WO2007095846A1 - Dispositif de régulation de température, dispositif de gestion de température, et système et procédé associés - Google Patents

Dispositif de régulation de température, dispositif de gestion de température, et système et procédé associés Download PDF

Info

Publication number
WO2007095846A1
WO2007095846A1 PCT/CN2007/000507 CN2007000507W WO2007095846A1 WO 2007095846 A1 WO2007095846 A1 WO 2007095846A1 CN 2007000507 W CN2007000507 W CN 2007000507W WO 2007095846 A1 WO2007095846 A1 WO 2007095846A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air
value
cabinet
control
Prior art date
Application number
PCT/CN2007/000507
Other languages
English (en)
French (fr)
Inventor
Weixing Su
Yuping Hong
Youlin Jin
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 200610033988 external-priority patent/CN1852648A/zh
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to AT07710932T priority Critical patent/ATE471067T1/de
Priority to EP07710932A priority patent/EP1988760B1/en
Priority to DE602007007061T priority patent/DE602007007061D1/de
Priority to CN200780000219XA priority patent/CN101313640B/zh
Publication of WO2007095846A1 publication Critical patent/WO2007095846A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/207Thermal management, e.g. cabinet temperature control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D22/00Control of humidity
    • G05D22/02Control of humidity characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20618Air circulating in different modes under control of air guidance flaps

Definitions

  • Machine armature temperature control device S Machine armature temperature control device S, processing device, system and method
  • the present invention relates to a mechanical device, system and method in the field of electronics or communication, and more particularly to a temperature control device for a cabinet, a processing device, a system and a method.
  • Equipment such as communications, electronics, or electric power is increasingly installed in places such as outdoor areas where there is no climate protection and temperature regulation. Outdoor environment changes are much more complicated than indoors.
  • the outdoor environment is generally defined as a climate-free environment, that is, places without climate protection and temperature regulation, such as: open air environment, simple computer room environment, etc.
  • Electrical, electronic, or electrical equipment that is exposed to complex outdoor environments is susceptible to changes in dust, temperature, and moisture in outdoor environments, especially those that are sensitive to changes in dust, temperature, and moisture. device.
  • Each type of electrical equipment has a temperature range in which it operates normally. In the case where the external ambient temperature is too high or too low, if there are no other protective measures, the working conditions of the components of the electrical equipment may be unstable or even damaged. These can cause the equipment to work unstable or inoperable, or even accidents. Therefore, it is very necessary to control the temperature of the equipment within the normal operating temperature range of the equipment.
  • Temperature changes in the outdoor environment can also affect the relative humidity of the air inside the device.
  • the temperature and humidity of the external environment fluctuate, and the temperature inside the device and the temperature outside the device cause a temperature difference. If the temperature of the outdoor environment changes rapidly, the air inside the device will condense into water. After the air inside the equipment is condensed into water, the relative humidity of the air inside the equipment is too high, which does not meet the operational requirements of the equipment, and there is a potential danger.
  • the usual protective measures are to install the above-mentioned electrical equipment in other outdoor equipment, that is, to protect the above-mentioned electrical equipment with other external equipment.
  • Other outdoor equipment typically includes an outdoor cabinet or an outdoor mounted equipment box or work box, collectively referred to herein as a cabinet.
  • the cabinet can block most of the dust from entering the equipment inside the cabinet, thus reducing the impact of dust on the equipment.
  • the moisture in the environment will also infiltrate into the cabinet from the air inlet of the ventilating hole of the cabinet and the door seam of the cabinet.
  • the air in the cabinet will be condensed and cause corrosion.
  • the absolute humidity of the saturated air decreases, which means that the amount of water vapor that can be absorbed by the air is reduced, and the excess moisture is condensed. Therefore, if the relative humidity of the cabinet is high, the temperature is lowered at night. There will be hidden dangers of electrical short circuit and corrosion on the cold wall of the condensing cabinet.
  • the saturated absolute humidity of the saturated air increases, and the relative humidity decreases. When the air temperature decreases, the water vapor condenses. The knot is on the cold wall of the cabinet.
  • copper is the carrier of the main signal transmission.
  • the equipment problem caused by corrosion is mainly copper corrosion, 60 RH is the critical corrosion relative humidity point of copper, and the relative humidity in the control cabinet is lower than 60% RH can effectively inhibit the corrosion of equipment.
  • Heating wet air is the easiest and most effective way to reduce relative humidity.
  • the method of cooling dehumidification and adsorption dehumidification can be adopted to reduce the phase contrast, but the implementation complexity and cost of these schemes are far greater than the scheme of heating and dehumidification.
  • the main design of the existing design is to reduce the relative humidity by means of heater-assisted heating, which requires a large amount of electric energy and increases operating costs, and cannot be used in the event of an AC power outage.
  • a common cabinet temperature control scheme is to install a temperature control unit in a cabinet, and the temperature control unit mainly includes a heat exchanger and an air conditioner.
  • the use of heat exchangers and air conditioners can isolate the cabinet from the external environment and provide the best protection against dust, salt and the like in the external environment.
  • the common disadvantage of both the heat exchanger and the air conditioner is that it takes up a large volume and is relatively noisy.
  • the air temperature in the cabinet using the heat exchanger is always higher than the external environment, which reduces the maximum ambient temperature that the equipment boards in the cabinet can withstand.
  • the ability, and the disadvantage of air conditioning is low reliability, and the need to consume a lot of power, operating costs.
  • FIG. 1 Another common cabinet temperature control scheme is to directly introduce air from the outside environment into the cabinet for heat dissipation, that is, a direct ventilation and heat dissipation scheme.
  • the main ventilation and cooling solution is designed to open ventilation holes 200 and 300 on the cabinet 100 to ventilate and heat the boards and modules of the cabinet.
  • a fan 400 is usually built into the cabinet to enhance ventilation.
  • a heater 500 is provided in the cabinet to heat the air to reduce the relative humidity of the air in the cabinet. When the ambient temperature is low, the heater 500 can also function as a low temperature heating.
  • the direct ventilation cooling scheme can eliminate the extra temperature gradient between the interior of the cabinet and the environment, which is beneficial to heat dissipation; compared with the air conditioner of the temperature control scheme, the cooling system consumes the lowest energy and reduces the energy. Operating costs.
  • direct ventilation and cooling solutions can reduce equipment noise, reduce equipment size, make equipment more compact, and minimize system cooling costs.
  • the direct ventilation and heat dissipation scheme directly introduces air from the outdoor environment to cool the electrical equipment, measures need to be taken to protect the water, dust, low temperature and moisture in the outdoor environment to ensure reliable operation of the equipment.
  • the current solution is: Use a dedicated mixing duct to solve the relative humidity control problem and some of the heat dissipation problems, and solve the dust problem by adding dust-proof facilities.
  • the cabinet uses the heat generated by the equipment itself to heat the ambient moisture directly absorbed from the outdoor environment. Under the premise of meeting the heat dissipation requirements, the air in the air inlet of the air vent is heated to carry the air at the air inlet. The moisture evaporates, thereby controlling the relative humidity inside the device and also reducing the noise of the device.
  • the ventilation capacity of the cabinet is controlled by the relative humidity value and temperature value in the cabinet. That is, the air duct for air circulation is reserved in the cabinet.
  • the ventilation capacity of the equipment is controlled according to the detected relative humidity value and temperature value. The size of the wind entering the tuyere and the circulation of the wind in the predetermined circulation duct to achieve the heat dissipation and relative humidity of the cabinet.
  • FIG. 2 The prior art solution is specifically shown in FIG. 2, and the specific structure includes:
  • the air of the external environment is introduced into the cabinet by means of air blowing, and the circulation of the air duct is circulated through the air inside the cabinet.
  • the air outlet 10 of the cabinet controls the airflow of the cabinet through the valve, and most of the air in the cabinet circulates in the cabinet.
  • the technical solution controls the inlet and outlet of the cabinet by separately detecting the humidity value and the temperature value.
  • the specific steps of the existing control scheme are shown in Figure 3.
  • the control target of the heat dissipation control system of the cabinet is preset temperature and humidity control. Tabulation.
  • Step 21 Detect the values of the temperature sensor and the humidity sensor to obtain the temperature Ti,, and the relative humidity U ta inside the cabinet. Query the humidity control table to obtain the temperature set in the temperature and humidity control table. SP t value and set relative humidity SP,, value; Step 22: When DSP,, the relative humidity in the cabinet is higher than the set relative humidity value, it is necessary to reduce the relative humidity in the cabinet, that is, improve Set the temperature SP t to improve the internal temperature of the cabinet to reduce the relative humidity inside the cabinet;
  • Step 23 When the relative humidity value in the cabinet is lower than the set relative humidity value, the relative humidity value in the cabinet is in the normal range. At this time, the set temperature can be adjusted according to the needs of the set temperature, that is, the temperature can be appropriately lowered. The set temperature SP,, 3 ⁇ 4 to SP t reaches the minimum value SP,. until;
  • Step 24 Adjust the corresponding temperature set value SP,., and then adjust the ventilation of the cabinet through the temperature Ti,,,
  • Step 25 When the temperature value in the cabinet and the set temperature value are equal, that is, Tta-SP, the temperature and relative humidity in the cabinet have reached the target of the predetermined setting. At this time, the ventilation of the cabinet is not required. Make adjustments;
  • Step 26 When the temperature value in the cabinet is lower than the set temperature value, that is, T illt ⁇ SP, increase the temperature in the cabinet by reducing the ventilation of the cabinet, so that the temperature in the cabinet reaches the set value. ;
  • Step 27 When the temperature value in the cabinet is higher than the set temperature value, that is, DSP,., reduce the temperature inside the cabinet by increasing the ventilation of the cabinet, so that the temperature in the cabinet reaches the set value. Cabinet cooling problem.
  • the solution controls the temperature by the measurement result obtained by the temperature sensor, and controls the relative humidity by the measurement result obtained by the humidity sensor, and the solution needs to preset a corresponding set value of the complex relative humidity and temperature control, thereby causing
  • the production and maintenance of equipment using this solution requires a high degree of professionalism, while the manufacture, installation and maintenance of the equipment is relatively expensive.
  • the humidity sensor is a well-known device that is easily damaged, and the relative humidity value obtained from the humidity sensor in practical applications is likely to have a large error with respect to the actual relative humidity value, which may result in an increase in time and money. To increase the maintenance of the humidity sensor.
  • the mixed air duct involved in this scheme is installed inside the equipment, and the direct ventilation control module therein does not have versatility, so that different equipments in actual need special ventilation equipment can meet the requirements, so the scheme does not have The modular, generalized requirements required for practical applications.
  • the main design of the existing design is to use heaters to assist heating, which consumes people's energy and increases operating costs.
  • the existing cabinet temperature control scheme has the following disadvantages:
  • the embodiment of the invention provides a cabinet temperature control device, a processing device, a system and a method, which can maintain the temperature and the relative humidity in the cabinet within the normal working permission range of the electrical equipment in the cabinet, and have good dustproof and waterproof performance. And the normal operation function of the low temperature state.
  • FIG. 1 is a schematic structural view of a cabinet of a conventional direct ventilation heat dissipation scheme
  • FIG. 3 is a flow chart involved in the existing control scheme
  • FIG. 4 is a schematic structural view of a cabinet with a cabinet temperature control system in a preferred embodiment of the present invention when air is circulated in the cabinet;
  • FIG. 5 is a schematic view of the cabinet shown in FIG. 4 when mixed with hot and cold air;
  • FIG. 6 is a schematic view of the cabinet shown in Figure 4 when it is directly ventilated;
  • FIG. 7 is a schematic block diagram of a processing unit of a cabinet temperature control system according to the present invention.
  • Figure 8 is a graph of temperature and humidity extreme values
  • Figure 9 is a schematic diagram of a temperature control curve in accordance with a preferred embodiment of the present invention.
  • Figure W is a flowchart of the overall control of a preferred embodiment of the present invention.
  • FIG. 11 is a process diagram of controlling an environmental ventilation amount of an environmental fan device according to a preferred embodiment of the present invention.
  • Figure 12 is a diagram showing a control process of a circulating fan device for circulating ventilation according to a preferred embodiment of the present invention
  • Figure 13 is a flow chart showing the operation of the heater in the cabinet according to a preferred embodiment of the present invention.
  • 14 is a control flow chart of a normal temperature module processing mode according to a preferred embodiment of the present invention
  • 15 is a control flow chart of a processing method of a temperature sensing module according to a preferred embodiment of the present invention
  • FIG. 16 is a flow chart showing control of a cryogenic module processing mode according to a preferred embodiment of the present invention.
  • III 17 is a flow chart of the temperature control process of the armature temperature control system of the present invention when it is not necessary to consider the application of the low temperature environment;
  • FIG. 18 is a schematic structural view of a cabinet temperature control device according to another embodiment of the present invention.
  • Figure 19 is a reference view of the use state of the cabinet temperature control device of Figure 18.
  • the embodiment of the invention provides a cabinet temperature control system, comprising a heat dissipation air duct having an air inlet and an air outlet, wherein the heat dissipation air duct is provided with a heat dissipation fan device, and the system further comprises a cabinet temperature control device and a cabinet temperature control Processing device
  • the circulating air inlet of the return mixing air duct of the cabinet temperature control device is connected to the air outlet of the heat dissipating air passage, and the circulating air outlet of the return mixing air duct is connected to the air inlet of the cooling air duct;
  • the cabinet temperature control processing device is configured to control the temperature and the relative humidity of the system to be within a range allowed by the normal operation of the device; the cabinet temperature control processing device may be disposed inside the cabinet or independently disposed in the cabinet Outside the cabinet.
  • the cabinet temperature control device is used for matching the heat dissipation air channel of the cabinet temperature control system, and the device comprises: a return mixing air channel and a circulation fan device;
  • the circulating air inlet of the return mixing air duct is connected to the air outlet of the heat dissipating air duct, and the circulating air outlet of the recirculating mixing air duct is connected to the air inlet of the heat dissipating air duct;
  • the circulating fan device is disposed in the return mixing air duct.
  • FIGS. 4 to 6 are schematic views of a cabinet temperature control system in a preferred embodiment of the present invention.
  • the cabinet temperature control system is used to maintain the temperature and relative humidity of the air in the cabinet in the normal operating temperature and relative humidity range of the device.
  • the device in the cabinet can be the user's board in the access network and the baseband board of the base station. Insert frame, transceiver module or power module.
  • a vertical partition 30 is disposed in the cabinet, and upper and lower ends of the vertical partition 30 are respectively fixed to the top and bottom plates of the cabinet.
  • the vertical partition 30 divides the interior of the cabinet into a heat dissipating duct 10 for dissipating heat from the heat generating equipment in the cabinet, and a reflow mixing duct 20 that communicates the air outlet 14 of the radiating duct 10 with the air inlet 15.
  • the air outlet 14 and the air inlet 15 are respectively located on the upper and lower sides of the heat dissipation air duct 10 for discharging air in the heat dissipation air duct 10 or allowing air to enter the heat dissipation air duct 10.
  • the heat dissipating air passage 10 is a cavity formed by the front door, the rear door, the top plate, the bottom plate, the partition plate 30 and the side plates of the cabinet, and is used for arranging main working equipment.
  • a heat dissipating fan device 13 is disposed in the heat dissipating air passage 10, and the cooling air is driven from the air inlet 15 into the heat dissipating air passage 10, and the heat generated by the heat generating device such as the upper frame 11 and the lower frame 12 in the heat dissipating air passage 10 is taken away. Thereafter, it is discharged from the mountain tuyere 14 so that the temperature of the air in the heat dissipating duct 10 is maintained within a normal range.
  • the cooling fan device 13 can include one or more fans, and the fan type can be an axial fan, a centrifugal fan or other types of fans.
  • the reflow mixing duct 20 is a cavity formed by the front door, the rear door, the top plate, the bottom plate, the partition plate 30 and the side plates of the cabinet, and generally has low power consumption and low temperature and relative humidity requirements. .
  • the upper and lower sides of the return air mixing duct 20 are provided with a circulating air inlet and a circulating air outlet which respectively communicate with the air outlet 14 and the air inlet 15 of the heat dissipating air passage 10, thereby connecting the air outlet 14 of the heat dissipating duct 10 with the air inlet 15 So that the hot air flowing out of the air outlet 14 can be returned to the heat dissipation duct 10 through the air inlet 15.
  • the circulation air inlet and the circulation air outlet of the reflux mixing duct 20 are shared with the air outlet 14 and the air inlet 15 of the heat dissipation duct 10, respectively.
  • the reflux mixing duct 20 may have its own independent circulating air inlet and circulating air outlet as needed, and only the ventilation ducts may be connected to the air outlet 14 and the air inlet 15 respectively.
  • the middle portion of the return mixing duct 20 is provided with a horizontal partition 32.
  • the horizontal partition 32 divides the return mixed air duct 20 into upper and lower sections, that is, an air inlet zone and an air outlet zone.
  • the inlet air inlet 1 is connected to the air outlet 14 of the heat dissipation duct 10 for accommodating the hot air discharged from the air outlet 14.
  • the exhaust air outlet is provided with the above-mentioned circulating air outlet, that is, the air outlet region is in communication with the air inlet 15 of the heat dissipation air duct 10.
  • a venting opening 321 is defined in the horizontal partition 32 for connecting the air inlet area and the air outlet area.
  • a circulating fan device 23 is disposed near the venting opening 321 . The air for driving the air inlet area enters the air through the air vent 321 and passes through The air inlet 15 is returned to the heat dissipation duct 10.
  • the return air mixing duct 20 is also provided with a return air inlet 26 and a return air outlet 27 which are respectively connected to the external environment.
  • the turbulent air inlet 26 is disposed in the outlet area of the return mixing duct 20 to communicate the outlet area with the external environment; and the first ambient fan is disposed at the return air vent 26 of the return mixing duct 20
  • the device 22 is configured to draw ambient air into the mountain wind zone of the return mixing duct 20.
  • the return air outlet 27 is disposed in the air inlet area of the return mixing duct 20 to communicate the air inlet area with the external environment; and the second ambient fan unit 21 is disposed at the return air outlet 27 in the return mixing duct 20.
  • the first and second environment fan devices 21, 22 each include one or more fans, and the fan type may be an axial fan, a centrifugal fan or other types of fans.
  • the return air inlet 26, the return air outlet 27, and the vent 321 are provided with an air flow shutoff or blocking device parallel to the corresponding fan device, and the air shutoff or blocking device can be activated when the fan device is in operation.
  • the airflow shut-off or blocking device can be a simple movable blind or a control valve device.
  • the circulating fan can also be turned off, maintaining the fan's low speed operation and maintaining the downward wind pressure.
  • the airflow shutoff or blocking means is the movable louver 24, which can only be opened in one direction.
  • the movable louver 24 When the fan device is in operation, the movable louver 24 is driven to be driven by the pressure of the wind blown by the fan; when the fan device is stopped, the movable louver 24 is closed by gravity, and in the simplified version, the circulating fan is not turned off, maintaining the direction The wind pressure under.
  • FIG. 5 is a schematic view of the cabinet shown in FIG. 4 when it is mixed with hot and cold air.
  • the movable shutters 24 at the first ambient fan unit 22, the second ambient fan unit 21, and the circulating fan unit 23 are both turned on, hot and cold air. Pass
  • FIG 6 is a schematic view of the cabinet of Figure 4 in direct ventilation.
  • the movable louver 24 at the first ambient fan unit 22 and the second ambient fan unit 21 are both opened, and the movable louver 24 at the circulating fan unit 23 is closed.
  • the version does not have this device.
  • the air of the external environment directly enters the heat dissipation air duct 10 through the air inlet 15 through the movable louver 24 at the first environment fan unit 22, and the cabinet is disposed in the heat dissipation air duct 10 in the direction indicated by the arrow in the figure.
  • the inner device performs heat dissipation treatment, and then the air in the heat dissipation air passage 10 enters the external environment through the movable louver 24 at the second environmental fan device 21 through the mountain tuyere 14.
  • the cabinet temperature control system in this embodiment may further include a direct ventilation environment air inlet and a direct ventilation environment air outlet, wherein the direct ventilation environment air inlet and the direct ventilation environment air outlet are respectively located in the heat dissipation air duct 10, and the direct ventilation environment enters.
  • the tuyere is connected to the air inlet of the cooling air duct 10, and the air outlet of the direct ventilation environment is connected to the air outlet of the heat dissipating duct 10.
  • the airflow opening/closing device can also be installed at the air inlet of the direct ventilation environment and the air outlet of the direct ventilation environment, and the airflow opening/closing device can be controlled to be turned on and off by the airflow; meanwhile, the air inlet of the direct ventilation environment and the air outlet of the direct ventilation environment can also be Set the ambient fan unit; the air inlet of the direct ventilation environment is equipped with a dust filter.
  • the cabinet temperature control system in this embodiment may also arrange the heater 25 at the bottom of the reflow mixing duct 20 to assist the heating.
  • the heater 25 may also be disposed in the heat dissipation duct 10, or the heater 25 may be disposed in both the heat dissipation duct 10 and the return mixing duct 20.
  • the cabinet temperature control system in this embodiment may be provided with a S-maze structure (not shown) at the return air inlet 26 and the return air outlet 27 for waterproofing purposes, and at the return air inlet 26 or/and the air inlet.
  • 15 dust filter systems such as dust-proof nets are arranged To the purpose of dust prevention.
  • the fan device involved in the cabinet temperature control system in this embodiment is not limited to a fan that is used, and may also include other air-driven devices.
  • the cabinet temperature control system in this embodiment is configured to implement intelligent control.
  • a temperature sensor a is disposed at the air inlet 15 of the heat dissipation air duct 10 to detect the temperature of the air entering the heat dissipation air duct 10;
  • a temperature sensor c is provided to detect the temperature of the hot air exiting the heat dissipating duct 10;
  • a temperature sensor b is provided at the return air inlet 26 of the reflow mixing duct 20 to detect the ambient temperature.
  • the temperature collecting unit is configured to collect the temperature value including the ambient temperature value Ta, the air temperature value Tin entering the heat dissipation air channel, and the air temperature value Tout of the mountain cooling air channel;
  • a target control value setting unit for setting a target control value SP_Tin including a target control value SP_Tout and/or Tin of Tout and/or a temperature value Thhon required to start the heater in advance and/or in a control process And/or a target control value for turning off the temperature value Thoft' of the heater and/or the low temperature critical temperature T1 and/or the high temperature critical temperature Th and/or the outlet temperature minimum expected value ToutLimit;
  • a processing unit configured to control, according to the acquired temperature value including Ta, Tin, and Tout values and the set target control value, a circulating fan device and/or an environmental fan device in the cabinet temperature control device and/or The operation of the heater and/or the cooling fan unit maintains the temperature and relative humidity within the cabinet within the allowable range of normal operation of the equipment.
  • the cabinet temperature control processing device further includes:
  • a heater control unit for controlling the opening and closing of the heater
  • a circulation fan control unit for controlling the opening and/or running speed of the circulation fan;
  • An environmental fan control unit that controls the opening and/or operating speed of the ambient fan.
  • the processing unit includes:
  • a normal temperature control unit for controlling the operation of the heat dissipation fan control unit and/or the heater control unit and/or the circulation fan control unit and/or the environment fan control unit according to the normal temperature control mode according to the respective temperature values acquired by the temperature collection unit , controlling the temperature value in the cabinet at the SP_Tin and SP_Tout values set by the target control value setting unit; and/or,
  • a high temperature control unit configured to control the operation of the heat dissipation fan control unit and/or the heater control unit and/or the circulation fan control unit and/or the environment fan control unit according to the high temperature control manner according to each temperature value acquired by the temperature collection unit , controlling the temperature value in the cabinet to the SP_Tout value set by the target control value setting unit; and/or,
  • a low temperature control unit configured to control the heat dissipation fan control unit and/or the heater control unit and/or the circulation fan control unit and/or the environmental fan control unit according to a temperature control manner according to respective temperature values acquired by the temperature collection unit Work, control the temperature value in the cabinet to the SP-Tin and SP_Tout values set by the target control value setting unit.
  • the processing unit of the cabinet temperature control processing apparatus is the core of the control system, and has four input ports and four output ports.
  • the four input ports are respectively connected to the temperature sensors a, b, c and the control panel, and the four output ports are respectively connected to the circulating fan device, the first environment fan device, the second environment fan device and the heater.
  • the processing unit can be located in the cabinet temperature control system or outside the cabinet temperature control system, only to meet the connection mode with other components.
  • the control panel is used to input the control parameters of the cabinet to the processing unit according to the needs of the user or the application of the cabinet.
  • the control parameters of the cabinet to be set generally include: the low temperature critical parameter value Tl of the external environment, the high temperature critical parameter value Th of the external environment, the temperature difference parameter value ⁇ (including the air temperature of the exhaust heat dissipating duct and the air temperature entering the heat dissipating duct Temperature difference required to maintain ATout and ambient air temperature The temperature difference between the temperature and the temperature of the air entering the cooling air duct is maintained.
  • the temperature difference parameter ⁇ also includes the temperature of the air duct and the heat dissipation air. The temperature of the air needs to maintain the temperature difference ⁇ Th).
  • the above parameters are input to the processing unit through the control panel, after which the temperature sensors a, b, c send the respective detected temperature values Tin, Ta (ambient temperature) and Tout to the processing unit, and the processing is performed.
  • the unit operation processing obtains the target control value SP_ Tin of the air temperature Tin entering the heat dissipation air passage and the target control value SPJout of the air temperature Tout discharged from the heat dissipation air passage, and after the control parameter is corrected, outputs a control signal to respectively control the circulation fan device.
  • the first environment fan is equipped with JS, the second environment fan device, the cooling fan device and the heater work, so that the temperature of the air in the cabinet satisfies the requirements of SP_Tin and SP_Tout, so as to control the air temperature and relative humidity in the cabinet. purpose. It can be understood that these parameters can also be preset in the cabinet when they are shipped from the factory, and stored in the processing unit without setting by the user. When the type of the external environment in which the cabinet is located changes, the values of these parameters are Make changes.
  • the ATi value can be appropriately increased to reduce the relative humidity of the air entering the cabinet to ensure the adaptability of the cabinet environment.
  • the communication and electronic equipment are taken as an example to describe the meanings of the parameters of the processing unit in the cabinet temperature control system in this embodiment as follows:
  • the setting of the parameters is set by referring to the following relative humidity control principle:
  • the relative humidity When the relative humidity is controlled to less than 60% RH, corrosion of the equipment can be suppressed and condensation inside the cabinet can be prevented.
  • the ambient temperature When the ambient temperature is lower than 0 °C, the probability of air relative humidity exceeding 60% is extremely low because the ambient temperature is too low. Therefore, it is not necessary to consider the relative humidity control problem at this time. It is only necessary to control the air temperature to meet the user's setting requirements.
  • the ambient temperature is greater than 0 ° C and less than 40 ° C, the probability of air relative humidity exceeding 60% RH is high, and the air can be appropriately heated to reduce the relative humidity of the air to ensure that it is lower than 60% RH;
  • the ambient temperature exceeds 4CTC the probability that the relative humidity of the air exceeds 60% is extremely low. Therefore, it is not necessary to control the relative humidity of the air at this time, and only the ventilation and heat dissipation of the device in a high temperature environment need to be considered.
  • T1 refers to the upper temperature limit value of the normal operation of the equipment, and may also be the upper limit temperature value when the air humidity is lower than the critical corrosion relative humidity point of the equipment in the low temperature environment, that is, when the ambient temperature is less than T1, the air humidity is less than the equipment.
  • the critical corrosion relative humidity point at which point only the temperature control of the cabinet is required, and no humidity control is required.
  • the preferred range for T1 is -5 to 0 ° C, which is determined by the ambient temperature and the performance of the device itself.
  • Th refers to the lower temperature limit value of the normal operation of the equipment, and also the lower limit temperature value when the air humidity is lower than the critical corrosion relative humidity point of the equipment in the high temperature environment, that is, when the ambient temperature is greater than Th, the air humidity is less than the criticality of the equipment. Corrosion relative humidity point, at this time only need to control the temperature inside the cabinet, without the need for relative humidity control.
  • the preferred range of Th is 38 to 45'C. It is determined by the local environmental conditions and the performance of the equipment itself.
  • Th The specific determination method of Th is: In order to control the relative humidity value inside the equipment below a certain critical value (RHc), the high temperature and high humidity record from the environment, as shown in Figure 8 (for the British Ministry of Defense standard), is queried at ambient temperature. After Th, the extreme value of relative humidity is already in RHc The following, that is, the value of relative humidity can meet the requirements of normal operation of the equipment at this time. Therefore, it is only necessary to consider the ventilation and heat dissipation problem of the equipment after the ambient temperature is higher than Th, and it is not necessary to control the inlet air temperature. It is also possible to determine the Th and ⁇ ' ⁇ using the extreme relationship between the temperature and humidity of the local environment of the equipment, and to fine-tune the local adaptive control parameters.
  • Th can be specifically as follows: As can be seen from Fig. 8, when the ambient temperature is between 15 ° (: ⁇ 32 'C), the recorded relative humidity is 100% RH, when the ambient temperature is Above 32 , the recorded relative humidity decreases exponentially.
  • the original R of the drop is:
  • the vapor pressure of the natural environment can never exceed the saturated vapor pressure of the evaporation source temperature, which stipulates that the steam pressure cannot exceed the specified upper limit.
  • dew point and steam concentration Since the source of moisture is usually ocean, in the highest temperature ocean in the Persian Gulf, the sea surface temperature is rarely more than 32 ⁇ , so the dew point at 32 °C can be regarded as the dew point.
  • the upper limit value that is, the maximum value of the theoretical vapor concentration, can be regarded as an important temperature difference control reference value.
  • Th point is selected as the Th value described in the present invention.
  • the temperature difference control reference value may generally be 32", and the specific principle of selection is: comparing the 32+ATin value with the Th value obtained by the temperature and humidity extreme value relationship diagram shown in FIG.
  • the larger value is used as the Th value according to the present invention, and in actual applications, the size of Th can be appropriately adjusted according to the actual time risk rate of the electronic device and the communication device to more appropriately determine the Th value, or collect the local environment of the device to be used.
  • the extreme relationship between temperature and humidity is determined.
  • Ta refers to the air temperature of the external environment.
  • the average value of several Tas is acquired for a period of time.
  • this method can smooth or reduce the influence of the cold and hot uneven airflow in the natural environment on the monitoring unit Ta of the equipment.
  • This method of determining the Ta value of the debounce processing by the average value is of great significance in practical environmental applications.
  • the processing unit of the temperature control device analyzes the value of Ta to divide the temperature control processing mode of the system, specifically: When T1 ⁇ Ta ⁇ Th, the temperature state of the external environment is normal temperature state, and the temperature control device partially processes The processing method of the unit is the normal temperature processing mode, and in order to consider the stability of the system and the smooth transition of the state transition process, the constant temperature zone and the return temperature zone are appropriately added in the normal temperature module processing mode; when Ta ⁇ Th When the temperature state of the external environment is a high temperature state, the processing method of the processing unit of the temperature control device is a high temperature processing mode; when Ta Tl, the temperature state of the external environment is a low temperature state, and the processing mode of the processing unit of the temperature control device is a low temperature. Processing method.
  • the temperature difference parameter ATout refers to the temperature difference between the temperature of the air in the cooling duct and the temperature of the air entering the heat dissipating duct, so that the heat generated by the heating equipment in the cabinet can be better distributed to ensure the normal heat dissipation of the equipment.
  • ATout can be determined according to the thermodynamic principle and the nature of the device itself. In practice, it is a predetermined value belonging to a range, but ⁇ Tou in the following formulas in the specific implementation process is a certain value in this range.
  • ATout values According to the ambient temperature and the nature of the equipment, other values in this range can also be considered as ATout values in the following formulas, that is, any one of the determined values in the ATout range can be selected as the processing unit to reach the SP- The ATout value required for Tout. Its preferred range is 8 ⁇ 15 ⁇ .
  • Temperature difference parameter ATin refers to the temperature difference between the ambient air temperature and the temperature of the air entering the heat dissipation air duct, so that the air humidity in the cabinet is lower than the critical corrosion relative humidity point of the equipment.
  • can be determined according to the thermodynamic principle and the nature of the device itself. In practice, it is a predetermined value belonging to a range, but the ATin in the following formulas in the specific implementation process is a certain value in the range ffl. According to the ambient temperature and the nature of the equipment, other values in this range can also be considered as the ATin values in the following formulas, that is, any one of the determined values in the range of ⁇ can be selected as the processing unit to reach the SP— The required ATi value for Tin. Its excellent value range is 1 (T15 ° C or 20 ⁇ 25 ° C.
  • the temperature difference parameter ⁇ is the temperature difference between the temperature of the air duct and the temperature of the air entering the heat dissipating duct when the system is operated in a high temperature environment. It preferably has a value in the range of 8 to 15 °C.
  • Other parameter values that need to be involved in the practical application of the specific embodiment of the present invention include:
  • Td is the critical value of the system entering the constant temperature zone.
  • Thon is the temperature value required to start the heater. It is determined by the ambient temperature and the performance of the device: 3 ⁇ 4, that is, when the temperature of the device does not reach this temperature, the device cannot operate normally, so it is necessary to heat the cabinet by starting the heater.
  • the warm skin of the working environment of the internal equipment achieves the purpose of normal startup at low temperature.
  • Thoff is the temperature value required to turn off the heater, which is determined by the ambient temperature and the performance of the device itself. When the temperature of the device reaches this temperature value, the device can operate normally, so that it is not necessary to lift the device into the cabinet of the device. The temperature of the working environment of the equipment.
  • SP-Tout is the target control value of Tout.
  • the target control value is determined by the processing unit according to the temperature of the external environment and the nature of the device.
  • the ambient fan speed of the system can be adjusted to increase or decrease the environmental ventilation of the cabinet. Tout reached the SP-Tout requirement.
  • SP_Tin is the target control value of Tin.
  • the target control value is determined by the processing unit according to the temperature of the external environment and the nature of the device.
  • the circulating fan speed of the system can be adjusted to increase or decrease the circulating ventilation of the cabinet, so that Tin can reach. SP-Tin's play.
  • SP_Tout The specific determination methods of SP_Tout and SP-Tin are:
  • the minimum air outlet expectation value can be limited.
  • This can improve the service life of the dust filter unit according to the embodiment of the invention, enhance the heat preservation effect at low temperatures, and achieve the purpose of reducing noise at normal temperature.
  • the ToutLimit priority range is 25 to 50 degrees.
  • the carrier for transmitting signals is a material other than copper, it is necessary to adjust the specific numerical range of the above parameters according to the nature of the material to the corresponding signal carrier.
  • the temperature return zone and the constant temperature zone are designed in the normal temperature state.
  • the temperature of the air inlet of the heat dissipation air duct of the equipment increases as the ambient temperature increases, and the air of the external environment gradually rises after circulating inside the equipment.
  • the air temperature is higher than the temperature of the air inlet of the cooling duct of the device and increases with the temperature of the air inlet. That is, the temperature difference between the air inlet of the heat dissipating duct and the ambient temperature needs to be maintained, and the air outlet and the cooling air of the air duct are required. The temperature difference between the inlet and the outlet.
  • the temperature of the external environment rises to Td, it is only necessary to maintain the temperature of the air inlet of the cooling duct of the equipment at the high temperature critical temperature to achieve the control of the relative humidity.
  • the temperature of the air outlet of the cooling duct of the equipment is maintained.
  • the temperature difference of the air inlet temperature is ATh, which can achieve the purpose of heat dissipation of the device.
  • the processing unit of the temperature control device of the cabinet is processed at room temperature. Further, when the temperature of the external environment rises to Th, it enters a high temperature state.
  • the processing unit of the S section of the cabinet temperature control unit is in the normal temperature processing mode, so that the normal temperature state to the high temperature state can smoothly transition.
  • the ⁇ value of the return temperature zone is determined by the conversion relationship between the ventilation volume and the temperature of the system. The preferred range of ⁇ is 2-3° (:.
  • the first working state is: When the circulating fan device is working and the environmental fan device is not working (as indicated by the arrow in Fig. 4), the air circulates inside the cabinet through the cooling air duct 10 and the return mixing air duct 20, and there is no external environment. Air exchange, or only a small amount of air exchange through the gap.
  • the working state is mainly used for self-circulating heating inside the cabinet by using the heat loss of the device itself or the auxiliary heater 25 in a low temperature environment; and can also be used to heat the internal temperature of the cabinet by using the heat consumption cycle of the device itself in a normal temperature environment, thereby reducing the relative humidity.
  • the working mode is the main working mode of the low power device.
  • the second working state is: when both the circulating fan device and the environmental fan device are working at the same time (as indicated by the arrow in FIG. 5), part of the hot air discharged from the heat dissipating duct 10 and the ambient cold air are mixed according to a certain ratio. Then return to the cooling air duct 10 to ventilate and dissipate the equipment.
  • This operating state can utilize the heat generated by the device itself to regulate the temperature and relative humidity of the air entering the heat dissipating duct 10.
  • the mixing ratio and ventilation of the hot air inside the cabinet and the outside environment are determined by the processing unit of the cabinet temperature control system, so that the air entering the cooling air duct 10 can meet the temperature and relative humidity control requirements.
  • This working state is mainly used to control the temperature and relative humidity of the equipment under normal temperature conditions.
  • the third working state is: When the circulating fan unit does not work, and there is no simplified version of the circulating air louver, the effect of the louver can be simulated by the low speed operation of the circulating fan. At this time, the ambient fan unit works (as indicated by the arrow in Fig. 6). The ambient air flows directly into the cabinet to dissipate heat from the equipment. This working condition is mainly used to achieve heat dissipation in the high temperature environment.
  • FIG. 10 is a flowchart of overall control of a preferred embodiment of the present invention, and the specific steps include:
  • Step 101 Preparation phase.
  • the processing unit detects the temperature of the air inlet of the device (ie, the ambient temperature) Ta, the temperature value of the air inlet of the heat dissipation duct of the device (ie, the temperature of the air entering the heat dissipation air duct) Tin and the temperature value of the air outlet of the heat dissipation air duct of the device (ie, discharges the heat dissipation air) Channel air temperature) Tout o Ta, Tin and Tout are detected by temperature sensors b, a and c, respectively;
  • Step 102 Perform a normal temperature state judgment on the Ta value.
  • Tl ⁇ Ta ⁇ Th that is, the external environment is a normal temperature state
  • the processing unit is processed at the normal temperature of the river, and ends after the processing. If the value of Ta is not in the range of Tl ⁇ Ta ⁇ Th, step 103 is performed;
  • Step 103 Determine the temperature state of the value. If Ta ⁇ Th, that is, the external environment is the commercial temperature state, the processing unit adopts the high temperature processing mode, and ends after the processing. If the Ta value is not in the Ta Th range, step 104 is performed;
  • Step 104 The external environment is in a low temperature state, and the processing unit adopts a low temperature processing mode, and the processing ends.
  • Step 110 monitor the Tout value
  • Step 111 Determine the size of Tout and SP_Tout. If Tout ⁇ SP—Tout, increase TouL by reducing the ventilation fan of the ambient fan.
  • Fig. 12 The control process for controlling the circulating ventilation through the circulating fan unit of the system is shown in Fig. 12. The specific steps are as follows:
  • Step 120 monitor the Tin value
  • Step 130 The preparation phase includes: detecting an ambient temperature Ta, an air temperature Ti n entering the heat dissipation air passage, and an air temperature Tout discharging the heat dissipation air passage;
  • Step 131 Determine the size of Tout and Thon, if Tout Thon, turn on the heater of the temperature control unit, if Tout>Thon, execute step 132;
  • Step 132 Determine the size of Tout and Thoff. If Tout>Thoff, turn off the heater of the temperature control unit. If Tout Thof 1 does not turn on or off the heater.
  • the processing unit adopts a normal temperature processing mode.
  • the normal temperature treatment method includes an ordinary treatment method at a normal temperature state and a treatment method at a constant temperature region.
  • the working state of the cabinet temperature control system is the second working state, and the ⁇ circulating fan device and the environmental fan device are both turned on, and the processing unit is based on the ambient air temperature value Ta
  • the air temperature value Tin entering the heat dissipation air channel and the air temperature value Tout discharging the heat dissipation air channel respectively control the rotation speeds of the circulation fan device and the environmental fan device, and adjust the mixing ratio of the returning hot air to the ambient air entering the cabinet.
  • Tout does not use Tin as a reference because Tin itself is a variable, and Tin is greatly affected by Tout. Therefore, if Tout is used as a reference, the stability of the system is greatly affected. Therefore, using a relatively stable Ta as a reference, it is possible to quickly determine the ventilation of the equipment, which is conducive to quickly finding the balance of the ambient circulation air volume.
  • the return temperature zone of ⁇ is added in the switching between the normal temperature state and the helium temperature state.
  • the setting method of the temperature range is: the initial default value of the temperature value of the temperature return zone is the temperature value in the normal temperature state, that is, when Ta Th+ ⁇ first, the device switches from the normal temperature state to the ⁇ warm state, and then when Ta ⁇ Th The device switches from a high temperature state to a normal temperature state.
  • the main steps include the following steps:
  • Step 143 The temperature zone processing mode is adopted to determine whether the device is in a normal temperature state and enters a Tin constant state mode.
  • step 144 is performed.
  • step 145 is performed;
  • Step 145 At this time, the normal processing mode of the normal temperature state, the control target of the Tin value is SP-Tin Ta+ATin, and the specific control process is as shown in step 121.
  • the processing unit adopts a high temperature processing method.
  • the operating state of the cabinet temperature control system is the third working state, in which the heater and the circulating fan device are both turned off.
  • the effect of the circulating fan low speed analog circulating shutters is adopted, and the environmental fan device is turned on.
  • the processing unit adjusts the rotation speed of the environment fan device according to the air temperature value entering the heat dissipation air channel and the air temperature value Tout of the exhaust heat dissipation channel to adjust the amount of ambient air entering the cabinet, so that a reasonable temperature difference ATh is maintained between Tout and Ta, even if
  • it mainly includes the following steps:
  • Step 150 The processing unit turns off the circulating fan unit so that the circulating air volume is 0.
  • the effect of the circulating fan low speed analog circulating shutters is used. This is because when the temperature is high, the relative humidity of the air in the equipment has reached the control target, and the ambient air can directly enter the electrical equipment to dissipate heat from the equipment;
  • Step 151 the control value increasing demand on high-temperature equipment according Tover high temperature apparatus, and then determines the size of the Ta + ATh value of T_ 0 ver value.
  • the Tover value is set as follows: Determine whether the equipment in the cabinet needs to set the upper temperature limit value. For example, if the device needs to be played, set the high temperature limit value Tover of the device higher than Tout according to the performance of the device. Tover is a suitable device high temperature limit. In the interval, the ideal value of Tover can be determined according to the high-temperature heat dissipation of the single board in the armature; if not, the Tover value is not set.
  • the processing unit uses a low temperature treatment.
  • the processing unit does not need to control the relative humidity inside the cabinet, but only needs to control the temperature inside the cabinet.
  • the SP_Tout value may be adjusted in each of the temperature states by adjusting the SP_Tout value to the predetermined ToutLimit.
  • the SP_Tout value takes the ToutLimit value as the current SP—Tout value, when SP—Tout> In ToutLirait, the current SP_Tout value is retained.
  • the temperature of the air outlet is limited, and there is no need to correct SP_Tout.
  • the Tout value When there is no environmental air intake in the equipment, the Tout value is very close to the Tin value. When there is ToutLiniit setting demand, the value should be ToutLimit.
  • Tout>Tl + ATin+ATout the heat generated by the internal equipment of the equipment exceeds It is necessary to use the heat generated by heating, so it is necessary to actively release the extra heat 11 to the external environment. Therefore, at this time, it is necessary to turn on the environmental fan device to make the circulating fan device and the environmental fan device work normally, and the processing unit adjusts the circulating fan device according to the values of Ta, Tin and Tout!
  • the main steps include the following steps:
  • Step 160 When the Tin Ta is used, it is first determined whether the environment fan device needs to be turned on to cool the device in a low temperature state, so that the control target of the Tout value is SP_Tout-Ta+ATin+ATout, and the specific control process is as shown in step 111.
  • Step 1600 Determine whether there is environmental ventilation, if there is no environmental ventilation, perform step 1601, if there is environmental ventilation: that is, the environmental ventilation is not 0, then perform step 161;
  • Step 1601 At this time, there is no environmental ventilation, that is, the ambient air volume is 0. At this time, the circulating ventilation volume of the idle speed is maintained, so that the ventilation volume of the circulating air disk is between 80% and 100% of the maximum circulating ventilation amount;
  • the processing unit of the device can be adjusted according to the specific operation of the equipment operating environment. For example: When the device does not need to be considered for application in a low temperature environment or when it is not necessary to consider the use of a heater, it is only possible to consider designing a processing unit that satisfies the operation of the device in a normal temperature and/or high temperature environment to save the manufacturing cost of the device.
  • the specific processing steps of the system at normal temperature and high temperature shown in m 17 are:
  • Step 171 detecting the ambient temperature Ta, the air temperature Tin entering the heat dissipation air channel and the air temperature Tout discharging the heat dissipation air channel;
  • Step 172 determining whether Ta is greater than Th, if not, proceeding to step 173, and if yes, proceeding to step 174;
  • Step 173 The processing unit performs processing in a normal temperature processing manner
  • Step 174 The processing unit is processed by a high temperature processing method.
  • the present invention can be applied to an indoor cabinet that is more commonly used, in addition to an outdoor cabinet.
  • Many cabinet equipment is installed in a simple machine room environment that lacks temperature, dust, and relative humidity control, which exposes the equipment to temperature and environmental corrosion.
  • the problem of temperature and humidity protection of these devices can also be solved by the present invention.
  • the circulating air duct can adopt a 1 + 1 backup fan at each air inlet and outlet. That is, no matter what kind of working state the device is in, when any fan failure occurs, the backup fan will issue a warning to actively replace the damaged fan, and turn off the circulating fan device to switch the control mode to the high temperature control mode. That is, the first thing to satisfy the heat dissipation of the device is to focus on the relative humidity. Therefore, in the process, the method of increasing the temperature of the air inlet is not used to satisfy the relative humidity first, but the temporary humidity control is sacrificed. The first requirement is to meet the heat dissipation requirements of the equipment.
  • the problem of relative humidity can be considered first, because the relative humidity affects the corrosion of the equipment is the long-term accumulation effect, and the control of the relative humidity is also the long-term cumulative effect.
  • the short-term humidity does not meet the requirements of the equipment, and the impact on the equipment is limited.
  • the direct ventilation control system of the equipment restores the normal control temperature and the relative humidity control strategy.
  • the invention adopts a unique air duct design and temperature and relative humidity control scheme to reliably control the air temperature and relative humidity inside the equipment.
  • the heat consumption of the equipment itself is fully utilized for self-heating, and if necessary, auxiliary heating means is adopted to achieve uniform heating inside the cabinet.
  • the normal temperature environment there is no need to use extra heating devices, self-heating by the heat consumption of the equipment itself to reduce the relative humidity inside the cabinet, inhibit corrosion, save energy, and ensure reliable heat dissipation of the equipment.
  • the present invention can reduce the volume of the cabinet and reduce noise compared with temperature control devices such as air conditioners and heat exchangers, and A has a cost advantage.
  • the temperature control device is mounted on the armature and cooperates with a heat dissipation air passage in the machine to achieve temperature control.
  • the structure of the temperature control device is similar to that of the reflux mixing duct 20 of the previous embodiment, and includes an air inlet portion 41 and an air outlet portion 42 which are separated from each other, and the air inlet portion 41 is provided with a circulating air inlet 410 and return air.
  • the tuyere 411 and the outlet bunker 42 are provided with a circulation air outlet 420 and a return air inlet 421.
  • the return air inlet 421 and the return air outlet 411 are provided with an environment fan unit.
  • the temperature control setting may also include a heater 45 and a control unit (not shown) and the like.
  • the circulating air inlet 410 is connected to the air outlet of the heat dissipating air passage 10 in the cabinet, and the circulating air outlet 420 is connected to the air inlet of the heat dissipating air duct 10 in the casing, and may be directly connected or through the duct. Indirectly connected.
  • the temperature control process is similar to the previous embodiment and will not be described here. Since the independent temperature control device can be installed on the cabinet as a standard temperature control module like the heat exchanger and the air conditioner, the application of the embodiment is more flexible and convenient.

Description

机枢温控装 S、 处理装置、 系统及方法 技术领域
本发明涉及电子或通信领域的机械装置、系统及方法,特别涉及一种机柜用的温控装 jS:、处理装置、 系统及方法。
发明背景
通信、 电子或电力等电类设备越来越普遍的安装于户外等无气候保护和气温调节的场所。 户外环境 变化相对于室内复杂许多,户外环境一般定义为无气候防护的环境,即没有气候保护和气温调节的场所, 例如: 露天环境、 简易机房环境等。 通信、 电子或电力等电类设备如果暴露在复杂的户外环境中丄作, 很容易受到户外环境中的灰尘、 温度和湿气变化的影响, 尤其是一些对灰尘、 温度和湿气变化敏感的设 备。
大量灰尘在设备内部堆积, 会影响设备内防尘网和其他电子类元件的使用寿命, 严!:吋会引发设备 的运行敌障, 因此, 有必要控制设备的灰尘进入量。
每种电类设备都有其正常工作的温度范围, 在外界环境温度过高或过低的情况下, 如果没有其他防 护措施, 电类设备的各组成元件的工作状态有可能不稳定, 甚至损坏, 这些都会导致这个设备的工作不 稳定或者不能工作, 甚至发生事故, 因此, 非常有必要控制设备的温度在设备正常工作的温度范围内。
设备内部空气的相对湿度过高时, 不仅会缩短设备的使用寿命, 而且由于相对湿度值对设备的腐蚀 影响很大而可能会引起设备的操作故障和运行故障, 造成潜在的危险, 因此, 非常有必要控制设备空间 中的空气相对湿度在允许的限度内。
户外环境的温度变化也会影响设备内部空气的相对湿度发生变化。 在户外环境炎热的情况下, 外界 环境的温度和湿度发生波动, 设备内部的温度和设备外部的温度产生温差, 此时若户外环境的温度迅速 改变, 会导致设备内部的空气冷凝成水。 设备内部的空气冷凝成水后, 导致设备内部空气的相对湿度过 高, 不符合设备的运行要求, 存在潜在的危险。
所以, 当通信、 电子或电力等电类设备在户外工作时, 需要采取一定的防护措施, 避免或者减小灰 尘、 温度和湿气等外界环境对设备的影响, 以保证设备在户外环境的正常运行。
通常的防护措施是把上述的电类设备安装在其他户外设备内, 即用其他卢外设备对上述的电类设备 进行保护。 其他户外设备通常包括户外机柜或户外安装的设备箱或工作箱, 在此统称为机柜。
上述机柜能够挡住大部分灰尘进入机柜内的设备中, 从而减小灰尘对设备的影响。
然而, 由于设备在运行过程中消耗的绝大部分电能会转化为热能, 这些热能聚集在机柜内, 使得机 柜内的温度不断上升, 严重时会威胁到机柜内设备的正常工作。 因此, 为了使得机柜内的温度维持在设 备正常工作允许范围之内, 需要釆用机柜温度控制方案及时地排除机柜内的热量。
环境中的湿气也会从机柜通风孔的进风口和机柜的门缝等位置渗入机柜, 当机柜内部相对湿度高 m, 机柜内的空气会产生凝露现象而导致腐蚀等问题。 例如, 随着空气温度的降低, 饱和空气的绝对湿 度降低, 意味着空气可吸收的水汽量降低, 多余的水气就会凝结出来, 因此如果机柜的相对湿度高, 在 夜晚时由于温度降低, 会发生氷汽凝结机柜的冷壁面上, 产生电气短路和腐蚀的隐患。 与之相反, 随着 空气温度的增加, 饱和空气的饱和绝对湿度值增加, 此时相对湿度降低, 当空气温度降低时, 水汽会凝 结在机柜的冷壁面上。
再者, 对于通信、 电子设备而言, 铜是主耍传递信号的载体, 腐蚀导致的设备问题主耍是铜腐蚀, 60 RH是铜的临界腐蚀相对湿度点, 控制机柜内的相对湿度低于 60 %RH可以有效抑制设备的腐蚀。 把 湿空气加热是最简单有效的降低相对湿度的方法。 此外, 降低相刘显度还可以采用制冷除湿、 吸附除湿 的方法, 但这些方案的实现复杂度和成本都远远大于加热除湿的方案。现有设计主耍是通过加热器辅助 加热的方式来降低相对湿度, 需要消耗大量电能, 增加运营成本, 同吋不能在交流停电的吋候釆用。
一种常用的机柜温度控制方案是在机柜中安装温控单元, 该温控单元主耍包括热交换器和空调。 采 用热交换器和空调可以把机柜与外界环境隔绝, 对外界环境的灰尘、 盐类等的防护效果最好。 但是, 热 交换器和空调两者共同的缺点是占用很大的体积, 而且噪声比较大。 另外, 由于机柜内外采用大面积的 散热片交换机柜内外的热量导致采用热交换器的机柜内的空气温度始终会高于外界环境, 这就降低了机 柜内设备单板所能承受的最高环境温度的能力, 而空调的缺点是可靠性低, 并且需耍消耗大量的电能, 运营成本髙。
另外一种常用的机柜温度控制方案是把外界环境的空气直接引入机柜内散热的方案, 即直接通风散 热方案。 如图 1所示, 直接通风散热方案主耍是在机柜 100上设计开通风孔 200、 300给机柜 100 |^|部 设备的单板和模块进行通风散热。 机柜内部通常还内置风扇 400以强化通风效果。 为了降低相对湿度, 采用在机柜内设置加热器 500对空气进行加热从而降低机柜内空气的相对湿度。 当环境温度偏低时, 加 热器 500还可以起到低温加热的作用。
直接通风散热方案与温度控制方案的热交换器相比, 可以消除机柜内部与环境之间额外的温度梯 度, 有利于散热; 与温度控制方案的空调相比, 冷却系统消耗的能量最低, 降低了运营成本。 同时, 直 接通风散热方案可以降低设备噪声, 减小设备体积, 使得设备更加紧凑, 使系统冷却的成本达到最低。 然而, 由于直接通风散热方案是直接从户外珎境引入空气进行电类设备的冷却, 所以需要采取措施对户 外环境中的水、 灰尘、 低温和湿气进行防护, 以保证设备可靠运行。
为了控制机柜内部空气的相对湿度和温度, 目前巳有的解决方案为: 利用专用的混合风道解决相对 湿度控制问题以及部分的散热问题, 以及用增加防尘设施的方式解决灰尘问题。 具体为: 机柜利用设备 自身运行时产生的热能, 加热从户外环境中直接吸收的环境湿气, 在满足散热要求的前提下, 通过加热 通风孔中进风口的空气, 使得进风口的空气所携带的湿气蒸发, 从而控制设备内部的相对湿度, 同时也 降低设备的噪声。
机柜的通风量由机柜内的相对湿度值和温度值控制, 即在机柜内预留可供风循环的风道, 根据检测 到的相对湿度值和温度值分别控制设备的通风量,通过从进风口进入的风的大小和风在预定的循环风道 的循环运动, 来达到机柜的散热和相对湿度耍求。
现有技术方案具体如图 2所示, 具体结构包括:
机柜的进风口 6, 户外环境的空气从进风口 6进入机柜, 它是内部气流的混合点, 通常采用鼓风的 方式把外界环境的空气引入机柜, 通过空气在机柜内部循环风道的循环运动来对机柜进行散热处理; 机柜的出风口 10, 通过阀门控制机柜出风量的大小, 机柜内大部分空气在机柜内循环。
该技术方案为了降低相对湿度,釆用分别检测湿度值与温度值的方式来控制机柜的进风 和出风 ¾ 大小。
现有控制方案的具体步骤如图 3所示, 机柜的散热控制系统的控制目标为预先设定的温度和湿度控 制表。
该方案机柜温度和相对湿度的控制方案步骤如下:
步骤 21 : 检测温度传感器和湿度传感器的值, 得到机柜内部的温度 Ti,,,值和相对湿度 Uta值, 通过 监测得到的数据査询湿度控制表得到温度与湿度控制表中设定的温度 SPt值和设定的相对湿度 SP,,值; 步骤 22: 当 DSP,,时, 机柜内的相对湿度高于设定的相对湿度值, 需耍降低机柜内的相对湿^, 即用提高设定的温度 SPt来提髙机柜内部温度的方法来降低机柜内部的相对湿度;
步骤 23 : 当
Figure imgf000005_0001
时, 机柜内的相对湿度值低于设定的相对湿度值, 机柜内的相对湿度值处于正 常的范围, 此时可以根据设定温度的需要, 来调节设定的温度, 即可以适当的降低设定的温度 SP,, ¾ 到 SPt达到最小值 SP,.。为止;
步骤 24: 通过温度 Ti,,, , 来调整相应的温度设定值 SP,., 继而调节机柜的通风量;
步骤 25: 当机柜内的温度值和设定的温度值相等时, 即 Tta-SP,时, 机柜内的温度和相对湿度已经 达到了预定设置的目标, 此时不需耍对机柜的通风量进行调节;
步骤 26: 当机柜内的温度值低于设定的温度值时, 即 Tillt<SP,时, 通过减小机柜的通风量来提高机 柜内的温度, 以使机柜内的温度达到设定值;
步骤 27: 当机柜内的温度值高于设定的温度值时, 即 DSP,.时, 通过增大机柜的通风量来降低机 柜内部的温度, 以使机柜内的温度达到设定值, 解决机柜散热问题。
但是, 现有的控制方案存在有以下缺点:
第一, 简单的釆用阀门来控制设备的通风量, 不能精确的控制设备通风量的大小, 从而不能控制设 备内部空气与外部空气的混合比例,从而导致系统的稳定性不高,使用过程中系统的性能容易产生波动。
第二, 本方案通过温度传感器获取的测量结果来控制温度, 通过湿度传感器获取的测量结果来控制 相对湿度, 而且该方案需要预先设定复杂的相对湿度和温度控制的对应设定值, 从而导致采用该方案的 设备的生产和维护需要很高的专业性, 同时设备的制造、 安装和维护相对较为昂贵。
第三, 湿度传感器为公知的容易损坏的器件, 而且在实际应用中从湿度传感器获取的相对湿度值很 有可能相对于实际的相对湿度值存在较大的误差, 从而可能导致需要增加时间和金钱来加大对湿度传感 器的维护力度。
第四, 由于此方案需耍釆集并控制相对湿度和温度两个参量, 从而增加了系统的复杂性, 导致了系 统可靠性的降低。
第五, 此方案涉及的混合风道设置于设备内部, 而且其中的直接通风控制模块不具备通用性, 从而 对实际中不同的设备, 需要专门的配套通风设备才能满足要求, 从而此方案不具有实际应用所需的模块 化、 通用化的需求。
针对户外环境中的水、 灰尘、 低温对机柜内设备的影响, 现有的技术方案为: 釆用在机柜的通风孔 位置设计迷宫结构的方式来避免水接触机柜内的设备。
上述技术方案的缺点在于: 因为灰尘会随着流动的空气进入机柜, 积聚在设备上, 导致设备发生腐 蚀、 短路等故障。 现有设计是通过在进风口布置防尘网进行空气过滤减少灰尘, 并对防尘网进行定期清 洁或更换来防止堵塞。 然而, 设备的热耗越高, 散热所需的通风量越大, 防尘网堵塞的儿率也就越高, 需要更加频繁的清洁和维护, 既费时, 又费力。
由于一般设备的工作温度都在一 5〜0°C以上, 当机柜工作在低于 0°C的低温环境下时, 需要把进入 设备的空气加热到 o°c才能保证设备的稳定工作。 现有设计的主耍是利用加热器辅助加热, 消耗人 能, 增加了运营成本。
综上所述, 现有的机柜温控方案主耍存在如下缺点 -
1、 设备热耗越高, 所需的通风 tt也越大, 从而从外界环境吸入更多的灰尘。 即使采 ffl防尘网, 防 尘网的清洗和维护频繁, 增加运营成本;
2、 在低温环境下为了满足设备工作温度要求, 需耍釆用加热器辅助加热, 消耗屯能, 增加运营成 本;
3、 在出现交流停电时, 设备依靠后备蓄电池供电工作时, 采用加热器辅助加热增加了后备电源的 耗电量, 缩短了后备电源的工作时间。 因此在低温环境发生交流停电时, 机柜无法保证机柜内部良好的 温度和相对湿度环境, 在电网不稳定的地区, 该问题尤为突出。
发明内容
本发明实施例提供一种机柜温控装置、 处理装置、 系统及方法, 能够将机柜内的温度和相对湿度维 持在机柜内电类设备的正常工作允许范围之内, 同时具有良好的防尘防水以及低温状态的正常运行功 能。
本发明实施例是通过以下技术方案实现的. -
(与权利耍求书对应)
由上述本发明实施例提供的技术方案可以看出: 本发明实施例具有如下有益效果:
1、 既具有良好的高温散热特性, 又具有良好的低温环境下加热、 保温的特性;
2、 利用设备本身的热耗来加热外界环境的空气, 降低相对湿度, 通过调节冷、 热 ¾气的通风¾就 可以控制相对湿度, 并且不影响设备的散热性能, 具有较高的性价比;
3、 由于控制出风口温度, 严格限制了设备散热通风量, 同时有一部分在机柜内部循环, 减少了户 外进入机柜的空气, 这就减少了外界灰尘进入机柜。
附图简要说明
图 1为现有直接通风散热方案的机柜结构示意图;
图 2为现有技术方案涉及的系统结构图;
图 3为现有控制方案涉及的流程图;
图 4为带有本发明一个优选实施例中机柜温控系统的机柜在空气于机柜内循环时的结构示意图; 图 5为图 4所示机柜在与冷热空气混合时的示意图;
图 6为图 4所示机柜在直接通风时的示意图;
图 7为本发明中机柜温控系统的处理单元的原理框图;
图 8为温湿度极值关系图;
图 9为本发明一个优选实施例的温度控制曲线示意图;
图 W为本发明一个优选实施例的整体控制流程图;
图 11为本发明一个优选实施例的环境风扇装置对环境通风量的控制过程图;
图 12为本发明一个优选实施例的循环风扇装置对循环通风量的控制过程图;
图 13为本发明一个优选实施例的机柜内加热器工作的流程图;
图 14为本发明一个优选实施例的常温模块处理方式的控制流程图; 图 15为本发明一个优选实施例的髙温模块处理方式的控制流程图;
图 16为本发明一个优选实施例的低温模块处理方式的控制流程图;
III 17为本发明中机枢温控系统在不需耍考虑低温环境应用时的温控过程的流程图;
图 18为本发明另一实施例中机柜温控装置的结构示意图;
图 19为图 18中机柜温控装置的使用状态参考图。
实施本发明的方式
下面分别结合附图及具体实施例对本发明作进一步详细说明。
本发明实施例提供了一种机柜温控系统, 包括具有进风口和出风口的散热风道, 所述散热风道内设 有散热风扇装置, 所述系统还包括机柜温控装置和机柜温控处理装置;
所述的机柜温控装置的回流混合风道的循环风进口接散热风道的出风口, 回流混合风道的循环风出 口接散热风道的进风口;
所述的机柜温控处理装置用于控制所述系统的温度和相对湿度在设备正常工作允许的范闬之内; 所 述的机柜温控处理装置可以设置于所述机柜内部或独立的设置于所述机柜外部。
本发明实施例所述的机柜温控装置, 用于配合机柜温控系统的散热风道, 所述装置包括 - 回流混合风道、 循环风扇装置;
所述回流混合风道的循环风进口接散热风道的出风口,所述回流混合风道的循环风出口接散热风道 的进风口;
所述循环风扇装置设于回流混合风道内。
图 4至图 6为本发明一个优选实施例中的机柜温控系统示意图。机柜温控系统用于将机柜内空气的 温度和相对湿度维持在设备正常的工作温度和相对湿度范围内,通常机柜内的设备可以是接入网的用户 单板插框、 基站的基带单板插框、 收发信机模块或电源模块等。
如图 4所示, 机柜内设置有一垂直隔板 30, 垂直隔板 30的上、 下端分别固定于机柜的顶板和底板 上。垂直隔板 30将机柜的内部分隔成一用于给机柜内发热设备进行散热的散热风道 10以及一将散热风 道 10的出风口 14与进风口 15连通的回流混合风道 20。 出风口 14与进风口 15分别位于散热风道 10 的上下两侧, 用于排出散热风道 10内的空气或者使空气进入散热风道 10。
在本实施例中, 散热风道 10是由机柜的前门、 后门、 顶板、 底板、 隔板 30以及侧板合围而成的一 个腔体, 其内用来布置主要工作设备。 散热风道 10内设置有散热风扇装置 13, 用丁驱动冷却空气从进 风口 15进入散热风道 10, 带走散热风道 10内诸如上插框 11和下插框 12等发热设备产生的热量之后, 从山风口 14排出, 以使散热风道 10内空气的温度维持在正常的范围之内。 可以理解的是, 散热风扇装 置 13可包含 1个或者多个风扇, 风扇种类可以是轴流风扇、 离心风扇或者其他种类风扇等。
回流混合风道 20是由机柜的前门、 后门、 顶板、 底板、 隔板 30以及侧板合围而成的一个腔体, 其 内一般安装一些低功耗和对温度、 相对湿度要求较低的设备。 回流混合风道 20上、 下两侧设有分别 散热风道 10的出风口 14和进风口 15连通的循环风进口和循环风出口,进而将散热风道 10的出风口 14 与进风口 15连通,以使从出风口 14流出的热空气能够通过进风口 15回流到散热风道 10中。在图 4中, 回流混合风道 20的循环风进口和循环风出口分别与散热风道 10的出风口 14和进风口 15共用。 当然, 根据需要, 回流混合风道 20也可以有自己独立的循环风进口和循环风出口, 此时只需用通风管道分别 与出风口 14和进风口 15连通即可。 回流混合风道 20的中部设 B!有一水平隔板 32, 水平隔板 32将回流混合风道 20分隔成上、 下两个 区间, 即进风区和出风区。 进风 设 1!上述循环风进口, 也即进风区与散热风道 10的出风口 14连通, 用来收容从出风口 14排出的热空气。 出风区设置上述循环风出口, 也即出风区与散热风逍 10的进风口 15连通。 水平隔板 32上开设有一将进风区和出风区连通的通风口 321, 通风口 321附近设置有一循环 风扇装置 23, 用于驱动进风区的空气通过通风口 321进入出风 , 进而通过进风口 15回流到散热风道 10内。
回流混合风道 20上还设置有分别与外界环境连通的回流空气进风口 26和回流空气出风口 27。冋流 空气进风口 26设置在回流混合风道 20的出风区, 以将出风区与外界环境连通; 在回流混合风道 20内 ' 的回流空气迸风口 26处还设置有第一环境风扇装置 22,以将外界环境空气抽入回流混合风道 20的山风 区。 回流空气出风口 27设置在回流混合风道 20的进风区, 以将进风区与外界环境连通; 在回流混合风 道 20内的回流空气出风口 27处还设置有第二环境风扇装置 21 , 以将进入到回流混合风道 20的进风 的部分或全部热空气排出到外界环境中。 可以理解的是, 第一、 第二环境风扇装置 21、 22均包含 1个 或者多个风扇, 风扇种类可以是轴流风扇、 离心风扇或者其他种类风扇等。
回流空气进风口 26、 回流空气出风口 27以及通风口 321处与对应的风扇装置平行的地方均设置有 一气流关断或者阻止装置, 该气流关断或者阻止装置可以在风扇装置工作时幵启, 风扇装置停止时, 阻 止全部或者大部分气流从通风口处流通。 气流关断或者阻止装置可以是简单的活动百叶窗, 也可以是屯 控阀门装置等, 在简化版本中也可以釆用不关断循环风扇, 维持风扇的低速运行, 保持向下的风压。 本 实施例中, 如图 5和图 6所示, 气流关断或者阻止装置是活动百叶窗 24, 该百叶窗 24只能单向打开。 当风扇装置工作时, 活动百叶窗 24受风扇所吹出的风的压力驱动下打开; 当风扇装置停止时, 活动百 叶窗 24受重力作用而关闭, 在简化版本中釆用不关断循环风扇, 维持向下的风压。
图 5为图 4所示机柜在与冷热空气混合时的示意图, 此时, 第一环境风扇装置 22、第二环境风扇装 置 21和循环风扇装置 23处的活动百叶窗 24均开启, 冷热空气通过
图 6为图 4所示机柜在直接通风时的示意图, 此时, 第一环境风扇装置 22和第二环境风扇装置 21 处的活动百叶窗 24均开启, 循环风扇装置 23处的活动百叶窗 24关闭简化版本无此装置, 此时外界环 境的空气直接通过第一环境风扇装置 22处的活动百叶窗 24由进风口 15进入散热风道 10, 在散热风道 10内按照图中箭头所示的方向对机柜内设备进行散热处理, 之后, 散热风道 10内的空气再通过山风口 14由第二环境风扇装置 21处的活动百叶窗 24进入外界环境中。
本实施例中的机柜温控系统还可以包括直接通风环境进风口和直接通风环境出风口, 所述的直接通 风环境进风口和直接通风环境出风口分别位于散热风道 10内,直接通风环境进风口与散热风道 10的进 风口相连, 直接通风环境出风口与散热风道 10的出风口相连。 直接通风环境进风口和直接通风环境出 风口处也可以设置气流开 /关装置, 通过气流控制气流开 /关装置的开启与关闭; 同时, 直接通风环境进 风口和直接通风环境出风口处也可以设置环境风扇装置; 直接通风环境进风口设有灰尘过滤装置。
本实施例中的机柜温控系统为了适应低温环境或者需要额外的加热处理场景的需要,还可在回流混 合风道 20的底部布置加热器 25, 以起到辅助加热作用。当然, 加热器 25也可以布置在散热风道 10内, 也可以在散热风道 10和回流混合风道 20内均设置加热器 25。
本实施例中的机柜温控系统可以在回流空气进风口 26和回流空气出风口 27处设 S迷宫结构(未图 示) 以实现防水的目的, 并在回流空气进风口 26或 /和进风口 15处布置防尘网等灰尘过滤系统, 以达 到防尘的目的。
另外,需耍指出的是,本实施例中的机柜温控系统中所涉及的风扇装置并不 ^限丁 -使用 ^通的风扇, 其也可以包括其它的空气驱动装 s。
如图 6所示, 本实施例中的机柜温控系统为实现智能控制, 在散热风道 10的进风口 15处设 B温度 传感器 a, 以检测进入散热风道 10的空气温度; 出风口 14处设置温度传感器 c, 以检测排出散热风道 10的热空气的温度; 在回流混合风道 20的回流空气进风口 26处设置温皮传感器 b, 以检测环境温度。
本发明实施例所述的机柜温控处理装置包括:
温度釆集单元,用于实时釆集包含环境温度值 Ta、进入散热风道的空气温度值 Tin以及排山散热风 道的空气温度值 Tout等温度值;
目标控制值设定单元,用于预先和 /或在控制过程中设定包含 Tout的目标控制值 SP一 Tout和 /或 Tin 的目标控制值 SP—Tin和 /或需要启动加热器的温度值 Thon和 /或需耍关闭加热器的温度值 Thoft'和 /成 低温临界温度 T1和 /或高温临界温度 Th和 /或出风口温度最小期望值 ToutLimit的目标控制值;
处理单元, 用于根据所述获取的包含 Ta、 Tin和 Tout值的温度值及所述设定的目标控制值控制所 述机柜温控装置内的循环风扇装置和 /或环境风扇装置和 /或加热器和 /或散热风扇装置的工作, 将机柜 内的温度和相对湿度维持在设备正常工作允许的范围之内。
所述的机柜温控处理装置还包括:
加热器控制单元, 用于控制加热器的开启和关闭; 和 /或,
循环风扇控制单元, 用于控制循环风扇的开启和 /或运行速度; 和 /或,
环境风扇控制单元, 用于控制环境风扇的开启和 /或运行速度。
所述处理单元包括:
常温控制单元, 用于根据温度采集单元获取的各个温度值, 按照常温控制方式控制所述散热风扇控 制单元和 /或加热器控制单元和 /或循环风扇控制单元和 /或环境风扇控制单元的工作, 将机柜内的温度 值控制在目标控制值设定单元设定的 SP—Tin和 SP_Tout值处; 和 /或,
高温控制单元, 用于根据温度采集单元获取的各个温度值, 按照高温控制方式控制所述散热风扇控 制单元和 /或加热器控制单元和 /或循环风扇控制单元和 /或环境风扇控制单元的工作, 将机柜内的温度 值控制在目标控制值设定单元设定的 SP—Tout值处; 和 /或,
低温控制单元, 用于根据温度釆集单元获取的各个温度值, 按照低温控制方式控制所述散热风扇控 制单元和 /或加热器控制单元和 /或循环风扇控制单元和 /或环境风扇控制单元的工作, 将机柜内的温度 值控制在目标控制值设定单元设定的 SP一 Tin和 SP—Tout值处。
图 7示出了本实施例中的机柜温控处理装置的原理方框图, 如图所示, 机柜温控处理装置的处理单 元是该控制系统的核心,其具有四个输入端口和四个输出端口,四个输入端口分别连接温度传感器 a、 b、 c以及控制面板, 四个输出端口分别连接循环风扇装置、 第一环境风扇装置、 第二环境风扇装置以及加 热器。 可以理解的是, 处理单元可以位于机柜温控系统内, 也可以位于机柜温控系统之外, 只耍满足其 与其他各个部件的连接方式即可。
控制面板用来裉据用户的需要或机柜的应用场合来向处理单元输入机柜的控制参数。需要设定的机 柜的控制参数一般包括: 外界环境的低温临界参数值 Tl, 外界环境的高温临界参数值 Th, 温差参数值 ΔΤ (包括排出散热风道的空气温度与进入散热风道的空气温度需要维持的温度差 ATout和环境空气温 度与进入散热风道的空气温度需耍维持的温度差 ATin, 当需耍系统运行在外界环境为高温的场合吋, 温差参数值 ΔΤ还包括此时排除散热风道空气的温度与进入散热风道空气的温度需耍维持的温度差△ Th), 当需耍限制出风口温皮时, 还耑耍设定出风口最小期望值, 当需耍系统开启成者关闭加热器吋, 还需耍设定需要启动加热器的温度值 Thon以及需耍关闭加热器的温度值 Thoff。
在具体控制过程中, 首先, 通过控制面板向处理单元输入上述参数, 之后, 温度传感器 a、 b、 c将 各自检测到的温度值 Tin、 Ta (环境温度)和 Tout送至处理单元, 由处理单元运算处理, 得到进入散热 风道的空气温度 Tin的目标控制值 SP— Tin和排出散热风道的空气温度 Tout的目标控制值 SPJout, 经 过控制参数校正后, 输出控制信号, 分别控制循环风扇装置、 第一环境风扇装 JS、 笫二环境风扇装置、 散热风扇装置以及加热器工作, 使得机柜内空气的温度值满足 SP_Tin和 SP— Tout的耍求, 以实现控制 机柜内空气温度和相对湿度的目的。 可以理解的是, 这些参数也可以在机柜出厂时预先设定好, 并存储 在处理单元中, 而无须通过用户自己来设置, 当机柜所处的外界环境类型发生变化时, 再对这些参数值 进行变更。如当机柜所处的环境从空气情况比较好的 A类环境地方改变为空气情况比较差的 C类环境地 方, 则可以适当提升 ATin值, 降低进入机柜的空气相对湿度, 保证机柜环境的适应性。
下面以通信、电子设备为例,对本实施例中的机柜温控系统中处理单元部分各参数的含义描述如下: 对参数的设置是参照如下的相对湿度控制原理设置的:
当通信、电子设备安装在户外机柜内时,通常需要把户外机柜内空气的温度维持在一 5°C〜0°C以上, 才能保证机柜内部设备的可靠工作。 且对于通信、 电子设备而言, 铜是主要传递信号的载体, 因此主耍 是铜的腐蚀导致了设备的腐蚀问题。 因为 60%RH是铜的临界腐蚀相对湿度点, 所以控制机柜内的相对 湿度低于 60%RH可以有效抑制设备的腐蚀。 在所述空气环境比较差的 C类环境, 由于环境有害气体或 者盐类物质增加, 需要适当减低相对湿度 30 %〜40 %。
当把相对湿度控制在低于 60 %RH时, 可以抑制设备腐蚀, 并防止机柜内部凝露。 当环境温度低于 0 °C时, 因为环境温度过低, 空气相对湿度超过 60%的概率极低, 所以此时不需要考虑相对湿度的控制问 题, 只需控制空气温度满足用户的设定要求即可; 而当环境温度大于 0°C且小于 40°C时, 空气相对湿度 超过 60%RH的概率偏高,此时可以对空气进行适当加热来降低空气的相对湿度, 以保证其低于 60%RH; 当环境温度超过 4CTC时, 空气相对湿度超过 60%的概率极低, 所以此时不需耍对空气的相对湿度进行 控制, 而只需要考虑设备在高温环境下的通风散热。
对各个参数值的具体设置如下:
T1是指设备正常运行的低温上限温度值,同时也可以是在低温环境下空气湿度低于设备的临界腐蚀 相对湿度点时的上限温度值, 亦即当环境温度小于 T1时, 空气湿度小于设备的临界腐蚀相对湿度点, 此时只需对机柜进行温度控制, 而不需要进行湿度控制。 T1的优选取值范围为- 5~0°C , 它是由环境温度 和设备本身的性能决定的。
Th是指设备正常运行的高温下限温度值,同时也是在高温环境下空气湿度低于设备的临界腐蚀相对 湿度点时的下限温度值, 亦即当环境温度大于 Th时, 空气湿度小于设备的临界腐蚀相对湿度点, 此时 也只需对机柜内进行温度控制, 而不需要进行相对湿度控制。 Th的优选取值范围为 38〜45'C。 它是由 当地环境情况和设备本身的性能决定的。
Th的具体确定方式为: 为了控制设备内部的相对湿度值在特定的临界值 (RHc) 以下, 从环境的高 温高湿记录, 见图 8 (为英军国防部标准)上查询到在环境温度为 Th后, 相对湿度的极值已经在 RHc 以下, 即此时相对湿度的值已经能够满足设备正常运行的耍求, 所以此时只需耍考虑设备在环境温度为 高于 Th后的通风散热问题, 不需耍控制进风空气温度,一也可以采用使用设备当地环境温湿度的极伹关 系确定 Th与 Δ'Πη, 精细化设计当地适应的控制参数。
对 Th的确定, 具体可以为如下方法: 从图 8可以看出, 当环境温度在 15° (:〜 32 'C之间时, 记录的 极值相对湿度都在 100 %RH, 当环境温度在 32Ό以上时, 记录的相对湿度成指数性下降。 下降的原 R在 于: 自然环境的蒸汽压力永远不能超过蒸发源地温度的饱和蒸汽压力, 这就规定了蒸汽压力不能超过规 定的上限值。 同样的情况也存在于露点和蒸汽浓度。 由于水分的来源通常是海洋, 但在波斯湾这个温度 最高的海洋, 海面温度也绝少超过 32Ό , 所以可以把 32°C时的露点值视为露点的上限值, 亦即理论上 的蒸汽浓度的最大值, 即可以把 32°C看作为一个重要的温差控制参考值。
在图 8上查询到的 Th值和由温差控制参考值极值图和 ATin—起确定的 Th值中, 选择合适的 Th 点来作为本发明所述的 Th值。所述的温差控制参考值一般可取值为 32",选择的具体原则为:将 32+ATin 值和由图 8所示的温湿度极值关系图得到的 Th值进行比较,取两者中的较大值作为本发明所述的 Th值, 同时在实际应用中可以根据电子、 通信设备实际的时间风险率来适当的调节 Th的大小以便更合适的确 定 Th值, 或收集使用设备当地环境温湿度的极值关系确定。
Ta是指外界环境的空气温度, 在本实施例中, 采用采集一段时间内数个 Ta的平均值的方式来获取
Ta, 此方法可以平滑或减小自然环境冷热不均匀气流对设备的处理单元监测 Ta的影响, 这种用平均值 确定消抖处理 Ta值的方法在实际环境应用中具有重要的意义。
为了方便说明, 用温控装置的处理单元对 Ta值的分析来划分系统的温控处理方式, 具体为: 当 T1 <Ta<Th时, 外界环境的温度状态为常温状态,温控装置部分处理单元的处理方式为常温处理方式, 并 且, 为了考虑系统的稳定性和状态转换过程中的平滑过渡的需耍, 在常温模块处理方式中适当的增加了 恒温区和回温区; 当 Ta^Th时, 外界环境的温度状态为高温状态, 温控装置部分处理单元的处理方式 为高温处理方式; 当 Ta Tl时, 外界环境的温度状态为低温状态, 温控装置部分处理单元的处理方式 为低温处理方式。
温差参数 ATout是指排除散热风道空气的温度与进入散热风道空气的温度需要维持的温度差,以便 能较好地散发机柜内发热设备产生的热量,保证设备的散热正常。 ATout可根据热力学原理和设备本身 的性质决定, 在实际中是一个事先确定的属于一个范围内的值, 但在具体实现过程中的下述各式中的△ Tou 为此范围中的一个确定值,根据外界环境温度和设备的性质,这个范围中的其他值也可以被认为是 下述各式中的 ATout值,即可以选取 ATout范围内的任何一个确定值来作为处理单元需耍达到 SP— Tout 所需的 ATout值。 其优选取值范围为 8〜15Ό。
温差参数 ATin是指外界环境空气温度与进入散热风道的空气温度需要维持的温度差, 以使机柜内 的空气湿度低于设备的临界腐蚀相对湿度点。 ΔΉη可根据热力学原理和设备本身的性质决定, 在实际 中是一个事先确定的属于一个范围内的值, 但在具体实现过程中的下述各式中的 ATin为此范 ffl中的一 个确定值, 根据外界环境温度和设备的性质, 这个范围中的其他值也可以被认为是下述各式中的 ATin 值, 即可以选取 ΔΤΪη范围内的任何一个确定值来作为处理单元需耍达到 SP— Tin所需的 ATin值。 其优 选取值范围为 1(T15°C或 20~25°C。
温差参数△ 是系统运行在高温环境时,排除散热风道空气的温度与进入散热风道空气的温度需耍 维持的温度差。 其优选取值范围为 8〜15°C。 本发明的具体实施例在实际应用中还需耍涉及的其他参数值包括:
Td为系统进入恒温区的临界值, 当外界环境的温度上升至 Td时, 随着外界环境温度的升高, 耑耍 保持散热风道进风口温度和散热风道出风口温度值不变; Td=Th— ATin。
Thon为需耍启动加热器的温度值, 由环境温度和设备本:¾的性能决定, 即当设备温度没有到达此温 度值时, 设备不能够正常运行, 从而需耍通过启动加热器来加热机柜内部设备工作环境的温皮, 达到设 备低温下正常启动的目的。
Thoff 为需要关闭加热器的温度值, 由环境温度和设备本身的性能决定, 即当设备的温度到达此温 度值时, 设备已经能够正常运行, 从而不需要通过加热器来升髙设备的机柜内设备工作环境的温度。
SP—Tout为 Tout的目标控制值,此目标控制值是由处理单元根据外界环境的温度和设备的性质决定 的, 可以通过调节系统的环境风扇转速来增加或减少机柜的环境通风量, 从而使 Tout到达 SP—Tout的 要求。
SP_Tin为 Tin的目标控制值, 此目标控制值是由处理单元根据外界环境的温度和设备的性质决定 的, 可以通过调节系统的循环风扇转速来增加或减少机柜的循环通风量, 从而使 Tin到达 SP—Tin的耍 求。
SP_Tout和 SP—Tin的具体确定方式为:
当温度传感器 b检测到 Ta的温度值后, SP—Tout和 SP—Tin的值为:
当 Ta<Tl时, SP— Tin=Tl + ATin; SP_Tout=Tl + ATin+ATout;
当 Tl<Ta<Td时, SP— Tin=Ta+ VTin; SP_Tout=Ta+ATin+ ATout;
当 Td<Ta<Th时, SP— Tin=Th; SP_Tout=Th+ATh;
当 Ta Th时, SP— Tout=Ta+ ATh; 此时不控制 Tin。
为延长设备防尘使用寿命、 解决常温下低噪声的问题, 可以限定最小的出风口期望值, 如: 当计算 获取的 SP—Tout小于 ToutLimit, 取 SP—Tout为 ToutLimit, 保证 SP— Tout〉= ToutLimit。 这样可以提高 本发明实施例所述滤尘单元的使用年限、 增强在低温下的保温效果及实现常温下降低噪声的目的。 ToutLimit优先取值范围 25〜50度。
需要说明的是, 根据机柜内设备的不同, 例如, 传递信号的载体是铜以外的材料, 则需耍根据该材 料的性质对上述参数的具体数值范围进行相应与传递信号载体相适应的调整。
在本实施例中, 为了使机柜在外界环境的任何变化下均能够保证其内设备在各种温度状态— K的平稳 过渡, 所以在常温状态中设计回温区和恒温区。
如图 9所示, 环境温度从 T1升至 Td时, 设备散热风道的进风口温度随着外界环境温度的升高而升 高, 外界环境的温度逐渐升高的空气在设备内部循环后, 空气温度高于设备散热风道进风口的温度且随 着进风口的温度升高而升高, 即, 此时需要维持散热风道进风口与环境温度的温差, 散热风道出风口与 散热风道进风口的温差。 当外界环境的温度升至 Td时, 只需要维持设备散热风道的进风口温度在高温 临界温度时不变即可以达到对相对湿度的控制目的, 同时, 维持设备散热风道的出风口温度与进风口温 度的温差为 ATh即可以达到设备散热的目的,此时机柜温控装置部分的处理单元的处理方式为常温处理 方式。 再进一步, 当外界环境的温度升至 Th时, 进入高温状态。
回温区的设计原理为:
在本实施例中, 当外界环境从常温状态到高温状态过渡时, 为了避免外界环境温度骤然升高至 Th 值时, 对机柜内电类设备的温度和相对湿度产生影响, 使得设备内温度能够平滑过波, 在常温状态的温 度值上增加 ΔΤ的回温区。 当机柜处于回温下限时, 机柜温控装 S部分的处理单元的处理方式为常温处 理方式, 使得常温状态到高温状态能够平滑过渡。 回温区的 ΔΤ值是由系统的通风量与温度的转换关系 确定的, ΔΤ的优选取值范围为 2— 3° (:。
恒温区的设计原理为- 当 Td<Ta<Th时, 系统进入回温区状态, 此时 SP— Tin=Th, SP一 Tout=Th-卜厶¾。 此时只需耍维持 设备散热风道的进风口温度在高温临界温度时不变即可以达到对相对湿度的控制目的, 同时, 维持设备 散热风道的出风口温度与进风口温度的温差为 ATh即可以达到设备散热的目的。
在本实施例中, 当外界环境从常温状态切换到高温状态前, 即在外界环境的温度值处于 Td和 Th之 间时, 此时 SP— Tout值保持不变, 为 SP__Tout=Th+ATh, 即当外界环境的温度值处于 Td和 Th之间时, 为常温态进入 Tout恒温状态, 此时为了机柜内设备的正常工作, 需要保持 SP— Tout=Th+ATh; 同理, 当外界环境从常温状态切换到高温状态前, 即外界环境的温度值处于 Td和 Th之间时, 此时 Tin值保持 不变, 为 SP— Tin=Th, 亦即当外界环境的温度值处于 Td和 Th之间时, 为 Tin恒温状态, 即当 Ta+Δ Tin之和超过此时的 Th值时, 为常温态进入 Tin恒温状态, 此时为了机柜内设备的正常工作, 需要保持 SP—Tin=Th。 例如, 在常温态切换到 Tin恒温区间时, 假定 ATin设定为 7— 10°C, Th为 40°C, 若此时 环境的温度为 38Ό, 此时 SP—Tin不需要按照 Ta+ATin计算方法获取, 只需保持 SP— Tin=Th; 同理由 于 Tin进入恒温态, 此时 Tout也进入恒温态。
本实施例中的机柜温控系统可实现如下三种工作状态:
第一种工作状态为: 当循环风扇装置工作, 环境风扇装置不工作时 (如图 4中箭头所示), 空气通 过散热风道 10和回流混合风道 20在机柜内部循环, 与外界环境没有空气交换, 或者只能通过缝隙有少 量的空气交换。 该工作状态主要用于低温环境下利用设备本身热耗或者辅助加热器 25实现机柜内部的 自循环加热; 也可以用于常温环境下利用设备本身的热耗循环加热机柜内部气温, 从而降低相对湿度, 该工作模式为低功耗设备的主耍工作模式。
第二种工作状态为: 当循环风扇装置和环境风扇装置都同时工作时 (如图 5中箭头所示), 从散热 风道 10排出的部分热空气和外界环境冷空气按照一定比例混合后, 再返回到散热风道 10给设备通风散 热。 该工作状态可以利用设备自身的发热量来调节进入散热风道 10 内的空气温度和相对湿度。 机柜内 部热空气与外界环境冷空气的混合比例和通风量由机柜温控系统的处理单元确定,使得进入散热风道 10 的空气都能满足温度、 相对湿度控制要求。该工作状态主要用于常温环境下对设备的温度和相对湿度的 控制。
第三种工作状态为: 当循环风扇装置不工作, 没有循环风道百叶窗简化版本时, 可以采用循环风扇 低速运行方式模拟百叶窗的效果, 此时环境风扇装置工作 (如图 6 中箭头所示), 环境空气直接流入机 柜内给设备散热, 该工作状态主要用于高温环境下实现设备散热。
下面结合图 10— 16对本发明的一个优选实施例的具体控制方法进行详细说明。
图 10为本发明一个优选实施例的整体控制流程图, 具体步骤包括:
步骤 101: 准备阶段。 处理单元检测设备进风口的温度 (即环境温度) Ta、 设备散热风道进风口的 温度值 (即进入散热风道的空气温度) Tin和设备散热风道出风口的温度值 (即排出散热风道的空气温 度) Tout o Ta、 Tin和 Tout分别由温度传感器 b、 a和 c检测; 步骤 102: 对 Ta值进行常温状态判断, 若 Tl<Ta<Th, 即外界环境为常温状态, 处理单元釆川常 温处理方式, 处理完后结束。 若 Ta值不在 Tl<Ta<Th范围内, 执行步骤 103 ;
步骤 103: 对 值进行髙温状态判断, 若 Ta^Th, 即外界环境为商温状态, 处理单元采 高温处 理方式, 处理完后结束。 若 Ta值不在 Ta Th范围内, 执行步骤 104;
步骤 104: 外界环境为低温状态, 处理单元采用低温处理方式, 处理完后结束。
在以上各步骤中, 为了处理不同温度状态的平滑过渡的需耍, 在常温、低温、窩温的状态点判断上, 均采用增加一定回温区的判断方式, 当然在期望进出风温度控制上也保持一定温度回差方式。
通过系统的环境风扇装置控制环境通风量的控制过程图如图 11所示, 具体步骤如下:
步骤 110: 监测 Tout值;
步骤 111:判断 Tout与 SP一 Tout的大小。若 Tout<SP— Tout,通过减小环境风扇的通风 fi,提高 TouL,
¾到 Tout=SP— Tout结束; 若 Tout >SP— Tout,通过增大通风量, 降低 Tout , 直到 Tout=SP_Tout结束。
通过系统的循环风扇装置控制循环通风量的控制过程如图 12所示, 具体步骤如下:
步骤 120: 监测 Tin值;
步骤 121: 判断 Tin与 SP— Tin的大小。 若 Tin<SP_Tin, 通过回流增加热空气的比例, S到 Tin- SP—Tin结束; 若 Tin>SP—Tin, 通过减小回流热空气的比例, 直到 Tin=SP_Tin结束。
无论设备是在低温、 常温或高温状态下运行, 当机柜内温度不在设备正常工作所需的额定温度值 Thon时, 需要对机柜内的空气进行加热处理, 这种情况下需要在机柜内安装加热器。机柜内加热器的工 作流程如图 13所示, 具体步骤如下所示:
步骤 130: 准备阶段, 包括: 检测环境温度 Ta、 进入散热风道的空气温度 Ti n以及排出散热风道的 空气温度 Tout;
步骤 131 : 判断 Tout和 Thon的大小, 若 Tout Thon, 则开启温控单元的加热器, 若 Tout>Thon, 则执行步骤 132;
步骤 132:判断 Tout与 Thoff 的大小,若 Tout>Thoff,则关闭温控单元的加热器,若 Tout Thof 1 则不进行对加热器的任何开启或关闭操作。
下面分别对本发明一个优选实施例的常温、 高温和低温处理方式进行详细描述。
当 Tl<Ta<Th时, 处理单元采用常温处理方式。 常温处理方式中包括常温态的普通处理方式和恒 温区处理方式。
当 Tl<Ta<Td时, 为常温态的普通处理方式, 机柜温控系统的工作状态为第二种工作状态, 此吋 循环风扇装置和环境风扇装置均开启, 处理单元根据环境空气温度值 Ta、 进入散热风道的空气温度值 Tin和排出散热风道的空气温度值 Tout, 分别控制循环风扇装置和环境风扇装置的转速, 调节回流的热 空气与进入机柜内的环境空气的混合比例。 调节的具体方法为: 首先使排出设备散热风道的空气温度 Tout值的控制目标为 SP一 Tout=Ta+ATin+ATout, 以满足设备散热的需耍; 再使进入设备散热风道的空 气温度 Tin值的控制目标为 SP— Tin=Ta+ATin, 以满足设备控制相对湿度的需要。 Tout不采用 Tin做参 照是因为 Tin本身是变量, 且 Tin受 Tout的影响较大, 因此若 Tout釆用 Tin做参照, 对系统的稳定性 影响较大。 所以采用相对稳定的 Ta做参照, 可以快速的确定设备的通风量, 有利于快速的寻找环境 循环风量的平衡。
当 Td<Ta<Th时, 为恒温区处理方式, 此时需要保持 Tout=Th+ATh, Tin= Th。 考虑到机柜温控系统中空气温度的平滑过渡需耍,在常温态与髙温态的切换中增加 ΔΓΟ的回温区。 冋温区的设置方式为:回温区温度值的初始默认值为处于常温状态的温度值,即首先当 Ta Th+ ΔΤ吋, 为设备从常温态切换到髙温态, 然后当 Ta<Th时, 设备从高温态切换到常温态。
下面对机柜温控系统的常温处理方式的具体步骤进行详细描述。
如图 14所示, 主耍包括如下步骤:
步骤 140: 采用恒温区处理方式, 判断设备是否处于常温态进入 Tout恒温状态的模式。 当 +△ Tin +ATout>Th+ATh时, 为 Tout恒温状态模式, 需耍保持 Tout=Th+ ATh, 此时执行步骤 141。 ¾ 设备不处于常温态进入 Tout恒温状态模式时, 执行步骤 142;
步骤 141: 此吋为恒温区处理方式, Tout值的控制目标为 SP— Tout= Th+ 具体控制过程见步 骤 111 ;
步骤 142: 此时为常温态的普通处理方式, Tout值的控制目标为 SP— Tout=Ta+ATin + ATout , 体控制过程见步骤 111。
步骤 143:采用恒温区处理方式,判断设备是否处于常温态进入 Tin恒温状态的模式。当 Ta+ ATin >Th时, 为常温态进入 Tin恒温状态的模式, 需要保持 Tin=Th, 此时执行步骤 144。 当设备不处丁-常 温态进入 Tin恒温状态的模式时, 执行步骤 145;
步骤 144: 此时为恒温区处理方式, Tin值的控制目标为 SP— Tin=Th, 具体控制过程见步骤 121。 步骤 145: 此时为常温态的普通处理方式, Tin值的控制目标为 SP—Tin Ta+ATin, 具体控制过程 见步骤 121。
当 Ta^Th时, 处理单元采用高温处理方式。 在高温状态, 机柜温控系统的工作状态为第三种工作 状态, 此时加热器和循环风扇装置均关闭, 在简化版本中采用循环风扇低速模拟循环百叶窗的效果, 环 境风扇装置开启。 处理单元根据进入散热风道的空气温度值 和排出散热风道的空气温度值 Tout , 调 节环境风扇装置转速,以调节环境空气进入机柜的量,使 Tout与 Ta之间维持一合理温差 ATh,即使 Tout 值的控制目标为 SP_Tout=Ta+ATh。 如图 15所示, 其主要包括如下步骤:
步骤 150: 处理单元关闭循环风扇装置, 使循环通风量为 0, 在简化版本中采用循环风扇低速模拟 循环百叶窗的效果。 这是因为在高温状态时, 设备内空气的相对湿度值已经达到了控制目标, 环境空气 可以直接进入电类设备给设备散热;
步骤 151: 根据设备的高温控制需求增加设备的高温上限值 Tover, 再判断 Ta+ATh值与 T_0ver 值的大小。 Tover值的设置方法为: 判断机柜内设备是否需耍设置高温上限值, 如¾需耍, 则根据设备 的性能设置一高于 Tout的设备的高温极限值 Tover, Tover是合适的设备高温限制区间, 可以根据机枢 内单板的高温散热实际确定得出 Tover的理想值; 如果不需要则不设置 Tover值。
当 Ta+ATh>T_over时, Tout值的控制目标为 SP— Tout= T— over, 具体控制过程见步骤 1 U ; 步骤 152: 当 Ta+ATh<T— over或者不需要设置 Tover值时, Tout值的控制目标为 SP— Tout- Ta+ △Th, 具体控制过程见步骤 111。
当 Ta Tl时, 处理单元采用低温处理方式。 在低温状态时, 因为此时外界环境的绝对温度比较低, 所以处理单元不需耍对机柜内部的相对湿度进行控制, 而只需要对机柜内部的温度进行控制。
在所述各温度状态下均可以对 SP— Tout值进行调整, 调整方法为: 将所述 SP— Tout值与所述预定的 ToutLimit进行比较, 当 SP一 Tout<ToutLirait时, 取 ToutLimit值作为当前 SP— Tout值, 当 SP— Tout〉 ToutLirait时, 保留当前 SP— Tout值, 当然出风口的温度限定耍求, 不需耍校正 SP_Tout。
在设备没有环境进风量吋, Tout值与 Tin值很接近, 在有 ToutLiniit设定需求吋, 该值应该是 ToutLimit, 当 Tout〉Tl + ATin+ATout时, 设备内部设备本身产生的热 fi超过了需耍加热产生的热 量, 所以需耍主动把多出来的热 11散发到外界环境中。 因此, 此时, 需耍开启环境风扇装置, 使循环风 扇装置和环境风扇装置都正常工作, 同时处理单元根据 Ta、 Tin和 Tout值调节循环风扇装!:和环境风 扇装置的转速, 分别控制设备散热风道返回的热空气和环境的冷空气的通风; ft, 使得进入设备散热风道 进风口的温度维持在 Tin=Tl+ATin, 设备散热风道出风口的温度维持在 Tout
Figure imgf000016_0001
+ATout或者 ToutLimit o 如图 16所示, 主耍包括如下步骤:
步骤 160: 当 Tin Ta时, 首先判断在低温状态下是否需耍开启环境风扇装置来对设备进行散热, 使得 Tout值的控制目标为 SP— Tout- Ta+ ATin+ATout, 具体控制过程见步骤 111。
步骤 1600: 判断是否有环境通风量, 若无环境通风量则执行步骤 1601 , 若有环境通风 :, 即环境 通风量不为 0则执行步骤 161;
步骤 1601: 此时没有环境通风量, 即环境风量为 0, 此时维持髙速的循环通风量, 使得循环风盘的 通风量为最大循环通风量的 80%到 100%之间;
步骤 161: 此时有环境通风量, 即环境风量不为 0, 调节循环风量的大小, 使得 Tin值的控制目标 为 SP一 Tin=Ta+ATin, 具体控制过程见步骤 121。
以上为设备在三种环境温度下的详细运行步骤。在实际的工作中, 可以根据设备运行环境的具体耍 求来对设备的处理单元作出调整。例如: 当设备不需要考虑在低温环境下应用或者不需耍考虑使用加热 器的情况时,可以只考虑设计满足设备在常温和 /或高温环境下运行的处理单元以节省设备的制作成本。 m 17所示的常温和高温状态时的系统的具体处理步骤为:
步骤 171 : 检测环境温度 Ta、 进入散热风道的空气温度 Tin以及排出散热风道的空气温度 Tout; 步骤 172: 判断 Ta是否大于 Th, 若否, 则进入步骤 173, 若是, 则进入步骤 174;
步骤 173: 处理单元釆用常温处理方式进行处理;
步骤 174: 处理单元采用高温处理方式进行处理。
需要指出是, 本发明除了应用于户外型机柜外, 也可以应用于更加普遍使用的室内型机柜。 很多机 柜设备安装在简易机房环境中, 这些简易机房环境缺少温度、 灰尘和相对湿度控制, 使得设备面临温度 和环境腐蚀的困扰。 采用本发明亦可以解决这些设备的温度和湿度防护的问题。
此外, 基于故障处理的考虑, 在各进风口和出风口位置, 循环风道可以采用 1 + 1 的备份风扇。 即 无论设备处于何种工作状态, 当发生任何情况的风扇故障时, 备份风扇会发出警告主动耍求人为更换损 坏了的风扇, 并且关闭循环风扇装置, 切换控制模式至高温态控制模式。 即以首先满足设备的散热为主 耍目标, 而不首先考虑相对湿度的问题, 所以在这个过程中不采用提高进风口温度的方法来首先满足相 对湿度的耍求, 而是牺牲短暂的湿度控制要求而首先满足设备的散热耍求。
相对湿度的问题可以不首先考虑, 是由于相对湿度对设备的腐蚀影响是长期积累的效果, 对相对湿 度的控制也是长期累计的效果。 短暂的湿度不符合设备的要求, 对设备的影响是有限的, 而且在风扇故 障恢复后, 设备的直接通风控制系统又恢复了对设备的正常的控制温度和控制相对湿度的策略。
本发明采用独特的风道设计和温度、相对湿度控制方案,可靠控制设备内部的空气温度和相对湿度。 在低温环境下充分利用设备本身的热耗进行自加热,必要时采用辅助加热手段,实现机柜内部均匀加热。 在高温环境下直接利用外界环境空气进行散热, 消除了额外的温差, 达到最佳的散热效果。 在常温环境 下不需耍釆用额外的加热装置, 通过设备本身的热耗进行自加热来降低机柜内部相对湿度, 抑制腐蚀, 节约能源, 并能保证设备的可靠散热。 能够减少机柜与环境之间的通风; 从而减少灰尘进入机柜。 此 夕卜, 本发明与空调和热交换器等温控设备相比较, 可以降低机柜的体积, 并减少噪声, 且 A有成本上的 优势。
图 18和图 19示出了本发明另一实施例中的温控设备, 该温控设备安装在机枢上, 与机 ¾内的散热 风道配合来实现温控的目的。 该温控设备的结构与上一实施例的回流混合风道 20的结构类似, 它包括 彼此分隔的进风区 41和出风区 42, 进风区 41设有循环风进口 410和回流空气出风口 411 , 出风冈 42 设有循环风出口 420和回流空气进风口 421。 回流空气进风口 421和回流空气出风口 411附近设有环境 风扇装置 43, 回流空气出风口 411将进风区 41与外界环境连通, 回流空气进风口 421将出风 42 外 界环境连通。 进风区 41和出风区 42之间设有通风孔 46, 通风孔 46附近设有循环风扇装置 44。 该温控 设置还可包括加热器 45和控制单元 (未图示) 等。
工作过程中, 循环风进口 410与机柜内的散热风道 10的出风口相连通, 循环风出口 420与机杷内 的散热风道 10 的进风口相连通, 均可以直接相连, 也可以通过导管间接相连。 温控过程与上一实施例 类似, 在此不再赘述。 由于该独立温控设备可以如同热交换器和空调一样成为一个标准温控模块安装在 机柜上使用, 使得本实施例的应用更加灵活和便捷。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术 领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应该以权利耍求书的保护范围为准。

Claims

权 」要求
1、 一种机 fe温控装置, 用丁-配合机柜温控系统的散热风道, 其特征在于, 所述装 S包括: 回流混合风道、 循环风扇装置;
所述回流混合风道的循环风进口接散热风道的出风口,所述回流混合风道的循环风山口接散热风道 的进风口;
所述循环风扇装置设置于回流混合风道内。
2、 根据权利耍求 1所述的机柜温控装置, 其特征在于, 所述的回流混合风道内设有分隔结构将其 分隔成进风区和出风区, 所述的循环风进口设于进风区, 所述的循环风出口设于出风区; 所述分隔结构 上设有将所述进风区和出风区连通的通风口, 所述的循环风扇装置设于通风口处。
3、 根据权利耍求 2所述的机柜温控装置, 其特征在于, 所述的回流混合风道还设有冋流空气进风 口与回流空气出风口, 回流空气进风口设于回流混合风道的出风区, 回流空气出风口设丁-回流混合风道 的进风区。
4、 根据权利要求 1所述的机柜温控装置, 其特征在于, 所述的装置还包括直接通风环境进风口与 直接通风环境出风口, 直接通风环境进风口与散热风道的进风口相连, 直接通风环境出风口与散热风道 的出风口相连。
5、 根据权利要求 2、 3或 4所述的机柜温控装置, 其特征在于, 所述的通风口、 回流空气进风口、 回流空气出风口、 直接通风环境进风口、 和 /或直接通风环境出风口处设有气流开 /关装置, 由气流控制 所述气流开 /关装置的开启与关闭, 或采用不直接关断风扇的方式。
6、 根据权利要求 3或 4所述的机柜温控装置, 其特征在于, 所述的回流空气进风口、 回流空气出 风口、 或直接通风环境进风口、 直接通风环境出风口处设有环境风扇装置。
7、 根据权利要求 3或 4所述的机柜温控装置, 其特征在于, 所述的回流空气进风口和 /或直接通风 环境进风口设有灰尘过滤装置。
8、 根据权利要求 1所述的机柜温控装置, 其特征在于, 所述散热风道和 /或所述回流混合风道内设 置有加热器。
9、 一种机柜温控处理装置, 其特征在于, 所述装置包括:
温度采集单元, 用于实时釆集包括: 环境温度值 Ta、进入散热风道的空气温度值 Tin以及排出散热 风道的空气温度值 Tout的温度值;
目标控制值设定单元, 用于预先和 /或在控制过程中设定包括: Tout 的目标控制值 SP— Tout和 /或 Tin的目标控制值 SP— Tin和 /或需要启动加热器的温度值 Thon和 /或需耍关闭加热器的温度值 Thof f和 / 或低温临界温度 T1和 /或高温临界温度 Th和 /或出风口温度最小期望值 ToutLimit的目标控制值; 处理单元, 用亍根据获取的所述包括 Ta、 Tin和 Tout;值的温度值及所述设定的 Θ标控制值控制所 述机柜内的温度和相对湿度维持在设备正常工作允许的范围之内。
10、 根据权利要求 9所述的装置, 其特征在于, 所述装置还包括:
加热器控制单元, 用于控制机柜内加热器的开启和关闭; 和 /或,
循环风扇控制单元, 用于控制机柜内循环风扇的开启和 /或运行速度; 和 /或,
环境风扇控制单元, 用于控制机柜内环境风扇的开启和 /或运行速度。
11、 根据权利要求 9所述的装置, 其特征在于, 所述处理单元进一步包括: 常温控制单元, 用于根据温度采集单元获取的所述温度值, 按照常温控制方式控制机柜内的各控制 单元, 将机柜内的温度值控制在目标控制值设定单元设定的 SP—Tin和 SP— Tout值处; 和 /成,
高温控制单元, 用于根据温度采集单元获取的各个温度值, 按照高温控制方式控制机柜内的各控制 单元, 将机柜内的温度值控制在目标控制值设定单元设定的 SP— Tout值处; 和 /或,
低温控制单元, 用于根据温度采集单元获取的各个温度值, 按照低温控制方式控制机柜内的各控制 单元, 将机柜内的温度值控制在目标控制值设定单元设定的 SP— Tin和 SP_Tout值处。
12、一种机柜温控系统,包括具有进风口和出风口的散热风道,所述散热风道内设有散热风扇装置, 其特征在于, 所述系统还包括机柜温控装置和 /或机柜温控处理装置;
所述的机柜温控装置包括: 回流混合风道、 循环风扇装置;
所述回流混合风道的循环风进口接散热风道的出风口, 回流混合风道的循环风出口接散热风道的进 风口;
所述循环风扇装置设置于回流混合风道内;
所述的机柜温控处理装置用于控制所述系统的温度和相对湿度在设备正常工作允许的范围之内。
13、 一种机柜温控方法, 其特征在于, 所述方法包括:
获取包含环境温度值 Ta、 进入散热风道的空气温度值 Tin以及排出散热风道的空气温度值 Tout; 根据所述获取的包含环境温度值 Ta、进入散热风道的空气温度值 Tin和排出散热风道的空气温度值 Tout的温度值输出控制信号,并根据预先设定的目标控制值控制所述机柜内各设备的工作,使机柜内的 温度和相对湿度维持在设备正常工作允许的范围之内。
14、 如权利要求 13所述方法, 其特征在于,
所述的控制机柜内的控制单元的工作包括: 控制散热风扇装置, 具体方法包括:
当 Tout<Tout的目标控制值 SP—Tout时, 减小环境通风量, 提高 Tout值,直到 Tout=SP— Tout; 当 Tout >SP— Tout时, 增大环境通风量, 减小 Tout值, 直到 Tout=SP__Tou1;。
15、 如权利要求 13所述方法, 其特征在于,
所述的控制机柜内的控制单元的工作包括: 控制加热器工作, 具体方法包括:
当 Tout 需要启动加热器的温度值 Thon时, 开启温控单元的加热器;
当 Tout>需耍关闭加热器的温度值 Thoff 时, 关闭温控单元的加热器。
16、 如权利要求 13所述方法, 其特征在于,
所述的控制机柜内的控制单元的工作包括: 控制循环风扇装置工作, 具体方法包括:
当 Tin<Tin的目标控制值 SP—Tin时, 增大回流热空气的比例, 直到 Tin=SP一 Tin;
当 Tin>SP— Tin时, 减小回流热空气的比例, 直到 Tin=SP— Tin。
17、 如权利要求 13所述方法, 其特征在于, 所述温度控制方法包括: 当低温临界温度 1'1< <高 温临界温度 Th时, 为设备的常温工作状态,
首先使 SP一 Tout=Ta+环境空气温度与进入散热风道的空气温度需耍维持的温度差 ΔΉη+排出散热风 道的空气温度与进入散热风道的空气温度需要维持的温度差 ATout , 以满足设备散热的需要, 再使 SP_Tin=Ta+ATin, 以满足设备控制相对湿度的需要; 或,
当 Ta Th时, 为设备的高温工作状态, 此时 SP_Tout= Ta+系统运行在髙温环境时排出散热风道空 气的温度与进入散热风道空气的温度需要维持的温度差 ATh; 或, 当 Ta<Tl时, 为设备的低温工作状态, ^ SP_Tout= ToutLimit; 或,
当此吋没有环境通风 !ji时, 循环巡风 fl为最大循环通风量的 80%到 100%之间; 否则,
Figure imgf000020_0001
18、 如权利耍求 17所述的方法, 其特征在于, 当 Tl<Ta<Th时, 在令 SP— Tout=Ta+ATin+ATout 之前还包括:
当 Ta+ATin +ATout>Th+ATh时, SP_Tout= Th+ATh; 否则,
SP_Tout=Ta+ATout +ΔΤίη; 或,
当 Ta+ATin>Th时, SP— Tin=Th; 否则,
当处于回温区间时, SP_Tin=Ta+ATin。
19、 如权利要求 17所述的方法, 其特征在于, 当 Tl<Ta<Th且 Ta<Th+回温区 ΔΤ时, 机柜内控 制单元按照常温工作状态的工作方式进行工作。
20、 如权利要求 19所述的方法, 其特征在于, 当 Ta Th且需耍设置设备的高温上限值 Tover时, 所述的方法还包括:
当 Ta+ATh〉T— over时, SP— Tout= T— over; 否则,
如果没有设备高温限制需求可设定, 则 SP—Tout= Ta+ZVTin。
21、 如权利要求 17至 20任一项所述的方法, 其特征在于, 确定所述的 Th及 ΔΤίη值的方法包括: 所述的 Th值为温湿度极值关系图上查询到的 Th值或,
釆用使用设备当地的温湿度极值关系获取的 Th值; 和,
由温差控制参考值极值图和 ATin—起确定的 Th值中的较大的 Th值; 或,
由实际环境高温湿度值的极大值确定 ATin的值。
22、 如权利要求 21所述的方法, 其特征在于, 根据设备的目标相对湿度值决定所述的温度湿度值 关系图上査询到的 Th值; 或,
采用使用设备当地的温湿度极值关系获取。
23、如权利要求 17至 20任一项所述的方法, 其特征在于, 根据设备的时间风险率来调节 ffi述的 Th 值。
24、 如权利耍求 13所述的方法, 其特征在于, 所述方法进一步包括:
通过限定最小的出风口期望值 ToutLimit, 延长设备防尘使用寿命、 增强在低温的保温效果及常温 下降低噪声。
25、 如权利要求 24所述的方法, 其特征在于, 所述限制最小的出风口期望值的方法包括: 当计 获取的排出散热风道的空气温度值 Tout 的目标控制值 SP一 Tout 小于 ToutLimit 时, 取
SP_Tout为 ToutLimit。
26、 如权利耍求 24或 25所述的方法, 其特征在于, 所述 ToutLimit取值范围为 25〜50度。
27、 如权利耍求 13所述的方法, 其特征在于, 所述方法进一步包括:
通过根据使用设备当地温湿度情况确定目标温湿度值或通过进入设备热空气与环境空气比例控制 进入设备的温升达到降低进入设备空气的相对湿度。
PCT/CN2007/000507 2006-02-24 2007-02-13 Dispositif de régulation de température, dispositif de gestion de température, et système et procédé associés WO2007095846A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT07710932T ATE471067T1 (de) 2006-02-24 2007-02-13 Temperatursteuerungsvorrichtung sowie verwaltungsvorrichtung, system und verfahren dafür
EP07710932A EP1988760B1 (en) 2006-02-24 2007-02-13 Temperature control device, management device, system and method
DE602007007061T DE602007007061D1 (de) 2006-02-24 2007-02-13 Temperatursteuerungsvorrichtung sowie verwaltungsvorrichtung, system und verfahren dafür
CN200780000219XA CN101313640B (zh) 2006-02-24 2007-02-13 机柜温控装置、系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200610033988.7 2006-02-24
CN 200610033988 CN1852648A (zh) 2006-02-24 2006-02-24 机柜温控系统、装置及方法
CN200610150197.2 2006-10-30
CNB2006101501972A CN100563412C (zh) 2006-02-24 2006-10-30 机柜温控装置、处理装置、系统及方法

Publications (1)

Publication Number Publication Date
WO2007095846A1 true WO2007095846A1 (fr) 2007-08-30

Family

ID=38045421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000507 WO2007095846A1 (fr) 2006-02-24 2007-02-13 Dispositif de régulation de température, dispositif de gestion de température, et système et procédé associés

Country Status (5)

Country Link
EP (1) EP1988760B1 (zh)
CN (1) CN100563412C (zh)
AT (1) ATE471067T1 (zh)
DE (1) DE602007007061D1 (zh)
WO (1) WO2007095846A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104053341A (zh) * 2014-06-06 2014-09-17 河南省交通科学技术研究院有限公司 一种高速通讯用基站加热保温及通风装置
CN106532453A (zh) * 2016-12-09 2017-03-22 天津鼎电气成套设备股份有限公司 一种高低压开关柜
CN108235647A (zh) * 2016-12-15 2018-06-29 维谛技术有限公司 一种机柜及其冷却控制系统、方法和装置
CN108762340A (zh) * 2018-08-21 2018-11-06 无锡诚石轴承有限公司 机床电器控制箱温度监测控制装置
CN109508052A (zh) * 2018-11-22 2019-03-22 北京中热信息科技有限公司 一种液冷源空调系统
CN112790419A (zh) * 2021-03-18 2021-05-14 河南中烟工业有限责任公司 一种叶丝加料的加工参数的控制方法及系统
CN113220054A (zh) * 2021-05-26 2021-08-06 贵州电网有限责任公司 一种带电作业工具房温湿度控制系统及其控制方法
CN113690751A (zh) * 2021-09-14 2021-11-23 绍兴市上虞区武汉理工大学高等研究院 一种船舶用岸电桩及岸电桩温控方法
CN113784593A (zh) * 2021-09-13 2021-12-10 安徽飞凯电子技术有限公司 一种拼装式散热柜及其工作方法
US20220026880A1 (en) * 2020-07-24 2022-01-27 Dell Products L.P. System and method for service life management based on humidity control
CN115561000A (zh) * 2022-04-12 2023-01-03 无锡锡州机械有限公司 一种大功率高强度不锈钢热交换器检测装置
CN116430082A (zh) * 2023-04-10 2023-07-14 珠海浩阳科技有限公司 一种智能调节测试温度的蓄电池质量检测设备

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100563415C (zh) * 2007-07-04 2009-11-25 华为技术有限公司 直通风散热装置及其控制方法
CN101588705B (zh) * 2008-05-23 2011-06-22 华为技术有限公司 一种机柜及机柜温控系统
US20110207392A1 (en) * 2008-11-14 2011-08-25 Knurr Ag Method for regulating the cooling air in equipment cabinets and sensor arrangement
US9497886B2 (en) 2009-12-02 2016-11-15 Bae Systems Plc Air cooling
SE535032C2 (sv) * 2010-03-23 2012-03-20 Rikard Bergsten System och förfarande för att nedbringa mätfel hos en fuktsensor vid luftväxling eller luftcirkulering av ett utrymme
ES2576734T3 (es) * 2010-08-05 2016-07-11 Ventfair Gmbh Dispositivo y procedimiento para la refrigeración de espacios cerrados
FR2972598B1 (fr) * 2011-03-11 2013-11-08 Schneider Electric Ind Sas Procede de gestion thermique d'une installation de conversion d'energie electrique et installation pour mise en oeuvre du procede
CN102291964A (zh) * 2011-06-09 2011-12-21 山东交通学院 一种网络设备用温度调节装置
CN102365008A (zh) * 2011-11-03 2012-02-29 苏州仲暄通讯技术有限公司 具全数字监测功能的可分区温控的机柜
EP2762796A1 (en) * 2013-02-04 2014-08-06 ABB Oy Cooling assembly
CN103179820B (zh) * 2013-02-25 2017-07-28 杭州师范大学 新型电器控制柜
CN103153032B (zh) * 2013-03-22 2016-01-20 杭州汉超科技有限公司 集成温控平衡机柜
CN103394385A (zh) * 2013-08-16 2013-11-20 常熟市苏常工程质量检测有限公司 耐高温测试设备
CN104023504B (zh) * 2014-05-21 2016-05-11 北京无线电测量研究所 一种可快速加热的雷达发射方舱
JP6284828B2 (ja) * 2014-05-30 2018-02-28 株式会社三社電機製作所 電気機器
CN105067466B (zh) * 2015-08-04 2017-09-26 中国矿业大学 一种并联髋关节试验机仿生温度控制装置及方法
CN105188315A (zh) * 2015-09-06 2015-12-23 浪潮(北京)电子信息产业有限公司 一种机房智能温度控制系统
CN107765723A (zh) * 2016-08-23 2018-03-06 华为技术有限公司 一种湿度控制方法、装置及腔体设备
CN106843331B (zh) * 2016-12-29 2018-12-21 芜湖亿诚电子科技有限公司 一种智能化配电柜防潮控制系统
CN106686957A (zh) * 2017-02-27 2017-05-17 钦州市鑫勇达电子科技有限公司 一种通风散热系统
CN108005940A (zh) * 2017-12-25 2018-05-08 青岛诚广丰自动化工程有限公司 机器人风扇节能方法及装置
CN108195044A (zh) * 2018-01-02 2018-06-22 深圳市富源机电设备有限公司 一种热交换风机的优化控制方法
CN108323136A (zh) * 2018-05-02 2018-07-24 华北理工大学 一种散热机柜
CN108712845B (zh) * 2018-05-29 2021-03-19 北京中农精准科技有限公司 一种电气控制柜
CN109579140B (zh) * 2018-11-08 2021-07-13 中国联合网络通信集团有限公司 一种空调器室内机组、空调器及其制冷控制方法
CN109740258B (zh) * 2019-01-03 2023-04-14 中核控制系统工程有限公司 强迫风冷机柜的分段式热分析方法
CN112433547B (zh) * 2019-05-22 2022-02-15 石家庄华泰电力工具有限公司 用于控制柜的散热温控系统
CN110351985B (zh) * 2019-07-10 2020-05-29 山东职业学院 一种用于寒冷地区的恒温干燥机电配总成柜
CN111678195A (zh) * 2020-04-30 2020-09-18 太原大四方节能环保股份有限公司 一种质量分泵供热机组的调控方法
CN111541357B (zh) * 2020-05-09 2021-12-28 烟台汽车工程职业学院 一种新能源充电模块
CN112636218B (zh) * 2020-09-09 2023-05-02 北京潞电电气设备有限公司 一种适用于低温环境的自循环式电力箱及其控制方法
CN112835313A (zh) * 2020-12-30 2021-05-25 中航光电科技股份有限公司 一种新型系统监测功能的设备安装平台
CN116105332A (zh) * 2021-03-31 2023-05-12 追觅科技(上海)有限公司 供风设备及其风温控制方法、电子设备和计算机可读介质
CN113329592B (zh) * 2021-05-08 2023-03-24 江西源能电气技术有限公司 一种具有防冻保温效果的变频器
WO2022241769A1 (zh) * 2021-05-21 2022-11-24 华为数字能源技术有限公司 配电柜及储能直流配电系统
CN113395885B (zh) * 2021-07-13 2023-05-23 四川帝威能源技术有限公司 一种锂电池直流系统用电气柜
CN113613473A (zh) * 2021-08-13 2021-11-05 宁波视睿迪光电有限公司 对流循环的控制方法及装置、对流循环控制器、存储介质
CN113958163A (zh) * 2021-11-18 2022-01-21 北京七彩宏盛科技有限公司 一种智慧城市建设用自循环散热式机房
CN114867295B (zh) * 2022-04-27 2023-08-25 中国电子科技集团公司第二十九研究所 一种基于风机的动态热管理装置及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973321A (ja) * 1995-09-07 1997-03-18 Hitachi Ltd 冷却装置を内蔵した電子装置及びその冷却監視制御方法
US5934368A (en) 1994-09-20 1999-08-10 Hitachi, Ltd. Air-cooled electronic apparatus with condensation prevention
JP2000242340A (ja) * 1999-02-19 2000-09-08 Fujitsu General Ltd Pdp装置
US6208510B1 (en) * 1999-07-23 2001-03-27 Teradyne, Inc. Integrated test cell cooling system
EP1311147A2 (en) 2001-09-17 2003-05-14 Siemens Mobile Communications S.p.A. Thermal conditioning method and equipment for electronic assembly shelters, with relative humidity control
CN1652675A (zh) * 2004-02-07 2005-08-10 华为技术有限公司 一种散热系统
US20050225936A1 (en) * 2002-03-28 2005-10-13 Tony Day Cooling of a data centre
US20050278069A1 (en) * 2004-05-26 2005-12-15 Bash Cullen E Energy efficient CRAC unit operation using heat transfer levels

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0001165D0 (sv) * 2000-03-31 2000-03-31 Ericsson Telefon Ab L M Förfarande och anordning för att kyla elektronik

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5934368A (en) 1994-09-20 1999-08-10 Hitachi, Ltd. Air-cooled electronic apparatus with condensation prevention
JPH0973321A (ja) * 1995-09-07 1997-03-18 Hitachi Ltd 冷却装置を内蔵した電子装置及びその冷却監視制御方法
JP2000242340A (ja) * 1999-02-19 2000-09-08 Fujitsu General Ltd Pdp装置
US6208510B1 (en) * 1999-07-23 2001-03-27 Teradyne, Inc. Integrated test cell cooling system
EP1311147A2 (en) 2001-09-17 2003-05-14 Siemens Mobile Communications S.p.A. Thermal conditioning method and equipment for electronic assembly shelters, with relative humidity control
US20050225936A1 (en) * 2002-03-28 2005-10-13 Tony Day Cooling of a data centre
CN1652675A (zh) * 2004-02-07 2005-08-10 华为技术有限公司 一种散热系统
US20050278069A1 (en) * 2004-05-26 2005-12-15 Bash Cullen E Energy efficient CRAC unit operation using heat transfer levels

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104053341B (zh) * 2014-06-06 2017-01-04 河南省交通科学技术研究院有限公司 一种高速通讯用基站加热保温及通风装置
CN104053341A (zh) * 2014-06-06 2014-09-17 河南省交通科学技术研究院有限公司 一种高速通讯用基站加热保温及通风装置
CN106532453A (zh) * 2016-12-09 2017-03-22 天津鼎电气成套设备股份有限公司 一种高低压开关柜
CN108235647B (zh) * 2016-12-15 2024-02-27 维谛技术有限公司 一种机柜及其冷却控制系统、方法和装置
CN108235647A (zh) * 2016-12-15 2018-06-29 维谛技术有限公司 一种机柜及其冷却控制系统、方法和装置
CN108762340A (zh) * 2018-08-21 2018-11-06 无锡诚石轴承有限公司 机床电器控制箱温度监测控制装置
CN109508052A (zh) * 2018-11-22 2019-03-22 北京中热信息科技有限公司 一种液冷源空调系统
US20220026880A1 (en) * 2020-07-24 2022-01-27 Dell Products L.P. System and method for service life management based on humidity control
CN112790419A (zh) * 2021-03-18 2021-05-14 河南中烟工业有限责任公司 一种叶丝加料的加工参数的控制方法及系统
CN113220054A (zh) * 2021-05-26 2021-08-06 贵州电网有限责任公司 一种带电作业工具房温湿度控制系统及其控制方法
CN113784593A (zh) * 2021-09-13 2021-12-10 安徽飞凯电子技术有限公司 一种拼装式散热柜及其工作方法
CN113690751A (zh) * 2021-09-14 2021-11-23 绍兴市上虞区武汉理工大学高等研究院 一种船舶用岸电桩及岸电桩温控方法
CN113690751B (zh) * 2021-09-14 2024-03-15 绍兴市上虞区武汉理工大学高等研究院 一种船舶用岸电桩及岸电桩温控方法
CN115561000B (zh) * 2022-04-12 2024-02-23 无锡锡州机械有限公司 一种大功率高强度不锈钢热交换器检测装置
CN115561000A (zh) * 2022-04-12 2023-01-03 无锡锡州机械有限公司 一种大功率高强度不锈钢热交换器检测装置
CN116430082A (zh) * 2023-04-10 2023-07-14 珠海浩阳科技有限公司 一种智能调节测试温度的蓄电池质量检测设备
CN116430082B (zh) * 2023-04-10 2023-11-14 珠海浩阳科技有限公司 一种智能调节测试温度的蓄电池质量检测设备

Also Published As

Publication number Publication date
CN1946279A (zh) 2007-04-11
EP1988760A1 (en) 2008-11-05
ATE471067T1 (de) 2010-06-15
CN100563412C (zh) 2009-11-25
EP1988760A4 (en) 2009-03-25
DE602007007061D1 (de) 2010-07-22
EP1988760B1 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
WO2007095846A1 (fr) Dispositif de régulation de température, dispositif de gestion de température, et système et procédé associés
CN101313640B (zh) 机柜温控装置、系统
WO2009003396A1 (fr) Dispositif de diffusion de chaleur à ventilation directe et procédé de commande
KR101475131B1 (ko) 환기 공조 장치 및 그 제어 방법
TWI425346B (zh) 貨櫃式資料中心之環境調節系統及調節方法
US8621884B2 (en) AC unit with economizer and sliding damper assembly
CN103574858B (zh) 一种中央空调系统室外回风预处理方法
US20160302326A1 (en) Temperature regulated cabinet
CN102278799B (zh) 具有水蒸发式冷风扇联动功能的空调及其控制方法
US20150009622A1 (en) Module-type data center and method of controlling the same
JP2011242011A (ja) サーバ用空調システム
JP2010223486A (ja) 換気装置および換気システム
WO2022156547A1 (zh) 一种冷却系统和数据中心
JP4961681B2 (ja) 燃料電池発電装置
CN110748972A (zh) 加湿装置、空调器及空调器的控制方法
CN107676892B (zh) 一种空调器及控制方法
CN107328032A (zh) 一种动物房双风机式空调智能控制系统
KR20040102020A (ko) 공기조화기
CN206919325U (zh) 一种变新风量空气调节装置
CN210959210U (zh) 一种集成热交换功能的空调机柜系统
JP5237782B2 (ja) 熱交換型換気装置
KR102560048B1 (ko) 연료전지 배열 활용 고효율 일체형 흡수식 냉방시스템
JP5324204B2 (ja) サーバ室等の空調システム
WO2023109102A1 (zh) 智能环境控制机
KR200406144Y1 (ko) 전열교환형 환기장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000219.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007710932

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE