WO2007097245A1 - 測位システム、測位方法及びカーナビゲーションシステム - Google Patents

測位システム、測位方法及びカーナビゲーションシステム Download PDF

Info

Publication number
WO2007097245A1
WO2007097245A1 PCT/JP2007/052746 JP2007052746W WO2007097245A1 WO 2007097245 A1 WO2007097245 A1 WO 2007097245A1 JP 2007052746 W JP2007052746 W JP 2007052746W WO 2007097245 A1 WO2007097245 A1 WO 2007097245A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
unit
satellite
autonomous navigation
inertial
Prior art date
Application number
PCT/JP2007/052746
Other languages
English (en)
French (fr)
Inventor
Akihiro Ueda
Iwao Maeda
Kiyomi Nagamiya
Yasuhiro Tajima
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP07714276.8A priority Critical patent/EP1988408B1/en
Priority to CN2007800015128A priority patent/CN101384919B/zh
Priority to US12/089,645 priority patent/US7869950B2/en
Publication of WO2007097245A1 publication Critical patent/WO2007097245A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled

Definitions

  • the present invention relates to a positioning system, a positioning method, and a car navigation system that receive radio waves from a plurality of radio stations such as GPS satellites and estimate the current position of a mobile object, and in particular, a sufficient number of them.
  • the present invention relates to a positioning system, a positioning method, and a car navigation system that can accurately estimate the current position of a moving object even when radio waves from a radio station cannot be received. Background art
  • GPS Global Positioning System
  • An on-board GPS device receives a carrier wave modulated with a pseudo-random code from a GPS satellite, and calculates the distance from the GPS satellite by multiplying the propagation time of the carrier wave obtained in the process of demodulation by the speed of light.
  • the GPS device receives the transmission time information from the three GPS satellites, and the three GPS satellites The intersection of the spheres with the radius between the vehicle and the vehicle is calculated as the vehicle coordinates.
  • the clocks held by GPS satellites are guaranteed to have extremely high accuracy, but the clocks mounted on the vehicles include some errors, so the propagation time also includes errors, and the distance from the GPS satellites can be accurately determined. I ca n’t calculate. Therefore, the GPS device is configured to use the fourth GPS satellite to correct the time error and determine the position of the vehicle with higher accuracy.
  • Patent Document 1 a method of positioning the position of a vehicle even if there is even one GPS satellite that can receive radio waves.
  • Patent Document 1 first, based on the radio wave received from one GPS satellite, a circle that is assumed to include the current position of the vehicle is calculated.
  • the current position can be estimated accurately by calculating the intersection of the direction of movement of the host vehicle and the circle.
  • Patent Document 1 JP-A-8-75479
  • the position that can be calculated in principle is a predetermined spherical surface that is equidistant from the GPS satellite.
  • the surface position of the earth is known, an intersection line between the spherical surface and the earth surface is obtained, and the intersection with the moving direction of the own vehicle is measured as the position of the own vehicle.
  • elevation altitude
  • Patent Document 1 positioning by the method of Patent Document 1 cannot be used unless the elevation is known or the elevation is not constant. If the altitude is not determined, the latitude and longitude will also shift, and as a result, accurate positioning is difficult.
  • an object of the present invention is to provide a positioning system and a car navigation system that can accurately measure the position of a moving object even if the number of receivable GPS satellites is not sufficient. .
  • the present invention has a positioning unit that performs positioning using radio waves transmitted from an artificial satellite, and an autonomous navigation unit (for example, INS unit 14) that performs positioning by autonomous navigation,
  • an autonomous navigation unit for example, INS unit 14
  • the positioning unit detects autonomous satellites from the range measured using radio waves when the number of captured satellites is less than three. A point where the distance from the inertial positioning position measured by the method is the minimum is extracted, and the point is estimated as a satellite positioning position measured using radio waves.
  • the position of the host vehicle can be accurately determined even if the number of captured GPS satellites is not sufficient.
  • the range when there is one captured artificial satellite, the range is If two spheres are defined as equidistant spheres from an artificial satellite, and the two captured satellites, the range is defined as a curve formed by two spheres equidistant from the two satellites. To do.
  • the satellite positioning position can be extracted from a spherical surface or a curve.
  • the position of the moving object is estimated by correcting the satellite positioning position by positioning by autonomous navigation.
  • the position of the moving object can be estimated by correcting the satellite positioning position by positioning by autonomous navigation.
  • FIG. 1 is an overall configuration diagram of a car navigation system to which a positioning system is applied.
  • FIG. 2 is a diagram showing a relationship between a vehicle and GPS satellites stl to st4.
  • FIG. 3 is a diagram showing a range defined by positioning when the number of captured GPS satellites is one or two.
  • FIG. 4 is a flowchart showing a procedure for estimating the position of the host vehicle by the positioning system. Explanation of symbols
  • FIG. 1 shows an overall configuration diagram of a car navigation system to which a positioning system 10 of the present invention is applied.
  • the car navigation system (hereinafter simply referred to as car navigation) 1 is based on the position of the host vehicle positioned by the positioning system 10 and displays the position of the host vehicle on a map or guides the route to the destination. Provide various services to passengers.
  • the car navigation ECU 19 extracts a road map from the map data 20 based on the position of the host vehicle estimated as described below, and displays it on the output device 18.
  • the output device 18 is a liquid crystal, organic EL, HUD (Head Up Display), or the like.
  • the output device 18 is connected to a speaker, and the car navigation ECU 19 outputs a traveling direction such as an intersection guided by the speaker by voice.
  • the input device 17 includes a push-down keyboard, buttons, a remote controller, a cross key, a touch panel, and the like, and is an interface for inputting an operation from the driver.
  • an operation may be input by recognizing a voice uttered by the driver with a microphone by a voice recognition circuit.
  • the driver can enter the destination by address, place name, landmark name, zip code, etc.
  • the car navigation system 1 is equipped with a television and radio receiving device and a media player for reproducing media such as a DVD, and these are operated by the input device 17.
  • the map data 20 is composed of a hard disk, CD_ROM, DVD-ROM, and the like, and road map information such as road networks and intersections is stored in association with latitude and longitude.
  • Map data 20 consists of information related to nodes (points where roads intersect roads, that is, intersections) and information related to links (roads connecting nodes and nodes) corresponding to the actual road network. Stored in a table-like database.
  • the node table has node numbers, coordinates, the number of links flowing out from the nodes, and their link numbers.
  • the link table also includes the link number and the start point node that constitutes the link. Node, end node, and link length. The node number and link number are determined so as not to overlap each other. Therefore, a road network is formed by entering the node number and link number.
  • the positioning system 10 includes a GPS receiving unit 11 that receives radio waves from GPS satellites, an INS (Inertial Navigation Systems) unit 14 that estimates the position of the vehicle by autonomous navigation, and positioning by GPS radio waves and autonomous navigation.
  • a positioning unit 15 that estimates the position of the vehicle based on the vehicle, and an estimation unit 11 that estimates an error in the position of the vehicle estimated by the positioning unit 15 and calculates a correction value.
  • the positioning system 10 performs coordinated control of positioning using radio waves transmitted from GPS satellites and positioning by the INS unit 14 to estimate the position of the host vehicle most reliably.
  • a plurality of (for example, 24) GPS satellites are arranged in a plurality of orbits (for example, 6) and orbit the earth. Since the approximate orbit of the GPS satellite is known, and a detailed orbit can be acquired by the F-Merris received as a navigation message, the GPS receiver 11 determines the predetermined orbit from the current vehicle position among the plurality of GPS satellites. Select four or more GPS satellites that enter the elevation angle, and receive the radio waves transmitted by those GPS satellites.
  • a radio wave transmitted from a GPS satellite is transmitted by modulating a carrier wave L1 having a wavelength of 1575.42 MHz with a fixed C / A code (Coarse / Acquisition Code) for each satellite.
  • the GPS receiver 11 generates a C / A code for the selected GPS satellite and attempts to demodulate the received radio wave.
  • the C / A code consists of 1023 bits while repeating a 1 or 0 bit string, and repeatedly modulates the carrier wave L1.
  • the GPS receiver 11 adjusts the 1023 bit phase (bit state of 1 or 0) so that the radio wave is demodulated by the generated C / A code.
  • the satellite could be captured.
  • the clock held by the GPS receiver 11 has an error
  • the phase of the C / A code of the carrier wave L 1 generated by the GPS satellite and demodulated by the positioning system 10 and the C / A code generated by the positioning system 10
  • the phase of the A code is shifted by the arrival time of the radio wave.
  • the positioning unit 15 calculates the arrival time of the radio wave based on the shift, and calculates the distance to the captured GPS satellite from the arrival time and the speed of light c.
  • Figure 2 shows the vehicle and GPS satellites stl to st4. It is a figure which shows the relationship.
  • the positioning unit 15 sets the following simultaneous equations for the number of GPS satellites captured and solves the variables (X, ⁇ , ⁇ ), thereby calculating the latitude X, longitude ⁇ , and elevation ⁇ of the host vehicle. (Hereafter, the coordinates estimated by the GPS satellite are referred to as the satellite positioning coordinates).
  • (XI, Yl, Z1) are the coordinates of GPS satellite 1
  • (X2, Y2, ⁇ 2) are the coordinates of GPS satellite 2
  • (X3, Y3, ⁇ 3) are the coordinates of GPS satellite 3
  • each GPS satellite The position of is known from F-Merris data. Therefore, since there are three variables, three or more GPS satellites to be captured are required to calculate the position of the vehicle. Solving the simultaneous equations means finding the intersection of the surfaces of three spheres centered on the GPS satellite, which is the coordinates of the vehicle that is measured from the radio waves of the GPS satellite.
  • the distance corrected for the clock error is calculated by adding “c (speed of light) X ⁇ ⁇ ” to each equation. In this case, since variable power including ⁇ ⁇ is obtained, four or more GPS satellites to be captured are required.
  • the relative speed of the host vehicle with respect to each GPS satellite can be obtained, whereby the speed of the host vehicle can be obtained.
  • the speed of the host vehicle may be calculated based on the Doppler amount of the carrier wave L1. Since the Doppler amount is proportional to the difference between the speed of the host vehicle and the GPS satellite, the speed of the host vehicle can be calculated based on the GPS satellite speed (known) and the Doppler amount. The Doppler amount can be calculated from the deviation of the carrier frequency.
  • the positioning unit 15 converts this into the earth fixed orthogonal coordinate system.
  • the position of the vehicle after conversion is referred to as a satellite positioning position.
  • a vehicle speed sensor 12 and a gyro sensor 13 included in the INS unit 14 are connected to the positioning unit 15.
  • the vehicle speed sensor 12 measures, for example, a change in magnetic flux as a pulse when a convex portion installed at a constant interval passes on the circumference of a rotor provided in each wheel, and calculates the number of pulses per unit time. Based on this, the vehicle speed is measured for each wheel.
  • the gyro sensor 13 is a short rate sensor such as an optical fiber gyro, a vibration piece type gyro, etc., which detects an angular velocity when the host vehicle rotates and integrates the detection result to obtain an angle, that is, a traveling direction. Can be converted to In order to estimate the direction in three dimensions, it is desirable that the gyro sensor 13 can detect the traveling direction in the three-axis direction.
  • the INS unit 14 includes a distance traveled by the vehicle speed sensor 12 and a gyro sensor at the satellite positioning position.
  • the inertial positioning position Accurately estimate the current position of the vehicle by autonomous navigation while accumulating the traveling direction according to 13 (hereinafter, the position estimated by autonomous navigation is called the inertial positioning position).
  • the positioning unit 15 can estimate the position of the host vehicle by autonomous navigation using the vehicle speed and the traveling direction detected by the INS 14, even if no GPS satellite is captured.
  • the satellite positioning position and the inertial positioning position are input to the estimation unit 16, and the estimation unit 16 estimates an error included in each based on these values and a value detected in the past, and also calculates the inertial positioning position.
  • a correction value is calculated.
  • the correction value calculated by the inertial positioning position is input to the INS unit 14, and the INS unit 14 outputs the inertial positioning position corrected by the correction value to the positioning unit 15.
  • the estimation unit 16 calculates a correction value of the inertial positioning position using, for example, a Kalman filter.
  • the force Lehman filter is a filter (algorithm) that obtains an optimum estimated value from a observed value including noise.
  • the Kalman filter calculates a correction value so as to minimize the mean square of the error of the estimated value obtained by performing predetermined processing on the inertial positioning positions that are successively input. In this way, the INS unit 14 outputs the inertial positioning position to the positioning unit 15 while correcting the error with high accuracy.
  • the satellite positioning position is also input to the estimation unit 16, inertia based on the satellite positioning position is obtained.
  • An error included in the positioning position may be estimated. In this case, if there are four or more GPS satellites being captured, the satellite positioning position at that time is corrected by the atmospheric condition and elevation angle, and the error of the inertial positioning position measured by INS 14 is estimated. Can be included.
  • the estimation unit 16 does not estimate the error of the satellite positioning position or does not input the satellite positioning position correction value to the positioning unit 15 even if it is estimated. It is the feature. Since the Kalman filter estimates errors based on past measurement values, it is suitable for applying to satellite positioning positions, which are instantaneous positioning. For example, if the radio wave from a GPS satellite is greatly displaced due to multipath, etc., the Kalman filter will calculate a correction value using a satellite positioning position with a large error for a long time thereafter. The accuracy is better secured without correction by the Kalman filter.
  • the clock error of the GPS receiver 11 remains (in the case of three), but the GPS satellites move into the three-dimensional space of the vehicle. If the satellite positioning position is acquired and corrected by autonomous navigation by the INS unit 14, the position of the vehicle can be estimated with high accuracy.
  • Fig. 3 (a) shows the range of positions specified when there is one GPS satellite
  • Fig. 3 (b) shows the range of positions specified when there are two GPS satellites.
  • the locus of the equidistant position from the GPS satellite is a sphere, so the position of the vehicle can only be specified on one of the spheres.
  • the locus of the equidistant position from the two GPS satellites is a curve where the spheres centered on the two GPS satellites intersect, so the position of the vehicle is either on the curve Can only be identified.
  • the positioning system 10 of the present embodiment determines the point where the inertial positioning position measured by autonomous navigation is closest from the satellite positioning position (sphere or curve). By using the satellite positioning position, the satellite positioning position can be specified as one point.
  • FIG. 4 is a flowchart of the procedure for estimating the position of the host vehicle by the positioning system 10. Based on First, the GPS receiver 11 captures a GPS satellite (Sl). If not captured, continue autonomous navigation with INS14.
  • a GPS satellite Sl
  • the positioning unit 15 determines the power of the captured GPS satellite. It is determined whether or not it is greater than the number of unknowns necessary for calculating the position of the vehicle by the above simultaneous equations. (S2). As described above, the number of unknowns is four to correct the clock error, and is three if the clock error is corrected by another method. In this embodiment, it is assumed that there are three unknowns, and if the number of GPS satellites captured is less than 3, the process of step S3 is performed, and if there are three or more, the process of step S4 is performed.
  • the positioning unit 15 calculates a satellite positioning position based on the distance from the three or more GPS satellites (S4).
  • the positioning unit 15 determines the position at which the distance from the inertial positioning position calculated by the INS 14 is the minimum as shown in FIG. Extract from the spherical surface or curve shown in b) and set the position as the satellite positioning position (S3).
  • the positioning unit 15 corrects the satellite positioning position with the inertial positioning position, and estimates the position of the host vehicle (S5). Furthermore, the position of the road map of the map data 20 may be determined with high accuracy by a map matching method that associates the estimated position of the own vehicle. The determined position of the vehicle is sent to the car navigation ECU 19.
  • the estimation unit 16 estimates the true value of the inertial positioning position based on the inertial positioning position, and feeds back the corrected value to the INS 14 (S6).
  • the positioning system of the present embodiment when the number of GPS satellites is less than three, only a sphere or a curve is defined. From the satellite positioning position, the position closest to the inertial positioning position is determined. As the position of the vehicle is extracted and the position of the host vehicle is estimated by correcting the satellite positioning position by autonomous navigation, the position of the host vehicle is accurately estimated even if the number of captured GPS satellites is 1 or 2. it can. Further, in the present embodiment, since the error of the inertial positioning position is corrected by the estimating unit 16, the accuracy of the satellite positioning position extracted as the closest position of the inertial positioning position force is also maintained.
  • the present embodiment has been described for a vehicle, the present invention can also be applied to the case of estimating the position of another moving body such as a ship or an aircraft. Also, a GPS satellite was used as a radio station The radio station may be installed on the ground.

Abstract

 人工衛星から発信される電波を利用して測位する測位部15と、自律航法により測位する自律航法部14とを有し、測位部15と自律航法部14が協調して移動体の位置を推定する測位システム10において、測位部15は、捕捉された人工衛星数が3未満の場合、電波を利用して測位された範囲から、自律航法により測位された慣性測位位置との距離が最小となる地点を抽出し、当該地点を電波を利用して測位された衛星測位位置と推定する、ことを特徴とする。

Description

明 細 書
測位システム、測位方法及びカーナビゲーシヨンシステム 技術分野
[0001] 本発明は、 GPS衛星等の複数の無線局からの電波を受信して、移動体の現在位 置を推定する測位システム、測位方法及びカーナビゲーシヨンシステムに関し、特に 、十分な数の無線局からの電波を受信できない場合にも精度よく移動体の現在位置 を推定できる測位システム、測位方法及びカーナビゲーシヨンシステムに関する。 背景技術
[0002] 車両の走行位置や目的地までの走行経路をユーザに提供するため車両の走行位 置を検出する GPS (Grobal Positioning System)装置が知られている。車載され た GPS装置は、 GPS衛星から疑似ランダム符号で変調された搬送波を受信して、復 調の過程で得られる搬送波の伝播時間に光速を乗じることで GPS衛星との距離を算 出する。地球上の車両の位置は、緯度、経度及び標高(以下、単に座標という)の三 次元空間において特定されるため、 GPS装置は 3つの GPS衛星から発信時刻情報 を受信して、 3つの GPS衛星と車両との距離を半径とする球体の交点を車両の座標 として算出する。また、 GPS衛星が保持する時計は極めて高い精度が保証されてい るが車両に搭載された時計は若干の誤差を含むため伝播時間も誤差を含むものとな り、 GPS衛星との距離を正確に算出できなレ、。そこで、 GPS装置は 4つめの GPS衛 星を利用して時間誤差を補正しより精度よく自車両の位置を測位するように構成され ている。
[0003] し力、しながら、 GPS装置を自動車等の移動体に搭載した場合、ビルの陰等、 4つ全 ての GPS衛星から発信時刻情報を搬送する電波を受信できなレ、場合がある。 GPS 衛星からの電波を受信できない場合、車載された測位システムでは、 自律航法やマ ップマッチングにより現在位置を推定することができる力 GPS衛星からの電波が得 られない状態が長時間にわたると、 自律航法やマップマッチングによる位置推定に 誤差が累積されることとなり、好ましくない。
[0004] そこで、電波を受信できる GPS衛星が 1つでもあっても車両の位置を測位する方法 が提案されている(例えば、特許文献 1参照。)。特許文献 1では、まず、 1つの GPS 衛星から受信した電波に基づき、現在の自車両の位置を含むとされる円を算出する 。また、 自車両はジャイロセンサ等により進行方向の履歴を蓄積しているので、 自車 両の移動方向と円との交点を算出することで、現在位置を精度よく推定することを図 つている。
特許文献 1 :特開平 8— 75479号公報
発明の開示
発明が解決しょうとする課題
[0005] ところで、電波を受信できる GPS衛星が 1つの場合、原理的に算出可能な位置は、 GPS衛星から等距離となる所定の球面である。この場合、地球の表面位置が既知で あれば、球面と地球表面とが交わる交線が得られ、 自車両の移動方向との交点が自 車両の位置として測位される。し力、しながら、地球の表面には高低差 (標高)があるた め、特許文献 1の方法による測位は、標高が既知でなければ又は標高を一定としな ければ利用できなレ、。標高が定まらなければ、緯度及び経度もずれるため、結果とし て精度のよい測位が困難である。
[0006] 本発明は、上記問題に鑑み、受信可能な GPS衛星の数が十分でなくても移動体 の位置を精度よく測位可能な測位システム、カーナビゲーシヨンシステムを提供する ことを目的とする。
課題を解決するための手段
[0007] 上記課題に鑑み、本発明は、人工衛星から発信される電波を利用して測位する測 位部と、自律航法により測位する自律航法部(例えば、 INS部 14)とを有し、測位部と 自律航法部が協調して移動体の位置を推定する測位システムにおいて、測位部は、 捕捉された人工衛星数が 3未満の場合、電波を利用して測位された範囲から、 自律 航法により測位された慣性測位位置との距離が最小となる地点を抽出し、当該地点 を電波を利用して測位された衛星測位位置と推定する、ことを特徴とする。
[0008] 本発明によれば、慣性測位位置に最も近い位置を衛星測位位置として抽出するの で、捕捉される GPS衛星の数が十分でなくても自車両の位置を精度よく測位できる。
[0009] また、本発明の一形態において、捕捉された人工衛星が 1つの場合、範囲は、当該 人工衛星から等距離な球面として規定され、捕捉された人工衛星が 2つの場合、範 囲は、当該 2つの人工衛星から等距離な 2つの球面がなす曲線として規定される、こ とを特徴とする。
[0010] 本発明によれば、球面又は曲線上から衛星測位位置として抽出することができる。
[0011] また、本発明の一形態において、衛星測位位置を自律航法による測位で補正して 移動体の位置を推定する。
[0012] 本発明によれば、捕捉される GPS衛星の数が十分でなくても、衛星測位位置を自 律航法による測位で補正して移動体の位置を推定することができる。
発明の効果
[0013] 受信可能な GPS衛星の数が十分でなくても移動体の位置を精度よく測位可能な測 位システム、カーナビゲーシヨンシステムを提供することができる。
図面の簡単な説明
[0014] [図 1]測位システムを適用したカーナビゲーシヨンシステムの全体構成図である。
[図 2]車両と GPS衛星 stl〜st4との関係を示す図である。
[図 3]捕捉された GPS衛星の数が 1つ又は 2つの場合に測位により規定される範囲を 示す図である。
[図 4]測位システムによる自車両の位置の推定手順を示すフローチャート図である。 符号の説明
1 カーナビゲ一、:
10 測位システム
11 GPS受信部
12 車速センサ
13 ジャイロセンサ
14 INS咅 B
15 測位部
16 推定部
17 入力装置
18 出力装置 19 カーナビ ECU
20 地図データ
発明を実施するための最良の形態
[0016] 以下、本発明を実施するための最良の形態について図面を参照しながら説明する 。図 1は、本発明の測位システム 10を適用したカーナビゲーシヨンシステムの全体構 成図を示す。カーナビゲーシヨンシステム(以下、単にカーナビという) 1は、測位シス テム 10が測位した自車両の位置に基づき、 自車両の位置を地図上に表示したり目 的地までの経路を案内する等、乗員に種々のサービスを提供する。
[0017] カーナビ ECU19は、後述のようにして推定された自車両の位置に基づき地図デー タ 20から道路地図を抽出し、出力装置 18に表示する。出力装置 18は、液晶や有機 EL、 HUD (Head Up Display)等である。また、出力装置 18はスピーカと接続され ており、カーナビ ECU19はスピーカにより案内する交差点などの進行方向を音声に より出力する。
[0018] 入力装置 17は、押下式のキーボード、ボタン、リモコン、十字キー、タツチパネル等 で構成され、運転者からの操作を入力するためのインターフェイスである。また、マイ クを備え運転者の発する音声を音声認識回路で認識して操作を入力してもよい。 目 的地までのルート検索を行う場合、運転者は目的地を住所、地名、ランドマーク名、 郵便番号等で入力することができる。
[0019] また、カーナビゲーシヨンシステム 1は、テレビ及びラジオの受信装置や DVD等のメ ディアを再生するメディアプレーヤを装備しており、これらは入力装置 17により操作さ れる。
[0020] また、地図データ 20は、ハードディスクや CD_R〇M、 DVD— ROM等で構成さ れ、道路網や交差点などの道路地図情報が、緯度'経度に対応づけて格納されてい る。地図データ 20は、実際の道路網に対応して、ノード (道路と道路が交差する点、 すなわち交差点)に関係する情報と、リンク (ノードとノードを接続する道路)に関係する 情報とからなるテーブル状のデータベースに格納される。
[0021] ノードテーブルは、ノードの番号、座標、そのノードから流出するリンク数及びそれら のリンク番号を有する。また、リンクテーブルは、リンクの番号、リンクを構成する始点ノ ードと終点ノード、リンク長を有する。ノード番号及びリンク番号は、互いに重複しない ように定められている。したがって、ノード番号とリンク番号をそれぞれ迪ることで道路 網が形成される。
[0022] 測位システム 10について説明する。測位システム 10は、 GPS衛星からの電波を受 信する GPS受信部 11、自律航法により自車両の位置を推定する INS (Inertial Navig ation Systems)部 14、 GPS衛星からの電波及び自律航法による測位に基づき自車 両の位置を推定する測位部 15、測位部 15が推定した車両の位置の誤差を見積もり 補正値を算出する推定部 11、とを有する。測位システム 10は、 GPS衛星から発信さ れる電波を利用した測位と INS部 14による測位とを協調制御して、最も確からしレ、自 車両の位置を推定する。
[0023] GPS衛星は、複数の軌道(例えば 6個)に複数 (例えば 24個)配置され地球を周回 している。 GPS衛星のおおよその軌道は既知であり、また、航法メッセージとして受 信されるエフヱメリスにより詳細な軌道が取得できるので、 GPS受信部 11は、複数の GPS衛星のうち現在の車両の位置から所定の仰角に入る GPS衛星を好ましくは 4つ 以上選択し、それらの GPS衛星力 発信される電波を受信する。
[0024] GPS衛星が発信する電波は、波長 1575. 42MHzの搬送波 L1を衛星毎に固定の C/Aコード(Coarse/Acquisition Code)により変調されて発信される。 GPS受信部 1 1は、選択した GPS衛星の C/Aコードを生成して、受信される電波の復調を試みる 。 C/Aコードは 1又は 0のビット列を繰り返しながら 1023ビットで 1つのコードを構成 し、繰り返し搬送波 L1を変調している。 GPS受信部 11は、生成した C/Aコードによ り電波が復調されるように 1023ビットの位相(1又は 0のビット状態)を調整し、復調が 可能な位相が決定されると当該 GPS衛星を捕捉できたこととなる。
[0025] GPS衛星の時計と GPS受信部 11が保持する時計が完全に一致しているとすれば
(実際には GPS受信部 11が保持する時計は誤差を有する)、 GPS衛星で生成され 測位システム 10で復調した搬送波 L 1の C/Aコードの位相と、測位システム 10で生 成した C/Aコードの位相とは、電波の到達時間の分だけシフトしている。
[0026] 測位部 15は、そのシフト分に基づき電波の到達時間を計算し、到達時間と光速 cか ら、捕捉した GPS衛星までの距離を算出する。図 2は、車両と GPS衛星 stl〜st4と の関係を示す図である。
[0027] 測位部 15は、捕捉された GPS衛星の数だけ次のような連立方程式を立て、変数( X, Υ, Ζ)について解くことで、 自車両の緯度 X、経度 Υ、標高 Ζを算出することができ る(以下、 GPS衛星により推定した座標を衛星測位座標とレ、う)。
[0028] (XI, Yl、 Z1)は GPS衛星 1の座標、(X2、 Y2、 Ζ2)は GPS衛星 2の座標、(X3、 Y3、 Ζ3)は GPS衛星 3の座標である力 各 GPS衛星の位置はエフヱメリスデータに より既知である。したがって、変数が 3つなので、自車両の位置を算出するためには 捕捉する GPS衛星が 3つ以上必要である。連立方程式を解くことは、 GPS衛星を中 心とする 3つの球の表面の交点を求めることになり、それが GPS衛星の電波から測位 される自車両の座標となる。
GPS衛星 stlまでの距離 p 1
= { (xi-x)2+ (YI -Y)2+ (zi-z)2}
GPS衛星 st2までの距離 p 2
=f { (X2-X) 2+ (Y2-Y) 2+ (Z2-Z) 2}
GPS衛星 st3までの距離 p 3
=f { (X3 -X) 2+ (Y3-Y) 2+ (Z3 -Z) 2}
また、 GPS受信部 11の時計の誤差を A tとすれば、各式に「c (光速) X Δ ΐ」を加え ることで時計の誤差を補正した距離が算出されることとなる。この場合には Δ ΐを含め 変数力 ¾つになるので、捕捉する GPS衛星が 4つ以上必要となる。
[0029] なお、各 GPS衛星との距離 ρを時間で微分すれば、各 GPS衛星に対する自車両 の相対速度が求められので、これにより自車両の速度を取得することができる。また、 自車両の速度は、搬送波 L1のドップラー量に基づき算出してもよい。ドップラー量は 自車両の速度と GPS衛星の速度の差に比例するので、 GPS衛星の速度(既知)とド ップラー量に基づき自車両の速度を算出できる。ドップラー量は搬送波の周波数の ズレから算出できる。
[0030] このように、 GPS衛星による測位では測位される GPS衛星が 3つ以上あることが好 ましいが、本実施の形態の測位システムは、捕捉可能な GPS衛星が 2つ以下であつ ても、自車両の位置を精度よく推定することを可能とする。 [0031] なお、上記の連立方程式により算出された位置座標は WGS (World Geodetic System)基準座標系による位置座標であるため、測位部 15はこれを地球固定直交 座標系に変換する。変換された後の車両の位置を、衛星測位位置と称す。
[0032] さて、測位部 15には、 INS部 14が有する車速センサ 12及びジャイロセンサ 13が接 続されている。車速センサ 12は、例えば、各輪に備えられたロータの円周上に定間 隔で設置された凸部が通過する際の磁束の変化をパルスとして計測して、単位時間 あたりのパルス数に基づき各輪毎に車速を計測する。
[0033] また、ジャイロセンサ 13は、光ファイバ一ジャイロ、震動片型ジャイロ等のョーレート センサであり、 自車両が回転する時の角速度を検知して検知結果を積分することで 角度、すなわち進行方向に変換できる。 3次元上の方向を推定するためにジャイロセ ンサ 13は 3軸方向の進行方向が検出可能であることが望ましい。
[0034] INS部 14は、衛星測位位置に、車速センサ 12による走行距離及びジャイロセンサ
13による走行方向を累積しながら自律航法により車両の現在位置を精度よく推定す る(以下、 自律航法により推定した位置を慣性測位位置という)。
[0035] したがって、測位部 15は、仮に、 GPS衛星が全く捕捉されなくても INS14の検出 する車速や進行方向を用いて自律航法により自車両の位置を推定できる。
[0036] また、衛星測位位置及び慣性測位位置は推定部 16に入力され、推定部 16はそれ らの値及び過去に検出された値に基づきそれぞれが含む誤差を見積もると共に、慣 性測位位置の補正値を算出する。慣性測位位置にっレ、て算出された補正値は INS 部 14に入力され、 INS部 14は補正値により補正した慣性測位位置を測位部 15に出 力する。
[0037] 推定部 16は、例えばカルマンフィルタにより慣性測位位置の補正値を算出する。力 ルマンフィルタは、雑音を含む観測値から真の値に最適な推定値を求めるフィルタ( アルゴリズム)である。カルマンフィルタは、次々に入力される慣性測位位置に所定の 処理を施して得られる推定値の誤差の二乗平均を最小化するように補正値を算出す る。このようにして、 INS部 14は、誤差を高精度に補正しながら慣性測位位置を測位 部 15に出力する。
[0038] なお、推定部 16には衛星測位位置も入力されるため、衛星測位位置に基づき慣性 測位位置が含む誤差を推定してもよい。この場合、 4つ以上の GPS衛星が捕捉され ている状態があれば、その時の衛星測位位置に大気の状態や仰角による補正を施 し、 INS 14により測位された慣性測位位置が有する誤差の推定に算入させることが できる。
[0039] ここで、推定部 16は衛星測位位置の誤差を推定しなレ、、又は、仮に推定しても衛 星測位位置の補正値を測位部 15に入力しない点も、本実施の形態の特徴である。 カルマンフィルタは、過去の計測値の傾向を元に誤差を推定するものなので、瞬時 測位である衛星測位位置に適用することは好適でなレ、。例えば、 GPS衛星からの電 波がマルチパス等により大きく変位した場合、カルマンフィルタはその後長時間にわ たって誤差の大きな衛星測位位置を使用して補正値を算出することになるので、衛 星測位位置についてはカルマンフィルタにより補正しない方が精度が確保されやす レ、。
[0040] これに対し、 GPS衛星が 3つ以上捕捉されている場合には、 GPS受信部 11が有す る時計の誤差は残るものの(3つの場合)、 GPS衛星により車両の三次元空間におけ る衛星測位位置が取得され、これを INS部 14による自律航法により補正すれば高精 度に自車両の位置を推定できる。
[0041] し力しながら、捕捉された GPS衛星が 2つ以下の場合、 GPS衛星との距離により規 定される位置は広範囲になる。図 3 (a)は、 GPS衛星が 1つの場合に規定される位置 の範囲を、図 3 (b)は GPS衛星が 2つの場合に規定される位置の範囲を、それぞれ 示す。 GPS衛星が 1つの場合、 GPS衛星から等距離な位置の軌跡は球になるため、 自車両の位置は球上のいずれかとしか特定できなレ、。また、 GPS衛星が 2つの場合 、 2つの GPS衛星から等距離な位置の軌跡は、 2つの GPS衛星を中心とする球が交 差する曲線となるため、 自車両の位置は曲線上のいずれかとしか特定できない。
[0042] 本実施の形態の測位システム 10は、捕捉された GPS衛星が 3未満の場合、衛星測 位位置 (球又は曲線)から、自律航法により測位された慣性測位位置が最も近くなる 地点を衛星測位位置とすることで、衛星測位位置をある 1つの地点に特定することが できる。
[0043] 測位システム 10による自車両の位置の推定手順について図 4のフローチャート図 に基づき説明する。まず、 GPS受信部 11が GPS衛星を捕捉する(Sl)。捕捉されな ければ、 INS14による自律航法を継続する。
[0044] GPS衛星が捕捉されたら、測位部 15は捕捉された GPS衛星の数力 上記の連立 方程式により自車両の位置を算出するために必要な未知数の数より多いか否力 ^判 定する(S2)。未知数の数は、上述したように、時計の誤差まで補正するためには 4つ であり、時計の誤差を別の方法で補正するような場合は 3つとなる。本実施の形態で は未知数を 3つとすることとして、捕捉された GPS衛星が 3未満の場合には、ステップ S3の処理を、 3つ以上の場合にはステップ S4の処理を行う。
[0045] 捕捉された GPS衛星の数が 3つ以上の場合、測位部 15は 3つ以上の GPS衛星と の距離に基づき衛星測位位置を算出する(S4)。
[0046] また、捕捉された GPS衛星の数が 3つ未満の場合、測位部 15は、 INS14により算 出された慣性測位位置との距離が最小となる位置を、図 3 (a)又は (b)に示す球面又 は曲線から抽出し、その位置を衛星測位位置とする(S3)。
[0047] ついで、測位部 15は、通常の測位と同様に、衛星測位位置を慣性測位位置により 補正して自車両の位置を推定する(S5)。なお、さらに、地図データ 20の道路地図に 、推定した自車両の位置を対応づけるマップマッチング法により位置を高精度に決 定してもよレ、。決定された車両の位置は、カーナビ ECU19に送出される。
[0048] また、推定部 16は、慣性測位位置に基づき慣性測位位置の真値を推定し、その補 正値を INS14にフィードバックする(S6)。
[0049] 本実施の形態の測位システムによれば、 GPS衛星が 3つ未満の場合、球又は曲線 としか規定されなレ、衛星測位位置から、慣性測位位置に最も近レ、位置を衛星測位位 置として抽出し、この衛星測位位置を自律航法により補正して自車両の位置を推定 するため、捕捉される GPS衛星の数が 1又は 2であっても精度よく自車両の位置を推 定できる。また、本実施の形態では、推定部 16により慣性測位位置の誤差を補正し ているため、慣性測位位置力 最も近い位置として抽出される衛星測位位置も精度 が保たれる。
[0050] また、本実施の形態では車両を対象に説明したが、船や航空機などのその他の移 動体の位置を推定する場合にも適用できる。また、無線局として GPS衛星を用いた 、無線局は地上に設置されていてもよい。
[0051] 本発明は力かる特定の実施形態に限定されるものではなぐ特許請求の範囲に記 載された本発明の要旨の範囲内において、種々の変形 ·変更が可能である。
[0052] また、本国際出願は、 2006年 2月 20日に出願した日本国特許出願第 2006— 04 2826号に基づく優先権を主張するものであり、 日本国特許出願第 2006— 042826 号の全内容を本国際出願に援用する。

Claims

請求の範囲
[1] 人工衛星力 発信される電波を利用して測位する測位部と、 自律航法により測位 する自律航法部とを有し、前記測位部と前記自律航法部が協調して移動体の位置を 推定する測位システムにおレ、て、
前記測位部は、捕捉された前記人工衛星数が 3未満の場合、前記電波を利用して 測位された範囲から、前記自律航法により測位された慣性測位位置との距離が最小 となる地点を抽出し、当該地点を前記電波を利用して測位された衛星測位位置と推 定する、
ことを特徴とする測位システム。
[2] 捕捉された前記人工衛星数が 1つの場合、前記範囲は、当該人工衛星から等距離 な球面として規定され、
捕捉された前記人工衛星数が 2つの場合、前記範囲は、当該 2つの人工衛星から 等距離な 2つの球面がなす曲線として規定される、
ことを特徴とする請求項 1記載の測位システム。
[3] 前記慣性測位位置の過去の値から該慣性測位位置の補正値を演算する推定部を 有し、
前記自律航法部は、前記推定部が演算した前記補正値により前記慣性測位位置 を補正し、
前記測位部は、前記範囲から、補正後の前記慣性測位位置との距離が最小となる 地点を前記衛星測位位置と推定する、
ことを特徴とする請求項 1記載の測位システム。
[4] 人工衛星力 発信される電波を利用して測位する測位部と、 自律航法により測位 する自律航法部とを有し、前記測位部と前記自律航法部が協調して移動体の位置を 推定する測位方法において、
前記測位部が、捕捉された前記人工衛星の数が 3未満か否力を判定するステップ と、
3未満の場合、前記測位部は、電波を利用して測位された範囲から、前記自律航 法により測位された慣性測位位置との距離が最小となる地点を抽出し、当該地点を 前記電波を利用して測位された衛星測位位置と推定するステップと、
を有することを特徴とする測位方法。
請求項 1〜3いずれか記載の測位システムにより推定された車両の前記位置を含 む道路地図を表示可能なカーナビゲーシヨンシステム。
PCT/JP2007/052746 2006-02-20 2007-02-15 測位システム、測位方法及びカーナビゲーションシステム WO2007097245A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07714276.8A EP1988408B1 (en) 2006-02-20 2007-02-15 Positioning system, positioning method and car navigation system
CN2007800015128A CN101384919B (zh) 2006-02-20 2007-02-15 定位系统、定位方法、以及汽车导航系统
US12/089,645 US7869950B2 (en) 2006-02-20 2007-02-15 Positioning system, positioning method and car navigation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-042826 2006-02-20
JP2006042826A JP4020143B2 (ja) 2006-02-20 2006-02-20 測位システム、測位方法及びカーナビゲーションシステム

Publications (1)

Publication Number Publication Date
WO2007097245A1 true WO2007097245A1 (ja) 2007-08-30

Family

ID=38437283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052746 WO2007097245A1 (ja) 2006-02-20 2007-02-15 測位システム、測位方法及びカーナビゲーションシステム

Country Status (5)

Country Link
US (1) US7869950B2 (ja)
EP (1) EP1988408B1 (ja)
JP (1) JP4020143B2 (ja)
CN (1) CN101384919B (ja)
WO (1) WO2007097245A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034671A1 (ja) * 2007-09-10 2009-03-19 Mitsubishi Electric Corporation ナビゲーション装置
WO2009039587A1 (en) * 2007-09-28 2009-04-02 Leica Geosystems Ag A positioning system and method
US8965604B2 (en) 2008-03-13 2015-02-24 General Electric Company System and method for determining a quality value of a location estimation of a powered system
US8190312B2 (en) * 2008-03-13 2012-05-29 General Electric Company System and method for determining a quality of a location estimation of a powered system
JP5566039B2 (ja) * 2009-03-13 2014-08-06 富士通株式会社 測位装置
JP4968320B2 (ja) * 2009-12-25 2012-07-04 カシオ計算機株式会社 情報取得装置、位置情報記憶方法及びプログラム
US20110313650A1 (en) * 2010-06-21 2011-12-22 Qualcomm Incorporated Inertial sensor orientation detection and measurement correction for navigation device
CN102023305A (zh) * 2010-08-05 2011-04-20 深圳市赛格导航科技股份有限公司 一种定位方法、装置及车载终端
JP2012122819A (ja) * 2010-12-08 2012-06-28 Casio Comput Co Ltd 測位装置、測位方法およびプログラム
KR20130035483A (ko) * 2011-09-30 2013-04-09 삼성전자주식회사 휴대용 단말기에서 항체의 기수각 변화를 인식하기 위한 장치 및 방법
CN102621570B (zh) * 2012-04-11 2013-10-23 清华大学 基于双全球定位和惯性测量的汽车动力学参数测量方法
WO2014164982A1 (en) * 2013-03-12 2014-10-09 Lockheed Martin Corporation System and process of determining vehicle attitude
US20150149085A1 (en) * 2013-11-27 2015-05-28 Invensense, Inc. Method and system for automatically generating location signatures for positioning using inertial sensors
CN104008652B (zh) * 2014-06-16 2016-08-24 上海萃智工业技术有限公司 一种基于组合导航的车辆监控系统
CN104697536A (zh) * 2015-02-12 2015-06-10 奇瑞汽车股份有限公司 一种车辆定位的方法和装置
US9964949B2 (en) * 2015-12-18 2018-05-08 Gm Global Technology Operation Llc Operating modes for autonomous driving
DE102016222272B4 (de) * 2016-11-14 2018-05-30 Volkswagen Aktiengesellschaft Schätzen einer Eigenposition
DE102017100060A1 (de) * 2017-01-03 2018-07-05 Valeo Schalter Und Sensoren Gmbh Bestimmung von Bewegungsinformation mit Umgebungssensoren
US11447134B2 (en) * 2019-09-18 2022-09-20 Aptiv Technologies Limited Vehicle route modification to improve vehicle location information
CN110631588B (zh) * 2019-09-23 2022-11-18 电子科技大学 一种基于rbf网络的无人机视觉导航定位方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137009A (ja) * 1984-12-07 1986-06-24 Nissan Motor Co Ltd 車両用測位装置
JPS63247613A (ja) * 1987-04-02 1988-10-14 Mazda Motor Corp 車両用ナビゲ−シヨン装置
JPH0247577A (ja) * 1988-08-09 1990-02-16 Nissan Motor Co Ltd 車両用測位装置
JPH02159590A (ja) * 1988-12-12 1990-06-19 Japan Radio Co Ltd 自己位置測位装置
JPH04164277A (ja) * 1990-10-26 1992-06-09 Honda Motor Co Ltd 移動体の現在位置測定装置
JPH06273510A (ja) * 1993-03-17 1994-09-30 Aisin Seiki Co Ltd 車上測位装置
JPH0875479A (ja) 1994-09-06 1996-03-22 Matsushita Electric Ind Co Ltd 電波航法装置
JPH1019580A (ja) * 1996-06-28 1998-01-23 Mitsubishi Electric Corp Gps受信装置
JP2006042826A (ja) 2001-06-12 2006-02-16 Univ Of Geneva 病原体のビルレンスを評価するための方法およびその使用
JP7060175B2 (ja) * 2019-12-16 2022-04-26 Tdk株式会社 リザボア素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760175A (ja) 1993-08-30 1995-03-07 Mitsubishi Heavy Ind Ltd 噴水演出制御方法および装置
DE19645394A1 (de) * 1996-11-04 1998-05-20 Bosch Gmbh Robert Ortungssensor mit einem Satellitenempfänger zur Positionsbestimmung
JP3833786B2 (ja) * 1997-08-04 2006-10-18 富士重工業株式会社 移動体の3次元自己位置認識装置
US6278945B1 (en) * 1997-11-24 2001-08-21 American Gnc Corporation Fully-coupled positioning process and system thereof
EP1130358B1 (en) * 2000-03-01 2006-06-28 Matsushita Electric Industrial Co., Ltd. Navigation device
CN1285518A (zh) * 2000-09-05 2001-02-28 泉州海洋高科技电子有限公司 定位通讯组合系统
CN1361430A (zh) * 2000-12-23 2002-07-31 林清芳 增强的运动体定位和导航方法与系统
JP2003090872A (ja) * 2001-09-18 2003-03-28 Fujitsu Ltd 位置測定装置、それを備えた端末及び位置測定方法
CN1235017C (zh) * 2002-10-08 2006-01-04 曲声波 车辆位置检测装置及其处理方法
SE0300303D0 (sv) * 2003-02-06 2003-02-06 Nordnav Technologies Ab A navigation Method and Apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137009A (ja) * 1984-12-07 1986-06-24 Nissan Motor Co Ltd 車両用測位装置
JPS63247613A (ja) * 1987-04-02 1988-10-14 Mazda Motor Corp 車両用ナビゲ−シヨン装置
JPH0247577A (ja) * 1988-08-09 1990-02-16 Nissan Motor Co Ltd 車両用測位装置
JPH02159590A (ja) * 1988-12-12 1990-06-19 Japan Radio Co Ltd 自己位置測位装置
JPH04164277A (ja) * 1990-10-26 1992-06-09 Honda Motor Co Ltd 移動体の現在位置測定装置
JPH06273510A (ja) * 1993-03-17 1994-09-30 Aisin Seiki Co Ltd 車上測位装置
JPH0875479A (ja) 1994-09-06 1996-03-22 Matsushita Electric Ind Co Ltd 電波航法装置
JPH1019580A (ja) * 1996-06-28 1998-01-23 Mitsubishi Electric Corp Gps受信装置
JP2006042826A (ja) 2001-06-12 2006-02-16 Univ Of Geneva 病原体のビルレンスを評価するための方法およびその使用
JP7060175B2 (ja) * 2019-12-16 2022-04-26 Tdk株式会社 リザボア素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1988408A4

Also Published As

Publication number Publication date
JP4020143B2 (ja) 2007-12-12
CN101384919B (zh) 2012-01-04
EP1988408A1 (en) 2008-11-05
JP2007218865A (ja) 2007-08-30
US7869950B2 (en) 2011-01-11
EP1988408B1 (en) 2017-06-21
CN101384919A (zh) 2009-03-11
EP1988408A4 (en) 2012-11-21
US20100169006A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP4020143B2 (ja) 測位システム、測位方法及びカーナビゲーションシステム
CN100533066C (zh) 一种用于地面车辆gps导航的惯性补偿方法
EP2449411B1 (en) Trajectory-based location determination
US8548731B2 (en) Navigation method, navigation system, navigation device, vehicle provided therewith and group of vehicles
US8224574B2 (en) System for multiple navigation components
US20070282565A1 (en) Object locating in restricted environments using personal navigation
CN103339472A (zh) 用于gnss车辆导航的受惯性传感器辅助的航向和定位
WO2010073113A1 (en) Gnss receiver and positioning method
CN107110974B (zh) 导航系统和用于对车辆进行导航的方法
CN110914711A (zh) 定位装置
CN110133700A (zh) 一种船载综合导航定位方法
WO2017145575A1 (ja) 衛星測位装置及び列車制御システム
CN100516777C (zh) Gps/ins组合定位导航系统及其速率检测校正方法
Oguz-Ekim et al. Proof of concept study using DSRC, IMU and map fusion for vehicle localization in GNSS-denied environments
JP5879977B2 (ja) 速度推定装置及びプログラム
JP2008051572A (ja) ナビゲーション装置及び、その方法、並びにそのプログラム
US10895627B2 (en) Self-position estimation apparatus and self-position estimation method
JP2008139105A (ja) 移動体位置測位装置
JP2783924B2 (ja) 車両位置検出装置
JP2008051573A (ja) ナビゲーション装置及び、その方法、並びにそのプログラム
KR101221931B1 (ko) 위성신호 미약 환경에서의 관성센서를 이용한 선박의 위성측정치 생성방법 및 장치
JP2007155644A (ja) Gps受信装置、カーナビゲーションシステム
JP2014153113A (ja) 速度推定装置及びプログラム
US10830906B2 (en) Method of adaptive weighting adjustment positioning
JP2008014810A (ja) 移動軌跡算出方法、移動軌跡算出装置及び地図データ生成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001512.8

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12089645

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2007714276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007714276

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE