WO2007077602A1 - Anticorrosive rare earth magnet - Google Patents

Anticorrosive rare earth magnet Download PDF

Info

Publication number
WO2007077602A1
WO2007077602A1 PCT/JP2005/024087 JP2005024087W WO2007077602A1 WO 2007077602 A1 WO2007077602 A1 WO 2007077602A1 JP 2005024087 W JP2005024087 W JP 2005024087W WO 2007077602 A1 WO2007077602 A1 WO 2007077602A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
earth magnet
film
group
corrosion
Prior art date
Application number
PCT/JP2005/024087
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Kobayashi
Original Assignee
Aisin Seiki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Kabushiki Kaisha filed Critical Aisin Seiki Kabushiki Kaisha
Priority to PCT/JP2005/024087 priority Critical patent/WO2007077602A1/en
Priority to JP2007552824A priority patent/JPWO2007077602A1/en
Publication of WO2007077602A1 publication Critical patent/WO2007077602A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/0221Mounting means for PM, supporting, coating, encapsulating PM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to a corrosion-resistant rare earth magnet that prevents corrosion of a rare earth magnet.
  • a rare earth magnet is generally a Re-B-Fe system or a Re-Tm-B system (Re is one type selected from rare earth element force, and Tm is one type selected from transition elements. And is known to have magnetic properties superior to conventional alloy magnets and ferrite magnets.
  • rare earth magnets are formed of an active metal material, in order to improve the magnetic properties particularly immediately after the main phase, many rare earth elements and transition elements are required not only in the main phase but also in the grain boundary phase. Become. Therefore, corrosion is an inevitable problem in rare earth magnets.
  • the Nd-Fe phase which contains a large amount of neodym, is formed as a grain boundary phase! Then, this phase is oxidized or reacted with water vapor to produce oxides (Nd 0) and water.
  • Such a problem is a problem common to rare earth magnets, and the same corrosion phenomenon as neodymium magnets also occurs in Pr Fe B, a Re-Tm-B hot-work rare earth magnet.
  • the surface of the rare earth magnet is subjected to chemical conversion treatment such as phosphate treatment or chromate treatment to form an oxidation resistant chemical conversion film (see, for example, Patent Document 1), or Zn or A1 is deposited, or Method of applying electroless Ni plating (see, for example, Patent Document 2), performing protection with rare earth magnets
  • chemical conversion treatment such as phosphate treatment or chromate treatment to form an oxidation resistant chemical conversion film
  • Method of applying electroless Ni plating see, for example, Patent Document 2
  • performing protection with rare earth magnets A method of binding an additive with a binder resin (see, for example, Patent Document 3) is also examined.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 64-14902
  • Patent Document 2 Japanese Patent Application Laid-Open No. 64-15301
  • Patent Document 3 Japanese Patent Application Laid-Open No. 1-147806
  • Patent Document 4 Japanese Patent Application Laid-Open No. 62-152107
  • Patent Document 5 JP-A-8-111306
  • the film usually formed has a thickness of 0.5 mm or more.
  • the amount of leakage flux is greatly reduced and the loss of magnetic energy is large.
  • the thickness of the film is less than 0.5 mm, defects such as voids inside the film are easily destroyed by thermal stress such as temperature impact, so the rare earth magnet is corroded.
  • Such a film has defects such as voids inside.
  • the use environment conditions under which the film is susceptible to damage such as thermal shock due to thermal shock were limited.
  • the film thickness of the film may be increased, or the film may be repeated multiple times to form a multilayer. It was necessary to form. Also, it is difficult to completely eliminate the defects in the film, and it is difficult to completely shut off the surface of the rare earth magnet from the external oxygen and water vapor forces, so the rare earth magnet was corroded.
  • a method of forming a carbon dioxide protective film or a cyanate protective film on the surface of a rare earth magnet In the method, it is difficult to form a uniform, dense and strong protective film on the surface because rare earth magnets have various sizes and shapes and the surface of rare earth magnets is often not flat.
  • Patent Document 4 uses a reactive silyl isocyanate, but it is difficult to achieve uniform film growth, and it is easy to form a film having irregularities. In addition, it was impossible to form a strong film with weak bonding strength only by physically adsorbing the silicate to the irregularities of the rare earth magnet surface.
  • Patent Document 5 discloses a technology for forming a protective film by sol-gel reaction or plasma particle chemical vapor deposition using ethyl silicate, it forms a uniform, dense and strong protective film. I could not do it.
  • the rare earth magnet is manufactured by sintering, the volume of the magnet shrinks during force sintering, so that when manufacturing the rare earth magnet, dimensional accuracy is secured by machining.
  • the surface processed by such a machine tool there are many physical defect layers, and the defect layers are in a state of being easily detached. Therefore, in the conventional method of forming a film on a rare earth magnet, since the bonding strength between the film itself and the bonding strength between the film and the rare earth magnet is weak, the physical defect layer on the surface of the rare earth magnet is barreled before forming the film. It had to be dropped off due to polishing, etc., and extra cost was strong.
  • the rare earth magnet is a sintered body that is fragile to mechanical stress, there is also a problem that it is easy to be damaged and difficult to handle when it is dropped or the like. And regarding this, even if the rare earth magnet is formed with the above-mentioned conventional film, the impact resistance can not be improved.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a corrosion-resistant rare earth magnet capable of preventing corrosion of a rare earth magnet and having excellent impact resistance.
  • a first feature of the corrosion-resistant rare earth magnet according to the present invention for achieving the above object is that the rare earth magnet is coated with a gas-permeable rubber layer. That is, according to this configuration, the rare earth magnet can also be shielded from external force, and corrosion of the rare earth magnet by water vapor, oxygen, etc. can be prevented.
  • the rubber layer covering the rare earth magnet has elasticity, when mechanical stress is applied to the corrosion resistant rare earth magnet from the outside, the rubber can be elastically deformed to relieve the stress. Therefore, the impact resistance of the rare earth magnet can be enhanced.
  • Examples of the rubber having gas permeability resistance include at least one rubber selected from butyl rubber, fluororubber, epichlorohydric acid, and nitrile rubber.
  • a second characterizing feature of the corrosion-resistant rare earth magnet according to the present invention is that the rubber layer is bonded to the rare earth magnet via a silane coupling agent.
  • the bonding strength between the rare earth magnet and the rubber layer can be enhanced, and the rare earth magnet force can also make the rubber layer difficult to peel off. Furthermore, when the bond strength between the rare earth magnet and the rubber layer is added to the covalent bond force based on the rubber net cake structure, the physical defect layer of the rare earth magnet also becomes difficult to come off, so when covering the rubber layer It is possible to omit the polishing process or the like for dropping off the physical defect layer of the above.
  • a third characterizing feature of the corrosion-resistant rare earth magnet according to the present invention is that the silane coupling agent has at least one of a methacryl group and a mercapto group.
  • a fourth characterizing feature of the corrosion-resistant rare earth magnet according to the present invention is that in the rare earth magnet, a silane compound having an imidazolyl group and an alkoxysilyl group is at least one of the compound and the silane coupling agent. It is coated with a film formed by bonding to one side, and the film is connected to the rare earth magnet.
  • the silane compound having an imidazole group and an alkoxysilyl group is a dense molecular film having a net network structure of siloxane on the surface of a rare earth magnet due to a condensation polymerization reaction of a silanol group.
  • the corrosion resistance can be further improved by providing a rubber layer having gas permeability resistance to the rare earth magnet having such a molecular film.
  • a silane compound having an imidazole group and an alkoxysilyl group is a rare earth magnet
  • the silanol group formed by hydrolysis of the alkoxysilyl group is hydrogen bonded to the surface of the rare earth magnet, or the nitrogen of the imidazole group is coordinated to the alloy forming the active phase of the rare earth magnet and then covalently bonded. It binds by forming a complex. Therefore, a film formed of a silane compound having an imidazole group and an alkoxysilyl group can be made difficult to peel off from the rare earth magnet.
  • the imidazole group can act as a catalyst for forming a network structure of siloxane, as well as bonding itself to a rare earth magnet, and thus the hydrolyzable silyl group of the silane coupling agent
  • hydrolysis is promoted, and a siloxane network is formed by silane couplings or silane coupling compounds having an imidazole group and an alkoxysilyl group. For this reason, the bond strength between the rare earth magnet and the rubber layer is further enhanced.
  • a fifth characterizing feature of the corrosion-resistant rare earth magnet according to the present invention is that the rare earth magnet has a film of a magnetic ionic liquid or a polar group, and the rare earth magnet has a polar basic force coupling agent. At the point where it is coated with a film of oil that is bound to it.
  • the magnetic ionic liquid does not dissolve various gases which are less hygroscopic, and therefore, small molecules such as water vapor and hydrogen gas can transmit gas, .
  • the magnetic ionic liquid does not react with liquids other than strongly acidic and strongly alkaline, and has almost no vapor pressure even at high temperatures which are difficult to corrode, and the heat resistance which is difficult to evaporate is also close to 300 ° C.
  • the magnetic ionic liquid can be used in a wide range of environments.
  • the magnetic ionic liquid is a paramagnetic substance, the film of the magnetic ionic liquid can be magnetically adsorbed to the rare earth magnet, and the rare earth magnet force can also be made difficult to peel off. Therefore, by providing a layer of rubber having gas resistance to a rare earth magnet coated with a magnetic ionic liquid, the rare earth magnet can be shielded from the outside to further improve the corrosion resistance.
  • the rare earth magnet when the rare earth magnet is covered with a film of oil, the whole surface of the rare earth magnet is covered with the film of oil, so that permeation of water vapor and various gases is prevented. Can.
  • the polar group of oil can be bonded to the rare earth magnet through the coupling agent, the bonding strength between the oil and the rare earth magnet becomes strong, and the oil film can not be easily peeled off from the rare earth magnet. it can. Therefore, by providing a rubber layer having resistance to gas permeability to a rare earth magnet coated with a film of oil, the rare earth magnet can be shielded from the outside world to further improve the corrosion resistance.
  • a characterizing feature of the fixing structure of the magnet according to the present invention is that the corrosion-resistant rare earth magnet is adhered to a supporting member for supporting the magnet via an adhesive.
  • the corrosion resistant rare earth magnet according to the present invention is a rare earth magnet coated with a gas-permeable rubber layer.
  • the rare earth magnet can be shielded from the outside, and corrosion of the rare earth magnet due to water vapor, oxygen, etc. can be prevented.
  • the rubber layer covering the rare earth magnet has elasticity, when mechanical stress is externally applied to the corrosion resistant rare earth magnet, the rubber can be elastically deformed to relieve the stress. Therefore, the impact resistance of the rare earth magnet can be enhanced.
  • the rubber constituting the rubber layer of the corrosion resistant rare earth magnet according to the present invention is not particularly limited as long as it has gas permeability resistance, and examples thereof include butyl rubber, fluororubber, epichlorohydrin rubber, nitrile rubber and the like. Force At least one rubber selected is preferably applicable. Among them, butyl rubber is particularly preferred, and the permeability of hydrogen gas at 25 ° C. is about 10, assuming that the natural rubber is 100. For this reason, hydrogen gas, oxygen gas, water vapor, etc. are transmitted 1 and corrosion and expansion and destruction caused by contact with these rare earth magnets are prevented. can do. Butyl rubber has a heat resistant limit temperature of 140 ° C and is resistant to thermal degradation at high temperatures, so it is also excellent in heat resistance.
  • the thickness of the rubber layer is not particularly limited and can be set arbitrarily, but is preferably 10 m or more from the viewpoint of preventing damage when dropped. On the other hand, if the rubber layer becomes too thick, the amount of leakage flux from the surface of the rare earth magnet tends to decrease, and if it becomes too thin, it becomes difficult to interrupt the surface of the rare earth magnet. About zm to several hundreds / zm is more preferable.
  • the rubber layer of the corrosion resistant rare earth magnet according to the present invention is preferably bonded to the rare earth magnet via a silane coupling agent.
  • the bonding strength between the rare earth magnet and the rubber layer can be increased, and the rare earth magnet force can also make the rubber layer difficult to peel off.
  • the bonding force between the rare earth magnet and the rubber layer is added to the covalent bond force based on the rubber network structure, the physical defect layer of the rare earth magnet also becomes difficult to come off, so when covering the rubber layer Abrasive treatment etc. to drop off the physical defect layer of
  • the silane coupling agent used in the present invention can be selected according to the type of rubber used, etc., and is not particularly limited.
  • a functional group capable of binding to rubber boule group, epoxy
  • Those having a group, a methacryl group, an amino group, a mercapto group and the like are applicable.
  • silane coupling agent one having a hydrolyzable silyl group can be applied, and as the hydrolyzable group, for example, a chloro group, an alkoxy group, an acetoxy group, an isopropenoxy group and the like are exemplified. These hydrolyzable silyl groups are hydrolyzed to form silanol groups, which can be bonded to a rare earth magnet.
  • silane coupling agent having a mercapto group and an alkoxysilyl group for example, when a rare earth magnet is made to form a butyl rubber layer, a mercapto group is present in the unsaturated bond portion of butyl rubber or in butyl rubber. It reacts with the radical of a vulcanizing agent such as sulfur and bonds with butyl rubber.
  • alkoxysilyl groups were generated by hydrolysis The silanol group forms a hydrogen bond with the surface of the rare earth magnet, and the silanol groups form a network structure of siloxane.
  • the silane coupling agent can thus bond the rare earth magnet and the rubber layer.
  • the corrosion resistant rare earth magnet according to the present invention is preferably applicable to a rare earth magnet having no toughness, and the type thereof is not limited, but it is preferable to apply to a rare earth magnet containing neodymium as a rare earth element. .
  • a rare earth magnet containing neodym as a rare earth element can prevent corrosion to such a rare earth magnet which is particularly easily corroded among the rare earth magnets.
  • Such a method for producing a corrosion-resistant rare earth magnet can be produced, for example, by the following method.
  • a reinforcing agent such as carbon black, a softener with oil, other processing aids and extenders are added to the rubber base and kneaded. Thereafter, it is extruded and vulcanized in the vulcanization step. Then, the obtained rubber is cut and added to the solvent divided into two containers so that the solid content of the rubber becomes about 15 mass% and about 20 mass%, respectively, and the viscosity is about 150 centioises each. Prepare two solutions that will give about 250 centi. At this time, it is advisable to add a slight amount of antifoaming agent to the solution. Furthermore, add 2 wt% of silane coupling agent to each solution and mix while vacuum degassing.
  • the rare earth magnet is dipped in a solution having a viscosity of about 250 centistokes, and the entire vessel containing the solution is degassed under vacuum, and one minute later. Pull up and leave at 150 ° C. for 10 minutes to semi-dry the solution adhering to the surface of the rare earth magnet. Subsequently, the rare earth magnet is similarly immersed in a solution having a viscosity of about 150 centipoise, and after 1 minute, the magnet is pulled up, left at 160 ° C. for 30 minutes, dried, and a silane coupling agent is reacted. According to such a method, as shown in FIG. 1, it is possible to form a rubber layer of about 200 ⁇ m in thickness on a rare earth magnet, for example.
  • the reinforcing agents, processing aids such as softeners, processing aids such as softeners, and vulcanizing agents used in the method of producing the rubber described above are not particularly limited, and any conventionally known ones may be selected and used. Can.
  • the solvent for dissolving the rubber is not particularly limited in the method for producing the corrosion-resistant rare earth magnet according to the present invention
  • the solvent has a solubility parameter (hereinafter referred to as “SP value”) which the rubber has. It is preferable to dissolve with a solvent having a low SP value.
  • SP value is 7. 7-8.
  • bul monomer of SP value .8 isopentyl acetate, 2,6-dimethyl- 4-heptane, SP value .6 n-octane, jetyl ether of SP value 7.4, SP value: 3 n-hexane etc.
  • the rare earth magnet used for the corrosion resistant rare earth magnet according to the present invention is produced by a conventionally known method, for example, after making an ingot, adsorbing hydrogen, grinding it into particles of several microns, and applying a magnetic field. It can be manufactured by molding, sintering, and further aging treatment to remove distortion associated with sintering.
  • the rare earth magnet used is one coated with a film formed by bonding a silane compound having an imidazole group and an alkoxysilyl group to at least one of the compound and a silane coupling agent. It may be That is, a silane compound having an imidazole group and an alkoxysilyl group forms a dense molecular film having a siloxane network structure on the surface of a rare earth magnet by condensation polymerization reaction of a silanol group. Therefore, corrosion resistance can be further improved by providing a rubber layer having gas permeability resistance to the rare earth magnet having such a molecular film.
  • the rare earth magnet is such that a silanol group formed by hydrolysis of the alkoxysilyl group is hydrogen-bonded to the surface of the rare earth magnet, or nitrogen of the imidazole group Are coordinated to the alloy forming the active phase of the rare earth magnet, and are bonded by forming a complex by covalent bonding. Therefore, a film formed of a silane compound having an imidazole group and an alkoxysilyl group can be made difficult to peel off from the rare earth magnet.
  • the imidazole group can act as a catalyst for forming a network structure of siloxane, as well as bonding itself to a rare earth magnet, and thus the hydrolyzable silyl group of the silane coupling agent
  • hydrolysis is promoted, and a siloxane network is formed by silane couplings or silane coupling compounds having an imidazole group and an alkoxysilyl group. For this reason, the bond strength between the rare earth magnet and the rubber layer is stronger become.
  • the silane compound having an imidazole group and an alkoxysilyl group is not particularly limited, but, for example, a silane compound as shown in the following formulas (I) and ( ⁇ ) can be applied.
  • a silane compound as shown in the following formulas (I) and ( ⁇ ) can be applied.
  • various alkoxysilyl groups such as ethoxysilyl group, provoxy silyl group, butoxy silyl group, and the like which are not limited to the methoxy silyl group are exemplified. What you have is applied.
  • Such a corrosion-resistant rare earth magnet can be produced, for example, by the following method.
  • the molecular film it is only necessary to form a film having a thickness of several tens to 100 mm, as long as the film does not allow water vapor and various gases to penetrate. For this reason, the rare earth magnet is immersed for about 30 minutes in a solution mixed with a solvent so that the concentration of a silane compound having an imidazole group and an alkoxysilyl group is about 0.5 wt% and the silane coupling agent is about 2 wt%. And adsorb the silane compound and the silane coupling agent on the magnet surface.
  • the rare earth magnet is pulled up and left at a temperature above the boiling point of the solvent for about 30 minutes to evaporate the solvent, thereby causing the silane compound and the silane coupling agent to form an atomic bond on the surface of the rare earth magnet.
  • Form a siloxane network structure Thereafter, the rare earth magnet is left under an atmosphere of 2 to 3 mmHg for about 1 hour to remove the solvent in the siloxane network structure.
  • a rubber layer is formed by the same procedure as the above method except that a silane coupling agent is added to the solution. In this way, the rare earth magnet can be coated with the molecular film and the rubber layer.
  • the solvent for dissolving the silane compound and the silane coupling agent is toluene, xylene, methyl ketone, ether, dichloromethane, alcohol
  • it is preferable to use one having no hygroscopic property such as toluene, xylene, methyl ketone, ether, dichloromethane or the like.
  • toluene as a solvent, if it processes at 130 degreeC for about 30 minutes, while evaporating toluene, condensation reaction reaction of a silanol group can be advanced.
  • the silane compound is preferable because it has no hydroxyl group and the silane compound of the above formula (I) has no hygroscopicity. Furthermore, after the molecular film is produced, it is preferable to completely remove the solvent by the low pressure treatment as described above, which is preferable not to remain in the siloxane network structure.
  • the rare earth magnet used in the present invention may be one coated with a film of a magnetic ionic liquid.
  • the magnetic ionic liquid does not dissolve various hygroscopic materials, so it does not transmit small molecule gas such as water vapor and hydrogen gas.
  • magnetic ionic liquids do not react with liquids other than strongly acidic and strongly alkaline, so they are not easily corroded, and even at high temperatures, they have almost no vapor pressure. Because of this, magnetic ionic liquids can be used in a wide range of environments.
  • the magnetic ionic liquid is a paramagnetic substance, the film of the magnetic ionic liquid can be magnetically adsorbed to the rare earth magnet, and the rare earth magnetic force can be made difficult to peel off. Therefore, as shown in FIG. 2, by providing a rubber layer having gas permeability resistance to the rare earth magnet coated with the magnetic ionic liquid, it is possible to block the external force of the rare earth magnet and to further improve the corrosion resistance.
  • Such a magnetic ionic liquid is not particularly limited, but [Fe M N C 1
  • alkyl group at the 1-position is not particularly limited, but the higher the carbon number is, the higher the degree of hydrophobicity is, and the alkyl group at the 1-position preferably has 6 to 20 carbon atoms.
  • the thickness of the magnetic ionic liquid film is not particularly limited, but preferably in the order of microns. That is, if the film has a thickness on the order of microns, the magnetic adsorptive power of the rare earth magnet to the magnetic ionic liquid is greater than the gravity of the magnetic ionic liquid, and the magnetic ionic liquid film is further difficult to peel off from the rare earth magnet. Become.
  • Such corrosion-resistant rare earth magnet can be manufactured, for example, by the following method.
  • the rare earth magnet is immersed in the magnetic ionic liquid.
  • the magnetic ion liquid exemplified above, when a rare earth magnet having a viscosity of 14 to 15111? & '3 at 30 is immersed, the magnetic attraction force in addition to the viscosity as the liquid is absorbed. As a result, it is possible to adsorb the magnetic ionic liquid with a thickness of more than 10 m even though it is a low viscosity liquid.
  • the rare earth magnet on which the magnetic ionic liquid is magnetically adsorbed is fixed to a rotating device and rotated, and a part of the magnetic ionic liquid is scattered by the centrifugal force to form a film having a thickness of, for example, about 5 m.
  • the thickness of the magnetic ionic liquid can be set by considering the relationship between the centrifugal force acting on the magnetic ionic liquid and the magnitude of the magnetic attraction between the rare earth magnet and the magnetic ionic liquid.
  • a rubber layer is formed by the same procedure as the above method. In this way, the rare earth magnet can be coated with the magnetic ionic liquid and the rubber layer.
  • the silane coupling agent may not be present in the rubber solution when forming the rubber layer.
  • the rare earth magnet used in the present invention may have a polar group, and the polar group may be bonded to the rare earth magnet through a coupling agent and coated with an oil film. ⁇ Since the entire surface of the rare earth magnet is covered with a film of oil, permeation of water vapor and various gases can be prevented.
  • the polar base force of oil can be bonded to the rare earth magnet through the coupling agent, the bonding strength between the oil and the rare earth magnet is enhanced, and the oil The film can be made difficult to peel off from the rare earth magnet. Therefore, by providing a layer of rubber having gas resistance to a rare earth magnet coated with an oil film, the external force of the rare earth magnet can be blocked to further improve the corrosion resistance. Also, since the polar groups of the oil can be bonded to the rubber layer via the coupling agent, the bond between the oil film and the rubber layer is also strong.
  • oil having a polar group one having properties shown in Table 1 is preferable, and, for example, a polyol ester or the like can be applied.
  • a polar group in addition to the hydroxyl group and ester group which the said polyol ester has, an amide group, a carbonyl group, a cyano group, a urethane group etc. are illustrated, It does not specifically limit.
  • the polyol ester is produced by an esterifying reaction in which a polyhydric alcohol having a neopentyl structure and a fatty acid are bonded.
  • the hydrolysis resistance of the polyol ester depends on the type of fatty acid, and is not particularly limited. For example, as a fatty acid, valeric acid
  • polyhydric alcohol having a low viscosity include pentaerythritol, dipentaerythritol, neopentyl darylol and the like. If such a polyhydric alcohol is used, the viscosity of the polyol ester at normal temperature can be 40 to 50 cSt. Therefore, the rare earth magnet can be coated with a micron order film by the dicing method.
  • coupling agents such as titanium-based, aluminum-based and silane-based coupling agents can be used.
  • a coupling agent which is preferably, for example, silane compounds of the above formulas (I) and (II) can be applied.
  • the silane compound bonds to the rare earth magnet and to the film-forming oil by the interaction between the polar group of the oil and the silanol group.
  • a corrosion-resistant rare earth magnet using a polyol ester and the above-mentioned silane compound can be produced, for example, by the following method. That is, first, the rare earth magnet is dipped for about 30 minutes in a solution in which the silane compound is mixed with a solvent to a concentration of about 0.5 wt% and a silane coupling agent to a concentration of about 2 wt%. And the silane coupling agent are adsorbed on the magnet surface. Subsequently, the rare earth magnet is immersed in a polyol ester heated to 80 to 100 ° C. for about one hour, after which the solvent is evaporated and the polyol ester and the silane compound are mixed.
  • the reaction is carried out to bond the polyol ester to the surface of the rare earth magnet via the silane compound. Thereafter, the rare earth magnet is allowed to stand under an atmosphere of 2 to 3 mmHg for about 1 hour to remove the solvent.
  • a film of oil having a thickness of about 10 m can be formed on the rare earth magnet.
  • a layer of rubber is formed through the silane coupling agent by the same procedure as the method described above. In this way, the rare earth magnet can be coated with a film of oil and a layer of rubber.
  • the solvent for dissolving the silane compound is preferably a solvent having no hygroscopic property such as toluene, xylene, methyl ethyl ketone, ether, dichloromethane or the like.
  • the compound is preferably one having no hygroscopicity as in the above formula (I). Yes. Also, it is preferable to remove the solvent as much as possible so as not to remain in the oil film.
  • the above-mentioned mixture can be mixed with the rubber solution in forming the rubber layer.
  • the silane compound may be mixed with the solution of rubber at about 0.5 wt%.
  • rare earth magnet V a so-called neodymium magnet containing neodymium as a rare earth element is used as the rare earth magnet V will be described.
  • a corrosion resistant rare earth magnet was prepared by coating a neodymium magnet with a butyl rubber layer having a thickness of about 200 m by the above method as shown in FIG. 1, and the test shown in Table 2 was conducted.
  • a neodymium magnet was coated with a molecular film having a thickness of about 100 nm according to the above method using the silane compound shown in the above formula (I) and then covered with a butyl rubber layer in the same manner as in Example 1. Corrosion resistant rare earth magnets were prepared and the tests shown in Table 2 were conducted.
  • a neodymium magnet is coated with a film of a magnetic ionic liquid having a thickness of about 5 m according to the above method using a magnetic ionic liquid 1-oxtyl-3-ethylimidazolium chloride (III) as the magnetic ionic liquid, and then the example is further described.
  • a corrosion resistant rare earth magnet as shown in FIG. 2 coated with a butyl rubber layer in the same manner as 1 was prepared, and the test shown in Table 2 was conducted.
  • Example 5 Using a polyol ester as an oil having a polar group and using an imidazole silane compound shown in the above formula (I) as a coupling agent, a neodymium magnet is formed into an oil film of about 10 m thickness by the above method After coating with the above, a corrosion-resistant rare earth magnet covered with a butyl rubber layer was prepared in the same manner as in Example 1, and the test shown in Table 2 was performed.
  • Example 5 Using a polyol ester as an oil having a polar group and using an imidazole silane compound shown in the above formula (I) as a coupling agent, a neodymium magnet is formed into an oil film of about 10 m thickness by the above method After coating with the above, a corrosion-resistant rare earth magnet covered with a butyl rubber layer was prepared in the same manner as in Example 1, and the test shown in Table 2 was performed.
  • Example 5
  • a neodymium magnet is formed into an oil film of about 10 m thickness by the above method.
  • a corrosion-resistant rare earth magnet coated with a molecular film and a butyl rubber layer was prepared, and the test shown in Table 2 was performed.
  • the surface strength test is an index indicating the ease of handling of the rare earth magnet.
  • For evaluation after the drop impact test examine the degree of damage to the drop impact by the supersaturated steam test 1 shown in Table 2 in addition to visual confirmation.
  • the compactness test is an indicator of the blocking performance in an environment using a rare earth magnet.
  • the rare earth magnets are heated from 25 ° C to 85 ° C for 0.25 hours under the conditions of humidity 85% RH, After holding at 85 ° C. for 6 hours, cool to ⁇ 30 ° C. for 0.5 hours, hold at ⁇ 30 ° C. for 3 hours, and further heat to 25 ° C. for 0.25 hours It is to evaluate the blocking performance when it is exposed to the environment of the temperature and humidity cycle of holding at 25 ° C for 2 hours.
  • the permeability of water vapor is evaluated on the assumption that the rare earth magnet is immersed in the cooling water of the automobile's radiator and is shaken.
  • the permeability of high-pressure water vapor is evaluated, and in the hydrogen gas permeation test, the permeability resistance of high-pressure hydrogen gas is evaluated, assuming a motor used for a fuel cell. is there. Since hydrogen gas is the smallest and molecule, the permeation resistance of the film is sufficient by examining the permeability of hydrogen gas.
  • the reactivity is to determine whether or not the rare earth magnet reacts to destroy the surface.
  • the salt water immersion test evaluates the corrosion resistance to salt water.
  • the rare earth magnet is used by being immersed in the cooling water of the automobile's radiator, and the antifreeze liquid (LLC solution) in the cooling water is oxidized.
  • the reaction with the forcibly oxidized LLC solution is evaluated by forcibly introducing oxygen gas and treating it at a temperature of 100 ° C. or more for a predetermined time.
  • a rare earth magnet is used by being immersed in cooling water of a car's radiator, the radiator itself is corroded, and metal ions and acid ions are mixed in the LLC solution and found to be damaged.
  • the metal ion is Cu 2+ ion
  • the acid ion is C 1 ⁇ ion and SO 2
  • ions is used to evaluate the reactivity to an aqueous solution in which each ion is dissolved at a predetermined concentration.
  • Example 2 In the boiling test 2, supersaturated steam test 2, hydrogen gas permeability test 2, pressurized oxygen LLC solution immersion test 2, and the ionic liquid immersion test 2, changes were observed on the surface of the magnet of Example 1.
  • Example 2 a slight change in the magnet surface is observed in boiling test 2 and supersaturated steam test 2, and hydrogen gas permeability test 2, pressurized oxygen LLC solution immersion test 2, ionic liquid immersion test 2 in magnet There was a change in the surface.
  • Example 4 a slight change in the magnet surface was observed in the pressurized oxygen LLC solution immersion test 2, and the ionic liquid immersion test In the case of No. 2, a slight change in the magnet surface was observed.
  • the corrosion-resistant rare earth magnet in any of the examples did not particularly change.
  • the elastic rare earth magnet according to the present invention can be used as a conventional rare earth magnet even in the case of misplacement. It is necessary to improve the corrosion resistance and the impact resistance as compared with the earth-earth magnet. And, among the corrosion-resistant rare earth magnets according to the present invention, whether to use a corrosion-resistant rare earth magnet with V deviation
  • Example 1 when used under an environment where hydrogen gas resistance, acid solution, and high corrosion resistance to ionic liquids are not required, Example 1 can be used.
  • the corrosion-resistant rare earth magnet according to the present invention can be applied to a fixing structure of a magnet fixed to a support member supporting the magnet via an adhesive. That is, in general, in the rare earth magnet, the coefficient of linear expansion differs between the direction of the easy axis of magnetization and the direction perpendicular thereto. For example, in the case of neodymium 'iron' boron magnet, the linear expansion coefficient in the direction of easy magnetization axis is 5.2 ⁇ 10 6 / ° C., and the linear expansion coefficient in the direction perpendicular thereto is ⁇ 0.8 X 10 6 / ° It is C.
  • the thermal expansion differs in the direction of the easy axis of magnetization and in the direction perpendicular thereto, and in such a magnet, the direction of the easy axis expands due to the temperature rise. Reduce in the vertical direction. For this reason, when the permanent magnet is thermally expanded or thermally shrunk after the rare earth magnet is fixed to the support member by the adhesive, the movement of the rare earth magnet is suppressed by the adhesive, and stress may be generated to cause a failure. . Therefore, if the corrosion resistant rare earth magnet according to the present invention is applied to the fixing structure of the magnet, even if the volume of the rare earth magnet changes due to a change in temperature of the use environment, the volume change due to elastic deformation of rubber. Can follow. Therefore, by preventing the volume change of the rare earth magnet, it is possible to prevent the occurrence of problems.
  • the motor 1 includes a housing 2 as a support member, a corrosion-resistant rare earth magnet 3 of the present invention attached to the housing 2, and a rotor 4 inserted inside the housing 2.
  • the motor 4 is provided with a shaft 5 serving as a rotation shaft when the rotor 4 rotates, and a coil 6 for flowing an electric current to magnetize the mouth 4 !.
  • the housing 2 doubles as a yoke, and the housing 2 and the corrosion-resistant rare earth magnet 3 are bonded by an adhesive.
  • the corrosion-resistant rare earth magnet 3 has a rare earth magnet 8 coated with a layer 7 of butyl rubber The butyl rubber layer 7 is bonded to the rare earth magnet 8 via a silane coupling agent.
  • the thickness of the corrosion resistant rare earth magnet 3 is set in accordance with the circumferential direction etching accuracy of the housing 2 and the corrosion resistant rare earth magnet 3. For example, if the machining accuracy is ⁇ 50 m, the maximum tolerance of both is 100 m. In order to fix the corrosion resistant rare earth magnet 3 to the housing 2 while the rubber is elastically deformed, the thickness of the rubber layer is at least about 200 ⁇ m. do it.
  • the corrosion resistant rare earth magnet 3 is inserted into the housing 2 and bonded with an adhesive to fix the corrosion resistant rare earth magnet 3 to the housing 2.
  • the housing member comprising the housing 2 and the corrosion-resistant rare earth magnet 3 is provided with the rotor 4, the shaft 5 and the coil 6, and the sub-assembled rotor member and the sub-assembled end bell cup member (not shown) Insert and secure to the housing member.
  • the other configuration of the motor 1 is the same as that of the conventionally known one.
  • the corrosion-resistant rare earth magnet 3 according to the present invention to the motor 1, for example, even if the motor 1 is used in an automobile etc. and the temperature changes widely, the butyl rubber layer 7 Since the shape change is possible, the volume change of the rare earth magnet 8 can be followed, and no trouble occurs in the motor 1. In addition, since the butyl rubber layer 7 is strongly bonded to the rare earth magnet 8 via the silane coupling agent, even if the motor 1 operates, the butyl rubber layer 7 is peeled off by the centrifugal force. There is nothing to do.
  • the corrosion-resistant rare earth magnet 3 according to the present invention can be arbitrarily set, such as the type and thickness of the rubber of the rubber layer, in accordance with the application of the motor 1 and the use environment. It is also possible to form the above-mentioned molecular film, magnetic ionic liquid film, oil film and the like.
  • the corrosion resistant rare earth magnet according to the present invention has excellent corrosion resistance and impact resistance
  • various applications such as conventional rare earth magnets, as well as applications to which rare earth magnets can not be applied, can be used. Can be applied to various applications.
  • FIG. 1 A schematic view of the cross section of the corrosion resistant rare earth magnet according to the present invention
  • [2] A schematic view of the cross section of the corrosion resistant rare earth magnet according to the present invention
  • [3] A cross section showing the configuration of the motor according to the present embodiment

Abstract

For providing an anticorrosive rare earth magnet that not only realizes prevention of corrosion of rare earth magnet but also excels in impact resistance, the rare earth magnet is coated with a layer of rubber having gas permeation resistance.

Description

耐食性希土類磁石  Corrosion resistant rare earth magnet
技術分野  Technical field
[0001] 本発明は、希土類磁石の腐食を防止する耐食性希土類磁石に関する。  The present invention relates to a corrosion-resistant rare earth magnet that prevents corrosion of a rare earth magnet.
背景技術  Background art
[0002] 希土類磁石は、一般に Re-B-Fe系または Re-Tm-B系(Reは希土類元素力も選ば れた 1種であり、 Tmは遷移元素から選ばれた 1種であることを示す)で表され、従来の 合金磁石やフェライト磁石を上回る磁気特性を有することが知られている。  [0002] A rare earth magnet is generally a Re-B-Fe system or a Re-Tm-B system (Re is one type selected from rare earth element force, and Tm is one type selected from transition elements. And is known to have magnetic properties superior to conventional alloy magnets and ferrite magnets.
[0003] このような希土類磁石は活性な金属材料から形成されるため鲭びやすぐ特に磁気 特性を向上させるためには、主相だけでなく粒界相に多くの希土類元素や遷移元素 が必要となる。このため希土類磁石において、腐食は避けられない問題であった。 例えば、 Re-B- Fe系の希土類磁石の一種である主相が Nd Fe Bからなる所謂ネオ  [0003] Since such rare earth magnets are formed of an active metal material, in order to improve the magnetic properties particularly immediately after the main phase, many rare earth elements and transition elements are required not only in the main phase but also in the grain boundary phase. Become. Therefore, corrosion is an inevitable problem in rare earth magnets. For example, a so-called neo-composition in which the main phase, which is a kind of Re-B-Fe rare earth magnet, consists of Nd Fe B
2 14  2 14
ジゥム磁石では、ネオジゥムが多く存在する Nd-Feの相が粒界相として形成されて!ヽ る。そして、この相が酸化されたり水蒸気と反応することにより、酸化物 (Nd 0 )や水  In the case of di-m magnets, the Nd-Fe phase, which contains a large amount of neodym, is formed as a grain boundary phase! Then, this phase is oxidized or reacted with water vapor to produce oxides (Nd 0) and water.
2 3 酸化物 (Nd(OH) )が形成され、粒界相の体積が膨張するため、焼結体の粒界破壊  Since 2 3 oxides (Nd (OH) 2) are formed and the volume of the grain boundary phase expands, the grain boundary fracture of the sintered body
3  3
が起こり得る。  Can happen.
また、一方で主相の表面においては、酸素及水蒸気の存在により Fe 0 ·Η Οの水  On the other hand, on the surface of the main phase, the presence of oxygen and water vapor causes Fe 0 · Η water
2 3 2 和物が形成され、希土類磁石の磁気特性が低下するという問題がある。  There is a problem that a 2 3 hydrate is formed and the magnetic properties of the rare earth magnet are degraded.
このような問題は希土類磁石に共通する問題であり、 Re-Tm-B系の熱間加工希土 類磁石の Pr Fe Bにおいてもネオジゥム磁石と同様な腐食現象は起こる。  Such a problem is a problem common to rare earth magnets, and the same corrosion phenomenon as neodymium magnets also occurs in Pr Fe B, a Re-Tm-B hot-work rare earth magnet.
2 14  2 14
[0004] 上記の問題に対しては、希土類磁石の腐食を防止する方法として、希土類磁石の 表面に、射出成形、押出し成形、トランスファー成形等によって榭脂の膜を形成させ る方法や、希土類磁石の表面に榭脂の溶液を塗布して膜を形成させる方法が知られ ている。  [0004] To solve the above problems, as a method of preventing corrosion of the rare earth magnet, there is a method of forming a resin film on the surface of the rare earth magnet by injection molding, extrusion molding, transfer molding, etc. There is known a method of forming a film by applying a solution of resin on the surface of the film.
また、希土類磁石の表面に燐酸塩処理やクロム酸塩処理等の化成処理を施して耐 酸化性化成被膜を形成する方法 (例えば、特許文献 1参照)や、 Zn、 A1を蒸着させた り、無電解 Niメツキを施す方法 (例えば、特許文献 2参照)、希土類磁石と防鲭を行う 添加物とをバインダー榭脂で結合させる方法 (例えば、特許文献 3参照)についても 検討されている。 In addition, the surface of the rare earth magnet is subjected to chemical conversion treatment such as phosphate treatment or chromate treatment to form an oxidation resistant chemical conversion film (see, for example, Patent Document 1), or Zn or A1 is deposited, or Method of applying electroless Ni plating (see, for example, Patent Document 2), performing protection with rare earth magnets A method of binding an additive with a binder resin (see, for example, Patent Document 3) is also examined.
さらには、希土類磁石の表面に二酸ィ匕ケィ素保護膜やケィ酸塩保護膜を形成させ る方法として、保護膜の上に樹脂の被膜を形成させる技術 (例えば、特許文献 4参照 )や希土類磁石と保護膜とを榭脂バインダーで結合させる技術 (例えば、特許文献 5 参照)が提案されている。  Furthermore, as a method of forming a diacidic acid protective film or a caictic acid protective film on the surface of a rare earth magnet, a technique of forming a resin film on the protective film (see, for example, Patent Document 4) A technique for bonding a rare earth magnet and a protective film with a resin binder (see, for example, Patent Document 5) has been proposed.
特許文献 1:特開昭 64— 14902号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 64-14902
特許文献 2 :特開昭 64— 15301号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 64-15301
特許文献 3:特開平 1― 147806号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 1-147806
特許文献 4:特開昭 62— 152107号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 62-152107
特許文献 5:特開平 8 - 111306号公報  Patent Document 5: JP-A-8-111306
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0005] しかし、前記従来の射出成形等により希土類磁石の表面に榭脂の膜を形成させる 方法では、通常形成される膜は 0. 5mm以上の厚みとなってしまうため、希土類磁石 の表面力 漏れ磁束量が大きく低減し、磁気エネルギーの損失が大きくなるという問 題があった。一方、膜の厚みを 0. 5mm未満にした場合には、膜の内部にあるボイド 等の欠陥部が温度衝撃等の熱応力を受けることによって破壊され易くなるため、希土 類磁石が腐食される虞があった。また、希土類磁石の表面に榭脂の溶液を塗布する 場合には、複数回塗布することによって厚みが 30〜40 mの膜を形成する力 この ような膜は内部にボイド等の欠陥を有するため、温度衝撃等の熱応力によって膜が 破壊等の影響を受け易ぐ使用環境条件が限定されていた。  However, according to the conventional method of forming a resin film on the surface of a rare earth magnet by injection molding or the like, the film usually formed has a thickness of 0.5 mm or more. There is a problem that the amount of leakage flux is greatly reduced and the loss of magnetic energy is large. On the other hand, when the thickness of the film is less than 0.5 mm, defects such as voids inside the film are easily destroyed by thermal stress such as temperature impact, so the rare earth magnet is corroded. There was a risk of In addition, when a solution of resin is applied to the surface of a rare earth magnet, the force to form a film with a thickness of 30 to 40 m by applying a solution multiple times. Such a film has defects such as voids inside. The use environment conditions under which the film is susceptible to damage such as thermal shock due to thermal shock were limited.
[0006] 特許文献 1〜3に記載されたような希土類磁石を表面処理する方法では、被膜の 欠陥をなくすために、被膜の膜厚を厚くすることや、被膜を複数回繰り返して多層状 に形成させることが必要であった。し力も、被膜の欠陥を完全に無くすることは難しく 、希土類磁石の表面を外界の酸素及び水蒸気力 完全に遮断することは困難である ため、希土類磁石は腐食されていた。  [0006] In the method of surface treating a rare earth magnet as described in Patent Documents 1 to 3, in order to eliminate defects in the film, the film thickness of the film may be increased, or the film may be repeated multiple times to form a multilayer. It was necessary to form. Also, it is difficult to completely eliminate the defects in the film, and it is difficult to completely shut off the surface of the rare earth magnet from the external oxygen and water vapor forces, so the rare earth magnet was corroded.
[0007] また、希土類磁石の表面に二酸ィ匕ケィ素保護膜やケィ酸塩保護膜を形成させる方 法では、希土類磁石は様々な大きさや形状を有し、希土類磁石の表面は平坦でな い場合も多いため、表面に均一、緻密で強固な保護膜を形成することは困難であつ た。 [0007] In addition, a method of forming a carbon dioxide protective film or a cyanate protective film on the surface of a rare earth magnet In the method, it is difficult to form a uniform, dense and strong protective film on the surface because rare earth magnets have various sizes and shapes and the surface of rare earth magnets is often not flat.
特に特許文献 4に記載された技術では、反応活性なシリルイソシァネートを用いて いるが、この技術では均一な膜成長をさせることが困難であり、凹凸を有する膜が形 成され易かった。また、珪酸塩を希土類磁石表面の凹凸に物理吸着させるだけでは 結合力が弱ぐ強固な膜を形成させることができな力つた。特許文献 5に記載された 技術では、ェチルシリケートを用いたゾルーゲル反応またはプラズマ粒子化学蒸着 法により、保護膜を形成する技術が開示されているが、均一、緻密で強固な保護膜 を形成することはできな力つた。  In particular, the technology described in Patent Document 4 uses a reactive silyl isocyanate, but it is difficult to achieve uniform film growth, and it is easy to form a film having irregularities. In addition, it was impossible to form a strong film with weak bonding strength only by physically adsorbing the silicate to the irregularities of the rare earth magnet surface. Although the technology described in Patent Document 5 discloses a technology for forming a protective film by sol-gel reaction or plasma particle chemical vapor deposition using ethyl silicate, it forms a uniform, dense and strong protective film. I could not do it.
したがって、膜によって酸素や水蒸気等を完全に遮断することは難しぐ膜自体も 剥がれやす 、ため、結果として希土類磁石は腐食されて ヽた。  Therefore, it is difficult to completely block oxygen, water vapor, etc. by the film, and the film itself is also easily peeled off. As a result, the rare earth magnet is corroded.
[0008] また、希土類磁石は焼結によって作製されるものである力 焼結時には磁石の体積 が収縮するため、希土類磁石を製造する際には機械加工によって寸法精度を確保し ている。しかし、このような機械カ卩ェによる加工面では、多くの物理的欠陥層を有して おり、この欠陥層が脱落し易い状態にある。よって、従来の希土類磁石に膜を形成さ せる方法では、膜自体の結合力や膜と希土類磁石との結合力が弱いため、膜を形成 させる前に希土類磁石の表面の物理的欠陥層をバレル研磨等により脱落させる必要 が生じ、余計な費用が力かっていた。  Further, since the rare earth magnet is manufactured by sintering, the volume of the magnet shrinks during force sintering, so that when manufacturing the rare earth magnet, dimensional accuracy is secured by machining. However, on the surface processed by such a machine tool, there are many physical defect layers, and the defect layers are in a state of being easily detached. Therefore, in the conventional method of forming a film on a rare earth magnet, since the bonding strength between the film itself and the bonding strength between the film and the rare earth magnet is weak, the physical defect layer on the surface of the rare earth magnet is barreled before forming the film. It had to be dropped off due to polishing, etc., and extra cost was strong.
[0009] さらに、希土類磁石は、機械的応力に対して脆い焼結体であるため、落下等に対し て損傷し易ぐ扱い難いという問題もあった。そして、これについては、希土類磁石に 前記従来の膜を形成させたとしても耐衝撃性を向上させることはできな力つた。  Furthermore, since the rare earth magnet is a sintered body that is fragile to mechanical stress, there is also a problem that it is easy to be damaged and difficult to handle when it is dropped or the like. And regarding this, even if the rare earth magnet is formed with the above-mentioned conventional film, the impact resistance can not be improved.
[0010] 本発明は上記問題に鑑み案出されたものであり、希土類磁石の腐食を防止できる と共に、耐衝撃性に優れる耐食性希土類磁石を提供することを目的とするものである 課題を解決するための手段  The present invention has been made in view of the above problems, and it is an object of the present invention to provide a corrosion-resistant rare earth magnet capable of preventing corrosion of a rare earth magnet and having excellent impact resistance. Means for
[0011] 上記目的を達成するための本発明に係る耐食性希土類磁石の第 1特徴構成は、 希土類磁石を、耐気体透過性を有するゴムの層で被覆した点にある。 [0012] つまり、この構成によれば、希土類磁石を外界力も遮断することができ、水蒸気や 酸素等により希土類磁石が腐食されるのを防止することができる。 [0011] A first feature of the corrosion-resistant rare earth magnet according to the present invention for achieving the above object is that the rare earth magnet is coated with a gas-permeable rubber layer. That is, according to this configuration, the rare earth magnet can also be shielded from external force, and corrosion of the rare earth magnet by water vapor, oxygen, etc. can be prevented.
[0013] 希土類磁石を被覆するゴムの層は弾性を有するため、耐食性希土類磁石に外部 から機械的応力が加えられた場合には、ゴムが弾性変形して応力を緩和させることが できる。このため、希土類磁石の耐衝撃性を高めることができる。  Since the rubber layer covering the rare earth magnet has elasticity, when mechanical stress is applied to the corrosion resistant rare earth magnet from the outside, the rubber can be elastically deformed to relieve the stress. Therefore, the impact resistance of the rare earth magnet can be enhanced.
[0014] 耐気体透過性を有するゴムとしては、ブチルゴム、フッ素ゴム、ェピクロルヒドリンゴ ム、二トリルゴム等力 選択される少なくとも一種のゴムが例示される。  Examples of the rubber having gas permeability resistance include at least one rubber selected from butyl rubber, fluororubber, epichlorohydric acid, and nitrile rubber.
[0015] 本発明に係る耐食性希土類磁石の第 2特徴構成は、前記ゴムの層は、前記希土類 磁石とシランカップリング剤を介して結合している点にある。  [0015] A second characterizing feature of the corrosion-resistant rare earth magnet according to the present invention is that the rubber layer is bonded to the rare earth magnet via a silane coupling agent.
[0016] つまり、この構成によれば、希土類磁石とゴムの層との結合強度を高めることができ 、希土類磁石力もゴムの層が剥がれ難くすることができる。さらには、ゴムのネットヮー ク構造に基づく共有結合力に希土類磁石とゴムの層との結合力が加わることによって 、希土類磁石の物理的欠陥層も脱落し難くなるため、ゴムの層を被覆させる際の物 理的欠陥層を脱落させる研磨処理等を省略することができる。  That is, according to this configuration, the bonding strength between the rare earth magnet and the rubber layer can be enhanced, and the rare earth magnet force can also make the rubber layer difficult to peel off. Furthermore, when the bond strength between the rare earth magnet and the rubber layer is added to the covalent bond force based on the rubber net cake structure, the physical defect layer of the rare earth magnet also becomes difficult to come off, so when covering the rubber layer It is possible to omit the polishing process or the like for dropping off the physical defect layer of the above.
[0017] 本発明に係る耐食性希土類磁石の第 3特徴構成は、前記シランカップリング剤は、 メタクリル基及びメルカプト基のうち少なくともいずれか一方を有する点にある。  [0017] A third characterizing feature of the corrosion-resistant rare earth magnet according to the present invention is that the silane coupling agent has at least one of a methacryl group and a mercapto group.
[0018] つまり、この構成によれば、これらの官能基は、特にゴムと強固に結合することがで きるため、希土類磁石とゴムの層との結合力をより強くすることができる。  That is, according to this configuration, since these functional groups can be particularly firmly bonded to rubber, the bonding strength between the rare earth magnet and the rubber layer can be further strengthened.
[0019] 本発明に係る耐食性希土類磁石の第 4特徴構成は、前記希土類磁石は、イミダゾ ール基とアルコキシシリル基とを有するシランィ匕合物が、当該化合物及び前記シラン カップリング剤のうち少なくとも一方と結合して形成した膜で被覆してあり、当該膜が 前記希土類磁石と結合している点にある。  [0019] A fourth characterizing feature of the corrosion-resistant rare earth magnet according to the present invention is that in the rare earth magnet, a silane compound having an imidazolyl group and an alkoxysilyl group is at least one of the compound and the silane coupling agent. It is coated with a film formed by bonding to one side, and the film is connected to the rare earth magnet.
[0020] つまり、構成によれば、イミダゾール基とアルコキシシリル基とを有するシランィ匕合物 は、シラノール基の縮重合反応によって、希土類磁石の表面にシロキサンのネットヮ ーク構造を有する緻密な分子膜を形成する。このため、このような分子膜を有する希 土類磁石に、耐気体透過性を有するゴムの層を設けることにより、耐食性をより向上 させることがでさる。  That is, according to the configuration, the silane compound having an imidazole group and an alkoxysilyl group is a dense molecular film having a net network structure of siloxane on the surface of a rare earth magnet due to a condensation polymerization reaction of a silanol group. Form Therefore, the corrosion resistance can be further improved by providing a rubber layer having gas permeability resistance to the rare earth magnet having such a molecular film.
[0021] また、イミダゾール基とアルコキシシリル基とを有するシラン化合物は、希土類磁石 とは、アルコキシシリル基の加水分解で生成したシラノール基が希土類磁石の表面 に水素結合するか、もしくはイミダゾール基の窒素が、希土類磁石の活性相を形成 する合金に配位し、共有結合して錯体を形成することにより結合する。このため、イミ ダゾール基とアルコキシシリル基とを有するシランィ匕合物によって形成された膜は、 希土類磁石カゝら剥がれ難くすることができる。 In addition, a silane compound having an imidazole group and an alkoxysilyl group is a rare earth magnet The silanol group formed by hydrolysis of the alkoxysilyl group is hydrogen bonded to the surface of the rare earth magnet, or the nitrogen of the imidazole group is coordinated to the alloy forming the active phase of the rare earth magnet and then covalently bonded. It binds by forming a complex. Therefore, a film formed of a silane compound having an imidazole group and an alkoxysilyl group can be made difficult to peel off from the rare earth magnet.
[0022] さらには、イミダゾール基は、自らが希土類磁石と結合する他、シロキサンのネットヮ ーク構造を形成する際の触媒としても作用することができるため、シランカップリング 剤の加水分解性シリル基に対しても、加水分解を促進し、シランカップリング同士、ま たはイミダゾール基とアルコキシシリル基とを有するシランィ匕合物とにより、シロキサン のネットワークを形成させる。このため、希土類磁石とゴムの層の結合力はさらに強く なる。  Furthermore, the imidazole group can act as a catalyst for forming a network structure of siloxane, as well as bonding itself to a rare earth magnet, and thus the hydrolyzable silyl group of the silane coupling agent On the other hand, hydrolysis is promoted, and a siloxane network is formed by silane couplings or silane coupling compounds having an imidazole group and an alkoxysilyl group. For this reason, the bond strength between the rare earth magnet and the rubber layer is further enhanced.
[0023] 本発明に係る耐食性希土類磁石の第 5特徴構成は、前記希土類磁石は、磁性ィォ ン液体の膜、または極性基を有し、当該極性基力カップリング剤を介して前記希土類 磁石と結合している油の膜で被覆してある点にある。  [0023] A fifth characterizing feature of the corrosion-resistant rare earth magnet according to the present invention is that the rare earth magnet has a film of a magnetic ionic liquid or a polar group, and the rare earth magnet has a polar basic force coupling agent. At the point where it is coated with a film of oil that is bound to it.
[0024] つまり、この構成によれば、磁性イオン液体は、吸湿性がなぐ各種ガスも溶解する ことがな 、ため、水蒸気や水素ガスのような分子の小さ 、ガスが透過することもな 、。 また、磁性イオン液体は、強酸性、強アルカリ性以外の液体に対して反応しないため 腐食され難ぐ高温時でも蒸気圧がほとんどないため蒸発し難ぐ耐熱性も 300°Cに 近い。このため、磁性イオン液体は、幅広い環境下で使用することができる。さらに、 磁性イオン液体は常磁性体であるため、磁性イオン液体の膜は、希土類磁石に磁気 吸着させることができ、希土類磁石力も剥離し難くすることができる。したがって、磁性 イオン液体で被覆した希土類磁石に耐気体透過性を有するゴムの層を設けること〖こ より、希土類磁石を外界カゝら遮断して、耐食性をより向上させることができる。  In other words, according to this configuration, the magnetic ionic liquid does not dissolve various gases which are less hygroscopic, and therefore, small molecules such as water vapor and hydrogen gas can transmit gas, . In addition, the magnetic ionic liquid does not react with liquids other than strongly acidic and strongly alkaline, and has almost no vapor pressure even at high temperatures which are difficult to corrode, and the heat resistance which is difficult to evaporate is also close to 300 ° C. For this reason, the magnetic ionic liquid can be used in a wide range of environments. Furthermore, since the magnetic ionic liquid is a paramagnetic substance, the film of the magnetic ionic liquid can be magnetically adsorbed to the rare earth magnet, and the rare earth magnet force can also be made difficult to peel off. Therefore, by providing a layer of rubber having gas resistance to a rare earth magnet coated with a magnetic ionic liquid, the rare earth magnet can be shielded from the outside to further improve the corrosion resistance.
[0025] 磁性イオン液体としては、陽イオンとして 1—ェチル 3—メチルイミダゾリゥム、 1 - ブチルー 3—メチルイミダゾリゥム、 1ーォクチルー 3—メチルイミダゾリゥム、 1 オタ チル一 3—メチルイミダゾリゥムを有し、陰イオンとして [FeCl Γを有する塩ィ匕鉄 (III)酸  As the magnetic ionic liquid, 1-ethyl 3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-tert-ethyl-3-methylimidazolium as a cation Salt, sodium borate (III) acid with FeCl
4  Four
1ーェチルー 3—メチルイミダゾリゥム、塩化鉄(ΠΙ)酸 1ーブチルー 3—メチルイミダゾ リウム、塩ィ匕鉄 (III)酸 1—ォクチル— 3—メチルイミダゾリゥム、塩ィ匕鉄 (III)酸 1—デ シル一 3—メチルイミダゾリゥム等が好まし 、。 1-Ethyl 3-methyl imidazolium, 1-butyl 3- (methyl) imidazole (iron) chloride, 3-methyl imidazolium chloride (III) 1-octyl 3-methyl-imidazolium, sodium chloride (III) 1—De Syl-1 3-methylimidazolium and the like are preferred.
[0026] また、希土類磁石が、油の膜で被覆したものである場合には、希土類磁石の表面 全体を油の膜によって被覆しているため、水蒸気や各種ガスが透過することを防止 することができる。また、油の極性基が、希土類磁石とカップリング剤を介して結合す ることができるため、油と希土類磁石との結合力が強くなり、油の膜が希土類磁石か ら剥がれ難くすることができる。したがって、油の膜で被覆した希土類磁石に耐気体 透過性を有するゴムの層を設けることにより、希土類磁石を外界カゝら遮断して、耐食 '性をより向上させることができる。  Further, when the rare earth magnet is covered with a film of oil, the whole surface of the rare earth magnet is covered with the film of oil, so that permeation of water vapor and various gases is prevented. Can. In addition, since the polar group of oil can be bonded to the rare earth magnet through the coupling agent, the bonding strength between the oil and the rare earth magnet becomes strong, and the oil film can not be easily peeled off from the rare earth magnet. it can. Therefore, by providing a rubber layer having resistance to gas permeability to a rare earth magnet coated with a film of oil, the rare earth magnet can be shielded from the outside world to further improve the corrosion resistance.
[0027] 本発明に係る磁石の固定構造の特徴構成は、前記耐食性希土類磁石を、磁石を 支持する支持部材に、接着剤を介して接着した点にある。  A characterizing feature of the fixing structure of the magnet according to the present invention is that the corrosion-resistant rare earth magnet is adhered to a supporting member for supporting the magnet via an adhesive.
[0028] つまり、この構成によれば、使用環境の温度が変化して希土類磁石が大きく体積変 化する場合であっても、ゴムの弾性変形によって、その体積変化に追随することがで きる。したがって、希土類磁石の体積変化が妨げられることによって発生する不具合 を防止することができる。  That is, according to this configuration, even when the temperature of the use environment changes and the volume of the rare earth magnet is largely changed, the volume change can be followed by the elastic deformation of the rubber. Therefore, it is possible to prevent the problems caused by the disturbed volume change of the rare earth magnet.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 本発明に係る耐食性希土類磁石は、図 1に示すように、希土類磁石を、耐気体透 過性を有するゴムの層で被覆したものである。これにより、希土類磁石を外界から遮 断することができ、水蒸気や酸素等により希土類磁石が腐食されるのを防止すること ができる。 The corrosion resistant rare earth magnet according to the present invention, as shown in FIG. 1, is a rare earth magnet coated with a gas-permeable rubber layer. As a result, the rare earth magnet can be shielded from the outside, and corrosion of the rare earth magnet due to water vapor, oxygen, etc. can be prevented.
[0030] 希土類磁石を被覆するゴムの層は弾性を有するため、耐食性希土類磁石に外部 から機械的応力が加えられた場合には、ゴムが弾性変形して応力を緩和させることが できる。このため、希土類磁石の耐衝撃性を高めることができる。  [0030] Since the rubber layer covering the rare earth magnet has elasticity, when mechanical stress is externally applied to the corrosion resistant rare earth magnet, the rubber can be elastically deformed to relieve the stress. Therefore, the impact resistance of the rare earth magnet can be enhanced.
[0031] 本発明に係る耐食性希土類磁石のゴムの層を構成するゴムは、耐気体透過性を有 するものであれば、特に限定されないが、例えば、ブチルゴム、フッ素ゴム、ェピクロ ルヒドリンゴム、二トリルゴム等力 選択される少なくとも一種のゴムが好ましく適用でき る。中でも、ブチルゴムは、特に好ましぐ 25°Cにおける水素ガスの透過性力 天然 ゴムを 100とした場合に約 10である。このため、水素ガスや酸素ガス、水蒸気等を透 過し 1 、これらが希土類磁石に接触することによって起こる腐食や膨張破壊を防止 することができる。また、ブチルゴムは、耐熱限界温度が 140°Cであり、高温で熱劣化 し難いため、耐熱性にも優れている。 The rubber constituting the rubber layer of the corrosion resistant rare earth magnet according to the present invention is not particularly limited as long as it has gas permeability resistance, and examples thereof include butyl rubber, fluororubber, epichlorohydrin rubber, nitrile rubber and the like. Force At least one rubber selected is preferably applicable. Among them, butyl rubber is particularly preferred, and the permeability of hydrogen gas at 25 ° C. is about 10, assuming that the natural rubber is 100. For this reason, hydrogen gas, oxygen gas, water vapor, etc. are transmitted 1 and corrosion and expansion and destruction caused by contact with these rare earth magnets are prevented. can do. Butyl rubber has a heat resistant limit temperature of 140 ° C and is resistant to thermal degradation at high temperatures, so it is also excellent in heat resistance.
[0032] ゴムの層の厚みは、特に限定されず、任意に設定可能であるが、落下した際の損 傷を防ぐ観点からは、 10 m以上あることが好ましい。一方で、ゴムの層が厚くなり過 ぎると希土類磁石の表面からの漏れ磁束量が減少する傾向があり、薄くなる過ぎると 希土類磁石の表面を外界力 遮断することが困難になるため、数十/ z m〜数百/ z m 程度がより好ましい。 The thickness of the rubber layer is not particularly limited and can be set arbitrarily, but is preferably 10 m or more from the viewpoint of preventing damage when dropped. On the other hand, if the rubber layer becomes too thick, the amount of leakage flux from the surface of the rare earth magnet tends to decrease, and if it becomes too thin, it becomes difficult to interrupt the surface of the rare earth magnet. About zm to several hundreds / zm is more preferable.
[0033] 本発明に係る耐食性希土類磁石のゴムの層は、希土類磁石とシランカップリング剤 を介して結合していることが好ましい。これにより、希土類磁石とゴムの層との結合強 度を高めることができ、希土類磁石力もゴムの層が剥がれ難くすることができる。さら には、ゴムのネットワーク構造に基づく共有結合力に希土類磁石とゴムの層との結合 力が加わることによって、希土類磁石の物理的欠陥層も脱落し難くなるため、ゴムの 層を被覆させる際の物理的欠陥層を脱落させる研磨処理等を省略することができる  The rubber layer of the corrosion resistant rare earth magnet according to the present invention is preferably bonded to the rare earth magnet via a silane coupling agent. As a result, the bonding strength between the rare earth magnet and the rubber layer can be increased, and the rare earth magnet force can also make the rubber layer difficult to peel off. Furthermore, when the bonding force between the rare earth magnet and the rubber layer is added to the covalent bond force based on the rubber network structure, the physical defect layer of the rare earth magnet also becomes difficult to come off, so when covering the rubber layer Abrasive treatment etc. to drop off the physical defect layer of
[0034] 本発明において使用するシランカップリング剤は、使用するゴムの種類等に応じて 選択でき、特に限定されるものではないが、例えば、ゴムと結合可能な官能基として、 ビュル基、エポキシ基、メタクリル基、アミノ基、メルカプト基等を有するものが適用で きる。中でも、メタクリル基及びメルカプト基のうち少なくともいずれか一方を有すること が好ましい。これらの官能基は、特にゴムと強固に結合することができるため、希土類 磁石とゴムの層との結合力をより強くすることができる。また、シランカップリング剤は、 加水分解性シリル基を有するものが適用でき、加水分解性基としては、例えば、クロ ル基、アルコキシ基、ァセトキシ基、イソプロぺノキシ基等が例示される。これらの加水 分解性シリル基は加水分解によって、シラノール基を生成し、希土類磁石と結合する ことがでさるよう〖こなる。 The silane coupling agent used in the present invention can be selected according to the type of rubber used, etc., and is not particularly limited. For example, as a functional group capable of binding to rubber, boule group, epoxy Those having a group, a methacryl group, an amino group, a mercapto group and the like are applicable. Among them, it is preferable to have at least one of a methacryl group and a mercapto group. Since these functional groups can be particularly firmly bonded to rubber, the bonding between the rare earth magnet and the rubber layer can be further strengthened. Further, as the silane coupling agent, one having a hydrolyzable silyl group can be applied, and as the hydrolyzable group, for example, a chloro group, an alkoxy group, an acetoxy group, an isopropenoxy group and the like are exemplified. These hydrolyzable silyl groups are hydrolyzed to form silanol groups, which can be bonded to a rare earth magnet.
[0035] このような、例えば、メルカプト基とアルコキシシリル基を有するシランカップリング剤 は、希土類磁石にブチルゴムの層を形成させる場合には、メルカプト基がブチルゴム の不飽和結合部やブチルゴムに存在する硫黄等の加硫剤のラジカルと反応すること で、ブチルゴムと結合する。一方、アルコキシシリル基は、加水分解によって生成した シラノール基が希土類磁石の表面と水素結合すると共に、シラノール基同士がシロキ サンのネットワーク構造を形成する。シランカップリング剤は、このようにして、希土類 磁石とゴムの層とを結合させることができる。 [0035] In such a silane coupling agent having a mercapto group and an alkoxysilyl group, for example, when a rare earth magnet is made to form a butyl rubber layer, a mercapto group is present in the unsaturated bond portion of butyl rubber or in butyl rubber. It reacts with the radical of a vulcanizing agent such as sulfur and bonds with butyl rubber. On the other hand, alkoxysilyl groups were generated by hydrolysis The silanol group forms a hydrogen bond with the surface of the rare earth magnet, and the silanol groups form a network structure of siloxane. The silane coupling agent can thus bond the rare earth magnet and the rubber layer.
[0036] 本発明に係る耐食性希土類磁石は、靭性を有しな 、希土類磁石に対して好ましく 適用でき、その種類は限定されないが、希土類元素としてネオジゥムを含む希土類 磁石に対して適用することが好ましい。希土類元素としてネオジゥムを含む希土類磁 石は、希土類磁石の中でも特に腐食され易ぐこのような希土類磁石に対しても腐食 されるのを防止することができる。  The corrosion resistant rare earth magnet according to the present invention is preferably applicable to a rare earth magnet having no toughness, and the type thereof is not limited, but it is preferable to apply to a rare earth magnet containing neodymium as a rare earth element. . A rare earth magnet containing neodym as a rare earth element can prevent corrosion to such a rare earth magnet which is particularly easily corroded among the rare earth magnets.
[0037] このような耐食性希土類磁石の製造方法は、例えば、以下の方法により作製するこ とができる。まず、カーボンブラック等の補強剤、オイルによる軟化剤、その他加工助 剤や増量剤をゴム生地に加えて混練する。その後、押し出し成形し、加硫工程にお いて加硫を行う。そして、得られたゴムを切断し、二つの容器に分けた溶剤に、ゴムの 固形分がそれぞれ約 15mass%と約 20mass%となるように加えて混合し、粘度がそれ ぞれ約 150センチボイズと約 250センチボイズとなる二種類の溶液を調製する。この 際、溶液に微量の消泡剤を添加するとよい。さらに、それぞれの溶液にシランカツプリ ング剤を 2wt%の割合となるように添加し、真空脱泡しながら混合する。  Such a method for producing a corrosion-resistant rare earth magnet can be produced, for example, by the following method. First, a reinforcing agent such as carbon black, a softener with oil, other processing aids and extenders are added to the rubber base and kneaded. Thereafter, it is extruded and vulcanized in the vulcanization step. Then, the obtained rubber is cut and added to the solvent divided into two containers so that the solid content of the rubber becomes about 15 mass% and about 20 mass%, respectively, and the viscosity is about 150 centioises each. Prepare two solutions that will give about 250 centi. At this time, it is advisable to add a slight amount of antifoaming agent to the solution. Furthermore, add 2 wt% of silane coupling agent to each solution and mix while vacuum degassing.
[0038] このようにして得られた二種類の溶液のうち、まず、粘度が約 250センチボイズの溶 液に希土類磁石を浸漬して、溶液が入った容器全体を真空脱泡し、 1分後に引き上 げ、 150°Cで 10分間放置して、希土類磁石の表面に付着した溶液を半乾燥させる。 続いて、粘度が約 150センチボイズの溶液に希土類磁石を同様に浸漬し、 1分後に 磁石を引き上げ、 160°Cで 30分間放置し、乾燥させると共に、シランカップリング剤を 反応させる。このような方法により、図 1に示すように、希土類磁石に、例えば、 200 μ m程度の厚みのゴムの層を形成させることができる。  [0038] Of the two types of solutions thus obtained, first, the rare earth magnet is dipped in a solution having a viscosity of about 250 centistokes, and the entire vessel containing the solution is degassed under vacuum, and one minute later. Pull up and leave at 150 ° C. for 10 minutes to semi-dry the solution adhering to the surface of the rare earth magnet. Subsequently, the rare earth magnet is similarly immersed in a solution having a viscosity of about 150 centipoise, and after 1 minute, the magnet is pulled up, left at 160 ° C. for 30 minutes, dried, and a silane coupling agent is reacted. According to such a method, as shown in FIG. 1, it is possible to form a rubber layer of about 200 μm in thickness on a rare earth magnet, for example.
なお、上記のゴムを作製する方法において使用する補強剤、軟化剤等の加工助剤 や加硫剤等は、特に限定されるものではなぐ従来公知のものを任意に選択して使 用することができる。  The reinforcing agents, processing aids such as softeners, processing aids such as softeners, and vulcanizing agents used in the method of producing the rubber described above are not particularly limited, and any conventionally known ones may be selected and used. Can.
[0039] 本発明に係る耐食性希土類磁石の製造方法にぉ ヽて、ゴムを溶解させる溶剤は、 特に限定されないが、ゴムが有する溶解度パラメータ (以下、「SP値」と称する)に近 い SP値を持つ溶剤で溶解させることが好ましい。例えば、ブチルゴムの場合、 SP値 は 7. 7〜8. 1である。この SP値に近い溶剤として、 SP値力 . 8の塩化ビュルモノマ 、酢酸イソペンチル、 2, 6—ジメチルー 4—ヘプタン、 SP値力 . 6の n—オクタン、 S P値が 7. 4のジェチルエーテル、 SP値力 . 3の n—へキサン等が挙げられる。シラン カップリング剤を溶解させることを考慮すると、極性を有する酢酸イソペンチルまたは 2, 6—ジメチル一 4—ヘプタンを溶剤として用いることが特に好ましい。 Although the solvent for dissolving the rubber is not particularly limited in the method for producing the corrosion-resistant rare earth magnet according to the present invention, the solvent has a solubility parameter (hereinafter referred to as “SP value”) which the rubber has. It is preferable to dissolve with a solvent having a low SP value. For example, in the case of butyl rubber, the SP value is 7. 7-8. As solvents close to this SP value, bul monomer of SP value .8, isopentyl acetate, 2,6-dimethyl- 4-heptane, SP value .6 n-octane, jetyl ether of SP value 7.4, SP value: 3 n-hexane etc. may be mentioned. In view of dissolving the silane coupling agent, it is particularly preferable to use polar isopentyl acetate or 2,6-dimethyl-4-heptane as a solvent.
[0040] 本発明に係る耐食性希土類磁石に使用する希土類磁石は、従来公知の方法、例 えば、インゴット作製した後、水素を吸着させて数ミクロンオーダの粒子に粉砕し、磁 界を印加させながら成形して焼結させ、さらに時効処理して焼結に伴う歪みを除去す ること〖こより製造することができる。  The rare earth magnet used for the corrosion resistant rare earth magnet according to the present invention is produced by a conventionally known method, for example, after making an ingot, adsorbing hydrogen, grinding it into particles of several microns, and applying a magnetic field. It can be manufactured by molding, sintering, and further aging treatment to remove distortion associated with sintering.
[0041] 本発明にお 、て使用する希土類磁石は、イミダゾール基とアルコキシシリル基とを 有するシラン化合物が、当該化合物及びシランカップリング剤のうち少なくとも一方と 結合して形成した膜で被覆したものであってもよい。すなわち、イミダゾール基とアル コキシシリル基とを有するシランィ匕合物は、シラノール基の縮重合反応によって、希 土類磁石の表面にシロキサンのネットワーク構造を有する緻密な分子膜を形成する。 このため、このような分子膜を有する希土類磁石に、耐気体透過性を有するゴムの層 を設けることにより、耐食性をより向上させることができる。  In the present invention, the rare earth magnet used is one coated with a film formed by bonding a silane compound having an imidazole group and an alkoxysilyl group to at least one of the compound and a silane coupling agent. It may be That is, a silane compound having an imidazole group and an alkoxysilyl group forms a dense molecular film having a siloxane network structure on the surface of a rare earth magnet by condensation polymerization reaction of a silanol group. Therefore, corrosion resistance can be further improved by providing a rubber layer having gas permeability resistance to the rare earth magnet having such a molecular film.
[0042] また、イミダゾール基とアルコキシシリル基とを有するシラン化合物は、希土類磁石 とは、アルコキシシリル基の加水分解で生成したシラノール基が希土類磁石の表面 に水素結合するか、もしくはイミダゾール基の窒素が、希土類磁石の活性相を形成 する合金に配位し、共有結合して錯体を形成することにより結合する。このため、イミ ダゾール基とアルコキシシリル基とを有するシランィ匕合物によって形成された膜は、 希土類磁石カゝら剥がれ難くすることができる。  In the silane compound having an imidazole group and an alkoxysilyl group, the rare earth magnet is such that a silanol group formed by hydrolysis of the alkoxysilyl group is hydrogen-bonded to the surface of the rare earth magnet, or nitrogen of the imidazole group Are coordinated to the alloy forming the active phase of the rare earth magnet, and are bonded by forming a complex by covalent bonding. Therefore, a film formed of a silane compound having an imidazole group and an alkoxysilyl group can be made difficult to peel off from the rare earth magnet.
[0043] さらには、イミダゾール基は、自らが希土類磁石と結合する他、シロキサンのネットヮ ーク構造を形成する際の触媒としても作用することができるため、シランカップリング 剤の加水分解性シリル基に対しても、加水分解を促進し、シランカップリング同士、ま たはイミダゾール基とアルコキシシリル基とを有するシランィ匕合物とにより、シロキサン のネットワークを形成させる。このため、希土類磁石とゴムの層の結合力はさらに強く なる。 Furthermore, the imidazole group can act as a catalyst for forming a network structure of siloxane, as well as bonding itself to a rare earth magnet, and thus the hydrolyzable silyl group of the silane coupling agent On the other hand, hydrolysis is promoted, and a siloxane network is formed by silane couplings or silane coupling compounds having an imidazole group and an alkoxysilyl group. For this reason, the bond strength between the rare earth magnet and the rubber layer is stronger Become.
イミダゾール基とアルコキシシリル基とを有するシランィ匕合物としては、特に限定は されないが、例えば、下記式 (I)及び (Π)に示すようなシランィ匕合物を適用することが できる。なお、下記式 (I)及び (Π)では、メトキシシリル基を例として示した力 メトキシ シリル基に限定されるものではなぐエトキシシリル基、プロボキシシリル基、ブトキシ シリル基等、様々なアルコキシシリル基を有するものが適用される。  The silane compound having an imidazole group and an alkoxysilyl group is not particularly limited, but, for example, a silane compound as shown in the following formulas (I) and (Π) can be applied. In the following formulas (I) and (Π), various alkoxysilyl groups such as ethoxysilyl group, provoxy silyl group, butoxy silyl group, and the like which are not limited to the methoxy silyl group are exemplified. What you have is applied.
[化 1]  [Formula 1]
[化 2]  [Formula 2]
リ C H 3 ) 3 ( Π )Li CH 3) 3 (()
このような耐食性希土類磁石は、例えば、以下の方法により作製することができる。 分子膜は、水蒸気や各種ガスが浸透しない程度の膜厚であればよぐ数十〜 100η m程度の膜を形成するだけでよい。このため、イミダゾール基とアルコキシシリル基と を有するシランィ匕合物を 0. 5wt%程度、シランカップリング剤を 2wt%程度の濃度に なるように溶剤に混合した溶液に希土類磁石を 30分間程度浸漬し、前記シラン化合 物とシランカップリング剤とを磁石表面に吸着させる。この後、希土類磁石を引き上げ 、溶剤の沸点以上の温度で 30分間程度放置して、溶剤を蒸発させ、前記シラン化合 物とシランカップリング剤とを希土類磁石の表面でィ匕学結合させると共に、シロキサン のネットワーク構造を形成させる。その後、希土類磁石を、 2〜3mmHgの雰囲気下 で 1時間程度放置し、シロキサンのネットワーク構造内の溶剤を除去する。そして、希 土類磁石に分子膜を形成した後、溶液にシランカップリング剤を加えな ヽことの他は 、上記の方法と同様の手順によりゴムの層を形成させる。このようにして、希土類磁石 を分子膜とゴムの層とで被覆することができる。 [0046] 本発明に係る耐食性希土類磁石の製造方法にお!、て、前記シラン化合物及びシ ランカップリング剤を溶解させる溶剤は、トルエン、キシレン、メチルェチルケトン、ェ 一テル、ジクロルメタン、アルコール等、任意に選択可能である力 耐食性の観点か らは、トルエン、キシレン、メチルェチルケトン、エーテル、ジクロルメタン等、吸湿性が ないものが好ましい。なお、例えば、溶剤としてトルエンを使用する場合には、 130°C で 30分間程度処理すれば、トルエンを蒸発させると共に、シラノール基の縮重合反 応を進行させることができる。 Such a corrosion-resistant rare earth magnet can be produced, for example, by the following method. As the molecular film, it is only necessary to form a film having a thickness of several tens to 100 mm, as long as the film does not allow water vapor and various gases to penetrate. For this reason, the rare earth magnet is immersed for about 30 minutes in a solution mixed with a solvent so that the concentration of a silane compound having an imidazole group and an alkoxysilyl group is about 0.5 wt% and the silane coupling agent is about 2 wt%. And adsorb the silane compound and the silane coupling agent on the magnet surface. After that, the rare earth magnet is pulled up and left at a temperature above the boiling point of the solvent for about 30 minutes to evaporate the solvent, thereby causing the silane compound and the silane coupling agent to form an atomic bond on the surface of the rare earth magnet. Form a siloxane network structure. Thereafter, the rare earth magnet is left under an atmosphere of 2 to 3 mmHg for about 1 hour to remove the solvent in the siloxane network structure. Then, after forming a molecular film on the rare earth magnet, a rubber layer is formed by the same procedure as the above method except that a silane coupling agent is added to the solution. In this way, the rare earth magnet can be coated with the molecular film and the rubber layer. In the method for producing a corrosion-resistant rare earth magnet according to the present invention, the solvent for dissolving the silane compound and the silane coupling agent is toluene, xylene, methyl ketone, ether, dichloromethane, alcohol From the viewpoint of strength and corrosion resistance which can be optionally selected, it is preferable to use one having no hygroscopic property such as toluene, xylene, methyl ketone, ether, dichloromethane or the like. In addition, for example, when using toluene as a solvent, if it processes at 130 degreeC for about 30 minutes, while evaporating toluene, condensation reaction reaction of a silanol group can be advanced.
[0047] 同様に耐食性の観点から、前記シランィ匕合物は、水酸基を有しな 、上記式 (I)のシ ランィ匕合物の方が吸湿性を有しないため好ましい。さらに、分子膜を作製した後にお いては、溶媒はシロキサンのネットワーク構造内に残存しない方が好ましぐ上記のよ うな低圧処理等により完全に除去することが好まし 、。  Similarly, from the viewpoint of corrosion resistance, the silane compound is preferable because it has no hydroxyl group and the silane compound of the above formula (I) has no hygroscopicity. Furthermore, after the molecular film is produced, it is preferable to completely remove the solvent by the low pressure treatment as described above, which is preferable not to remain in the siloxane network structure.
[0048] また、本発明にお 、て使用する希土類磁石は、磁性イオン液体の膜で被覆したも のであってもよい。磁性イオン液体は、吸湿性がなぐ各種ガスも溶解することがない ため、水蒸気や水素ガスのような分子の小さいガスが透過することもない。また、磁性 イオン液体は、強酸性、強アルカリ性以外の液体に対して反応しないため腐食され 難く、高温時でも蒸気圧がほとんどないため蒸発し難ぐ耐熱性も 300°Cに近い。こ のため、磁性イオン液体は、幅広い環境下で使用することができる。さらに、磁性ィォ ン液体は常磁性体であるため、磁性イオン液体の膜は、希土類磁石に磁気吸着させ ることができ、希土類磁石力 剥離し難くすることができる。したがって、図 2に示すよ うに、磁性イオン液体で被覆した希土類磁石に耐気体透過性を有するゴムの層を設 けることにより、希土類磁石を外界力も遮断して、耐食性をより向上させることができる  Further, the rare earth magnet used in the present invention may be one coated with a film of a magnetic ionic liquid. The magnetic ionic liquid does not dissolve various hygroscopic materials, so it does not transmit small molecule gas such as water vapor and hydrogen gas. In addition, magnetic ionic liquids do not react with liquids other than strongly acidic and strongly alkaline, so they are not easily corroded, and even at high temperatures, they have almost no vapor pressure. Because of this, magnetic ionic liquids can be used in a wide range of environments. Furthermore, since the magnetic ionic liquid is a paramagnetic substance, the film of the magnetic ionic liquid can be magnetically adsorbed to the rare earth magnet, and the rare earth magnetic force can be made difficult to peel off. Therefore, as shown in FIG. 2, by providing a rubber layer having gas permeability resistance to the rare earth magnet coated with the magnetic ionic liquid, it is possible to block the external force of the rare earth magnet and to further improve the corrosion resistance.
[0049] このような磁性イオン液体は、特に限定はされないが、 [Fe M N C1 Such a magnetic ionic liquid is not particularly limited, but [Fe M N C 1
X Y Z 4 Γ—(但し、 M, N はそれぞれ遷移金属原子であり、 x+y+z= l, nは X, y, zにより定まる数値である。 )で表される陰イオンカゝら選ばれる少なくとも 1種の陰イオンを備えるものを使用するこ とができる。具体的には、陰イオンとして、 x= l, y=z = 0, n= lである [FeCl ]—を有  An anionic anion represented by XYZ 4 Γ (where M and N are transition metal atoms and x + y + z = 1 and n are numbers determined by X, y and z) is selected. It is possible to use one with at least one anion. Specifically, as an anion, it has [FeCl 2] which is x = 1, y = z = 0, n = 1
4 し、陽イオンとして 1—ェチル 3—メチルイミダゾリゥム、 1—ブチル 3—メチルイミ ダゾリゥム、 1ーォクチルー 3—メチルイミダゾリゥム、 1 デシルー 3—メチルイミダゾリ ゥムを有する塩化鉄 (III)酸 1 ェチル 3—メチルイミダゾリゥム、塩ィ匕鉄 (III)酸 1 ブチル 3 メチルイミダゾリゥム、塩ィ匕鉄 (III)酸 1—ォクチルー 3 メチルイミダゾリ ゥム、塩ィ匕鉄 (III)酸 1—デシルー 3—メチルイミダゾリゥムが例示される。なお、 1位の アルキル基は、特に限定されないが、炭素数が多い方が、疎水性度が高まるため好 ましぐ 1位のアルキル基は、炭素数が 6〜20であることが好ましい。 4 as cation, 1-ethyl 3-methylimidazolium, 1-butyl 3-methylimidazolyl, 1-octyl 3-methylimidazolium, 1-decyl-3-methylimidazole as cation 1-acetyl 3- (methylimidazolium) chloride, ferric-chloride (III), 1-butyl 3-methylimidazolium chloride, ferric-chloride (III) acid 1-octyl-7-methylimidazole Examples thereof include 1-decyl-3-methylimidazolium of sodium oxalate (III). The alkyl group at the 1-position is not particularly limited, but the higher the carbon number is, the higher the degree of hydrophobicity is, and the alkyl group at the 1-position preferably has 6 to 20 carbon atoms.
[0050] 磁性イオン液体の膜の厚みは、特に制限はないが、ミクロンオーダであることが好ま しい。すなわち、厚みがミクロンオーダの膜であれば、磁性イオン液体にカゝかる重力 よりも希土類磁石の磁性イオン液体に対する磁気吸着力がより大きくなるため、磁性 イオン液体の膜が希土類磁石からさらに剥がれ難くなる。  The thickness of the magnetic ionic liquid film is not particularly limited, but preferably in the order of microns. That is, if the film has a thickness on the order of microns, the magnetic adsorptive power of the rare earth magnet to the magnetic ionic liquid is greater than the gravity of the magnetic ionic liquid, and the magnetic ionic liquid film is further difficult to peel off from the rare earth magnet. Become.
[0051] このような耐食性希土類磁石は、例えば、以下の方法により作製することができる。  Such corrosion-resistant rare earth magnet can be manufactured, for example, by the following method.
すなわち、まず、希土類磁石を磁性イオン液体に浸漬する。上記の例示した磁性ィ オン液体の場合、 30でにぉぃて14〜15111?& ' 3の粘度を有するカ 希土類磁石を 浸漬した場合には、液体としての粘度に加えて磁気的な吸引力が加わるため、低粘 度の液体でありながら、 10 mを越える厚みで磁性イオン液体を吸着させることがで きる。そして、磁性イオン液体が磁気吸着した希土類磁石を、回転装置に固定して回 転させ、その遠心力により磁性イオン液体の一部を飛散させて、例えば 5 m程度の 厚みの膜とする。この場合、磁性イオン液体の厚みは、磁性イオン液体に働く遠心力 と希土類磁石と磁性イオン液体との磁気吸引力の大きさとの関係を考慮することによ り設定することができる。そして、希土類磁石に磁性イオン液体を形成した後、上記 の方法と同様の手順によりゴムの層を形成させる。このようにして、希土類磁石を磁 性イオン液体とゴムの層とで被覆することができる。なお、磁性イオン液体は、シラン カップリング剤とは反応しないため、ゴムの層を形成させる際のゴム溶液には、シラン カップリング剤はカ卩えな 、。  That is, first, the rare earth magnet is immersed in the magnetic ionic liquid. In the case of the magnetic ion liquid exemplified above, when a rare earth magnet having a viscosity of 14 to 15111? & '3 at 30 is immersed, the magnetic attraction force in addition to the viscosity as the liquid is absorbed. As a result, it is possible to adsorb the magnetic ionic liquid with a thickness of more than 10 m even though it is a low viscosity liquid. Then, the rare earth magnet on which the magnetic ionic liquid is magnetically adsorbed is fixed to a rotating device and rotated, and a part of the magnetic ionic liquid is scattered by the centrifugal force to form a film having a thickness of, for example, about 5 m. In this case, the thickness of the magnetic ionic liquid can be set by considering the relationship between the centrifugal force acting on the magnetic ionic liquid and the magnitude of the magnetic attraction between the rare earth magnet and the magnetic ionic liquid. Then, after a magnetic ionic liquid is formed on the rare earth magnet, a rubber layer is formed by the same procedure as the above method. In this way, the rare earth magnet can be coated with the magnetic ionic liquid and the rubber layer. In addition, since the magnetic ionic liquid does not react with the silane coupling agent, the silane coupling agent may not be present in the rubber solution when forming the rubber layer.
[0052] さらに、本発明において使用する希土類磁石は、極性基を有し、当該極性基がカツ プリング剤を介して希土類磁石と結合して ヽる油の膜で被覆したものであってもよ ヽ 。希土類磁石の表面全体を油の膜によって被覆しているため、水蒸気や各種ガスが 透過することを防止することができる。また、油の極性基力 希土類磁石とカップリン グ剤を介して結合することができるため、油と希土類磁石との結合力が強くなり、油の 膜が希土類磁石カゝら剥がれ難くすることができる。したがって、油の膜で被覆した希 土類磁石に耐気体透過性を有するゴムの層を設けることにより、希土類磁石を外界 力 遮断して、耐食性をより向上させることができる。し力も、油の極性基は、ゴムの層 とカップリング剤を介して結合することができるため、油の膜とゴムの層との結合も強 固なものとなる。 Furthermore, the rare earth magnet used in the present invention may have a polar group, and the polar group may be bonded to the rare earth magnet through a coupling agent and coated with an oil film.ヽSince the entire surface of the rare earth magnet is covered with a film of oil, permeation of water vapor and various gases can be prevented. In addition, since the polar base force of oil can be bonded to the rare earth magnet through the coupling agent, the bonding strength between the oil and the rare earth magnet is enhanced, and the oil The film can be made difficult to peel off from the rare earth magnet. Therefore, by providing a layer of rubber having gas resistance to a rare earth magnet coated with an oil film, the external force of the rare earth magnet can be blocked to further improve the corrosion resistance. Also, since the polar groups of the oil can be bonded to the rubber layer via the coupling agent, the bond between the oil film and the rubber layer is also strong.
[0053] 極性基を有する油は、表 1に示す特性を有するものが好ましぐ例えば、ポリオール エステル等を適用することができる。  As the oil having a polar group, one having properties shown in Table 1 is preferable, and, for example, a polyol ester or the like can be applied.
極性基としては、上記ポリオールエステルが有する水酸基、エステル基の他、アミド 基、カルボニル基、シァノ基、ウレタン基等が例示され、特に限定されない。  As a polar group, in addition to the hydroxyl group and ester group which the said polyol ester has, an amide group, a carbonyl group, a cyano group, a urethane group etc. are illustrated, It does not specifically limit.
[0054] [表 1] [Table 1]
ポリオールエステルは、ネオペンチル構造をもつ多価アルコールと脂肪酸とが結合 するエステルイ匕反応によって生成される。ポリオールエステルの耐加水分解性は、脂 肪酸の種類によって決まり、特に限定はされないが、例えば、脂肪酸として、吉草酸 The polyol ester is produced by an esterifying reaction in which a polyhydric alcohol having a neopentyl structure and a fatty acid are bonded. The hydrolysis resistance of the polyol ester depends on the type of fatty acid, and is not particularly limited. For example, as a fatty acid, valeric acid
、イソ吉草酸、へキサン酸、ヘプタン酸、オクタン酸、イソオクタン酸、 2—ェチルへキ シル酸、ペラルゴン酸、イソノナン酸、デカン酸等が適用することができる。中でも、 2 —ェチルへキシル酸が耐加水分解性に優れているため、特に好ましい。一方、ポリ オールエステルの粘度は、多価アルコールの種類によって決まり、特に限定はされな いが、粘性が低くなる多価アルコールとして、ペンタエリスリトール、ジペンタエリスリト ール、ネオペンチルダリコール等が例示できる。このような多価アルコールを用いれ ば、常温におけるポリオールエステルの粘度を、 40〜50cStにすることができる。こ のため、デイツビング法によって、希土類磁石をミクロンオーダの膜で被覆することが できる。 It is possible to apply isovaleric acid, hexanoic acid, heptanoic acid, octanoic acid, isooctanoic acid, 2-ethylhexyl acid, pelargonic acid, isononanoic acid, decanoic acid and the like. Among them, 2-ethylhexyl acid is particularly preferable because it is excellent in hydrolysis resistance. Meanwhile, poly The viscosity of the all ester is determined depending on the type of polyhydric alcohol, and is not particularly limited. Examples of the polyhydric alcohol having a low viscosity include pentaerythritol, dipentaerythritol, neopentyl darylol and the like. If such a polyhydric alcohol is used, the viscosity of the polyol ester at normal temperature can be 40 to 50 cSt. Therefore, the rare earth magnet can be coated with a micron order film by the dicing method.
[0056] 上記の油と希土類磁石を結合させるカップリング剤としては、チタン系、アルミ-ゥ ム系、シラン系等のカップリング剤を使用することができるが、特に、沸点が高ぐ疎 水性であるものが好ましぐこのようなカップリング剤として、例えば、上記式 (I)及び (I I)のシランィ匕合物を適用することができる。このシランィ匕合物は、上記の通り、希土類 磁石と結合すると共に、膜を形成する油とは、油の極性基とシラノール基との相互作 用により結合する。  As the coupling agent for bonding the above-mentioned oil and the rare earth magnet, coupling agents such as titanium-based, aluminum-based and silane-based coupling agents can be used. As such a coupling agent which is preferably, for example, silane compounds of the above formulas (I) and (II) can be applied. As described above, the silane compound bonds to the rare earth magnet and to the film-forming oil by the interaction between the polar group of the oil and the silanol group.
[0057] ポリオールエステルと前記シランィ匕合物を用いた耐食性希土類磁石は、例えば、以 下の方法により作製することができる。すなわち、まず、前記シランィ匕合物を 0. 5wt %程度、シランカップリング剤を 2wt%程度の濃度になるように溶剤に混合した溶液 に希土類磁石を 30分間程度浸漬し、前記シランィ匕合物とシランカップリング剤とを磁 石表面に吸着させる。続いて、この希土類磁石を、 80〜100°Cに昇温したポリオ一 ルエステルに 1時間程度浸漬し、この後、溶媒を蒸発させると共に、ポリオールエステ ルと前記シランィ匕合物とをィ匕学反応させて、希土類磁石の表面に前記シラン化合物 を介してポリオールエステルを結合させる。その後、希土類磁石を、 2〜3mmHgの 雰囲気下で 1時間程度放置し、溶剤を除去する。このようにして、希土類磁石に厚み が 10 m程度の油の膜を形成することができる。そして、希土類磁石に油の膜を形 成した後、上記の方法と同様の手順により、シランカップリング剤を介してゴムの層を 形成させる。このようにして、希土類磁石を油の膜とゴムの層とで被覆することができ る。  A corrosion-resistant rare earth magnet using a polyol ester and the above-mentioned silane compound can be produced, for example, by the following method. That is, first, the rare earth magnet is dipped for about 30 minutes in a solution in which the silane compound is mixed with a solvent to a concentration of about 0.5 wt% and a silane coupling agent to a concentration of about 2 wt%. And the silane coupling agent are adsorbed on the magnet surface. Subsequently, the rare earth magnet is immersed in a polyol ester heated to 80 to 100 ° C. for about one hour, after which the solvent is evaporated and the polyol ester and the silane compound are mixed. The reaction is carried out to bond the polyol ester to the surface of the rare earth magnet via the silane compound. Thereafter, the rare earth magnet is allowed to stand under an atmosphere of 2 to 3 mmHg for about 1 hour to remove the solvent. Thus, a film of oil having a thickness of about 10 m can be formed on the rare earth magnet. Then, after a film of oil is formed on the rare earth magnet, a layer of rubber is formed through the silane coupling agent by the same procedure as the method described above. In this way, the rare earth magnet can be coated with a film of oil and a layer of rubber.
[0058] 前記分子膜を作製する場合と同様に、前記シラン化合物を溶解させる溶剤は、トル ェン、キシレン、メチルェチルケトン、エーテル、ジクロルメタン等、吸湿性がないもの が好ましぐ前記シランィ匕合物は、上記式 (I)のような吸湿性を有しないものが好まし い。また、溶媒は、油の膜内に残存しないように、可能な限り除去することが好ましい As in the case of producing the molecular film, the solvent for dissolving the silane compound is preferably a solvent having no hygroscopic property such as toluene, xylene, methyl ethyl ketone, ether, dichloromethane or the like. The compound is preferably one having no hygroscopicity as in the above formula (I). Yes. Also, it is preferable to remove the solvent as much as possible so as not to remain in the oil film.
[0059] また、油の膜を形成させた後、ゴムの層を形成させる際のゴムの溶液には、前記シ ランィ匕合物を混合させることができる。これにより、油の膜とゴムの層との間にもシロキ サンのネットワーク構造による分子膜を作製することができるため、耐食性をさらに向 上させることができる。この場合、前記シラン化合物はゴムの溶液に 0. 5wt%程度混 合すればよい。 In addition, after the oil film is formed, the above-mentioned mixture can be mixed with the rubber solution in forming the rubber layer. This makes it possible to produce a molecular film having a silica network structure also between the oil film and the rubber layer, thereby further improving the corrosion resistance. In this case, the silane compound may be mixed with the solution of rubber at about 0.5 wt%.
[0060] (実施例)  (Example)
以下、希土類磁石として、希土類元素にネオジゥムを含む所謂ネオジゥム磁石を用 V、た実施例につ 、て説明する。  Hereinafter, an embodiment in which a so-called neodymium magnet containing neodymium as a rare earth element is used as the rare earth magnet V will be described.
[0061] (実施例 1) Example 1
ゴムとしてブチルゴムを用い、上記の方法により、図 1に示すように、ネオジゥム磁石 を約 200 mの厚みのブチルゴムの層で被覆した耐食性希土類磁石を作製し、表2 に示す試験を行った。 Using a butyl rubber as the rubber, a corrosion resistant rare earth magnet was prepared by coating a neodymium magnet with a butyl rubber layer having a thickness of about 200 m by the above method as shown in FIG. 1, and the test shown in Table 2 was conducted.
[0062] (実施例 2) Example 2
上記式 (I)に示したシランィ匕合物を用い、上記の方法により、ネオジゥム磁石を約 1 OOnmの厚みの分子膜で被覆した後、さらに実施例 1と同様にブチルゴムの層で被 覆した耐食性希土類磁石を作製し、表 2に示す試験を行った。  A neodymium magnet was coated with a molecular film having a thickness of about 100 nm according to the above method using the silane compound shown in the above formula (I) and then covered with a butyl rubber layer in the same manner as in Example 1. Corrosion resistant rare earth magnets were prepared and the tests shown in Table 2 were conducted.
[0063] (実施例 3) Example 3
磁性イオン液体として、塩ィ匕鉄 (III)酸 1ーォクチルー 3—メチルイミダゾリウムを用 い、上記方法により、ネオジゥム磁石を約 5 mの厚みの磁性イオン液体の膜で被覆 した後、さらに実施例 1と同様にブチルゴムの層で被覆した図 2に示すような耐食性 希土類磁石を作製し、表 2に示す試験を行った。  A neodymium magnet is coated with a film of a magnetic ionic liquid having a thickness of about 5 m according to the above method using a magnetic ionic liquid 1-oxtyl-3-ethylimidazolium chloride (III) as the magnetic ionic liquid, and then the example is further described. A corrosion resistant rare earth magnet as shown in FIG. 2 coated with a butyl rubber layer in the same manner as 1 was prepared, and the test shown in Table 2 was conducted.
[0064] (実施例 4) Example 4
極性基を有する油としてポリオールエステルを用い、カップリング剤として、上記式( I)に示したイミダゾールシランィ匕合物を用いて、上記方法により、ネオジゥム磁石を約 10 mの厚みの油の膜で被覆した後、さらに実施例 1と同様にブチルゴムの層で被 覆した耐食性希土類磁石を作製し、表 2に示す試験を行った。 [0065] (実施例 5) Using a polyol ester as an oil having a polar group and using an imidazole silane compound shown in the above formula (I) as a coupling agent, a neodymium magnet is formed into an oil film of about 10 m thickness by the above method After coating with the above, a corrosion-resistant rare earth magnet covered with a butyl rubber layer was prepared in the same manner as in Example 1, and the test shown in Table 2 was performed. Example 5
極性基を有する油としてポリオールエステルを用い、カップリング剤として、上記式( I)に示したイミダゾールシランィ匕合物を用いて、上記方法により、ネオジゥム磁石を約 10 mの厚みの油の膜で被覆した後、さらに実施例 2と同様に分子膜とブチルゴム の層とで被覆した耐食性希土類磁石を作製し、表 2に示す試験を行った。  Using a polyol ester as an oil having a polar group and using an imidazole silane compound shown in the above formula (I) as a coupling agent, a neodymium magnet is formed into an oil film of about 10 m thickness by the above method In the same manner as in Example 2, a corrosion-resistant rare earth magnet coated with a molecular film and a butyl rubber layer was prepared, and the test shown in Table 2 was performed.
[0066] 表面強度の試験は、希土類磁石の取り扱い易さを示す指標になるものである。落 下衝撃試験後の評価は、目視確認の他、表 2に示す過飽和水蒸気試験 1により、落 下衝撃の損傷度合 、を調べる。  The surface strength test is an index indicating the ease of handling of the rare earth magnet. For evaluation after the drop impact test, examine the degree of damage to the drop impact by the supersaturated steam test 1 shown in Table 2 in addition to visual confirmation.
[0067] 緻密性の試験は、希土類磁石を使用する環境下での遮断性能を示す指標になる ものである。温湿度サイクル試験では、結露状態で希土類磁石を使用する場合を想 定し、希土類磁石を、湿度 85%R. H.の条件下で、 25°Cから 85°Cへ 0. 25時間で 昇温し、 85°Cで 6時間保持した後、— 30°Cまで 0. 5時間で冷却して、— 30°Cで 3時 間保持し、さら〖こ 25°Cまで 0. 25時間で昇温して、 25°Cで 2時間保持するという温湿 度サイクルの環境下に曝した時の遮断性能を評価するものである。沸騰試験では、 希土類磁石が自動車のラジェータの冷却水中に浸漬されて ヽるような場合を想定し 、水蒸気の透過性を評価するものである。また、過飽和水蒸気試験では、高圧水蒸 気の透過性を評価するものであり、水素ガス透過試験では、燃料電池に用いられる モータを想定し、高圧の水素ガスの耐透過性を評価するものである。なお、水素ガス は最も小さ 、分子であるため、被膜の耐透過性能は水素ガスの透過性を調べること で足りる。  [0067] The compactness test is an indicator of the blocking performance in an environment using a rare earth magnet. In the temperature-humidity cycle test, assuming that rare earth magnets are used in the dew condensation state, the rare earth magnets are heated from 25 ° C to 85 ° C for 0.25 hours under the conditions of humidity 85% RH, After holding at 85 ° C. for 6 hours, cool to −30 ° C. for 0.5 hours, hold at −30 ° C. for 3 hours, and further heat to 25 ° C. for 0.25 hours It is to evaluate the blocking performance when it is exposed to the environment of the temperature and humidity cycle of holding at 25 ° C for 2 hours. In the boiling test, the permeability of water vapor is evaluated on the assumption that the rare earth magnet is immersed in the cooling water of the automobile's radiator and is shaken. In the supersaturated steam test, the permeability of high-pressure water vapor is evaluated, and in the hydrogen gas permeation test, the permeability resistance of high-pressure hydrogen gas is evaluated, assuming a motor used for a fuel cell. is there. Since hydrogen gas is the smallest and molecule, the permeation resistance of the film is sufficient by examining the permeability of hydrogen gas.
[0068] 反応性は、希土類磁石が反応して表面が破壊されるカゝ否かを調べるものである。塩 水浸漬試験では、塩水に対する耐腐食性を評価するものである。加圧酸素 LLC溶 液浸漬試験では、希土類磁石が自動車のラジェータの冷却水中に浸漬されて使用 され、冷却水中の不凍液 (LLC溶液)が酸化されている場合を想定し、 LLC溶液〖こ 2 気圧の酸素ガスを強制的に送り込み、 100°C以上で一定時間処理することにより、強 制的に酸ィ匕させた LLC溶液に対する反応性を評価するものである。イオン性液体浸 漬試験は、希土類磁石が自動車のラジェータの冷却水中に浸漬されて使用され、ラ ジエータ自体が腐食されて LLC溶液中に金属イオンや酸性イオンが混入して ヽる場 合を想定し、金属イオンとして Cu2+イオンを用い、酸性イオンとして C1—イオンと SO [0068] The reactivity is to determine whether or not the rare earth magnet reacts to destroy the surface. The salt water immersion test evaluates the corrosion resistance to salt water. In the pressurized oxygen LLC solution immersion test, it is assumed that the rare earth magnet is used by being immersed in the cooling water of the automobile's radiator, and the antifreeze liquid (LLC solution) in the cooling water is oxidized. The reaction with the forcibly oxidized LLC solution is evaluated by forcibly introducing oxygen gas and treating it at a temperature of 100 ° C. or more for a predetermined time. In the ionic liquid immersion test, a rare earth magnet is used by being immersed in cooling water of a car's radiator, the radiator itself is corroded, and metal ions and acid ions are mixed in the LLC solution and found to be damaged. Assuming that the metal ion is Cu 2+ ion, the acid ion is C 1 − ion and SO 2
4 Four
—イオンとを用いて、それぞれのイオンを所定濃度で溶解させた水溶液に対する反応 性の評価をするものである。 The use of ions is used to evaluate the reactivity to an aqueous solution in which each ion is dissolved at a predetermined concentration.
[表 2][Table 2]
その結果、表 3に示す通りであった。  The results are as shown in Table 3.
落下衝撃試験では、全ての実施例について損傷が見られなカゝつた。希土類磁石を 厚み 200 mのブチルゴムの層で被覆することにより、機械的強度が向上することが 分かった。  In the drop impact test, no damage was found in all the examples. It was found that the mechanical strength is improved by coating the rare earth magnet with a 200 m thick butyl rubber layer.
煮沸試験 2、過飽和水蒸気試験 2、水素ガス透過性試験 2、加圧酸素 LLC溶液浸 漬試験 2、イオン性液体浸漬試験 2では、実施例 1の磁石の表面に変化が見られた。 実施例 2では、煮沸試験 2、過飽和水蒸気試験 2において、わずかに磁石表面に変 化が見られ、水素ガス透過性試験 2、加圧酸素 LLC溶液浸漬試験 2、イオン性液体 浸漬試験 2では磁石表面に変化が見られた。また、実施例 4では、加圧酸素 LLC溶 液浸漬試験 2において、わずかに磁石表面に変化が見られ、イオン性液体浸漬試験 2において、ごくわずかに磁石表面に変化が見られた。その他の試験については、い ずれの実施例の耐食性希土類磁石も特に変化はなかった。 In the boiling test 2, supersaturated steam test 2, hydrogen gas permeability test 2, pressurized oxygen LLC solution immersion test 2, and the ionic liquid immersion test 2, changes were observed on the surface of the magnet of Example 1. In Example 2, a slight change in the magnet surface is observed in boiling test 2 and supersaturated steam test 2, and hydrogen gas permeability test 2, pressurized oxygen LLC solution immersion test 2, ionic liquid immersion test 2 in magnet There was a change in the surface. Further, in Example 4, a slight change in the magnet surface was observed in the pressurized oxygen LLC solution immersion test 2, and the ionic liquid immersion test In the case of No. 2, a slight change in the magnet surface was observed. With respect to the other tests, the corrosion-resistant rare earth magnet in any of the examples did not particularly change.
[表 3][Table 3]
このように、本発明に係る弾性を有する希土類磁石は、 ヽずれの場合も従来の希 土類磁石に比べて、耐食性及び耐衝撃性が向上していることが分力ゝつた。そして、本 発明に係る耐食性希土類磁石のうち、 Vヽずれの耐食性希土類磁石を使用するかはThus, the elastic rare earth magnet according to the present invention can be used as a conventional rare earth magnet even in the case of misplacement. It is necessary to improve the corrosion resistance and the impact resistance as compared with the earth-earth magnet. And, among the corrosion-resistant rare earth magnets according to the present invention, whether to use a corrosion-resistant rare earth magnet with V deviation
、用途に応じて適宜選択することができる。例えば、耐水素ガス透過性や酸性溶液、 イオン性液体に対する高い耐食性が求められない環境下で使用する場合には、実 施例 1を用いることができる。 And may be appropriately selected depending on the application. For example, when used under an environment where hydrogen gas resistance, acid solution, and high corrosion resistance to ionic liquids are not required, Example 1 can be used.
[0073] 本発明に係る耐食性希土類磁石は、磁石を支持する支持部材に接着剤を介して 固定する磁石の固定構造に適用することができる。すなわち、一般に、希土類磁石 は、磁ィ匕容易軸方向とこれに垂直な方向とで線膨張率が異なる。例えば、ネオジゥム '鉄'ボロン磁石では、磁化容易軸方向の線膨張率は 5. 2 X 10_6/°Cであり、これに 垂直な方向の線膨張率は— 0. 8 X 10_6/°Cである。このように、磁化容易軸方向とこ れに垂直な方向では、熱膨張が異なっており、このような磁石では、温度上昇によつ て磁ィ匕容易軸方向は膨張するのに対し、これに垂直方向では縮小する。このため、 希土類磁石を支持部材に接着剤によって固定した後、永久磁石が熱膨張や熱収縮 すると、希土類磁石は接着剤によりその動きが抑制され、応力が発生して不具合が 生じる虞があった。そこで、本発明に係る耐食性希土類磁石を磁石の固定構造に適 用すれば、使用環境の温度が変化して希土類磁石が大きく体積変化する場合であ つても、ゴムの弾性変形によって、その体積変化に追随することができる。したがって 、希土類磁石の体積変化が妨げられることにより、不具合が発生することを防止する ことができる。 The corrosion-resistant rare earth magnet according to the present invention can be applied to a fixing structure of a magnet fixed to a support member supporting the magnet via an adhesive. That is, in general, in the rare earth magnet, the coefficient of linear expansion differs between the direction of the easy axis of magnetization and the direction perpendicular thereto. For example, in the case of neodymium 'iron' boron magnet, the linear expansion coefficient in the direction of easy magnetization axis is 5.2 × 10 6 / ° C., and the linear expansion coefficient in the direction perpendicular thereto is − 0.8 X 10 6 / ° It is C. Thus, the thermal expansion differs in the direction of the easy axis of magnetization and in the direction perpendicular thereto, and in such a magnet, the direction of the easy axis expands due to the temperature rise. Reduce in the vertical direction. For this reason, when the permanent magnet is thermally expanded or thermally shrunk after the rare earth magnet is fixed to the support member by the adhesive, the movement of the rare earth magnet is suppressed by the adhesive, and stress may be generated to cause a failure. . Therefore, if the corrosion resistant rare earth magnet according to the present invention is applied to the fixing structure of the magnet, even if the volume of the rare earth magnet changes due to a change in temperature of the use environment, the volume change due to elastic deformation of rubber. Can follow. Therefore, by preventing the volume change of the rare earth magnet, it is possible to prevent the occurrence of problems.
[0074] 以下、本発明に係る耐食性希土類磁石を適用した磁石の固定構造の一実施形態 について、図面を参照して説明する。ここでは、図 3に示すような直流モータ(以下、「 モータ」と称する) 1に適用した場合を例として説明する。  Hereinafter, an embodiment of a magnet fixing structure to which the corrosion resistant rare earth magnet according to the present invention is applied will be described with reference to the drawings. Here, a case where it is applied to a direct current motor (hereinafter referred to as “motor”) 1 as shown in FIG. 3 will be described as an example.
[0075] モータ 1は、支持部材としてのハウジング 2と、ハウジング 2に取り付けられた本発明 の耐食性希土類磁石 3と、ハウジング 2の内部に挿入されたロータ 4とを備えて構成さ れ、ロータ 4には、ロータ 4が回転する際の回転軸となるシャフト 5と、電流を流して口 ータ 4を磁化させるためのコイル 6とが設けられて!/、る。ハウジング 2はヨークを兼ねる ものであり、ハウジング 2と耐食性希土類磁石 3とは接着剤によって接着されている。 なお、耐食性希土類磁石 3はブチルゴムの層 7によって希土類磁石 8を被覆したもの であり、ブチルゴムの層 7は希土類磁石 8とシランカップリング剤を介して結合して ヽ る。 The motor 1 includes a housing 2 as a support member, a corrosion-resistant rare earth magnet 3 of the present invention attached to the housing 2, and a rotor 4 inserted inside the housing 2. The motor 4 is provided with a shaft 5 serving as a rotation shaft when the rotor 4 rotates, and a coil 6 for flowing an electric current to magnetize the mouth 4 !. The housing 2 doubles as a yoke, and the housing 2 and the corrosion-resistant rare earth magnet 3 are bonded by an adhesive. In addition, the corrosion-resistant rare earth magnet 3 has a rare earth magnet 8 coated with a layer 7 of butyl rubber The butyl rubber layer 7 is bonded to the rare earth magnet 8 via a silane coupling agent.
[0076] 耐食性希土類磁石 3の厚みは、ハウジング 2と耐食性希土類磁石 3との周方向の加 ェ精度に準じて設定される。例えば、その加工精度が ± 50 mであれば、両者の最 大公差は 100 mになる。この 100 mの最大公差を、ゴムの反発力を有する状態、 すなわちゴムを弾性変形させたままで耐食性希土類磁石 3をハウジング 2に固定する ためには、ゴムの層の厚みは少なくとも 200 μ m程度とすればよい。  The thickness of the corrosion resistant rare earth magnet 3 is set in accordance with the circumferential direction etching accuracy of the housing 2 and the corrosion resistant rare earth magnet 3. For example, if the machining accuracy is ± 50 m, the maximum tolerance of both is 100 m. In order to fix the corrosion resistant rare earth magnet 3 to the housing 2 while the rubber is elastically deformed, the thickness of the rubber layer is at least about 200 μm. do it.
[0077] ここで、モータ 1の組立工程の一例を示すと、まず、ハウジング 2に耐食性希土類磁 石 3を挿入し、接着剤により接着して、耐食性希土類磁石 3をハウジング 2に固定する 。そして、ハウジング 2と耐食性希土類磁石 3を備えるハウジング部材に、ロータ 4とシ ャフト 5とコイル 6とを備え、サブアセンブリされたロータ部材と、サブアセンブリされた エンドベルキヤップ部材(図示せず)とを挿入して、ハウジング部材に固定する。なお 、モータ 1のその他の構成は、従来公知のものと同様である。  Here, when an example of an assembly process of the motor 1 is shown, first, the corrosion resistant rare earth magnet 3 is inserted into the housing 2 and bonded with an adhesive to fix the corrosion resistant rare earth magnet 3 to the housing 2. Then, the housing member comprising the housing 2 and the corrosion-resistant rare earth magnet 3 is provided with the rotor 4, the shaft 5 and the coil 6, and the sub-assembled rotor member and the sub-assembled end bell cup member (not shown) Insert and secure to the housing member. The other configuration of the motor 1 is the same as that of the conventionally known one.
[0078] 以上の通り、本発明に係る耐食性希土類磁石 3をモータ 1に適用することにより、例 えば、モータ 1を自動車等に使用して幅広い温度変化があつたとしても、ブチルゴム の層 7は形状変化自在であるため、希土類磁石 8の体積変化に追随することができ、 モータ 1に不具合が発生することはない。また、ブチルゴムの層 7は希土類磁石 8とシ ランカップリング剤を介して強固に結合しているため、モータ 1が稼動しても、遠心力 によってブチルゴムの層 7が希土類磁石 8が引き剥がされることはない。  As described above, by applying the corrosion-resistant rare earth magnet 3 according to the present invention to the motor 1, for example, even if the motor 1 is used in an automobile etc. and the temperature changes widely, the butyl rubber layer 7 Since the shape change is possible, the volume change of the rare earth magnet 8 can be followed, and no trouble occurs in the motor 1. In addition, since the butyl rubber layer 7 is strongly bonded to the rare earth magnet 8 via the silane coupling agent, even if the motor 1 operates, the butyl rubber layer 7 is peeled off by the centrifugal force. There is nothing to do.
[0079] また、本発明に係る耐食性希土類磁石 3は、モータ 1の用途や使用環境に応じて、 ゴムの層のゴムの種類、厚み等、任意に設定可能であり、ゴムの層にカ卩えて、上記の 分子膜、磁性イオン液体の膜、油の膜等を形成させることも可能である。  In addition, the corrosion-resistant rare earth magnet 3 according to the present invention can be arbitrarily set, such as the type and thickness of the rubber of the rubber layer, in accordance with the application of the motor 1 and the use environment. It is also possible to form the above-mentioned molecular film, magnetic ionic liquid film, oil film and the like.
産業上の利用可能性  Industrial applicability
[0080] 本発明に係る耐食性希土類磁石は、優れた耐食性と耐衝撃性を有するため、従来 の希土類磁石が用いられる用途はもちろんのこと、これまで希土類磁石が適用でき な力つた用途等、様々な用途に適用することができる。 Since the corrosion resistant rare earth magnet according to the present invention has excellent corrosion resistance and impact resistance, various applications, such as conventional rare earth magnets, as well as applications to which rare earth magnets can not be applied, can be used. Can be applied to various applications.
図面の簡単な説明  Brief description of the drawings
[0081] [図 1]本発明に係る耐食性希土類磁石の断面の模式図 圆 2]本発明に係る耐食性希土類磁石の断面の模式図 圆 3]本実施形態に係るモータの構成を示す断面図 [FIG. 1] A schematic view of the cross section of the corrosion resistant rare earth magnet according to the present invention [2] A schematic view of the cross section of the corrosion resistant rare earth magnet according to the present invention [3] A cross section showing the configuration of the motor according to the present embodiment

Claims

請求の範囲 The scope of the claims
[1] 希土類磁石を、耐気体透過性を有するゴムの層で被覆してある耐食性希土類磁石  [1] A corrosion-resistant rare earth magnet in which the rare earth magnet is coated with a layer of gas-permeable rubber
[2] 前記ゴムの層は、前記希土類磁石とシランカップリング剤を介して結合して 、る請 求項 1に記載の耐食性希土類磁石。 [2] The corrosion resistant rare earth magnet according to claim 1, wherein the rubber layer is bonded to the rare earth magnet via a silane coupling agent.
[3] 前記シランカップリング剤は、メタクリル基及びメルカプト基のうち少なくとも 、ずれか 一方を有する請求項 2に記載の耐食性希土類磁石。 [3] The corrosion resistant rare earth magnet according to claim 2, wherein the silane coupling agent has at least one of a methacryl group and a mercapto group.
[4] 前記希土類磁石は、イミダゾール基とアルコキシシリル基とを有するシランィ匕合物が[4] The rare earth magnet is a silane compound having an imidazole group and an alkoxysilyl group.
、当該化合物及び前記シランカップリング剤のうち少なくとも一方と結合して形成した 膜で被覆してあり、当該膜が前記希土類磁石と結合して ヽる請求項 2に記載の耐食 性希土類磁石。 The corrosion-resistant rare earth magnet according to claim 2, coated with a film formed by bonding with at least one of the compound and the silane coupling agent, and the film is bonded with the rare earth magnet.
[5] 前記希土類磁石は、磁性イオン液体の膜、または極性基を有し、当該極性基が力 ップリング剤を介して前記希土類磁石と結合している油の膜で被覆してある請求項 1 に記載の耐食性希土類磁石。  [5] The rare earth magnet is coated with a film of a magnetic ionic liquid or a film of oil having a polar group, and the polar group is bonded to the rare earth magnet via a coupling agent. Corrosion resistant rare earth magnet as described in.
[6] 請求項 1〜5のいずれか一項に記載の耐食性希土類磁石を、磁石を支持する支持 部材に、接着剤を介して接着してある磁石の固定構造。  [6] A fixing structure of a magnet in which the corrosion resistant rare earth magnet according to any one of claims 1 to 5 is bonded to a supporting member for supporting the magnet via an adhesive.
PCT/JP2005/024087 2005-12-28 2005-12-28 Anticorrosive rare earth magnet WO2007077602A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/024087 WO2007077602A1 (en) 2005-12-28 2005-12-28 Anticorrosive rare earth magnet
JP2007552824A JPWO2007077602A1 (en) 2005-12-28 2005-12-28 Corrosion resistant rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/024087 WO2007077602A1 (en) 2005-12-28 2005-12-28 Anticorrosive rare earth magnet

Publications (1)

Publication Number Publication Date
WO2007077602A1 true WO2007077602A1 (en) 2007-07-12

Family

ID=38227969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024087 WO2007077602A1 (en) 2005-12-28 2005-12-28 Anticorrosive rare earth magnet

Country Status (2)

Country Link
JP (1) JPWO2007077602A1 (en)
WO (1) WO2007077602A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064471A (en) * 2014-01-17 2014-04-10 Nippon Soken Inc Rotary electric machine
EP2436931B1 (en) * 2010-09-30 2018-03-07 KSB SE & Co. KGaA Device for driving a shaft
CN109585111A (en) * 2018-11-19 2019-04-05 浙江东阳东磁稀土有限公司 A kind of preparation method of no dysprosium terbium high-performance permanent magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681908A (en) * 1980-10-14 1981-07-04 Seiko Epson Corp Rare earth metal intermetallic compound sintered magnet having covered surface
JPS63187603A (en) * 1987-01-30 1988-08-03 Tokin Corp Permanent magnet having improved resistance to oxidation and manufacture thereof
JP2002313621A (en) * 2001-04-17 2002-10-25 Nippon Kayaku Co Ltd Silicone resin composition and resin-bonded molded metallic parts
JP2005129690A (en) * 2003-10-23 2005-05-19 Sumitomo Metal Mining Co Ltd Rare-earth injection molded bond magnet and its manufacturing method
JP2005259761A (en) * 2004-03-09 2005-09-22 Tdk Corp Method of manufacturing bonded magnet and rubber magnet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553843B2 (en) * 1986-09-03 1996-11-13 住友特殊金属 株式会社 Method of manufacturing permanent magnet with excellent corrosion resistance
JPH04267502A (en) * 1991-02-22 1992-09-24 Sumitomo Metal Mining Co Ltd High-corrosion resistant rare earth-ferrous bond magnet
JPH05175021A (en) * 1991-12-26 1993-07-13 Daido Steel Co Ltd Rare-earth bonded magnet material, rare earth bonded magnet and manufacture of the magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681908A (en) * 1980-10-14 1981-07-04 Seiko Epson Corp Rare earth metal intermetallic compound sintered magnet having covered surface
JPS63187603A (en) * 1987-01-30 1988-08-03 Tokin Corp Permanent magnet having improved resistance to oxidation and manufacture thereof
JP2002313621A (en) * 2001-04-17 2002-10-25 Nippon Kayaku Co Ltd Silicone resin composition and resin-bonded molded metallic parts
JP2005129690A (en) * 2003-10-23 2005-05-19 Sumitomo Metal Mining Co Ltd Rare-earth injection molded bond magnet and its manufacturing method
JP2005259761A (en) * 2004-03-09 2005-09-22 Tdk Corp Method of manufacturing bonded magnet and rubber magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAYASHI S.: "Discover of a Magnetic Ionic Liquid [bmim]FeC14", CHEMISTRY LETTERS, vol. 33, no. 12, 2004, pages 1590 - 1591, XP008066931 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436931B1 (en) * 2010-09-30 2018-03-07 KSB SE & Co. KGaA Device for driving a shaft
JP2014064471A (en) * 2014-01-17 2014-04-10 Nippon Soken Inc Rotary electric machine
CN109585111A (en) * 2018-11-19 2019-04-05 浙江东阳东磁稀土有限公司 A kind of preparation method of no dysprosium terbium high-performance permanent magnet

Also Published As

Publication number Publication date
JPWO2007077602A1 (en) 2009-06-04

Similar Documents

Publication Publication Date Title
RU2358345C2 (en) Composition for applying coatings and organic passivating layer on rare earth powders on iron base
JP5499738B2 (en) Surface-treated rare earth magnetic powder, resin composition for bonded magnet containing the rare earth magnetic powder, and bonded magnet
US10141795B2 (en) Method for mitigating thermal aging of permanent magnets in organic liquid
US5173206A (en) Passivated rare earth magnet or magnetic material compositions
JP2007194599A (en) Low-loss magnet, and magnetic circuit using same
WO2007077602A1 (en) Anticorrosive rare earth magnet
JP5257614B2 (en) Rare earth bonded magnet
WO2006003882A1 (en) Corrosion-resistant rare earth magnets and process for production thereof
JP4665555B2 (en) Resin-bonded magnet composition, method for producing the same, and resin-bonded magnet using the same
JP6028322B2 (en) Compound for bonded magnet
JP4788952B2 (en) Corrosion resistant magnet
US20090010784A1 (en) Powdered metals and structural metals having improved resistance to heat and corrosive fluids and b-stage powders for making such powdered metals
JP4586937B2 (en) Corrosion-resistant magnet and manufacturing method thereof
JP2008004907A (en) Corrosion-resistant magnet and its manufacturing method
JP3740552B2 (en) Magnet manufacturing method
CN114806157A (en) Neodymium-iron-boron magnetic composite material and preparation method thereof
JP5344119B2 (en) Surface-treated Sm-Fe-N-based magnetic particle powder, resin composition for bonded magnet containing the Sm-Fe-N-based magnetic particle powder, and bonded magnet
CN114843102B (en) Surface modification method of neodymium-iron-boron magnetic powder and modified neodymium-iron-boron magnetic powder
JP2020050904A (en) Magnetic powders and method for producing same
JP2003017349A (en) Method of manufacturing magnet
JP2024044665A (en) Cased bonded magnet
JP2007191569A (en) Adhesive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007552824

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05822414

Country of ref document: EP

Kind code of ref document: A1