ m spectral range.
- CW continuous- wave
- Q-switched solid state laser e.g. HorYAG (2.09 ⁇ m) or YLF (2.05 ⁇ m) laser, or EnYAG (1.65
- GaSe is also a promising crystal for mid-IR frequency
- the 40 mm-long Er: YAG rod 44 doped with 0.5% of Er and positioned in the ring cavity will be resonantly pumped directly to the 4 I nn manifold by the radiation of the Er-fiber laser.
- This innovative approach of direct resonant pumping of the solid Er: YAG active medium by Er-fiber laser 42 allows us to fully utilize the excellent energy storage capability of the active material with an unprecedented efficiency.
- a Brewster-cut acousto-optic modulator 19 is used to Q-switch the Er-laser 42. It is envisioned that similarly to the results of other research groups we will obtain up to 20 W of output power for CW Er-laser, ⁇ 10 mJ at 1000Hz in the Q-switched
- the seeding laser must be frequency stabilized and provide a very narrow linewidth; and (2) the pulsed laser cavity optical length must be stabilized against thermal and mechanical fluctuations.
- a single-mode, low power, stabilized, microchip CW Er:YAG laser 44 will be used as a seeding laser source. Its frequency will be locked to a gas frequency standard using a commercially available precision calibrated laser wavelength locker (e.g. "Wavelength References" LEM-5000), which will provide an absolute wavelength reference.
- Wavelength References LEM-5000
- Continuous wavelength tuning without any mode hopping can be obtained if the tuning is accomplished by simultaneous controlling of the diffraction grating angular orientation (in the Littrow cavity), or the back mirror reflector (in the Littman resonator), and the resonator length in such a way, that the wavelength feedback scan exactly matches the cavity mode scan.
- the oscillation wavelength in our tunable laser system will be performed by a two-stage controller.
- the actual oscillation wavelength will be measured and controlled using a set of Fabry-Perot Etalons.
- a commercially available wavelength meter device e.g. EXFO WA- 1500 Wavemeter
- a precision calibrated laser wavelength locker e.g. LEM-5000 from "Wavelength References" corporation
- thermoelectric coolers TEC
- Q-switched Er-YAG can be used as a pump source of ZGP-OPG system.
- This laser source operating near 1.65 ⁇ m together with seeding radiation of tunable Cr 2+ laser in 2-3.3 ⁇ m can provide a simple laser system tunable over 2-10 ⁇ m spectral range.
- the first term is also referred as the nonlinear optical figure of merit (FOM) of the crystal.
- FOM nonlinear optical figure of merit
- Crystal angular tolerance for these interactions is several mrad and can be controlled with commercial available rotational stages. Also required temperature stabilization of the nonlinear crystal can be easy provided.
- Optical design should provide focusing and spatial overlapping of the pumping and seeding beams in the nonlinear crystal, optimization of the numbers of round trips in the nonlinear crystals; and spectral separation of signal and idler radiation at output channel. Special consideration will be implemented to choose and stabilize operating temperature of the nonlinear crystal. This parameter determinates phase matching angle, nonlinear conversion efficiency, and optical damage threshold of the nonlinear crystal. Therefore optimization of the operation temperature will be essential part of the unit design.
- a narrowline, pulsed OPG system is built, tunable in the real time over 2-10 ⁇ m wavelength range, which will provide us with the capability of fast spectral analysis of biomarker molecules contained in the exhaled patient breath.
- Optical parametric oscillators and generators based on the ZGP crystal are well known. However, as one can see from the Figure 12, to provide tunability over 2-10 ⁇ m the angular tuning of the ZGP crystal should span over a large 56-85° range of angles. This big range of phase-matching angles could be difficult to realize in one nonlinear ZGP crystal. Also, for the phase matching angles near 90° the efficiency of the nonlinear frequency conversion in ZGP crystal will decrease.
- PAS Photoacoustic Spectroscopy
- the major advantage of the PAS technique is that its detection responsivity is completely independent of the pump wavelength and is linear for a large dynamic range of absorbed power. As a result, this technique demonstrates excellent detection sensitivities down to sub-ppbv with powers in the watt range and 0.0006 ppbv for 100 W of pump power.
- the second advantage of PAS technique is the ability to detect minute concentrations of absorbing molecules in a presence of other components at the atmospheric pressure. Thus, PAS method requires minimal or no sample preparation and can be carried out in real time, constantly monitoring patient status.
- PAS PAS
- the pulsed, tunable laser beam passes through the test cell and is absorbed by the gas molecules when the laser wavelength corresponds to the molecules' absorption lines. A significant part of the absorbed laser light energy is transferred almost instantly to the thermal energy of the gas molecules, increasing local temperature and pressure.
- a sound wave (periodic pressure variations) is formed.
- This sound wave can easily be detected by a sensitive microphone placed inside the cell, indicating the laser light absorption.
- the intensity of the sound wave is a function of the total absorbed light energy and, therefore, it serves as a measure of the absorbing molecule concentration in the cell.
- the Optical Nose laser wavelength will continuously be tuned over the 2-10 ⁇ m fingerprint spectral region, and the device will pinpoint all absorption bands of the molecules of the multicomponent gas mixture in the test cell.
- the sensitivity of this method will further be significantly increased (by two orders of magnitude or more) by using a multipass absorption cell.
- a potential problem with this embodiment is that the pulsed laser light will also be absorbed by the reflecting windows of the test cell producing a background sound noise, which will affect the detection sensitivity.
- the solution to this problem involves using the cell material with the minimum absorption in the operating spectral region of 2-10 ⁇ m.
- the detection sensitivity will fiirther be improved, and the background noise significantly reduced, by means of utilization of balanced detection technique with a lock-in amplifier. This method will allow for subtraction of the detected noise signal from the useful sound signal, leaving only uncompensated weak absorption signals of interest.
- the Optical Nose system includes five major units: (1) seeding and pump lasers unit 50; (2) Q-switched OPG-pump laser unit 52; (3) tunable laser unit 54; (4) OPG-OPA system unit 56; and (5) main control and molecule detection unit 58. Operation of the system 10 begins with the seeding laser serving as the main wavelength reference device. It includes a continuous wave (CW) microchip, single-frequency EnYAG laser and an absolute frequency standard ("Laser Frequency Locker").
- CW continuous wave
- EnYAG laser single-frequency EnYAG laser
- absolute frequency standard (“Laser Frequency Locker"
- the cavity length of the Q-switched laser will be actively stabilized by two methods: (1) the long term coarse stability is achieved by proper mechanical and thermal stabilization of the laser cavity; (2) one of the pulsed laser cavity mirrors is mounted on a PZT, and the laser cavity length is controlled by constantly monitoring the
- the laser generates the light with the desired wavelengths with a high precision.
- the optical nose system 10 will be packaged in a standard 19" rack configuration to minimize its footprint and to allow for easy transportation.
- the optical platforms may be fabricated from Kovar or a similar low coefficient of expansion material, and will be rigidly interconnected to maintain optical alignment.
- the rigid optical subassembly will be isolated from the rest of the rack to reduce vibration from cooling fans or from room vibrations.
- the optical system enclosure will be thermally regulated to further reduce tuning drift.
- the laser source unit, as well as the Er fiber pump laser, will be enclosed in 4U 19" rack mount blocks.
- the Michelson interferometer-based wavemeter has dimensions of approximately
- a laser controller unit which will contain the following modules: 1) electronics for the temperature stabilization of the laser unit, 2) the locking electronics for the frequency stabilization of the single-frequency Er: YAG seeding laser, 3) the controller for the AOM of the Q-switched Er: YAG laser, and 4) the controller of the single-mode tunable Cr 2 ⁇ ZnSe master oscillator.
- biomarkers could be found for carbon monoxide (cystic fibrosis or diabetes); ethane (cystic fibrosis or body ionizing irradiation); pentane (myocardial infarction); isoprene, hexane, butane, methane, or formaldehyde (lung cancer); hydrogen peroxide (asthma or bronchiectasis); ammonia, pyrozines, or cyclohexanone (diabetes); or 13 C (gastric ulceration or chronic gastritis).
- the laser optical nose instrument will operate over the spectral range of molecular
- Hydrocarbons are markers of lipid peroxidation, which is one of the consequences of the constant and inevitable formation of oxygen radicals in the body.
- the present invention may also be used in the monitoring of lipid peroxidation of astronauts as early diagnostics of possible pathological processes during long-term space flights simulations as well as during envisioned flights to the Moon and Mars. It is noteworthy that first attempts of monitoring single hydrocarbons in cosmonauts during long-term space flights have been recently reported by Poliakov et al.
- Envisioned high-power, broadly tunable, and versatile mid-IR laser and its prototypes would impact military applications such as aircraft-, and ship, and satellite-based countermeasures, remote sensing for chemical warfare detection and counter-proliferation intelligence gathering.
- the source could find application in advanced laser-based, eyesafe seekers for smart munitions and cruise missiles and in covert communications systems.
- the proposed laser system is ideal for countermeasures. Its output wavelengths would encompass all countermeasure bands, and thus be suited for use against all known seekers. Also, the wavelengths generated would fall in the 3-5 ⁇ m and 8-11 ⁇ m regions of atmospheric transmission suited for chemical vapor detection, with applications to counter-proliferation and chemical agent detection. Such sensors would also be invaluable in the search for weapons of mass destruction.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nonlinear Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07750904A EP1997198B1 (en) | 2006-02-17 | 2007-02-13 | Mid-ir laser instrument for analyzing a gaseous sample and method for using the same |
JP2008555378A JP5137855B2 (en) | 2006-02-17 | 2007-02-13 | Intermediate IR laser instrument for analyzing gas samples and method of use thereof |
AU2007217879A AU2007217879B2 (en) | 2006-02-17 | 2007-02-13 | Mid-IR laser instrument for analyzing a gaseous sample and method for using the same |
NZ571254A NZ571254A (en) | 2006-02-17 | 2007-02-13 | A mid-IR optical nose system comprising a tunable seed laser, a pulsed pump laser and an optical parametric generator - optical parametric amplifier (OPG-OPA) and method for using the same. |
CA2641240A CA2641240C (en) | 2006-02-17 | 2007-02-13 | Mid-ir laser instrument for analyzing a gaseous sample and method for using the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77495206P | 2006-02-17 | 2006-02-17 | |
US60/774,952 | 2006-02-17 | ||
US77624206P | 2006-02-23 | 2006-02-23 | |
US60/776,242 | 2006-02-23 | ||
US11/375,601 | 2006-03-13 | ||
US11/375,601 US7606274B2 (en) | 2001-09-20 | 2006-03-13 | Mid-IR instrument for analyzing a gaseous sample and method for using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007098034A2 true WO2007098034A2 (en) | 2007-08-30 |
WO2007098034A3 WO2007098034A3 (en) | 2008-06-12 |
Family
ID=38437890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/004102 WO2007098034A2 (en) | 2006-02-17 | 2007-02-13 | Mid-ir laser instrument for analyzing a gaseous sample and method for using the same |
Country Status (7)
Country | Link |
---|---|
US (2) | US7606274B2 (en) |
EP (1) | EP1997198B1 (en) |
JP (1) | JP5137855B2 (en) |
AU (1) | AU2007217879B2 (en) |
CA (1) | CA2641240C (en) |
NZ (1) | NZ571254A (en) |
WO (1) | WO2007098034A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014033465A1 (en) * | 2012-08-30 | 2014-03-06 | Iti Scotland - Scottish Enterprise | Long wavelength infrared detection and imaging with long wavelength infrared source |
US9157311B2 (en) | 2010-07-08 | 2015-10-13 | Halliburton Energy Services, Inc. | Method and system of determining constituent components of a fluid sample |
Families Citing this family (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7830934B2 (en) * | 2001-08-29 | 2010-11-09 | Cymer, Inc. | Multi-chamber gas discharge laser bandwidth control through discharge timing |
US8817830B2 (en) | 2002-09-19 | 2014-08-26 | The Uab Research Foundation | Saturable absorbers for Q-switching of middle infrared laser cavaties |
JP2005504437A (en) * | 2001-09-20 | 2005-02-10 | ユニバーシティ・オブ・アラバマ・アット・バーミンガム・リサーチ・ファウンデーション | Mid-infrared microchip laser: ZnS: Cr2 + laser with saturable absorber material |
US20080172026A1 (en) | 2006-10-17 | 2008-07-17 | Blomquist Michael L | Insulin pump having a suspension bolus |
US20090122816A1 (en) * | 2005-09-22 | 2009-05-14 | Lockheed Martin Coherent Technologies, Inc. | Rapidly and electronically broadly tunable IR laser source |
WO2007056772A2 (en) * | 2005-11-09 | 2007-05-18 | William Marsh Rice University | Modulation cancellation method in laser spectroscopy |
US8320774B2 (en) * | 2007-07-07 | 2012-11-27 | Id Quantique Sa | Apparatus and method for adjustment of interference contrast in an interferometric quantum cryptography apparatus by tuning emitter wavelength |
WO2009055370A1 (en) * | 2007-10-24 | 2009-04-30 | The Government Of The U.S.A, As Represented By The Secretary Of The Navy | Detection of chemicals with infrared light |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
CN101345392B (en) * | 2008-03-18 | 2015-06-17 | 福州高意通讯有限公司 | Low-loss semiconductor pump laser |
US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods |
EP2334234A4 (en) | 2008-09-19 | 2013-03-20 | Tandem Diabetes Care Inc | Solute concentration measurement device and related methods |
US9202678B2 (en) * | 2008-11-14 | 2015-12-01 | Board Of Trustees Of Michigan State University | Ultrafast laser system for biological mass spectrometry |
US8264689B1 (en) | 2008-12-22 | 2012-09-11 | ISC8 Inc. | Micro gas cell array device and method |
EP2932994B1 (en) | 2009-07-30 | 2017-11-08 | Tandem Diabetes Care, Inc. | New o-ring seal, and delivery mechanism and portable infusion pump system related thereto |
US20110105856A1 (en) * | 2009-10-29 | 2011-05-05 | Robyn Aylor Haines | Diagnostic testing |
JP6050684B2 (en) * | 2010-01-22 | 2016-12-21 | ニューポート コーポレーション | Widely tunable optical parametric oscillator |
US8149407B1 (en) * | 2010-09-09 | 2012-04-03 | Adelphi University | Method and apparatus for trace gas detection using off-axis cavity and multiple line integrated spectroscopy |
JP2013520804A (en) * | 2010-02-24 | 2013-06-06 | マックォーリー・ユニバーシティ | Mid-infrared to far-infrared diamond Raman laser system and method |
US20130050466A1 (en) * | 2010-02-26 | 2013-02-28 | Ahmet Enis Cetin | Method, device and system for determining the presence of volatile organic and hazardous vapors using an infrared light source and infrared video imaging |
US8891160B2 (en) * | 2010-04-26 | 2014-11-18 | Konstantin Vodopyanov | Broadly and fast tunable optical parametric oscillator |
WO2011140480A2 (en) * | 2010-05-07 | 2011-11-10 | The George Washington University | Spatially-and temporally-resolved multi-parameter interferometric rayleigh scattering system and method |
US20110295140A1 (en) * | 2010-05-28 | 2011-12-01 | Intelliscience Research Llc | Method and Apparatus for Measuring Trace Levels of CO in Human Breath Using Cavity Enhanced, Mid-Infared Absorption Spectroscopy |
US8395777B2 (en) | 2010-09-09 | 2013-03-12 | Adelphi University | Method and apparatus for trace gas detection using integrated wavelength modulated spectra across multiple lines |
US8264690B2 (en) * | 2010-09-09 | 2012-09-11 | Adelphi University | Method and apparatus for the detection of trace gas species using multiple line integrated absorption spectroscopy |
JP2014504380A (en) * | 2010-12-22 | 2014-02-20 | イムラ アメリカ インコーポレイテッド | Compact high-intensity light source for mid and far infrared |
US8995494B1 (en) * | 2011-04-29 | 2015-03-31 | Bae Systems Information And Electronic Systems Integration Inc. | Multi-band laser architecture |
US20130011872A1 (en) * | 2011-07-05 | 2013-01-10 | Gabriel Philip M | Stable isotopic biomarker measurement for the detection of cancer and the determination of efficacy of treatment in diagnosed cancer patients |
US8890088B2 (en) * | 2012-01-05 | 2014-11-18 | National Central University | Laser cavity two-photon spectroscopy |
US9180242B2 (en) | 2012-05-17 | 2015-11-10 | Tandem Diabetes Care, Inc. | Methods and devices for multiple fluid transfer |
US9267844B2 (en) * | 2012-05-23 | 2016-02-23 | Honeywell International Inc. | Method and apparatus for correcting bias error in ring-down spectroscopy |
US9555186B2 (en) | 2012-06-05 | 2017-01-31 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US20150099274A1 (en) | 2012-06-17 | 2015-04-09 | Physical Logic Ag | Method and system for use in monitoring biological material |
JP6089493B2 (en) * | 2012-08-20 | 2017-03-08 | 株式会社Ihi | Concentration measuring device and concentration measuring method |
US8885167B2 (en) * | 2012-11-02 | 2014-11-11 | Li-Cor, Inc. | Cavity enhanced laser based gas analyzer systems and methods |
US9173998B2 (en) | 2013-03-14 | 2015-11-03 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US9488569B2 (en) * | 2013-06-10 | 2016-11-08 | Florida Agricultural And Mechanical University | Method and systems to detect matter through use of a magnetic field gradient |
FR3009655B1 (en) * | 2013-08-12 | 2016-12-30 | Cnrs - Centre Nat De La Rech Scient | MULTI-FREQUENCY PULSE LASER EMITTER, AND DIFFERENTIAL ABSORPTION LIDAR USING SUCH A LASER TRANSMITTER |
US9861297B2 (en) * | 2013-09-09 | 2018-01-09 | Riken | Gas analysis device and gas analysis method |
US10644476B2 (en) * | 2013-11-28 | 2020-05-05 | Candela Corporation | Laser systems and related methods |
JP6249225B2 (en) * | 2014-03-13 | 2017-12-20 | パナソニックIpマネジメント株式会社 | Laser processing apparatus and laser processing method |
US9482608B1 (en) * | 2014-03-16 | 2016-11-01 | Stc.Unm | WGM-based molecular sensors |
WO2016003524A2 (en) | 2014-04-17 | 2016-01-07 | Battelle Memorial Institute | Explosives detection using optical spectroscopy |
US10925515B2 (en) | 2014-05-22 | 2021-02-23 | Picomole Inc. | Alveolar breath collection apparatus |
ES2712200T3 (en) * | 2014-12-23 | 2019-05-09 | Max Planck Gesellschaft | Method for measuring a spectral sample response |
EP3265906B1 (en) | 2015-03-04 | 2020-10-07 | Scarlett, Carol, Y. | Generation of random numbers through the use of quantum-optical effects within a mirror cavity system |
US10394525B2 (en) | 2015-03-04 | 2019-08-27 | Carol Y. Scarlett | Generation of random numbers through the use of quantum-optical effects within a multi-layered birefringent structure |
US10705799B2 (en) | 2015-03-04 | 2020-07-07 | Carol Y. Scarlett | Transmission of information through the use of quantum-optical effects within a multi-layered birefringent structure |
US9696568B2 (en) * | 2015-05-13 | 2017-07-04 | Lasertec Corporation | Light source apparatus and inspection apparatus |
CN105048272B (en) * | 2015-08-24 | 2018-07-10 | 山东大学 | One kind is based on LiIO3The all solid state laser and its method of work of crystal |
GB201516524D0 (en) * | 2015-09-17 | 2015-11-04 | Fraunhofer Uk Res Ltd | Detector |
WO2017062181A1 (en) * | 2015-10-06 | 2017-04-13 | Ipg Photonics Corporation | Sub-nanosecond broad spectrum generating laser system |
KR102547169B1 (en) * | 2015-10-06 | 2023-06-22 | 아이피지 포토닉스 코포레이션 | Single pass laser amplifier with pulsed pumping |
US9976955B2 (en) * | 2016-01-06 | 2018-05-22 | Arizona Board Of Regents On Behalf Of Arizona State University | Sub-doppler intermodulated laser-induced-fluorescence spectrometer |
US10119890B2 (en) | 2016-02-05 | 2018-11-06 | EnRUD Resources, Inc. | Wind direction-based air sampling |
US11814326B2 (en) * | 2016-04-08 | 2023-11-14 | United States Of America As Represented By The Secretary Of The Air Force | Doped materials/alloys and hot isostatic pressing method of making same |
CN105633789A (en) * | 2016-04-12 | 2016-06-01 | 哈尔滨工业大学 | CdSe optical parametric oscillator-based far infrared laser generator |
US10880013B2 (en) | 2016-04-12 | 2020-12-29 | Cable Television Laboratories, Inc | Network communications systems and methods |
US10601513B2 (en) | 2016-04-12 | 2020-03-24 | Cable Television Laboratories, Inc. | Network communications systems and methods |
US11996893B2 (en) | 2016-04-12 | 2024-05-28 | Cable Television Laboratories, Inc. | Communication systems and methods |
US9912409B2 (en) * | 2016-04-12 | 2018-03-06 | Cable Television Laboratories, Inc | Fiber communication systems and methods |
CN105914572B (en) * | 2016-06-07 | 2019-04-26 | 中国科学院武汉物理与数学研究所 | Sodium layer wind-warm syndrome detecting laser radar emits laser system |
JP6836848B2 (en) * | 2016-06-22 | 2021-03-03 | 株式会社ミツトヨ | Laser light adjustment method and laser light source device |
RU2733824C2 (en) * | 2016-07-25 | 2020-10-07 | Мкс Инструментс, Инк. | Gas measuring system |
US20180149584A1 (en) | 2016-11-29 | 2018-05-31 | Carol Y. Scarlett | Circular birefringence identification of materials |
CN106656344B (en) * | 2017-01-16 | 2023-09-01 | 浙江神州量子网络科技有限公司 | MDI-QKD system and MDI-QKD method |
CA2998026A1 (en) | 2017-03-13 | 2018-09-13 | Picomole Inc. | Apparatus and method of optimizing laser system |
CN106842761B (en) * | 2017-03-15 | 2019-05-17 | 中国科学院上海光学精密机械研究所 | Optics cavity automatic locking apparatus and its lock cavity method based on analog circuit |
US10527492B2 (en) * | 2017-05-16 | 2020-01-07 | Li-Cor, Inc. | Mode matching method for absorption spectroscopy systems |
CN109557039A (en) * | 2017-09-25 | 2019-04-02 | 中国科学院大连化学物理研究所 | The super-narrow line width infrared absorption spectrum measurement apparatus and method that gsec is differentiated |
CN107611762A (en) * | 2017-10-16 | 2018-01-19 | 中国科学院合肥物质科学研究院 | A kind of broad tuning, narrow linewidth, efficient mid-infrared parameter oscillator |
US11175388B1 (en) * | 2017-11-22 | 2021-11-16 | Insight Lidar, Inc. | Digital coherent LiDAR with arbitrary waveforms |
CN108387527B (en) * | 2018-02-08 | 2023-09-19 | 上海思源光电有限公司 | Photoacoustic spectrum oil gas detection device capable of eliminating cross interference |
RU2694461C1 (en) * | 2018-05-03 | 2019-07-15 | Общество с ограниченной ответственностью "Иннованте" | Remote optical absorption laser gas analyzer with radiation wavelength in the region of 1_6 mcm (2 versions), method of its implementation and a fiber-optic raman amplifier for a remote optical absorption laser gas analyzer with radiation wavelength in the region of 1_6 mcm |
US11035789B2 (en) | 2019-04-03 | 2021-06-15 | Picomole Inc. | Cavity ring-down spectroscopy system and method of modulating a light beam therein |
CN110702611A (en) * | 2019-10-28 | 2020-01-17 | 国网上海市电力公司 | Laser photoacoustic spectrum oil gas online monitoring system |
US11957450B2 (en) | 2020-02-28 | 2024-04-16 | Picomole Inc. | Apparatus and method for collecting a breath sample using an air circulation system |
US11782049B2 (en) | 2020-02-28 | 2023-10-10 | Picomole Inc. | Apparatus and method for collecting a breath sample using a container with controllable volume |
US20230314314A1 (en) * | 2020-05-11 | 2023-10-05 | Woods Hole Oceanographic Institution | Optical system and method to identify plastic |
US20230408447A1 (en) * | 2020-10-19 | 2023-12-21 | Brown University | Multi-dimensional rydberg fingerprint spectroscopy |
CN113252609B (en) * | 2021-05-31 | 2023-04-11 | 昆明物理研究所 | On-site continuous monitoring device for dangerous gas leakage of coal-to-liquid chemical plant |
JP7066073B1 (en) * | 2021-06-30 | 2022-05-12 | 三菱電機株式会社 | Laser equipment and laser processing equipment |
JPWO2023140339A1 (en) * | 2022-01-21 | 2023-07-27 | ||
CN114965358B (en) * | 2022-05-18 | 2024-02-20 | 安徽大学 | Multicomponent gas synchronous correction-free detection device and method based on single detector |
US11913881B2 (en) * | 2022-07-15 | 2024-02-27 | Trustees Of Boston University | Bond-selective intensity diffraction tomography and uses thereof |
CN115541521B (en) * | 2022-11-03 | 2023-05-23 | 中国科学院新疆理化技术研究所 | Method for measuring concentration of various gases by infrared band laser |
CN117175339B (en) * | 2023-08-25 | 2024-05-24 | 中国人民解放军国防科技大学 | Method for generating middle-far infrared laser with wide tuning range and high resolution |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3948345A (en) * | 1973-06-15 | 1976-04-06 | Allan Rosencwaig | Methods and means for analyzing substances |
US4158207A (en) * | 1978-03-27 | 1979-06-12 | The United States Of America As Represented By The Secretary Of The Navy | Iron-doped indium phosphide semiconductor laser |
EP0277662B1 (en) * | 1981-02-25 | 1991-09-18 | OEHLER, Oscar, Dr. | Detection device for opto-acoustically tracing gases |
US4847138A (en) * | 1987-10-07 | 1989-07-11 | Corning Glass Works | Thermal writing on glass and glass-ceramic substrates |
US4965803A (en) * | 1990-03-30 | 1990-10-23 | The United Stats Of America As Represented By The Scretary Of The Navy | Room-temperature, laser diode-pumped, q-switched, 2 micron, thulium-doped, solid state laser |
US5488626A (en) * | 1991-01-14 | 1996-01-30 | Light Age, Inc. | Method of and apparatus for pumping of transition metal ion containing solid state lasers using diode laser sources |
US5461635A (en) * | 1993-04-02 | 1995-10-24 | Basiev; Tasoltan T. | Solid state laser with superbroadband or control generation spectrum |
FR2708626B1 (en) * | 1993-08-02 | 1998-06-05 | Director General Agency Ind | Ultrathin transparent and conductive film and process for its production. |
GB9405613D0 (en) * | 1994-03-22 | 1994-05-11 | British Tech Group | Laser waveguide |
US5541948A (en) * | 1994-11-28 | 1996-07-30 | The Regents Of The University Of California | Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers |
DE19517753A1 (en) * | 1995-05-15 | 1996-11-21 | Lambda Physik Gmbh | Narrow bandwidth, tunable coherent light source appts. |
US5867305A (en) * | 1996-01-19 | 1999-02-02 | Sdl, Inc. | Optical amplifier with high energy levels systems providing high peak powers |
AU4144497A (en) * | 1996-05-17 | 1997-12-05 | Uab Research Foundation | Semiconductor laser with a superbroadband or multiline spectral output |
US5912910A (en) * | 1996-05-17 | 1999-06-15 | Sdl, Inc. | High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices |
JP3333400B2 (en) * | 1996-09-17 | 2002-10-15 | 株式会社東芝 | Optical element |
US5832008A (en) * | 1997-01-24 | 1998-11-03 | Hughes Electronics | Eyesafe laser system using transition metal-doped group II-VI semiconductor as a passive saturable absorber Q-switch |
US6359914B1 (en) * | 1999-10-04 | 2002-03-19 | University Of Dayton | Tunable pulsed narrow bandwidth light source |
US6297179B1 (en) * | 1999-10-18 | 2001-10-02 | Corning Incorporated | Transition-metal, glass-ceramic gain media |
JP2001289785A (en) * | 2000-04-06 | 2001-10-19 | Oyo Kogaku Kenkyusho | Infrared laser component detector |
CN1313656C (en) * | 2001-03-02 | 2007-05-02 | 独立行政法人科学技术振兴机构 | II-VI group or III-V group based single crystal ferromagnetic compound and method for adjusting its ferromagnetic characteristics |
JP2005504437A (en) * | 2001-09-20 | 2005-02-10 | ユニバーシティ・オブ・アラバマ・アット・バーミンガム・リサーチ・ファウンデーション | Mid-infrared microchip laser: ZnS: Cr2 + laser with saturable absorber material |
JP3537425B2 (en) * | 2002-03-29 | 2004-06-14 | 日本パステック株式会社 | Combined analyzer |
US6975402B2 (en) * | 2002-11-19 | 2005-12-13 | Sandia National Laboratories | Tunable light source for use in photoacoustic spectrometers |
US7239653B2 (en) * | 2003-02-03 | 2007-07-03 | Bae Systems Information And Electronic Systems Integration Inc. | Method and apparatus for generating MID and long IR wavelength radiation |
WO2005073795A1 (en) * | 2004-01-29 | 2005-08-11 | Zaidan Hojin Handotai Kenkyu Shinkokai | Electromagnetic wave generating device |
-
2006
- 2006-03-13 US US11/375,601 patent/US7606274B2/en not_active Expired - Lifetime
-
2007
- 2007-02-13 EP EP07750904A patent/EP1997198B1/en active Active
- 2007-02-13 AU AU2007217879A patent/AU2007217879B2/en not_active Ceased
- 2007-02-13 NZ NZ571254A patent/NZ571254A/en not_active IP Right Cessation
- 2007-02-13 JP JP2008555378A patent/JP5137855B2/en not_active Expired - Fee Related
- 2007-02-13 CA CA2641240A patent/CA2641240C/en active Active
- 2007-02-13 WO PCT/US2007/004102 patent/WO2007098034A2/en active Application Filing
-
2009
- 2009-10-20 US US12/582,667 patent/US8233508B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9157311B2 (en) | 2010-07-08 | 2015-10-13 | Halliburton Energy Services, Inc. | Method and system of determining constituent components of a fluid sample |
WO2014033465A1 (en) * | 2012-08-30 | 2014-03-06 | Iti Scotland - Scottish Enterprise | Long wavelength infrared detection and imaging with long wavelength infrared source |
AU2013308186B2 (en) * | 2012-08-30 | 2017-09-07 | Iti Scotland - Scottish Enterprise | Long wavelength infrared detection and imaging with long wavelength infrared source |
AU2013308186B9 (en) * | 2012-08-30 | 2017-09-21 | Iti Scotland - Scottish Enterprise | Long wavelength infrared detection and imaging with long wavelength infrared source |
US10247606B2 (en) | 2012-08-30 | 2019-04-02 | ITI Scotland—Scottish Enterprise | Long wavelength infrared detection and imaging with long wavelength infrared source |
US10788369B2 (en) | 2012-08-30 | 2020-09-29 | ITI Scotland—Scottish Enterprise | Long wavelength infrared detection and imaging with long wavelength infrared source |
Also Published As
Publication number | Publication date |
---|---|
CA2641240A1 (en) | 2007-08-30 |
US20070064748A1 (en) | 2007-03-22 |
EP1997198B1 (en) | 2012-06-13 |
JP2009527775A (en) | 2009-07-30 |
AU2007217879A1 (en) | 2007-08-30 |
CA2641240C (en) | 2015-10-27 |
US20100246610A1 (en) | 2010-09-30 |
US8233508B2 (en) | 2012-07-31 |
US7606274B2 (en) | 2009-10-20 |
AU2007217879B2 (en) | 2013-02-07 |
EP1997198A2 (en) | 2008-12-03 |
NZ571254A (en) | 2012-01-12 |
WO2007098034A3 (en) | 2008-06-12 |
EP1997198A4 (en) | 2011-01-19 |
JP5137855B2 (en) | 2013-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7606274B2 (en) | Mid-IR instrument for analyzing a gaseous sample and method for using the same | |
Taczak et al. | Development of a tunable, narrow-linewidth, cw 2.066-μm Ho: YLF laser for remote sensing of atmospheric CO 2 and H 2 O | |
Dong et al. | Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy | |
US20040095579A1 (en) | Tunable light source for use in photoacoustic spectrometers | |
Hardy et al. | Vernier frequency sampling: a new tuning approach in spectroscopy—application to multi-wavelength integrated path DIAL | |
Sun et al. | Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser | |
Wang et al. | Theoretical and experimental investigation of fiber-ring laser intracavity photoacoustic spectroscopy (FLI-PAS) for acetylene detection | |
Wang et al. | Synthesizing gas-filled fiber Raman lines enables access to the molecular fingerprint region | |
Fix et al. | Injection-seeded optical parametric oscillator for airborne water vapour DIAL | |
Aniolek et al. | Cavity ringdown laser absorption spectroscopy with a 1 kHz mid-infrared periodically poled lithium niobate optical parametric generator/optical parametric amplifier | |
Bultitude et al. | High-resolution degenerate four-wave-mixing spectroscopy of OH in a flame with a novel single-mode tunable laser | |
Medhi et al. | Infrared intracavity laser absorption spectrometer | |
Baruzzo et al. | A mid-IR laser source for muonic hydrogen spectroscopy: the FAMU laser system | |
Godard et al. | Optical parametric sources for gas sensing applications | |
Venkin et al. | Investigation of stimulated Raman scattering in gases excited by fourth harmonic of neodymium laser radiation | |
Bahrini et al. | Pulsed cavity ring-down spectrometer at 3 µm based on difference frequency generation for high-sensitivity CH 4 detection | |
Friss et al. | Development of a cavity enhanced Thomson and Raman scattering diagnostic | |
Sorokin | Ultrabroadband solid-state lasers in trace gas sensing | |
Kumar et al. | A versatile and narrow linewidth infrared radiation source for ro-vibration state-selected preparation of molecules in molecular beams | |
Barria et al. | 3.3-3.7 μm OPO/OPA optical source for multi-species 200m range Integrated Path DIfferential Absorption Lidar | |
Petukhov et al. | CO2 lasing on non-traditional bands | |
Aniolek et al. | Trace gas detection in the mid-IR with a compact PPLN-based cavity ring-down spectrometer | |
Geng et al. | Energy Transfer in an Optically Pumped D 2 O Gas THz Laser | |
Lux et al. | Barium nitrate Raman laser at 1.599 µm for CO2 detection | |
Crystal | Development of a Compact Broadband Optical Parametric Oscillator for Ultra-Sensitive Molecular Detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2008555378 Country of ref document: JP Ref document number: 2641240 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007217879 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 571254 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007750904 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2007217879 Country of ref document: AU Date of ref document: 20070213 Kind code of ref document: A |