WO2007091386A1 - Gas feeding device and gas feeding method - Google Patents

Gas feeding device and gas feeding method Download PDF

Info

Publication number
WO2007091386A1
WO2007091386A1 PCT/JP2007/000057 JP2007000057W WO2007091386A1 WO 2007091386 A1 WO2007091386 A1 WO 2007091386A1 JP 2007000057 W JP2007000057 W JP 2007000057W WO 2007091386 A1 WO2007091386 A1 WO 2007091386A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
molten metal
gas supply
pipe
gas
Prior art date
Application number
PCT/JP2007/000057
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Mizuno
Original Assignee
Hoei Shokai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoei Shokai Co., Ltd. filed Critical Hoei Shokai Co., Ltd.
Priority to JP2007557757A priority Critical patent/JPWO2007091386A1/en
Publication of WO2007091386A1 publication Critical patent/WO2007091386A1/en
Priority to DE602007001777T priority patent/DE602007001777D1/en
Priority to DE602007009480T priority patent/DE602007009480D1/en
Priority to DE602007004663T priority patent/DE602007004663D1/en
Priority to DE602007001233T priority patent/DE602007001233D1/en
Priority to DE602008000014T priority patent/DE602008000014D1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/12Travelling ladles or similar containers; Cars for ladles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/06Equipment for supplying molten metal in rations having means for controlling the amount of molten metal by controlling the pressure above the molten metal

Definitions

  • the present invention relates to a gas supply device and a gas supply method for supplying a pressurized gas to a container used for supplying molten aluminum, for example.
  • the present inventors have developed a pressurized container from the viewpoint of safety and workability.
  • This pressurized container can also be transported between factories via public roads. Various ideas have been made for this purpose.
  • molten aluminum is supplied from the container to the holding furnace side by introducing a pressurized gas into the container.
  • Molten aluminum is supplied to the holding furnace by changing the pressure value of the pressurized gas in three stages, for example.
  • the present invention addresses such problems, and an object of the present invention is to provide a gas supply device and a gas supply method that can supply molten metal to the outside of the container at an appropriate flow rate.
  • a gas supply device is a container having a structure capable of being transported from a first factory to a second factory via a public road, can store molten metal, and is external to the container.
  • the pipe attachment portion communicates with the flow path, extends upward from the pipe attachment portion, bends in a substantially horizontal direction at a predetermined position, faces downward at a predetermined position, and the outlet of the tip portion faces downward.
  • a gas supply device that supplies at least pressurized gas to a container having a pipe, an air hose connectable to the gas passage, and the pressurized gas to supply the air hose and the gas passage to the container Pressurized gas supply And measuring the flow rate of the molten metal supplied from the inside of the container to the outside of the container through the flow path and the piping by flowing a pressurized gas into the container through the air hose.
  • a measuring unit and a control unit that controls a pressure value of the pressurized gas supplied to the container so that a flow rate measured by the measuring unit becomes a predetermined value.
  • the flow rate is measured, and the pressure value of the pressurized gas supplied to the container is controlled accordingly, so that the flow rate of the molten metal supplied from the container falls within a predetermined range.
  • the pressure value of the pressurized gas supplied to the container is controlled accordingly, so that the flow rate of the molten metal supplied from the container falls within a predetermined range.
  • the present invention measures the flow velocity and controls the pressure value of the pressurized gas supplied to the container accordingly, so that the optimum flow velocity can always be obtained.
  • the flow path and the pipe may have an inner diameter of 65 to 85 mm.
  • the inside of the container may be pressurized with a very small pressure. That is, when the molten metal flows upward in the flow path, the two parameters, the weight of the molten metal itself existing in the flow path and the viscous resistance of the inner wall of the flow path, the resistance that hinders the flow of the molten metal. It is thought that it has had a big influence on.
  • the inner diameter is smaller than 65 mm, the molten metal flowing through the flow path is affected by both the weight of the molten metal itself and the viscous resistance of the inner wall at any position.
  • the predetermined value may be 12 to 18 kg Z s.
  • the flow rate is faster than 1 S kg Z s, the time required for supplying the molten metal can be shortened and work efficiency is improved while the life of the flow path is shortened, and the molten metal is scattered and oxidized. Things increase and the quality of the molten metal deteriorates. Therefore, by setting the flow rate to 12 to 18 kg Z s, it is possible to prevent the scattering at the time of supplying the molten metal, reduce the oxide as much as possible, and obtain a molten metal with stable quality.
  • a vacuum pump is provided that depressurizes the inside of the container via the air hose, and the measurement unit evacuates the inside of the container with the vacuum pump, thereby allowing the measurement to be performed via the pipe and the flow path.
  • the flow rate of the molten metal supplied into the container may be measured, and the control unit may control the exhaust amount of the vacuum pump so that the flow rate measured by the measurement unit becomes a predetermined value.
  • the flow rate is measured, and the amount of exhaust gas discharged from the vessel is controlled accordingly, so that the flow rate of the molten metal supplied to the vessel is kept within a predetermined range. It is possible to control the flow rate and the deterioration rate of the flow path and the piping, and the work efficiency is high. In other words, if the flow rate of the molten metal supplied is slow, the life of the flow path and piping is long, but the working efficiency is deteriorated. In addition, if the flow rate of the molten metal supplied is high, work efficiency is improved, but the life of the flow path and piping is shortened. In consideration of these circumstances, the present invention measures the flow velocity and controls the exhaust amount for exhausting the container accordingly, so that the optimum flow velocity can always be obtained.
  • the gas supply device may be mounted on a fork riff for transporting the container.
  • a gas supply method is a container having a structure capable of being transported from a first factory to a second factory via a public road, capable of storing molten metal, and external to the container.
  • the pipe attachment portion communicates with the flow path, extends upward from the pipe attachment portion, bends in a substantially horizontal direction at a predetermined position, and
  • a pressurized gas is supplied to the container via a gas passage, and the pressurized gas is flowed into the container via the air hose.
  • the flow rate of the molten metal supplied to the outside is
  • the inside of the container is depressurized through the air hose, and the inside of the container is depressurized to measure the flow rate of the molten metal supplied into the container through the pipe and the flow path.
  • the degree of decompression may be controlled so that the measured flow rate becomes a predetermined value.
  • the pressure difference between the inside and the outside of the container is used to slow down the deterioration rate of the flow path and the pipe through which the molten metal can flow between the outside and the piping, and the work efficiency is improved and the quality is reduced. No molten metal can be supplied.
  • the molten metal supply system includes a container for storing molten metal, for example, molten aluminum, and a transport vehicle as a vehicle for holding and transporting the container.
  • FIG. 1 is a side view showing an appearance of a transport vehicle according to an embodiment of the present invention
  • FIG. 2 is a plan view thereof.
  • This transport vehicle 1 basically has a base part constituted by, for example, a fork riff, and has a driver seat 2 provided substantially in the center, and a fork part 3 provided in front.
  • This forklift is used as a base, and the pressurizing / reducing unit 4 is mounted thereon.
  • the pressurizing / depressurizing unit 4 includes two receiver tanks 5 for storing pressurized gas supplied to a container 100 described later, and an air compressor for supplying pressurized gas to the receiver tank 5 6.Vacuum pump for decompressing the container 7 And a filter 8 or the like.
  • the emergency stop unit 9 is provided on the front side of one side surface of the driver seat 2. As a result, the driver who gets in the driver's seat 2 can access the emergency stop lever 10 provided in the emergency stop section 9.
  • the pressurization / reduction unit 4 and the emergency stop unit 9 are connected by a pipe 11, and the pressurization / decompression unit 4 communicates with the air hose 12 via the emergency stop unit 9.
  • the pressurizing gas supplied from the pressure-increasing / decreasing unit 9 is discharged from the tip of the air hose 12 through the piping 11 and the air hose 12 as the second flow path.
  • a joint part 14 that can be attached to and detached from the joint part 1 3 provided on the container 100. Then, the joint part 14 at the tip of the air hose 12 is connected to the joint part 13 of the container 100 and the inside of the container 100 through the air tank 12 from the receiver tank 5 of the pressure adjusting unit 4. The inside of the container 100 can be pressurized by supplying a pressure gas to the container. Similarly, the joint part 14 at the tip of the air hose 1 2 is connected to the joint part 13 of the container 100, and the container 1 0 is connected via the air hose 12 by the vacuum pump 7 of the pressure adjusting unit 4. The inside of 0 can be depressurized (see Fig. 3).
  • the fork 3 includes a pair of channel members 17 provided on the bottom bottom surface of the container 100 and a fork 15 that can be attached to and detached from the channel 1 1 and a lifting mechanism 1 6 that lifts and lowers the fork 15
  • a load cell 1 5 3 is arranged on the surface of the fork 4 1.
  • the load cell 15 3 measures the weight of the container 100 and converts it into an electric signal, which is input to the pressure switch 22 described later as needed.
  • FIG. 3 is a diagram showing a configuration of the pressure-increasing / decreasing unit 4.
  • FIG. 6 is a graph showing the relationship between the flow rate of molten aluminum and the pressure value in the container 100 when molten aluminum is supplied to the outside of the container 100.
  • the pressure increasing / decreasing unit 4 includes at least a traveling engine 1. While the transport vehicle 1 is traveling or idling according to 7, the generator 18 driven by the engine 1 and the air compressor 6 driven by the electric power generated by the generator 18 are provided.
  • the air compressor 6 is driven by a battery when the transporting vehicle is operated by a battery and a motor. In this case, the air compressor can be driven independently of traveling and idling of the transporting vehicle.
  • the pressurizing gas compressed by the air compressor 6 is accumulated in the receiver tank 5.
  • the gas once compressed from the air compressor 6 to the receiver tank 5 is accumulated while the transport vehicle 1 is traveling or idling. Therefore, the receiver tank 5 serves as a buffer between the air conditioner presser 6 and the container 100. Therefore, when the molten aluminum is supplied from the container 100 to the outside, the inside of the container 100 can be pressurized with a stable pressure.
  • the receiver tank can be constantly charged with gas, and the supply of molten aluminum to the outside can be performed flexibly at any time and anywhere.
  • a first check valve 20, a line filter 8 a, an air dryer 8 b, and a second check valve 21 are provided in order from the 6th side. Both the first check valve 20 and the second check valve 21 are for preventing the backflow of gas from the receiver tank 5 side to the compressor 6 side.
  • the first check valve 20 prevents the backflow of gas from the line filter 8a and the air dryer 8b side to the compressor 6 when the compressor 6 is stopped, for example, and is provided in the immediate vicinity of the line filter 8a. It is preferable that This allows compressor 6 and line filter 8 Piping between and a 1 9 It is possible to prevent dirt and clogging of a more effectively.
  • the line filter 8 a is a filter that removes water droplets and oil from the gas sent from the compressor 6 to the receiver tank 5.
  • the air dryer 8 b is a filter that dries the gas sent from the compressor 6 to the receiver tank 5.
  • the second check valve 21 prevents the backflow of gas from the receiver tank 5 to the compressor 6.
  • a pressure switch 22 is connected on the pipe 19b between the receiver tank 5 and the second check valve 21.
  • the pressure switch 2 2 as the first control means includes a pressure sensor 2 3 and C P U 2 4.
  • the pressure sensor 23 detects the pressure in the receiver tank 5 and controls on / off of the compressor 6 based on the detection result. For example, the compressor 6 is turned on when the pressure of the receiver tank 5 becomes a predetermined value or less, and conversely, the power of the compressor 6 is turned off when the pressure of the receiver tank 5 becomes a predetermined value or more. Although details will be described later, the pressure value of the receiver tank 5 is calculated by C P U 2 4.
  • a pipe 19 c for opening to the atmosphere is connected to the pipe 19 a between the compressor 6 and the first check valve 20.
  • One end of the pipe 19c is opened to the atmosphere via the leak valve 25.
  • the leak valve 25 is controlled to be opened and closed by C P U 24 in the pressure switch 22.
  • the flow rate per hour of the molten aluminum based on the signal input from the load cell 15 3 when the molten aluminum in the container 100 is supplied to the outside of the container 100 That is, the first flow rate is calculated.
  • the flow velocity is calculated from the change with time of the weight of the container 100.
  • the load cell 1 5 3 and the CPU 2 4 function as measurement means. If this first flow rate is not within a predetermined value range, for example, if not within 12 to 18 kg Z s, the pressurized gas flows into the container 100 so that the first flow rate is within this range.
  • the pressure value is calculated by the CPU 24, and the information is input to the pressure sensor 23.
  • the CPU 24 is connected to the compressor when the pressure in the receiver tank 5 drops below this predetermined value.
  • the leak valve 5 in the closed state Prior to turning on the sensor 6, the leak valve 5 in the closed state is opened.
  • the inside of the pipe 19 a between the compressor 6 and the first check valve 20 returns to atmospheric pressure.
  • the CPU 24 turns on the compressor 6 and closes the leak valve 25 that is open after a predetermined time has elapsed.
  • the compressor 6 can be started up with a smaller capacity, and the compressor 6 can be downsized.
  • the first flow velocity of the chamber is measured, and the pressure value of the pressurized gas flowing into the container 100 is controlled based on the measurement result.
  • the flow rate of the molten aluminum flowing out from the container 100 can be within a predetermined range, for example, in this embodiment, within 12 to 18 kg Z s, and the molten aluminum without quality deterioration can be obtained.
  • the inside of the container 100 is heated to about 30 to 35 kPa.
  • the first flow velocity is set to about 12 to 18 kg Z s, more preferably about 15 kg Z s. If the first flow rate is slower than 12 kg Z s, the life of the pipe will be long, but it will take time to supply molten aluminum, and the work efficiency will be poor, and the oxide of molten aluminum will increase and molten aluminum will increase. The quality of the product deteriorates. On the other hand, if the first flow rate is faster than 1 S kg Z s, Although the time required for supplying aluminum can be shortened and work efficiency is improved, the life of piping is shortened, and the quality of molten aluminum deteriorates due to an increase in oxide of molten aluminum.
  • the flow rate is such that the inner diameter of the flow path 15 7 of the container 100 to be described later that passes when the molten aluminum is supplied to the outside and the inner diameter of the subsequent pipe 14 4 is 65 to 85. It is a value suitable for the case of about mm.
  • the exhaust amount of the vacuum pump 7 is controlled by the control unit 80 as the second control means.
  • the supply of the molten aluminum into the container 100 is performed by attaching another pipe to the pipe 14 4 and connecting it to the storage tank 2 00 where the molten aluminum 2 0 1 is stored.
  • the inside of the container 100 is evacuated by the vacuum pump 7.
  • the control unit 80 the flow rate per hour of molten aluminum supplied into the container 100, based on the signal input from the load cell 15 53 when supplying the molten albumin into the container 100, That is, the second flow velocity is calculated.
  • the vacuum pump 7 that evacuates the container 100 so as to be within the flow rate range.
  • the exhaust pump is calculated, and the vacuum pump 7 is controlled by the controller 80 so that it is within the calculated value.
  • the second flow rate of the molten aluminum supplied to the container 100 can be within a predetermined range, for example, in this embodiment, within 12 to 18 kg Z s. It is possible to improve the work efficiency while slowing down the deterioration rate. That is, if the second flow rate of molten aluminum is slow, the life of the pipe is long, but the work efficiency is poor, and if the second flow speed is fast, the work efficiency is good, but the life of the pipe is shortened.
  • the second flow rate of the molten aluminum supplied to the vessel 100 is set within a predetermined range, for example, 12 to 18 kg Z s, thereby improving the work efficiency while slowing the deterioration rate of the pipe. be able to.
  • the second flow velocity value is determined when the inner diameter of the flow path 15 7 and the subsequent piping 14 4 4 through which molten aluminum described below is supplied to the outside is about 65 mm to 85 mm. It is a suitable numerical value.
  • the pipe diameter upstream of the receiver tank 5 is, for example, about 2 Z 3 smaller than the pipe downstream of the receiver tank 5 (the side closer to the container 100). . This is because a large amount of gas is pumped from the receiver tank 5 to the container 100 once, whereas gas is gradually sent from the compressor 6 to the receiver tank 5.
  • the line filter 8 a and the air dryer 9 b are provided not on the downstream side of the receiver tank 5 but on the upstream side of the receiver tank 5, that is, on the pipe 19 between the receiver tank 5 and the compressor 6.
  • these line filters 8a and air dryers 8b can be reduced in size by providing a smaller gas flow rate per unit time on the narrow side of the pipe.
  • the receiver tank 5 is connected to a pressurized gas pipe 26, and this pressurized gas pipe
  • the switching valve 27 is configured to switch the connection between the air hose 12 and the pressurized gas pipe 26 and the connection between the air hose 12 and the vacuum pipe 28.
  • This switching valve 27 is connected to one end of the air hose 12 via a pressure gauge 29, a relief valve 30, a leak valve 31, an emergency stop 9 and a filter.
  • a control valve 3 2 and a leak valve 3 3 are connected to the pressurized gas pipe 26 from the receiver tank 5 side (upstream side).
  • a control valve 3 4 and a leak valve 3 5 are connected to the vacuum pipe 28 from the vacuum pump 7 side (downstream side).
  • Each control valve 3 2, 3 4 adjusts the pressure in the pressurized gas pipe 26 and the vacuum pipe 28, respectively, and also connects and shuts off (on Z off) of each pipe. To do.
  • Filter 5 1 operates by clogging oil, aluminum powder, dust from aluminum pieces, etc. from the container 100 side into the valves and emergency stop 9 on the transport vehicle side. This is to prevent it from being lost. Although it is conceivable to provide such a filter 51 on the container 100 side, it is necessary to provide a filter for each container 100. In the present invention, the number of necessary filters can be reduced by providing such a filter 51 on the transport vehicle 1 side.
  • the amount of dust and the like from the container side to the receiver 5 side is much larger than the amount of dust and the like from the receiver tank 5 side to the container side. .
  • the filter 51 may of course be arranged upstream of this, or may be provided at a plurality of locations.
  • the filter 51 may be provided between the switching valve 27 and the relief valve 30, and the filter 31 may be provided between the switching valve 27 and the leak valve 33.
  • the emergency stop section 9 can be used when the pressurization to the container is to be stopped in an emergency such as when the molten aluminum receiving side is likely to overflow.
  • FIG. 4 is a plan view showing a configuration of a molten metal supply container used in such a system
  • FIG. 5 is a cross-sectional view taken along line AA in FIG.
  • a large lid 15 52 is disposed in the upper opening 15 1 of the bottomed and cylindrical main body 15 50.
  • Flange 1 5 3 and 1 5 4 are provided on the outer peripheries of main body 1 5 0 and large lid 1 5 2, respectively.
  • the main body 1 5 0 and the large lid 1 5 2 are fixed by tightening these flanges with Pol ⁇ 1 5 5.
  • the main body 1 5 0 has a large lid 1 5 2 whose outer side (frame) is metal (for example, iron).
  • the inside of the frame is made of refractory material, and a heat insulating material is inserted between the outer metal and the refractory material.
  • a pipe attachment portion 58 provided with a flow path 1557 that communicates from the inside of the main body 150 to the pipe 144.
  • the flow path 1 5 7 in the pipe attachment portion 1 5 8 is connected to the main body 1 5 0 via the opening 1 5 7 a provided at a position close to the bottom 1 5 0 a of the container main body. 1 5 0 It extends toward the upper part of the outer circumference 1 5 7 b.
  • the pipe 1 4 4 is fixed so as to communicate with the flow path 1 5 7 of the pipe mounting portion 1 5 8.
  • the pipe 1 4 4 has, for example, a “letter shape.
  • the frame of the pipe 1 4 4 is made of a metal such as iron, for example, and a lining is formed as a lining inside the pipe.
  • the inner side of the lining is formed as a molten metal flow path 17 2.
  • the refractory material for example, a dense refractory ceramic material can be used.
  • a heat insulating member 1556a is disposed around the pipe 14-4 near the pipe attachment portion 1558 so as to surround the pipe 144.
  • the pipe 1 4 4 side takes heat from the flow path 1 5 7 side and a temperature drop of the flow path 1 5 7 occurs.
  • the molten metal is easy to cool, and the liquid level just shakes when the container is transported. Therefore, the molten metal at this position can be prevented from solidifying by surrounding the pipe 1 4 4 in the vicinity of the pipe mounting portion 1 5 8 with the heat insulating member 1 5 6 a in this way.
  • the effective inner diameters of the flow path 1 5 7 and the subsequent pipe 1 4 4 are substantially equal, and preferably about 65 mm to 85 mm.
  • this type of pipe has an inner diameter of about 50 mm. there were. This is because if it is more than that, it is considered that a large pressure is required when the inside of the container is pressurized and the molten metal is led out from the pipe.
  • the present inventors preferably set the inner diameter of the flow path 1 57 and the subsequent pipe 1 44 to be about 65 mm to 85 mm, more preferably about 70 mm to 8 Omm.
  • the flow path 157 was found to be 70 mm and the inner diameter of the pipe 1 44 was 8 Omm.
  • the inventors have found that when the inner diameter is 65 mm or more, an area that is hardly affected by the viscous resistance of the inner wall starts to appear from around the center of the flow, and the area gradually increases. The effect of this region is very large, and the resistance that hinders the flow of molten metal begins to decrease.
  • the molten metal is withdrawn from the container, it is only necessary to pressurize the container with a very small pressure. In other words, in the past, the influence of such a region was not taken into consideration at all, and only the weight of the molten metal itself was considered as a resistance fluctuation factor that hinders the flow of the molten metal, for reasons such as workability and maintainability.
  • the inner diameter was about 5 Omm.
  • an inner diameter of about 65 mm to about 8 Omm only needs to be pressurized with a very small pressure, and is most preferable from the viewpoint of standardization and workability.
  • the pipe diameter is standardized in units of 5 mm, 60 mm, 70 mm, and 10 mm. The smaller the pipe diameter, the easier the handling and the better the workability.
  • An opening 160 is provided at substantially the center of the large lid 152, and a hatch 162 to which a handle 16 1 is attached is disposed in the opening 160.
  • hatch 1 6 2 is provided at a position slightly higher than the upper surface of the large lid 1 5 2.
  • the hatch 1 6 2 is attached to the large lid 1 5 2 via a hinge 1 6 3 at one place on the outer periphery.
  • the hatch 16 2 can be opened and closed with respect to the opening 60 of the large lid 15 2.
  • the port 1 with a handle for fixing the hatch 1 6 2 to the large lid 1 5 2 is located at two places on the outer periphery of the hatch 1 6 2 so as to face the position where the hinge 1 6 3 is attached. 6 4 is installed.
  • the hatch 1 6 2 By closing the opening 1 6 0 of the large lid 1 5 2 with the hatch 1 6 2 and turning the port 1 6 4 with the handle, the hatch 1 6 2 is fixed to the large lid 1 5 2.
  • the hatch 16 2 can be opened from the opening 1 6 0 of the large lid 1 5 2 by reversely rotating the port 16 4 with the handle to release the fastening.
  • the gas burner is inserted into the container 100 during the pre-heating through the opening 160.
  • First to third through holes 1 65 a to 1 65 c that penetrate the inside and outside of the container 100 are provided at positions away from the center of the hatch 16 2 by a predetermined distance. Yes.
  • the first through hole 1 6 5 a is provided on the pipe 1 4 4 side, and the second through hole 1 6 5 b and the third through hole 1 6 5 c are connected to the first through hole 1 6 5 a and Is on the opposite side.
  • the distance between the first through-hole 1 65 a and the second through-hole 1 65 b and the third through-hole 1 65 5 c is the same as that between the second through-hole 1 65 b and the third through-hole 1 65 b.
  • the distance from the through hole 1 6 5 c is longer than the distance.
  • Screw holes are cut in each of the through holes 1 6 5 a to 1 6 5 c.
  • Plugs 1 6 8 a and 1 6 8 b constituting one of the force bras are attached to the first and second through holes 1 6 5 a and 1 6 5 b.
  • a first socket 1 70 0 a through which the first electrode rod 1 6 9 a is passed is attached to the first through hole 1 65 5 a.
  • a second socket 1 700 b through which the second electrode rod 1 69 9 b is passed is attached to the second through hole 1 65 b.
  • Each plug and socket make up a power bra.
  • the third through hole 1 6 5 c is used for internal pressure adjustment for performing pressure reduction and pressurization in the container 100.
  • This third through hole 1 6 5 c is adjusted as shown in Fig. 3.
  • Pipe 6 6 for pressure is connected.
  • the pipe 66 extends upward from the third through hole 1 65 c, bends at a predetermined height, and extends horizontally therefrom.
  • a thread is formed on the surface of the pipe 66 inserted into the through hole 1 65 c, and a thread is also formed on the through hole 1 65 c. As a result, the pipe 66 is fixed to the through hole 1 65 c by screwing.
  • a flexible air hose 12 for pressurization or decompression can be connected to one of the pipes 66 by a force bra structure. Then, it is possible to flow molten aluminum into the container 100 through the pipe 14 4 and the flow path 15 7 by utilizing the pressure difference due to the reduced pressure. Further, the molten aluminum can be discharged out of the container 100 through the flow path 1 5 7 and the pipe 1 4 4 using the pressure difference by pressurization.
  • a through-hole 1665c for increasing / decreasing pressure is provided in the hatch 162, which is disposed at substantially the center of the large lid 1552.
  • the pipe 66 since the pipe 66 extends in the horizontal direction, the work of connecting the air hose 12 for pressurization or decompression to the pipe 66 can be performed safely and easily. Further, by extending the pipe 6 6 in this way, the pipe 6 6 can be rotated with a small force with respect to the through hole 1 65. Therefore, it is possible to fix and remove the pipe 66 screwed to the through hole 1 65 c with a very small force without using a tool, for example.
  • a channel member 1 71 as a leg portion having a predetermined length in a cross-sectional mouth shape into which a fork of a fork riff is inserted, for example, 2 is parallel.
  • the book is arranged.
  • the bottom 1 5 0a inside the main body 1 5 0 is entirely inclined so that the channel 1 5 7 side is lowered. This reduces the amount of so-called hot water when the molten aluminum is led out to the outside through the flow path 15 7 and the pipe 14 4 due to pressurization.
  • the angle at which the container 100 is tilted can be made smaller, and the safety And workability is excellent.
  • Such inclination may be reversed. As a result, clogging of the opening 1 5 7 a can be prevented.
  • FIG. 7 is a diagram showing an overall configuration of a metal supply system according to the present invention.
  • the first factory 3 1 0 and the second factory 3 2 0 are, for example, public roads
  • the first factory 3 1 0 has a die-cast machine 3 as a point of use.
  • Each die-casting machine 3 1 1 uses a melted aluminum as a raw material and molds a product of a desired shape by injection molding. Examples of such products include parts related to automobile engines.
  • the molten metal is not limited to an aluminum alloy but may be an alloy mainly composed of other metals such as magnesium and titanium.
  • Each holding furnace 3 1 2 has a liquid level detection sensor (not shown) for detecting the level of molten aluminum stored in the container and a temperature sensor for detecting the temperature of molten aluminum. (Not shown) is arranged. The detection results by these sensors are transmitted to the control panel of each die-cast machine 3 1 1 or the central control unit 3 1 6 of the first factory 3 1 0.
  • the container 10 0 0 received in the receiving section of the first factory 3 1 0 is delivered to a predetermined die cast machine 3 1 1 by the forklift 50 0 according to the present invention, and the holding furnace is started from the container 1 0 0 3 1 2 is supplied with molten aluminum.
  • the container 100 which has been supplied is returned to the receiving part by the forklift 1 again.
  • the aluminum is melted and supplied to the container 1 0 0
  • the first furnace 3 1 9 is provided, and the container 1 0 0 supplied with the molten aluminum by the first furnace 3 1 9 is also delivered by the forklift 1 to the predetermined die machine 3 1 1. It has become so.
  • the first factory 3 1 0 is provided with a display unit 3 15 for displaying when it is necessary to add molten aluminum in each die-cast machine 3 1 1. More specifically, for example, a unique number is assigned to each die-cast machine 3 1 1, and the number is displayed on the display unit 3 1 5, and a die that requires the addition of molten aluminum is required. The number in the display section 3 1 5 corresponding to the number of the cast machine 3 1 1 lights up. Based on the display on the display unit 3 15, the worker uses the fork riff 1 to carry the container 100 to the die cast machine 3 1 1 corresponding to the number and supplies molten aluminum. The display on the display unit 3 15 is performed by the central control unit 3 16 controlling based on the detection result by the liquid level detection sensor.
  • the second factory 3 20 is provided with a second furnace 3 2 1 for melting aluminum and supplying it to the container 100.
  • the container 100 to which molten aluminum is supplied by the second furnace 3 2 1 is placed on a transport truck 3 3 2 by a forklift.
  • Truck 3 3 2 carries container 1 0 0 through the public road 3 3 0 to the receiving part of the first factory 3 1 0.
  • the empty container 100 in the receiving section is returned to the second factory 3 2 0 by the track 3 3 2.
  • the second factory 3 2 0 has a display section 3 2 2 for displaying when it is necessary to add molten aluminum to each die-cast machine 3 1 1 in the first factory 3 1 0. Is arranged.
  • the configuration of the display unit 3 2 2 is almost the same as that of the display unit 3 1 5 arranged in the first factory 3 1.
  • the display on the display unit 3 2 2 is performed by the central control unit 3 16 in the first factory 3 1 0 via the communication line 3 3 3, for example.
  • the second factory 3 2 0 In the second factory 3 2 0 In the display unit 3 2 2, it is determined that the molten aluminum is supplied from the first furnace 3 1 9 in the first factory 3 1 0 among the die casting machines 3 1 1 requiring supply of molten aluminum.
  • the cast machine 3 1 1 is displayed separately from the other die cast machines 3 1 1. For example, the number corresponding to the die-cast machine 3 1 1 determined in this way flashes. As a result, the molten aluminum is accidentally supplied from the second factory 3 2 0 side to the die cast machine 3 1 1 determined to be supplied with molten aluminum from the first furnace 3 19. You can eliminate things like this.
  • the display unit 3 2 2 also displays data transmitted from the central control unit 3 16.
  • the central control unit 3 16 monitors the amount of molten aluminum in each holding furnace 3 1 2 via a liquid level detection sensor provided in each holding furnace 3 1 2.
  • the central control unit 3 1 6 the “unique number” of the holding furnace 3 1 2, the holding furnace 3 1 2 ⁇ Temperature data '' of the holding furnace 3 1 2 detected by the temperature sensor provided in 2, ⁇ Configuration data '' regarding the form of the holding furnace 3 1 2, and finally the molten aluminum disappears from the holding furnace 3 1 2
  • these data are displayed on the display 3 2 2. Based on the displayed data, the operator empirically reaches the holding furnace 3 12 immediately before the molten aluminum is exhausted from the holding furnace 3 1 2, and the molten aluminum at that time has a desired temperature.
  • the shipping time of the container 100 from the second factory 320 and the temperature at the time of shipping the molten aluminum are determined so that Alternatively, these data are taken into a personal computer (not shown), for example, and the container 10 0 0 arrives at the holding furnace 3 1 2 immediately before the molten aluminum disappears from the holding furnace 3 1 2 using predetermined software.
  • the molten aluminum at that time Estimate the shipping time of the container 100 from the second factory 3 20 and the temperature when the molten aluminum is shipped so that the temperature reaches the desired temperature, and display the time and temperature. Also good.
  • the temperature of the second furnace 3 2 1 may be automatically controlled based on the estimated temperature.
  • the amount of molten aluminum to be accommodated in the container 100 may also be determined based on the above “quantity data”.
  • truck 3 3 2 with container 1 0 0 departs at the time of shipment and arrives at first factory 3 1 0 through public road 3 3 0, container 1 0 0 receives from truck 3 3 2 Accepted by clubs.
  • the received container 100 is delivered to the predetermined die casting machine 3 11 by the forklift 1, and molten aluminum is supplied from the container 100 to the holding furnace 31 2.
  • the forklift 1 is configured to supply molten aluminum to the holding furnace 3 12 while holding the container 100.
  • the forklift 1 and the container 100 could operate as a stand-alone type without receiving supply of air or the like in the factory.
  • the present invention is not limited to such a form.
  • a holding table 4 00 holding a container 100 is arranged near the holding furnace 3 12, and The container 100 is temporarily transferred from the forklift 1 to the holding table 400, and in that state, molten aluminum is supplied from the container 100 to the holding furnace 31 2.
  • the forklift 1 receives the container 100 from the holding table 400 and receives another container You may comprise so that it may carry.
  • the holding furnace 3 1 2 is provided with an open / close lid 4 0 1.
  • Molten aluminum is supplied from the container 100 to the holding furnace 3 1 2 with the lid 4 101 opened. Keep lid 4 0 1 closed when not supplied. Thereby, it is possible to prevent the molten aluminum in the holding furnace 3 1 2 from being oxidized.
  • a monitoring operation unit 4 0 2 is provided near the holding furnace 3 1 2. This monitoring The operator 4 0 3 works in the operation unit 4 0 2. The floor is a little higher so that the operator 40 3 can see the inside from the upper part of the holding furnace 3 1 2 with the operator 40 3 standing in the monitoring operation unit 40 2. Therefore, the operator 40 3 goes up to the monitoring operation unit 4 0 2 through the stairs 4 0 4.
  • the monitoring operation section 4 0 2 is provided with a local operation box 4 0 5. In the local operation box 4 0 5, the air supply to the container 1 0 0 can be turned on and off.
  • a liquid level detection sensor may be provided in the holding furnace 312, and the air supply to the container 100 may be turned on / off according to the upper limit U and the lower limit L of the liquid level.
  • a weigh scale 400 is arranged on the holding table 400.
  • the weigh scale 400 measures the weight of the container 100 held on the holding table 400. Based on the result measured by the weigh scale 4 0 6, for example, the amount of molten aluminum supplied to the holding furnace 3 1 2 is controlled. For example, the container 1 0 0 is detected by detecting that the holding furnace 3 1 2 is full. Stop the air supply to. Also, based on the result measured by the weigh scale 4 06, the empty state of the container 100 is detected. An empty notification is performed.
  • Factory-side air 40 07 is supplied to the container 100 held on the holding table 400.
  • air 40 7 is supplied through pressure gauges 40 08, 40 09, air release valve 4 10, pressure control valve 4 1 1, air release valve 4 1 2, and foreign matter removal filter 4 1 3. Supplied to container 1 0 0.
  • such a system may be provided with the gas supply control mechanism according to the present invention already described.
  • FIG. 1 is a front view showing a configuration of a transport vehicle according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the transport vehicle shown in FIG.
  • FIG. 3 is a diagram showing a configuration of a pressure-intensifying unit according to an embodiment of the present invention.
  • FIG. 4 is a plan view of a container according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along line A_A of the container shown in FIG.
  • FIG. 6 is a graph showing the relationship between the flow rate of molten aluminum and the pressure value in container 100 when molten aluminum is supplied out of container 100 according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing an overall configuration of a metal supply system according to the present invention.
  • FIG. 8 is a diagram showing a configuration of a molten metal supply system according to another embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

[PROBLEMS] To feed molten metal to the outside of a container at an appropriate flow speed. [MEANS FOR SOLVING PROBLEMS] The device has an air hose connectable to a gas passage; a pressurized gas feeding part for feeding a pressurized gas to the container through the air hose and the gas passage; a measurement part for measuring the flow speed of the molten metal fed from the inside to the outside of the container through a flow passage and piping, the feeding of the molten metal being made by the pressurized gas flowing into the container through the air hose; and a control part for controlling the pressure value of the pressurized gas that is fed to the container, the control of the pressure value being performed such that the flow speed measured by the measurement part is set to a predetermined value.

Description

明 細 書  Specification
気体供給装置及び気体供給方法  Gas supply apparatus and gas supply method
技術分野  Technical field
[0001 ] 本発明は、 例えば溶融したアルミニウムの供給に用いられる容器に加圧気 体を供給するための気体供給装置及び気体供給方法に関する。  [0001] The present invention relates to a gas supply device and a gas supply method for supplying a pressurized gas to a container used for supplying molten aluminum, for example.
背景技術  Background art
[0002] 多数のダイキャストマシーンを使ってアルミニウムの成型が行われる工場 では、 工場内ばかりでなく、 工場外からアルミニウム材料の供給を受けるこ とが多い。 この場合、 溶融した状態のアルミニウムを収容した容器を材料供 給側の工場から成型側の工場へと公道を介して搬送し、 溶融した状態のまま の材料を各ダイキャストマシーンへ供給することが行われている。 従来から 用いられている容器は、 溶融金属が貯留される容器本体の側壁に供給用の流 路を設けたいわば急須のような構造を有している。 この容器を傾けることに よリ流路から成型側の保持炉に溶融金属が供給される (特許文献 1参照) 。 特許文献 1 :特公平 4 _ 4 6 4 6号  [0002] In a factory where aluminum is formed using a large number of die-cast machines, aluminum materials are often supplied not only from within the factory but also from outside the factory. In this case, a container containing aluminum in a molten state can be transported from a material supply side factory to a molding side factory via a public road, and the molten material can be supplied to each die cast machine. Has been done. Conventionally used containers have a structure like a teapot in which a supply flow path is provided on the side wall of the container body in which molten metal is stored. By tilting the container, molten metal is supplied from the re-flow path to the holding furnace on the molding side (see Patent Document 1). Patent Document 1: Japanese Patent Fair 4 _ 4 6 4 6
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 本発明者らは、 安全性や作業性などの見地から加圧式の容器を開発した。  [0003] The present inventors have developed a pressurized container from the viewpoint of safety and workability.
この加圧式の容器も公道を介して工場間を搬送することができる。 そのため に様々な工夫がなされている。  This pressurized container can also be transported between factories via public roads. Various ideas have been made for this purpose.
[0004] このようなシステムにおいては、 容器内に加圧気体を導入することによつ て、 容器から保持炉側へ溶融アルミニウムを供給している。 保持炉への溶融 アルミニウム供給は、 容器内を、 例えば 3段階にわたって加圧気体の圧力値 を変えて行われる。  In such a system, molten aluminum is supplied from the container to the holding furnace side by introducing a pressurized gas into the container. Molten aluminum is supplied to the holding furnace by changing the pressure value of the pressurized gas in three stages, for example.
[0005] 保持炉への溶融金属供給の際、 段階的に加圧気体の圧力値を変えても、 容 器から流出する溶融金属の流速を所定の範囲となるよう十分に安定させるこ とができなかった。 このため、 流速が所定の範囲外となると、 溶融金属が保 持炉内に貯留される溶融金属の液面で飛散し、 溶融金属の酸化物が増え、 溶 融金属の品質に影響を及ぼす。 [0005] When supplying molten metal to the holding furnace, even if the pressure value of the pressurized gas is changed stepwise, the flow rate of the molten metal flowing out of the container may be sufficiently stabilized to be within a predetermined range. could not. For this reason, when the flow rate is outside the predetermined range, the molten metal is retained. Spattering on the surface of the molten metal stored in the holding furnace increases the oxide of the molten metal, affecting the quality of the molten metal.
[0006] 本発明は、 このような課題に対処するもので、 容器外へ溶融金属を適切な 流速で供給することができる気体供給装置及び気体供給方法を提供すること を目的としている。  [0006] The present invention addresses such problems, and an object of the present invention is to provide a gas supply device and a gas supply method that can supply molten metal to the outside of the container at an appropriate flow rate.
課題を解決するための手段  Means for solving the problem
[0007] 本発明に係る気体供給装置は、 公道を介して第 1の工場から第 2の工場に 搬送することが可能な構造とされた容器であって、 溶融金属を貯留可能で、 容器外部と容器内部との間の気体通路及び内底部から上面部の配管取付部に 向けて設けられ、 加圧により内部から外部に溶融金属を導出するための流路 を有する密閉型の容器本体と、 前記配管取付部において前記流路に連通し、 前記配管取付部から上方に延びて所定の位置でほぼ水平方向に曲がり、 所定 の位置で下方に向かい、 先端部の導出口が下方を向いている配管とを具備す る容器に少なくとも加圧気体を供給する気体供給装置において、 前記気体通 路に接続可能なエアーホースと、 前記エアーホース及び前記気体通路を前記 容器へ加圧気体を供給するための加圧気体供給部と、 前記容器内へ前記エア 一ホースを介して加圧気体を流入することにより前記容器内から前記流路及 び前記配管を介して前記容器外へ供給される溶融金属の流速を測定する測定 部と、 前記測定部によリ測定された流速が所定値となるように前記容器へ供 給される前記加圧気体の圧力値を制御する制御部とを具備する。  [0007] A gas supply device according to the present invention is a container having a structure capable of being transported from a first factory to a second factory via a public road, can store molten metal, and is external to the container. A gas passage between the container and the inside of the container and a sealed container body having a flow path for leading the molten metal from the inside to the outside by pressurization, provided from the inner bottom to the pipe mounting portion on the upper surface, The pipe attachment portion communicates with the flow path, extends upward from the pipe attachment portion, bends in a substantially horizontal direction at a predetermined position, faces downward at a predetermined position, and the outlet of the tip portion faces downward. In a gas supply device that supplies at least pressurized gas to a container having a pipe, an air hose connectable to the gas passage, and the pressurized gas to supply the air hose and the gas passage to the container Pressurized gas supply And measuring the flow rate of the molten metal supplied from the inside of the container to the outside of the container through the flow path and the piping by flowing a pressurized gas into the container through the air hose. A measuring unit; and a control unit that controls a pressure value of the pressurized gas supplied to the container so that a flow rate measured by the measuring unit becomes a predetermined value.
[0008] 本発明によれば、 流速を計測し、 それに応じて容器へ供給する加圧気体の 圧力値を制御しているので、 容器から供給される溶融金属の流速が所定の範 囲内におさまるように制御することができ、 流路及び配管の劣化速度を遅く しつつ、 かつ作業効率よく、 品質劣化のない溶融金属を供給することができ る。 すなわち、 供給される溶融金属の流速が遅いと流路及び配管の寿命が長 い反面、 作業効率が悪くなリ、 また流速が速いと作業効率は良い反面、 流路 及び配管の寿命が短くなる。 また、 容器から流出される溶融金属の流速が早 いと、 容器から供給される溶融金属を貯留する保持炉内の溶融金属の液面で 溶融金属が飛散し、 溶融金属の酸化物が増えて溶融金属の品質が劣化する。 一方、 溶融金属の流速が遅い場合においても、 同様に溶融金属の飛散が生じ て溶融金属の品質が劣化する。 本発明は、 これらの事情を考慮し、 流速を計 測し、 それに応じて容器へ供給する加圧気体の圧力値を制御するので、 常に 最適な流速とすることができる。 [0008] According to the present invention, the flow rate is measured, and the pressure value of the pressurized gas supplied to the container is controlled accordingly, so that the flow rate of the molten metal supplied from the container falls within a predetermined range. Thus, it is possible to supply molten metal that does not deteriorate in quality while slowing the deterioration rate of the flow path and the piping, and efficiently in operation. That is, if the flow rate of the molten metal supplied is slow, the life of the flow path and the piping will be long, but the working efficiency will be poor, and if the flow rate is high, the work efficiency will be good, but the life of the flow path and the piping will be shortened. . Also, if the flow rate of the molten metal flowing out of the container is high, the liquid level of the molten metal in the holding furnace storing the molten metal supplied from the container Molten metal splatters and the quality of the molten metal deteriorates due to an increase in the oxide of the molten metal. On the other hand, even when the flow rate of the molten metal is slow, the molten metal scatters and deteriorates the quality of the molten metal. In consideration of these circumstances, the present invention measures the flow velocity and controls the pressure value of the pressurized gas supplied to the container accordingly, so that the optimum flow velocity can always be obtained.
[0009] 前記流路及び前記配管の内径は 6 5〜 8 5 m mの径を有するようにしても よい。  [0009] The flow path and the pipe may have an inner diameter of 65 to 85 mm.
[0010] このような構成によれば、 溶融金属を容器内から流出する際に容器内を非 常に小さな圧力で加圧すればよくなる。 すなわち、 溶融金属が流路を上方に 向けて流れる際に、 流路に存在する溶融金属自体の重量及び流路ゃ配管の内 壁の粘性抵抗の 2つパラメータが溶融金属の流れを阻害する抵抗に大きな影 響を及ぼしているものと考えられる。 ここで、 内径が 6 5 m mより小さいと きには流路を流れる溶融金属はどの位置においても溶融金属自体の重量と内 壁の粘性抵抗の両方の影響を受けているが、 内径が 6 5 m m以上となると流 れのほぼ中心付近から内壁の粘性抵抗の影響を殆ど受けない領域が生じ始め 、 その領域が次第に大きくなる。 この領域の影響は非常に大きく、 溶融金属 の流れを阻害する抵抗が下がり始める。 従って、 溶融金属を容器内から流出 する際に容器内を非常に小さな圧力で加圧すればよくなる。 一方、 内径が 8 5 m mを超えると、 溶融金属自体の重量が溶融金属の流れを阻害する抵抗と して非常に支配的となり、 溶融金属の流れを阻害する抵抗が大きくなつてし まう。 従って、 第 1流路の径を 6 5〜8 5 m mとすることにより、 溶融金属 を容器内から流出する際に容器内を非常に小さな圧力で加圧すればよくなる  [0010] According to such a configuration, when the molten metal flows out of the container, the inside of the container may be pressurized with a very small pressure. That is, when the molten metal flows upward in the flow path, the two parameters, the weight of the molten metal itself existing in the flow path and the viscous resistance of the inner wall of the flow path, the resistance that hinders the flow of the molten metal. It is thought that it has had a big influence on. Here, when the inner diameter is smaller than 65 mm, the molten metal flowing through the flow path is affected by both the weight of the molten metal itself and the viscous resistance of the inner wall at any position. When it is more than mm, an area that is hardly affected by the viscous resistance of the inner wall starts to appear from around the center of the flow, and the area gradually increases. The effect of this region is very large, and the resistance that hinders the flow of molten metal begins to drop. Therefore, when the molten metal flows out of the container, it is only necessary to pressurize the container with a very small pressure. On the other hand, when the inner diameter exceeds 85 mm, the weight of the molten metal itself becomes very dominant as a resistance to inhibit the flow of the molten metal, and the resistance to inhibit the flow of the molten metal becomes large. Therefore, by setting the diameter of the first flow path to 65 to 85 mm, it is only necessary to pressurize the inside of the container with a very small pressure when the molten metal flows out of the container.
[001 1 ] 前記所定値は 1 2〜 1 8 k g Z sであるようにしてもよい。 [001 1] The predetermined value may be 12 to 18 kg Z s.
[0012] このような構成によれば、 溶融金属供給時の飛散を防止して酸化物を極力 減らすことができ品質が安定した溶融金属を得ることができる。 また、 流路 の寿命の劣化速度を遅くしつつ、 作業効率が良い。 すなわち、 流速が 1 2 k g Z sよりも遅いと、 流路の寿命が長い一方で溶融金属供給に時間がかかり 作業効率が悪く、 また溶融金属が飛散して酸化物が増えて溶融金属の品質が 劣化する。 一方、 流速が 1 S k g Z sよりも速いと、 溶融金属供給に要する 時間を短くすることができ作業効率が良くなる一方で流路の寿命が短くなリ 、 また溶融金属が飛散して酸化物が増えて溶融金属の品質が劣化する。 従つ て、 流速を 1 2〜 1 8 k g Z sとすることにより、 溶融金属供給時の飛散を 防止して酸化物を極力減らすことができ品質が安定した溶融金属を得ること ができる。 [0012] According to such a configuration, it is possible to prevent the scattering at the time of supplying the molten metal, to reduce the oxide as much as possible, and to obtain a molten metal with stable quality. In addition, the work efficiency is good while slowing down the deterioration rate of the channel life. In other words, if the flow rate is slower than 12 kg Z s, the flow channel life is long but the molten metal supply takes time. The work efficiency is poor and the quality of the molten metal deteriorates due to the scattering of molten metal and the increase of oxides. On the other hand, if the flow rate is faster than 1 S kg Z s, the time required for supplying the molten metal can be shortened and work efficiency is improved while the life of the flow path is shortened, and the molten metal is scattered and oxidized. Things increase and the quality of the molten metal deteriorates. Therefore, by setting the flow rate to 12 to 18 kg Z s, it is possible to prevent the scattering at the time of supplying the molten metal, reduce the oxide as much as possible, and obtain a molten metal with stable quality.
[0013] 前記容器内を前記エアーホースを介して減圧する真空ポンプを具備し、 前 記測定部は、 前記容器内を前記真空ポンプにより排気することにより前記配 管及び前記流路を介して前記容器内へ供給される溶融金属の流速を測定し、 前記制御部は、 前記測定手段により測定された流速が所定値となるように前 記真空ポンプの排気量を制御するようにしてもよい。  [0013] A vacuum pump is provided that depressurizes the inside of the container via the air hose, and the measurement unit evacuates the inside of the container with the vacuum pump, thereby allowing the measurement to be performed via the pipe and the flow path. The flow rate of the molten metal supplied into the container may be measured, and the control unit may control the exhaust amount of the vacuum pump so that the flow rate measured by the measurement unit becomes a predetermined value.
[0014] 本発明によれば、 流速を計測し、 それに応じて容器を排気する排気量を制 御しているので、 容器へ供給される溶融金属の流速が所定の範囲内におさま るように制御することができ、 流路及び配管の劣化速度を遅くしつつ、 かつ 作業効率よい。 すなわち、 供給される溶融金属の流速が遅いと流路及び配管 の寿命が長い反面、 作業効率が悪くなる。 また、 供給される溶融金属の流速 が早いと作業効率が良くなる反面、 流路及び配管の寿命が短くなる。 本発明 は、 これらの事情を考慮し、 流速を計測し、 それに応じて容器を排気する排 気量を制御するので、 常に最適な流速とすることができる。  [0014] According to the present invention, the flow rate is measured, and the amount of exhaust gas discharged from the vessel is controlled accordingly, so that the flow rate of the molten metal supplied to the vessel is kept within a predetermined range. It is possible to control the flow rate and the deterioration rate of the flow path and the piping, and the work efficiency is high. In other words, if the flow rate of the molten metal supplied is slow, the life of the flow path and piping is long, but the working efficiency is deteriorated. In addition, if the flow rate of the molten metal supplied is high, work efficiency is improved, but the life of the flow path and piping is shortened. In consideration of these circumstances, the present invention measures the flow velocity and controls the exhaust amount for exhausting the container accordingly, so that the optimum flow velocity can always be obtained.
[0015] 当該気体供給装置は、 前記容器を搬送するためのフォークリフ卜に搭載し てもよい。  [0015] The gas supply device may be mounted on a fork riff for transporting the container.
[0016] 本発明に係る気体供給方法は、 公道を介して第 1の工場から第 2の工場に 搬送することが可能な構造とされた容器であって、 溶融金属を貯留可能で、 容器外部と容器内部との間の気体通路及び内底部から上面部の配管取付部に 向けて設けられ、 加圧により内部から外部に溶融金属を導出するための流路 を有する密閉型の容器本体と、 前記配管取付部において前記流路に連通し、 前記配管取付部から上方に延びて所定の位置でほぼ水平方向に曲がり、 所定 の位置で下方に向かい、 先端部の導出口が下方を向いている配管とを具備す る容器に少なくとも加圧気体を供給する気体供給方法において、 前記気体通 路に接続可能なエアーホース及び前記気体通路を介して前記容器へ加圧気体 を供給し、 前記容器内へ前記エアーホースを介して加圧気体を流入すること によリ前記容器内から前記流路及び前記配管を介して前記容器外へ供給され る溶融金属の流速を測定し、 前記定された流速が所定値となるように前記容 器へ供給される前記加圧気体の圧力値を制御する。 [0016] A gas supply method according to the present invention is a container having a structure capable of being transported from a first factory to a second factory via a public road, capable of storing molten metal, and external to the container. A gas passage between the container and the inside of the container and a sealed container body having a flow path for leading the molten metal from the inside to the outside by pressurization, provided from the inner bottom to the pipe mounting portion on the upper surface, The pipe attachment portion communicates with the flow path, extends upward from the pipe attachment portion, bends in a substantially horizontal direction at a predetermined position, and In a gas supply method for supplying at least pressurized gas to a container having a pipe having a leading end directed downward at a position where the outlet port of the tip portion is directed downward, the air hose connectable to the gas path, and A pressurized gas is supplied to the container via a gas passage, and the pressurized gas is flowed into the container via the air hose. The flow rate of the molten metal supplied to the outside is measured, and the pressure value of the pressurized gas supplied to the container is controlled so that the determined flow rate becomes a predetermined value.
[0017] 前記容器内を前記エアーホースを介して減圧し、 前記容器内を減圧するこ とにより前記配管及び前記流路を介して前記容器内へ供給される溶融金属の 流速を測定し、 前記測定された流速が所定値となるように前記減圧の程度を 制御してもよい。  [0017] The inside of the container is depressurized through the air hose, and the inside of the container is depressurized to measure the flow rate of the molten metal supplied into the container through the pipe and the flow path. The degree of decompression may be controlled so that the measured flow rate becomes a predetermined value.
発明の効果  The invention's effect
[0018] 本発明によれば、 容器の内外の圧力差を利用して外部との間で溶融金属が 流通可能な流路及び配管の劣化速度を遅くしつつ、 かつ作業効率よく、 品質 劣化のない溶融金属を供給することができる。  [0018] According to the present invention, the pressure difference between the inside and the outside of the container is used to slow down the deterioration rate of the flow path and the pipe through which the molten metal can flow between the outside and the piping, and the work efficiency is improved and the quality is reduced. No molten metal can be supplied.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、 本発明の実施の形態を図面に基づき説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020] 溶融金属供給システムは、 溶融金属、 例えば溶融アルミニウムを貯留する 容器と、 この容器を保持し運搬する車両としての運搬車両とを有する。 [0020] The molten metal supply system includes a container for storing molten metal, for example, molten aluminum, and a transport vehicle as a vehicle for holding and transporting the container.
[0021 ] 図 1は本発明の一実施形態に係る運搬車両の外観を示す側面図、 図 2はそ の平面図である。 FIG. 1 is a side view showing an appearance of a transport vehicle according to an embodiment of the present invention, and FIG. 2 is a plan view thereof.
[0022] この運搬車両 1は、 基本的には例えばフォークリフ卜によって基台部が構 成され、 ほぼ中央に設けられた運転席 2と、 前方に設けられたフォーク部 3 とを有し、 このフォークリフトを基台としてこの上に加減圧ュニッ卜 4を搭 載して構成される。  [0022] This transport vehicle 1 basically has a base part constituted by, for example, a fork riff, and has a driver seat 2 provided substantially in the center, and a fork part 3 provided in front. This forklift is used as a base, and the pressurizing / reducing unit 4 is mounted thereon.
[0023] 加減圧ュニッ卜 4は、 後述する容器 1 0 0に供給される加圧用の気体を貯 留する 2つのレシーバタンク 5、 これらレシーバタンク 5に加圧用の気体を 供給するためのエアコンプレッサ 6、 容器内を減圧するための真空ポンプ 7 及びフィルタ 8等を有する。 The pressurizing / depressurizing unit 4 includes two receiver tanks 5 for storing pressurized gas supplied to a container 100 described later, and an air compressor for supplying pressurized gas to the receiver tank 5 6.Vacuum pump for decompressing the container 7 And a filter 8 or the like.
[0024] 緊急停止部 9は、 運転席 2の一側面の前方側に設けられている。 これによ リ、 運転席 2に乗車した運転者が緊急停止部 9に設けられた緊急停止用のレ バー 1 0にアクセスできるようにされている。 The emergency stop unit 9 is provided on the front side of one side surface of the driver seat 2. As a result, the driver who gets in the driver's seat 2 can access the emergency stop lever 10 provided in the emergency stop section 9.
[0025] 加減圧ュニッ卜 4と緊急停止部 9とは配管 1 1によリ接続され、 加減圧ュ ニット 4は緊急停止部 9を介してエアーホース 1 2と連通されている。 加減 圧ユニット 9から供給された加圧用の気体は、 第 2流路としての配管 1 1及 びエアーホース 1 2を介してエアーホース 1 2の先端から吐出されるように なっている。 The pressurization / reduction unit 4 and the emergency stop unit 9 are connected by a pipe 11, and the pressurization / decompression unit 4 communicates with the air hose 12 via the emergency stop unit 9. The pressurizing gas supplied from the pressure-increasing / decreasing unit 9 is discharged from the tip of the air hose 12 through the piping 11 and the air hose 12 as the second flow path.
[0026] エアーホース 1 2の先端には、 容器 1 0 0に設けられたジョイント部 1 3 との間で着脱可能なジョイント部 1 4が設けられている。 そして、 エアーホ ース 1 2の先端のジョイント部 1 4を容器 1 0 0のジョイント部 1 3に接続 し、 加減圧ユニット 4のレシーバタンク 5からエアーホース 1 2を介して容 器 1 0 0内に加圧用の気体を供給することで、 容器 1 0 0内を加圧できるよ うになつている。 同様に、 エアーホース 1 2の先端のジョイント部 1 4を容 器 1 0 0のジョイント部 1 3に接続し、 加減圧ュニッ卜 4の真空ポンプ 7に よりエアーホース 1 2を介して容器 1 0 0内を減圧できるようになつている (図 3参照) 。  [0026] At the tip of the air hose 12 is provided a joint part 14 that can be attached to and detached from the joint part 1 3 provided on the container 100. Then, the joint part 14 at the tip of the air hose 12 is connected to the joint part 13 of the container 100 and the inside of the container 100 through the air tank 12 from the receiver tank 5 of the pressure adjusting unit 4. The inside of the container 100 can be pressurized by supplying a pressure gas to the container. Similarly, the joint part 14 at the tip of the air hose 1 2 is connected to the joint part 13 of the container 100, and the container 1 0 is connected via the air hose 12 by the vacuum pump 7 of the pressure adjusting unit 4. The inside of 0 can be depressurized (see Fig. 3).
[0027] フォーク部 3は、 容器 1 0 0の底部裏面に設けられた 1対のチャンネル部 材 1 7 1に対して着脱可能なフォーク 1 5と、 このフォーク 1 5を昇降する 昇降機構 1 6を有する。 また、 フォーク 4 1の表面にはロードセル 1 5 3が 配置されている。 ロードセル 1 5 3は容器 1 0 0の重量を計測し、 それを電 気信号に変換するものであり、 その信号は後述する圧力開閉器 2 2に随時入 力される。  [0027] The fork 3 includes a pair of channel members 17 provided on the bottom bottom surface of the container 100 and a fork 15 that can be attached to and detached from the channel 1 1 and a lifting mechanism 1 6 that lifts and lowers the fork 15 Have A load cell 1 5 3 is arranged on the surface of the fork 4 1. The load cell 15 3 measures the weight of the container 100 and converts it into an electric signal, which is input to the pressure switch 22 described later as needed.
[0028] 図 3は加減圧ユニット 4の構成を示す図である。 図 6は、 溶融アルミニゥ ムを容器 1 0 0外に供給する際の溶融アルミニウムの流速と容器 1 0 0内の 圧力値との関係を示すグラフである。  FIG. 3 is a diagram showing a configuration of the pressure-increasing / decreasing unit 4. FIG. 6 is a graph showing the relationship between the flow rate of molten aluminum and the pressure value in the container 100 when molten aluminum is supplied to the outside of the container 100.
[0029] 図 3に示すように、 加減圧ユニット 4は、 少なくとも走行用のエンジン 1 7による当該運搬車両 1の走行中又はアイドリング中に、 当該エンジン 1つ によって駆動される発電機 1 8と、 発電機 1 8により発電された電力により 駆動されるエアコンプレッサ 6とを有する。 このエアコンプレッサ 6は運搬 車両がバッテリーとモーターにより動作するものであるときにはバッテリー により駆動され、 この場合にはエアコンプレッサの駆動は運搬車両の走行や アイドリングとは独立に行うことができる。 As shown in FIG. 3, the pressure increasing / decreasing unit 4 includes at least a traveling engine 1. While the transport vehicle 1 is traveling or idling according to 7, the generator 18 driven by the engine 1 and the air compressor 6 driven by the electric power generated by the generator 18 are provided. The air compressor 6 is driven by a battery when the transporting vehicle is operated by a battery and a motor. In this case, the air compressor can be driven independently of traveling and idling of the transporting vehicle.
[0030] そして、 エアコンプレッサ 6により圧縮された加圧用の気体はレシーバタ ンク 5に蓄積されるようになっている。 つまり、 運搬車両 1の走行中又はァ ィドリング中に一旦エアコンプレッサ 6からレシーバタンク 5に圧縮された 気体が蓄積されるようになっている。 従って、 レシーバタンク 5がエアコン プレッサ 6と容器 1 0 0との間のいわばバッファのような役割を果たすこと になる。 従って、 容器 1 0 0から外部に溶融アルミニウムを供給する際に容 器 1 0 0内を安定した圧力で加圧することができる。 またレシーバタンクへ の気体のチャージを常時行うことができ、 溶融アルミニウムの外部への供給 をいつでも、 どこでも、 非常にフレキシブルに行うことができるようになる The pressurizing gas compressed by the air compressor 6 is accumulated in the receiver tank 5. In other words, the gas once compressed from the air compressor 6 to the receiver tank 5 is accumulated while the transport vehicle 1 is traveling or idling. Therefore, the receiver tank 5 serves as a buffer between the air conditioner presser 6 and the container 100. Therefore, when the molten aluminum is supplied from the container 100 to the outside, the inside of the container 100 can be pressurized with a stable pressure. In addition, the receiver tank can be constantly charged with gas, and the supply of molten aluminum to the outside can be performed flexibly at any time and anywhere.
[0031 ] このようなに安定して容器 1 0 0内を加圧することは本発明者等の知見に よれば非常に重要である。 容器 1 0 0内を加圧する際にその圧力が不安定で あると、 容器 1 0 0の配管の先端から気体を含んだ溶融アルミニウムの不意 な噴出等を出来するからである。 [0031] It is very important according to the knowledge of the present inventors to pressurize the container 100 in such a stable manner. This is because, when the pressure inside the container 100 is pressurized, if the pressure is unstable, the molten aluminum containing gas may be unexpectedly ejected from the tip of the pipe of the container 100.
[0032] コンプレッサ 6とレシーバタンク 5との間の配管 1 9上にはコンプレッサ  [0032] Piping between the compressor 6 and the receiver tank 5
6側から順番に第 1の逆止弁 2 0、 ラインフィルタ 8 a、 エアドライャ 8 b 、 第 2の逆止弁 2 1設けられている。 第 1の逆止弁 2 0及び第 2の逆止弁 2 1は、 ともにレシーバタンク 5側からコンプレッサ 6側への気体の逆流を防 止するためのものである。 第 1の逆止弁 2 0は、 例えばコンプレッサ 6の停 止時にラインフィルタ 8 a及びエアドライヤ 8 b側からコンプレッサ 6への 気体の逆流を防止するものであり、 特にラインフィルタ 8 aの直近に設けら れていることが好ましい。 これにより、 コンプレッサ 6とラインフィルタ 8 aとの間の配管 1 9 aの汚れや詰まリをよリ効果的に防止できる。 A first check valve 20, a line filter 8 a, an air dryer 8 b, and a second check valve 21 are provided in order from the 6th side. Both the first check valve 20 and the second check valve 21 are for preventing the backflow of gas from the receiver tank 5 side to the compressor 6 side. The first check valve 20 prevents the backflow of gas from the line filter 8a and the air dryer 8b side to the compressor 6 when the compressor 6 is stopped, for example, and is provided in the immediate vicinity of the line filter 8a. It is preferable that This allows compressor 6 and line filter 8 Piping between and a 1 9 It is possible to prevent dirt and clogging of a more effectively.
[0033] ラインフィルタ 8 aは、 コンプレッサ 6からレシーバタンク 5に送出され る気体から水滴及び油分を除去するフィルタである。 エアドライヤ 8 bは、 コンプレッサ 6からレシーバタンク 5に送出される気体を乾燥させるフィル タである。 The line filter 8 a is a filter that removes water droplets and oil from the gas sent from the compressor 6 to the receiver tank 5. The air dryer 8 b is a filter that dries the gas sent from the compressor 6 to the receiver tank 5.
[0034] 第 2の逆止弁 2 1は、 レシーバタンク 5からコンプレッサ 6への気体の逆 流を防止するものである。 レシーバタンク 5と第 2の逆止弁 2 1との間の配 管 1 9 b上には圧力開閉器 2 2が接続されている。  [0034] The second check valve 21 prevents the backflow of gas from the receiver tank 5 to the compressor 6. A pressure switch 22 is connected on the pipe 19b between the receiver tank 5 and the second check valve 21.
[0035] 第 1制御手段としての圧力開閉器 2 2は、 圧力センサ 2 3及び C P U 2 4 を備える。 圧力センサ 2 3は、 レシーバタンク 5の圧力を検出し、 この検出 結果に基づきコンプレッサ 6のオン Zオフを制御する。 例えば、 レシーバタ ンク 5の圧力が所定値以下になったときにコンプレッサ 6をオンにし、 逆に レシーバタンク 5の圧力が所定値以上になつたときにコンプレッサ 6の電源 をオフにする。 詳細については後述するが、 レシーバタンク 5の圧力値は C P U 2 4によって算出される。  The pressure switch 2 2 as the first control means includes a pressure sensor 2 3 and C P U 2 4. The pressure sensor 23 detects the pressure in the receiver tank 5 and controls on / off of the compressor 6 based on the detection result. For example, the compressor 6 is turned on when the pressure of the receiver tank 5 becomes a predetermined value or less, and conversely, the power of the compressor 6 is turned off when the pressure of the receiver tank 5 becomes a predetermined value or more. Although details will be described later, the pressure value of the receiver tank 5 is calculated by C P U 2 4.
[0036] コンプレッサ 6と第 1の逆止弁 2 0との間の配管 1 9 aには、 大気開放用 の配管 1 9 cが接続されている。 配管 1 9 cの一端はリーク弁 2 5を介して 大気開放されるようになっている。 このリーク弁 2 5は圧力開閉器 2 2にお ける C P U 2 4によって開閉の制御が行われるようになつている。  A pipe 19 c for opening to the atmosphere is connected to the pipe 19 a between the compressor 6 and the first check valve 20. One end of the pipe 19c is opened to the atmosphere via the leak valve 25. The leak valve 25 is controlled to be opened and closed by C P U 24 in the pressure switch 22.
[0037] C P U 2 4では、 容器 1 0 0内の溶融アルミニウムを容器 1 0 0外に供給 する際のロードセル 1 5 3から入力された信号を基にして、 溶融アルミニゥ ムの時間あたりの流量、 すなわち第 1流速が計算される。 言い換えると、 容 器 1 0 0の重量の経時変化から流速が算出される。 ここでロードセル 1 5 3 及び C P U 2 4は計測手段として機能する。 そして、 この第 1流速が所定値 の範囲内でない場合、 例えば 1 2〜 1 8 k g Z s内でない場合、 第 1流速が この範囲内となるように容器 1 0 0内へ流入する加圧気体の圧力値が C P U 2 4によって算出され、 圧力センサ 2 3にその情報が入力される。 C P U 2 4は、 レシーバタンク 5の圧力がこの所定値よリ低くなつたときにコンプレ ッサ 6をオンするのに先立ち、 閉状態にあるリーク弁 5を開状態とする。 こ れにより、 コンプレッサ 6と第 1の逆止弁 2 0との間の配管 1 9 a内が大気 圧に復帰する。 その後、 C P U 2 4は、 コンプレッサ 6をオンにし、 所定時 間経過後に開状態にあるリーク弁 2 5を閉状態とする。 このように配管 1 9 a内を一旦大気圧に復帰させることにより、 コンプレッサ 6をより小さなパ ヮ一で立ち上げることが可能となり、 コンプレッサ 6の小型化を図ることが できる。 [0037] In the CPU 24, the flow rate per hour of the molten aluminum based on the signal input from the load cell 15 3 when the molten aluminum in the container 100 is supplied to the outside of the container 100, That is, the first flow rate is calculated. In other words, the flow velocity is calculated from the change with time of the weight of the container 100. Here, the load cell 1 5 3 and the CPU 2 4 function as measurement means. If this first flow rate is not within a predetermined value range, for example, if not within 12 to 18 kg Z s, the pressurized gas flows into the container 100 so that the first flow rate is within this range. The pressure value is calculated by the CPU 24, and the information is input to the pressure sensor 23. The CPU 24 is connected to the compressor when the pressure in the receiver tank 5 drops below this predetermined value. Prior to turning on the sensor 6, the leak valve 5 in the closed state is opened. As a result, the inside of the pipe 19 a between the compressor 6 and the first check valve 20 returns to atmospheric pressure. Thereafter, the CPU 24 turns on the compressor 6 and closes the leak valve 25 that is open after a predetermined time has elapsed. Thus, once the inside of the pipe 19 a is returned to the atmospheric pressure, the compressor 6 can be started up with a smaller capacity, and the compressor 6 can be downsized.
このように、 本実施形態においては、 容器 1 0 0から第 1流路としての流 路 1 5 7及び配管 1 4 4の内径部分の流路 1 7 2を介して流出される溶融ァ ルミ二ゥムの第 1流速を計測し、 その計測結果を基に容器 1 0 0内に流入す る加圧気体の圧力値を制御している。 これにより、 容器 1 0 0から流出され る溶融アルミニウムの流速を所定の範囲内、 例えば本実施形態においては、 1 2〜 1 8 k g Z s内とすることができ、 品質劣化のない溶融アルミニウム を供給することができる。 尚、 本実施形態において、 図 6に示すように、 溶 融アルミニウムの流速を 1 2〜 1 8 k g Z sとする場合には容器 1 0 0内を 3 0〜3 5 k P a程度の加圧状態にすればよい。 ここで、 溶融アルミニウム の流速が遅いと配管の寿命が長い反面、 作業効率が悪くなリ、 また流速が速 いと作業効率が良い反面、 配管の寿命が短くなる。 また、 容器 1 0 0から流 出される溶融アルミニウムの第 1流速が早いと、 容器 1 0 0から供給される 溶融アルミニウムを貯留する保持炉内の溶融アルミニウムの液面で溶融アル ミニゥムが飛散し、 溶融アルミニゥムの酸化物が増えて溶融アルミニゥムの 品質が劣化する。 一方、 溶融アルミニウムの第 1流速が遅い場合においても 、 同様に溶融アルミニウムの飛散が生じて溶融アルミニウムの品質が劣化す る。 本実施形態は、 これらの事情を考慮して、 第 1流速を 1 2〜 1 8 k g Z s、 更に好ましくは 1 5 k g Z s程度としている。 第 1流速が 1 2 k g Z s よりも遅いと、 配管の寿命が長い反面、 溶融アルミニウム供給に時間がかか リ作業効率が悪く、 また、 溶融アルミニウムの酸化物が増えて溶融アルミ二 ゥムの品質が劣化する。 一方、 第 1流速が 1 S k g Z sよりも速いと、 溶融 アルミニウム供給に要する時間を短くすることができ作業効率が良くなる反 面、 配管の寿命が短くなリ、 また、 溶融アルミニウムの酸化物が増えて溶融 アルミニウムの品質が劣化する。 従って、 流速を 1 2〜 1 8 k g Z sとする ことにより、 溶融アルミニゥム供給時の飛散を防止して酸化物を極力減らす ことができ品質が安定した溶融アルミニウムを得ることができる。 尚、 上述 の第 1流速値は、 溶融アルミニウムが外部に供給されるときに通過する後述 する容器 1 0 0の流路 1 5 7及びこれに続く配管 1 4 4の内径が6 5 〜 8 5 mm程度の場合に適した数値である。 As described above, in the present embodiment, the molten aluminum flowing out from the container 100 through the flow path 1 57 as the first flow path and the flow path 17 2 in the inner diameter portion of the pipe 14 4. The first flow velocity of the chamber is measured, and the pressure value of the pressurized gas flowing into the container 100 is controlled based on the measurement result. Thereby, the flow rate of the molten aluminum flowing out from the container 100 can be within a predetermined range, for example, in this embodiment, within 12 to 18 kg Z s, and the molten aluminum without quality deterioration can be obtained. Can be supplied. In this embodiment, as shown in FIG. 6, when the flow rate of the molten aluminum is 12 to 18 kg Z s, the inside of the container 100 is heated to about 30 to 35 kPa. What is necessary is just to make it a pressure state. Here, when the flow rate of molten aluminum is slow, the life of the pipe is long, but the work efficiency is poor. When the flow rate is fast, the work efficiency is good, but the life of the pipe is shortened. Further, when the first flow rate of the molten aluminum flowing out from the container 100 is high, the molten aluminum scatters on the surface of the molten aluminum in the holding furnace storing the molten aluminum supplied from the container 100, The quality of molten aluminum deteriorates due to the increase in oxide of molten aluminum. On the other hand, even when the first flow rate of the molten aluminum is slow, the molten aluminum scatters and the quality of the molten aluminum deteriorates. In the present embodiment, considering these circumstances, the first flow velocity is set to about 12 to 18 kg Z s, more preferably about 15 kg Z s. If the first flow rate is slower than 12 kg Z s, the life of the pipe will be long, but it will take time to supply molten aluminum, and the work efficiency will be poor, and the oxide of molten aluminum will increase and molten aluminum will increase. The quality of the product deteriorates. On the other hand, if the first flow rate is faster than 1 S kg Z s, Although the time required for supplying aluminum can be shortened and work efficiency is improved, the life of piping is shortened, and the quality of molten aluminum deteriorates due to an increase in oxide of molten aluminum. Therefore, by setting the flow rate to 12 to 18 kg Z s, it is possible to prevent the scattering at the time of supplying molten aluminum, to reduce oxides as much as possible, and to obtain molten aluminum with stable quality. Note that the first flow velocity value described above is such that the inner diameter of the flow path 15 7 of the container 100 to be described later that passes when the molten aluminum is supplied to the outside and the inner diameter of the subsequent pipe 14 4 is 65 to 85. It is a value suitable for the case of about mm.
[0039] 真空ポンプ 7は、 第 2制御手段としての制御部 8 0によってその排気量が 制御されている。 容器 1 0 0内への溶融アルミニウムの供給は、 図 3に示す ように、 配管 1 4 4に別の配管を取り付け、 それを溶融アルミニウム 2 0 1 が貯留されている貯留槽 2 0 0内にいれた状態で、 容器 1 0 0内を真空ボン プ 7によって排気して行われる。 制御部 8 0では、 容器 1 0 0内への溶融ァ ルミニゥム供給の際のロードセル 1 5 3から入力された信号を基に、 容器 1 0 0内へ供給される溶融アルミニウムの時間あたりの流量、 すなわち第 2流 速が計算される。 そして、 この第 2流速が所定の流速範囲内でない場合、 例 えば 1 2〜 1 8 k g Z s内でない場合に、 この流速範囲内となるように容器 1 0 0内を排気する真空ポンプ 7の排気量が算出され、 その算出値内となる ように真空ポンプ 7は制御部 8 0によって制御される。  [0039] The exhaust amount of the vacuum pump 7 is controlled by the control unit 80 as the second control means. As shown in FIG. 3, the supply of the molten aluminum into the container 100 is performed by attaching another pipe to the pipe 14 4 and connecting it to the storage tank 2 00 where the molten aluminum 2 0 1 is stored. In a state of being put, the inside of the container 100 is evacuated by the vacuum pump 7. In the control unit 80, the flow rate per hour of molten aluminum supplied into the container 100, based on the signal input from the load cell 15 53 when supplying the molten albumin into the container 100, That is, the second flow velocity is calculated. When the second flow rate is not within the predetermined flow rate range, for example, when the second flow rate is not within the range of 12 to 18 kg Z s, the vacuum pump 7 that evacuates the container 100 so as to be within the flow rate range. The exhaust pump is calculated, and the vacuum pump 7 is controlled by the controller 80 so that it is within the calculated value.
[0040] このように、 本実施形態においては、 容器 1 0 0へ第 1流路としての流路  [0040] Thus, in the present embodiment, the flow path as the first flow path to the container 100
1 5 7及び配管 1 4 4の内径部分の流路 1 7 2を介して供給される溶融アル ミニゥムの第 2流速を計測し、 その計測結果を基に、 容器 1 0 0内を排気す る真空ポンプ 7の排気量を制御している。 これにより、 容器 1 0 0へ供給さ れる溶融アルミニウムの第 2流速を所定の範囲内、 例えば本実施形態におい ては、 1 2〜 1 8 k g Z s内とすることができ、 配管 1 4 4の劣化速度を遅 くしつつ作業効率を良くすることができる。 すなわち、 溶融アルミニウムの 第 2流速が遅いと配管の寿命が長い反面、 作業効率が悪くなリ、 また第 2流 速が速いと作業効率が良い反面、 配管の寿命が短くなるので、 本実施形態の 如く容器 1 0 0へ供給される溶融アルミニウムの第 2流速を所定の範囲内、 例えば 1 2〜 1 8 k g Z s内とすることにより、 配管の劣化速度を遅くしつ つ作業効率を良くすることができる。 尚、 第 2流速値は、 後述する溶融アル ミニゥムが外部に供給されるときに通過する流路 1 5 7及びこれに続く配管 1 4 4の内径が 6 5 mm〜 8 5 mm程度の場合に適した数値である。 1 5 7 and piping 1 4 4 Measure the second flow velocity of molten aluminum supplied via the flow path 1 7 2 and exhaust the container 100 based on the measurement result. The exhaust volume of the vacuum pump 7 is controlled. Thus, the second flow rate of the molten aluminum supplied to the container 100 can be within a predetermined range, for example, in this embodiment, within 12 to 18 kg Z s. It is possible to improve the work efficiency while slowing down the deterioration rate. That is, if the second flow rate of molten aluminum is slow, the life of the pipe is long, but the work efficiency is poor, and if the second flow speed is fast, the work efficiency is good, but the life of the pipe is shortened. of In this way, the second flow rate of the molten aluminum supplied to the vessel 100 is set within a predetermined range, for example, 12 to 18 kg Z s, thereby improving the work efficiency while slowing the deterioration rate of the pipe. be able to. The second flow velocity value is determined when the inner diameter of the flow path 15 7 and the subsequent piping 14 4 4 through which molten aluminum described below is supplied to the outside is about 65 mm to 85 mm. It is a suitable numerical value.
[0041 ] 本実施形態では、 レシーバタンク 5より下流側 (容器 1 0 0に近い方の側 ) の配管に比べてレシーバタンク 5より上流側の配管の方が例えば配管径が 2 Z 3程度細い。 これは、 レシーバタンク 5から容器 1 0 0には一度により 多量の気体が圧送されるのに対して、 コンプレッサ 6からレシーバタンク 5 には徐々に気体が送出されるからである。  [0041] In this embodiment, the pipe diameter upstream of the receiver tank 5 is, for example, about 2 Z 3 smaller than the pipe downstream of the receiver tank 5 (the side closer to the container 100). . This is because a large amount of gas is pumped from the receiver tank 5 to the container 100 once, whereas gas is gradually sent from the compressor 6 to the receiver tank 5.
[0042] そして、 本実施形態では、 ラインフィルタ 8 a及びエアドライャ 9 bをレ シーバタンク 5より下流側ではなく、 レシーバタンク 5より上流側、 即ちレ シーバタンク 5とコンプレッサ 6との配管 1 9上に設けることにより、 即ち 単位時間あたリの気体流量がよリ小さく配管の細い側に設けることによりこ れらのラインフィルタ 8 a及びエアドライヤ 8 bを小型化することができる  In the present embodiment, the line filter 8 a and the air dryer 9 b are provided not on the downstream side of the receiver tank 5 but on the upstream side of the receiver tank 5, that is, on the pipe 19 between the receiver tank 5 and the compressor 6. In other words, these line filters 8a and air dryers 8b can be reduced in size by providing a smaller gas flow rate per unit time on the narrow side of the pipe.
[0043] レシーバタンク 5は加圧気体用配管 2 6に接続され、 この加圧気体用配管 [0043] The receiver tank 5 is connected to a pressurized gas pipe 26, and this pressurized gas pipe
2 6は例えば三方弁からなる切替弁 2 7に接続されている。 また、 真空ボン プ 7も同様に真空用配管 2 8に接続され、 この真空用配管 2 8が切替弁 2 7 に接続されている。 切替弁 2 7は、 エアーホース 1 2側と加圧気体用配管 2 6との接続及びエアーホース 1 2側と真空用配管 2 8との接続の切替を行う ようになつている。 この切替弁 2 7は、 圧力計 2 9、 リリーフ弁 3 0、 リー ク弁 3 1、 緊急停止部 9及びフィルタを介してエアーホース 1 2の一端に接 続されている。  26 is connected to a switching valve 27 comprising a three-way valve, for example. Similarly, the vacuum pump 7 is connected to the vacuum pipe 2 8, and the vacuum pipe 2 8 is connected to the switching valve 2 7. The switching valve 27 is configured to switch the connection between the air hose 12 and the pressurized gas pipe 26 and the connection between the air hose 12 and the vacuum pipe 28. This switching valve 27 is connected to one end of the air hose 12 via a pressure gauge 29, a relief valve 30, a leak valve 31, an emergency stop 9 and a filter.
[0044] 加圧気体用配管 2 6には、 レシーバタンク 5側 (上流側) からコントロー ル弁 3 2及びリーク弁 3 3が接続されている。 真空用配管 2 8には、 真空ポ ンプ 7側 (下流側) からコントロール弁 3 4及びリーク弁 3 5が接続されて いる。 [0045] 各コントロール弁 3 2、 3 4は、 加圧気体用配管 2 6内及び真空用配管 2 8内の圧力をそれぞれ調整し、 また、 それぞれの配管の連通及び遮断 (オン Zオフ) も行うようになっている。 A control valve 3 2 and a leak valve 3 3 are connected to the pressurized gas pipe 26 from the receiver tank 5 side (upstream side). A control valve 3 4 and a leak valve 3 5 are connected to the vacuum pipe 28 from the vacuum pump 7 side (downstream side). [0045] Each control valve 3 2, 3 4 adjusts the pressure in the pressurized gas pipe 26 and the vacuum pipe 28, respectively, and also connects and shuts off (on Z off) of each pipe. To do.
[0046] フィルタ 5 1は、 容器 1 0 0側から送出される油やアルミニウム粉、 アル ミニゥム片等の塵埃等が運搬車両側の弁類や緊急停止部 9に流れ込み、 これ らが詰まって作動しなくなることを防止するものである。 かかるフィルタ 5 1を容器 1 0 0側に設けることも考えられるが、 それでは容器 1 0 0ごとに フィルタを設ける必要が生じる。 本発明では、 運搬車両 1側にこのようなフ ィルタ 5 1を設けることで、 必要とされるフィルタの数を減らすことができ る。  [0046] Filter 5 1 operates by clogging oil, aluminum powder, dust from aluminum pieces, etc. from the container 100 side into the valves and emergency stop 9 on the transport vehicle side. This is to prevent it from being lost. Although it is conceivable to provide such a filter 51 on the container 100 side, it is necessary to provide a filter for each container 100. In the present invention, the number of necessary filters can be reduced by providing such a filter 51 on the transport vehicle 1 side.
[0047] 本発明者等の知見によれば、 レシーバタンク 5側から容器側への塵埃等の 量に比べ容器側からレシーバ 5側への塵埃等の量の方が非常に多量となって いる。 本実施形態では、 特に弁類や緊急停止部 9より下流側にこのようなフ ィルタ 5 1を設けることにより、 容器 1 0 0側から送出される塵埃等によつ てリリーフ弁 3 0やその他の弁が詰まるようなことを防止することができる 。 ただし、 フィルタ 5 1をこれよりも上流に配置しても、 また複数箇所に設 けても勿論構わない。 例えばフィルタ 5 1を切替弁 2 7とリリーフ弁 3 0と の間に設けてもよく、 フィルタ 3 1を切替弁 2 7とリーク弁 3 3との間に設 けてもよい。  According to the knowledge of the present inventors, the amount of dust and the like from the container side to the receiver 5 side is much larger than the amount of dust and the like from the receiver tank 5 side to the container side. . In the present embodiment, by providing such a filter 51 on the downstream side of the valves and the emergency stop portion 9 in particular, the relief valve 30 and others due to dust or the like sent from the container 100 side. It is possible to prevent clogging of the valve. However, the filter 51 may of course be arranged upstream of this, or may be provided at a plurality of locations. For example, the filter 51 may be provided between the switching valve 27 and the relief valve 30, and the filter 31 may be provided between the switching valve 27 and the leak valve 33.
[0048] これらの圧力コントロール弁及び弁系は電子的に電気制御盤 (図示を省略 ) で制御されるようになっており、 手元操作盤 (図示を省略) の操作により 容器 1 0 0内と外部との間の圧力差を調整できるようになつている。  [0048] These pressure control valves and valve systems are electronically controlled by an electric control panel (not shown). By operating a hand control panel (not shown), The pressure difference with the outside can be adjusted.
[0049] 緊急停止部 9は、 例えば溶融アルミニゥムの受け側があふれそうな場合な どの緊急の場合などに容器への加圧を停止しょうとする場合に用いるもので める。  [0049] The emergency stop section 9 can be used when the pressurization to the container is to be stopped in an emergency such as when the molten aluminum receiving side is likely to overflow.
[0050] 次に、 容器 1 0 0について説明する。  [0050] Next, the container 100 will be described.
[0051 ] 図 4はこのようなシステムに用いられる溶融金属供給用容器の構成を示す 平面図、 図 5は図 4における A— A断面図である。 [0052] 溶融金属供給用容器 1 0 0は、 有底で筒状の本体 1 5 0の上部開口部 1 5 1に大蓋 1 5 2が配置されている。 本体 1 5 0及び大蓋 1 5 2の外周にはそ れぞれフランジ 1 5 3、 1 5 4が設けられている。 これらフランジ間をポル 卜 1 5 5で締めることで本体 1 5 0と大蓋 1 5 2が固定されている。 なお、 本体 1 5 0ゃ大蓋 1 5 2は例えば外側 (フレーム) が金属 (例えば鉄) であ る。 フレームの内側は耐火材により構成され、 外側の金属と耐火材との間に は断熱材が介挿されている。 FIG. 4 is a plan view showing a configuration of a molten metal supply container used in such a system, and FIG. 5 is a cross-sectional view taken along line AA in FIG. In the molten metal supply container 100, a large lid 15 52 is disposed in the upper opening 15 1 of the bottomed and cylindrical main body 15 50. Flange 1 5 3 and 1 5 4 are provided on the outer peripheries of main body 1 5 0 and large lid 1 5 2, respectively. The main body 1 5 0 and the large lid 1 5 2 are fixed by tightening these flanges with Pol 卜 1 5 5. Note that the main body 1 5 0 has a large lid 1 5 2 whose outer side (frame) is metal (for example, iron). The inside of the frame is made of refractory material, and a heat insulating material is inserted between the outer metal and the refractory material.
[0053] 本体 1 5 0の外周の 1箇所には、 本体 1 5 0内部から配管 1 4 4に連通す る流路 1 5 7が設けられた配管取付部 5 8が設けられている。  [0053] At one location on the outer periphery of the main body 15O, there is provided a pipe attachment portion 58 provided with a flow path 1557 that communicates from the inside of the main body 150 to the pipe 144.
[0054] 配管取付部 1 5 8における流路 1 5 7は、 本体 1 5 0内周の該容器本体底 部 1 5 0 aに近い位置に設けられた開口 1 5 7 aを介し、 該本体 1 5 0外周 の上部 1 5 7 bに向けて延在している。 この配管取付部 1 5 8の流路 1 5 7 に連通するように配管 1 4 4が固定されている。 配管 1 4 4は例えば「字状 の形状を有している。 配管 1 4 4のフレームは例えば鉄などの金属からなり 、 その内部には、 内張りとしてライニングが形成されている。 このライニン グは、 耐火材からなる。 そしてこのライニングの内側が溶融金属の流路 1 7 2として形成されている。 耐火材としては例えば緻密質の耐火系セラミック 材料をあげることができる。  [0054] The flow path 1 5 7 in the pipe attachment portion 1 5 8 is connected to the main body 1 5 0 via the opening 1 5 7 a provided at a position close to the bottom 1 5 0 a of the container main body. 1 5 0 It extends toward the upper part of the outer circumference 1 5 7 b. The pipe 1 4 4 is fixed so as to communicate with the flow path 1 5 7 of the pipe mounting portion 1 5 8. The pipe 1 4 4 has, for example, a “letter shape. The frame of the pipe 1 4 4 is made of a metal such as iron, for example, and a lining is formed as a lining inside the pipe. The inner side of the lining is formed as a molten metal flow path 17 2. As the refractory material, for example, a dense refractory ceramic material can be used.
[0055] 配管取付部 1 5 8近傍の配管 1 4 4の周囲には、 この配管 1 4 4を包囲す るように、 保温部材 1 5 6 aが配設されている。 これにより、 配管 1 4 4側 が流路 1 5 7側の熱を奪い、 流路 1 5 7の温度低下が発生することを極力抑 えることができる。 特に、 配管取付部 1 5 8近傍の配管 1 4 4の周囲は溶融 金属が冷えやすくしかも容器搬送の際に液面が丁度揺れる位置にある。 した がって、 このように配管取付部 1 5 8近傍の配管 1 4 4の周囲を保温部材 1 5 6 aにより包囲することでこの位置における溶融金属の固化を防止するこ とができる。  [0055] A heat insulating member 1556a is disposed around the pipe 14-4 near the pipe attachment portion 1558 so as to surround the pipe 144. As a result, it is possible to suppress as much as possible that the pipe 1 4 4 side takes heat from the flow path 1 5 7 side and a temperature drop of the flow path 1 5 7 occurs. In particular, around the pipe 1 4 4 in the vicinity of the pipe mounting part 1 5 8, the molten metal is easy to cool, and the liquid level just shakes when the container is transported. Therefore, the molten metal at this position can be prevented from solidifying by surrounding the pipe 1 4 4 in the vicinity of the pipe mounting portion 1 5 8 with the heat insulating member 1 5 6 a in this way.
[0056] 流路 1 5 7及びこれに続く配管 1 4 4の有効内径はほぼ等しく、 6 5 m m 〜8 5 m m程度が好ましい。 従来からこの種の配管の内径は 5 0 m m程度で あった。 これはそれ以上であると容器内を加圧して配管から溶融金属を導出 する際に大きな圧力が必要であると考えられていたからである。 これに対し て本発明者等は、 流路 1 57及びこれに続く配管 1 44の内径としてはこの 5 Ommを大きく超える 65 mm〜 85 mm程度が好ましく、 より好ましく は 70mm〜8 Omm程度、 更には好ましくは流路 1 57は 70 mm、 配管 1 44の内径は 8 Ommであることを見出した。 [0056] The effective inner diameters of the flow path 1 5 7 and the subsequent pipe 1 4 4 are substantially equal, and preferably about 65 mm to 85 mm. Traditionally, this type of pipe has an inner diameter of about 50 mm. there were. This is because if it is more than that, it is considered that a large pressure is required when the inside of the container is pressurized and the molten metal is led out from the pipe. In contrast, the present inventors preferably set the inner diameter of the flow path 1 57 and the subsequent pipe 1 44 to be about 65 mm to 85 mm, more preferably about 70 mm to 8 Omm. Preferably, the flow path 157 was found to be 70 mm and the inner diameter of the pipe 1 44 was 8 Omm.
[0057] すなわち、 溶融金属が流路 1 57や配管 1 44を上方に向けて流れる際に 、 流路 1 57や配管 1 44に存在する溶融金属自体の重量及び流路ゃ配管の 内壁の粘性抵抗の 2つパラメータが溶融金属の流れを阻害する抵抗に大きな 影響を及ぼしているものと考えられる。 ここで、 内径が 65mmより小さい ときには流路 1 57を流れる溶融金属はどの位置においても溶融金属自体の 重量と内壁の粘性抵抗の両方の影響を受けている。 ところが、 内径が 65m m以上となると流れのほぼ中心付近から内壁の粘性抵抗の影響を殆ど受けな い領域が生じ始め、 その領域が次第に大きくなることを発明者らは見いだし た。 この領域の影響は非常に大きく、 溶融金属の流れを阻害する抵抗が下が リ始める。 溶融金属を容器内から導出する際に容器内を非常に小さな圧力で 加圧すればよくなる。 つまり、 従来はこのような領域の影響は全く考慮に入 れず、 溶融金属自体の重量だけが溶融金属の流れを阻害する抵抗の変動要因 として考えられており、 作業性や保守性等の理由から内径を 5 Omm程度と していた。 一方、 内径が約 85mmを超えると、 溶融金属自体の重量が溶融 金属の流れを阻害する抵抗として非常に支配的となり、 溶融金属の供給に必 要な圧力が高くなつてしまう。 本発明者等の実施による結果によれば、 約 6 5 mm〜約 8 Omm程度の内径が容器内の圧力を非常に小さな圧力で加圧す ればよく、 標準化及び作業性の観点から最も好ましい。 すなわち、 配管径は 5 Omm. 60mm70mm、 と 1 0 mm単位で標準化されており、 配管径 がよリ小さい方が取リ扱いが容易で作業性が良好だからである。  [0057] That is, when the molten metal flows upward in the flow path 157 and the pipe 144, the weight of the molten metal itself present in the flow path 157 and the pipe 144 and the viscosity of the inner wall of the flow path and the pipe The two parameters of resistance are considered to have a great influence on the resistance that hinders the flow of molten metal. Here, when the inner diameter is smaller than 65 mm, the molten metal flowing through the flow path 157 is affected by both the weight of the molten metal itself and the viscous resistance of the inner wall at any position. However, the inventors have found that when the inner diameter is 65 mm or more, an area that is hardly affected by the viscous resistance of the inner wall starts to appear from around the center of the flow, and the area gradually increases. The effect of this region is very large, and the resistance that hinders the flow of molten metal begins to decrease. When the molten metal is withdrawn from the container, it is only necessary to pressurize the container with a very small pressure. In other words, in the past, the influence of such a region was not taken into consideration at all, and only the weight of the molten metal itself was considered as a resistance fluctuation factor that hinders the flow of the molten metal, for reasons such as workability and maintainability. The inner diameter was about 5 Omm. On the other hand, when the inner diameter exceeds about 85 mm, the weight of the molten metal itself becomes very dominant as a resistance that hinders the flow of the molten metal, and the pressure required to supply the molten metal becomes high. According to the results of the implementation by the present inventors, an inner diameter of about 65 mm to about 8 Omm only needs to be pressurized with a very small pressure, and is most preferable from the viewpoint of standardization and workability. In other words, the pipe diameter is standardized in units of 5 mm, 60 mm, 70 mm, and 10 mm. The smaller the pipe diameter, the easier the handling and the better the workability.
[0058] 上記の大蓋 1 52のほぼ中央には開口部 1 60が設けられ、 開口部 1 60 には取っ手 1 6 1が取り付けられたハッチ 1 62が配置されている。 ハッチ 1 6 2は大蓋 1 5 2上面よりも少し高い位置に設けられている。 ハッチ 1 6 2の外周の 1ケ所にはヒンジ 1 6 3を介して大蓋 1 5 2に取り付けられてい る。 これにより、 ハッチ 1 6 2は大蓋 1 5 2の開口部 6 0に対して開閉可能 とされている。 また、 このヒンジ 1 6 3が取り付けられた位置と対向するよ うに、 ハッチ 1 6 2の外周の 2ケ所には、 ハッチ 1 6 2を大蓋 1 5 2に固定 するためのハンドル付のポルト 1 6 4が取り付けられている。 大蓋 1 5 2の 開口部 1 6 0をハッチ 1 6 2で閉めてハンドル付のポルト 1 6 4を回動する ことでハッチ 1 6 2が大蓋 1 5 2に固定されることになる。 また、 ハンドル 付のポルト 1 6 4を逆回転させて締結を開放してハッチ 1 6 2を大蓋 1 5 2 の開口部 1 6 0から開くことができる。 そして、 ハッチ 1 6 2を開いた状態 で開口部 1 6 0を介して容器 1 0 0内部のメンテナンスゃ予熱時のガスバー ナの揷入が行われるようになつている。 [0058] An opening 160 is provided at substantially the center of the large lid 152, and a hatch 162 to which a handle 16 1 is attached is disposed in the opening 160. hatch 1 6 2 is provided at a position slightly higher than the upper surface of the large lid 1 5 2. The hatch 1 6 2 is attached to the large lid 1 5 2 via a hinge 1 6 3 at one place on the outer periphery. As a result, the hatch 16 2 can be opened and closed with respect to the opening 60 of the large lid 15 2. In addition, the port 1 with a handle for fixing the hatch 1 6 2 to the large lid 1 5 2 is located at two places on the outer periphery of the hatch 1 6 2 so as to face the position where the hinge 1 6 3 is attached. 6 4 is installed. By closing the opening 1 6 0 of the large lid 1 5 2 with the hatch 1 6 2 and turning the port 1 6 4 with the handle, the hatch 1 6 2 is fixed to the large lid 1 5 2. In addition, the hatch 16 2 can be opened from the opening 1 6 0 of the large lid 1 5 2 by reversely rotating the port 16 4 with the handle to release the fastening. In the state where the hatch 16 2 is opened, the gas burner is inserted into the container 100 during the pre-heating through the opening 160.
[0059] ハッチ 1 6 2の中心から所定の距離を離れた位置には、 容器 1 0 0の内外 を貫通する第 1〜第 3の貫通孔 1 6 5 a〜 1 6 5 cが設けられている。 第 1 の貫通孔 1 6 5 aは配管 1 4 4側に設けられ、 第 2の貫通孔 1 6 5 b及び第 3の貫通孔 1 6 5 cは、 第 1の貫通孔 1 6 5 aとは反対側に設けられている 。 これにより、 第 1の貫通孔 1 6 5 aと第 2の貫通孔 1 6 5 b及び第 3の貫 通孔 1 6 5 cとの距離は第 2の貫通孔 1 6 5 bと第 3の貫通孔 1 6 5 cとの 距離よリも長くなるようにされている。  [0059] First to third through holes 1 65 a to 1 65 c that penetrate the inside and outside of the container 100 are provided at positions away from the center of the hatch 16 2 by a predetermined distance. Yes. The first through hole 1 6 5 a is provided on the pipe 1 4 4 side, and the second through hole 1 6 5 b and the third through hole 1 6 5 c are connected to the first through hole 1 6 5 a and Is on the opposite side. Thus, the distance between the first through-hole 1 65 a and the second through-hole 1 65 b and the third through-hole 1 65 5 c is the same as that between the second through-hole 1 65 b and the third through-hole 1 65 b. The distance from the through hole 1 6 5 c is longer than the distance.
[0060] 各貫通孔 1 6 5 a〜1 6 5 cには螺子山が切られている。 第 1及び第 2の 貫通孔 1 6 5 a、 1 6 5 bには、 力ブラの一方を構成するプラグ 1 6 8 a、 1 6 8 bが取り付けられている。 第 1の貫通孔 1 6 5 aには、 第 1の電極棒 1 6 9 aが揷通された第 1のソケッ卜 1 7 0 aが取り付けられている。 第 2 の貫通孔 1 6 5 bには、 第 2の電極棒 1 6 9 bが揷通された第 2のソケット 1 7 0 bが取り付けられている。 各プラグとソケッ卜で力ブラを構成してい る。  [0060] Screw holes are cut in each of the through holes 1 6 5 a to 1 6 5 c. Plugs 1 6 8 a and 1 6 8 b constituting one of the force bras are attached to the first and second through holes 1 6 5 a and 1 6 5 b. A first socket 1 70 0 a through which the first electrode rod 1 6 9 a is passed is attached to the first through hole 1 65 5 a. A second socket 1 700 b through which the second electrode rod 1 69 9 b is passed is attached to the second through hole 1 65 b. Each plug and socket make up a power bra.
[0061 ] 第 3の貫通孔 1 6 5 cは、 容器 1 0 0内の減圧及び加圧を行うための内圧 調整用に用いられる。 この第 3の貫通孔 1 6 5 cには図 3に示すように加減 圧用の配管 6 6が接続されている。 この配管 6 6は、 第 3の貫通孔 1 6 5 c から上方に伸びて所定の高さで曲がりそこから水平方向に延在している。 こ の配管 6 6の貫通孔 1 6 5 cへの揷入部分の表面には螺子山がきられており 、 一方貫通孔 1 6 5 cにも螺子山がきられている。 これにより配管 6 6が貫 通孔 1 6 5 cに対して螺子止めにより固定されるようになっている。 [0061] The third through hole 1 6 5 c is used for internal pressure adjustment for performing pressure reduction and pressurization in the container 100. This third through hole 1 6 5 c is adjusted as shown in Fig. 3. Pipe 6 6 for pressure is connected. The pipe 66 extends upward from the third through hole 1 65 c, bends at a predetermined height, and extends horizontally therefrom. A thread is formed on the surface of the pipe 66 inserted into the through hole 1 65 c, and a thread is also formed on the through hole 1 65 c. As a result, the pipe 66 is fixed to the through hole 1 65 c by screwing.
[0062] この配管 6 6の一方には、 加圧用または減圧用のフレキシブルなエアーホ ース 1 2が力ブラ構造によって接続可能になっている。 そして、 減圧により 圧力差を利用して配管 1 4 4及び流路 1 5 7を介して容器 1 0 0内に溶融ァ ルミ二ゥムを流入することが可能である。 また加圧により圧力差を利用して 流路 1 5 7及び配管 1 4 4を介して容器 1 0 0外への溶融アルミニウムの流 出が可能である。 [0062] A flexible air hose 12 for pressurization or decompression can be connected to one of the pipes 66 by a force bra structure. Then, it is possible to flow molten aluminum into the container 100 through the pipe 14 4 and the flow path 15 7 by utilizing the pressure difference due to the reduced pressure. Further, the molten aluminum can be discharged out of the container 100 through the flow path 1 5 7 and the pipe 1 4 4 using the pressure difference by pressurization.
[0063] 本実施形態では、 大蓋 1 5 2のほぼ中央部に配置されたハッチ 1 6 2に加 減圧用の貫通孔 1 6 5 cが設けられている。 一方上記の配管 6 6が水平方向 に延在しているので、 加圧用または減圧用のエアホース 1 2を上記の配管 6 6に接続する作業を安全にかつ簡単に行うことができる。 また、 このように 配管 6 6が延在することによって配管 6 6を貫通孔 1 6 5に対して小さな力 で回転させることができる。 したがって、 貫通孔 1 6 5 cに対して螺子止め された配管 6 6の固定や取り外しを非常に小さな力で、 例えば工具を用いる ことなく行うことができる。  [0063] In the present embodiment, a through-hole 1665c for increasing / decreasing pressure is provided in the hatch 162, which is disposed at substantially the center of the large lid 1552. On the other hand, since the pipe 66 extends in the horizontal direction, the work of connecting the air hose 12 for pressurization or decompression to the pipe 66 can be performed safely and easily. Further, by extending the pipe 6 6 in this way, the pipe 6 6 can be rotated with a small force with respect to the through hole 1 65. Therefore, it is possible to fix and remove the pipe 66 screwed to the through hole 1 65 c with a very small force without using a tool, for example.
[0064] 本体 1 5 0の底部裏面には、 例えばフォークリフ卜のフォークが揷入され る断面口形状で所定の長さの脚部としてのチャンネル部材 1 7 1が例えば平 行するように 2本配置されている。  [0064] On the bottom surface of the bottom of the main body 1 50, for example, a channel member 1 71 as a leg portion having a predetermined length in a cross-sectional mouth shape into which a fork of a fork riff is inserted, for example, 2 is parallel. The book is arranged.
[0065] 本体 1 5 0内側の底部 1 5 0 aは、 流路 1 5 7側が低くなるように全体が 傾斜している。 これにより、 加圧によリ流路 1 5 7及び配管 1 4 4を介して 外部に溶融アルミニゥムを導出する際に、 いわゆる湯の残リが少なくなる。 また、 例えばメンテナンス時に容器 1 0 0を傾けて流路 1 5 7及び配管 1 4 4を介して外部に溶融アルミニウムを導出する際に、 容器 1 0 0を傾ける角 度をより小さくでき、 安全性や作業性が優れたものとなる。 しかしながら、 このような傾斜を逆にするようにしても構わない。 これにより、 開口 1 5 7 aの詰まりを防止することができる。 [0065] The bottom 1 5 0a inside the main body 1 5 0 is entirely inclined so that the channel 1 5 7 side is lowered. This reduces the amount of so-called hot water when the molten aluminum is led out to the outside through the flow path 15 7 and the pipe 14 4 due to pressurization. In addition, for example, when the molten aluminum is led out to the outside through the flow path 1 5 7 and the pipe 1 4 4 by tilting the container 100 during maintenance, the angle at which the container 100 is tilted can be made smaller, and the safety And workability is excellent. However, Such inclination may be reversed. As a result, clogging of the opening 1 5 7 a can be prevented.
[0066] 図 7は本発明に係る金属供給システムの全体構成を示す図である。 FIG. 7 is a diagram showing an overall configuration of a metal supply system according to the present invention.
[0067] 同図に示すように、 第 1の工場 3 1 0と第 2の工場 3 2 0とは例えば公道 [0067] As shown in the figure, the first factory 3 1 0 and the second factory 3 2 0 are, for example, public roads
3 3 0を介して離れた所に設けられている。  It is provided at a distance via 3 3 0.
[0068] 第 1の工場 3 1 0には、 ユースポイントとしてのダイキャストマシーン 3 [0068] The first factory 3 1 0 has a die-cast machine 3 as a point of use.
1 1が複数配置されている。 各ダイキャストマシーン 3 1 1は、 溶融したァ ルミ二ゥムを原材料として用い、 射出成型により所望の形状の製品を成型す るものである。 その製品としては例えば自動車のエンジンに関連する部品等 を挙げることができる。 また、 溶融した金属としてはアルミニウム合金ばか りでなくマグネシウム、 チタン等の他の金属を主体とした合金であっても勿 論構わない。 各ダイキャストマシーン 3 1 1の近くには、 ショット前の溶融 したアルミニウムを一旦貯留する保持炉 (手元保持炉) 3 1 2が配置されて いる。 この保持炉 3 1 2には、 複数ショッ卜分の溶融アルミニウムが貯留さ れるようになっており、 ワンショット毎にラドル 3 1 3或いは配管を介して 保持炉 3 1 2からダイキャストマシーン 3 1 1に溶融アルミニウムが注入さ れるようになっている。 また、 各保持炉 3 1 2には、 容器内に貯留された溶 融アルミニウムの液面を検出する液面検出センサ (図示せず) や溶融アルミ 二ゥムの温度を検出するための温度センサ (図示せず) が配置されている。 これらのセンサによる検出結果は各ダイキャストマシーン 3 1 1の制御盤も しくは第 1の工場 3 1 0の中央制御部 3 1 6に伝達されるようになっている  1 There are multiple 1s. Each die-casting machine 3 1 1 uses a melted aluminum as a raw material and molds a product of a desired shape by injection molding. Examples of such products include parts related to automobile engines. Of course, the molten metal is not limited to an aluminum alloy but may be an alloy mainly composed of other metals such as magnesium and titanium. Near each die-casting machine 3 1 1, there is a holding furnace (hand holding furnace) 3 1 2 that temporarily stores molten aluminum before the shot. In this holding furnace 3 1 2, molten aluminum for multiple shots is stored, and for each shot, a ladle 3 1 3 or a pipe is connected to the die casting machine 3 1 from the holding furnace 3 1 2. 1 is filled with molten aluminum. Each holding furnace 3 1 2 has a liquid level detection sensor (not shown) for detecting the level of molten aluminum stored in the container and a temperature sensor for detecting the temperature of molten aluminum. (Not shown) is arranged. The detection results by these sensors are transmitted to the control panel of each die-cast machine 3 1 1 or the central control unit 3 1 6 of the first factory 3 1 0.
[0069] 第 1の工場 3 1 0の受け入れ部で受け入れられた容器 1 0 0は、 本発明に 係るフォークリフト 5 0により所定のダイキャストマシーン 3 1 1まで配送 され、 容器 1 0 0から保持炉 3 1 2に溶融アルミニウムが供給されるように なっている。 供給の終了した容器 1 0 0はフォークリフト 1によリ再び受け 入れ部に戻されるようになつている。 [0069] The container 10 0 0 received in the receiving section of the first factory 3 1 0 is delivered to a predetermined die cast machine 3 1 1 by the forklift 50 0 according to the present invention, and the holding furnace is started from the container 1 0 0 3 1 2 is supplied with molten aluminum. The container 100 which has been supplied is returned to the receiving part by the forklift 1 again.
[0070] 第 1の工場 3 1 0には、 アルミニウムを溶融して容器 1 0 0に供給するた めの第 1の炉 3 1 9が設けられており、 この第 1の炉 3 1 9により溶融アル ミニゥムが供給された容器 1 0 0もフォークリフト 1により所定のダイキヤ ストマシーン 3 1 1まで配送されるようになっている。 [0070] In the first factory 3 1 0, the aluminum is melted and supplied to the container 1 0 0 The first furnace 3 1 9 is provided, and the container 1 0 0 supplied with the molten aluminum by the first furnace 3 1 9 is also delivered by the forklift 1 to the predetermined die machine 3 1 1. It has become so.
[0071 ] 第 1の工場 3 1 0には、 各ダイキャストマシーン 3 1 1において溶融アル ミニゥムの追加が必要になった場合にそれを表示する表示部 3 1 5が配置さ れている。 より具体的には、 例えばダイキャストマシーン 3 1 1毎に固有の 番号が振られ、 表示部 3 1 5にはその番号が表示されており、 溶融アルミ二 ゥムの追加が必要になったダイキャストマシーン 3 1 1の番号に対応する表 示部 3 1 5における番号が点灯するようになっている。 作業者はこの表示部 3 1 5の表示に基づきフォークリフ卜 1を使って容器 1 0 0をその番号に対 応するダイキャストマシーン 3 1 1まで運び溶融アルミニウムを供給する。 表示部 3 1 5における表示は、 液面検出センサによる検出結果に基づき、 中 央制御部 3 1 6が制御することによって行われる。  [0071] The first factory 3 1 0 is provided with a display unit 3 15 for displaying when it is necessary to add molten aluminum in each die-cast machine 3 1 1. More specifically, for example, a unique number is assigned to each die-cast machine 3 1 1, and the number is displayed on the display unit 3 1 5, and a die that requires the addition of molten aluminum is required. The number in the display section 3 1 5 corresponding to the number of the cast machine 3 1 1 lights up. Based on the display on the display unit 3 15, the worker uses the fork riff 1 to carry the container 100 to the die cast machine 3 1 1 corresponding to the number and supplies molten aluminum. The display on the display unit 3 15 is performed by the central control unit 3 16 controlling based on the detection result by the liquid level detection sensor.
[0072] 第 2の工場 3 2 0には、 アルミニウムを溶融して容器 1 0 0に供給するた めの第 2の炉 3 2 1が設けられている。 容器 1 0 0は容量、 配管長、 高さ、 幅等の異なる複数種が用意されている。 例えば第 1の工場 3 1 0内のダイキヤ ストマシーン 3 1 1の保持炉 3 1 2の容量等に応じて、 容量の異なる複数種 がある。 この第 2の炉 3 2 1により溶融アルミニウムが供給された容器 1 0 0は、 フォークリフトにより搬送用のトラック 3 3 2に載せられる。 トラッ ク 3 3 2は公道 3 3 0を通り第 1の工場 3 1 0の受け入れ部まで容器 1 0 0 を運ぶようになつている。 また、 受け入れ部にある空の容器 1 0 0はトラッ ク 3 3 2により第 2の工場 3 2 0へ返送されるようになっている。  [0072] The second factory 3 20 is provided with a second furnace 3 2 1 for melting aluminum and supplying it to the container 100. There are several types of containers 100 0 with different capacities, pipe lengths, heights and widths. For example, there are a plurality of types having different capacities depending on the capacity of the holding furnace 3 1 2 of the die casting machine 3 11 in the first factory 3 10. The container 100 to which molten aluminum is supplied by the second furnace 3 2 1 is placed on a transport truck 3 3 2 by a forklift. Truck 3 3 2 carries container 1 0 0 through the public road 3 3 0 to the receiving part of the first factory 3 1 0. The empty container 100 in the receiving section is returned to the second factory 3 2 0 by the track 3 3 2.
[0073] 第 2の工場 3 2 0には、 第 1の工場 3 1 0における各ダイキャストマシー ン 3 1 1において溶融アルミニウムの追加が必要になった場合にそれを表示 する表示部 3 2 2が配置されている。 表示部 3 2 2の構成は第 1の工場 3 1 0内に配置された表示部 3 1 5とほぼ同様である。 表示部 3 2 2における表 示は、 例えば通信回線 3 3 3を介して第 1の工場 3 1 0における中央制御部 3 1 6が制御することによって行われる。 なお、 第 2の工場 3 2 0における 表示部 3 2 2においては、 溶融アルミニウムの供給を必要とするダイキャス トマシーン 3 1 1のうち第 1の工場 3 1 0における第 1の炉 3 1 9から溶融 アルミニウムが供給されると決定されたダイキャストマシーン 3 1 1はそれ 以外のダイキャストマシーン 3 1 1とは区別して表示されるようになってい る。 例えば、 そのように決定されたダイキャストマシーン 3 1 1に対応する 番号は点滅するようになっている。 これにより、 第 1の炉 3 1 9から溶融ァ ルミ二ゥムが供給されると決定されたダイキャストマシーン 3 1 1に対して 第 2の工場 3 2 0側から誤って溶融アルミニウムを供給するようなことをな くすことができる。 また、 この表示部 3 2 2には、 上記の他に中央制御部 3 1 6から送信されたデータも表示されるようになっている。 [0073] The second factory 3 2 0 has a display section 3 2 2 for displaying when it is necessary to add molten aluminum to each die-cast machine 3 1 1 in the first factory 3 1 0. Is arranged. The configuration of the display unit 3 2 2 is almost the same as that of the display unit 3 1 5 arranged in the first factory 3 1. The display on the display unit 3 2 2 is performed by the central control unit 3 16 in the first factory 3 1 0 via the communication line 3 3 3, for example. In the second factory 3 2 0 In the display unit 3 2 2, it is determined that the molten aluminum is supplied from the first furnace 3 1 9 in the first factory 3 1 0 among the die casting machines 3 1 1 requiring supply of molten aluminum. The cast machine 3 1 1 is displayed separately from the other die cast machines 3 1 1. For example, the number corresponding to the die-cast machine 3 1 1 determined in this way flashes. As a result, the molten aluminum is accidentally supplied from the second factory 3 2 0 side to the die cast machine 3 1 1 determined to be supplied with molten aluminum from the first furnace 3 19. You can eliminate things like this. In addition to the above, the display unit 3 2 2 also displays data transmitted from the central control unit 3 16.
[0074] 次に、 このように構成された金属供給システムの動作を説明する。 Next, the operation of the metal supply system configured as described above will be described.
[0075] 中央制御部 3 1 6では、 各保持炉 3 1 2に設けられた液面検出センサを介 して各保持炉 3 1 2における溶融アルミニウムの量を監視している。 ここで 、 ある保持炉 3 1 2で溶融アルミニウムの供給の必要性が生じた場合に、 中 央制御部 3 1 6は、 その保持炉 3 1 2の 「固有の番号」 、 その保持炉 3 1 2 に設けられた温度センサにより検出された保持炉 3 1 2の 「温度データ」 、 その保持炉 3 1 2の形態に関する 「形態データ」 、 その保持炉 3 1 2から溶 融アルミニウムがなくなる最終的な 「時刻データ」 、 公道 3 3 0の 「トラフ イツクデータ」 、 その保持炉 3 1 2で要求される溶融アルミニウムの 「量デ ータ」 及び 「気温データ」 等を、 通信回線 3 3 3を介して第 2の工場 3 2 0 側に送信する。 第 2の工場 3 2 0では、 これらのデータを表示部 3 2 2に表 示する。 これらの表示されたデータに基づき作業者が経験的に上記保持炉 3 1 2から溶融アルミニウムがなくなる直前に保持炉 3 1 2に容器 1 0 0が届 き、 且つその時の溶融アルミニゥムが所望の温度となるように該第 2の工場 3 2 0からの容器 1 0 0の発送時刻及び溶融アルミニウムの発送時の温度を 決定する。 或いはこれらのデータを例えばパソコン (図示せず) に取り込ん で所定のソフトウエアを用いて上記保持炉 3 1 2から溶融アルミニウムがな くなる直前に保持炉 3 1 2に容器 1 0 0が届き、 且つその時の溶融アルミ二 ゥムが所望の温度となるように該第 2の工場 3 2 0からの容器 1 0 0の発送 時刻及び溶融アルミニウムの発送時の温度を推定してその時刻及び温度を表 示するようにしてもよい。 或いは推定された温度により第 2の炉 3 2 1を自 動的に温度制御しても良い。 容器 1 0 0に収容すべき溶融アルミニウムの量 についても上記 「量データ」 に基づき決定してもよい。 The central control unit 3 16 monitors the amount of molten aluminum in each holding furnace 3 1 2 via a liquid level detection sensor provided in each holding furnace 3 1 2. Here, when there is a need to supply molten aluminum in a certain holding furnace 3 1 2, the central control unit 3 1 6, the “unique number” of the holding furnace 3 1 2, the holding furnace 3 1 2 `` Temperature data '' of the holding furnace 3 1 2 detected by the temperature sensor provided in 2, `` Configuration data '' regarding the form of the holding furnace 3 1 2, and finally the molten aluminum disappears from the holding furnace 3 1 2 Such as “time data”, “traffic data” on public roads 3 3 0, “quantity data” and “temperature data” of molten aluminum required in its holding furnace 3 1 2, communication line 3 3 3 Via the second factory 3 2 0 side. In the second factory 3 2 0, these data are displayed on the display 3 2 2. Based on the displayed data, the operator empirically reaches the holding furnace 3 12 immediately before the molten aluminum is exhausted from the holding furnace 3 1 2, and the molten aluminum at that time has a desired temperature. The shipping time of the container 100 from the second factory 320 and the temperature at the time of shipping the molten aluminum are determined so that Alternatively, these data are taken into a personal computer (not shown), for example, and the container 10 0 0 arrives at the holding furnace 3 1 2 immediately before the molten aluminum disappears from the holding furnace 3 1 2 using predetermined software. And the molten aluminum at that time Estimate the shipping time of the container 100 from the second factory 3 20 and the temperature when the molten aluminum is shipped so that the temperature reaches the desired temperature, and display the time and temperature. Also good. Alternatively, the temperature of the second furnace 3 2 1 may be automatically controlled based on the estimated temperature. The amount of molten aluminum to be accommodated in the container 100 may also be determined based on the above “quantity data”.
[0076] 発送時刻に容器 1 0 0を載せたトラック 3 3 2が出発し、 公道 3 3 0を通 リ第 1の工場 3 1 0に到着すると、 容器 1 0 0がトラック 3 3 2から受け入 れ部に受け入れられる。  [0076] When truck 3 3 2 with container 1 0 0 departs at the time of shipment and arrives at first factory 3 1 0 through public road 3 3 0, container 1 0 0 receives from truck 3 3 2 Accepted by clubs.
[0077] その後、 受け入れられた容器 1 0 0は、 フォークリフト 1により所定のダ ィキャストマシーン 3 1 1まで配送され、 容器 1 0 0から保持炉 3 1 2に溶 融アルミニウムが供給される。  [0077] Thereafter, the received container 100 is delivered to the predetermined die casting machine 3 11 by the forklift 1, and molten aluminum is supplied from the container 100 to the holding furnace 31 2.
[0078] なお、 以上の実施形態では、 フォークリフト 1が容器 1 0 0を保持した状 態で保持炉 3 1 2に溶融アルミニウムを供給するように構成されていた。 こ れにより、 フォークリフト 1と容器 1 0 0とが工場内のエアーなどの供給を 受けることなく、 スタンドアローンタイプで稼動することが可能であった。 しかし、 本発明はこのような形態に限定されるものではない、 例えば図 8に 示すように、 保持炉 3 1 2の近くに容器 1 0 0を保持する保持台 4 0 0を配 置し、 フォークリフト 1から保持台 4 0 0に容器 1 0 0を一旦受け渡し、 そ の状態で容器 1 0 0から保持炉 3 1 2に溶融アルミニウムを供給するように 構成する。 そして、 保持台 4 0 0に保持された容器 1 0 0が保持炉 3 1 2へ の供給が終了すると、 フォークリフト 1が保持台 4 0 0から容器 1 0 0を受 け取り、 別の保持炉に運ぶように構成してもよい。  In the above embodiment, the forklift 1 is configured to supply molten aluminum to the holding furnace 3 12 while holding the container 100. As a result, the forklift 1 and the container 100 could operate as a stand-alone type without receiving supply of air or the like in the factory. However, the present invention is not limited to such a form. For example, as shown in FIG. 8, a holding table 4 00 holding a container 100 is arranged near the holding furnace 3 12, and The container 100 is temporarily transferred from the forklift 1 to the holding table 400, and in that state, molten aluminum is supplied from the container 100 to the holding furnace 31 2. Then, when the container 100 held on the holding table 400 is completely supplied to the holding furnace 3 1 2, the forklift 1 receives the container 100 from the holding table 400 and receives another container You may comprise so that it may carry.
[0079] 図 8に示すシステムにおいては、 保持炉 3 1 2には開閉蓋 4 0 1が設けら れている。 この蓋 4 0 1を開けた状態で容器 1 0 0から保持炉 3 1 2に溶融 アルミニウムが供給される。 供給されないときには、 この蓋 4 0 1は閉じて おく。 これにより、 保持炉 3 1 2内の溶融アルミニウムの酸化を防止するこ とができる。  In the system shown in FIG. 8, the holding furnace 3 1 2 is provided with an open / close lid 4 0 1. Molten aluminum is supplied from the container 100 to the holding furnace 3 1 2 with the lid 4 101 opened. Keep lid 4 0 1 closed when not supplied. Thereby, it is possible to prevent the molten aluminum in the holding furnace 3 1 2 from being oxidized.
[0080] 保持炉 3 1 2の近くには、 監視操作部 4 0 2が設けられている。 この監視 操作部 4 0 2では作業者 4 0 3が作業をするようになっている。 監視操作部 4 0 2で作業者 4 0 3が立った状態で作業者 4 0 3が保持炉 3 1 2の上部か ら内部が視けるように、 少し高い位置に床がある。 そのため、 階段 4 0 4を 介して作業者 4 0 3が監視操作部 4 0 2に上るようになつている。 監視操作 部 4 0 2には、 手元操作ボックス 4 0 5が配置されている。 手元操作ボック ス 4 0 5では、 容器 1 0 0に対するエアー供給のオン 'オフの操作を行うこ とができる。 なお、 保持炉 3 1 2内に液面検出センサを設け、 液面の上限 U 、 下限 Lに応じて容器 1 0 0に対するエアー供給のオン,オフの制御を行う ようにしても勿論構わない。 [0080] A monitoring operation unit 4 0 2 is provided near the holding furnace 3 1 2. This monitoring The operator 4 0 3 works in the operation unit 4 0 2. The floor is a little higher so that the operator 40 3 can see the inside from the upper part of the holding furnace 3 1 2 with the operator 40 3 standing in the monitoring operation unit 40 2. Therefore, the operator 40 3 goes up to the monitoring operation unit 4 0 2 through the stairs 4 0 4. The monitoring operation section 4 0 2 is provided with a local operation box 4 0 5. In the local operation box 4 0 5, the air supply to the container 1 0 0 can be turned on and off. Of course, a liquid level detection sensor may be provided in the holding furnace 312, and the air supply to the container 100 may be turned on / off according to the upper limit U and the lower limit L of the liquid level.
[0081 ] 保持台 4 0 0の上には、 重量計 4 0 6が配置されている。 重量計 4 0 6は 、 保持台 4 0 0に保持されている容器 1 0 0の重量を計量する。 重量計 4 0 6により計量された結果に基づき、 例えば保持炉 3 1 2へ供給される溶融ァ ルミ二ゥムの量を制御、 例えば保持炉 3 1 2の満杯を検出して容器 1 0 0へ のエアー供給を停止する。 また、 重量計 4 0 6により計量された結果に基づ き、 容器 1 0 0の空の状態を検出して、 空を検出したときには例えば作業者 4 0 3に図示を省略したランプ等の点灯により空の報知を行う。  [0081] On the holding table 400, a weigh scale 400 is arranged. The weigh scale 400 measures the weight of the container 100 held on the holding table 400. Based on the result measured by the weigh scale 4 0 6, for example, the amount of molten aluminum supplied to the holding furnace 3 1 2 is controlled. For example, the container 1 0 0 is detected by detecting that the holding furnace 3 1 2 is full. Stop the air supply to. Also, based on the result measured by the weigh scale 4 06, the empty state of the container 100 is detected. An empty notification is performed.
[0082] 保持台 4 0 0に保持された容器 1 0 0には、 工場側のエアー 4 0 7が供給 される。 例えば、 エアー 4 0 7は、 圧力ゲージ 4 0 8、 4 0 9、 大気開放弁 4 1 0、 圧力コントロール弁 4 1 1、 大気開放弁 4 1 2、 異物除去用フィル タ 4 1 3を介して容器 1 0 0に供給される。 このようなシステムにおいても 既に説明した本発明に係る気体供給制御機構を設けても勿論構わない。  [0082] Factory-side air 40 07 is supplied to the container 100 held on the holding table 400. For example, air 40 7 is supplied through pressure gauges 40 08, 40 09, air release valve 4 10, pressure control valve 4 1 1, air release valve 4 1 2, and foreign matter removal filter 4 1 3. Supplied to container 1 0 0. Of course, such a system may be provided with the gas supply control mechanism according to the present invention already described.
[0083] 本発明は上記の実施形態に限定されず、 様々に変形して実施することが可 能であり、 その実施の範囲も本発明の範囲である。  [0083] The present invention is not limited to the above-described embodiment, and can be implemented with various modifications. The scope of implementation is also within the scope of the present invention.
図面の簡単な説明  Brief Description of Drawings
[0084] [図 1 ]本発明の実施形態に係る運搬車両の構成を示す正面図である。  FIG. 1 is a front view showing a configuration of a transport vehicle according to an embodiment of the present invention.
[図 2]図 1に示した運搬車両の平面図である。  FIG. 2 is a plan view of the transport vehicle shown in FIG.
[図 3]本発明の実施形態に係る加減圧ュニッ卜の構成を示す図である。  FIG. 3 is a diagram showing a configuration of a pressure-intensifying unit according to an embodiment of the present invention.
[図 4]本発明の実施形態に係る容器の平面図である。 [図 5]図 4に示した容器の線 A _ Aで切断した断面図である。 FIG. 4 is a plan view of a container according to an embodiment of the present invention. FIG. 5 is a cross-sectional view taken along line A_A of the container shown in FIG.
[図 6]本発明の実施形態に係る溶融アルミニウムを容器 1 0 0外に供給する際 の溶融アルミニウムの流速と容器 1 0 0内の圧力値との関係を示すグラフで あ <©。 FIG. 6 is a graph showing the relationship between the flow rate of molten aluminum and the pressure value in container 100 when molten aluminum is supplied out of container 100 according to an embodiment of the present invention.
[図 7]本発明に係る金属供給システムの全体構成を示す図である。  FIG. 7 is a diagram showing an overall configuration of a metal supply system according to the present invention.
[図 8]本発明の他の実施形態に係る溶融金属供給システムの構成を示す図であ る。  FIG. 8 is a diagram showing a configuration of a molten metal supply system according to another embodiment of the present invention.
符号の説明 Explanation of symbols
1 車両  1 Vehicle
7 真空ポンプ  7 Vacuum pump
1 1 配管  1 1 Piping
1 2 エアーホース  1 2 Air hose
2 2 圧力開閉器  2 2 Pressure switch
2 4 C P U  2 4 C P U
8 0 制御部  8 0 Control unit
1 0 0 容器  1 0 0 Container
1 4 4 配管  1 4 4 Piping
1 5 3 ロードセル  1 5 3 Load cell
1 5 7 、 1 7 2 流路  1 5 7, 1 7 2 Flow path

Claims

請求の範囲 The scope of the claims
[1 ] 公道を介して第 1の工場から第 2の工場に搬送することが可能な構造とさ れた容器であって、 溶融金属を貯留可能で、 容器外部と容器内部との間の気 体通路及び内底部から上面部の配管取付部に向けて設けられ、 加圧により内 部から外部に溶融金属を導出するための流路を有する密閉型の容器本体と、 前記配管取付部において前記流路に連通し、 前記配管取付部から上方に延び て所定の位置でほぼ水平方向に曲がり、 所定の位置で下方に向かい、 先端部 の導出口が下方を向いている配管とを具備する容器に少なくとも加圧気体を 供給する気体供給装置において、  [1] A container structured to be transported from a first factory to a second factory via a public road, capable of storing molten metal, and a gas between the outside of the container and the inside of the container A sealed container body provided from the body passage and the inner bottom portion toward the pipe mounting portion on the upper surface portion, and having a flow path for deriving molten metal from the inner portion to the outside by pressurization; A pipe that communicates with the flow path, extends upward from the pipe mounting portion, bends in a substantially horizontal direction at a predetermined position, faces downward at a predetermined position, and has a discharge port at a tip portion facing downward. In a gas supply device that supplies at least pressurized gas to
前記気体通路に接続可能なエアーホースと、  An air hose connectable to the gas passage;
前記エアーホース及び前記気体通路を前記容器へ加圧気体を供給するため の加圧気体供給部と、  A pressurized gas supply unit for supplying pressurized gas to the container through the air hose and the gas passage;
前記容器内へ前記エアーホースを介して加圧気体を流入することによリ前 記容器内から前記流路及び前記配管を介して前記容器外へ供給される溶融金 属の流速を測定する測定部と、  Measurement to measure the flow rate of molten metal supplied from the inside of the container to the outside of the container through the flow path and the piping by flowing a pressurized gas into the container through the air hose. And
前記測定部によリ測定された流速が所定値となるように前記容器へ供給さ れる前記加圧気体の圧力値を制御する制御部と  A control unit for controlling the pressure value of the pressurized gas supplied to the container so that the flow velocity measured by the measurement unit becomes a predetermined value;
を具備することを特徴とする気体供給装置。  A gas supply device comprising:
[2] 請求項 1に記載の気体供給装置であって、 [2] The gas supply device according to claim 1,
前記流路及び前記配管の内径は 6 5〜 8 5 m mの径を有することを特徴と する気体供給装置。  An internal diameter of the flow path and the pipe has a diameter of 65 to 85 mm.
[3] 請求項 2に記載の気体供給装置であって、 [3] The gas supply device according to claim 2,
前記所定値は 1 2〜 1 8 k g Z sであることを特徴とする気体供給装置。  The gas supply device according to claim 1, wherein the predetermined value is 12 to 18 kg Zs.
[4] 請求項 1に記載の気体供給装置であって、 [4] The gas supply device according to claim 1,
前記容器内を前記エアーホースを介して減圧する真空ポンプを具備し、 前記測定部は、 前記容器内を前記真空ポンプによリ排気することによリ前 記配管及び前記流路を介して前記容器内へ供給される溶融金属の流速を測定 し、 前記制御部は、 前記測定手段により測定された流速が所定値となるように 前記真空ポンプの排気量を制御する A vacuum pump for depressurizing the inside of the container through the air hose, and the measuring unit exhausts the inside of the container by the vacuum pump, Measure the flow rate of the molten metal supplied into the container, The control unit controls an exhaust amount of the vacuum pump so that a flow rate measured by the measuring unit becomes a predetermined value.
ことを特徴とする気体供給装置。  The gas supply apparatus characterized by the above-mentioned.
[5] 請求項 1に記載の気体供給装置であって、  [5] The gas supply device according to claim 1,
当該気体供給装置は、 前記容器を搬送するためのフォークリフ卜に搭載さ れていることを特徴とする気体供給装置。  The gas supply apparatus is mounted on a fork riff for transporting the container.
[6] 公道を介して第 1の工場から第 2の工場に搬送することが可能な構造とさ れた容器であって、 溶融金属を貯留可能で、 容器外部と容器内部との間の気 体通路及び内底部から上面部の配管取付部に向けて設けられ、 加圧により内 部から外部に溶融金属を導出するための流路を有する密閉型の容器本体と、 前記配管取付部において前記流路に連通し、 前記配管取付部から上方に延び て所定の位置でほぼ水平方向に曲がり、 所定の位置で下方に向かい、 先端部 の導出口が下方を向いている配管とを具備する容器に少なくとも加圧気体を 供給する気体供給方法において、 [6] A container structured to be transported from the first factory to the second factory via a public road, capable of storing molten metal, and having a gas between the outside of the container and the inside of the container. A sealed container body provided from the body passage and the inner bottom portion toward the pipe mounting portion on the upper surface portion, and having a flow path for deriving molten metal from the inner portion to the outside by pressurization; and A pipe that communicates with the flow path, extends upward from the pipe mounting portion, bends in a substantially horizontal direction at a predetermined position, faces downward at a predetermined position, and has a discharge port at a tip portion facing downward. In a gas supply method for supplying at least pressurized gas to
前記気体通路に接続可能なエアーホース及び前記気体通路を介して前記容 器へ加圧気体を供給し、  Supplying pressurized gas to the container through the air hose connectable to the gas passage and the gas passage;
前記容器内へ前記エアーホースを介して加圧気体を流入することによリ前 記容器内から前記流路及び前記配管を介して前記容器外へ供給される溶融金 属の流速を測定し、  Measuring the flow rate of the molten metal supplied from the inside of the container to the outside of the container through the flow path and the piping by flowing pressurized gas into the container through the air hose;
前記測定された流速が所定値となるように前記容器へ供給される前記加圧 気体の圧力値を制御する  The pressure value of the pressurized gas supplied to the container is controlled so that the measured flow velocity becomes a predetermined value.
ことを特徴とする気体供給方法。  The gas supply method characterized by the above-mentioned.
[7] 請求項 6に記載の気体供給方法であって、 [7] The gas supply method according to claim 6,
前記流路及び前記配管の内径は 6 5〜 8 5 m mの径を有することを特徴と する気体供給方法。  The gas supply method according to claim 1, wherein an inner diameter of the flow path and the pipe has a diameter of 65 to 85 mm.
[8] 請求項 7に記載の気体供給方法であって、 [8] The gas supply method according to claim 7,
前記所定値は 1 2〜 1 8 k g Z sであることを特徴とする気体供給方法。  The gas supply method according to claim 1, wherein the predetermined value is 12 to 18 kg Zs.
[9] 請求項 6に記載の気体供給方法であって、 前記容器内を前記エアーホースを介して減圧し、 [9] The gas supply method according to claim 6, The inside of the container is depressurized via the air hose,
前記容器内を減圧することにより前記配管及び前記流路を介して前記容器 内へ供給される溶融金属の流速を測定し、  Measuring the flow rate of the molten metal supplied into the container through the pipe and the flow path by depressurizing the inside of the container,
前記測定された流速が所定値となるように前記減圧の程度を制御する ことを特徴とする気体供給方法。  The gas supply method, wherein the degree of decompression is controlled so that the measured flow rate becomes a predetermined value.
PCT/JP2007/000057 2006-02-06 2007-02-05 Gas feeding device and gas feeding method WO2007091386A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007557757A JPWO2007091386A1 (en) 2006-02-06 2007-02-05 Gas supply apparatus and gas supply method
DE602007001777T DE602007001777D1 (en) 2007-02-05 2007-11-14 honeycombs
DE602007009480T DE602007009480D1 (en) 2007-02-05 2007-11-14 Honeycomb structural body
DE602007004663T DE602007004663D1 (en) 2007-02-05 2007-11-14 honeycombs
DE602007001233T DE602007001233D1 (en) 2007-02-05 2007-11-21 Honeycomb structural body and manufacturing method for a honeycomb structural body
DE602008000014T DE602008000014D1 (en) 2007-02-05 2008-01-29 honeycombs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-028002 2006-02-06
JP2006028002 2006-02-06

Publications (1)

Publication Number Publication Date
WO2007091386A1 true WO2007091386A1 (en) 2007-08-16

Family

ID=38344993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000057 WO2007091386A1 (en) 2006-02-06 2007-02-05 Gas feeding device and gas feeding method

Country Status (2)

Country Link
JP (1) JPWO2007091386A1 (en)
WO (1) WO2007091386A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045589A (en) * 2010-08-27 2012-03-08 Daihatsu Motor Co Ltd System of managing molten metal tapping quantity and molten metal distributing quantity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253693A (en) * 1990-09-27 1992-09-09 Oxford Grycosyst Ltd System for conveyance of liquid
JP2004160538A (en) * 2002-02-14 2004-06-10 Hoei Shokai:Kk Molten metal feeding vessel, and safety device thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3492675B1 (en) * 2002-09-18 2004-02-03 株式会社豊栄商会 Transport vehicle, differential pressure control unit, and molten metal supply system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253693A (en) * 1990-09-27 1992-09-09 Oxford Grycosyst Ltd System for conveyance of liquid
JP2004160538A (en) * 2002-02-14 2004-06-10 Hoei Shokai:Kk Molten metal feeding vessel, and safety device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045589A (en) * 2010-08-27 2012-03-08 Daihatsu Motor Co Ltd System of managing molten metal tapping quantity and molten metal distributing quantity

Also Published As

Publication number Publication date
JPWO2007091386A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
US7204954B2 (en) Container
WO2001098004A1 (en) Molten metal feeding method, molten metal feeding system, molten aluminum producing method, aluminum die-cast product producing method, car manufacturing method, transportation vehicle, container, and molten metal feeding device
JP3492677B1 (en) Molten metal supply container and safety device
WO2007091386A1 (en) Gas feeding device and gas feeding method
JP4190786B2 (en) Molten metal supply system, molten metal supply device and vehicle
JP3492675B1 (en) Transport vehicle, differential pressure control unit, and molten metal supply system
JP2002316258A (en) Transporting vehicle, device for regulating pressure and system for feeding molten metal
WO2004050279A1 (en) Pressure-regulating device, transportation vehicle, and pressure difference-controlling unit
JP3491757B1 (en) Transport vehicle, molten metal supply method, and molten metal supply system
JP3489680B1 (en) Pressure regulating device, transport vehicle, molten metal supply system, and molten metal supply method
WO2007074761A1 (en) Container, molten metal supply system and method
JP2002254159A (en) Container
WO2007083646A1 (en) Gas supply device and gas supply method
JP3621387B2 (en) Molten metal supply container
JP4463799B2 (en) Molten metal supply method
JP3621405B2 (en) container
JP3744865B2 (en) container
JP3727278B2 (en) container
JP2004209521A (en) Ladle
JP3495038B2 (en) Container
JPWO2007077800A1 (en) Container, molten metal supply system and method
JP2002307159A (en) Vessel for supplying molten metal
JP3349144B2 (en) Molten metal supply device and molten metal supply system
CN100522418C (en) Delivery vehicle and differential pressure control unit
JP2005046914A (en) Vessel system for supplying molten metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007557757

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706305

Country of ref document: EP

Kind code of ref document: A1