WO2007091662A1 - 熱接着性複合繊維及びその製造方法 - Google Patents

熱接着性複合繊維及びその製造方法 Download PDF

Info

Publication number
WO2007091662A1
WO2007091662A1 PCT/JP2007/052290 JP2007052290W WO2007091662A1 WO 2007091662 A1 WO2007091662 A1 WO 2007091662A1 JP 2007052290 W JP2007052290 W JP 2007052290W WO 2007091662 A1 WO2007091662 A1 WO 2007091662A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
fiber
resin component
thermoplastic resin
adhesive
Prior art date
Application number
PCT/JP2007/052290
Other languages
English (en)
French (fr)
Inventor
Hironori Goda
Original Assignee
Teijin Fibers Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006028314A external-priority patent/JP5021938B2/ja
Priority claimed from JP2006028315A external-priority patent/JP4856435B2/ja
Application filed by Teijin Fibers Limited filed Critical Teijin Fibers Limited
Priority to KR1020087021687A priority Critical patent/KR101415384B1/ko
Priority to US12/278,323 priority patent/US7674524B2/en
Priority to DK07708274.1T priority patent/DK1985729T3/da
Priority to CN200780004645.0A priority patent/CN101379232B/zh
Priority to EP07708274A priority patent/EP1985729B1/en
Publication of WO2007091662A1 publication Critical patent/WO2007091662A1/ja
Priority to HK09103297.5A priority patent/HK1125142A1/xx

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]

Definitions

  • the present invention relates to a heat-adhesive conjugate fiber having high adhesive strength after heat-bonding and extremely low heat shrinkage during heat-bonding and a method for producing the same. More specifically, the present invention is a heat-adhesive conjugate fiber that has both low orientation and high elongation, good crimping performance, and good light-adhesiveness and low heat-shrinkability with good card passage. And its manufacturing method. book
  • heat-adhesive composite fibers represented by the core-sheath type heat-adhesive composite fiber with the heat-adhesive resin component as the sheath and the fiber-forming resin component as the core are made by the card method, airlaid method, wet papermaking method, etc.
  • the thermoadhesive resin component is melted to form an interfiber bond.
  • it does not use an adhesive that uses an organic solvent as a solvent, so it emits less harmful substances.
  • fiber structures such as hard cotton and bed mats have been widely used for nonwoven fabrics.
  • improvement of low-temperature adhesiveness or adhesive strength of heat-adhesive conjugate fibers is being studied. .
  • Patent Document 2 discloses a thermoadhesive conjugate fiber in which the orientation index of the thermoadhesive resin component is 25% or less and the orientation index of the fiber-forming resin component is 40% or more by a high speed spinning method. Yes. It is disclosed that the heat-adhesive conjugate fiber has a high bonding point strength, is fused at a lower temperature, and has a low heat shrinkage rate.
  • thermoadhesive conjugate fiber a fiber having good card passing properties has not been proposed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-10 8 3 10
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2 0 0 4-2 1 8 1 8 3
  • the present invention has been made against the background of the above-described conventional technology.
  • the purpose of the present invention is to provide a heat-adhesive conjugate fiber having low orientation, high elongation, low heat shrinkage, and high adhesion, and extremely good card-passability. It is to provide.
  • Yet another object is to provide a heat-adhesive conjugate fiber that can produce a bulky nonwoven fabric or fiber structure having high adhesive strength and low heat shrinkage. (Means for solving problems)
  • the present inventors have determined that the resin composition of the core component and the sheath component, the ratio of the core component to the sheath, the fluidity, the eccentric state, etc. are set appropriately.
  • unstretched yarns of sheath-type or eccentric core-sheath type composite fibers are subjected to constant length heat treatment at the same time as low-stretch drawing at a temperature higher than the glass transition temperature of the core and sheath, followed by relaxation heat treatment at higher temperatures
  • the inventors have reached the invention of a heat-adhesive conjugate fiber having both high adhesion and low heat shrinkage, which has better card-passability than the proposed low-orientation, high-stretch heat-adhesive conjugate fiber.
  • a Ru composite fiber name from a fiber forming resin component and a thermoadhesive resin component, a crystalline heat-adhesive resin component has a melting point lower 2 0 D C higher than the fiber-forming resin component
  • a thermo-adhesive conjugate fiber comprising a thermoplastic resin and having an elongation at break of 60 to 60% and a dry heat shrinkage of 120 ° C. of 1 10.0 to 5.0%
  • the undrawn yarn of the composite fiber taken up at a spinning speed of 150 to 1800 m / min was used for the glass transition temperature of the main crystalline thermoplastic resin of the heat-adhesive resin component and the fiber-forming resin component.
  • a constant length heat treatment is performed at the same time as stretching at a low magnification of 0.5 to 1.3 times at a temperature higher than the glass transition temperature, and then no tension is applied at a temperature higher than the constant length heat treatment temperature by 5 ° C or more.
  • the present invention can improve the card passing ability, which has been a defect of the conventionally proposed low-adhesion type high-adhesion low-heat-shrinkable heat-adhesive conjugate fiber, and can improve the productivity of the nonwoven fabric.
  • the heat-adhesive conjugate fiber of the present invention is a commercial production of an unwoven fabric that has an unprecedented texture and is bulky because the non-woven fabric after heat bonding has a bulky finish because the fiber itself is self-extensible. This greatly contributes to the expansion of The heat-adhesive conjugate fiber of the present invention is Enables provision of heat-bonded nonwoven fabric with good web quality
  • the heat-adhesive conjugate fiber of the present invention comprises a fiber-forming component and a heat-adhesive component.
  • the heat-adhesive resin component it is necessary to select a crystalline thermoplastic resin having a melting point lower by 20 ° C. or more than the fiber-forming resin component. If the difference in melting point between the fiber-forming resin component and the heat-adhesive resin component is less than 20 ° C, the fiber-forming resin component also melts in the process of melting and bonding the heat-adhesive resin component, resulting in a high strength Nonwoven fabrics or fiber structures cannot be produced.
  • the resin of the fiber-forming resin component is not particularly limited, but a crystalline thermoplastic resin having a melting point of 130 ° C. or higher is preferable.
  • high-density polyethylene (HDPE), polytactic polypropylene (PP), or polyolefins such as copolymer polymers based on these, polyamides such as nylon 16 or nylon 66, or polyester Examples include polyesters such as terephthalate, polytrimethylene terephthalate, polypropylene terephthalate, and polyethylene naphthalate. Polyesters that can impart an appropriate rigidity to the web or nonwoven fabric by the production method as described above, particularly polyethylene terephthalate (PET) are preferably used.
  • PET polyethylene terephthalate
  • the crystalline thermoplastic resin constituting the thermoadhesive resin component it is necessary to select a crystalline thermoplastic resin having a melting point of 2.0 ° C. or more lower than that of the fiber-forming resin component.
  • the melting point of the main crystalline thermoplastic resin satisfies the above conditions.
  • the main point is that the characteristics of the composite fiber of the present invention are not lost as a whole when the heat-adhesive resin component described later is a polymer blend. Specifically, it is preferably 55% by weight or more, more preferably 60% by weight or more, based on the total weight of the heat-adhesive resin component.
  • thermoadhesive resin component When the thermoadhesive resin component is an amorphous thermoplastic resin, it is oriented during spinning. As the molecular chains become unoriented at the same time as melting, the fiber contracts greatly.
  • the crystalline thermoplastic resin constituting the thermoadhesive resin component is not particularly limited, but polyolefin resin and crystalline copolyester can be mentioned as preferred examples.
  • the polyolefin resin examples include homopolyolefins such as crystalline polypropylene, high density polyethylene, medium density polyethylene, low density polyethylene, and linear low density polyethylene.
  • the polyolefin resin constituting the heat-adhesive resin component is ethylene, propylene, butene, pentene-1, or acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, isocrotonic acid. , Mesaconic acid, citraconic acid, hymic acid, esters thereof, or unsaturated compounds comprising these acid anhydrides.
  • It may be a copolymerized polyolefin copolymerized with one or more of the above homopolyolefins.
  • polyesters examples include the following polyesters. That is, an alkylene terephthalate is mixed with an aromatic dicarboxylic acid such as isophthalic acid, 'naphthalene-1,6-dicarboxylic acid, or 5-sulfoisophthalate, an aliphatic dicarboxylic acid such as adipic acid or sepacic acid, cyclo Aliphatic dicarboxylic acids such as hexamethylene dicarboxylic acid, aliphatic diols such as ⁇ -hydroxyalkyl carboxylic acid, polyethylene dallicol, polytetramethylene dallicol, or hexamethylene dimethanol Mention may be made of polyesters obtained by copolymerizing alicyclic diols so as to exhibit the desired melting point.
  • aromatic dicarboxylic acid such as isophthalic acid, 'naphthalene-1,6-dicarboxylic acid, or 5-sulfoisophthalate
  • the alkylene terephthalate has terephthalic acid or its ester-forming derivative as the main dicarboxylic acid component, and ethylene glycol-nore, diethyleneglycone, trimethylenglycone, tetramethyleneglycone, hexamethyleneglycol as the main component. Or the polyester obtained by using 1 to 3 types of combinations from these derivatives as a raw material can be mentioned.
  • the form of the heat-adhesive conjugate fiber of the present invention is a composite fiber or fiber in which a fiber-forming resin component and a heat-adhesive resin component are bonded together in a so-called side-side shape. Any of the core-sheath type composite fibers having the above may be used.
  • a core-sheath type composite in which the fiber-forming resin component is the core component and the heat-adhesive resin component is the sheath component in that the heat-adhesive resin component can be arranged in all directions perpendicular to the fiber axis direction.
  • the core-sheath type composite fiber include concentric core-sheath type composite fiber and eccentric core-sheath type composite fiber.
  • the weight ratio of the fiber-forming resin component to the heat-adhesive resin component is 60:40 to 10: 9
  • a value of 0 is preferable from the viewpoint of providing a crimping performance that improves the card passing property.
  • the weight ratio is more preferably 55:45 to 20:80.
  • the reason for this is considered as follows. In other words, the resin constituting the sheath component in the composite fiber softens and undergoes thermal shrinkage during the relaxation heat treatment. At this time, the core weight component in the composite fiber increases as the weight ratio of the resin of the sheath component in the composite fiber increases. The resin is easily deformed.
  • the three-dimensional crimp of the composite fiber is easily developed. If the weight ratio of the sheath component is less than 40% by weight, the force that deforms the resin of the core component due to the shrinkage becomes small, so that steric crimps are difficult to appear. On the other hand, if the weight ratio of the resin of the sheath component exceeds 90% by weight, the three-dimensional crimp tends to increase and tends to cause fiber clogging in the card equipment. By controlling the supply amounts of both resin components at the time of spinning, the weight ratio range of the fiber-forming resin component and the heat-adhesive resin component can be controlled.
  • the heat-adhesive conjugate fiber of the present invention is characterized in that the elongation at break is 60 to 60%, the dry heat shrinkage rate is 10.0 to 5.0%, Necessary for combining low heat shrinkage and good card passage. It is more preferable that the ratio of the crimp rate to the crimp number (crimp rate Z crimp number) satisfies 0.8 or more.
  • the elongation at break of the thermoadhesive conjugate fiber is determined by the orientation of the resin of the thermoadhesive resin component. In order to keep it low, it is necessary to control in the range of 60 to 60%. Preferably it is the range of 80-500%, More preferably, it is the range of 1,30-45%. If the elongation at break is less than 60%, the orientation of the heat-bonding component is high, so that the adhesiveness is poor and the strength of the nonwoven fabric is reduced. If the elongation at break exceeds 600%, the strength of the heat-bonded nonwoven fabric cannot be increased because the fiber strength is substantially small.
  • the 120 ° C. dry heat shrinkage ratio of the heat-adhesive conjugate fiber needs to be in the range of 10.0 to 5.0%. More preferably, the 120 ° C. dry heat contraction rate is in the range of 10.0 to 1.0%. 1 20 ° C Dry heat
  • the shrinkage rate at 120 ° C becomes a negative value and the fiber is heated to a slight self-elongation state, the fiber density in the nonwoven fabric is lowered before thermal bonding, resulting in a soft and bulky finish.
  • a non-woven fabric with a good texture 1 20 ° C dry heat If the shrinkage rate exceeds 5.0%, the bonding intersection will be shifted during thermal bonding, and the adhesive strength will decrease. This will not contribute to the improvement of the target bonding strength. On the other hand, when the '12'0 ° C dry heat shrinkage rate of the composite fiber becomes less than 10.0%, the bonding point will shift and the nonwoven fabric strength will decrease.
  • a draw draft of about 0.5 to 1.3 times is required. Low. Achieved by performing constant length heat treatment simultaneously with stretching.
  • the draft is less than 1.0 times, specifically, when the overfeed rate is increased or the temperature of the relaxation heat treatment is increased, the self-stretching rate of the composite fiber tends to increase.
  • the non-woven fabric is bulky, and when a fiber structure is manufactured, the fiber structure is finished to a low density.
  • the preferable range of the 120 ° C dry heat shrinkage of the composite fiber is 1 8.0 0. 2%, more preferably 1 6.0 to It is 1.0%.
  • the cross-section of the composite fiber is preferably a concentric core-sheath type cross section or an eccentric core-sheath type cut surface as described above.
  • the cross-section of the composite fiber is a side-by-side cross-section, a large amount of three-dimensional crimps appear even in the undrawn yarn, and it is difficult to control the crimp development to a small extent. Deteriorate. Further, when the cross-section of the composite fiber is a side-by-side type, the adhesive strength of the composite fiber tends to decrease, and the effect aimed by the present invention is somewhat reduced.
  • the cross section of the composite fiber may be a solid fiber or a hollow fiber, and the outer shape is not limited to a round cross section, but may be an elliptical cross section or a 3-8 sheet cross section. It may be an irregular cross section such as a leaf cross section or a polygonal cross section such as a 3-8 octagon.
  • the multi-leaf type cross section represents a cross-sectional shape having a plurality of convex portions such that the leaf extends from the center portion toward the outer peripheral direction.
  • the fineness may be selected according to the purpose and is not particularly limited, but is generally preferably in the range of about 0.001 to 500 decitex. This fineness range can be achieved, for example, by setting the diameter of the die from which the resin is discharged during spinning to a predetermined range.
  • the heat-adhesive resin component of the sheath component that constitutes the composite fiber has a melt flow rate (hereinafter referred to as MFR) in the range of 1 to 15 gZ l 0 min. It is preferable.
  • MFR has a side that represents the fluidity of the polymer during heat melting and a side that serves as a guide for the molecular weight of the polymer. In general, the larger the MFR, the better the polymer fluidity, or the lower the molecular weight of the polymer.
  • the MFR is 20 g / 10 min or more (measurement temperature 190 ° C, load 2 1.18 N under, measurement temperature 2 30 ° C for polypropylene, child 2
  • the composite fiber of the present invention even if MFR is less than 20 g / l 0 min, the flow at the bonding temperature is used. Good mobility and high molecular weight. Therefore, since the breaking strength of the thermoadhesive resin component itself can be increased, a strong thermal bonding point is formed.
  • MFR is not less than 20 g and 10 min, but it is preferable that MFR is not more than 15 g / 10 min to make use of the characteristics of the present invention.
  • MFR is smaller than 1 g / 1 O m in, it is not preferable because it is inferior in sufficient spinnability in melt spinning, and is likely to break during spinning.
  • a preferred M F R range is 1 to 15 g / 10 m i n, and a more preferred range is 2 to: 12 gZ l O m i n.
  • a person skilled in the art can select an appropriate resin for each component that meets the above range by measuring the MFR of each resin component before the production of the composite fiber.
  • the melt flow rate (MFR) of the main crystalline thermoplastic resin constituting the thermoadhesive resin component and the MFR of the fiber-forming resin component is 5 gZ l 0 min or more. Smallness is also an effective means. If set to satisfy this requirement, the extensional viscosity of the thermoadhesive resin component is higher than that of the fiber-forming resin component in melt spinning. Therefore, the orientation of the fiber-forming resin component is insufficient, and the heat-shrinkage of the undrawn yarn after the constant-length heat treatment is likely to occur, and steric crimps are easily exhibited.
  • the difference between the MFR of the main crystalline thermoplastic resin constituting the thermoadhesive resin component and the MFR of the fiber-forming resin component is less than 5 g / 10 m ⁇ , the orientation of the fiber-forming resin component is Since the effect of suppressing is small, the effect of producing the three-dimensional crimp is reduced.
  • the preferred MFR difference is 10 g / l O m i n or more.
  • the heat-adhesive resin component in the present invention is composed of a polymer blend comprising 100 to 60% by weight of crystalline thermoplastic resin A and 0 to 40% by weight of crystalline thermoplastic resin B, or 3 More than a kind of crystalline thermoplastic resin May have a polymer blend configuration. Further, a polymer blend composed of 100 to 60% by weight of a high-melting crystalline thermoplastic resin and 0 to 40% by weight of a low-melting crystalline thermoplastic resin, or having different melting points 3 It may be composed of polymer thermoplastics composed of 100 to 60% by weight of a crystalline thermoplastic resin of a kind or more, and the crystalline thermoplastic resin having the highest melting point.
  • the difference between the melting point of the crystalline thermoplastic resin A or the crystalline thermoplastic resin with the highest melting point and the melting point of the crystalline thermoplastic resin B or the crystalline thermoplastic resin with the lowest melting point is 2 If a crystalline thermoplastic resin having a melting point of 0 ° C or higher and having the lowest melting point is composed of a polymer blend of 40% by weight or less in the heat-adhesive resin component, the melting point before the entire heat-adhesive resin component melts. This is more preferable because the sheath thermoplastic component undergoes thermal shrinkage due to melting of the low crystalline thermoplastic resin and steric crimps develop in the composite fiber.
  • the content of the crystalline thermoplastic resin having the lowest melting point in the heat-adhesive resin component exceeds 40 % by weight, the dispersion structure is reversed, and the steric crimp expression becomes small. Absent. Further, the preferable content of the crystalline thermoplastic resin having the lowest melting point in the heat-adhesive resin component is 3 to 35% by weight. 20 ° C or higher than the melting point of the crystalline thermoplastic resin (crystalline thermoplastic resin A, etc.) on the high melting point side instead of the crystalline thermoplastic resin (crystalline thermoplastic resin B, etc.) on the low melting point side The same effect can be expected by adding an amorphous thermoplastic resin having a low glass transition temperature.
  • the amount of the amorphous thermoplastic resin should be limited to the range of 0.2 to 10% by weight, preferably 1 to 8% by weight, based on the weight of the heat-adhesive resin component. preferable.
  • the added amount of the amorphous thermoplastic resin exceeds 10% by weight, the shrinkage of the thermoadhesive resin component increases, and the low shrinkage characteristic of the present invention is not satisfied.
  • the added amount is less than 0.2% by weight, sufficient steric crimps are not exhibited in the composite fiber.
  • a resin suitable for use as the crystalline thermoplastic resin is a crystalline thermoplastic resin constituting the above-mentioned heat-adhesive resin component. Choose as appropriate be able to.
  • thermoplastic resin polyethylene and the isophthalic acid polymerizing 5 0-2 0 mole 0/0 both as the dicarboxylic acid component, terephthalic rate, Atakuchikkupori styrene, polyacrylic Li Roni preparative drill, Porimechirumeta Examples thereof include acrylate, but since the glass transition temperature is about 60 to 65 ° C., isophthalic acid copolymerized polyethylene terephthalate is preferable.
  • a plurality of resins constituting the heat-adhesive resin component are, for example, in a single screw or twin screw extruder at a temperature equal to or higher than the melting point of all the resins or higher than the melting point and the glass transition temperature. It can be obtained by melt-kneading.
  • an undrawn yarn taken up at a spinning speed of 150 to 180 mZmin or less using a known conjugate fiber melting method or a die is used as a thermal adhesive property.
  • Constant length heat treatment is performed at the same time as 0.5 'to 1.3 times low magnification stretching at a temperature higher than both the glass transition temperature of the main crystalline thermoplastic resin of the resin component and the glass transition temperature of the fiber-forming resin component. Obtained by the manufacturing method.
  • the spinning speed is preferably 300 to 1500 Om / min, more preferably 50000 to 1300 mZ min.
  • the constant length heat treatment is a heat treatment performed in a state in which an undrawn yarn obtained by melt spinning is subjected to a draw draft of 0.5 to 1.3 times. Actually, it is done at a draw ratio of 1.0 so that there is no deformation in the fiber axis direction before and after the heat treatment, but if the undrawn yarn is thermally stretched due to the nature of the resin, the yarn between the rollers of the drawing machine In order to prevent the loosening of the strip, a drawing draft larger than 1.0 times may be applied. Furthermore, depending on the resin combination, 1.0 5 to 1.3 times It is preferable to provide a drawing draft having a small size because moderately high crimping performance can be imparted while maintaining high adhesion performance and low shrinkage.
  • the lower limit of the draft is about 0.5 times, below which most polymers are not sufficiently shrunk and tend to tow and it is difficult to keep the composite fiber elongation below 600%. There are many cases.
  • the constant-length heat treatment is performed when the heat-adhesive resin component has a polymer blend structure as described above, and the glass transition temperature of the main crystalline thermoplastic resin of the heat-adhesive resin component and the fiber-forming resin. The temperature is higher than both of the glass transition temperatures of the components. If the temperature of the constant-length heat treatment is lower than this range, the shrinkage rate at the time of thermal bonding of the composite fiber is not preferable.
  • the constant-length heat treatment may be performed on the heater plate under hot air blowing, in high-temperature air, under water vapor, or in a liquid heat medium such as hot water or a silicon oil bath. Among them, it is preferable to carry out the reaction in warm water that has good thermal efficiency and does not require washing when the fiber treatment agent is applied thereafter. 'Following these constant length heat treatments, it is also preferable to pass an indentation-type crimper or bypass and apply an oil agent. Thereafter, a heat treatment (relaxation heat treatment) is performed at a temperature 5 ° C higher than the constant-length heat treatment temperature, more preferably 10 ° C higher, and no tension.
  • the undrawn yarn or the low-drawn drawn yarn develops a three-dimensional crimp, and a crimping performance for ensuring card passing properties is exhibited. If it does not pass through the indentation type crimper, a spiral three-dimensional solid crimp will form an indentation type crimper.
  • Omega-type flat crimp is developed when a single yarn is bent by passing the yarn, and any of these methods may be used as long as it is within the range of the crimping performance of the present invention.
  • the heating method during the relaxation heat treatment is preferably performed in hot air, that is, by blowing hot air onto the fibers, from the viewpoint of good thermal efficiency and that the fibers are less constrained and the fibers are easily crimped.
  • the relaxation heat treatment temperature may be determined according to the required crimping performance of the fiber to be obtained, or the latent crimping performance desired when the nonwoven fabric or fiber structure is thermally bonded. If the subsequent heat treatment after constant-length heat treatment is not under tension, and if the heat treatment temperature is not 5 ° C higher than the constant-length heat treatment temperature, sufficient crimp is imparted to the composite fiber. Can not do it. Therefore, the crimp rate of the composite fiber
  • the crimping performance is set according to the Japanese Industrial Standard L 1 0 1 5: 8.1 2 1 to 8. 1 2.2 (2 0 0 5) and the number of crimps (CN) ) Ratio, that is, C DZC N is 0.8 or more, preferably 1.0 or more.
  • the range of CN is 6 to 25 peaks Z 25 mm, and more preferably 8 to 20 peaks 25 mm.
  • the CD range is 6 to 40%, preferably 8 to 35%.
  • the high-speed card passing property and the web condition in which CD is in this range can be compatible.
  • the web feels worse. If the lower limit is exceeded, the web obtained by passing through the card is likely to be cut, resulting in poor high-speed card passage.
  • the tow temperature before the crimper is increased by means of steam heating, heater heating, hot water heating, etc. The method is performed. Even with other methods not listed here, the crimp rate can be greatly adjusted by increasing the temperature.
  • thermoadhesive resin component is as follows.
  • the crystalline resin component is crystalline thermoplastic
  • the thermoadhesive resin component is crystalline heat
  • the core-sheath type composite fiber which is a polymer blend comprising 99.8 to 90% by weight of the plastic resin A and 0.2 to 10% by weight of the amorphous thermoplastic resin.
  • the composite fiber of the present invention can be produced by the production method.
  • the form of the heat-adhesive conjugate fiber of the present invention can take any form such as multifilament, monofilament, staple fiber, chop, tow, and the like.
  • a crimp in an appropriate numerical range is used to impart good card-passability to the heat-adhesive composite fiber. It is desirable to give a number.
  • the intrinsic viscosity of the polyester was measured at 35 ° C according to a conventional method after weighing a certain amount of the polymer and dissolving it in o-chlorophenol at a concentration of 0.012 gZm1. .
  • MF R of polypropylene resin is Japanese Industrial Standard K 7 2 1 0 according to condition 14 (measurement temperature 2 30 ° C, load 2 1. 1 8 N)
  • MF R of polyethylene terephthalate resin is Japanese Industrial Standard According to K 7 2 1 0 condition 20 (measurement temperature 280 ° C, load 2 1. 18 N)
  • FR was measured in accordance with Japanese Industrial Standard K 7 2 1 0 Condition 4 (measurement temperature 19 ° C., load 2 1. 18 N).
  • the MFR is measured using a pellet before melt spinning as a sample.
  • the melting point and the glass transition temperature of the polymer were measured at a temperature increase rate of 20 ° C. using a thermal analysis 2 20 0 manufactured by TA Instruments Japan Co., Ltd.
  • the fineness of the composite fiber was measured by the method described as Japanese Industrial Standard L 1 0 1 5: 8.5.1 A method (2 0 0 5).
  • the strength and elongation of the composite fiber were measured by the method described as Japanese Industrial Standard L 1 0 1 5: 8.7.1 method (2 0 0 5).
  • the composite fiber of the present invention tends to vary in the strength and elongation due to the efficiency of the constant length heat treatment, it is necessary to increase the number of measurement points when measuring the strength and elongation with a single yarn. Since the number of measurement points is preferably 50 or more, here the number of measurement points is 50 and the average value is defined as strength / elongation.
  • the number of crimps and the crimp rate of the composite fiber were measured by the method described in Japanese Industrial Standard L 1 0 1 5: 8.1 2 2.1-8 1.2.2 (2 0 0 5).
  • the 120 ° C dry heat shrinkage of the composite fiber was measured at a temperature of 120 ° C in the method described as Japanese Industrial Standard L 1 0 1 5: 8. 1 5 b) method (2 0 0 5) did.
  • High-speed card passability was evaluated using a JM-type small high-speed card machine manufactured by Torigoe Spinning Co., Ltd. Thermally-bonded conjugate fiber 10 When the card weight of 20.0 g / m 2 is spun, the card loop starts to cut. The maximum card speed was 5 m / min lower than the fur speed. The higher this value, the better the high-speed card passability.
  • Level 1 The appearance of defects such as uniform fiber density and fuzz is not noticeable, and the appearance is good.
  • Level 2 The fiber density is slightly non-uniform and some parts with low density are observed.
  • the composite fibers were thermally bonded together.
  • the area shrinkage is obtained by the following formula from the web area A 0 before the heat shrinking treatment and the web area A 1 after the heat shrinking treatment at the time of heat bonding.
  • a test piece having a width of 5 cm and a length of 20 cm was cut from the web, and the tensile breaking force of the nonwoven fabric was measured under the measurement conditions of a gripping interval of 10 cm and an elongation rate of 20 cm / min.
  • the bond strength was determined by dividing the tensile breaking force (N) by the specimen weight (g).
  • PET Terephthalate
  • the core component: sheath component 50: 50 (% by weight)
  • a core-sheath type composite fiber was formed and spun at a discharge rate of 0.71 g / min / hole and a spinning speed of 1150 m / min to obtain an undrawn yarn.
  • the undrawn yarn was subjected to constant-length heat treatment at the same time as low-tensile drawing of 1.0 times in 90 ° C hot water 20 ° C higher than the glass transition temperature of the core resin.
  • the yarn obtained by constant-length heat treatment was immersed in an aqueous solution of an oil agent consisting of lauryl phosphate potassium salt, and then a mechanical crimp of 11 1 Z 2 5 mm was imparted using an indentation type crimper. . Further, the yarn was dried (relaxation heat treatment) under a hot air of 110 ° C under no tension, and then cut into a fiber length of 51 mm. As a result, a crimped omega type composite fiber was obtained. Tables 1 and 3 show the fiber production conditions, fiber properties, maximum card speed and nonwoven fabric properties.
  • a composite fiber was produced under the same conditions as in Example 1 except that the weight ratio of the core component and the sheath component was changed, and a single fiber fineness of 6.7 dtex and 6.5 dtex was obtained. The results are shown in Tables 1 and 3.
  • a composite fiber was produced under the conditions shown in Table 1 except that the base was changed to a concentric core-sheath composite fiber base. The results are shown in Tables 1 and 3.
  • the yarn obtained by constant-length heat treatment was immersed in an aqueous solution of an oil agent composed of lauryl phosphate potassium salt, and then a mechanical crimp of 11 pieces and 25 mm was imparted using an indentation type crimper. Further, the yarn was dried (relaxation heat treatment) under hot air at 130 ° C under no tension, and then cut into a fiber length of 51 mm. As a result, a composite fiber having an omega-type crimp and a single fiber fineness of 8.8 dtex was obtained.
  • Tables 2 and 4 show the fiber production conditions, fiber properties, maximum card speed and nonwoven fabric properties.
  • a composite fiber was produced under the same conditions as in Example 6 except that the discharge rate was changed to 0.8 g / mi hole and the draw ratio that was performed simultaneously with the constant length heat treatment was changed to 1.0. A composite fiber having a yarn fineness of 8.7 dtex was obtained. The results are shown in Tables 2 and 4.
  • m PE Polyethylene terephthalate
  • the yarn obtained by constant-length heat treatment was immersed in an aqueous solution of an oil solution composed of Laurylphosph; tokaline salt, and then a mechanical crimp of 11 1 25 mm was applied using an indentation type crimper. did. Furthermore, the yarn was dried (relaxation heat treatment) under hot air at 110 ° C under no tension, and then cut to a fiber length of 5 lmm. As a result, a crimped composite fiber having an omega type crimp and a single yarn fineness of 8.7 dtex was obtained. The results are shown in Tables 2 and 4. .
  • Example 11 a concentric core-sheath type composite fiber die was used, the discharge rate was 2.0 g / min, the spinning speed was 700 m / min, and the temperature was 70 ° C in warm water.4. 3 A composite fiber was produced under the same conditions as in Example 11 except that the drawing was performed 5 times, and a composite fiber with a mechanical crimp (zigzag type) having a single yarn fineness of 7.8 dtex was obtained. The results are shown in Tables 2 and 4. table 1
  • the fiber-forming resin component used was PET with an IV of 0.64 dL g, Dingu 70 ° 0, Tm 256 ° C, MFR 25 g No. 10 min.
  • Example 6 PP 165 ⁇ 0 8 17 Concentric / ⁇ 50 1. 0 900 1.25 90 130
  • Example 7 PP 165 ⁇ 0-8 17 Concentric 50 0. 8 900 1. 0 90 130
  • Example 8 BP1 165 ⁇ 0 8 17 Concentric core sheath 50 0. 94 900 1. 2 90 110-Example 9 BP2 165 0 0 1 F / Sheath 50 0.9.900 "900 1. 2 90 110
  • Example 10 BP3 165 ⁇ 0 8 17 Same / /. 50 0. 8 900 1. 0 90 110
  • Example 11 BP4 152 43 40 -15
  • 80-90Comparative example 2 BP4 152 43 40 -15 Same as above, 50. 05 700 4.35 70 90
  • the fiber-forming resin component used was PET of IV of 0.64 d l_Zg, T g? I) 70 ° C, Tm of 256 ° C, M F R of 25 g, 10 min.
  • 'BP 1 is a polymer blend of ⁇ ⁇ ⁇ ⁇ ⁇ and m— ⁇ ⁇ ⁇ ⁇ ⁇ with a blend weight ratio of 80:20.
  • ⁇ BP 2 is a polymer blend in which PP and m-PE are in a blend weight ratio of 65:35.
  • 'B P 3 is a polymer blend in which P P and co-PET-1 are in a blend weight ratio of 92: 8.
  • ⁇ BP4 is GO—PET—2.
  • PET Polyterephthalate
  • MF R 8 gZ l 0 min
  • the single yarn fineness measured in the tow state before cutting is 11.0 decittas, strength 1.3 c N / dte X, elongation 1 70 0%, number of crimps 1 1.0 pieces Z 2 5 mm, ⁇ The shrinkage rate was 9.5%, the crimp rate was Z crimp number 0.86, 120 ° C dry heat shrinkage rate 1.9%.
  • An airlaid web was produced from the resulting composite fiber and thermally bonded at 180 ° C. The web area shrinkage was 0%, the nonwoven fabric strength was 9.5 kg Zg, and the web texture was level 1. .
  • a concentric core-sheath composite fiber was produced under the same conditions as in Example 12 except that constant length heat treatment of undrawn yarn in warm water was not performed.
  • Single yarn fineness measured in the toe state before cutting is 1 1.1 decitex, strength 1.2 c NZd tex, elongation '2 6 1%, number of crimps 1 1.0 / 25 mm, crimp rate
  • the shrinkage rate was 0.74, and the dry heat shrinkage rate was 25.3%.
  • Obtained Airlaid Duep was produced from the composite fiber and heat-bonded at 1800C.
  • the web area shrinkage was 25%, the nonwoven fabric strength was 8.3 kgZg, and the web and texture were level 3.
  • a concentric core-sheath type composite fiber was produced under the same conditions as in Example 12 except that the discharge amount was changed to 1.5 gZm i nZ hole and the undrawn yarn was drawn 1.5 times in warm water. .
  • the single yarn fineness measured in the tow state before cutting is 10.8 decitus, strength 1. 8 c NZ dte X, elongation 1 2 2%, number of crimps 1 0.8 pieces Z 2 5 mm, crimp The rate was 10.3%, the crimp rate was Z crimp number 0.95, 120 ° C dry heat shrinkage rate was 18.9%.
  • An air laid web was produced from the resulting conjugate fiber and heat bonded at 180 ° C., the shrinkage of the area of the web was 14%, the nonwoven fabric strength was 5. l k gZg, and the web texture was level 2.
  • core component: sheath component 50: 50 (wt%) )
  • a core-core-sheath type composite fiber was formed, and spun at a discharge rate of 0. YS g Zm in Z holes and a spinning speed of 1 1 500 m / min to obtain an undrawn yarn.
  • the undrawn and drawn yarns were subjected to constant length heat treatment at the same time as low-tensile stretching of 1.0 times in warm water of 90 ° C, 20 ° C higher than the glass transition temperature of the core resin.
  • Single yarn fineness measured in the tow state before cutting is 1 1.1 decitex, strength 1.2 c N / dte X, elongation 1 5 0%, number of crimps 1 1.0 pieces Z 2 5 mm, crimp The rate was 6.3%, the crimp rate was Z crimp number 0.57, 120 ° C dry heat shrinkage rate was 4.0%. Airlaid loops were produced from the resulting composite fibers and heat bonded at 180 ° C. The web area shrinkage was 0%, the nonwoven fabric strength was 11.4 kgZg, and the roll texture was 1 .
  • the yarn obtained by constant length heat treatment was added to an aqueous solution of an oil agent consisting of Lauryl Phosphate Tocalyme Salt: Polyoxyethylene-modified Silicone- 80:20 (weight ratio).
  • an oil agent consisting of Lauryl Phosphate Tocalyme Salt: Polyoxyethylene-modified Silicone- 80:20 (weight ratio).
  • 11 crimps of 25 mm mechanical crimps were applied using an indentation type crimper.
  • the yarn was dried at 95 ° C. (relaxation heat treatment) and then cut to a fiber length of 5. O mm.
  • the single yarn fineness measured in the tow state before cutting is 5.7 dtex, strength 1.
  • Airlaid Duep is produced from the resulting composite fiber and heat bonded at 180 ° C.
  • the web area shrinkage is 0%
  • the nonwoven fabric strength is 1.
  • O kg Z g is 1.
  • the roll texture is level 1. 7
  • the single yarn fineness measured in the tow state before cutting was 5.7 dtex, strength 1.5 c NZ dtex, elongation 1 80%, number of crimps 8.9 pieces / 7 25 mm, crimp rate 9. 3%, ⁇ Shrinkage ratio / crimp number 1.04, 120 ° C Dry heat shrinkage was 75%.
  • the web shrinkage was large, and both the web area shrinkage rate and the nonwoven fabric strength were not measurable.
  • the heat-adhesive conjugate fiber of the present invention improves the card passing property, which has been a drawback of the conventionally proposed low-orientation, high-adhesion and low-heat-shrinkable heat-adhesive conjugate fibers. Moreover, the heat-adhesive conjugate fiber of the present invention not only improves the productivity of nonwoven fabric, but also makes it possible to provide a heat-adhesive nonwoven fabric with good web quality.
  • the heat-adhesive conjugate fiber of the present invention is characterized in that the heat-adhesive conjugate fiber has self-stretchability compared to the conventionally proposed high-adhesion and low heat-shrinkable heat-adhesive conjugate fibers. .
  • a process such as high-speed spinning is not required, so the energy saving cost is low, and the yield switching is less because there is little thread breaking at the opening of the dough changing. The lit is also great.
  • thermoadhesive conjugate fiber of the present invention when a non-woven fabric is produced using the thermoadhesive conjugate fiber of the present invention, the non-woven fabric after heat-bonding is finished in a bulky shape, and a high-quality non-woven fabric having excellent texture and strong non-woven fabric can be obtained. Furthermore, in the non-woven fabric using the heat-adhesive conjugate fiber of the present invention, it is possible to set a high heat-bonding temperature in order to increase the bonding strength, so that it is possible to produce a heat-bonded non-woven fabric and a fiber structure at high speed. It becomes possible. Further, the short fiber for air laid nonwoven fabric has high strength of nonwoven fabric, the thermal shrinkage of the nonwoven fabric web is small, and it is possible to provide a high quality air laid nonwoven fabric.

Description

熱接着性複合繊維及びその製造方法 技術分野
本発明は、 熱接着後の接着強力が高く、 かつ熱接着時の熱収縮が極 めて少ない、 熱接着性複合繊維とその製造方法に関する。 更に詳しく 述べるならば、 本発明は低配向、 高伸度でありながら良好な捲縮性能 を有し、 カード通過性が良好な明高接着性と低熱収縮性を兼備する熱接 着性複合繊維とその製造方法に関するものである。 書
背景技術
一般に熱接着性樹脂成分を鞘とし、 繊維形成性樹脂成分を芯とする 芯鞘型熱接着複合繊維に代表される熱接着性複合繊維は、 カード法ゃ エアレイ ド法、 湿式抄紙法等により繊維ウェブを形成した後、 熱接着 性樹脂成分を融解させて繊維間結合を形成させて用いられている。 つ まり有機溶剤を溶媒とする接着剤を用いないので、 有害物質の排出が 少ない。 また生産速度向上及ぴそれに伴うコス トダウンのメ リ ッ トが 大きいので、 硬綿、 べッ ドマツ ト等の繊維構造体ゃ不織布用途に広く 用いられてきた。 更に不織布強力の向上及び不織布生産速度向上を狙 つて、 熱接着性複合繊維の低温接着性又は接着強度の向上が検討され ている。 .
特許文献 1においては、 プロピレン、 エチレン及ぴブテン一 1から なる 3元共重合体を鞘成分とし、 結晶性ポリプロピレンを芯成分とし て、 それらを鞘成分重量: 芯成分重量 = 2 0 : 8 0〜 6 0 : 4 0で複 合紡糸して、次に 3 . 0倍未満の低倍率延伸によって得た熱接着性複合 繊維について開示されている。 その熱接着性複合繊維は、 従来よりも 高い'接着強力を有することが開示されている。 しかしながらこのよう な繊維は延伸倍率が低いために、 単糸間に均一なテンションがかから ずネック変形のばらつきが大きく、 繊度斑を生じる。 更に熱収縮率及 ぴ熱収縮斑が大きい欠点があった。
, 特許文献 2においては、 高速紡糸法により熱接着性樹脂成分の配向 指数が 2 5 %以下で、 繊維形成性榭脂成分の配向指数が 4 0 %以上と なる熱接着性複合繊維開示されている。 その熱接着性複合繊維は接着 点強度が強く、 より低温で融着し、 かつ熱収縮率の小さいことが開示 されている。
しかしながら、 これらの繊維は比較的低配向、 高伸度であり、 延伸 による配向が不十分である上に、 高速紡糸で配向結晶化が進む。 従つ て、 押し込み式クリンパー等による機械的な捲縮付与方法では、 ー且 付与した捲縮が回復してしまい、 繊維間の絡合が不良になりやすい。 従って、 その熱接着性複合繊維はカード通過性が悪い。 即ち、 ウェブ が切れてしまうためカード通過スピードを上げることができない。 故 に、 不織布を生産する際に生産量を増やす事が出来ないという問題が あった。 一方繊維製造時において、 クリンパーを通過する前に加熱を 行い、 繊維の捲縮を強くする方法がある。 しかし、 繊維の剛性が小さ いために捲縮が非常に細かくなる。 従って、 繊維間の絡みが強くなり 過ぎので、 かえってカード通過性が悪くなる。 このように、 低配向、 高伸度の熱接着性複合繊維において、 カード通過性の良好な繊維は従 来提案されていなかった。
(特許文献 1 ) 特開平 6— 1 0 8 3 1 0号公報
(特許文献 2 ) 特開 2 0 0 4— 2 1 8 1 8 3号公報
(発明の開示)
(発明が解決しようとする課題)
本発明は、 上記従来技術を背景になされたもので、 その目的は、 低 配向、 高伸度、 低熱収縮性、 高接着性を有し、 カード通過性の極めて 良好な熱接着性複合繊維を提供することにある。 さらに別の目的は接 着強力が高く、 熱収縮の少ない、 嵩高な不織布又は繊維構造体を製造 可能とする熱接着性複合繊維を提供することにある。 (課題を解決するための手段)
, 本発明者等は、 上記課題を解決するために鋭意検討を重ねた結果、 芯成分と鞘成分の樹脂組成、 芯成分鞘比、 流動性、 偏芯状態等を適度 に設定した同芯芯鞘型あるいは偏芯芯鞘型複合繊維の未延伸糸を、 芯 と鞘のガラス転移温度より高い温度で低倍率延伸と同時に定長熱処理 し、 続いて更に高い温度で弛緩熱処理することにより、 従来提案され てきた低配向高伸度熱接着性複合繊維よりカード通過性が良好な、 高 接着性と低熱収縮性を兼備する熱接着性複合繊維の発明に到達した。
より具体的には、.繊維形成性樹脂成分及び熱接着性樹脂成分からな る複合繊維であって、 熱接着性樹脂成分が繊維形成性樹脂成分より 2 0 DC以上低い融点をもつ結晶性熱可塑性樹脂からなり、 破断伸度が 6 0〜 6 0 0 %、 1 2 0 °C乾熱収縮率が一 1 0 . 0〜 5 . 0 %であるこ とを特徴とする熱接着性複合繊維による発明により上記課題を解決す る事ができる。 並びに 1 5 0〜 1 8 0 0 m/ m i nの紡糸速度で引き 取った複合繊維の未延伸糸を熱接着性樹脂成分の主たる結晶性熱可塑 性樹脂のガラス転移温度と繊維形成性樹脂成分のガラス転移温度の双 方より高い温度下で 0 . 5〜 1 . 3倍の低倍率延伸と同時に定長熱処 理し、 その後該定長熱処理温度より 5 °C以上高い温度において無緊張 下で熱処理することを特徴とする請求項 1記載の熱接着性複合繊維の 製造方法による発明によって上記課題を解決することができる。 発明の効果
本発明は、 従来提案されていた低配向タイプの高接着性低熱収縮性 の熱接着性複合繊維での欠点であったカード通過性を改善し、 不織布 生産性を向上させることができる。更に本発明の熱接着性複合繊維は、' 繊維自身が自己伸張性を有するために、 熱接着後の不織布が嵩高に仕 上が'り、 従来にない風合いに優れかつ嵩高な不織布の商用生産の拡大 に大きく貢献するものである。 また、 本発明の熱接着性複合繊維はゥ ェブ品位も良好な熱接着不織布の提供を可能とする
,発明を実施するための最良の形態
以下本発明の実施形態について詳細に説明する。 本発明の熱接着性 複合繊維は、 繊維形成性成分及び熱接着性成分からなる。 さらに熱接 着性樹脂成分は、 繊維形成性樹脂成分より 2 0 °C以上低い融点をもつ 結晶性熱可塑性樹脂を選択する必要がある。 繊維形成性樹脂成分と熱 接着性樹脂成分の融点差が 2 0 °C未満であると、 熱接着性樹脂成分を 融解し接着させる工程で繊維形成性樹脂成分も溶けてしまい、 強度の '高い不織布又は繊維構造体を製造することができない。
繊維形成性榭脂成分の樹脂としては特に限定されないが、 融点が 1 3 0 °C以上の結晶性熱可塑性榭脂が好ましい。 具体的には、 高密度ポ リエチレン (H D P E )、 ァイソタクティックポリプロピレン (P P ) 若しくはこれらを主成分とする共重合ポリマー等のポリォレフィン、 ナイロン一 6若しくはナイロン一 6 6等のポリアミ ド、 又はポリェチ レンテレフタレート、 ポリ トリメチレンテレフタレート、 ポリプチレ ンテレフタレート若しくはポリエチレンナフタレー卜等のポリエステ ル等が挙げられる。 上記のような製造方法でウェブ又は不織布に適度 の剛性を付与できるポリエステル類、 中でもポリエチレンテレフタレ ート (P E T ) が好ましく用いられる。
また熱接着性樹脂成分を構成する結晶性熱可塑性樹脂は、 繊維形成 性樹脂成分より 2 .0 °C以上低い融点をもつ結晶性熱可塑性樹脂を選択 することが必要である。'結晶性熱可塑性樹脂が複数種の樹脂から構成 される場合には、 主たる結晶性熱可塑性樹脂の融点が上記の条件を満 たす事が好ましい。 ここで主たるとは、 後述のような熱接着性樹脂成 分がポリマープレンドの場合に、 本発明の複合繊維の特徴を全体とし て失わない程度である。 具体的には、 熱接着性樹脂成分の全重量に対 して好ましくは 5 5重量%以上、 より好ましくは 6 0重量%以上であ る。 熱接着性樹脂成分が非晶性熱可塑性樹脂であると、 紡糸時に配向 した分子鎖が融解と同時に無配向となるに伴い、 繊維が大きく収縮す る。 熱接着性樹脂成分を構成する結晶性熱可塑性樹脂としては特に限 ,定を受けないが、 ポリオレフィン榭脂や結晶性共重合ポリエステルが 好ましい例として挙げることができる。
そのポリォレフィン榭脂の具体例としては、結晶性ポリプロピレン、 高密度ポリエチレン、 中密度ポリエチレン、 低密度ポリエチレン、 線 状低密度ポリエチレン等のホモポリオレフイ ンを挙げる事ができる。 更に熱接着性樹脂成分を構成するポリオレフィン榭脂は、 エチレン、 プロピレン、 ブテン、 ペンテン一 1、 又はァク リル酸、 メタクリル酸、 マレイン酸、 フマル酸、 ィタコン酸、 クロ トン酸、 イ ソクロ トン酸、 メサコン酸、 シトラコン酸若しくはハイミ ック酸若しくはこれらのェ ステル若しくはこれらの酸無水物からなる不飽和化合物を少なく とも
1種以上上記のホモポリォレフィンに共重合された共重合ポリォレフ ィンであっても良い。
また結晶性共重合ポリエステルの例としては、 以下のポリエステル を好ましく挙げる事ができる。すなわちアルキレンテレフタ ^一トに、 イソフタル酸、 'ナフタレン一 2 , 6—ジカルボン酸、 若しくは 5—ス ルホイソフタル酸塩等の芳香族ジカルボン酸、 アジピン酸若しくはセ パシン酸等の脂肪族ジカルボン酸、 シクロへキサメチレンジカルボン 酸等の脂環族ジカルボン酸、 ω—ヒ ドロキシアルキルカルボン酸、 ポ リエチレンダリ コール、 ポリテ トラメチレンダリ コール等の脂肪族ジ オール、 又はシク.口へキサメチレンジメタノール等の脂環族ジオール を、 目的の融点を呈するように共重合させたポリエステルを挙げるこ とができる。 そのアルキレンテレフタレートは、 主たるジカルボン酸 成分をテレフタル酸あるいはそのエステル形成性誘導体と し、 主たる ジ才ーノレ成分をエチレングリコーノレ、 ジエチレングリ コーノレ、 トリメ チレングリ コーノレ、 テ トラメチレングリ コーノレ、 へキサメチレングリ コール又はこれらの誘導体からのうち 1〜 3種の組合せを原料として 得られるポリエステルを挙げる事ができる。 本発明の熱接着性複合繊維の形態は、 繊維形成性樹脂成分と熱接着 性樹脂成分とがいわゆるサイ ドバイサイ ド型で貼りあわされた複合繊 ,維であっても、 両成分が芯鞘構造を持つ芯鞘型複合繊維であつてもい ずれでも良い。 しかし、 繊維軸方向に対して直角である全ての方向に 熱接着性樹脂成分が配置され得る点で、繊維形成性樹脂成分を芯成分、 熱接着性樹脂成分を鞘成分とする芯鞘型複合繊維であることが好まし い。 また芯鞘型複合繊維としては同芯芯鞘型複合繊維又は偏芯芯鞘型 複合繊維を挙げることができる。
本発明の熱接着性複合繊維が芯鞘型複合繊維の場合、 その繊維形成 性樹脂成分と熱接着性樹脂成分の重量比率(芯成分:鞘成分) は 6 0 : 4 0〜 1 0 : 9 0であることが、 カード通過性が良好となるような捲 縮性能を付与できる点で好ましい。 その重量比率は更に 5 5 : 4 5〜 2 0 : 8 0にあることがより好ましい。 この理由は以下のように考え られる。 すなわち弛緩熱処理をする際に複合繊維中の鞘成分を構成す る樹脂が軟化し熱収縮を起こすが、 このとき複合繊維中の鞘成分の樹 脂の重量比率が多いほど複合繊維中の芯成分の樹脂が変形しやすい。 従って複合繊維の立体捲縮が発現しやすくなるためと思われる。 鞘成 分の重量比率が 4 0重量%未満であると、 収縮により芯成分の樹脂を 変形させる力が小さくなるため立体捲縮が発現しにく くなる。 逆に鞘 成分の樹脂の重量比率が 9 0重量%を超えると立体捲縮が多くなりす ぎて、 カード設備内で繊維の詰りを生じる傾向にある。 紡糸時の双方 の樹脂成分の供給量を制御することにより繊維形成性樹脂成分と熱接 着性樹脂成分の重量比傘の範囲を制御することができる。
本発明の熱接着性複合繊維の特徴は、 破断伸度が 6 0〜 6 0 0 %、 1 2 0 °C乾熱収縮率が一 1 0 . 0〜 5 . 0 %であり、 接着強力と低熱 収縮性及び良好なカード通過性を兼備するために必要である。 捲縮率 と捲縮数の比 (捲縮率 Z捲縮数) が 0 . 8以上を満足することが、 よ 'り好ましい。
熱接着性複合繊維の破断伸度は、 熱接着性樹脂成分の樹脂の配向を 低く抑えるために、 6 0〜 6 0 0 %の範囲にコントロールする必要が ある。 好ましくは 8 0〜 5 0 0 %の範囲であり、 さらに好ましくは 1 , 3 0〜 4 5 0 %の範囲である。 破断伸度が 6 0 %未満であると、 熱接 着成分の配向が高いために接着性に劣り、 不織布強度が低下する。 ま た、 破断伸度が 6 0 0 %を超えると、 実質的に繊維強度が小さいため に熱接着不織布の強度を上げることができない。
また、 熱接着性複合繊維の 1 2 0°C乾熱収縮率は一 1 0. 0〜 5. 0 %の範囲とすることが必要である。 より好ましくは 1 2 0°C乾熱収 縮率を一 1 0. 0〜 1. 0 %の範囲とすることである。 1 2 0°C乾熱 収縮率をこの範囲にすることで、 熱接着時の収縮が少なくなり、 繊維 間の交点での接着点のズレが少なく、 接着点が強固になる。 更に 1 2 0°C乾熱収縮率が負の値となり、 繊維が加熱されると若干の自己伸長 する状態になると熱接着前に不織布中の繊維密度が低下し、 嵩高に仕 上がることによって柔く風合いの良い不織布ができる。 1 2 0°C乾熱 収縮率が 5. 0 %を超えると、 熱接着時に接着交点がずれ、 接着強度 が低下する方向であり、 目標とする接着強力の向上に寄与しない。 一 方、 複合繊維の' 1 2'0°C乾熱収縮率が一 1 0. 0 %を下回る自己伸長 性になると、 やはり接着点のずれが生じ、 不織布強度は低下する方向 に移行する。 、 前述のような高い破断伸度と低い 1 2 0 °C乾熱収縮率の双方の特性 を有する複合繊維を製造するためには、 延伸ドラフ トとして 0. 5〜 1.. 3倍程度の低.倍率延伸と同時に定長熱処理を行うことによって達 成される。 更に延伸ドラフトが 1. 0倍未満の条件、 すなわち具体的 にはオーバーフィード率を大きくするか又は弛緩熱処理の温度を高く すると、 複合繊維の自己伸張率が大きくなる傾向にある。 しかし、 適 度な自己伸張性を付与された複合繊維を用いて不織布を製造した場合 には、 その不織布は嵩高に仕上がり、 繊維構造体を製造した場合には その繊維構造体は低密度に仕上がる。 複合繊維の 1 2 0°C乾熱収縮率 の好ましい範囲は一 8. 0 0. 2 %、 更に好ましくは一 6. 0〜 一 1. 0 %である。
複合繊維の断面は、 上述のように同芯芯鞘型断面又は偏芯芯鞘型断 ,面が好ましい。 複合繊維の断面がサイ ドバイサイ ド型断面の場合、 未 延伸糸でも立体捲縮が多く発現し、 捲縮発現性を小さく コントロール することが難しいため、 得られた複合繊維のカード通過性が返って悪 くなる。 また複合繊維の断面がサイ ドバイサイ ド型の場合には、 複合 繊維の接着強度も小さくなる傾向にあり、 本発明の目指す効果は幾分 減少される。
また、 複合繊維の断面としては、 中実繊維であっても中空繊維であ つてもよいし、 外形は丸断面に限定されることはなく、 楕円断面、 3 〜 8枚葉型断面等の多葉型断面、 3〜 8角形等の多角形断面など異形 断面でもよい。 ここで多葉型断面とは、 中心部から外周方向に葉が伸 びているように複数の凸部を有しているような断面形状を表す。 繊度 は目的に応じて選択すればよく、 特に限定されないが、 一般的に 0. 0 1〜 5 0 0デシテックス程度の範囲であることが好ましい。 紡糸時 に樹脂が吐出される口金の径を所定の範囲にすること等により、 この 繊度範囲を達成することができる。
特に、 接着強力を高くするために、 複合繊維を構成する鞘成分の熱 接着性樹脂成分は、 メルトフローレイ ト (以下、 MF Rと記す) が 1 〜 1 5 gZ l 0 m i nの範囲にあることが好ましい。 MFRは、 熱融 解時のポリマーの流動性を表す側面とポリマーの分子量の目安となる 側面がある。 一般.に MF Rが大きいほどポリマーの流動性が良い、 又 はポリマーの分子量が小さいという傾向がある。 従来の熱接着性複合 繊維では MF Rが一定以上大きくなければ熱接着温度での鞘成分の流 動性が不十分で、 強固な熱接着点を形成しないと考えられてきた。 多 くの場合は、 MF Rが 2 0 g/ 1 0 m i n以上 (測定温度 1 9 0°C、 荷重 2 1. 1 8 N下、 ポリプロピレンの場合は測定温度 2 3 0°C、 荷 童 2'1. 1 8 N下) のものが用いられているが、 本発明の複合繊維に よると、 MF Rが 2 0 g/ l 0 m i n未満であっても接着温度での流 動性が良好で、 かつ分子量を大きくできる。 従って熱接着性樹脂成分 そのものの破壊強度を上げることができるため、 強固な熱接着点を形
,成することができる。 MF Rが 2 0 gノ 1 0 m i n以上であってもそ の効果は同じであるが、 特に本発明の特徴を生かすには MF Rが 1 5 g / 1 0 m i n以下であることが好ましい。 ただし、 MF Rが 1 g / 1 O m i nより小さければ、 溶融紡糸における十分な曳糸性に劣り、 紡糸時に断糸が起こり易いために好ましくない。 従って、 好ましい M F Rの範囲は l ~ 1 5 g / 1 0 m i n、 更に好ましい範囲は 2〜: 1 2 gZ l O m i nである。 当業者であれば複合繊維の製造を行う前に各 樹脂成分の MF Rを測定することによって、 上記の範囲に合致しそれ ぞれの成分に適切な樹脂を選択することができる。
立体捲縮の発現性を良くする方法として、 熱接着性樹脂成分を構成 する主たる結晶性熱可塑性樹脂のメル トフローレイ ト (MF R) 、 繊維形成性樹脂成分の MF Rより 5 gZ l 0 m i n以上小さいことも 有効な手段である。 この要件を満たすように設定すると、 溶融紡糸に おいて熱接着性樹脂成分の伸張粘度が繊維形成性樹脂成分のそれより 高くなる。 従って繊維形成性樹脂成分の配向が不十分で、 未延伸糸の 定長熱処理後の状態において熱収縮しやすく、 立体捲縮を発現しやす い効果がある。
熱接着性樹脂成分を構成する主たる結晶性熱可塑性樹脂の MF Rと 繊維形成性樹脂成分の MF Rの差が 5 g / 1 0 m ί η未満であると、 繊維形成性樹脂成分の配向を抑制する効果が小さいために、 立体捲縮 の発現効果が少なくなる。 好ましい MF Rの差は 1 0 g / l O m i n 以上である。 当業者であれば複合繊維製造を行う前に各樹脂成分の M F Rを測定することによって、 上記の範囲に合致しそれぞれの成分に 適切な樹脂を選択することができる。
なお、 本発明における熱接着性樹脂成分は、 結晶性熱可塑性樹脂 A 1 0 0〜 6 0重量%及び結晶性熱可塑性樹脂 Bが 0〜 4 0重量%か らなるポリマープレンドの構成、 又は 3種以上の結晶性熱可塑性樹脂 がポリマープレンドの構成であってもよい。 更に高融点の結晶性熱可 塑性樹脂が 1 0 0 〜 6 0重量%及び低融点の結晶性熱可塑性樹脂が 0 ,〜 4 0重量%からなるポリマープレンドの構成、 又はそれぞれ異なる 融点を有する 3種以上の結晶性熱可塑性樹脂であり、 最も高融点の結 晶性熱可塑性樹脂が 1 0 0 〜 6 0重量%からなるポリマープレン ,の 構成であってもよい。 熱接着性樹脂成分が、 結晶性熱可塑性樹脂 A又 は最も融点の高い結晶性熱可塑性樹脂の融点と、 結晶性熱可塑性樹脂 B又は最も融点の低い結晶性熱可塑性樹脂の融点の差が 2 0 °C以上有 り、 且つ最も融点の低い結晶性熱可塑性樹脂を熱接着性樹脂成分中 4 0重量%以下のポリマーブレン ドの構成にすると、 熱接着性樹脂成分 全体が融解する前に融点の低い結晶性熱可塑性樹脂が融解するために 鞘成分が熱収縮を起こし、 複合繊維に立体捲縮が発現するため、 より 好ましい。 但し最も融点の低い結晶性熱可塑性榭脂の熱接着性樹脂成 分中の含有率が 4 0重量%を超えると、 分散構造が逆転し、 立体捲縮 発現性が小さくなつてしまうため、 好ましくない。 更に最も融点の低 い結晶性熱可塑性樹脂の熱接着性樹脂成分中の好ましい含有率は 3 〜 3 5重量%である。 また、 低融点側の結晶性熱可塑性樹脂 (結晶性熱 可塑性樹脂 B他) の代りに、 高融点側の結晶性熱可塑性樹脂 (結晶性 熱可塑性樹脂 A他) の融点より 2 0 °C以上低いガラス転移温度をもつ 非晶性熱可塑性樹脂を添加しても同様の効果を期待できる。 その場合 の添加量としては非晶性熱可塑性樹脂を熱接着性榭脂成分の重量に対 して 0 . 2 〜 1 0.重量%、 好ましくは 1 〜 8重量%の範囲に限定した 方が好ましい。 非晶性熱可塑性樹脂の添加量が 1 0重量%を超えると 熱接着性樹脂成分の収縮が大きくなり、 本発明の特徴である低収縮性 を満足しない。 一方、 その添加量が 0 . 2重量%を下回ると、 複合繊 維に十分な立体捲縮が発現しない。
熱接着性樹脂成分が上記のようなポリマープレンドの形態の場合で ある'場合、 結晶性熱可塑性樹脂として用いるのに好適な樹脂は、 上述 の熱接着性樹脂成分を構成する結晶性熱可塑性樹脂の中から適宜選ぶ ことができる。 また非晶性熱可塑性樹脂の例としては、 イソフタル酸 をジカルボン酸成分として 5 0〜 2 0モル0 /0共重合したポリエチレン ,テレフタ レー ト、ァタクチックポリ スチレン、ポリアク リ ロニ ト リル、 ポリメチルメタァクリ レートが挙げられるが、 特にガラス転移温度が 6 0〜 6 5°C程度であるために、 イソフタル酸共重合ポリエチレンテ レフタレートであることが好ましい。
またこのようなポリマープレンドを得るには、 熱接着性樹脂成分を 構成する複数の樹脂を、 すべての樹脂の融点以上又は融点及びガラス 転移温度以上の温度で例えば 1軸又は 2軸押出機中で溶融混練するこ とにより得ることができる。 樹脂の分散状態を制御する為には榭脂の 配合量、 混練温度、 溶融時の滞留時間等について十分配慮することが 好ましい。
本発明の複合繊維の製造方法としては、 公知の複合繊維の溶融方法 や口金を用いて、 1 5 0〜 1 8 0 0 mZm i n以下の紡糸速度で引き 取った未延伸糸を、 熱接着性樹脂成分の主たる結晶性熱可塑性榭脂の ガラス転移温度と繊維形成性樹脂成分のガラス転移温度の双方より高 い温度で 0. 5'〜 1. 3倍の低倍率延伸と同時に定長熱処理する製造 方法により得られる。紡糸速度は好ましくは 3 0 0〜 1 5 0 Om/分、 より好ましくは 5 0 0〜 1 3 0 0 mZ分である。 1 8 0 0 m/m i n を超えると未延伸糸の配向が上がり、 本発明が目標とする高接着性を 阻害する上、 断糸が多くなり、 生産性が悪くなる。 また紡糸速度が 1 5 0 m/m i nよ.り遅い場合には当然のごとく繊維の生産性が悪くな る。 '
ここでいぅ定長熱処理は、 溶融紡糸により得た未延伸糸を 0. 5〜 1. 3倍の延伸ドラフトをかけた状態で行う熱処理である。 実質は、 熱処理前後で繊維軸方向の変形がないように 1. 0倍の延伸倍率で行 うが、 樹脂の性質上未延伸糸に熱伸長が生じる場合は延伸機のローラ 一間での糸条の弛みを防ぐために、 1. 0倍より大きい延伸ドラフ ト をかけてもよい。 更に、 樹脂の組合せによっては 1. 0 5〜.1. 3倍 の小さい延伸ドラフ トを付与することにより、 高度な接着性能と低収 縮性を維持しながら適度に高い捲縮性能を付与できるので好ましい。 ,延伸ドラフトが 1 . 3倍を超えると、 繊維を大きく延伸させることに なり、 その結果複合繊維の乾熱収縮率が 5 %を超えてしまい、 本発明 の目的とする低収縮性と高接着性を満足しなくなる。 また、 樹脂の性 質上、 紡糸 ·延伸条件に由来して、 強い熱収縮を生じる場合も繊維の 配向を上げてしまう方向であるので、 1 . 0倍より大きい延伸ドラフ トをかける代わりに未延伸糸が延伸中に弛みを生じない程度の 1 . 0 倍未満のドラフト (オーバーフィード) をかけても差し支えない。 好 ましくは 0 . 5〜 0 . 9倍のドラフト (オーバーフィード) をかける ことである。 ただし、 ドラフトは 0 . 5倍程度が下限であり、 これを 下回ると殆どのポリマーは収縮が不十分でトゥがたれやすくなる上に 複合繊維の伸度を 6 0 0 %以下に抑えることが難しい場合が多い。 — また定長熱処理は、 熱接着性榭脂成分が上述のようなポリマーブレ ンドの構成である場合、 熱接着性樹脂成分の主たる結晶性熱可塑性榭 脂のガラス転移温度と、 繊維形成性樹脂成分のガラス転移温度の双方 より高い温度で行う。 定長熱処理の温度がこの範囲より低いと複合繊 維の熱接着時の収縮率が大きくなるので好ましくない。 定長熱処理は ヒータープレート上で、 熱風吹付け下で、 高温空気中で、 水蒸気を吹 付け下で、 又は温水若しくはシリ コンオイルバス等の液体熱媒中で実 施すればよい。 その中でも熱効率がよく、 その後の繊維処理剤付与の 際に洗浄の必要が.ない温水中で実施することが好ましい。 ' これらの定長熱処理に引き続いて、 押し込み型クリンパーを通過さ せ又はバイパスさせ、 油剤を付与することも好ましい。 その後、 定長 熱処理の温度より更に 5 °C以上高い温度より好ましくは 1 0 °C以上高 い温度、 且つ無緊張下で熱処理 (弛緩熱処理) を行う。 この操作によ り、 未延伸糸又は低倍率延伸糸が立体捲縮を発現し、 カード通過性を 確保するための捲縮性能が発現する。 押し込み型クリンパーを通過し ない場合はスパイラル状の三次元立体捲縮が、 押し込み型クリンパー を通過させ単糸に挫屈を加えた場合はオメガ型の平面捲縮が発現する 本発明の捲縮性能の範囲内にあればこれらの中でいずれの方法を探用 ,しても良い。 弛緩熱処理の際の加熱方法は熱風中で、 すなわち熱風を 繊維に吹きつけて行うのが、 熱効率が良い点と、 繊維の拘束が少なく 繊維の捲縮が発現しやすい点において好ましい。 弛緩熱処理温度は、 得ようとする繊維の目標捲縮性能ゃ不織布又は繊維構造体の熱接着時 に出したい潜在捲縮性能の要求に応じて決めればよい。 この定長熱処 理後に引き続いて行う熱処理が無緊張下でない場合、 及ぴ熱処理温度 が定長熱処理温度より更に 5 °C以上高い温度でない場合には、 複合繊 維に十分な捲縮を付与することができない。 従って複合繊維の捲縮率
/捲縮数を所定の値以上にすることができない。
元来、 未延伸糸、 低延伸糸又は高速紡糸で得られた糸に機械捲縮を 付与するのは難しいが、 前述の方法により捲縮数、 捲縮率ともに高め ることができる。 捲縮性能の設定としては、 日本工業規格 L 1 0 1 5 : 8. 1 2. 1〜 8. 1 2. 2 (2 0 0 5 ) に定める捲縮率 (C D) と捲縮数 (CN) の比、 すなわち C DZC Nが 0. 8以上、 好ま しくは 1. 0以上となるように捲縮率を大きくすればよい。 CNの範 囲としては 6〜 2 5山 Z 2 5 mmであり、 更に好ましくは 8〜 2 0山 ノ2 5 mmである。 CDの範囲としては 6〜4 0 %であり、 好ましく は 8〜 3 5 %である。 C Dがこの範囲内にある高速カード通過性とゥ エブ地合いを両立することができるので、 好ましい。 CN、 CDにつ いて、 これらの上限を超えるとウェブの地合いが悪くなり、 下限を下 回るとカード通過により得られたウェブが切れやすくなり、 高速カー ド通過性に劣るようになる。 なお、 捲縮数と捲縮率のバランスを調整 し、 C D/C N比を上記の範囲内にする目的で、 クリンパー前のトウ 温度を、 スチーム加熱やヒーター加熱、 温水加熱等の手段で高くする 方法が実施される。 ここに挙げなかった他の手法であっても一般にト 温度を高くすれば、 捲縮率を大きく調整することができる。
更に熱接着性樹脂成分の組成が、 1 ) 熱接着性樹脂成分を構成する 主たる結晶性熱可塑性樹脂の MF尺が、 繊維形成性樹脂成分の MF R より 5 g/1 0m i n以上小さい芯鞘型複合繊維の場合、 2) 熱接着 ,性樹脂成分が、 結晶性熱可塑性樹脂 Aが 1 00〜 6 0重量%及び結晶 性熱可塑性樹脂 Bが 0〜4 0重量%からなるポリマープレンドである 芯鞘型複合繊維の場合、 3) 熱接着性樹脂成分が、 結晶性熱可塑性榭 脂 Aが 9 9. 8〜 9 0重量%及ぴ非晶性熱可塑性樹脂 0. 2〜 1 0重 量%からなるポリマープレンドである芯鞘型複合繊維の場合において も上記と同様の製造方法により本発明の複合繊維を製造することがで さる。
本発明の熱接着性複合繊維の形態は、 マルチフィラメ ン ト、 モノフ イラメ ント、 ステープルフアイパー、 チョップ、 トウなど、 使用目的 に応じていずれの形態もとることができる。 本発明の熱接着性複合繊 維を、 カードエ程を要するステーブルファイバーとして使用する場合 には、 該熱接着性複合繊維に良好なカード通過性を付与するために、 適切な数値範囲の捲縮数を付与することが望ましい。 実施例
以下、 実施例により、 本発明を更に具体的に説明するが、 本発明は これによつて何ら限定を受けるものでは無い。 なお、 実施例における 各項目は次の方法で測定した。
( 1 ) 固有粘度 (.1 V)
ポリエステルの.固有粘度はポリマーを一定量計量し、 o—クロロフ ヱノールに 0. 0 1 2 gZm 1の濃度に溶解してから、 常法に従って 3 5 °Cにて測定した。 .
(2) メルトフローレイ ト (MF R)
ポリプロピレン樹脂の MF Rは日本工業規格 K 7 2 1 0条件 1 4 (測定温度 2 3 0°C、 荷重 2 1. 1 8 N) に準じて、 ポリエチレンテ レフタ レート樹脂の MF Rは日本工業規格 K 7 2 1 0条件 20 (測 定温度 280°C、 荷重 2 1. 1 8 N) に準じて、 それ以外の樹脂の M F Rは日本工業規格 K 7 2 1 0条件 4 (測定温度 1 9 0 °C、 荷重 2 1. 1 8 N) に準じて測定した。 なお、 MF Rの測定には溶融紡糸前 ,のペレツ トを試料として測定した値である。
( 3 ) 融点 (Tm)、 ガラス転移温度 (T g )
ポリマーの融点及びガラス転移温度は、 TAインスツルメント . ジ ャパン (株) 社製のサーマル ' アナリス ト 2 2 0 0を使用し、 昇温速 度 2 0°CZ分で測定した。
(4 ) 繊度
複合繊維の繊度は日本工業規格 L 1 0 1 5 : 8. 5. 1 A法 ( 2 0 0 5 ) として記載の方法により測定した。
( 5 ) 強度 ·伸度
複合繊維の強度、 伸度は日本工業規格 L 1 0 1 5 : 8. 7. 1 法 ( 2 0 0 5 ) として記載の方法により測定した。
本発明の複合繊維は定長熱処理の効率により、 強伸度にバラツキを 生じやすいので、 単糸で強度 ·伸度を測定する場合は測定点数を増や す必要がある。 測定点数は 5 0以上が好ましいため、 ここでは測定点 数を 5 0とし、 その平均値を強度 ·伸度として定義する。
( 6 ) 捲縮数、 捲縮率
複合繊維の捲縮数、 捲縮率は日本工業規格 L 1 0 1 5 : 8. 1 2. 1〜 8. 1 2. . 2法 (2 0 0 5 ) として記載の方法により測定し た。
( 7 ) 1 2 0 °C乾熱収縮率
複合繊維の 1 2 0 °C乾熱収縮率は日本工業規格 L 1 0 1 5: 8. 1 5 b ) 法 (2 0 0 5 ) として記載の方法において、 温度 1 2 0 °C にて測定した。
( 8 ) 高速カード通過性
高速カード通過性は鳥越紡機株式会社製 J M型小型高速カード機を 用いて評価を行った。 熱接着性複合繊維 1 0 0 %からなる目付 2 5 g /m2のカードウエブを紡出する際、 カードウヱプが切れ始める ドッ ファー速度より 5 m/m i n小さい速度を最大カード速度とした。 こ の値が大きいほど、 高速カード通過性が良好と評価する。
, ( 9) ウェブ地合い
上記高速カード通過性試験またはエアレイ ド不織布製造法によって 得られたウェブの品位を、 5名のパネラ一が以下の基準にて評価した。
(レベル 1 ) 繊維密度が均一で毛玉があるといった外観の欠点も目立 たず、 良好な外観を呈する。
(レベル 2) 繊維密度がやや不均一で、 密度の小さい部分が若干見受 けられる。
(レベル 3) 繊維の粗密が多く、 外観が悪い。
( 1 0) ウェブ面積収縮率
上記高速カード通過性試験において得られた熱接着性複合繊維 1 0 0 %からなるウェブ、 またはエアレイ ド不織布製造法によって得た熱 接着性複合繊維 1 0 0 %からなる目付 2 5 gZm2のエアレイ ドゥエ ブを 3 0 c m四方に切り出して、所定の温度に維持した熱風乾燥機(佐 竹化学機械工業株式会社製 熱風循環恒温乾燥器: 4 1一 S 4) 中に 2分間放置して'熱処理を行い、 複合繊維同士の熱接着を行った。 熱接 着時における加熱収縮処理前のウェブ面積 A 0と加熱収縮処理後のゥ エブ面積 A 1から下記の式により求め面積収縮率とする。
面積収縮率 (%) = 〔(A 0— A 1 ) /A 0〕 X 1 0 0
( 1 1 ) 不織布強度 (接着強度)
上記熱処理後ゥ.エブから、 幅 5 c m、 長さ 2 0 c mの試験片を切り 取り、 つかみ間隔 1 0 c m、 伸長速度 2 0 c m/m i nの測定条件で 不織布の引張破断力を測定した。 接着強度は、 引張破断力 (N) を試 験片重量 (g) で除した値とした。
(実施例 1 )
芯成分 (繊維形成性樹脂成分) に I V= 0. 6 4 d L/ g , MF R = 2·5 g/ 1 O m i n, T g = 7 0°C、 Tm= 2 5 6°Cのポリエチレ ンテレフタ レー ト (P E T) を、 鞘成分 (熱接着性樹脂成分) に MF R= 2 0 g/ 1 0 m i n、 T m = 1 3 1 °C (T gは零度未満) の高密 度ポリエチレン(HD P E) を用いた。それらの樹脂を各々 2 9 0。C、 , 2 5 0 にて溶融したのち、 公知の偏芯芯鞘型複合繊維用口金を用い て、 芯成分:鞘成分 = 5 0 : 5 0 (重量%) の重量比率となるように 偏芯芯鞘型複合繊維を形成し、 吐出量 0. 7 1 g /m i n/孔、 紡糸 速度 1 1 5 0 m/m i nの条件にて紡糸し、 未延伸糸を得た。 その未 延伸糸を芯成分の樹脂のガラス転移温度より 2 0 °C高い 9 0 °Cの温水 中で 1. 0倍の低倍率延伸と同時に定長熱処理を行った。 続いてラウ リルホスフエートカリゥム塩からなる油剤の水溶液に定長熱処理で得 られた糸条を浸漬した後、 押し込み型クリンパーを用いて 1 1個 Z 2 5 mmの機械捲縮を付与した。 更にその糸条を無緊張下 1 1 0°Cの熱 風下で乾燥 (弛緩熱処理) した後、 繊維長 5 1 mmに切断した。 その 結果捲縮形態がオメガ型の複合繊維を得た。繊維製造条件、繊維物性、 '最大カード速度及び不織布物性を表 1、 3に示した。
(実施例 2及び実施例 3 )
芯成分と鞘成分の重量比率を変更した他は実施例 1 と同一条件にて 複合繊維を製造し、 それぞれ単糸繊度が 6. 7デシテックス、 6. 5 デシテックスの複合繊維を得た。 結果を表 1、 3に示した。
(実施例 4)
吐出量を 0. 5 3 gZm i nZ孔に変更し、 定長熱処理時の延伸倍 率を 0. 7倍に変更した他は実施例 1 と同一条件にて複合繊維を製造 し、 単糸繊度が 6.. 6デシテックスの複合繊維を得た。 結果を表 1、 3に示した。 .
(実施例 5及び比較例 1 )
口金を同芯芯鞘型複合繊維用口金に変更した他は表 1に示す条件で 複合繊維を製造した。 結果を表 1、 3に示した。
(実施例 6 )
' 芯成分 (繊維形成性樹脂成分) に I V= 0. 6 4 d LZ g、 MF R = 2 5 g / l 0 m i n、 T g = 7 0。C、 Tni= 2 5 6 °Cのポリエチレ ンテレフタレー トを、 鞘成分 (熱接着性樹脂成分) に MF R= 8 g/ 1 0 m i n、 T m = 1 6 5 °C (T gは零度未満) のアイ ソタクティ ッ ,クポリプロピレン (P P) を用いた。 それらの樹脂を各々 2 9 0°C、 2 6 0°Cにて溶融したのち、 公知の同芯芯鞘型複合繊維用口金を用い て芯成分:鞘成分 = 5 0 : 5 0 (重量%) の重量比率となるように同 芯芯鞘型複合繊維を形成し、 吐出量 1. O gZm i nノ孔、 紡糸速度 9 0 0 m/m i nの条件にて紡糸し、 未延伸糸を得た。 その未延伸糸 を芯成分の樹脂のガラス転移温度より 2 0 °C高い 9 0 °Cの温水中で 1 - 2 5倍の低倍率延伸と同時に定長熱処理を行った。 続いてラゥリルホ スフェートカリゥム塩からなる油剤の水溶液に定長熱処理で得られた 糸条を浸漬した後、 押し込み型クリンパーを用いて 1 1個ノ 2 5 mm の機械捲縮を付与した。 更にその糸条を無緊張下 1 3 0°Cの熱風下で 乾燥 (弛緩熱処理) した後、 繊維長 5 1 mmに切断した。 その結果捲 縮形態がオメガ型であり、 単糸繊度が 8. 8デシテックスの複合繊維 を得た。 繊維製造条件、 繊維物性、 最大カード速度及び不織布物性を 表 2、 4に示した。
(実施例 7 )
吐出量を 0. 8 g /m i 孔に変更し、 定長熱処理時と同時に行 う延伸倍率を 1. 0倍に変更した他は実施例 6 と同一条件にて複合繊 維を製造し、 単糸繊度が 8. 7デシテックスの複合繊維を得た。 結果 を表 2、 4に示した。
. (実施例 8) ,
芯成分 (繊維形成性樹脂成分) に I V= 0. 6 4 d LZg、 MF R = 2 5 g/ l 0 m i n, T g = 7 0°C、 Tm= 2 5 6°Cのポリエチレ ンテレフタレー ト (P E T) を用い、 鞘成分'(熱接着性樹脂成分) に MF R= 8 g/ 1 0 m i n、 T m = 1 6 5 °C (T gは零度未満) のァ イソタクティックポリプロピレン (P P) を 8 0重量%と、 M F R二 8 g'Z l 0 m i n、 T m = 9 8 °C (T gは零度未満) の無水マレイン 酸一アタリル酸メチルダラフト共重合ポリエチレン (無水マレイン酸 共重合率 = 2重量%、 アクリル酸メチル共重合率 = 7重量%、 以下 m 一 P Eと略称する。)を 2 0重量0 /0とをプレンドしたペレツ トを用いた ,それらの樹脂を各々 2 9 0 °C、 2 5 0 にて溶融したのち、 公知の同 芯芯鞘型複合繊維用口金を用いて、 芯成分:鞘成分 = 5 0 : 50 (重 量%) の重量比率となるように同芯芯鞘型複合繊維を形成し、 吐出量 0. 94 g /m i n Z孔、 紡糸速度 9 00 m/m i nの条件にて紡糸 し、 未延伸糸を得た。 その未延伸糸を芯成分の樹脂のガラス転移温度 より 2 0°C高い 90°Cの温水中で 1. 2倍の低倍率延伸と同時に定長 熱処理を行った。 続いてラゥリルホスフ; —トカリ ゥム塩からなる油 剤の水溶液に定長熱処理で得られた糸条を浸漬した後、 押し込み型ク リンパーを用いて 1 1個ノ 2 5 mmの機械捲縮を付与した。 更にその 糸条を無緊張下 1 1 0°Cの熱風下で乾燥 (弛緩熱処理) した後、 繊維 長 5 l mmに切断した。 その結果捲縮形態がオメガ型であり、 単糸繊 度が 8. 7デシテックスの捲縮の複合繊維を得た。 結果を表 2、 4に 示した。 .
(実施例 9)
鞘成分への m— P Eのプレンド量を 3 5重量0 /0とした他は、 実施例 8と同一条件にて複合繊維を製造し、 単糸繊度が 8. 8デシテックス の複合繊維を得た。 結果を表 2、 4に示した。
(実施例 1 0)
MF R= 8 g/ l 0m i n T m = 1 6 5 °C (T gは零度未満) の ァイソタクティッ,クポリプロピレン (p p) に対して MF R= 4 5 g
/ I 0m i n、 I V= 0. 5 6 d L/g、 T g = 6 3 °Cの非晶性共重 合ポリエステル (イ ソフタル酸 40モル0 /。、 ジエチレングリ コール 4 モル%共重合したポリエチレンテレフタ レート、 以下 c ο— P ET— 1 と略称する。)を 8重量%鞘成分へ添加して熱接着性樹脂成分として 用いた。 更に吐出量を 0. 8 gZm i nZ孔に変更し、 定長熱処理と 同時'に行う延伸倍率を 1. 0倍に変更した他は、 実施例 8と同一条件 にて複合繊維を製造し、 単糸繊度が 8. 9デシテックスのオメガ型捲 縮の複合繊維を得た。 結果を表 2、 4に示した。
(実施例 1 1 )
, 芯成分 (繊維形成性樹脂成分) に I V- 0. 6 4 d L/ g、 MF R = 2 5 g / l 0 m i n , T g = 7 0°C、 Tm= 2 5 6 °Cのポリエチレ ンテレフタレートを、 鞘成分 (熱接着性樹脂成分) に MF R= 4 0 g ノ 1 0 m i n、 Tm= 1 5 2 °C、 T g = 4 3での結晶性共重合ポリェ ステル (イ ソフタル酸 2 0モル0 /0、 テ トラメチレングリ コール 5 0モ ル%を共重合したポリエチレンテレフタ レー ト、 以下 c o— p E T—
2と略称する。) を用いた。 それらの樹脂を各々 2 9 0 °C、 2 5 5 °Cに て溶融したのち、 公知の偏芯芯鞘型複合繊維用口金を用いて芯成分: 鞘成分 = 5 0 : 5 0 (重量%) の重量比率となるように偏芯芯鞘型複 合繊維を形成し、 吐出量 0. 6 3 g /m i n/"孔、 紡糸速度 1 2 5 0 mZm i nの条件にて紡糸し、 未延伸糸を得た。 その未延伸糸を芯成 分の樹脂のガラス転移温度より 1 0 °C高い 8 0°Cの温水中で 0. 6 5 倍の低倍率延伸 (オーバーフィードを実施) と同時に定長熱処理を行 つた。 続いてラゥリルホスフヱ一トカリ ゥム塩からなる油剤の水溶液 に定長熱処理で得られた糸条を浸漬した後、 押し込み型クリンパーを 用いて 1 1個 Z 2 5 mmの機械捲縮を付与した。 更にその糸条を無緊 張下 9 0°Cの熱風下で乾燥 (弛緩熱処理) した後、 繊維長 5 l mmに 切断した。 その結果捲縮形態がオメガ型であり、 単糸繊度が 7. 8デ シテックスの複合繊維を得た。 結果を表 2、 4に示した。
. (比較例 2 ) .
実施例 1 1において、同芯芯鞘型複合繊維口金を用い、吐出量を 2. 0 5 g /m i nノ孔、 紡糸速度 7 0 0 m/m i n、 及び 7 0 °Cの温水 中で 4. 3 5倍の延伸を行った他は、 実施例 1 1 と同一条件にて複合 繊維を製造し、 単糸繊度が 7. 8デシテックスの機械捲縮 (ジグザグ 型) の複合繊維を得た。 結果を表 2、 4に示した。 表 1
Figure imgf000023_0001
注:繊維形成性樹脂成分は I Vが 0. 64 d L g、 丁 ^が70°0、 Tmが 256°C、 M F Rが 25 gノ "1 0分の P E Tを使用した。
2 ■
熱接着性樹脂成分 MFR差 . 複合形態 鞘比率. 孔当リ 紡糸 定長熱処理 弛緩熱処理 樹脂種類 Tm Tg 主たる樹脂 サー^^ (重量%) 吐出量 速度 倍率 ί F6=
( ) (°C) の MFR (g/10min) g/min (m/min) (倍) (°C) O
(g/10min)
実施例 6 PP 165 <0 8 17 同心/ ώ 50 1. 0 900 1.25 90 130 実施例 7 PP 165 <0 - 8 17 同心 50 0. 8 900 1. 0 90 130 実施例 8 BP1 165 <0 8 17 同芯芯鞘 50 0. 94 900 1. 2 90 110 - 実施例 9 BP2 165 ぐ 0 8 1フ 同 / 鞘 50 0. 9 " 900 1. 2 90 110 実施例 10 BP3 165 <0 8 17 同/ / 雜 50 0. 8 900 1. 0 90 110 実施例 11 BP4 152 43 40 -15 偏芯芯 肖 50 0. 63 1250 0.65 80 - 90 比較例 2 BP4 152 43 40 -15 同 、心平肖 50 2. 05 700 4.35 70 90
表 2の注
1. 繊維形成性樹脂成分は I Vが 0. 64 d l_Zg、 T g?i) 70°C、 Tmが 256°C、 M F Rが 25 g 1 0分の P E Tを使用した
2. 等接着性樹脂成分の樹脂の種類
' BP 1 とは、 Ρ Ρと m— Ρ Εがブレンド重量比率 80 : 20のポリマ一ブレンド体である。
■ BP 2とは、 P Pと m—P Eがブレンド重量比率 65 : 35のポリマーブレンド体である。
' B P 3とは、 P Pと c o— P ET— 1がプレンド重量比率 92 : 8のポリマーブレンド体である。
■ BP4とは、 G O— P ET— 2である。 -
表 3
Figure imgf000026_0001
表 4'
Figure imgf000027_0001
(実施例 1 2)
芯成分 (繊維形成性樹脂成分) に I V= 0. 6 4 d L/ g、 MF R ,= 2 5 g/ 1 0 m i n, T g = 7 0 °C , Tm= 2 5 6 °Cのポリエチレ ンテレフタレート (P ET) を、 鞘成分 (熱接着性樹脂成分) に MF R= 8 gZ l 0 m i n、 T m = 1 6 5 °C (T gは零度未満) のァイソ タクティックポリプロピレン (P P) を用いた。 それらの樹脂を各々 2 9 0°C、 2 6 0°Cにて溶融したのち、 公知の同芯芯鞘型複合繊維用 口金を用いて芯成分:鞘成分 = 5 0 : 5 0 (重量%) の重量比率とな るように同芯芯鞘型複合繊維を形成し、吐出量 1. 0 gZm i nZ孔、 紡糸速度 9 0 0 mZm i nの条件にて紡糸し、 未延伸糸を得た。 その 未延伸糸を芯成分の樹脂のガラス転移温度より 2 0。C高い 9 0°Cの温 水中で 1. 0倍の低倍率延伸と同時に定長熱処理を行った。 続いてラ ゥリルホスフェートカリ ゥム塩 : ポリォキシエチレン変性シリ コーン = 8 0 : 2 0 (重量比率) からなる油剤の水溶液に定長熱処理で得ら れた糸条を浸漬した後、 スタッフイングボックスを用いて 1 1個ノ 2 5 mmの機械捲縮を付与した。 更にその糸条を 9 5°Cで乾燥 (弛緩熱 処理) した後、 繊維長 5. 0mmに切靳した。 切断前のトウ状態で測 定した単糸繊度は 1 1. 0デシテッタス、強度 1. 3 c N/ d t e X、 伸度 1 7 0 %、 捲縮数 1 1. 0個 Z 2 5 mm、 捲縮率 9. 5 %、 捲縮 率 Z捲縮数 0. 8 6、 1 2 0 °C乾熱収縮率一 1. 9 %であった。 得ら れた複合繊維からエアレイ ドウエブを製造し、 1 8 0°Cで熱接着させ たゥェブ面積収縮率は 0 %、 不織布強力は 9. 5 k g Z g、 ウェブ地 合いはレベル 1であった。
(比較例 3)
未延伸糸の温水中での定長熱処理を行わない他は、 実施例 1 2と同 一条件にて同芯芯鞘型複合繊維を製造した。 切断前のトゥ状態で測定 した単糸繊度は 1 1. 1デシテックス、 強度 1. 2 c NZd t e x、 伸度' 2 6 1 %、 捲縮数 1 1. 0個 / 2 5 mm、 捲縮率 8. 4 %、 捲縮 率ノ捲縮数 0. 7 6、 1 2 0°C乾熱収縮率 2 5. 3 %であった。 得ら れた複合繊維からエアレイ ドゥエプを製造し、 1 80°Cで熱接着させ たウェブ面積収縮率は 2 5 %、 不織布強力は 8. 3 k gZg、 ウェブ ,地合いはレベル 3であった。
(比較例 4)
吐出量を 2. 2 g /m i n/孔に変更し、 未延伸糸を温水中で 2. 2倍に延伸した他は、 実施例 1 2と同一条件にて同芯芯鞘型複合繊維 を製造した。 切断前のトウ状態で測定した単糸繊度は 1 1. 0デシテ ックス、 強度 2. 5 c NZd t e x、 伸度 7 3 %、 捲縮数 1 1. 1個 /2 5 mm、 捲縮率 1 0. 5 %、 捲縮率 //捲縮数 0. 94、 1 2 0 °C 乾熱収縮率 8. 2 %であった。 得られた複合繊維からエアレイ ドゥエ ブを製造し、 1 8 0°Cで熱接着させたウェブ面積収縮率は 6. 5 %、 不織布強力は 1. 3 k gZg、 ウェブ地合いはレベル 2であった。
(比較例 5 )
吐出量を 1. 5 gZm i nZ孔に変更し、 未延伸糸を温水中で 1. 5倍に延伸した他は、 実施例 1 2と同一条件にて同芯芯鞘型複合繊維 を製造した。 切断前のトウ状態で測定した単糸繊度は 1 0. 8デシテ ッタス、 強度 1. 8 c NZ d t e X、 伸度 1 2 2 %、 捲縮数 1 0. 8 個 Z 2 5 mm,捲縮率 1 0. 3 %、 捲縮率 Z捲縮数 0. 9 5、 1 20 °C 乾熱収縮率 1 8. 9 %であった。 得られた複合繊維からエアレイ ドウ エブを製造し、 1 8 0 °Cで熱接着させたゥヱプ面積収縮率は 1 4 %、 不織布強力は 5. l k gZg、 ウェブ地合いはレベル 2であった。
: (実施例 1 3)
芯成分 (繊維形成性樹脂成分) に I V= 0. 64 d L/ g , MF R = 2 5 g/ l 0m i n、 T g = 70 °C、 T m = 2 5 6 °Cのポリエチレ ンテレフタレート (P E T) を、 鞘成分 (熱接着性樹脂成分) に MF R= 2 0 gZ l 0 m i n、 T m = 1 3 3 °C (T gは零度未満) の高密 度ポリエチレン(HD P E) を用いた。それらの樹脂を各々 2 90°C、 2 5 '0°Cにて溶融したのち、 公知の同芯芯鞘型複合繊維用口金を用い て芯成分:鞘成分 = 5 0 : 5 0 (重量%) の重量比率となるように同 芯芯鞘型複合繊維を形成し、 吐出量 0. Y S g Zm i nZ孔、 紡糸速 度 1 1 5 0 m/m i nの条件にて紡糸し、 未延伸糸を得た。 その未延 ,伸糸を芯成分の樹脂のガラス転移温度より 2 0°C高い 9 0°Cの温水中 で 1 . 0倍の低倍率延伸と同時に定長熱処理を行った。 続いてラウリ ルホスフエ ートカリ ゥム塩 : ポリォキシエチレン変性シリ コーン = 8 0 : 2 0 (重量比率) からなる油剤の水溶液に定長熱処理で得られた 糸条を浸漬した後、 押し込み型クリンパーを用いて 1 1個 Z 2 5 mm の機械捲縮を付与した。 更にその糸条を 1 1 0°Cで乾燥 (弛緩熱処理) した後、 繊維長 5. O mmに切断した。 切断前のトウ状態で測定した 単糸繊度は 6. 5デシテックス、 強度 0. 8 c N/d t e x、 伸度 4 4 5 %、 捲縮数 1 1. 2個ノ 2 5 mm、 捲縮率 6. 9 %、 捲縮率 Z捲 縮数 0. 6 2、 1 2 0 °C乾熱収縮率一 1. 6 %であった。 得られた複 合繊維からエアレイ ドウエブを製造し、 1 5 0°Cで熱接着させたゥヱ ブ面積収縮率は 0 %、 不織布強力は 7. 9 k g Z g、 ウェブ地合いは レべノレ 1であった。
(実施例 1 4)
芯成分 (繊維形成性樹脂成分) に I V= 0. 6 4 d L/ g、 MF R = 2 5 g/ 1 0 m i nN T g = 7 0°C、 Tm= 2 5 6°Cのポリエチレ ンテレフタレート (P ET) を用い、 鞘成分 (熱接着性樹脂成分) に MFR= 8 gZ l 0 m i n、 T m = 1 6 5 °C (T gは零度未満) のァ イソタクティックポリプロピレン (P P) を 8 0重量0 /0と、 MF R二 8 gZ l 0 m i n,、 T m = 9 8 °C (T gは零度未満) の無水マレイン 酸ーァクリル酸メチルダ'ラフト共重合ポリエチレン (無水マレイン酸 共重合率 = 2重量%、 アクリル酸メチル共重合率 = 7重量%、 すなわ ち m— P E) を 2 0重量%とをブレンドしたペレッ トを用いた。 それ らの樹脂を各々 2 9 0 °C、 2 5 0でにて溶融したの'ち、 公知の同芯芯 鞘型複合繊維用口金を用いて芯成分:鞘成分 = 5 0 : 5 0 (重量%) の重量比率となるように同芯芯鞘型複合繊維を形成し、 吐出量 0. 7 3 g /m i nZ孔、 紡糸速度 1 1 5 0 m/m i nの条件にて紡糸し、 未延伸糸を得た。 その未延伸糸を芯成分の樹脂のガラス転移温度より 2 0°C高い 9 0°Cの温水中で 1. 0倍の低倍率延伸と同時に定長熱処 ,理を行った。 続いてラウリルホスフェートカリ ウム塩: ポリォキシェ チレン変性シリ コーン = 8 0 : 2 0 (重量比率) からなる油剤の水溶 液に定長熱処理で得られた糸条を浸漬した後、 押し込み型クリンパー を用いて 1 1個 / 2 5 mmの機械捲縮を付与した。 更にその糸条を 1 1 0°Cで乾燥 (弛緩熱処理) した後、 繊維長 5. 0 mmに切断した。 切断前のトウ状態で測定した単糸繊度は 1 1. 1デシテックス、 強度 1. 2 c N/ d t e X、伸度 1 5 0 %、捲縮数 1 1. 0個 Z 2 5 mm, 捲縮率 6. 3 %、捲縮率 Z捲縮数 0. 5 7、 1 2 0°C乾熱収縮率一 4. 0 %であった。 得られた複合繊維からエアレイ ドウヱプを製造し、 1 8 0°Cで熱接着させたウェブ面積収縮率は 0 %、 不織布強力は 1 1. 4 k gZg、 ゥヱプ地合いはレべノレ 1であった。
(実施例 1 5)
芯成分 (繊維形成性樹脂成分) に I V= 0. 6 4 d L/g、 MF R = 2 5 gZ l 0m i n、 T g = 7 0。C、 Tm= 2 5 6。Cのポリエチレ ンテレフタレート (P E T) を、 鞘成分 (熱接着性樹脂成分) に MF R= 4 0 g / 1 0 m i n、 Tm= 1 5 2°C、 T g = 4 3 °Cの結晶性共 重合ポリエステル (イソフタル酸 2 0モル%、 テ トラメチレングリ コ ール 5 0モル%を共重合したポリエチレンテレフタレー ト、 すなわち c o— P ET— 2)を用いた。それらの樹脂を各々 2 9 0°C、 2 5 5 °C にて溶融したのち、 公知の同芯芯鞘型複合繊維用口金を用いて芯成 分:鞘成分 = 5 0 : 5 0 (重量%) の重量比率となるように同芯芯鞘 型複合繊維を形成し、 吐出量 0. 7 1 g/m i nZ孔、 紡糸速度 1 2 5 0 m/m i nの条件にて紡糸し、未延伸糸を得た。その未延伸糸を、 芯成分の樹脂のガラス転移温度より 2 0°C高い 9 0°Cの温水中で 1. 0倍の低倍率延伸と同時に定長熱処理を行った。 続いてラゥリルホス フエ一 トカ リ ゥム塩 : ポリオキシエチレン変性シリ コーン- 8 0 : 2 0 (重量比率) からなる油剤の水溶液に定長熱処理で得られた糸条を 浸漬した後、 押し込み型クリンパーを用いて 1 1個ノ2 5 mmの機械 捲縮を付与した。更にその糸条を 9 5 °Cで乾燥(弛緩熱処理) した後、 ,繊維長 5. O mmに切断した。 切断前のトウ状態で測定した単糸繊度 は 5 . 7デシテックス、 強度 1 . O c Nノ d t e x、 伸度 4 0 0 %、 捲縮数 1 1 . 1個/ / 2 5 mm、 捲縮率.7. 5 %、 捲縮率/捲縮数 0. 6 8、 1 2 0 °C乾熱収縮率— 3 . 5 %であった。 得られた複合繊維か らェアレイ ドゥエプを製造し、 1 8 0 °Cで熱接着させたウェブ面積収 縮率は 0 %、 不織布強力は 1 1 . O k g Z g、 ゥヱプ地合いはレベル 1でめつ 7こ
(比較例 6 )
芯成分 (繊維形成性樹脂成分) に I V = 0. 6 4 d L/ g MF R = 2 5 g / l O m i n N T g = 7 0で、 Tm= 2 5 6。Cのポリエチレ ンテレフタレート (P E T) を、 鞘成分 (熱接着性樹脂成分) に MF R= 4 0 gZ l 0 m i n、 T g = 6 3 °C (融点は無し) の非晶性共重 合ポリエステノレ (イソフタル酸 3 0モル0 /0、 ジエチレングリ コーノレ 8 モル%を共重合したポリエチレンテレフタレート、 以下 c o — P E T 一 3と略称する。) を用いた。 それらの樹脂を各々 2 9 0 °C、 2 5 0 °C にて溶融したのち、 公知の同芯芯鞘型複合繊維用口金を用いて芯成 分:鞘成分 = 5 0 : 5 0 (重量%) の重量比率となるように同芯芯鞘 型複合繊維を形成し、 吐出量 0. Ί 1 g /m i ηΖ孔、' 紡糸速度 1 2
5 0 mZm i nの条件にて紡糸し、 未延伸糸を得た。 その未延伸糸を
6 5 °Cの温水中で 1 . 0倍の低倍率延伸と同時に定長熱処理を行った。 続いてラゥリルホスフェートカリゥム塩: ポリォキシエチレン変性シ リコーン: = 8 0 : 2 0 (重量比率) からなる油剤の水溶液に定長熱処 理で得られた糸条を浸漬した後、 押し込み型ク リンパーを用いて 9個 / 2 5 mmの機械捲縮を付与した。 更にその糸条を 5 5 °Cで乾燥 (弛 緩熱処理) した後、 繊維長 5. 0 mmに切断した。 切断前のトウ状態 で測定した単糸繊度は 5 . 7デシテックス、 強度 1 . 5 c NZ d t e x、 伸度 1 8 0 %、 捲縮数 8. 9個/ 72 5 mm、 捲縮率 9. 3 %、 捲 縮率/捲縮数 1 . 0 4、 1 2 0 °C乾熱収縮率 7 5 %であった。 得られ た複合繊維からエアレイ ドウエブを製造し 1 8 0 °Cで熱接着させると ,ウェブの収縮が大きく ウェブ面積収縮率、 不織布強力ともに測定不可 肯 あった。 産業上の利用可能性
本発明の熱接着性複合繊維は、 従来提案されていた低配向であって 高接着性且つ低熱収縮性の熱接着性複合繊維での欠点であったカード 通過性を改善するものである。 また本発明の熱接着性複合繊維は、 不 織布生産性を向上させるだけでなく、 ウェブ品位も良好な熱接着不織 布の提供を可能とする。 更には、 本発明の熱接着性複合繊維は、 従来 提案されている高接着性且つ低熱収縮性の熱接着性複合繊維に比べ、 熱接着性複合繊維が自己伸張性を有することを特徴とする。 また本発 明の熱接着性複合繊維を製造する際に、 高速紡糸のようなプロセスを 必要としないので、 エネノレギーコス トも低く、 ドフイング切替えの口 スゃ断糸が少ないため歩留まりが向上するメ リ ットも大きい。
従って本発明の熱接着性複合繊維を用いて不織布を製造すると、 熱 接着後の不織布が嵩高に仕上がり、 風合いに優れかつ不織布強力の高 ぃ不織布を得ることができる。 更に本発明の熱接着性複合繊維を用い た不織布では、 接着強度を上げるために熱接着温度を高く設定するこ とも可能となるので、 熱接着不織布や繊維構造体を高速で生産するこ とが可能となる。 またエアレイ ド不織布用短繊維としても不織布強度 が高く、 不織布ウェブの熱収縮が小さく、 品位の良いエアレイ ド不織 布を提供する事ができる。

Claims

請 求 の 範 囲
, 1. 繊維形成性樹脂成分及び熱接着性樹脂成分からなる複合繊維で あって、 熱接着性樹脂成分が繊維形成性樹脂成分より 2 0°C以上低い 融点をもつ結晶性熱可塑性樹脂からなり、破断伸度が 6 0〜 6 0 0 %、 1 2 0 °C乾熱収縮率が一 1 0. 0〜 5. 0 %であることを特徴とする 熱接着性複合繊維。
2. 捲縮率 Z捲縮数が 0. 8以上である請求項 1に記載の熱接着性 複合繊維。
3. 繊維形成性樹脂成分が芯、 熱接着性樹脂成分が鞘となる、 同芯 芯鞘型複合繊維又は偏芯芯鞘型複合繊維である請求項 1記載の熱接着 性複合繊維。
4. 芯を構成する樹脂成分/鞘を構成する樹脂成分の重量比が 6 0 Z4 0〜 1 0/ 9 0 (重量比) であることを特徴とする請求項 3記載 の熱接着性複合繊維。
5. 熱接着性樹脂成分を構成する主たる結晶性熱可塑性樹脂のメル トフローレイ ト (MF R) が l〜 1 5 gZ l 0 m i nであることを特 徴とする請求項 1.記載の熱接着性複合繊維。
6. 熱接着性樹脂成分を構成する主たる結晶性熱可塑性樹脂のメル トフローレイ ト (MF R) 、 繊維形成性樹脂成分の MF Rより 5 g
/ 1 Om i n以上小さいことを特徴とする請求項 1記載の熱接着性複 合繊維。
7. 熱接着性樹脂成分が 2種以上の熱可塑性樹脂からなるポリマー プレンド体から構成されることを特徴とする請求項 1記載の熱接着性 複合繊維。
8 . 熱接着性樹脂成分が、 結晶性熱可塑性樹脂 Aが 1 0 0 〜 6 0重 5 量%及び結晶性熱可塑性樹脂 Bが 0 〜 4 0重量%からなるポリマーブ レンド体で構成され、 結晶性熱可塑性樹脂 Bの融点が結晶性熱可塑性 樹脂 Aの融点より 2 0 °C以上低いことを特徴とする請求項 7記載の熱 接着性複合繊維。
10 9 . 熱接着性樹脂成分が、 結晶性熱可塑性樹脂 Aが 9 9 . 8 〜 9 0重 量%及ぴ非晶性熱可塑性樹脂 0 . 2 〜 1 0重量%からなるポリマーブ レンド体で構成され、 非晶性熱可塑性樹脂のガラス転移温度が結晶性 熱可塑性樹脂 Aの融点より 2 0 °C以上低いことを特徴とする請求項 7 記載の熱接着性複合繊維。
15
1 0 . 繊維形成性樹脂成分がポリエチレンテレフタレートである請 求項 1記載の熱'接着性複合繊維。
1 1 . 熱接着性樹脂成分の主たる結晶性熱可塑性樹脂がポリオレフ 20 イン樹脂である請求項 1記載の熱接着性複合繊維。
1 2 . 熱接着性樹脂成分の主たる結晶性熱可塑性樹脂が結晶性共重 合ポリエステルである請求項 1記載の熱接着性複合繊維。
25 1 3 . 1 5 0 〜 1 8 0 0 m Z m i nの紡糸速度で引き取った複合繊 • 維の未延伸糸を熱接着性樹脂成分の主たる結晶性熱可塑性樹脂のガラ ス転移温度と繊維形成性樹脂成分のガラス転移温度の双方より高い温 虔下' 0 . 5 〜 1 . 3倍の低倍率延伸と同時に定長熱処理し、 その後該 定長熱処理温度より 5 °C以上高い温度において無緊張下で熱処理する ことを特徴とする請求項 1記載の熱接着性複合繊維の製造方法。
, 1 . 熱接着性樹脂成分を構成する主たる結晶性熱可塑性樹脂のメ ルトフローレイ トが繊維形成性樹脂成分のメルトフロ レイ トよ り 5 g / 1 0 m i n以上小さく、 1 5 0〜 1 8 0 0 m/m i nの紡糸速度 で引き取った複合繊維の未延伸糸を熱接着性樹脂成分の主たる結晶性 熱可塑性樹脂のガラス転移温度と繊維形成性樹脂成分のガラス転移温 度の双方より高い温度下 0. 5〜 1. 3倍の低倍率延伸と同時に定長 熱処理し、 その後該定長熱処理温度より 5 °C以上高い温度において無 緊張下で熱処理することを特徴とする請求項 6記載の熱接着性複合繊 維の製造方法。
1 5. 熱接着性樹脂成分が、 結晶性熱可塑性樹脂 Aが 1 0 0〜 & 0 重量%及ぴ結晶性熱可塑性樹脂 Bが 0〜4 0重量%からなるポリマー ブレン ド体で構成され、 結晶性熱可塑性樹脂 Bの融点が結晶性熱可塑 性樹脂 Aの融点より 2 0 °C以上低く、 1 5 0〜 1 8 0 0 m/m i nの 紡糸速度で引き取った複合繊維の未延伸糸を熱接着性樹脂成分の結晶 性熱可塑性樹脂 Aのガラス転移温度と繊維形成性樹脂成分のガラス転 移温度の双方より高い温度下 0. 5〜 1. 3倍の低倍率延伸と同時に 定長熱処理し、 その後該定長熱処理温度より 5 °C以上高い温度におい て無緊張下で熱処理することを特徴とする請求項 8記載の熱接着性複 合繊維の製造方法。
1 6. 熱接着性樹脂成分が、 結晶性熱可塑性樹脂 Aが 9 9. 8〜 9 0重量%及び非晶性熱可塑性樹脂 0. 2〜 1 0重量%からなるポリマ 一プレンド体で構成され、 非晶性熱可塑性樹脂のガラス転移温度が結 晶性熱可塑性樹脂 Aの融点より 2 0 °C以上低く、 1 5 0〜 1 8 0 0 m ノ m'i nの紡糸速度で引き取った複合繊維の未延伸糸を熱接着性樹脂 成分の結晶性熱可塑性樹脂 Aのガラス転移温度と繊維形成性樹脂成分 のガラス転移温度の ¾方より高い温度下 0 . 5 ~ 1 . 3倍の低倍率延 伸と同時に定長熱処理し、 その後該定長熱処理温度より 5 °C以上高い ,温度において無緊張下で熱処理することを特徴とする請求項 9記載の 熱接着性複合繊維の製造方法。
1 7 . 定長熱処理を温水中で、無緊張下の熱処理を熱風中で行うこと を特徴とする、 請求項 1 3〜 1 6のいずれか 1項記載の熱接着性複合 繊維の製造方法。
PCT/JP2007/052290 2006-02-06 2007-02-02 熱接着性複合繊維及びその製造方法 WO2007091662A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020087021687A KR101415384B1 (ko) 2006-02-06 2007-02-02 열접착성 복합 섬유 및 그 제조 방법
US12/278,323 US7674524B2 (en) 2006-02-06 2007-02-02 Thermoadhesive conjugate fiber and manufacturing method of the same
DK07708274.1T DK1985729T3 (da) 2006-02-06 2007-02-02 Varmeklæbende konjugeret fiber samt fremgangsmåde til dens fremstilling
CN200780004645.0A CN101379232B (zh) 2006-02-06 2007-02-02 热粘合性复合纤维及其制造方法
EP07708274A EP1985729B1 (en) 2006-02-06 2007-02-02 Heat-bondable conjugated fiber and process for production thereof
HK09103297.5A HK1125142A1 (en) 2006-02-06 2009-04-07 Heat-bondable conjugated fiber and process for production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006028314A JP5021938B2 (ja) 2006-02-06 2006-02-06 熱接着性複合繊維およびその製造方法
JP2006-028314 2006-02-06
JP2006028315A JP4856435B2 (ja) 2006-02-06 2006-02-06 熱接着性複合繊維およびその製造方法
JP2006-028315 2006-02-06

Publications (1)

Publication Number Publication Date
WO2007091662A1 true WO2007091662A1 (ja) 2007-08-16

Family

ID=38345256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052290 WO2007091662A1 (ja) 2006-02-06 2007-02-02 熱接着性複合繊維及びその製造方法

Country Status (8)

Country Link
US (1) US7674524B2 (ja)
EP (1) EP1985729B1 (ja)
KR (1) KR101415384B1 (ja)
DK (1) DK1985729T3 (ja)
HK (1) HK1125142A1 (ja)
MY (1) MY146829A (ja)
TW (1) TW200745393A (ja)
WO (1) WO2007091662A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8147956B2 (en) * 2007-10-19 2012-04-03 Es Fiber Visions Co., Ltd. Hot-melt adhesive polyester conjugate fiber

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820211B2 (ja) * 2006-05-12 2011-11-24 帝人ファイバー株式会社 自己伸長性熱接着性複合繊維及びその製造方法
KR101439582B1 (ko) * 2010-09-30 2014-09-12 코오롱인더스트리 주식회사 심초형 필라멘트 및 그 제조방법, 이를 이용하여 제조한 스펀본드 부직포 및 그 제조방법
US8764511B2 (en) 2011-04-29 2014-07-01 Mattel, Inc. Toy vehicle
JP6021566B2 (ja) 2012-09-28 2016-11-09 ユニ・チャーム株式会社 吸収性物品
JP6112816B2 (ja) 2012-09-28 2017-04-12 ユニ・チャーム株式会社 吸収性物品
JP6731284B2 (ja) * 2016-05-30 2020-07-29 Esファイバービジョンズ株式会社 熱融着性複合繊維およびその製造方法、これを用いた不織布
JP6228699B1 (ja) 2017-03-31 2017-11-08 Esファイバービジョンズ株式会社 熱融着性複合繊維およびこれを用いた不織布
KR102003892B1 (ko) * 2018-02-12 2019-10-01 주식회사 휴비스 가공성이 우수한 부직포 바인더용 섬유제조방법
BR112021026807A2 (pt) * 2019-07-02 2022-02-15 Essilor Int Impressão 3d fdm de lente óptica com alta clareza e resistência mecânica
KR102213846B1 (ko) * 2019-10-23 2021-02-09 주식회사 휴비스 부직포용 열접착 탄성복합섬유
TWI803790B (zh) * 2020-11-24 2023-06-01 遠東新世紀股份有限公司 鞘芯型熱黏合纖維及不織布

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975869A (ja) * 1972-11-25 1974-07-22
JPS5221419A (en) * 1975-08-06 1977-02-18 Mitsubishi Rayon Co Ltd Process for producing crimped composite polyester fibers
JPS57167418A (en) * 1981-04-03 1982-10-15 Kuraray Co Ltd Heat bonding composite spun fiber
EP0340982A2 (en) * 1988-05-06 1989-11-08 Minnesota Mining And Manufacturing Company Melt-bondable fibers for use in nonwoven web
JPH06108310A (ja) 1992-09-25 1994-04-19 Chisso Corp 複合繊維の製造方法
JP2004218183A (ja) 2002-12-24 2004-08-05 Kao Corp 熱融着性複合繊維

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678531A (en) * 1986-03-24 1987-07-07 General Motors Corporation Method and apparatus for screen printing solder paste onto a substrate with device premounted thereon
US5162074A (en) * 1987-10-02 1992-11-10 Basf Corporation Method of making plural component fibers
US5780155A (en) 1994-08-11 1998-07-14 Chisso Corporation Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
DE19511852A1 (de) * 1995-03-31 1996-10-02 Hoechst Trevira Gmbh & Co Kg Hochbelastbare Kern/Mantel-Monofilamente für technische Anwendungen
US5641570A (en) * 1995-11-20 1997-06-24 Basf Corporation Multicomponent yarn via liquid injection
US5948529A (en) * 1997-02-26 1999-09-07 Hna Holdings, Inc. Bicomponent fiber
JP3704249B2 (ja) * 1999-03-05 2005-10-12 帝人ファイバー株式会社 親水性繊維
JP2000336526A (ja) 1999-06-01 2000-12-05 Toyobo Co Ltd 熱接着性複合繊維及びその製造方法
WO2002086211A1 (fr) * 2001-04-17 2002-10-31 Asahi Kasei Kabushiki Kaisha Fil texture par fausse torsion en fibre de polyester composite et procede de production
JP3322868B1 (ja) 2001-08-09 2002-09-09 宇部日東化成株式会社 不織布用繊維と不織布及びこれらの製造方法
CN1283540C (zh) * 2001-11-06 2006-11-08 旭化成纤维株式会社 聚酯类复合纤维卷装
US6846560B2 (en) * 2002-05-27 2005-01-25 Asahi Kasei Kabushiki Kaisha Conjugate fiber and method of producing same
JP4758804B2 (ja) * 2005-04-12 2011-08-31 ダイワボウホールディングス株式会社 不織布

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975869A (ja) * 1972-11-25 1974-07-22
JPS5221419A (en) * 1975-08-06 1977-02-18 Mitsubishi Rayon Co Ltd Process for producing crimped composite polyester fibers
JPS57167418A (en) * 1981-04-03 1982-10-15 Kuraray Co Ltd Heat bonding composite spun fiber
EP0340982A2 (en) * 1988-05-06 1989-11-08 Minnesota Mining And Manufacturing Company Melt-bondable fibers for use in nonwoven web
JPH06108310A (ja) 1992-09-25 1994-04-19 Chisso Corp 複合繊維の製造方法
JP2004218183A (ja) 2002-12-24 2004-08-05 Kao Corp 熱融着性複合繊維

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"a hot air dryer", SATAKE CHEMICAL EQUIPMENT MFG., LTD, article "hot air circulation constant temperature dryer", pages: 41 - S4
"Japanese Industrial Standards", A METHOD, vol. L1015, 2005, pages 8.5.1
"Japanese Industrial Standards", METHOD, vol. L1015, 2005, pages 8.7.1
"Japanese Industrial Standards", METHODS, vol. L1015, 2005, pages 8.12.1 - 8.12.2
JAPANESE INDUSTRIAL STANDARDS, vol. L1015, pages 8.15B
See also references of EP1985729A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8147956B2 (en) * 2007-10-19 2012-04-03 Es Fiber Visions Co., Ltd. Hot-melt adhesive polyester conjugate fiber
KR101259967B1 (ko) 2007-10-19 2013-05-02 이에스 화이바비젼즈 가부시키가이샤 폴리에스테르계 열융착성 복합 섬유

Also Published As

Publication number Publication date
US7674524B2 (en) 2010-03-09
US20090029165A1 (en) 2009-01-29
EP1985729A1 (en) 2008-10-29
HK1125142A1 (en) 2009-07-31
TW200745393A (en) 2007-12-16
EP1985729A4 (en) 2010-03-03
KR101415384B1 (ko) 2014-07-04
DK1985729T3 (da) 2013-03-25
TWI371508B (ja) 2012-09-01
KR20080096815A (ko) 2008-11-03
EP1985729B1 (en) 2013-01-02
MY146829A (en) 2012-09-28

Similar Documents

Publication Publication Date Title
WO2007091662A1 (ja) 熱接着性複合繊維及びその製造方法
JP4820211B2 (ja) 自己伸長性熱接着性複合繊維及びその製造方法
JP5021938B2 (ja) 熱接着性複合繊維およびその製造方法
JP4027728B2 (ja) ポリエステル系短繊維からなる不織布
KR100954704B1 (ko) 잠재 3차원 권축성을 갖는 기계 권축 합성 섬유 및 이의제조 방법
JP4313312B2 (ja) ポリ(トリメチレンテレフタレート)複合繊維
JP4881026B2 (ja) エアレイド不織布用熱接着性複合繊維およびその製造方法
JP2003003334A (ja) 捲縮性複合繊維とその製造方法およびこれを用いた不織布
JP4856435B2 (ja) 熱接着性複合繊維およびその製造方法
WO2007091665A1 (ja) エアレイド不織布用ポリエステル繊維の製造方法
JP4323507B2 (ja) ポリエステル系短繊維
JP2003171860A (ja) エアレイド不織布用繊維
JP2013133571A (ja) 機械捲縮性能の高い熱接着性複合繊維およびその製造方法
JP4310170B2 (ja) エアレイド不織布用熱接着性複合繊維
JP4955278B2 (ja) エアレイド不織布用ポリエステル系繊維およびその製造方法
JP4945004B2 (ja) エアレイド不織布用ポリエステル系繊維の製造方法
JP2013053387A (ja) 熱接着性複合繊維およびその製造方法
JP2011195978A (ja) 湿式不織布用熱接着性複合繊維およびその製造方法
JP2006118067A (ja) 熱接着性複合繊維の製造方法
JP2006118066A (ja) 熱接着性複合繊維
JP2009215662A (ja) 不織布用短繊維及び短繊維不織布

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 6569/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12278323

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780004645.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007708274

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087021687

Country of ref document: KR