WO2007077599A1 - Receiver apparatus and communication system - Google Patents

Receiver apparatus and communication system Download PDF

Info

Publication number
WO2007077599A1
WO2007077599A1 PCT/JP2005/024065 JP2005024065W WO2007077599A1 WO 2007077599 A1 WO2007077599 A1 WO 2007077599A1 JP 2005024065 W JP2005024065 W JP 2005024065W WO 2007077599 A1 WO2007077599 A1 WO 2007077599A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier block
subcarrier
quality
quality value
snr
Prior art date
Application number
PCT/JP2005/024065
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Dateki
Tetsuya Yano
Kazuhisa Obuchi
Daisuke Ogawa
Hideto Furukawa
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2007552821A priority Critical patent/JP4654250B2/en
Priority to EP05822645.7A priority patent/EP1968222B1/en
Priority to PCT/JP2005/024065 priority patent/WO2007077599A1/en
Publication of WO2007077599A1 publication Critical patent/WO2007077599A1/en
Priority to US12/216,056 priority patent/US8340585B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • the present invention relates to a receiving apparatus and a communication system for adaptively performing frequency allocation in a multicarrier transmission scheme.
  • the OFDM scheme is a scheme in which transmission data is divided into a plurality of pieces, and the divided transmission data is mapped to a plurality of orthogonal carrier waves (subcarriers) and transmitted in parallel on the frequency axis.
  • Each receiving device of a communication system using such a multi-carrier transmission scheme has a different frequency band affected by frequency selective fusing due to a difference in receiving environment. Therefore, a method of increasing cell throughput of the entire communication system by performing scheduling such that each transmitting apparatus is less susceptible to fading as much as possible, and is assigned to each frequency band (subcarrier). Has been proposed.
  • FIG. 10 is a diagram illustrating an example of frequency selective fading
  • FIG. 11 is a diagram illustrating an example of frequency scheduling.
  • FIG. 10 shows the state of frequency selective fading in the time block from time 2T to 3T in FIG.
  • the signal received by the receiving device of user 1 is the highest signal-to-noise ratio (hereinafter referred to as “subcarrier block (frequency block) f 1” from time 2T to 3T.
  • the signal received by the user's receiving device has the highest SNR and the SNR in the subcarrier block f4.
  • the transmitting apparatus as shown in FIG.
  • the subcarrier block fl having NR is scheduled to be assigned to the transmission data for user 1 and the subcarrier block f4 is assigned to the transmission data for user 2.
  • FIG. 12 is a diagram showing the concept of such feedback information generation according to the prior art.
  • FIG. 12 shows an example in which the communication frequency band is divided into 18 subcarrier blocks.
  • the receiving device feeds back the top 5 (#nl force # n5 shown in Fig. 13) among the average SNR of each subcarrier block by frequency selective fading.
  • the receiving apparatus feeds back the SNR in each subcarrier block (SN R (nl), SNR (n2), SNR (n3), SNR (n4), SNR (n5))).
  • Non-patent literature 1 Zhong- Hai rian, Yong-Hwan Lee, “Opportunistic scheduling with partial channel information in OFDMA / FDD systems”, VTC2004— Fall. 2004 IEEE 60th Volume 1, 26-29 Sept. 2004, P511-514 Vol.1
  • the SNR is increased from the maximum SNR! / N in order, and N SNRs are fed back in order.
  • N the number of feedback (N) needs to be increased to some extent, the amount of feed knock information cannot be reduced sufficiently.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a receiving apparatus and a communication system that improve frequency use efficiency and improve communication throughput.
  • the present invention employs the following configuration in order to solve the above-described problems. That is, the present invention is divided into a plurality of subcarrier blocks (frequency blocks) including a plurality of subcarrier powers and at least one subcarrier, and signals to each receiving apparatus are arranged in units of the subcarrier blocks.
  • a receiving device comprising notification means for notifying the transmitting device of
  • each receiving apparatus relates to a multicarrier signal in which a plurality of subcarriers are divided into a plurality of subcarrier blocks including at least one subcarrier.
  • each receiving apparatus is assigned to each receiving subcarrier block. Information to be considered when allocating the transmission signal to is notified.
  • the notified information is generated based on a quality value indicating a reception state of a signal arranged in each subcarrier block of the received multicarrier signal. That is, the notified information includes information indicating a high quality subcarrier block having a high quality value among the estimated quality values of each subcarrier block, the quality value in the high quality subcarrier block, and the high quality
  • the subcarrier block is generated so that a difference from the quality value in the subcarrier block includes a section of the subcarrier block having a quality value within a predetermined threshold.
  • the information indicating the subcarrier block is, for example, information regarding the position of the subcarrier block, and is a block number for specifying the subcarrier block. There may be.
  • the quality value is, for example, a value indicating a signal-to-noise ratio (SNR).
  • the information regarding the high-quality subcarrier block having the high quality value (the quality value is set as the minimum necessary information without the reception apparatus sending the quality value for all the subcarrier blocks. And a subcarrier block section based on a predetermined threshold based on the high quality subcarrier block is notified.
  • the base station apparatus the general property of frequency selective fusing that guarantees a good reception environment over a wide frequency region near a subcarrier block with good reception quality. Based on the above, it is possible to estimate reception environment information such as quality values for the other subcarrier blocks based on the information about the high quality subcarrier blocks.
  • the present invention it is possible to suppress the amount of notification information from the receiving device to the transmitting device, and to provide accurate receiving environment information of each receiving device to the transmitting device. become. As a result, even when a communication system composed of the receiving device and the transmitting device is considered, the frequency utilization efficiency of the entire system can be improved and the communication throughput can be improved.
  • a subcarrier included in the section is included.
  • the information indicating the subcarrier block having the minimum frequency band in the block and the information indicating the subcarrier block having the maximum frequency band may be notified.
  • the transmission apparatus knows information about the predetermined threshold value in the reception apparatus, the transmission apparatus has a quality value whose difference from the quality value in the high quality subcarrier block is within the predetermined threshold value.
  • the quality value for the carrier block can be estimated
  • the notification means includes the information indicating the subcarrier block having the minimum frequency band and the information indicating the subcarrier block having the maximum frequency band, together with the maximum frequency band.
  • the quality value in the subcarrier block having the small frequency band and the quality value in the subcarrier block having the maximum frequency band may also be notified.
  • the transmitting apparatus that has received the notification can more accurately estimate the reception state in the receiving apparatus.
  • the present invention may further include dispersion estimation means for estimating delay dispersion of the received multicarrier signal.
  • the notification means should change to the section of the subcarrier block and notify the delay dispersion estimated by the dispersion estimation means.
  • the transmission device can detect the spread of the quality value for the subcarrier blocks around the frequency band of the high quality subcarrier block by the delay dispersion, so that such a high quality subcarrier block can be detected. It is possible to estimate the quality value of a high-quality subcarrier block without being notified of the quality value individually for the subcarrier blocks around the frequency band of the.
  • the transmission device can estimate accurate reception information even when the reception device receives a small amount of information.
  • the notifying unit is configured such that the difference between the quality value in the high-quality subcarrier block and the quality value in each subcarrier block is a frequency band power far or frequency band of the high-quality subcarrier block.
  • the notification unit may notify the transmission apparatus of this difference information instead of the section of the subcarrier block.
  • the difference information in which the difference from the quality value in the high-quality subcarrier block related to the subcarrier block around the frequency band of the high-quality subcarrier block is represented by a predetermined amount of information is Information indicating the high quality subcarrier block and the quality value of the high quality subcarrier block are notified to the transmitting apparatus.
  • the difference information includes the frequency band power of the high quality subcarrier block.
  • a subcarrier block having a wave number band is generated so as to have a smaller amount of information.
  • the transmitting apparatus that has received the above information estimates the quality information in the subcarrier blocks around the frequency band of the high quality subcarrier block by knowing information about the amount of information represented by the difference information. Will be able to.
  • the quality value around the high-quality subcarrier block having a high quality value can be notified to the transmission device with a small amount of information. It is possible to accurately notify the reception status of the receiving device while suppressing the amount of notification information.
  • the quality value related to each subcarrier block in each receiving device is estimated based on the information notified to each receiving device, and the estimated quality value is calculated.
  • the transmission apparatus may preferentially arrange a signal to a receiving apparatus having a high quality value with respect to the target subcarrier block. is there.
  • the transmitting device can accurately grasp the reception state in each receiving device. It is.
  • the present invention can also be applied to a communication system including the above-described receiving apparatus and transmitting apparatus.
  • the present invention provides a communication method and an information processing apparatus (computer) having the same characteristics as those of the above-described receiving apparatus and transmitting apparatus according to the present invention as the receiving apparatus and transmitting apparatus according to the present invention. It can be realized as a functioning program or a recording medium on which the program is recorded.
  • the reception device and the transmission device according to the present invention are, for example, a communication device that communicates with each other wirelessly, a communication device that performs communication by wire, or an interface signal in a computer. May be a device, an element, etc.
  • the present invention relates to signal allocation to subcarrier blocks, that is, focuses on frequency scheduling, and does not limit time scheduling on the time axis at all! /.
  • the invention's effect is, focuses on frequency scheduling, and does not limit time scheduling on the time axis at all! /.
  • FIG. 1 is a diagram showing a functional configuration of a base station apparatus (transmitting apparatus) in the embodiment.
  • FIG. 2 is a diagram showing a configuration example of an OFDM frame.
  • FIG. 3 is a diagram showing a configuration example of a subcarrier (frequency) block.
  • FIG. 4 is a diagram showing a functional configuration of a mobile terminal (receiving device) in the embodiment.
  • FIG. 5 is a diagram showing a concept of frequency selective fusing and reception environment information generation in the embodiment.
  • FIG. 6 is a diagram showing a processing flow related to user assignment.
  • FIG. 7 is a diagram showing a concept of frequency selective fusing and reception environment information generation in the first modification.
  • FIG. 8 is a diagram showing a concept of frequency selective fusing and reception environment information generation in the second modified example.
  • FIG. 9 is a diagram showing a concept of frequency selective fusing and reception environment information generation in the third modified example.
  • FIG. 10 is a diagram showing an example of frequency selective fuzzing.
  • FIG. 11 is a diagram showing an example of frequency scheduling.
  • FIG. 12 is a diagram showing the concept of feedback information generation according to the prior art. Explanation of symbols
  • the receiving device and the transmitting device in the present embodiment will be described as separate communication devices.
  • the present invention is not limited to such a configuration, and is described below. It may be a communication device having both functions and transmission functions.
  • a mobile terminal is taken as an example of a receiving device
  • a base station device that performs radio communication with a plurality of mobile terminals is taken as an example of a transmitting device.
  • These communication devices shall have a function capable of realizing the OFDM system as a multi-carrier transmission system.
  • the communication device in the present embodiment may be a power line communication device that performs communication by wire, a device that performs communication as an interface signal in a computer, an element, or the like.
  • the configurations of the following embodiments are merely examples, and the present invention is not limited to the configurations of the embodiments.
  • FIG. 1 is a diagram illustrating a functional configuration of the base station apparatus.
  • the base station apparatus includes a pilot multiplexing unit 10, a serial Z parallel (hereinafter referred to as SZP) conversion unit 11, an IDFT unit 12, a parallel Z serial (hereinafter referred to as PZS) conversion unit 13, and a digital Z.
  • Analog (hereinafter referred to as DZA) conversion unit 14 up-conversion unit 15, down-conversion unit 21, analog Z-digital (hereinafter referred to as AZD) conversion unit 22, feedback information extraction unit 23, user allocation unit 24, etc.
  • DZA serial Z parallel
  • AZD analog Z-digital
  • the pilot multiplexing unit 10 receives a data signal to be transmitted (including a control signal and the like) from the user allocation unit 24.
  • FIG. 2 is a diagram showing an example of an OFDM frame configuration in the present embodiment.
  • the OFDM frame in this embodiment has N subcarrier powers for each frame.
  • a pilot signal, a data signal, and the like are arranged at predetermined positions.
  • P1 to PN indicate pilot signals
  • Da (b) (a is 2 to 10, b is 1 to N) is a cc data signal allocated to the b subcarrier of the a symbol in each frame. Show. Note that the present invention does not limit the OFDM frame to the configuration shown in FIG.
  • the SZP conversion unit 11 converts the serial signal sequence generated by the pilot multiplexing unit 10 into parallel signals arranged in parallel for the number of subcarriers (N).
  • the IDFT unit 12 performs IDFT processing on the parallel signal output from the SZP conversion unit 11 in units of OFDM symbols. Normally, the IDFT size N used in this IDFT processing is larger than the effective number of subcarriers (N), so the IDFT unit 12 is configured to input N parameters.
  • IDFT processing is performed on the signal.
  • the signal TE (f) on the time axis of each subcarrier output from the IDFT unit 12 is combined and multiplexed by the PZS conversion unit 13, and a guard interval is added by a guard interval adding unit (not shown) or the like. Then, it is converted into an analog signal by the DZA converter 14. The converted analog signal is converted from the center frequency of the signal to a radio transmission frequency by the up-conversion unit 15 and transmitted from the antenna element.
  • the base station apparatus receives reception environment information of each mobile terminal from a plurality of mobile terminals that are communication partners.
  • the received reception environment information is processed by the following functional units. Details of the contents of the reception environment information will be described later.
  • the reception environment information is simply transmitted by wireless communication.
  • the present invention provides a method for transmitting the reception environment information to each mobile terminal power base station apparatus. Not limited.
  • the radio frequency signal including the reception environment information is received by the antenna element and downloaded.
  • Conversion unit 21 converts the signal into a baseband signal. This baseband signal is converted into a digital signal by the AZD conversion unit 22 and then input to the feedback information extraction unit 23.
  • the feedback information extraction unit 23 acquires the reception environment information of each mobile terminal from the input signal.
  • the feedback information extraction unit 23 acquires reception environment information regarding each of a plurality of mobile terminals that are communication partners.
  • the user allocation unit 24 selects which user of the data signals for each mobile terminal (user) that has received the transmission request.
  • Data signal can be sent to any subcarrier block (frequency block)
  • the user allocation unit 24 divides N subcarriers into a plurality of subcarrier blocks.
  • the user allocation process is performed for each subcarrier block.
  • the method for setting the number of subcarrier blocks N to the number of subcarriers N is particularly limited
  • N does not need to be an integer multiple of N and each block is different
  • the subcarrier block configuration may be previously set as a fixed value between the transmission device and the reception device, and the configuration of the subcarrier block is made variable, and the transmission device power is notified to the reception device. You may do so.
  • N is an integer multiple of N, and each subcarrier block has N /
  • the configuration includes N subcarriers.
  • Figure 3 shows the subcarrier fblk in this embodiment.
  • subcarrier N is divided by the number of subcarrier blocks N, and one subcarrier block is divided into 4 subcarrier blocks.
  • the user allocation unit 24 generates a data signal in which transmission signals to users are adaptively allocated to a predetermined arrangement of transmission frames.
  • User allocation part 2
  • FIG. 4 is a diagram showing a functional configuration of the mobile terminal in the present embodiment.
  • the mobile terminal in this embodiment includes a down-conversion unit 41, an AZD conversion unit 42, an S ZP conversion unit 43, a DFT unit 44, a PZS conversion unit 45, a signal-to-noise ratio (hereinafter referred to as SNR (Signal to Noise Ratio)). And an estimation unit 47, an up-conversion unit 51, a DZA conversion unit 52, a feedback information generation unit 53, and the like.
  • SNR Signal-to-noise ratio
  • the down-conversion unit 41 converts the radio transmission frequency signal into a baseband signal.
  • This baseband signal is converted into a digital signal by the AZD conversion unit 42, and then converted into an N-sample parallel signal having the same IDFT size in the base station apparatus by the S / P conversion unit 43.
  • the normal signal strength guard interval is removed.
  • the DFT unit 44 performs DFT processing on the input parallel signal, and outputs N signals corresponding to each subcarrier component.
  • the DFT size used in this DFT process is the same as the IDFT size used in the transmitting device.
  • N + 1 to N signals among the output N signals are zero signals set by the base station apparatus.
  • the output parallel signals are rearranged into a serial signal sequence by the PZS conversion unit 45 and passed to other functional units (for example, a demodulation unit).
  • the output parallel signal is also passed to the SNR estimation unit 47.
  • SNR estimation section 47 estimates the average SNR of each subcarrier block based on the signal sequence corresponding to each subcarrier passed from DFT section 44. This average SNR may be obtained, for example, by obtaining the SNR of each subcarrier constituting the target subcarrier block and averaging them. Information such as the number of subcarriers constituting each subcarrier block may be stored in a memory or the like in the mobile terminal, or the base station apparatus power may be notified in advance. The estimated average SNR is passed to the feedback information generation unit 53.
  • the feedback information generating unit 53 is based on the average SNR of each passed subcarrier block. Next, reception environment information for feedback to the base station apparatus is generated. The reception environment information generation process is described in the section ⁇ Reception environment information generation process>.
  • the generated reception environment information is converted into an analog signal by the DZA conversion unit 52.
  • the converted analog signal is converted from the center frequency of the signal to a radio transmission frequency by the up-conversion unit 51 and transmitted from the antenna element.
  • the frequency / time conversion process is IDFT, and the time / frequency conversion process is DFT.
  • the present invention is not limited to these, and the frequency / time conversion process is IFFT,
  • One frequency conversion processing may be FFT.
  • any method may be used for transmitting the reception environment information from the mobile terminal to the base station apparatus.
  • FIG. 5 is a diagram showing the concept of frequency selective fading and reception environment information generation.
  • the mobile terminal receives a signal affected by frequency selective fading as shown in FIG.
  • SNR estimation unit 47 of the mobile terminal receives a signal sequence corresponding to each subcarrier with respect to the signal affected by the fading, an average SNR of each subcarrier block (hereinafter simply referred to as SNR). Is estimated.
  • each bar (square) represents a subcarrier block.
  • feedback information generation section 53 Based on the SNR for each subcarrier block, feedback information generation section 53 generates reception environment information as follows. First, the feedback information generation unit 53 detects the subcarrier block number having the maximum SNR medium SNR for each subcarrier block (subcarrier block #n in FIG. 5).
  • feedback information generating section 53 detects the subcarrier block number of the subcarrier block having an SNR that is also within a predetermined threshold (-X decibel (dB)).
  • the feedback information generation unit 53 detects the numbers of the subcarrier block having the minimum frequency band and the subcarrier block having the maximum frequency band among the detected subcarrier blocks (subcarrier blocks # ⁇ and # in FIG. 5). nl).
  • This predetermined threshold value (XdB) may be stored in advance in a memory or the like in the mobile terminal as a fixed value common to the system, and may be notified as control information from the base station apparatus. May be.
  • the feedback information generation unit 53 determines the maximum SNR value (SNR (n)), the subcarrier block number (n), the subcarrier block number ( ⁇ ) of the detected minimum frequency, and the maximum frequency.
  • the reception environment information including the wave number subcarrier block number (nl) is generated.
  • the reception environment information is generated based on the subcarrier block having the maximum SNR.
  • the reception environment information is not limited to the maximum SNR, and is close to the maximum SNR and is based on the subcarrier block having the SNR. You can do it.
  • the feedback information extraction unit 23 extracts the reception environment information and assigns the user allocation. Passed to part 24.
  • the user allocation unit 24 Upon receiving the reception environment information (n, SNR (n), nO, nl) for each mobile terminal in this way, the user allocation unit 24 also obtains the ⁇ force for each mobile terminal based on this reception environment information. Estimate the SNR for each subcarrier block in the interval.
  • SNR (nO) SNR (n) —X
  • SNR (nl) SNR (n) Estimate —X, and estimate the SNR for other subcarrier blocks as shown in (Equation 1) below.
  • the user allocating unit 24 holds the estimated information to execute the user allocation process for each mobile terminal.
  • techniques such as MAX-CI and proportional fair are generally known, and the present invention may use these misalignment techniques or other techniques.
  • the user with the highest SNR among the SNRs for each subcarrier block fed back by the reception environment information. The is assigned to the subcarrier block.
  • the average SNR is the highest among the average SNR of each user, and the user is assigned.
  • Fig. 6 shows the processing flow for user assignment based on this MAX-CI.
  • the processing flow shown in FIG. 6 first, it is checked whether or not there is an SNR estimated based on the reception environment information for each subcarrier block (S601). If it is determined that there is an SNR for any mobile terminal for the target subcarrier block (S601; YES), the mobile terminal having the maximum SNR is selected from the SNRs, and the mobile terminal is selected as the target subcarrier block. Allocate to carrier block (S602).
  • N In the base station device (transmitting device) and mobile terminal (receiving device) in this embodiment, N
  • Multi-carrier signal consisting of N subcarriers, and the N subcarriers
  • the signal is divided and data signals to each mobile terminal are transmitted and received in units of the subcarrier blocks.
  • SNR estimation section 47 estimates the SNR for each subcarrier block of the received signal. .
  • feedback information generating section 53 generates reception environment information based on the SNR related to each subcarrier block.
  • This reception environment information includes the subcarrier block number (n) of the subcarrier block with the largest SNR among the SNRs for each subcarrier block.
  • the generated reception environment information is transmitted to the base station apparatus.
  • the base station apparatus receives the reception environment information of each of a plurality of mobile terminals that are communication partners.
  • the SNR of each subcarrier block in each mobile terminal is estimated based on the reception environment information.
  • a predetermined threshold (XdB) that the base station apparatus has in common with a plurality of mobile terminals is used.
  • each mobile terminal transmits information on subcarrier blocks having the maximum SNR (including the SNR value) as the minimum necessary information without sending SNRs for all subcarrier blocks. ) And the subcarrier block section based on the subcarrier block.
  • the SNRs for the other subcarrier blocks are estimated based on the information about the subcarrier blocks having the maximum SNR.
  • adaptive frequency allocation based on accurate reception environment information can be realized while suppressing the amount of feedback link information.
  • the frequency utilization efficiency can be increased and the communication throughput can be improved.
  • the mobile terminal and the base station apparatus each share a predetermined threshold (XdB), and the mobile terminal has an SNR within this threshold as well as the maximum SNR force.
  • the subcarrier block ( ⁇ ) having the lowest frequency and the subcarrier block (nl) having the highest frequency are notified respectively, but the base station apparatus does not have this threshold information, and the mobile terminal power is subcarrier.
  • the SNR in the subcarrier block ⁇ and the SNR in the subcarrier block nl may be notified to the base station device (see FIG. 7).
  • the SNR (n 0) and SNR (nl) are estimated to be SNR (n) and the threshold X force, which is more accurate than Therefore, it is possible to estimate the SNR in the nl interval from ⁇ more accurately.
  • the mobile terminal uses a predetermined threshold (XdB), and the differential power of the maximum SNR power is information on the subcarrier block having an SNR within this threshold.
  • the mobile terminal force may notify the base station apparatus of information on delay dispersion.
  • the reception environment information generation process of the mobile terminal and the user allocation process of the base station apparatus in the second modification will be described.
  • the functional configurations of the mobile terminal and the base station apparatus are the same as those in the above-described embodiment.
  • FIG. 8 is a diagram showing the concept of frequency selective fusing and reception environment information generation in the second modification.
  • the mobile terminal receives a multi-carrier signal affected by frequency selective fading as shown in FIG.
  • the SNR estimation unit 47 of the mobile terminal receives a signal sequence corresponding to each subcarrier with respect to the signal affected by the fading, the SNR estimation unit 47 estimates the average SNR of each subcarrier block (hereinafter simply referred to as SNR). .
  • SNR the average SNR of each subcarrier block
  • each bar (square) represents a subcarrier block.
  • Feedback information generating section 53 first detects the subcarrier block number having the maximum SNR from the SNRs related to the respective subcarrier blocks (subcarrier block #n in FIG. 8).
  • the feedback information generation unit 53 obtains delay dispersion of the received signal.
  • This delay dispersion is obtained by obtaining a delay profile, that is, waveform information in the time axis region (time-received power axis) for the received signal as shown in FIG.
  • the feedback information generating unit 53 obtains the delay dispersion based on the obtained delay profile.
  • the delay dispersion ⁇ can be calculated by the following (Equation 2) when the delay profile is P (t).
  • the reciprocal of this delay dispersion information indicates the SNR dispersion (spread) of the received signal.
  • the feedback information generation unit 53 generates reception environment information including the maximum value of SNR (SNR (n)), the subcarrier block number (n), and the delay dispersion information described above.
  • the reception environment information is extracted by the feedback information extraction unit 23 and is transmitted to the user allocation unit 24. Passed.
  • the user allocation unit 24 Upon receiving the reception environment information (n, SNR (n), ⁇ ) for each mobile terminal in this way, the user allocation unit 24 receives each subcarrier block for each mobile terminal based on each reception environment information. Estimate each SNR. The estimation of SNR (SNR (k)) for each subcarrier block k other than the maximum SNR is, for example, estimated as shown in (Equation 3) below.
  • table (x) may be a value acquired from a table stored in advance in a memory or the like, for example.
  • the table stores the SNR attenuation amount in relation to the delay carrier ⁇ and the subcarrier block ⁇ having the maximum SNR to the frequency band proximity (k ⁇ ) of the target subcarrier block. You may do it.
  • Information that is stored in advance as a table or used for attenuation calculation that is defined in advance as a function can be adjusted from the outside according to the installation environment of the transmitter, the radio wave propagation environment, etc. You may make it become.
  • the user allocation unit 24 holds the estimated information to execute a user allocation process for each mobile terminal. Subsequent user allocation processing is the same as in this embodiment.
  • delay dispersion information ⁇ is notified to the base station apparatus.
  • the SNR of each subcarrier block in each mobile terminal is estimated based on the reception environment information.
  • the SNR is estimated for the subcarrier block for which the actual SNR is not reported in relation to the maximum SNR and the delay dispersion ⁇ .
  • the reception environment information notified from each mobile terminal is the maximum S.
  • delay dispersion information is included.
  • Adaptive frequency allocation based on accurate reception environment information can be realized while reducing the amount of information on the back link.
  • the mobile terminal uses a predetermined threshold (XdB), and the differential power of the maximum SNR power is information on the subcarrier block having an SNR within this threshold.
  • XdB predetermined threshold
  • the subcarrier block number (n) the subcarrier block number (n)
  • the relative SNR relative to the maximum SNR for the subcarrier blocks around the subcarrier block number (n) You may make it notify to a base station apparatus.
  • the reception environment information generation process of the mobile terminal and the user allocation process of the base station apparatus in the third modification will be described.
  • the functional configurations of the mobile terminal and the base station apparatus are the same as those in the above embodiment.
  • FIG. 9 is a diagram showing the concept of frequency selective fusing and reception environment information generation in the third modification.
  • the mobile terminal receives a multi-carrier signal affected by frequency selective fading as shown in FIG.
  • the SNR estimation unit 47 of the mobile terminal receives a signal sequence corresponding to each subcarrier with respect to the signal affected by the fading, the SNR estimation unit 47 estimates the average SNR of each subcarrier block (hereinafter simply referred to as SNR).
  • SNR the average SNR of each subcarrier block
  • feedback information generation section 53 detects the subcarrier block number having the maximum SNR from among the SNRs related to each subcarrier block (subcarrier block #n in Fig. 9).
  • feedback information generating section 53 calculates SNR difference information from the maximum SNR with respect to the subcarrier block having the peripheral frequency band around the subcarrier block having the maximum SNR.
  • Feedback information generating section 53 sets the SNR difference information for each subcarrier block calculated as described above to a predetermined number of bits.
  • This bit configuration indicating the SNR difference information may use a fixed bit configuration determined in advance as a system.
  • the subcarrier block power having the maximum SNR is also configured so that the number of bits used to indicate the SNR difference information decreases every time a predetermined range (subcarrier block) is left. Showing
  • the SNR in subcarrier block n having the maximum SNR is indicated by 8 bits, and the SNR difference information is indicated by 3 bits for subcarrier blocks within 3 subcarrier blocks from subcarrier block n. Thereafter, every third subcarrier block is reduced by 1 bit. This can be expressed in subcarrier block k as follows:
  • a SNR (k) “000”: OdB or more and less than ldB
  • a signal containing SNR difference information ⁇ SNR (k)) of the rear block is received.
  • reception information extraction unit 23 extracts the reception environment information and passes it to the user allocation unit 24.
  • the user allocation unit 24 Upon receiving the reception environment information for each mobile terminal in this way, the user allocation unit 24 estimates each subcarrier block of I kn I ⁇ 9 sections for each mobile terminal based on the reception environment information. To do. At this time, it is assumed that the user allocation unit 24 has grasped the bit configuration for indicating the above-described SNR difference information, and estimates the SNR of each subcarrier block based on the information.
  • the bit configuration indicating the SNR difference information may be stored in advance as fixed information in a memory or the like, or may be mutually notified between the base station apparatus and the mobile terminal as necessary. Also good.
  • the user allocation unit 24 holds the estimated information to execute a user allocation process for each mobile terminal. Subsequent user allocation processing is the same as in this embodiment.
  • the base station device transmitting device
  • mobile terminal receiving device
  • the subcarrier block number (n) in addition to the maximum SNR, the subcarrier block number (n), the subcarrier block having the peripheral frequency band of the subcarrier block number (n)
  • the difference information between the SNR and the maximum SNR related to the carrier block is notified to the base station apparatus.
  • the reception environment information is generated in the state indicated by the predetermined bit configuration as the difference information from the maximum SNR.
  • the third modified example is configured such that the number of bits used every time a predetermined subcarrier block range moves away from the subcarrier block n having the maximum SNR.
  • the base station apparatus When the base station apparatus receives the reception environment information of each of a plurality of mobile terminals as communication partners, the SNR of each subcarrier block in each mobile terminal is estimated based on the reception environment information. . This SNR estimation is realized when the base station apparatus knows the bit configuration in which multiple mobile terminals set SNR difference information.
  • the SNR of each subcarrier block for each mobile terminal is estimated. Then, based on these estimated SNRs, a signal to be transmitted to a mobile terminal having a high SNR for each subcarrier block in the transmission signal is preferentially arranged.
  • the reception environment information notified from each mobile terminal is the maximum SNR for the subcarrier blocks around the subcarrier block n having the maximum SNR in addition to the information about the maximum SNR. Is generated by rounding the difference information of SNR with the specified number of bits.
  • the SNR around the subcarrier block having the maximum SNR can be notified to the base station apparatus with a small amount of information, so that while suppressing the amount of information on the feedback link, Adaptive frequency allocation based on accurate reception environment information can be realized.

Abstract

A receiver apparatus and a communication system wherein the frequency usage efficiency is raised to improve the communication throughput. The receiver apparatus comprises a receiving means that receives multicarrier signals in which a plurality of subcarriers are divided into a plurality of subcarrier blocks (frequency blocks) each including at least one subcarrier and in which signals to be transmitted to receiver apparatuses are arranged in those subcarrier blocks; an estimating means that estimates, for each of the subcarrier blocks, quality values indicative of the reception statuses of the signals arranged in the subcarrier blocks; and a notifying means that notifies a transmitter apparatus of information indicative of a high quality subcarrier block having a higher quality value than the other ones of the quality values, also notifies it of the quality value in the high quality subcarrier block, and further notifies it of the intervals of the subcarrier blocks each having a quality value the difference of which from the quality value in the high quality subcarrier block do not go beyond a predetermined threshold value.

Description

明 細 書  Specification
受信装置及び通信システム  Receiving apparatus and communication system
技術分野  Technical field
[0001] 本発明は、マルチキャリア伝送方式において適応的に周波数割り当てを行うための 受信装置及び通信システムに関するものである。  [0001] The present invention relates to a receiving apparatus and a communication system for adaptively performing frequency allocation in a multicarrier transmission scheme.
背景技術  Background art
[0002] 近年、 OFDM (Orthogonal Frequency Division Multiplexing)方式は様々な通信シ ステムの伝送方式に採用され、高い周波数利用効率による高速データ通信を実現し ている。 OFDM方式は、送信データを複数に分割し、その分割された送信データを 直交する複数の搬送波 (サブキャリア)にそれぞれマッピングし、周波数軸上で並列 に伝送する方式である。  In recent years, the OFDM (Orthogonal Frequency Division Multiplexing) method has been adopted for transmission methods of various communication systems to realize high-speed data communication with high frequency utilization efficiency. The OFDM scheme is a scheme in which transmission data is divided into a plurality of pieces, and the divided transmission data is mapped to a plurality of orthogonal carrier waves (subcarriers) and transmitted in parallel on the frequency axis.
[0003] このようなマルチキャリア伝送方式を用いる通信システムの各受信装置では、それ ぞれの受信環境の違いから、周波数選択性フ ージングにより影響を受ける周波数 帯域がそれぞれ異なる。そこで、送信側の装置が通信相手となる各受信装置をでき るだけフェージングを受け難 、周波数帯域 (サブキャリア)にそれぞれ割り当てるよう なスケジューリングを行うことにより、通信システム全体としてセルスループットを増加 させる手法が提案されて 、る。  [0003] Each receiving device of a communication system using such a multi-carrier transmission scheme has a different frequency band affected by frequency selective fusing due to a difference in receiving environment. Therefore, a method of increasing cell throughput of the entire communication system by performing scheduling such that each transmitting apparatus is less susceptible to fading as much as possible, and is assigned to each frequency band (subcarrier). Has been proposed.
[0004] このような OFDM等のマルチキャリア伝送方式で用いられる周波数スケジユーリン グについて図 10及び 11を用いて以下に説明する。図 10は、周波数選択性フェージ ングの例を示す図であり、図 11は、周波数スケジューリングの例を示す図である。具 体的には、図 10は、図 11における時刻 2Tから 3Tの時間ブロックにおける周波数選 択性フエージングの様子を示して 、る。  [0004] Frequency scheduling used in such a multi-carrier transmission scheme such as OFDM will be described below with reference to Figs. FIG. 10 is a diagram illustrating an example of frequency selective fading, and FIG. 11 is a diagram illustrating an example of frequency scheduling. Specifically, FIG. 10 shows the state of frequency selective fading in the time block from time 2T to 3T in FIG.
[0005] 図 10に示す例では、ユーザ 1の受信装置で受信される信号は、時刻 2Tから 3Tに ぉ ヽてサブキャリアブロック (周波数ブロック) f 1で最も高 ヽ信号対雑音比(以降、 SN R (Signal to Noise Ratio)と表記する)を有し、ユーザの受信装置で受信される信号は 、サブキャリアブロック f4にお!/、て最も高!、SNRを有する。  In the example shown in FIG. 10, the signal received by the receiving device of user 1 is the highest signal-to-noise ratio (hereinafter referred to as “subcarrier block (frequency block) f 1” from time 2T to 3T. The signal received by the user's receiving device has the highest SNR and the SNR in the subcarrier block f4.
[0006] この場合に、送信装置では、図 11に示すように、時刻 2Tから 3Tにおいて良好な S NRを有するサブキャリアブロック flをユーザ 1用の送信データに割り当て、サブキヤリ アブロック f4をユーザ 2用の送信データに割り当てるようにスケジューリングされる。 [0006] In this case, the transmitting apparatus, as shown in FIG. The subcarrier block fl having NR is scheduled to be assigned to the transmission data for user 1 and the subcarrier block f4 is assigned to the transmission data for user 2.
[0007] このように送信装置において適切な周波数スケジューリングを行うためには、当該 送信装置が各受信装置における受信 SNR等の受信環境をそれぞれ正確に知る必 要がある。このような必要性から、各受信装置は自身の受信環境を送信装置にそれ ぞれフィードバックするという手法が採られる。  [0007] Thus, in order to perform appropriate frequency scheduling in a transmission device, it is necessary for the transmission device to accurately know reception environments such as reception SNR in each reception device. Because of this need, a method is adopted in which each receiving device feeds back its own receiving environment to the transmitting device.
[0008] しかし、 1台の送信装置で複数の受信装置を通信相手とするような通信システムの 場合には、全ての受信装置が全てのサブキャリアブロックに関する受信 SNRを送信 装置にフィードバックすることは、フィードバックリンクのリソース消費量を非常に増加 させることとなる。これにより、周波数利用効率が下がり、結果としてフィードバックリン クでのデータ伝送のスループットが下がってしまうという問題があった。  [0008] However, in the case of a communication system in which a plurality of receiving apparatuses are used as communication partners with one transmitting apparatus, all receiving apparatuses feed back received SNRs related to all subcarrier blocks to the transmitting apparatus. This will greatly increase the resource consumption of the feedback link. As a result, the frequency utilization efficiency is lowered, and as a result, there is a problem that the throughput of data transmission through the feedback link is lowered.
[0009] このような問題を解決するために、各受信装置において、受信される各サブキャリア ブロックのうち平均 SNRが高いものから順に N個のサブキャリアブロックの位置のみ を送信装置にフィードバックすることにより、フィードバック情報量を減らすという方式 が提案されている(下記非特許文献 1参照)。図 12は、このような従来技術によるフィ ードバック情報生成の概念を示す図である。  [0009] In order to solve such a problem, each receiving apparatus feeds back only the positions of N subcarrier blocks to the transmitting apparatus in order from the received subcarrier block having the highest average SNR. Therefore, a method of reducing the amount of feedback information has been proposed (see Non-Patent Document 1 below). FIG. 12 is a diagram showing the concept of such feedback information generation according to the prior art.
[0010] 図 12は、通信周波数帯域を 18個のサブキャリアブロックに分割している場合の例 である。受信装置は、周波数選択性フェージングによる各サブキャリアブロックの平 均 SNRのうち上位 5つ(図 13に示す # nl力 # n5)をフィードバックする。このとき、 受信装置は、例えば、各サブキャリアブロックにおける SNRをフィードバックする(SN R (nl)、 SNR(n2)、 SNR (n3)、 SNR(n4)、 SNR(n5) )。  FIG. 12 shows an example in which the communication frequency band is divided into 18 subcarrier blocks. The receiving device feeds back the top 5 (#nl force # n5 shown in Fig. 13) among the average SNR of each subcarrier block by frequency selective fading. At this time, for example, the receiving apparatus feeds back the SNR in each subcarrier block (SN R (nl), SNR (n2), SNR (n3), SNR (n4), SNR (n5))).
非特干文献 1 :Zhong- Hai rian、 Yong-Hwan Lee、「 Opportunistic scheduling with par tial channel information in OFDMA/FDD systems]、 VTC2004— Fall. 2004 IEEE 60th Volume 1, 26-29 Sept.2004、 P511- 514 Vol.1  Non-patent literature 1: Zhong- Hai rian, Yong-Hwan Lee, “Opportunistic scheduling with partial channel information in OFDMA / FDD systems”, VTC2004— Fall. 2004 IEEE 60th Volume 1, 26-29 Sept. 2004, P511-514 Vol.1
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] しかしながら、上述の従来技術では、最大 SNRから SNRの大き!/、順に N個の SNR をフィードバックするようにしているが、精密な周波数スケジューリングを実現するため にはフィードバックする個数 (N)をある程度大きくする必要があるため、やはりフィード ノック情報量を十分には削減できな 、と 、う問題があった。 [0011] However, in the above-described conventional technology, the SNR is increased from the maximum SNR! / N in order, and N SNRs are fed back in order. However, in order to realize precise frequency scheduling. However, since the number of feedback (N) needs to be increased to some extent, the amount of feed knock information cannot be reduced sufficiently.
[0012] 本発明は、上述のような問題点に鑑みてなされたものであり、周波数利用効率を上 げ、通信スループットを向上させる受信装置及び通信システムを提供することを目的 とする。 [0012] The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a receiving apparatus and a communication system that improve frequency use efficiency and improve communication throughput.
課題を解決するための手段  Means for solving the problem
[0013] 本発明は、上述した課題を解決するために以下の構成を採用する。即ち、本発明 は、複数のサブキャリア力 少なくとも 1つのサブキャリアを含む複数のサブキャリアブ ロック (周波数ブロック)に分割されており、各受信装置への信号が当該サブキャリア ブロック単位で配置されたマルチキャリア信号を受信する受信手段と、各サブキャリア ブロックにそれぞれ配置された信号の受信状態を示す品質値を各サブキャリアブロッ クについてそれぞれ推定する推定手段と、当該品質値のうち高い品質値を有する高 品質サブキャリアブロックを示す情報、当該高品質サブキャリアブロックにおける品質 値、及び、当該高品質サブキャリアブロックにおける品質値との差が所定の閾値内に ある品質値を有するサブキャリアブロックの区間を送信装置に通知する通知手段とを 備える受信装置につ 、てのものである。  The present invention employs the following configuration in order to solve the above-described problems. That is, the present invention is divided into a plurality of subcarrier blocks (frequency blocks) including a plurality of subcarrier powers and at least one subcarrier, and signals to each receiving apparatus are arranged in units of the subcarrier blocks. A receiving means for receiving a multicarrier signal, an estimating means for estimating a quality value indicating a reception state of a signal arranged in each subcarrier block for each subcarrier block, and a higher quality value among the quality values. Information on the high-quality subcarrier block, the quality value in the high-quality subcarrier block, and the section of the subcarrier block having a quality value in which the difference between the quality value in the high-quality subcarrier block is within a predetermined threshold A receiving device comprising notification means for notifying the transmitting device of
[0014] 本発明では、各受信装置が、複数のサブキャリアが少なくとも 1つのサブキャリアを 含む複数のサブキャリアブロックに分割されているマルチキャリア信号に関し、送信 装置において各サブキャリアブロックに各受信装置への送信信号を配置するにあた つて考慮される情報をそれぞれ通知する。  [0014] In the present invention, each receiving apparatus relates to a multicarrier signal in which a plurality of subcarriers are divided into a plurality of subcarrier blocks including at least one subcarrier. In the transmitting apparatus, each receiving apparatus is assigned to each receiving subcarrier block. Information to be considered when allocating the transmission signal to is notified.
[0015] この通知される情報は、受信されたマルチキャリア信号の各サブキャリアブロックに 配置された信号の受信状態を示す品質値に基づいて生成される。すなわち、通知さ れる情報は、推定された各サブキャリアブロックの品質値のうち高い品質値を有する 高品質サブキャリアブロックを示す情報、当該高品質サブキャリアブロックにおける品 質値、及び、当該高品質サブキャリアブロックにおける品質値との差が所定の閾値内 にある品質値を有するサブキャリアブロックの区間を含むように生成される。  [0015] The notified information is generated based on a quality value indicating a reception state of a signal arranged in each subcarrier block of the received multicarrier signal. That is, the notified information includes information indicating a high quality subcarrier block having a high quality value among the estimated quality values of each subcarrier block, the quality value in the high quality subcarrier block, and the high quality The subcarrier block is generated so that a difference from the quality value in the subcarrier block includes a section of the subcarrier block having a quality value within a predetermined threshold.
[0016] ここで、サブキャリアブロックを示す情報とは、例えば、サブキャリアブロックの位置 に関する情報であり、また、サブキャリアブロックを特定するためのブロック番号等で あってもよい。また、品質値とは、例えば、信号対雑音比(SNR)を示す値である。 Here, the information indicating the subcarrier block is, for example, information regarding the position of the subcarrier block, and is a block number for specifying the subcarrier block. There may be. The quality value is, for example, a value indicating a signal-to-noise ratio (SNR).
[0017] このように、本発明では、受信装置がそれぞれ全てのサブキャリアブロックに関する 品質値を送ることなく必要最小限の情報として、高い品質値を有する高品質サブキヤ リアブロックに関する情報(品質値を含む)及びその高品質サブキャリアブロックを基 準とする所定の閾値に基づくサブキャリアブロック区間が通知される。 [0017] Thus, in the present invention, the information regarding the high-quality subcarrier block having the high quality value (the quality value is set as the minimum necessary information without the reception apparatus sending the quality value for all the subcarrier blocks. And a subcarrier block section based on a predetermined threshold based on the high quality subcarrier block is notified.
[0018] これにより、基地局装置では、受信品質が良いサブキャリアブロック付近の広い周 波数領域に渡って良好な受信環境であることが保証されるという周波数選択性フ 一ジングの一般的な性質に基づき、この高品質サブキャリアブロックに関する情報を 基準にそれ以外のサブキャリアブロックに関する品質値等の受信環境情報を推定す ることがでさる。 [0018] Thereby, in the base station apparatus, the general property of frequency selective fusing that guarantees a good reception environment over a wide frequency region near a subcarrier block with good reception quality. Based on the above, it is possible to estimate reception environment information such as quality values for the other subcarrier blocks based on the information about the high quality subcarrier blocks.
[0019] よって、本発明によれば、受信装置から送信装置への通知情報の情報量を抑える ことができ、かつ、各受信装置の正確な受信環境情報を送信装置へ提供することが できるようになる。ひいては、当該受信装置と送信装置とからなる通信システムを考え た場合においても、システム全体として周波数利用効率を上げ、通信スループットを 向上させることができるようになる。  Therefore, according to the present invention, it is possible to suppress the amount of notification information from the receiving device to the transmitting device, and to provide accurate receiving environment information of each receiving device to the transmitting device. become. As a result, even when a communication system composed of the receiving device and the transmitting device is considered, the frequency utilization efficiency of the entire system can be improved and the communication throughput can be improved.
[0020] また、上記通知手段により通知される、高品質サブキャリアブロックにおける品質値 との差が所定の閾値内にある品質値を有するサブキャリアブロックの区間としては、 当該区間に含まれるサブキャリアブロックのうち最小周波数帯域を有するサブキヤリ アブロックを示す情報と最大周波数帯域を有するサブキャリアブロックを示す情報と が通知されるようにしてもょ 、。  [0020] Further, as a section of a subcarrier block having a quality value in which a difference from a quality value in a high quality subcarrier block, which is notified by the notification means, is within a predetermined threshold, a subcarrier included in the section is included. The information indicating the subcarrier block having the minimum frequency band in the block and the information indicating the subcarrier block having the maximum frequency band may be notified.
[0021] これにより、送信装置では、受信装置におけるこの所定の閾値に関する情報を知つ ていさえすれば、高品質サブキャリアブロックにおける品質値との差が所定の閾値内 にある品質値を有するサブキャリアブロックについての品質値を推定することができる  [0021] With this, as long as the transmission apparatus knows information about the predetermined threshold value in the reception apparatus, the transmission apparatus has a quality value whose difference from the quality value in the high quality subcarrier block is within the predetermined threshold value. The quality value for the carrier block can be estimated
[0022] 従って、本発明によれば、対象となるサブキャリアブロックを示す情報を通知すれば よいため、受信装置力 送信装置への通知情報の情報量をより抑えることができる。 [0022] Therefore, according to the present invention, since it is only necessary to notify information indicating the target subcarrier block, it is possible to further reduce the amount of information of notification information to the transmitting apparatus.
[0023] また、上記通知手段は、当該最小周波数帯域を有するサブキャリアブロックを示す 情報と当該最大周波数帯域を有するサブキャリアブロックを示す情報と共に、当該最 小周波数帯域を有するサブキャリアブロックにおける品質値、及び当該最大周波数 帯域を有するサブキャリアブロックにおける品質値も通知するようにしてもよい。 [0023] Further, the notification means includes the information indicating the subcarrier block having the minimum frequency band and the information indicating the subcarrier block having the maximum frequency band, together with the maximum frequency band. The quality value in the subcarrier block having the small frequency band and the quality value in the subcarrier block having the maximum frequency band may also be notified.
[0024] これにより、通知を受けた送信装置では、受信装置における受信状態をより正確に 推定することができるよう〖こなる。  [0024] Thus, the transmitting apparatus that has received the notification can more accurately estimate the reception state in the receiving apparatus.
[0025] また、本発明は、上述の構成に加えて更に、受信された前記マルチキャリア信号の 遅延分散を推定する分散推定手段を備えるようにしてもよい。この場合には、上記通 知手段は、当該サブキャリアブロックの区間に替え、この分散推定手段により推定さ れた遅延分散を通知するようにすればょ 、。  [0025] In addition to the above-described configuration, the present invention may further include dispersion estimation means for estimating delay dispersion of the received multicarrier signal. In this case, the notification means should change to the section of the subcarrier block and notify the delay dispersion estimated by the dispersion estimation means.
[0026] 本発明では、高品質サブキャリアブロックにおける品質値、その高品質サブキャリア ブロックを示す情報の他、遅延分散が送信装置へ通知される。  [0026] In the present invention, in addition to the quality value in the high quality subcarrier block, information indicating the high quality subcarrier block, delay dispersion is notified to the transmission apparatus.
[0027] これにより、送信装置は、当該遅延分散により高品質サブキャリアブロックの有する 周波数帯域周辺のサブキャリアブロックについて品質値の広がりを検知することがで きるため、そのような高品質サブキャリアブロックの有する周波数帯域周辺のサブキヤ リアブロックについて個々に品質値を通知されることなぐ高品質サブキャリアブロック の品質値力 推定することができる。  [0027] Thereby, the transmission device can detect the spread of the quality value for the subcarrier blocks around the frequency band of the high quality subcarrier block by the delay dispersion, so that such a high quality subcarrier block can be detected. It is possible to estimate the quality value of a high-quality subcarrier block without being notified of the quality value individually for the subcarrier blocks around the frequency band of the.
[0028] これにより、本発明によれば、受信装置における受信情報について少ない情報量 の通知でも送信装置が正確な受信情報を推定することができる。  [0028] Thus, according to the present invention, the transmission device can estimate accurate reception information even when the reception device receives a small amount of information.
[0029] また、本発明は、上記通知手段が、当該高品質サブキャリアブロックにおける品質 値と各サブキャリアブロックにおける品質値との差力 当該高品質サブキャリアブロッ クの周波数帯域力 遠 、周波数帯域を有するサブキャリアブロック程少な 、情報量 により、それぞれ表された差分情報を生成する生成手段を更に有するようにしてもよ い。この場合、上記通知手段は、当該サブキャリアブロックの区間に替え、この差分 情報を送信装置に通知するようにしてもよい。  [0029] Further, according to the present invention, the notifying unit is configured such that the difference between the quality value in the high-quality subcarrier block and the quality value in each subcarrier block is a frequency band power far or frequency band of the high-quality subcarrier block. There may be further provided generating means for generating the difference information represented by the amount of information as the number of subcarrier blocks having is smaller. In this case, the notification unit may notify the transmission apparatus of this difference information instead of the section of the subcarrier block.
[0030] 本発明では、高品質サブキャリアブロックの周波数帯域周辺にあるサブキャリアブロ ックに関する高品質サブキャリアブロックにおける品質値との差が所定の情報量によ り表された差分情報が、高品質サブキャリアブロックを示す情報、その高品質サブキ ャリアブロックの品質値と共に送信装置に通知される。  [0030] In the present invention, the difference information in which the difference from the quality value in the high-quality subcarrier block related to the subcarrier block around the frequency band of the high-quality subcarrier block is represented by a predetermined amount of information is Information indicating the high quality subcarrier block and the quality value of the high quality subcarrier block are notified to the transmitting apparatus.
[0031] 更に、当該差分情報は、当該高品質サブキャリアブロックの周波数帯域力 遠い周 波数帯域を有するサブキャリアブロック程少な 、情報量となるように生成される。 [0031] Further, the difference information includes the frequency band power of the high quality subcarrier block. A subcarrier block having a wave number band is generated so as to have a smaller amount of information.
[0032] これにより、上述の情報を受けた送信装置では、当該差分情報が表される情報量 に関する情報を知ることにより、高品質サブキャリアブロックの周波数帯域周辺のサブ キャリアブロックにおける品質情報を推定することができるようになる。  [0032] With this, the transmitting apparatus that has received the above information estimates the quality information in the subcarrier blocks around the frequency band of the high quality subcarrier block by knowing information about the amount of information represented by the difference information. Will be able to.
[0033] このように、本発明によれば、高い品質値を有する高品質サブキャリアブロック周辺 の品質値を少ない情報量で送信装置に通知することができるため、受信装置力も送 信装置への通知情報の情報量を抑えながら、受信装置の受信状態を正確に通知す ることがでさる。  [0033] As described above, according to the present invention, the quality value around the high-quality subcarrier block having a high quality value can be notified to the transmission device with a small amount of information. It is possible to accurately notify the reception status of the receiving device while suppressing the amount of notification information.
[0034] また、本発明は、上述の各受信装置力もそれぞれ通知される情報に基づいて、各 受信装置における各サブキャリアブロックに関する品質値をそれぞれ推定するように し、この推定された品質値を元に、各受信装置への信号を当該サブキャリアブロック 単位に配置する際に、対象となるサブキャリアブロックに関し高い品質値を有する受 信装置への信号を優先的に配置する送信装置に関するものでもある。  [0034] Further, according to the present invention, the quality value related to each subcarrier block in each receiving device is estimated based on the information notified to each receiving device, and the estimated quality value is calculated. Originally, even when a signal to each receiving apparatus is arranged in units of the subcarrier block, the transmission apparatus may preferentially arrange a signal to a receiving apparatus having a high quality value with respect to the target subcarrier block. is there.
[0035] すなわち、上述の本発明に係る受信装置によって情報量が抑えられたフィードバッ ク情報においても、当該送信装置が各受信装置における受信状態を正確に把握す ることができるようにするものである。  [0035] That is, in the feedback information in which the amount of information is suppressed by the receiving device according to the present invention described above, the transmitting device can accurately grasp the reception state in each receiving device. It is.
[0036] 従って、本発明は、上述の受信装置及び送信装置とからなる通信システムに関して も適用可能である。  [0036] Therefore, the present invention can also be applied to a communication system including the above-described receiving apparatus and transmitting apparatus.
[0037] また、本発明は、上述の本発明に係る受信装置及び送信装置と同様の特徴を有す る通信方法、情報処理装置 (コンピュータ)を本発明に係る受信装置及び送信装置と して機能させるプログラム、或いは、当該プログラムを記録した記録媒体として実現可 能である。また、本発明に係る受信装置及び送信装置とは、例えば、無線により相互 に通信を行う通信装置であっても、有線により通信を行う通信装置であっても、また、 コンピュータ内でインタフェース信号としての通信を行う装置、素子等であってもよい  [0037] Further, the present invention provides a communication method and an information processing apparatus (computer) having the same characteristics as those of the above-described receiving apparatus and transmitting apparatus according to the present invention as the receiving apparatus and transmitting apparatus according to the present invention. It can be realized as a functioning program or a recording medium on which the program is recorded. In addition, the reception device and the transmission device according to the present invention are, for example, a communication device that communicates with each other wirelessly, a communication device that performs communication by wire, or an interface signal in a computer. May be a device, an element, etc.
[0038] なお、本発明は、サブキャリアブロックへの信号割り当てに関するもの、すなわち、 周波数スケジューリングに焦点を当てたものであり、時間軸における時間スケジユーリ ングにつ 、ては何ら限定するものではな!/、。 発明の効果 [0038] Note that the present invention relates to signal allocation to subcarrier blocks, that is, focuses on frequency scheduling, and does not limit time scheduling on the time axis at all! /. The invention's effect
[0039] 本発明によれば、周波数利用効率を上げ、通信スループットを向上させる受信装 置、通信システム及び通信方法を提供することができる。  [0039] According to the present invention, it is possible to provide a receiving device, a communication system, and a communication method that increase frequency utilization efficiency and improve communication throughput.
図面の簡単な説明  Brief Description of Drawings
[0040] [図 1]図 1は実施形態における基地局装置 (送信装置)の機能構成を示す図である。  FIG. 1 is a diagram showing a functional configuration of a base station apparatus (transmitting apparatus) in the embodiment.
[図 2]図 2は OFDMフレームの構成例を示す図である。  FIG. 2 is a diagram showing a configuration example of an OFDM frame.
[図 3]図 3はサブキャリア (周波数)ブロックの構成例を示す図である。  FIG. 3 is a diagram showing a configuration example of a subcarrier (frequency) block.
[図 4]図 4は実施形態における移動端末 (受信装置)の機能構成を示す図である。  FIG. 4 is a diagram showing a functional configuration of a mobile terminal (receiving device) in the embodiment.
[図 5]図 5は実施形態における周波数選択性フ ージングと受信環境情報生成概念 を示す図である。  FIG. 5 is a diagram showing a concept of frequency selective fusing and reception environment information generation in the embodiment.
[図 6]図 6はユーザ割り当てに関する処理フローを示す図である。  FIG. 6 is a diagram showing a processing flow related to user assignment.
[図 7]図 7は第一変形例における周波数選択性フ ージングと受信環境情報生成概 念を示す図である。  [FIG. 7] FIG. 7 is a diagram showing a concept of frequency selective fusing and reception environment information generation in the first modification.
[図 8]図 8は第二変形例における周波数選択性フ ージングと受信環境情報生成概 念を示す図である。  [FIG. 8] FIG. 8 is a diagram showing a concept of frequency selective fusing and reception environment information generation in the second modified example.
[図 9]図 9は第三変形例における周波数選択性フ ージングと受信環境情報生成概 念を示す図である。  [FIG. 9] FIG. 9 is a diagram showing a concept of frequency selective fusing and reception environment information generation in the third modified example.
[図 10]図 10は周波数選択性フ ージングの例を示す図である。  FIG. 10 is a diagram showing an example of frequency selective fuzzing.
[図 11]図 11は周波数スケジューリングの例を示す図である。  FIG. 11 is a diagram showing an example of frequency scheduling.
[図 12]図 12は従来技術によるフィードバック情報生成の概念を示す図である。 符号の説明  FIG. 12 is a diagram showing the concept of feedback information generation according to the prior art. Explanation of symbols
[0041] 10 パイロット多重部 [0041] 10 pilot multiplexing section
11、 43 シリアル Zパラレル(SZP)変換部  11, 43 Serial Z parallel (SZP) converter
12 IDFT咅  12 IDFT
13、 45 パラレル Zシリアル(PZS)変換部  13, 45 Parallel Z-serial (PZS) converter
14、 52 デジタル Zアナログ (DZA)変換部  14, 52 Digital Z analog (DZA) converter
15、 51 アップコンバージョン部  15, 51 Up-conversion section
21、 41 ダウンコンバージョン部 22、 42 アナログ Zデジタル (AZD)変換部 21, 41 Down conversion section 22, 42 Analog Z digital (AZD) converter
23 フィードバック情報抽出部  23 Feedback information extractor
24 ユーザ割当部  24 User allocation section
44 DFT咅  44 DFT 咅
47 信号対雑音比 (SNR)推定部  47 Signal-to-noise ratio (SNR) estimator
53 フィードバック情報生成部  53 Feedback information generator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0042] 以下、図面を参照して、本発明の実施形態における受信装置及び送信装置を有 する通信システムについて説明する。以下の説明では、説明の便宜のため、本実施 形態における受信装置と送信装置とは別々の通信装置として説明するが、本発明は 、このような構成に限定されるものではなぐ以下に述べる受信機能及び送信機能双 方を備える通信装置であってもよ 、。  Hereinafter, a communication system having a reception device and a transmission device according to an embodiment of the present invention will be described with reference to the drawings. In the following description, for convenience of explanation, the receiving device and the transmitting device in the present embodiment will be described as separate communication devices. However, the present invention is not limited to such a configuration, and is described below. It may be a communication device having both functions and transmission functions.
[0043] また、本実施形態では、受信装置として移動端末を例に挙げ、送信装置として複数 の移動端末と無線通信する基地局装置を例に挙げる。なお、それら通信装置はマル チキャリア伝送方式として OFDM方式を実現し得る機能を備えるものとする。また、 本実施形態における通信装置としては、他に、有線により通信を行う電力線通信装 置等やコンピュータ内でインタフ ース信号としての通信を行う装置、素子等であって もよい。あくまで、以下の実施形態の構成は例示であり、本発明は実施形態の構成 に限定されない。  [0043] In this embodiment, a mobile terminal is taken as an example of a receiving device, and a base station device that performs radio communication with a plurality of mobile terminals is taken as an example of a transmitting device. These communication devices shall have a function capable of realizing the OFDM system as a multi-carrier transmission system. In addition, the communication device in the present embodiment may be a power line communication device that performs communication by wire, a device that performs communication as an interface signal in a computer, an element, or the like. The configurations of the following embodiments are merely examples, and the present invention is not limited to the configurations of the embodiments.
[0044] 〔送信装置〕  [Transmission device]
まず、本実施形態における送信装置としての基地局装置について説明する。以下 、本実施形態における基地局装置の機能構成について図 1を用いて説明する。図 1 は、基地局装置の機能構成を示す図である。  First, a base station apparatus as a transmission apparatus in the present embodiment will be described. Hereinafter, the functional configuration of the base station apparatus in the present embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating a functional configuration of the base station apparatus.
[0045] 基地局装置は、パイロット多重部 10、シリアル Zパラレル (以降、 SZPと表記する) 変換部 11、 IDFT部 12、パラレル Zシリアル (以降、 PZSと表記する)変換部 13、デ ジタル Zアナログ (以降、 DZAと表記する)変換部 14、アップコンバージョン部 15、 ダウンコンバージョン部 21、アナログ Zデジタル (以降、 AZDと表記する)変換部 22 、フィードバック情報抽出部 23、ユーザ割当部 24等を有する。 [0046] パイロット多重部 10は、送信すべきデータ信号 (制御信号等も含む)をユーザ割当 部 24から受け、それと共にパイロット信号を受けると、当該データ信号とパイロット信 号を OFDMフレームに基づく所定の位置に配置したシリアル信号列を生成する。こ こで、 OFDMフレーム構成について図 2を用いて簡単に説明する。図 2は、本実施 形態における OFDMフレーム構成の例を示す図である。 [0045] The base station apparatus includes a pilot multiplexing unit 10, a serial Z parallel (hereinafter referred to as SZP) conversion unit 11, an IDFT unit 12, a parallel Z serial (hereinafter referred to as PZS) conversion unit 13, and a digital Z. Analog (hereinafter referred to as DZA) conversion unit 14, up-conversion unit 15, down-conversion unit 21, analog Z-digital (hereinafter referred to as AZD) conversion unit 22, feedback information extraction unit 23, user allocation unit 24, etc. Have. [0046] The pilot multiplexing unit 10 receives a data signal to be transmitted (including a control signal and the like) from the user allocation unit 24. When the pilot multiplexing unit 10 receives the pilot signal together with the data signal, the pilot multiplexing unit 10 receives the data signal and pilot signal based on the OFDM frame A serial signal sequence arranged at the position of is generated. Here, the OFDM frame configuration will be briefly described with reference to FIG. FIG. 2 is a diagram showing an example of an OFDM frame configuration in the present embodiment.
[0047] 本実施形態における OFDMフレームは、各フレームが N個のサブキャリア力も構 c  [0047] The OFDM frame in this embodiment has N subcarrier powers for each frame.
成され、各フレームにはパイロット信号、データ信号等が所定の位置に配置される。 図 2は、 P1から PNがパイロット信号を示し、 Da (b) (aは 2から 10、 bは 1から N )が c c 各フレーム内の aシンボル目の bサブキャリアに配置されるデータ信号を示す。なお、 本発明は、 OFDMフレームを図 2に示す構成に限定するものではない。  In each frame, a pilot signal, a data signal, and the like are arranged at predetermined positions. In Fig. 2, P1 to PN indicate pilot signals, and Da (b) (a is 2 to 10, b is 1 to N) is a cc data signal allocated to the b subcarrier of the a symbol in each frame. Show. Note that the present invention does not limit the OFDM frame to the configuration shown in FIG.
[0048] SZP変換部 11は、パイロット多重部 10により生成されたシリアル信号列をサブキヤ リア数 (N )分並列に並べたパラレル信号に変換する。 [0048] The SZP conversion unit 11 converts the serial signal sequence generated by the pilot multiplexing unit 10 into parallel signals arranged in parallel for the number of subcarriers (N).
C  C
[0049] IDFT部 12は、 SZP変換部 11から出力されるパラレル信号に対して各 OFDMシ ンボル単位で IDFT処理を行う。通常、この IDFT処理で利用される IDFTサイズ Nは 有効なサブキャリア数 (N )よりも大きいため、 IDFT部 12は、入力された N個のパラ  [0049] The IDFT unit 12 performs IDFT processing on the parallel signal output from the SZP conversion unit 11 in units of OFDM symbols. Normally, the IDFT size N used in this IDFT processing is larger than the effective number of subcarriers (N), so the IDFT unit 12 is configured to input N parameters.
C C  C C
レル信号の残りの N + 1から Nの区間にゼロ(0)信号を設定し、全部で N個のパラレ c  Set the zero (0) signal in the remaining N + 1 to N sections of the real signal, for a total of N parallel
ル信号に対して、 IDFT処理を行う。  IDFT processing is performed on the signal.
[0050] IDFT部 12から出力される各サブキャリアの時間軸上の信号 TE (f)は、 PZS変換 部 13により合成多重され、ガードインターバル付加部(図示せず)等によりガードイン ターバルが付加され、 DZA変換部 14によりアナログ信号に変換される。この変換さ れたアナログ信号は、アップコンバージョン部 15により信号の中心周波数を無線送 信周波数に変換され、アンテナ素子から送信される。  [0050] The signal TE (f) on the time axis of each subcarrier output from the IDFT unit 12 is combined and multiplexed by the PZS conversion unit 13, and a guard interval is added by a guard interval adding unit (not shown) or the like. Then, it is converted into an analog signal by the DZA converter 14. The converted analog signal is converted from the center frequency of the signal to a radio transmission frequency by the up-conversion unit 15 and transmitted from the antenna element.
[0051] 一方、基地局装置は、通信相手となる複数の移動端末から各移動端末の受信環 境情報を受信する。受信された受信環境情報は以下の機能部により処理される。受 信環境情報の内容の詳細については後述する。また、本実施形態では、この受信環 境情報は単に無線通信により伝送されるものとするが、本発明は各移動端末力 当 該基地局装置へのこの受信環境情報の伝送方法にっ 、て限定するものではな 、。  [0051] On the other hand, the base station apparatus receives reception environment information of each mobile terminal from a plurality of mobile terminals that are communication partners. The received reception environment information is processed by the following functional units. Details of the contents of the reception environment information will be described later. In the present embodiment, the reception environment information is simply transmitted by wireless communication. However, the present invention provides a method for transmitting the reception environment information to each mobile terminal power base station apparatus. Not limited.
[0052] 当該受信環境情報を含む無線周波数信号は、アンテナ素子により受信され、ダウ ンコンバージョン部 21によりベースバンド信号に変換される。このベースバンド信号 は、 AZD変換部 22によりデジタル信号に変換された後、フィードバック情報抽出部 23に入力される。 [0052] The radio frequency signal including the reception environment information is received by the antenna element and downloaded. Conversion unit 21 converts the signal into a baseband signal. This baseband signal is converted into a digital signal by the AZD conversion unit 22 and then input to the feedback information extraction unit 23.
[0053] フィードバック情報抽出部 23は、入力された信号から各移動端末の受信環境情報 を取得する。フィードバック情報抽出部 23は、通信相手となる複数の移動端末の個 々に関する受信環境情報をそれぞれ取得する。  [0053] The feedback information extraction unit 23 acquires the reception environment information of each mobile terminal from the input signal. The feedback information extraction unit 23 acquires reception environment information regarding each of a plurality of mobile terminals that are communication partners.
[0054] ユーザ割当部 24は、フィードバック情報抽出部 23から渡された各移動端末に関す る受信環境情報に基づき、送信要求を受けた各移動端末 (ユーザ)用のデータ信号 のうちどのユーザのデータ信号をどのサブキャリアブロック(周波数ブロックとしてもよ [0054] Based on the reception environment information regarding each mobile terminal passed from the feedback information extraction unit 23, the user allocation unit 24 selects which user of the data signals for each mobile terminal (user) that has received the transmission request. Data signal can be sent to any subcarrier block (frequency block)
V、)で送信するかをスケジューリングする(以降、この処理をユーザ割当処理とも表記 する)。ユーザ割当部 24は、 N個のサブキャリアを複数のサブキャリアブロックに分 V,) is scheduled for transmission (hereinafter, this process is also referred to as user allocation process). The user allocation unit 24 divides N subcarriers into a plurality of subcarrier blocks.
C  C
割し、このサブキャリアブロック単位でユーザ割当処理を行う。  The user allocation process is performed for each subcarrier block.
[0055] サブキャリア数 Nに対するサブキャリアブロック数 N の数の設定方法は特に限定  [0055] The method for setting the number of subcarrier blocks N to the number of subcarriers N is particularly limited
C fblk  C fblk
されるものではなぐ通信装置の設置環境等に応じて最適化されるべきである。また、 However, it should be optimized according to the installation environment of the communication device. Also,
N >N であれば、 Nは N の整数倍になっている必要は無ぐ各ブロックが異なるIf N> N, N does not need to be an integer multiple of N and each block is different
C fblk C fblk C fblk C fblk
サブキャリア数で構成されるようにしてもよい。また、送信装置及び受信装置間でサ ブキャリアブロックの構成を予め固定値として持つようにしてもょ 、し、当該サブキヤリ アブロックの構成を可変なものとし送信装置力 受信装置に対して通知するようにし てもよい。  It may be configured by the number of subcarriers. Also, the subcarrier block configuration may be previously set as a fixed value between the transmission device and the reception device, and the configuration of the subcarrier block is made variable, and the transmission device power is notified to the reception device. You may do so.
[0056] 本実施形態では、 Nが N の整数倍になっており、各サブキャリアブロックが N /  [0056] In the present embodiment, N is an integer multiple of N, and each subcarrier block has N /
C fblk C C fblk C
N 個のサブキャリアを含むような構成とする。図 3は、本実施形態におけるサブキヤ fblk The configuration includes N subcarriers. Figure 3 shows the subcarrier fblk in this embodiment.
リアブロックの構成例を示す図である。図 3に示すように、本実施形態では、サブキヤ リア Nがサブキャリアブロック数 N で分割され、 1つのサブキャリアブロックが 4サブ It is a figure which shows the structural example of a rear block. As shown in FIG. 3, in the present embodiment, subcarrier N is divided by the number of subcarrier blocks N, and one subcarrier block is divided into 4 subcarrier blocks.
C fblk C fblk
キャリアで構成される。  Consists of carriers.
[0057] なお、ユーザ割当部 24における当該ユーザ割当処理の詳細につ 、ては <ユーザ 割当処理〉の項にて説明する。ユーザ割当部 24は、送信フレームの所定の配置に ユーザへの送信信号を適応的に割り当てたデータ信号を生成する。ユーザ割当部 2 Note that the details of the user allocation process in the user allocation unit 24 will be described in the section <User allocation process>. The user allocation unit 24 generates a data signal in which transmission signals to users are adaptively allocated to a predetermined arrangement of transmission frames. User allocation part 2
4は、生成されたデータ信号をパイロット多重部 10に渡す。 [0058] 〔受信装置〕 4 passes the generated data signal to the pilot multiplexing unit 10. [Reception device]
以下、本発明の実施形態における受信装置としての移動端末について図 4を用い て説明する。図 4は、本実施形態における移動端末の機能構成を示す図である。  Hereinafter, a mobile terminal as a receiving apparatus according to an embodiment of the present invention will be described with reference to FIG. FIG. 4 is a diagram showing a functional configuration of the mobile terminal in the present embodiment.
[0059] 本実施形態における移動端末は、ダウンコンバージョン部 41、 AZD変換部 42、 S ZP変換部 43、 DFT部 44、 PZS変換部 45、信号対雑音比(以降、 SNR (Signal to Noise Ratio)と表記する)推定部 47、アップコンバージョン部 51、 DZA変換部 52、 フィードバック情報生成部 53等を有する。  [0059] The mobile terminal in this embodiment includes a down-conversion unit 41, an AZD conversion unit 42, an S ZP conversion unit 43, a DFT unit 44, a PZS conversion unit 45, a signal-to-noise ratio (hereinafter referred to as SNR (Signal to Noise Ratio)). And an estimation unit 47, an up-conversion unit 51, a DZA conversion unit 52, a feedback information generation unit 53, and the like.
[0060] ダウンコンバージョン部 41は、アンテナ素子により、上述の OFDMフレームにより 構成される無線送信周波数信号を受信すると、この無線送信周波数信号をベースバ ンド信号に変換する。このベースバンド信号は、 AZD変換部 42によりデジタル信号 に変換された後、 S/P変換部 43により基地局装置での IDFTサイズと同じ Nサンプ ルのパラレル信号に変換される。なお、このとき、ノラレル信号力 ガードインターバ ルが除去される。  [0060] When the antenna element receives a radio transmission frequency signal composed of the above-described OFDM frame, the down-conversion unit 41 converts the radio transmission frequency signal into a baseband signal. This baseband signal is converted into a digital signal by the AZD conversion unit 42, and then converted into an N-sample parallel signal having the same IDFT size in the base station apparatus by the S / P conversion unit 43. At this time, the normal signal strength guard interval is removed.
[0061] DFT部 44は、入力されたパラレル信号に対して DFT処理を行 、、各サブキャリア 成分に対応する N個の信号を出力する。この DFT処理で利用される DFTサイズは、 送信装置で利用された IDFTサイズと同じものである。このとき、出力された N個の信 号のうち、 N + 1〜N個の信号は基地局装置により設定されたゼロ信号である。この  [0061] The DFT unit 44 performs DFT processing on the input parallel signal, and outputs N signals corresponding to each subcarrier component. The DFT size used in this DFT process is the same as the IDFT size used in the transmitting device. At this time, N + 1 to N signals among the output N signals are zero signals set by the base station apparatus. this
C  C
出力されたパラレル信号は、 PZS変換部 45によりシリアル信号列に並べ替えられ、 その他の機能部(例えば、復調部)に渡される。また、この出力されたパラレル信号は SNR推定部 47にも渡される。  The output parallel signals are rearranged into a serial signal sequence by the PZS conversion unit 45 and passed to other functional units (for example, a demodulation unit). The output parallel signal is also passed to the SNR estimation unit 47.
[0062] SNR推定部 47は、 DFT部 44から渡された各サブキャリアに相当する信号列に基 づいて、各サブキャリアブロックの平均 SNRをそれぞれ推定する。この平均 SNRは、 例えば、対象となるサブキャリアブロックを構成する各サブキャリアの SNRがそれぞれ 求められ、それらを平均すること〖こより得られるものとしてもよい。各サブキャリアブロッ クを構成するサブキャリア数等の情報は、移動端末内のメモリ等に記憶されるようにし てもよいし、予め基地局装置力も通知されるようにしてもよい。推定された平均 SNR は、フィードバック情報生成部 53に渡される。  [0062] SNR estimation section 47 estimates the average SNR of each subcarrier block based on the signal sequence corresponding to each subcarrier passed from DFT section 44. This average SNR may be obtained, for example, by obtaining the SNR of each subcarrier constituting the target subcarrier block and averaging them. Information such as the number of subcarriers constituting each subcarrier block may be stored in a memory or the like in the mobile terminal, or the base station apparatus power may be notified in advance. The estimated average SNR is passed to the feedback information generation unit 53.
[0063] フィードバック情報生成部 53は、渡された各サブキャリアブロックの平均 SNRに基 づき、基地局装置へフィードバックするための受信環境情報を生成する。なお、受信 環境情報の生成処理については <受信環境情報生成処理 >の項で説明する。 [0063] The feedback information generating unit 53 is based on the average SNR of each passed subcarrier block. Next, reception environment information for feedback to the base station apparatus is generated. The reception environment information generation process is described in the section <Reception environment information generation process>.
[0064] 生成された受信環境情報は、 DZA変換部 52によりアナログ信号に変換される。変 換されたアナログ信号は、アップコンバージョン部 51により信号の中心周波数を無線 送信周波数に変換され、アンテナ素子から送信される。  The generated reception environment information is converted into an analog signal by the DZA conversion unit 52. The converted analog signal is converted from the center frequency of the signal to a radio transmission frequency by the up-conversion unit 51 and transmitted from the antenna element.
[0065] なお、本実施形態では、周波数一時間変換処理を IDFTとし、時間一周波数変換 処理を DFTとしている力 本発明はこれらに限定するものではなぐ周波数一時間変 換処理を IFFTとし、時間一周波数変換処理を FFTとしてもよい。また、移動端末か ら基地局装置への上記受信環境情報の伝送方法はどのような手法を用いてもよい。  [0065] In this embodiment, the frequency / time conversion process is IDFT, and the time / frequency conversion process is DFT. The present invention is not limited to these, and the frequency / time conversion process is IFFT, One frequency conversion processing may be FFT. In addition, any method may be used for transmitting the reception environment information from the mobile terminal to the base station apparatus.
[0066] <受信環境情報生成処理 >  [0066] <Reception environment information generation process>
以下、移動端末における受信環境情報生成処理について図 5を用いて説明する。 図 5は、周波数選択性フェージングと受信環境情報生成概念を示す図である。  Hereinafter, reception environment information generation processing in the mobile terminal will be described with reference to FIG. FIG. 5 is a diagram showing the concept of frequency selective fading and reception environment information generation.
[0067] 移動端末は、図 5に示すような周波数選択性フェージングの影響を受けた信号を受 信する。移動端末の SNR推定部 47は、当該フェージングの影響を受けた信号に関 し各サブキャリアに相当する信号列をそれぞれ受けると、各サブキャリアブロックの平 均 SNR (以降、単に SNRと表記する)を推定する。図 5では、棒線(四角)それぞれが サブキャリアブロックを示す。  [0067] The mobile terminal receives a signal affected by frequency selective fading as shown in FIG. When the SNR estimation unit 47 of the mobile terminal receives a signal sequence corresponding to each subcarrier with respect to the signal affected by the fading, an average SNR of each subcarrier block (hereinafter simply referred to as SNR). Is estimated. In Fig. 5, each bar (square) represents a subcarrier block.
[0068] フィードバック情報生成部 53は、この各サブキャリアブロックに関する SNRに基づき 、受信環境情報を以下のように生成する。まず、フィードバック情報生成部 53は、各 サブキャリアブロックに関する SNRの中力 SNRが最大のサブキャリアブロック番号 を検出する(図 5のサブキャリアブロック # n)。  [0068] Based on the SNR for each subcarrier block, feedback information generation section 53 generates reception environment information as follows. First, the feedback information generation unit 53 detects the subcarrier block number having the maximum SNR medium SNR for each subcarrier block (subcarrier block #n in FIG. 5).
[0069] 次に、フィードバック情報生成部 53は、 SNRの最大値力も所定の閾値(—Xデシべ ル(dB) )以内の SNRを有するサブキャリアブロックのサブキャリアブロック番号を検 出する。フィードバック情報生成部 53は、この検出されたサブキャリアブロックのうち 最小周波数帯域を有するサブキャリアブロックと最大周波数帯域を有するサブキヤリ アブロックの番号をそれぞれ検出する(図 5のサブキャリアブロック # ηθ及び # nl)。 この所定の閾値 (XdB)は、システム共通の固定値として移動端末内のメモリ等に予 め記憶されるようにしてもょ 、し、基地局装置から制御情報として通知されるようにし てもよい。 [0069] Next, feedback information generating section 53 detects the subcarrier block number of the subcarrier block having an SNR that is also within a predetermined threshold (-X decibel (dB)). The feedback information generation unit 53 detects the numbers of the subcarrier block having the minimum frequency band and the subcarrier block having the maximum frequency band among the detected subcarrier blocks (subcarrier blocks # ηθ and # in FIG. 5). nl). This predetermined threshold value (XdB) may be stored in advance in a memory or the like in the mobile terminal as a fixed value common to the system, and may be notified as control information from the base station apparatus. May be.
[0070] フィードバック情報生成部 53は、 SNRの最大値(SNR(n))とこのサブキャリアブロ ック番号 (n)と検出された最小の周波数のサブキャリアブロック番号 (ηθ)と最大の周 波数のサブキャリアブロック番号 (nl)とを含めた受信環境情報を生成する。なお、本 実施形態では、最大 SNRを有するサブキャリアブロックを基準に受信環境情報を生 成することとして 、るが、最大 SNRに限定せず最大 SNRに近 、SNRを有するサブ キャリアブロックを基準にするようにしてもよ 、。  [0070] The feedback information generation unit 53 determines the maximum SNR value (SNR (n)), the subcarrier block number (n), the subcarrier block number (ηθ) of the detected minimum frequency, and the maximum frequency. The reception environment information including the wave number subcarrier block number (nl) is generated. In this embodiment, the reception environment information is generated based on the subcarrier block having the maximum SNR. However, the reception environment information is not limited to the maximum SNR, and is close to the maximum SNR and is based on the subcarrier block having the SNR. You can do it.
[0071] <ユーザ割当処理 >  [0071] <User assignment process>
基地局装置では、上述の受信環境情報 (n、 SNR(n)、 nO、 nl)を含んだ信号が受 信されると、フィードバック情報抽出部 23により当該受信環境情報が抽出され、ユー ザ割当部 24に渡される。  When the base station apparatus receives a signal including the reception environment information (n, SNR (n), nO, nl) described above, the feedback information extraction unit 23 extracts the reception environment information and assigns the user allocation. Passed to part 24.
[0072] ユーザ割当部 24は、このように各移動端末に関する受信環境情報 (n、 SNR(n)、 nO、 nl)をそれぞれ受けると、この受信環境情報に基づき、各移動端末に関する ηθ 力も nl区間の各サブキャリアブロックに関する SNRをそれぞれ推定する。  [0072] Upon receiving the reception environment information (n, SNR (n), nO, nl) for each mobile terminal in this way, the user allocation unit 24 also obtains the ηθ force for each mobile terminal based on this reception environment information. Estimate the SNR for each subcarrier block in the interval.
[0073] 各サブキャリアブロックに関する SNRの推定においては、 ηθ及び nlでの SNRを所 定の閾値 Xを用いて SNR(nO) =SNR(n)—X、 SNR(nl) =SNR(n)—Xと推定し 、その他のサブキャリアブロックに関する SNRを以下の(式 1)のように推定する。  [0073] In the estimation of SNR for each subcarrier block, SNR (nO) = SNR (n) —X, SNR (nl) = SNR (n) Estimate —X, and estimate the SNR for other subcarrier blocks as shown in (Equation 1) below.
[0074] [数 1]  [0074] [Equation 1]
SN 二 {(n-k)xSNR(n0)+(k-n ),SNR(n)} く SN 2 {(nk) xSNR (n0) + (kn), SNR (n)}
n-n0+l  n-n0 + l
SNR(k) = {(k→ SNR(nl)+(nl-k),SNR(n)} (^く ) … (式1) SNR (k) = {(k → SNR (nl) + (nl-k), SNR (n)} (^)) (Equation 1 )
nl-n + i そして、ユーザ割当部 24は、この推定された情報を保持することにより、各移動端 末に関するユーザ割当処理を実行する。このユーザ割当処理に関しては、 MAX— CIやプロポーショナルフェア(proportional fair)などの技術が一般的に知られており、 本発明はこれら 、ずれの手法若しくはその他の手法を用いるようにしてもょ 、。例え ば、 MAX— CIをもとにしたユーザ割当処理では、受信環境情報によりフィードバック された各サブキャリアブロックに関する SNRのうち、最も高い SNRとなっているユー ザがそのサブキャリアブロックに割り当てられる。受信環境情報に基づく SNRが存在 しなかったサブキャリアブロックに関しては、各ユーザの平均 SNRのうち最も平均 SN Rが高 、ユーザが割り当てられる。 nl-n + i Then, the user allocating unit 24 holds the estimated information to execute the user allocation process for each mobile terminal. With regard to this user allocation process, techniques such as MAX-CI and proportional fair are generally known, and the present invention may use these misalignment techniques or other techniques. For example, in the user allocation process based on MAX-CI, the user with the highest SNR among the SNRs for each subcarrier block fed back by the reception environment information. The is assigned to the subcarrier block. For the subcarrier block for which no SNR based on the reception environment information exists, the average SNR is the highest among the average SNR of each user, and the user is assigned.
[0075] この MAX— CIをもとにしたユーザ割当についての処理フローを図 6に示す。図 6に 示す処理フローでは、まず、各サブキャリアブロックについて受信環境情報に基づい て推定された SNRが存在するかどうかが調べられる(S601)。対象となるサブキヤリ アブロックについていずれかの移動端末に関する SNRが存在すると判定されると(S 601; YES)、その SNRのうち最大 SNRを有する移動端末を選択し、その移動端末 を対象となるサブキャリアブロックへ割り当てる(S602)。  [0075] Fig. 6 shows the processing flow for user assignment based on this MAX-CI. In the processing flow shown in FIG. 6, first, it is checked whether or not there is an SNR estimated based on the reception environment information for each subcarrier block (S601). If it is determined that there is an SNR for any mobile terminal for the target subcarrier block (S601; YES), the mobile terminal having the maximum SNR is selected from the SNRs, and the mobile terminal is selected as the target subcarrier block. Allocate to carrier block (S602).
[0076] 一方、対象となるサブキャリアブロックについての SNRが存在しないと判定されると  [0076] On the other hand, when it is determined that there is no SNR for the target subcarrier block
(S601 ;NO)、各移動端末について SNRの平均値となる平均 SNRが求められ、そ の平均 SNRが最大となる移動端末を対象となるサブキャリアブロックへ割り当てる(S 603)。  (S601: NO), an average SNR that is an average value of the SNR is obtained for each mobile terminal, and the mobile terminal having the maximum average SNR is assigned to the target subcarrier block (S603).
[0077] 対象となるサブキャリアブロックについてのユーザ割当が完了すると、次のサブキヤ リアブロックを対象とし(S604)、上述の処理を全てのサブキャリアブロック分行う(S6 05)。  [0077] When the user allocation for the target subcarrier block is completed, the next subcarrier block is targeted (S604), and the above-described processing is performed for all subcarrier blocks (S605).
[0078] 〈実施形態における作用 Z効果〉  <Operation in Embodiment Z Effect>
本実施形態における基地局装置 (送信装置)及び移動端末 (受信装置)では、 N  In the base station device (transmitting device) and mobile terminal (receiving device) in this embodiment, N
C  C
個のサブキャリアからなるマルチキャリア信号であって、当該 N個のサブキャリアがそ  Multi-carrier signal consisting of N subcarriers, and the N subcarriers
c  c
れぞれ 4つのサブキャリアからなる N 個のサブキャリアブロック(周波数ブロック)に folk  Folk into N subcarrier blocks (frequency blocks) each consisting of 4 subcarriers
分割されており、各移動端末へのデータ信号が当該サブキャリアブロック単位で配置 された信号が送受される。  The signal is divided and data signals to each mobile terminal are transmitted and received in units of the subcarrier blocks.
[0079] 各移動端末では、周波数選択性フェージングの影響を受けた上述のマルチキヤリ ァ信号が受信されると、 SNR推定部 47により当該受信された信号の各サブキャリア ブロックに関する SNRがそれぞれ推定される。  [0079] In each mobile terminal, when the above-described multicarrier signal affected by frequency selective fading is received, SNR estimation section 47 estimates the SNR for each subcarrier block of the received signal. .
[0080] 続いて、フィードバック情報生成部 53は、この各サブキャリアブロックに関する SNR に基づき受信環境情報を生成する。この受信環境情報は、各サブキャリアブロックに 関する SNRのうち SNRが最大のサブキャリアブロックのサブキャリアブロック番号(n) 、その最大 SNR、その最大 SNRとの差分が所定の閾値(一 XdB)以内の SNRを有 するサブキャリアブロックのうち最小周波数帯域を有するサブキャリアブロックと最大 周波数帯域を有するサブキャリアブロックの番号が含められる。この生成された受信 環境情報は、基地局装置へ送信される。 [0080] Subsequently, feedback information generating section 53 generates reception environment information based on the SNR related to each subcarrier block. This reception environment information includes the subcarrier block number (n) of the subcarrier block with the largest SNR among the SNRs for each subcarrier block. The subcarrier block having the minimum frequency band and the subcarrier block having the maximum frequency band among the subcarrier blocks having an SNR whose difference from the maximum SNR is within a predetermined threshold (one XdB) Included. The generated reception environment information is transmitted to the base station apparatus.
[0081] 基地局装置は、通信相手となる複数の移動端末のそれぞれ力 当該受信環境情 報を受信する。この受信環境情報を受信した基地局装置では、当該受信環境情報 に基づき、各移動端末における各サブキャリアブロックの SNRがそれぞれ推定される 。この SNRの推定においては、基地局装置が複数の移動端末と共通に有する所定 の閾値 (XdB)が利用される。  [0081] The base station apparatus receives the reception environment information of each of a plurality of mobile terminals that are communication partners. In the base station apparatus that has received the reception environment information, the SNR of each subcarrier block in each mobile terminal is estimated based on the reception environment information. In this SNR estimation, a predetermined threshold (XdB) that the base station apparatus has in common with a plurality of mobile terminals is used.
[0082] そして、各移動端末についての各サブキャリアブロックの SNRがそれぞれ推定され ると、それら推定された SNRを元に、送信信号における各サブキャリアブロックに関し 高 ヽ SNRを有する移動端末へ送信すべき信号が優先的に配置される。このようにデ ータ信号が配置されたマルチキャリア信号は複数の移動端末へ送信される。  [0082] Then, when the SNR of each subcarrier block for each mobile terminal is estimated, transmission is performed based on the estimated SNR to the mobile terminal having a high SNR for each subcarrier block in the transmission signal. Should be preferentially placed. The multicarrier signal in which the data signal is arranged in this way is transmitted to a plurality of mobile terminals.
[0083] このように、本実施形態では、各移動端末がそれぞれ全てのサブキャリアブロックに 関する SNRを送ることなく必要最小限の情報として、最大 SNRを有するサブキャリア ブロックに関する情報(SNR値を含む)及びそのサブキャリアブロックを基準とするサ ブキャリアブロック区間が通知される。基地局装置では、この最大 SNRを有するサブ キャリアブロックに関する情報を基準に、それ以外のサブキャリアブロックに関する S NRが推定される。  [0083] As described above, in this embodiment, each mobile terminal transmits information on subcarrier blocks having the maximum SNR (including the SNR value) as the minimum necessary information without sending SNRs for all subcarrier blocks. ) And the subcarrier block section based on the subcarrier block. In the base station apparatus, the SNRs for the other subcarrier blocks are estimated based on the information about the subcarrier blocks having the maximum SNR.
[0084] これは、周波数選択性フェージングによる影響に比べ、相対的に 1つのサブキヤリ アブロックの幅が小さくなることから各サブキャリアブロックの SNRの変化が緩やかと なる傾向を用い、受信品質が最大となるサブキャリアブロック付近の広い周波数領域 に渡って良好な受信環境であることが保証されるという考えに基づくものである。  [0084] This is because, compared to the effect of frequency selective fading, the width of one subcarrier block is relatively small, and therefore the SNR change of each subcarrier block tends to be gradual. This is based on the idea that a good reception environment is guaranteed over a wide frequency range near the subcarrier block.
[0085] これにより、本実施形態によれば、フィードバックリンクの情報量を抑えながら、正確 な受信環境情報に基づく適応的な周波数割り当てを実現することができ、ひいては、 当該基地局装置と複数の移動端末とからなる通信システム全体として周波数利用効 率を上げ、通信スループットを向上させることができる。  [0085] Thus, according to the present embodiment, adaptive frequency allocation based on accurate reception environment information can be realized while suppressing the amount of feedback link information. As a whole communication system composed of mobile terminals, the frequency utilization efficiency can be increased and the communication throughput can be improved.
[0086] 〔第一変形例〕 上述の本実施形態における受信環境情報生成手法及びユーザ割当処理では、移 動端末と基地局装置とがそれぞれ所定の閾値 (XdB)を共有し、移動端末が最大 SN R力もこの閾値以内の SNRを有するサブキャリアブロックのうち最小周波数のサブキ ャリアブロック (ηθ)と最大周波数のサブキャリアブロック (nl)をそれぞれ通知すること としているが、基地局装置ではこの閾値の情報を持たず、移動端末力 はサブキヤリ アブロック番号 ηθ及び nlの代わりにサブキャリアブロック ηθにおける SNRとサブキヤ リアブロック nlにおける SNRをそれぞれ基地局装置へ通知するようにしてもょ 、(図 7参照)。 [0086] [First Modification] In the reception environment information generation method and user allocation process in the present embodiment described above, the mobile terminal and the base station apparatus each share a predetermined threshold (XdB), and the mobile terminal has an SNR within this threshold as well as the maximum SNR force. The subcarrier block (ηθ) having the lowest frequency and the subcarrier block (nl) having the highest frequency are notified respectively, but the base station apparatus does not have this threshold information, and the mobile terminal power is subcarrier. Instead of the block numbers ηθ and nl, the SNR in the subcarrier block ηθ and the SNR in the subcarrier block nl may be notified to the base station device (see FIG. 7).
[0087] この場合、本実施形態に比べ受信環境情報の情報量が増加するものの、 SNR (n 0)、 SNR (nl)を SNR (n)と閾値 X力 推定して 、たものに比べ正確な値を用いるこ とができるため、より正確に ηθから nl区間の SNRを推定することができる。  [0087] In this case, although the amount of reception environment information increases compared to this embodiment, the SNR (n 0) and SNR (nl) are estimated to be SNR (n) and the threshold X force, which is more accurate than Therefore, it is possible to estimate the SNR in the nl interval from ηθ more accurately.
[0088] 〔第二変形例〕  [Second Modification]
上述の本実施形態における受信環境情報生成手法及びユーザ割当処理では、移 動端末が所定の閾値 (XdB)を用いて、最大 SNR力もの差分力この閾値以内の SN Rを有するサブキャリアブロックに関する情報を通知することとしている力 移動端末 力 は、最大 SNR、そのサブキャリアブロック番号 (n)の他、遅延分散に関する情報 を基地局装置へ通知するようにしてもよい。以下、第二変形例における移動端末の 受信環境情報生成処理、及び基地局装置のユーザ割当処理について説明する。そ の他、移動端末及び基地局装置の機能構成等は上述の実施形態と同様とする。  In the reception environment information generation method and the user allocation process in the above-described embodiment, the mobile terminal uses a predetermined threshold (XdB), and the differential power of the maximum SNR power is information on the subcarrier block having an SNR within this threshold. In addition to the maximum SNR and its subcarrier block number (n), the mobile terminal force may notify the base station apparatus of information on delay dispersion. Hereinafter, the reception environment information generation process of the mobile terminal and the user allocation process of the base station apparatus in the second modification will be described. In addition, the functional configurations of the mobile terminal and the base station apparatus are the same as those in the above-described embodiment.
[0089] <受信環境情報生成処理 >  [0089] <Receiving environment information generation process>
以下、移動端末における受信環境情報生成処理について図 8を用いて説明する。 図 8は、第二変形例における周波数選択性フ ージングと受信環境情報生成概念を 示す図である。  Hereinafter, reception environment information generation processing in the mobile terminal will be described with reference to FIG. FIG. 8 is a diagram showing the concept of frequency selective fusing and reception environment information generation in the second modification.
[0090] 移動端末は、図 8に示すような周波数選択性フェージングの影響を受けたマルチキ ャリア信号を受信する。移動端末の SNR推定部 47は、当該フェージングの影響を受 けた信号に関し各サブキャリアに相当する信号列をそれぞれ受けると、各サブキヤリ アブロックの平均 SNR (以降、単に SNRと表記する)を推定する。図 8では、棒線(四 角)それぞれがサブキャリアブロックを示す。 [0091] フィードバック情報生成部 53は、まず、各サブキャリアブロックに関する SNRの中か ら SNRが最大のサブキャリアブロック番号を検出する(図 8のサブキャリアブロック # n )。 [0090] The mobile terminal receives a multi-carrier signal affected by frequency selective fading as shown in FIG. When the SNR estimation unit 47 of the mobile terminal receives a signal sequence corresponding to each subcarrier with respect to the signal affected by the fading, the SNR estimation unit 47 estimates the average SNR of each subcarrier block (hereinafter simply referred to as SNR). . In FIG. 8, each bar (square) represents a subcarrier block. [0091] Feedback information generating section 53 first detects the subcarrier block number having the maximum SNR from the SNRs related to the respective subcarrier blocks (subcarrier block #n in FIG. 8).
[0092] 次に、フィードバック情報生成部 53は、受信された信号の遅延分散を求める。この 遅延分散は、図 8に示すような受信信号について遅延プロファイル、すなわち、時間 軸領域 (時間-受信電力軸)の波形情報を得ることにより求められる。フィードバック 情報生成部 53は、この得られた遅延プロファイルに基づき、当該遅延分散を求める 。遅延分散 σは、例えば、遅延プロファイルを P (t)とした場合、以下の(式 2)により求 められる。この遅延分散情報の逆数は、当該受信信号の SNRの分散 (広がり)を示 す。  Next, the feedback information generation unit 53 obtains delay dispersion of the received signal. This delay dispersion is obtained by obtaining a delay profile, that is, waveform information in the time axis region (time-received power axis) for the received signal as shown in FIG. The feedback information generating unit 53 obtains the delay dispersion based on the obtained delay profile. The delay dispersion σ can be calculated by the following (Equation 2) when the delay profile is P (t). The reciprocal of this delay dispersion information indicates the SNR dispersion (spread) of the received signal.
[0093] [数 2]  [0093] [Equation 2]
Figure imgf000019_0001
フィードバック情報生成部 53は、 SNRの最大値(SNR (n) )とこのサブキャリアブロ ック番号 (n)と上述の遅延分散情報とを含めた受信環境情報を生成する。
Figure imgf000019_0001
The feedback information generation unit 53 generates reception environment information including the maximum value of SNR (SNR (n)), the subcarrier block number (n), and the delay dispersion information described above.
[0094] <ユーザ割当処理 >  [0094] <User assignment process>
基地局装置では、上述の受信環境情報 (n、 SNR(n)、 σ )を含んだ信号が受信さ れると、フィードバック情報抽出部 23により当該受信環境情報が抽出され、ユーザ割 当部 24に渡される。  In the base station apparatus, when a signal including the reception environment information (n, SNR (n), σ) described above is received, the reception environment information is extracted by the feedback information extraction unit 23 and is transmitted to the user allocation unit 24. Passed.
[0095] ユーザ割当部 24は、このように各移動端末に関する受信環境情報 (n、 SNR (n)、 σ )をそれぞれ受けると、各受信環境情報に基づき、各移動端末について、各サブキ ャリアブロックの SNRをそれぞれ推定する。最大 SNR以外の各サブキャリアブロック k に関する SNR (SNR (k) )の推定は、例えば、以下の(式 3)のように推定される。  [0095] Upon receiving the reception environment information (n, SNR (n), σ) for each mobile terminal in this way, the user allocation unit 24 receives each subcarrier block for each mobile terminal based on each reception environment information. Estimate each SNR. The estimation of SNR (SNR (k)) for each subcarrier block k other than the maximum SNR is, for example, estimated as shown in (Equation 3) below.
est  est
[0096] [数 3]  [0096] [Equation 3]
SNRest (k) = SNR[n ) -
Figure imgf000019_0002
- «|) · ■ · (式 3 ) ここで table (x)は、例えば、予めメモリ等に記憶されるテーブルから取得される値で あってもよい。この場合、当該テーブルには、遅延分散 σと最大 SNRを有するサブキ ャリアブロック ηから対象となるサブキャリアブロックの周波数帯域の近さ(k— η)との 関係における SNRの減衰量がそれぞれ記憶されるようにしてもよい。
SNR est (k) = SNR (n)-
Figure imgf000019_0002
-«|) · ■ · (Formula 3) Here, table (x) may be a value acquired from a table stored in advance in a memory or the like, for example. In this case, the table stores the SNR attenuation amount in relation to the delay carrier σ and the subcarrier block η having the maximum SNR to the frequency band proximity (k−η) of the target subcarrier block. You may do it.
[0097] また、テーブルを用いるのではなぐ table (x) = ax2のように最大 SNRからの減推 量を放物線を示す関数等により予め定義しておくようにしてもよい。このように予めテ 一ブルとして記憶された、若しくは予め関数として定義された減衰量算出に用 、られ る情報は、送信装置の設置環境、無線電波の伝搬環境等に応じて外部から調整可 能となるようにしてもよい。 [0097] In addition, the reduced estimated amount from the maximum SNR may be defined in advance by a function or the like showing a parabola as table (x) = ax 2 that of using the table Nag. Information that is stored in advance as a table or used for attenuation calculation that is defined in advance as a function can be adjusted from the outside according to the installation environment of the transmitter, the radio wave propagation environment, etc. You may make it become.
[0098] そして、ユーザ割当部 24は、この推定された情報を保持することにより、各移動端 末に関するユーザ割当処理を実行する。以降のユーザ割当処理に関しては、本実 施形態と同様である。 [0098] Then, the user allocation unit 24 holds the estimated information to execute a user allocation process for each mobile terminal. Subsequent user allocation processing is the same as in this embodiment.
[0099] 〈第二変形例における作用 Z効果〉 <Operation Z Effect in Second Modification>
第二変形例における基地局装置 (送信装置)及び移動端末 (受信装置)では、最大 In the base station device (transmitting device) and mobile terminal (receiving device) in the second modification, the maximum
SNR、そのサブキャリアブロック番号 (n)の他、遅延分散情報 σが基地局装置へ通 知される。 In addition to the SNR and its subcarrier block number (n), delay dispersion information σ is notified to the base station apparatus.
[0100] 基地局装置では、通信相手となる複数の移動端末のそれぞれから当該受信環境 情報を受信すると、当該受信環境情報に基づき、各移動端末における各サブキヤリ アブロックの SNRがそれぞれ推定される。第二変形例では、この SNRの推定にあた つて、最大 SNRと遅延分散 σとの関係において、実値の SNRが通知されていない サブキャリアブロックについての SNRが推定される。  [0100] When the base station apparatus receives the reception environment information from each of a plurality of mobile terminals as communication partners, the SNR of each subcarrier block in each mobile terminal is estimated based on the reception environment information. In the second modified example, for this SNR estimation, the SNR is estimated for the subcarrier block for which the actual SNR is not reported in relation to the maximum SNR and the delay dispersion σ.
[0101] そして、各移動端末についての各サブキャリアブロックの SNRがそれぞれ推定され ると、それら推定された SNRを元に、送信信号における各サブキャリアブロックに関し 高い SNRを有する移動端末へ送信すべき信号が優先的に配置される。 [0101] Then, when the SNR of each subcarrier block for each mobile terminal is estimated, transmission should be made to the mobile terminal having a high SNR for each subcarrier block in the transmission signal based on the estimated SNR. Signals are preferentially placed.
[0102] このように、本実施形態では、各移動端末から通知される受信環境情報は、最大 S[0102] Thus, in this embodiment, the reception environment information notified from each mobile terminal is the maximum S.
NRに関する情報の他、遅延分散情報が含められる。 In addition to information on NR, delay dispersion information is included.
[0103] これにより、第二変形例によれば、最大 SNRを有するサブキャリアブロック周辺の S[0103] Thus, according to the second modified example, the S around the subcarrier block having the maximum SNR.
NRを少ない情報量(3つの情報)で基地局装置に通知することができるため、フィー ドバックリンクの情報量を抑えながら、正確な受信環境情報に基づく適応的な周波数 割り当てを実現することができる。 Since the NR can be notified to the base station device with a small amount of information (three pieces of information), Adaptive frequency allocation based on accurate reception environment information can be realized while reducing the amount of information on the back link.
[0104] 〔第三変形例〕  [Third Modification]
上述の本実施形態における受信環境情報生成手法及びユーザ割当処理では、移 動端末が所定の閾値 (XdB)を用いて、最大 SNR力もの差分力この閾値以内の SN Rを有するサブキャリアブロックに関する情報を通知することとしている力 移動端末 からは、最大 SNR、そのサブキャリアブロック番号(n)の他、そのサブキャリアブロック 番号 (n)の周辺のサブキャリアブロックに関する SNRの最大 SNRとの相対値を基地 局装置へ通知するようにしてもよい。以下、第三変形例における移動端末の受信環 境情報生成処理、及び基地局装置のユーザ割当処理について説明する。その他、 移動端末及び基地局装置の機能構成等は上述の実施形態と同様とする。  In the reception environment information generation method and the user allocation process in the above-described embodiment, the mobile terminal uses a predetermined threshold (XdB), and the differential power of the maximum SNR power is information on the subcarrier block having an SNR within this threshold. In addition to the maximum SNR, the subcarrier block number (n), and the relative SNR relative to the maximum SNR for the subcarrier blocks around the subcarrier block number (n) You may make it notify to a base station apparatus. Hereinafter, the reception environment information generation process of the mobile terminal and the user allocation process of the base station apparatus in the third modification will be described. In addition, the functional configurations of the mobile terminal and the base station apparatus are the same as those in the above embodiment.
[0105] <受信環境情報生成処理 >  [0105] <Reception environment information generation processing>
以下、移動端末における受信環境情報生成処理について図 9を用いて説明する。 図 9は、第三変形例における周波数選択性フ ージングと受信環境情報生成概念を 示す図である。  Hereinafter, reception environment information generation processing in the mobile terminal will be described with reference to FIG. FIG. 9 is a diagram showing the concept of frequency selective fusing and reception environment information generation in the third modification.
[0106] 移動端末は、図 9に示すような周波数選択性フェージングの影響を受けたマルチキ ャリア信号を受信する。移動端末の SNR推定部 47は、当該フェージングの影響を受 けた信号に関し各サブキャリアに相当する信号列をそれぞれ受けると、各サブキヤリ アブロックの平均 SNR (以降、単に SNRと表記する)を推定する。図 9では、棒線(四 角)それぞれがサブキャリアブロックを示す。  [0106] The mobile terminal receives a multi-carrier signal affected by frequency selective fading as shown in FIG. When the SNR estimation unit 47 of the mobile terminal receives a signal sequence corresponding to each subcarrier with respect to the signal affected by the fading, the SNR estimation unit 47 estimates the average SNR of each subcarrier block (hereinafter simply referred to as SNR). . In Fig. 9, each bar (square) represents a subcarrier block.
[0107] フィードバック情報生成部 53は、まず、各サブキャリアブロックに関する SNRの中か ら SNRが最大のサブキャリアブロック番号を検出する(図 9のサブキャリアブロック # n [0107] First, feedback information generation section 53 detects the subcarrier block number having the maximum SNR from among the SNRs related to each subcarrier block (subcarrier block #n in Fig. 9).
) o ) o
[0108] 次に、フィードバック情報生成部 53は、最大 SNRを有するサブキャリアブロックを中 心にその周辺周波数帯域を有するサブキャリアブロックに関して最大 SNRからの SN Rの差分情報を算出する。各サブキャリアブロックの SNRの差分情報は、最大 SNR を有するサブキャリアブロック nに対してサブキャリアブロック kについての SNR差分 情報を A SNR (k)とすると、 A SNR(k ) =SNR(n)— SNR(k)で表すことができる。 Next, feedback information generating section 53 calculates SNR difference information from the maximum SNR with respect to the subcarrier block having the peripheral frequency band around the subcarrier block having the maximum SNR. The SNR difference information for each subcarrier block is given as A SNR (k) where A SNR (k) is the SNR difference information for subcarrier block k with respect to subcarrier block n having the maximum SNR. ) = SNR (n) —SNR (k).
[0109] フィードバック情報生成部 53は、上述のように算出された各サブキャリアブロックに 関する SNR差分情報を所定のビット数に設定する。この SNR差分情報を示すこのビ ット構成は、システムとして予め決まった固定のビット構成を用いるようにしてもょ 、。 図 9の例では、最大 SNRを有するサブキャリアブロック力も所定の範囲(サブキャリア ブロック分)離れる度に当該 SNR差分情報を示すために利用されるビット数が減少 するように構成される場合の例を示して 、る。  [0109] Feedback information generating section 53 sets the SNR difference information for each subcarrier block calculated as described above to a predetermined number of bits. This bit configuration indicating the SNR difference information may use a fixed bit configuration determined in advance as a system. In the example of FIG. 9, the subcarrier block power having the maximum SNR is also configured so that the number of bits used to indicate the SNR difference information decreases every time a predetermined range (subcarrier block) is left. Showing
[0110] この場合には、最大 SNRを有するサブキャリアブロック nにおける SNRを 8ビットで 示し、 SNR差分情報をサブキャリアブロック nから 3サブキャリアブロック内のサブキヤ リアブロックについては 3ビットで示し、それ以降 3サブキャリアブロック毎に 1ビットず つ減らすようにして 、る。これをサブキャリアブロック kで以下のように表すことができる  [0110] In this case, the SNR in subcarrier block n having the maximum SNR is indicated by 8 bits, and the SNR difference information is indicated by 3 bits for subcarrier blocks within 3 subcarrier blocks from subcarrier block n. Thereafter, every third subcarrier block is reduced by 1 bit. This can be expressed in subcarrier block k as follows:
[0111] (1) 0< I k-n I ≤3のとき、 [0111] (1) When 0 <I k-n I ≤3,
A SNR (k) =「000」:OdB以上 ldB未満  A SNR (k) = “000”: OdB or more and less than ldB
=「001」: ldB以上 2dB未満  = "001": ldB or more, less than 2dB
=「l l l」:7dB以上 = "L l l": 7dB or more
(2) 3< I k-n I ≤6のとき、  (2) When 3 <I k-n I ≤6
Δ SNR (k) =「00」: OdB以上 2dB未満  Δ SNR (k) = “00”: OdB or more and less than 2dB
=「01」: 2dB以上 4dB未満  = "01": 2dB or more and less than 4dB
=「10」:4dB以上 6dB未満  = "10": 4dB or more, less than 6dB
=「l l」:6dB以上  = "L l": 6dB or more
(3) 6< I k-n I ≤9のとき、  (3) When 6 <I k-n I ≤9,
Δ SNR (k) =「0」: OdB以上 4dB未満  Δ SNR (k) = “0”: OdB or more and less than 4dB
=「l」:4dB以上  = "L": 4dB or more
(4) 9< I k-n Iのとき、受信環境情報生成しない。  (4) When 9 <I k-n I, reception environment information is not generated.
[0112] <ユーザ割当処理 > [0112] <User assignment process>
基地局装置では、上述の受信環境情報 (n、 SNR(n)、 | k-n | ≤9の各サブキヤ リアブロックの SNR差分情報 Δ SNR (k) )を含んだ信号が受信 In the base station apparatus, each of the reception environment information (n, SNR (n), | kn | A signal containing SNR difference information Δ SNR (k)) of the rear block is received.
されると、フィードバック情報抽出部 23により当該受信環境情報が抽出され、ユーザ 割当部 24に渡される。  Then, the reception information extraction unit 23 extracts the reception environment information and passes it to the user allocation unit 24.
[0113] ユーザ割当部 24は、このように各移動端末に関する受信環境情報をそれぞれ受け ると、この受信環境情報に基づき、各移動端末に関する I k n I ≤9区間の各サブ キャリアブロックをそれぞれ推定する。このとき、ユーザ割当部 24は、上述の SNR差 分情報を示すためのビット構成については把握されているものとし、これら情報に基 づき、各サブキャリアブロックの SNRを推定する。この SNR差分情報を示すビット構 成については、固定情報として予めメモリ等に記憶されているようにしてもよいし、基 地局装置及び移動端末間で必要に応じて相互に通知するようにしてもよい。  [0113] Upon receiving the reception environment information for each mobile terminal in this way, the user allocation unit 24 estimates each subcarrier block of I kn I ≤ 9 sections for each mobile terminal based on the reception environment information. To do. At this time, it is assumed that the user allocation unit 24 has grasped the bit configuration for indicating the above-described SNR difference information, and estimates the SNR of each subcarrier block based on the information. The bit configuration indicating the SNR difference information may be stored in advance as fixed information in a memory or the like, or may be mutually notified between the base station apparatus and the mobile terminal as necessary. Also good.
[0114] そして、ユーザ割当部 24は、この推定された情報を保持することにより、各移動端 末に関するユーザ割当処理を実行する。以降のユーザ割当処理に関しては、本実 施形態と同様である。  [0114] Then, the user allocation unit 24 holds the estimated information to execute a user allocation process for each mobile terminal. Subsequent user allocation processing is the same as in this embodiment.
[0115] 〈第三変形例における作用 Z効果〉  [0115] <Action in third variation Z effect>
第三変形例における基地局装置 (送信装置)及び移動端末 (受信装置)では、最大 SNR、そのサブキャリアブロック番号(n)の他、そのサブキャリアブロック番号(n)の 周辺周波数帯域を有するサブキャリアブロックに関する SNRの最大 SNRとの差分情 報が基地局装置へ通知される。  In the base station device (transmitting device) and mobile terminal (receiving device) in the third modification, in addition to the maximum SNR, the subcarrier block number (n), the subcarrier block having the peripheral frequency band of the subcarrier block number (n) The difference information between the SNR and the maximum SNR related to the carrier block is notified to the base station apparatus.
[0116] 更に、この最大 SNRとの差分情報は、所定のビット構成で示された状態で受信環 境情報が生成される。第三変形例では、最大 SNRを有するサブキャリアブロック nか ら所定のサブキャリアブロック範囲離れる度に利用されるビット数が減少するように構 成される。  [0116] Further, the reception environment information is generated in the state indicated by the predetermined bit configuration as the difference information from the maximum SNR. The third modified example is configured such that the number of bits used every time a predetermined subcarrier block range moves away from the subcarrier block n having the maximum SNR.
[0117] 基地局装置は、通信相手となる複数の移動端末のそれぞれ力 当該受信環境情 報を受信すると、当該受信環境情報に基づき、各移動端末における各サブキャリア ブロックの SNRがそれぞれ推定される。この SNRの推定においては、複数の移動端 末が SNRの差分情報を設定したビット構成を基地局装置が知っていることにより実 現される。  [0117] When the base station apparatus receives the reception environment information of each of a plurality of mobile terminals as communication partners, the SNR of each subcarrier block in each mobile terminal is estimated based on the reception environment information. . This SNR estimation is realized when the base station apparatus knows the bit configuration in which multiple mobile terminals set SNR difference information.
[0118] そして、各移動端末についての各サブキャリアブロックの SNRがそれぞれ推定され ると、それら推定された SNRを元に、送信信号における各サブキャリアブロックに関し 高い SNRを有する移動端末へ送信すべき信号が優先的に配置される。 [0118] Then, the SNR of each subcarrier block for each mobile terminal is estimated. Then, based on these estimated SNRs, a signal to be transmitted to a mobile terminal having a high SNR for each subcarrier block in the transmission signal is preferentially arranged.
[0119] このように、本実施形態では、各移動端末から通知される受信環境情報は、最大 S NRに関する情報の他、最大 SNRを有するサブキャリアブロック nの周辺のサブキヤリ アブロックについての最大 SNRとの SNRの差分情報が所定のビット数で丸められて 生成される。 [0119] As described above, in this embodiment, the reception environment information notified from each mobile terminal is the maximum SNR for the subcarrier blocks around the subcarrier block n having the maximum SNR in addition to the information about the maximum SNR. Is generated by rounding the difference information of SNR with the specified number of bits.
[0120] これも本実施形態と同様、周波数選択性フェージングによる影響に比べ、相対的に 1つのサブキャリアブロックの幅が小さくなることから各サブキャリアブロックの SNRの 変化が緩や力となる傾向を用 、たものである。  [0120] Also, as in this embodiment, since the width of one subcarrier block is relatively smaller than the effect of frequency selective fading, the change in SNR of each subcarrier block tends to be moderate. Is used.
[0121] これにより、第三変形例によれば、最大 SNRを有するサブキャリアブロック周辺の S NRを少ない情報量で基地局装置に通知することができるため、フィードバックリンク の情報量を抑えながら、正確な受信環境情報に基づく適応的な周波数割り当てを実 現することができる。  [0121] Thereby, according to the third modification, the SNR around the subcarrier block having the maximum SNR can be notified to the base station apparatus with a small amount of information, so that while suppressing the amount of information on the feedback link, Adaptive frequency allocation based on accurate reception environment information can be realized.

Claims

請求の範囲 The scope of the claims
[1] 複数のサブキャリアが、少なくとも 1つのサブキャリアを含む複数のサブキャリアブロ ックに分割されており、各受信装置への信号が当該サブキャリアブロック単位で配置 されたマルチキャリア信号を受信する受信手段と、  [1] A plurality of subcarriers are divided into a plurality of subcarrier blocks including at least one subcarrier, and a signal to each receiving apparatus receives a multicarrier signal arranged in the subcarrier block unit. Receiving means for
各サブキャリアブロックにそれぞれ配置された信号の受信状態を示す品質値を各 サブキャリアブロックについてそれぞれ推定する推定手段と、  Estimating means for estimating each subcarrier block with a quality value indicating a reception state of a signal arranged in each subcarrier block;
前記品質値のうち高い品質値を有する高品質サブキャリアブロックを示す情報、当 該高品質サブキャリアブロックにおける品質値、及び、当該高品質サブキャリアブロッ クにおける品質値との差が所定の閾値内にある品質値を有するサブキャリアブロック の区間を送信装置に通知する通知手段と、  Information indicating a high quality subcarrier block having a high quality value among the quality values, a quality value in the high quality subcarrier block, and a difference between the quality value in the high quality subcarrier block is within a predetermined threshold. A notifying means for notifying a transmitting device of a subcarrier block section having a certain quality value,
を備える受信装置。  A receiving device.
[2] 前記通知手段は、前記高品質サブキャリアブロックにおける品質値との差が所定の 閾値内にある品質値を有するサブキャリアブロックの区間として、当該区間に含まれ るサブキャリアブロックのうち最小周波数帯域を有するサブキャリアブロックを示す情 報と最大周波数帯域を有するサブキャリアブロックを示す情報とを通知する、 請求項 1に記載の受信装置。  [2] The notifying means is a subcarrier block having a quality value whose difference from a quality value in the high quality subcarrier block is within a predetermined threshold, and is the smallest among the subcarrier blocks included in the relevant section. The receiving apparatus according to claim 1, wherein information indicating a subcarrier block having a frequency band and information indicating a subcarrier block having a maximum frequency band are notified.
[3] 前記通知手段は、前記最小周波数帯域を有するサブキャリアブロックを示す情報と 前記最大周波数帯域を有するサブキャリアブロックを示す情報と共に、当該最小周 波数帯域を有するサブキャリアブロックにおける品質値、及び当該最大周波数帯域 を有するサブキャリアブロックにおける品質値も通知する、 [3] The notification means includes information indicating the subcarrier block having the minimum frequency band, information indicating the subcarrier block having the maximum frequency band, a quality value in the subcarrier block having the minimum frequency band, and The quality value in the subcarrier block having the maximum frequency band is also notified.
請求項 2に記載の受信装置。  The receiving device according to claim 2.
[4] 前記所定の閾値は前記送信装置から通知される、 [4] The predetermined threshold is notified from the transmission device,
請求項 1から 3のいずれ力 1つに記載の受信装置。  The receiving device according to any one of claims 1 to 3.
[5] 受信された前記マルチキャリア信号の遅延分散を推定する分散推定手段を更に備 え、 [5] It further comprises dispersion estimation means for estimating the delay dispersion of the received multicarrier signal,
前記通知手段は、前記サブキャリアブロックの区間に替え、前記分散推定手段によ り推定された遅延分散を送信装置に通知する、  The notifying means notifies the transmission apparatus of the delay dispersion estimated by the dispersion estimating means instead of the section of the subcarrier block;
請求項 1に記載の受信装置。 The receiving device according to claim 1.
[6] 前記通知手段は、 [6] The notification means includes
前記高品質サブキャリアブロックにおける品質値と各サブキャリアブロックにおける 品質値との差が、当該高品質サブキャリアブロックの周波数帯域力 遠い周波数帯 域を有するサブキャリアブロック程少ない情報量により、それぞれ表された差分情報 を生成する生成手段を更に有し、  The difference between the quality value in the high-quality subcarrier block and the quality value in each subcarrier block is represented by a smaller amount of information in a subcarrier block having a frequency band farther from the high-quality subcarrier block. Further comprising generating means for generating the difference information,
前記サブキャリアブロックの区間に替え、前記差分情報を送信装置に通知する、 請求項 1に記載の受信装置。  The receiving apparatus according to claim 1, wherein the difference information is notified to a transmitting apparatus in place of the subcarrier block section.
[7] 送信装置と複数の受信装置とが複数のサブキャリア力 なるマルチキャリア信号を 送受する通信システムにおいて、 [7] In a communication system in which a transmitting device and a plurality of receiving devices transmit and receive multicarrier signals having a plurality of subcarrier powers,
前記各受信装置は、  Each of the receiving devices is
前記複数のサブキャリア力 少なくとも 1つのサブキャリアを含む複数のサブキヤリ アブロックに分割されており、各受信装置への信号が当該サブキャリアブロック単位 で配置されたマルチキャリア信号を受信する受信手段と、  Receiving means for receiving a multicarrier signal that is divided into a plurality of subcarrier blocks including at least one subcarrier power and in which a signal to each receiving device is arranged in units of the subcarrier blocks;
各サブキャリアブロックにそれぞれ配置された信号の受信状態を示す品質値を各 サブキャリアブロックについてそれぞれ推定する推定手段と、  Estimating means for estimating each subcarrier block with a quality value indicating a reception state of a signal arranged in each subcarrier block;
前記品質値のうち高い品質値を有する高品質サブキャリアブロックを示す情報、 当該高品質サブキャリアブロックにおける品質値、及び、当該高品質サブキャリアブ ロックにおける品質値との差が所定の閾値内にある品質値を有するサブキャリアプロ ックの区間を前記送信装置に通知する通知手段と、  Information indicating a high quality subcarrier block having a high quality value among the quality values, a quality value in the high quality subcarrier block, and a difference between the quality value in the high quality subcarrier block are within a predetermined threshold. Notifying means for notifying the transmitting apparatus of a subcarrier block having a certain quality value;
を備え、  With
前記送信装置は、  The transmitter is
前記各受信装置からそれぞれ通知された、前記品質値のうち高い品質値を有す る高品質サブキャリアブロックを示す情報、当該高品質サブキャリアブロックにおける 品質値、及び、当該高品質サブキャリアブロックにおける品質値との差が所定の閾値 内にある品質値を有するサブキャリアブロックの区間に基づき、通知元の受信装置に 関する各サブキャリアブロックにおける品質値をそれぞれ推定する品質推定手段と、 前記各受信装置に関してそれぞれ推定された各サブキャリアブロックにおける品 質値に基づき、各受信装置への信号を当該サブキャリアブロック単位に配置する際 に、対象となるサブキャリアブロックに関し高い品質値を有する受信装置への信号を 優先的に配置する配置手段と、 Information indicating a high-quality subcarrier block having a high quality value among the quality values, the quality value in the high-quality subcarrier block, and the quality value in the high-quality subcarrier block respectively notified from the reception devices Quality estimation means for estimating a quality value in each subcarrier block related to a notification source receiving device based on a section of subcarrier blocks having a quality value whose difference from a quality value is within a predetermined threshold; Based on the quality value of each subcarrier block estimated for each device, the signal to each receiving device is allocated to each subcarrier block. In addition, an arrangement unit that preferentially arranges a signal to a receiving apparatus having a high quality value with respect to a target subcarrier block;
前記配置手段により信号配置されたマルチキャスト信号を前記複数の受信装置 へ送信する送信手段と、  Transmitting means for transmitting a multicast signal signal-arranged by the arranging means to the plurality of receiving devices;
を備える通信システム。  A communication system comprising:
[8] 前記受信装置は、  [8] The receiving device includes:
受信された前記マルチキャリア信号の遅延分散を推定する分散推定手段を更に 備え、  Further comprising dispersion estimation means for estimating delay dispersion of the received multicarrier signal;
前記通知手段が、前記サブキャリアブロックの区間に替え、前記分散推定手段に より推定された遅延分散を前記送信装置に通知し、  The notifying means notifies the transmitter of the delay dispersion estimated by the dispersion estimating means instead of the section of the subcarrier block;
前記送信装置の前記品質推定手段が、前記サブキャリアブロックの区間に替え、 前記遅延分散に基づき、通知元の受信装置に関する各サブキャリアブロックにおけ る品質値をそれぞれ推定する、  The quality estimation means of the transmitting device estimates the quality value in each subcarrier block related to the notification source receiving device based on the delay spread instead of the subcarrier block section,
請求項 7に記載の通信システム。  The communication system according to claim 7.
[9] 前記受信装置の前記通知手段は、 [9] The notification means of the receiving device includes:
前記高品質サブキャリアブロックにおける品質値と各サブキャリアブロックにおける 品質値との差が、当該高品質サブキャリアブロックの周波数帯域力 遠い周波数帯 域を有するサブキャリアブロック程少ない情報量により、それぞれ表された差分情報 を生成する生成手段を更に有し、  The difference between the quality value in the high-quality subcarrier block and the quality value in each subcarrier block is represented by a smaller amount of information in a subcarrier block having a frequency band farther from the high-quality subcarrier block. Further comprising generating means for generating the difference information,
前記サブキャリアブロックの区間に替え、前記差分情報を前記送信装置に通知し 前記送信装置の前記品質推定手段が、前記サブキャリアブロックの区間に替え、 前記差分情報に基づき、通知元の受信装置に関する各サブキャリアブロックにおけ る品質値をそれぞれ推定する、  The transmission device is notified of the difference information instead of the subcarrier block interval, and the quality estimation unit of the transmission device is changed to the subcarrier block interval, and is based on the difference information and relates to a notification source reception device. Estimate the quality value in each subcarrier block,
請求項 7に記載の通信システム。  The communication system according to claim 7.
PCT/JP2005/024065 2005-12-28 2005-12-28 Receiver apparatus and communication system WO2007077599A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007552821A JP4654250B2 (en) 2005-12-28 2005-12-28 Communication apparatus and communication system
EP05822645.7A EP1968222B1 (en) 2005-12-28 2005-12-28 Receiver apparatus and communication system
PCT/JP2005/024065 WO2007077599A1 (en) 2005-12-28 2005-12-28 Receiver apparatus and communication system
US12/216,056 US8340585B2 (en) 2005-12-28 2008-06-27 Receiving device and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/024065 WO2007077599A1 (en) 2005-12-28 2005-12-28 Receiver apparatus and communication system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/216,056 Continuation US8340585B2 (en) 2005-12-28 2008-06-27 Receiving device and communication system

Publications (1)

Publication Number Publication Date
WO2007077599A1 true WO2007077599A1 (en) 2007-07-12

Family

ID=38227966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024065 WO2007077599A1 (en) 2005-12-28 2005-12-28 Receiver apparatus and communication system

Country Status (4)

Country Link
US (1) US8340585B2 (en)
EP (1) EP1968222B1 (en)
JP (1) JP4654250B2 (en)
WO (1) WO2007077599A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502393A (en) * 2007-10-30 2011-01-20 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Channel-dependent frequency domain scheduling in orthogonal frequency division multiplexing communication systems
JP2011130313A (en) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd Communication system
JP2013542688A (en) * 2010-10-26 2013-11-21 クゥアルコム・インコーポレイテッド Channel state information feedback frame format and feedback rules for ultra-high throughput wireless systems
US9130631B2 (en) 2010-11-03 2015-09-08 Qualcomm Incorporated Beamforming feedback format

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9692554B2 (en) * 2014-10-29 2017-06-27 Texas Instruments Incorporated Power line communication operating frequency band selection apparatus, systems and methods
US10645705B1 (en) * 2018-07-02 2020-05-05 Sprint Spectrum L.P. Use of successive interference cancellation and non-orthogonal coding to facilitate uplink communication from multiple devices on shared air interface resources

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238269A (en) * 2000-02-25 2001-08-31 Kddi Corp Sub carrier assignment method for wireless communication system
JP2004208234A (en) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd Radio communication equipment and radio communication method
WO2005020488A1 (en) 2003-08-20 2005-03-03 Matsushita Electric Industrial Co., Ltd. Radio communication apparatus and subcarrier assignment method
WO2005089000A1 (en) 2004-03-12 2005-09-22 Matsushita Electric Industrial Co., Ltd. Reception quality notifying method, wireless communication terminal apparatus, and base station apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543323B2 (en) * 2001-02-14 2004-07-14 日本電気株式会社 Base station transmission control method, cellular system and base station
KR100571802B1 (en) * 2001-09-03 2006-04-17 삼성전자주식회사 Mobile communication system and method for raising communication efficiency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238269A (en) * 2000-02-25 2001-08-31 Kddi Corp Sub carrier assignment method for wireless communication system
JP2004208234A (en) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd Radio communication equipment and radio communication method
WO2005020488A1 (en) 2003-08-20 2005-03-03 Matsushita Electric Industrial Co., Ltd. Radio communication apparatus and subcarrier assignment method
WO2005089000A1 (en) 2004-03-12 2005-09-22 Matsushita Electric Industrial Co., Ltd. Reception quality notifying method, wireless communication terminal apparatus, and base station apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1968222A4
ZHONG-HAI HAN; YONG-HWAN LEE: "Opportunistic scheduling with partial channel information in OFDMA/FDD systems", VTC2004-FALL. 2004 IEEE 60TH, vol. 1, 26 September 2004 (2004-09-26), pages 511 - 514, XP010788428, DOI: doi:10.1109/VETECF.2004.1400059

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502393A (en) * 2007-10-30 2011-01-20 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Channel-dependent frequency domain scheduling in orthogonal frequency division multiplexing communication systems
JP2011130313A (en) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd Communication system
JP2013542688A (en) * 2010-10-26 2013-11-21 クゥアルコム・インコーポレイテッド Channel state information feedback frame format and feedback rules for ultra-high throughput wireless systems
US9130631B2 (en) 2010-11-03 2015-09-08 Qualcomm Incorporated Beamforming feedback format
US9876542B2 (en) 2010-11-03 2018-01-23 Qualcomm, Incorporated Beamforming feedback format

Also Published As

Publication number Publication date
JPWO2007077599A1 (en) 2009-06-04
EP1968222A1 (en) 2008-09-10
US20080268782A1 (en) 2008-10-30
EP1968222B1 (en) 2016-04-06
EP1968222A4 (en) 2012-09-05
US8340585B2 (en) 2012-12-25
JP4654250B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP5442623B2 (en) Channel-dependent frequency domain scheduling in orthogonal frequency division multiplexing communication systems
KR101443474B1 (en) Wireless communication system, wireless communication setting method, base station, mobile station, and program
US8310994B2 (en) Method for configuring and managing channels in a wireless communication system using AMC channels and diversity channels, transmission/reception apparatus thereof, and system thereof
KR100539925B1 (en) Apparatus and method for sub-carrier alocation in ofdm system
JP5121392B2 (en) Data transmission method
KR101239580B1 (en) Base station apparatus, mobile station apparatus, block arranging method, data receiving method and integrated circuit
US8843149B2 (en) Scheduling method and control station apparatus
JP5244184B2 (en) Wireless communication system, transmitter, receiver
US20070177501A1 (en) Signaling Requirements to Support Interference Coordination in OFDMA Based Systems
US20070086406A1 (en) Methods for Assigning Resources in a Communication System
US8902874B2 (en) Sounding channel apparatus and method
JP2008160842A (en) Communications system
US20100177670A1 (en) Resource allocation in a communication system
WO2007077599A1 (en) Receiver apparatus and communication system
WO2011121926A1 (en) Transmitter apparatus and transmission method
KR102178532B1 (en) Method and apparatus for interference alignment based frequence assignment
KR100877746B1 (en) Method of MAP Construction in Wireless Communication System based on OFDMA, and Frame transmission Apparatus by using the Method
KR101486148B1 (en) Method for cancelling inter-subcarrier interference in wireless communication systems and apparatus for performing the same
JP2012085084A (en) Ofdm signal transmitter
EP3439372A1 (en) Method and apparatus for controlling path of base station in wireless communication system
Nie et al. Antenna selection for next generation IEEE 802.16 mobile stations
Arslan et al. Performance evaluation of packet scheduling algorithms for LTE downlink
KR20110091394A (en) Apparatus and method to transmit/receive sounding signal in a wireless communication system
Zhang Cooperative Relaying and Resource Allocation in Future-Generation Cellular Networks
Li et al. Multiuser diversity with capture in OFDMA systems with clustered feedback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007552821

Country of ref document: JP

Ref document number: 2005822645

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005822645

Country of ref document: EP