WO2007072796A1 - Card capable of performing authentication by radio-active material chip - Google Patents

Card capable of performing authentication by radio-active material chip Download PDF

Info

Publication number
WO2007072796A1
WO2007072796A1 PCT/JP2006/325227 JP2006325227W WO2007072796A1 WO 2007072796 A1 WO2007072796 A1 WO 2007072796A1 JP 2006325227 W JP2006325227 W JP 2006325227W WO 2007072796 A1 WO2007072796 A1 WO 2007072796A1
Authority
WO
WIPO (PCT)
Prior art keywords
card
authentication
authentication verifying
verifying chip
chip
Prior art date
Application number
PCT/JP2006/325227
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuaki Komatsu
Shin-Ichiro Nanjo
Original Assignee
International Frontier Technology Laboratory, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Frontier Technology Laboratory, Inc. filed Critical International Frontier Technology Laboratory, Inc.
Priority to JP2007551084A priority Critical patent/JPWO2007072796A1/en
Publication of WO2007072796A1 publication Critical patent/WO2007072796A1/en

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • G07F7/086Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means by passive credit-cards adapted therefor, e.g. constructive particularities to avoid counterfeiting, e.g. by inclusion of a physical or chemical security-layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier

Definitions

  • the invention according to this application relates to a structure of an object that requires forgery and authentication immediately, such as a card, a banknote, and a securities, and a method for determining the authenticity of the object.
  • FIG. 1 shows an example of the current cash card processing flow.
  • a sensor at the card entrance detects that and takes the card into the apparatus.
  • the terminal When the card is taken in, the terminal reads the magnetic recording unit power card information of the card.
  • card information such as bank code, branch code, account type and account number.
  • card identification number, an expiration date, an account type, and an account number are recorded as card information in the magnetic recording unit.
  • personal identification numbers may be recorded on cash cards or credit cards. In such cases, personal identification numbers are also read.
  • the terminal device determines whether the inserted card is a card that can be handled by the terminal device.
  • the terminal device ejects the card as an incorrect card that can not be handled.
  • the card user In response to a request from the host computer, the card user enters a personal identification number
  • the host computer When the card user inputs a PIN in response to a request from the host computer, the host computer reads the input PIN stored in the host computer. Compare with the corresponding PIN.
  • the host computer determines that the card user is the correct card holder, and requests input of the withdrawal amount.
  • the transaction is performed as if the password is correct, but then the password is erased from the magnetic recording unit.
  • FIG. 2 (a) shows an example of a cash card used in the current cash card processing flow shown in FIG.
  • reference numeral 1 denotes a cash card body which is also plastic, and on the front side thereof, a magnetic stripe 2 in which information is recorded and an arrow 3 indicating the insertion direction of the cache card are formed. Although illustration is omitted, the required items are posted as embossed letters.
  • the information written on the magnetic stripe can be easily read using a device called a skimmer, so counterfeit cards are created, which often results in the use of counterfeit cards.
  • the cash card and the credit card are provided with information such as the name of the holder by embossing, and such information is also used for the magnetic information, the embossed information is forged. It has become a key to card creation.
  • a security code consisting of four digits has been used as a means for determining the propriety of a card user, which is not a means of preventing unauthorized use by preventing card forgery.
  • This secret code is often based on analogical numbers and has caused a lot of damage so far.
  • Recently, not only analogical reasoning but also stealing of PINs by means such as voyeurism has been carried out, and unauthorized use prevention by PINs has become extremely difficult.
  • biometrics biometrics
  • pattern recognition technology In order to prevent damage due to counterfeit cards, biometrics (biometrics) technology using pattern recognition technology is adopted in part.
  • biometric identification techniques include iris discrimination, fingerprint discrimination, palm print discrimination, finger vein discrimination, palm vein discrimination and hand-back vein discrimination, and there are contact type and non-contact type in discrimination other than this inner iris discrimination. But all patterns in advance Because it takes time and effort to register patterns, and it takes time to make decisions, the operation cost increases.
  • biometric identification systems that can not use cardholders themselves can not be used even if they try to ask an agent to handle the card because the time to use the card or the card processing device is not familiar. This point is also inconvenient for the user.
  • embossed holograms in which irregularities are formed on plastic are attached to credit cards, prepaid cards, bills, securities and the like. Because this Enboss hologram is so difficult to duplicate, it is virtually impossible to forge cards with embossed holograms, but in the current usage it is not It is possible to forge a card or the like using a similar embossed hologram because it is read at a glance.
  • Fig. 2 (b) shows an example of a credit card with a hologram on which card authentication of authenticity is performed by a sensory function.
  • 1 is a credit card main body made of plastic or the like, and on the front side thereof, an arrow 3 indicating the insertion direction of a magnetic stripe 2 and a cash card in which information is recorded is formed.
  • arrow 3 indicating the insertion direction of a magnetic stripe 2 and a cash card in which information is recorded is formed.
  • the cash card 1 is inserted into the terminal device with the portion marked with the arrow 3 first, but an authentication verifying chip 4 composed of, for example, an embossed hologram is attached near its tip. There is.
  • the magnetic stripe has the same insertion direction to the terminal device of the power card provided on the back of the card, and as a result, the magnetic information of the credit card is read.
  • the direction is opposite to that of a cash card.
  • the authentication verifying chip 4 has a pattern “A” exemplified by the operator who inserts the card into the terminal device, which is visually or sensibly confirmed by the function and read by the card terminal device. There is nothing to do.
  • Sensory authentication is considered to be a major factor for primary screening due to variations in the ability of the individual making the determination, and variations due to the determination environment, mental state, physical condition, etc., even for the same individual. Effective but less reliable.
  • the authentication of authentication by auxiliary equipment may be performed by using a magnifying tool such as a fine line, a special drawing, a micro character, a special shape screen, a loupe or the like, or using a special filter that generates optical interference. To authenticate the authenticity.
  • a magnifying tool such as a fine line, a special drawing, a micro character, a special shape screen, a loupe or the like, or using a special filter that generates optical interference.
  • materials exhibiting special optical properties such as a light-emitting substrate, a light-emitting laminate film, a light-emitting ink, a thermochromic ink, a photochromic ink, etc. are mixed into the substrate 'laminate film' ink etc.
  • auxiliary tools such as UV lamps, but these are also unreliable because the final discrimination relies on human sensuality.
  • the authentication by mechanical processing is performed by mechanically detecting the characteristics of the material to perform authentication, and detection targets include detection of magnetic and optical characteristics.
  • a light emitting material, a magnetic material, and the like are mixed in a substrate 'laminate film' ink, etc., and a detection device is used, and specific information coded by an OCR character or magnetic bar code is magnetically detected.
  • a detection device is used, and specific information coded by an OCR character or magnetic bar code is magnetically detected.
  • an artifact-metric system (artifact-metric system) using an artifact, which is randomly placed in a medium instead of information unique to living body
  • Business and Artifacts Meritas "Bank of Japan Financial Research Institute (http: ⁇ ⁇ .imes.bo j.or.jp/japanese/jdps/2004/04-J-12.pdl) and the 6th Information Security ⁇ Symposium It is shown in the "pattern of artifact meritatus in the financial field" (http://www.imes.boj.or.jp/japanese/kiny u / 2004 / kk23-2-6.pdl)!
  • Matters subject to fraudulent use or forgery of the card include when the card is issued to the user "Card description information" given to the “card body information given in the manufacturing process of the card"
  • the card entry information is information which is given to the card body at the time of issuance of the card, and corresponds to information on issue such as holder information, expiration date and the like.
  • Tampering which is a typical form of unauthorized use, is the act of rewriting all or part of the card-listed information, and is performed by deleting the legitimate information and adding up the illegal information.
  • the card body information is information which the card itself has by removing the card description information from the issued card, and the physical shape of the card, mainly the background pattern given in the pre-printing step, the printing of the background Information associated with the card substrate, such as layers and protective laminate layers.
  • Forgery is an illicit act performed on the card body, and is performed by copying or imitating a pattern, a pattern, etc., which is information attached to the card body, to produce a card having an appearance similar to that of the card body.
  • the pattern, pattern, etc. given to the genuine card note is read by a scanner, etc., processed, corrected, etc., and carried out using a printer, etc.
  • the authentication method for discriminating forgery can be roughly divided into a sensory test, an auxiliary tool, and a mechanical processing.
  • Authentication of authenticity by sensuality is to discriminate authenticity with human sensuality such as visual sense and tactile sense, and for visual sense, the color, the watermark of the main body, the pattern or the color imparted by changing the viewing angle
  • human sensuality such as visual sense and tactile sense, and for visual sense, the color, the watermark of the main body, the pattern or the color imparted by changing the viewing angle
  • holograms etc. that change etc., and the ones by touch include detection of given concave / convex shape, detection of texture of card body etc.
  • products that perform authentication authentication such as finger touching and visual inspection such as embossing, embossing, and perforation.
  • the arrangement pattern of the metal particles 5 observed via the opening is artifact metrics 'Tip 4 is unique to each. Using this, the arrangement pattern of metal particles 5 is observed by photographing the light passing through the artifact metric 'chip 4 through the opening, and the individual artifact metrics' chip 4, ie, the card, is identified. Do.
  • FIG. 4 shows another conventional example of a card having a fiber-based artifact metric 'chip disclosed in Japanese Patent Laid-Open No. 2003-29636.
  • (a) is a general view
  • (b) is a cross-sectional view
  • (c) is an enlarged view of an artifact metrics' chip.
  • an artifact-metrics chip 8 in which the mesh member 9 and the short small fibers 10 are three-dimensionally mixed in the transparent resin in the opening of the card base 1 which is light impermeable.
  • the magnetic stripe 2 and the arrow 3 are formed on the surface of the card base 1 inserted.
  • An interference pattern is generated in the artifact metric chip 8 due to the pattern of the mesh member 9 and the short and small fibers 10.
  • This interference pattern is unique to the artifact metrics * chip 8, ie, each card, and this is used to transmit the identification pattern of the artifact metric chip '8 of the authentication verifying chip. Alternatively, take a picture with reflected light to identify the card.
  • Japanese Patent Laid-Open Publication No. 63-214651 discloses an invention for discriminating the authenticity of a card by radioactive isotopes
  • the radioactive isotopes used are isotopes that emit highly penetrating radiation called gamma rays. It is dangerous for the body to be contained in something that is carried close to the human body, such as a card.
  • the technology for authenticating the authenticity of the card itself has not been established, and it can not be forged! The / ⁇ card is realized! An ugly wolf.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-29636
  • Patent Document 3 Japanese Patent Application Laid-Open No. 63-214651
  • Non-Patent Document 2 "The Sixth Information Security 'Symposium: Patterns of Artifacts in the Financial Field” (http: //www•imes.boi.or.jp/japanese/kinyu/2004/kk23- 2 — 6. pdf)
  • Non-Patent Document 3 “Handling Technology for Preventing Counterfeit of IC Card Cards”, Ministry of Finance Printing Bureau (http:
  • Japanese Patent Laid-Open No. 2003-29636 does not show a specific configuration for the force shown to read at an inclined angle.
  • Japanese Patent Application Laid-Open No. 10-44650 does not disclose reading at an inclined angle.
  • radioactive substance particles emit an a-line, which is a helium nucleus, some emit high-speed electrons that emit ⁇ -rays, and some emit short-wave electromagnetic waves that emit ⁇ -rays.
  • a-line which is a helium nucleus
  • radioactive isotopes As natural radioactive isotopes to be used for a radiation source, 232 ⁇ h, 235U and 238U as alpha ray radioactive isotopes, and 40K and 210Pb as j8 ray radioactive isotopes.
  • 241Am and 244Cm as artificial ⁇ -ray radioactive isotopes
  • 60Co, 90Sr and 137Cs as j8-ray radioactive isotopes
  • 22Na, 51C r, 54Mn as ⁇ -ray radioactive isotopes as artificial radioisotopes.
  • 57Co, 60Co, 133Ba, 241Am power As natural radioactive isotopes to be used for a radiation source.
  • the present application provides a method of manufacturing a card attached with an authentication verifying chip mixed with radioactive substance particles.
  • the present application provides an apparatus for detecting the arrangement pattern of radioactive substance particles.
  • One of the radiation detection devices converts radiation into light by a scintillation detector, and indirectly detects the scintillation light by detecting the scintillation light with a light detector.
  • an inorganic scintillator which is a crystal such as Nal (Tl), Csl (Tl), Bi4Ge 3012 or the like, and a plastic scintillator obtained by mixing an inorganic scintillator with plastic are used.
  • a light detection device used for scintillation light detection photodiodes such as PN junction type ⁇ PIN junction type Schottky barrier type ⁇ avalanche type, and bipolar type ⁇ field effect type phototransistors can be used. is there.
  • scintillation detector As a scintillation detector (scintillator), planar, linear or dot-like ones can be used, and detection of scintillation light by the planar scintillator is performed by an imaging device such as a television or an imaging device such as a television.
  • the detection of scintillation light by the linear scintillator is performed by the light detection device in which the light detection elements are arrayed in a plane shape.
  • the scintillation light by the point scintillator is formed by the light detection element array in which the light detection elements are arrayed linearly. In the detection of light, the scintillation light, that is, the arrangement of radioactive substance particles is detected by a spot-like light detection element.
  • the other one of the radiation detection devices directly detects the radiation by the semiconductor radiation detection device.
  • the semiconductor radiation detection element photodiodes such as PN junction type, PIN junction type 'Schottky barrier type, avalanche type, etc., and bipolar type / field effect type phototransistors can be used.
  • the semiconductor radiation detection apparatus is formed of a planar arrangement, a linear arrangement, or a single unit of small-sized semiconductor radiation detection elements, and the semiconductor radiation detection elements arranged in a plane, and the semiconductor radiation detection elements arranged in a linear arrangement.
  • the radiation state of the radiation that is, the arrangement of radioactive substance particles is detected by the semiconductor radiation detection element alone.
  • the radioactive substance particles can not be identified visually, the radiation detection requires some means of radiation detection, and furthermore, it is difficult to obtain the radioactive substance itself, so copying can be performed. It is also extremely difficult to forge.
  • FIG. 3 An example of a conventional card using artifact metric.
  • FIG. 4 Another example of a conventional card using artifact metric.
  • FIG. 13 An example of the arrangement of random numbers used for the authentication chip.
  • FIG. 17 A reader by an imaging device.
  • FIG. 18 A reader using a scintillator and a light detection element matrix.
  • a reader using a radiation detection element array [21] A reader using a radiation detection element array.
  • FIG. 24 A reader using a scintillator and a light detection element.
  • ⁇ 25 Reader with radiation detection element.
  • FIG. 31 Reading by feature point extraction of an authentication verifying chip based on random numbers.
  • FIG. 34 A method of producing the authentication card of FIG.
  • FIG. 38 is a flowchart of cash card processing of the present invention.
  • FIG. 39 Another cash card processing flow diagram of the present invention.
  • the card substrate 44 is a synthetic resin thin plate used for cash cards and the like, which is conventionally used frequently, and a synthetic resin thin plate used for a prepaid card and the like.
  • the face plate 45 is made of a synthetic resin, and an opening is formed in the central portion for inserting the authentication verifying chip 42.
  • the material of the face plate 45 may be either a radiolucent material or a radiation shielding material.
  • a radiation transmitting material is used for the surface plate laminated on the authentication verifying chip 42 and the surface plate 45 made of synthetic resin.
  • FIG. 6 shows a second embodiment of the card.
  • reference numeral 20 denotes a card body having a magnetic stripe 2.
  • An authentication verifying chip 23 is stacked on a substrate 21, and a surface plate 24 is further stacked on the authentication verifying chip 23.
  • the substrate 21 is a synthetic resin thin plate of a thick plate used conventionally for a cash card or the like, or a thin plate synthetic resin thin plate used for a prepaid card or the like, which has been widely used conventionally.
  • the surface plate 24 is preferably a synthetic resin highly transparent to radiation, and further preferably opaque to visible light. By making it opaque to visible light, it is not possible to know the contamination state of radioactive substance particles by visual observation.
  • FIG. 7 shows a third embodiment of the card.
  • (a) is a top view of the card
  • (b) is a cross-sectional view thereof
  • (c) is an enlarged view of the cross-sectional view.
  • the reference numeral 26 denotes a card body having a magnetic stripe 2
  • an authentication verifying chip 23 is stacked on a substrate 21
  • a surface plate 27 is further stacked on the authentication verifying chip 23.
  • An opening 28 is formed at the center of the surface plate 27 made of synthetic resin, and a lid plate 29 is fitted in the opening 28.
  • the face plate 27 is preferably made of a material which is not transparent to radiation, that is, a radiation shielding material, and it is desirable that the screen be opaque to visible light.
  • the lid plate 29 is a material highly transparent to radiation, and preferably opaque to visible light. The use of such openings and lids reduces the problem of radiation exposure.
  • (a) is a top view of the card
  • (b) is a cross-sectional view thereof
  • (c) is an enlarged view of the cross-sectional view.
  • the reference numeral 30 denotes a card body having the magnetic stripe 2.
  • the authentication verifying chip 32 is stacked on the substrate 21 and the surface plate 33 is further stacked on the authentication verifying chip 32.
  • the authentication verifying chip 32 is provided with a convex portion 31 formed to have a thickness fitted to the opening 34 of the face plate 33, and radioactive substance particles 22 are mixed only in the convex portion 31.
  • the materials used in the authentication verifying chip 32 are not different from the cards described so far, so the explanation will be omitted so as not to be complicated.
  • the surface plate 33 be a radiation shielding material to reduce radiation exposure! / ⁇ .
  • the authentication chip shown in Figs. 5 to 8 is an artifact metritus composed of radioactive substance particles mixed in a synthetic resin. Artifacts can not be copied, but they can not be controlled during production.
  • FIG. 11 shows a pattern example of an authentication verifying chip.
  • this authentication chip 1,024 binary data are arranged in a 32 ⁇ 32 matrix.
  • this authentication chip has a 1024-bit authentication key.
  • the "*" part is binary data "1”
  • the blank part is binary data "0”.
  • the radioactive substance is disposed in the part, and the radioactive substance is disposed in the part of “0”. /.
  • Figure 12 shows an example of a true 256-digit hexadecimal real number obtained by detecting radiation emitted by nuclear decay of radioactive material, and the random numbers used for encryption keys etc. are usually It is supplied as such a hexadecimal number.
  • FIG. 13 shows an arrangement of the hexadecimal random numbers shown in FIG. 12 in a matrix of 8 columns and 32 rows.
  • This hexadecimal number can be expressed by replacing it with a 4-digit binary number. That is, hexadecimal "0" is binary "0000", “1” is “0001”, “2” is “0010”, "3” is "001 1", "4".
  • This is arranged in a matrix of 8 columns and 32 rows shown in FIG. 13, and further arranged in a matrix of 32 columns and 32 rows for each binary digit unit is shown in FIG.
  • FIG. 16 illustrates a method of obtaining one random number sequence power and a plurality of authentication verifying chips.
  • (a), (b), (c) and (d) are respectively obtained by obtaining a 16 ⁇ 16 matrix pattern based on the 32 ⁇ 32 matrix pattern shown in FIG. ) Uses coordinates (0, 0) as the origin, (a) as coordinates (0, 0) as the origin, (b) as coordinates (1, 0) as the origin, and (c) as coordinates (0, 1) ) Is the origin, and (d) is the origin of coordinates (1, 1).
  • one matrix pattern force obtained from the random number sequence shown in FIG. 12 can also obtain a plurality of matrix patterns.
  • One random number sequence force In order to obtain a plurality of matrix patterns, in addition, the use start position of the random number sequence shown in FIG. 12 is changed, or the creation of the matrix pattern shown in FIG. 13 is changed. Various methods are available.
  • the arrangement pattern of radioactive substance particles is detected by radiation detection.
  • radiation detection a method of indirectly detecting radiation by converting radiation into light by a scintillator and detecting scintillation light by a light detection device, and a method of directly detecting radiation by a semiconductor radiation detection device There is.
  • the scintillator a material that is a scintillator that emits visible light by radiation such as Nal (Tl), Csl (Tl), Bi4Ge3012, or the like, or a plastic in which the scintillator is dispersed in a synthetic resin It is common to use a scintillator. Besides this, there is also a liquid scintillator in which the scintillator is dispersed in the liquid.
  • PN junction type PIN junction type
  • Schottky barrier type avalanche type photo diode
  • bipolar type bipolar type
  • a semiconductor radiation detection element can be used as a radiation detection means for directly detecting radiation.
  • Semiconductor elements that detect radiation include PN junction type photodiodes, PIN junction type photodiodes, Schottky barrier type photodiodes, photodiodes such as avalanche type and other bipolar type phototransistors, and field effect type phototransistors.
  • the semiconductor radiation detection apparatus for detecting radiation directly comprises small semiconductor radiation detection elements arranged in a plane, arranged in a line, or a single unit, and configured in this manner.
  • a semiconductor radiation detection device detects the radiation emission condition, that is, the arrangement of radioactive material particles.
  • the reading method includes a method of reading an authentication verifying chip as a surface as it is, a method of reading a surface as a collection of lines, and a method of reading a surface as a collection of points.
  • FIG. 17 to FIG. 19 show a reader that reads an authentication verifying chip as a surface.
  • FIG. 17 shows a schematic configuration of a detection unit of the card identification reader, and (b) shows a card and a surface. The corresponding relationship with the plastic 'scintillator' is shown.
  • the authentication verifying chip 42 When the card 41 is taken into the reader and stopped, the authentication verifying chip 42 is positioned below the planar plastic scintillator 301. In this state, the scintillator in the planar plastic 'scintillator 301 emits scintillation light by the radiation emitted from the radioactive substance particles 43 disposed in the authentication verifying chip 42.
  • the scintillation light is photographed by the imaging device 300, and the authenticity verification information of the authenticity verification chip 42 is obtained from the photographed image. Since the pattern of the obtained information depends on the arrangement of the radioactive substance particles 43, the information of the authentication verifying chip 42 can be read by this information pattern. The accuracy of reading the arrangement pattern of the radioactive substance particles 42 in the authentication verifying chip 42 depends on the resolution of the imaging device 300.
  • the distance between the authentication verifying chip 42 and the plastic 'scintillator 301 needs to be as narrow as possible because the reach distance is short.
  • the force to be detected is beta radiation Since the reach distance is relatively long, the distance between the authentication verifying chip 42 and the plastic 'scintillator 301 may not be narrow.
  • FIG. 18 shows a second embodiment of the card reader.
  • (a) shows a schematic configuration of a detection unit of the reader, and (b) shows a correspondence between a card and a planar radiation detector.
  • Reference numeral 301 denotes a planar plastic 'scintillator having a size that covers the authentication verifying chip 42
  • 302 denotes a light detection matrix incorporating a plurality of light detection elements 303 arranged in a matrix in the same size as the authentication verifying chip 42. It is.
  • the light detection element 303 also includes a photodiode, a phototransistor, a CCD, and a CMOS. Photodetector matrix is there.
  • the authentication verifying chip 42 When the card 41 is taken into the reader and stopped, the authentication verifying chip 42 is located under the plastic 'scintillator 301. In such a state, the scintillator in the sheet-like plastic 'scintillator 301 emits scintillation light by radiation emitted from radioactive substance particles 43 disposed in the authentication verifying chip 42.
  • the scintillation light is detected by the light detection element 303 constituting the light detection element matrix 302, and the location of the radioactive substance 43 is extracted as an electric signal. Since the pattern of the obtained electric signal depends on the arrangement of the radioactive substance particles 43, the information of the authentication verifying chip 43 is read by the pattern of the electric signal. The accuracy of reading the arrangement pattern of the radioactive substance particles 43 in the authentication verifying chip 42 depends on the resolution of the light detection element matrix 303 arranged in a plane.
  • the radiation to be detected is alpha radiation
  • the distance to reach is short, so the distance between the authentication verifying chip 42 and the plastic 'scintillator 301 needs to be as narrow as possible.
  • the force to be detected is beta radiation Since the reach distance is relatively long, the distance between the authentication verifying chip 302 and the plastic 'scintillator 301 may not be narrow.
  • 306 is a linear plastic 'scintillator having a length slightly longer than the movement direction width of the authentication verifying chip 42
  • 307 is a plurality of light detections arranged in an array in the same traveling direction width as the authentication verifying chip 42. It is a light detection array incorporating the element 303.
  • the light detection element 303 is formed of a photodiode, a phototransistor, a CCD, a CMOS or the like.
  • the card 41 is taken into the reader, and after being stopped, the authentication chip 42 is taken in during the taking-in operation to be taken into the reader.
  • the arrangement of radioactive material particles 43 is read.
  • the card 41 passes under the linear plastic scintillator 306 while moving as it is taken into the card reader. At this time, the linear plastic scintillator 306 emits scintillation light by the radiation emitted from the radioactive substance particles 43 disposed in the authentication verifying chip 42.
  • the distance between the authentication verifying chip 42 and the linear plastic 'scintillator 306 needs to be as small as possible because the reach distance is short. In this case, since the reach distance is relatively long, the distance between the authentication verifying chip 42 and the linear plastic 'scintillator 306 may not be narrow.
  • the card 41 receives the radioactive substance particles 43 in the authentication verifying chip 42 during the loading operation to be loaded into the reader. .
  • the card 41 passes under the radiation detection element analyzer 308.
  • the pattern of the obtained information depends on the arrangement of the radioactive substance particles 43, the information of the authentication verifying chip 42 can be read by this information.
  • Radioactive material in the Makoto authentication chip 42 The accuracy of reading the arrangement pattern of the granular material 43 depends on the resolution of the radiation detection element array 308.
  • the distance between the authentication verifying chip 42 and the semiconductor radiation detection element array 308 needs to be as small as possible because the reach distance is short. In this case, since the reach distance is relatively long, the distance between the authentication verifying chip 42 and the semiconductor radiation detecting element array 308 may not be narrow.
  • FIG. 22 (a) shows an example of a light detection element array in which 32 light detection elements are provided.
  • 32 light detection elements “DOO” to “D31” are provided in one row on a base.
  • the arrangement it is possible to arrange the light detection elements in a staggered arrangement. By selecting the light detection elements arranged in this light detection array, an arbitrary reading path can be set in addition to the reading path described later.
  • a light scanning means used by reflecting a laser beam by a rotating polygonal columnar mirror (polygon mirror) is used in a laser beam printer or the like.
  • This scanning means can perform light scanning only by polygon mirror rotational movement.
  • FIG. 23 (b) shows the basic configuration of a reader to which this principle is applied.
  • reference numeral 120 denotes a reflector having a paraboloid, which is formed in a semi-cylindrical shape having a length in the direction perpendicular to the paper surface. Further, a light passing hole 121 for passing light is formed at a position corresponding to the origin of FIG. 23 (a). Furthermore, a polygon mirror (polygon mirror) having a polygonal reflecting surface, having a rotation axis parallel to the extension direction axis of the semicylindrical parabolic reflector 120 at the focal point of the semicylindrical parabolic reflector 120 (polygon mirror) 122 are arranged.
  • Reference numeral 124 is a plastic 'scintillator.
  • the light indicated by the solid line emitted parallel to the Y-axis in FIG. 23 (a) from the plastic 'scintillator 124 is reflected by the semi-cylindrical parabolic reflector 120 and enters the polygon mirror 122 disposed at the focal point. Do.
  • the light incident on the polygon mirror is reflected and passes through the light passage hole 121 to be incident on the light receiving element 123.
  • light emitted in a direction different from the Y axis indicated by a broken line does not enter the polygon mirror even if it is reflected by the semicylindrical parabolic reflector 120.
  • FIG. 24 (c) shows the basic configuration for that, which uses half of a semi-cylindrical parabolic reflector.
  • reference numeral 125 denotes a reflecting mirror having a paraboloid, which is formed in a semi-cylindrical shape having a length in the direction perpendicular to the paper surface only by the portion where X is negative in FIG. .
  • the light passage hole 121 formed in FIG. 24 (b) is not formed because it is unnecessary.
  • a semi-cylindrical semi-parabolic surface at the focal point of the semi-cylindrical semi-parabolic reflector 125 A polygon mirror (polygon mirror) 122 having a rotation axis parallel to the extension direction axis of the reflecting mirror 125 and having a polygon reflecting surface is disposed.
  • 126 is a plastic 'scintillator.
  • the light emitted parallel to the Y-axis in FIG. 23 (a) from the plastic 'scintillator 124 is reflected by the semi-cylindrical semi-parabolic reflector 125 and is incident on the polygon mirror 122 disposed at the focal point.
  • the light incident on the polygon mirror is reflected to be incident on the light receiving element 123.
  • the portion of the plastic scintillator 126 that strikes the back side of the polygon mirror 122 from the light receiving element 123 is only the end, so it can not be read, and the influence of the portion is small.
  • Figure 24 to Figure 29 illustrate a reader that reads a face as a collection of points.
  • FIG. 24 shows a seventh embodiment of the reader. Unlike the planar reader shown in FIGS. 17 to 19 or the linear reader shown in FIGS. 20 to 23, the reader shown in FIG. 24 performs reading by a point reader.
  • (a) is a schematic configuration of a relation between a card and a card identification reader
  • (b) is an explanatory view of a card identification method. Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted.
  • 310 is a small-area plastic 'scintillator
  • 303 is a light detection element such as a photodiode, phototransistor, CCD, CMOS or the like
  • 311 is a housing for housing the plastic scintillator 310 and the light detection element 303.
  • the reader shown in FIG. 24 is movable in the direction orthogonal to the card 41 taking-in direction.
  • the movement of the card 4 in the direction orthogonal to the loading direction is simulated linear motion by rotational motion with one point as a rotation center, linear motion by conversion to rotational motion force linear motion, or linear motion
  • An appropriate one such as linear motion by a motor or the like can be used.
  • (B) shows a typical example of the moving path of the card identification reader, but in this example, it moves in the direction shown by the arrow in (b) at a uniform speed, and as a result, it is combined with the moving direction It will move along the straight line path 312, and the information obtained will be points distributed on the straight line 312.
  • the accuracy of reading the arrangement pattern of radioactive substance particles in the authentication verifying chip 42 depends on the size of the light detecting element 303.
  • the card identification reader can be moved to any position in the direction orthogonal to the taking-in direction of the card 41 and fixed for use without necessarily moving. It is also possible to use the linear plastic 'scintillator 306 shown in FIG. 20 as the plastic' scintillator and to combine it with the light detecting element 303 shown in FIG.
  • FIG. 25 shows Embodiment 8 of the reader.
  • (a) is a schematic configuration of a relation between a card and a card identification reader
  • (b) is an explanatory view of a card identification method. Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted.
  • reference numeral 313 denotes a housing, in which the radiation detection element 305 is disposed. The other descriptions are the same as in FIG.
  • this reading device is basically the same as the operation of the reading device shown in FIG. 24, further description will be omitted.
  • FIG. 27 shows a ninth embodiment of the reader.
  • (a) is a schematic configuration of the relationship between the card and the card identification reader
  • (b) is an explanatory view of the card identification method
  • (c) and (d) are output signals of the power identification reader power. It is an example. Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted.
  • This embodiment is similar to the configuration of the first card identification reader of the embodiment shown in FIG. 24, and comprises a plastic 'scintillator 316, a light detection element 315, and a housing 317 for containing them. And a second card identification reader.
  • the second card identification reader comprising the plastic 'scintillator 316, the light detection element 315 and the housing 317 shown in this figure is the same as the plastic' scintillator 310, the light detection element 303 and the housing 313. Move in the direction opposite to the direction of movement of the first card identification reader configured. The moving directions may be the same.
  • the authentication chip 42 ie, the card 41, is identified by comparing these electrical signals.
  • FIG. 28 shows an embodiment 10 of the reader.
  • (a) is a schematic configuration of the relationship between the card and the reader, and (b) is an explanatory view of a reading method. Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted.
  • the reading apparatus of this embodiment is a semiconductor radiation detecting element in addition to the configuration of the first card identification reading apparatus including the radiation detecting element 305 and the housing 3 13 of the embodiment shown in FIG. It further comprises a second card identification reader consisting of 320 and a housing 319.
  • Reading Path If there is a possibility that a reading error may occur due to a path error or a defect in the reading device, as shown at 314 in FIG. 26, reading is simultaneously performed by a plurality of reading devices, and the final read data is determined by the average value or majority decision. decide.
  • FIG. 29 shows an example of the path of the reading device shown in FIG.
  • (a), (b), (c) and (d) are an example in which there is one reading path
  • (e), (f), (g), (h), reading path is an example in which there are two. Needless to say, it is possible to increase the number of routes to three or more.
  • (a) and (e) are straight paths parallel to the loading direction of the force guide obtained by fixing the reading device.
  • the position is arbitrary.
  • (b) and (f) are curvilinear paths obtained by moving the reader at non-uniform speed.
  • (C) and (d) are V-shaped paths obtained by a single reciprocating motion of the reader at uniform speed.
  • (D) and (h) are W-shaped paths obtained by the reader performing two reciprocating movements at a uniform speed.
  • Examples of these paths are the forces realized by the reading device shown in FIGS. 24 to 28. Besides, the sensing element matrices shown in FIGS. 18 to 19 or the forces shown in FIGS. This can also be realized by switching the detection elements to the detection element array.
  • FIG. 30 An example of applying this reading method to the authentication verifying chip pattern shown in FIG. 15 is shown in FIG. In FIG. 30, from the coordinates (0, 0) to (31, 31), the authentication data on the straight line detection route becomes 11000101001001101010101101111! In addition, the authentication data on the linear detection path toward the coordinates (0, 31) to (31, 0) is 111001 01010010000000110000010011!
  • the authenticity of the authentication chip can be determined by detecting each of these feature points and detecting their start position coordinates.
  • the authentication method described so far processes digitally-processed authentication authentication information digitally, but in FIG. 32, it is configured to analog-process authentication authentication information digitally recorded in FIG. Indicates
  • alignment marks 48 shown in FIG. 33 it is desirable to form alignment marks 48 shown in FIG. 33 on the authentication verifying chip.
  • the number of alignment marks may be one in the simplest way, a plurality of alignment marks may be provided for more accurate alignment.
  • the read start 'end line and mark for Z or synchronization signal can also be used for signal integrity in signal processing.
  • These alignment marks, reading start and ending lines, and marks for Z or synchronization signals are all made of phosphors and can be formed by an appropriate printing means such as an ink jet printer.
  • FIG. 35 shows a method of manufacturing the card 41 shown in FIG.
  • This card manufacturing method is based on the following steps.
  • the injected monomer is cured by a means such as heating to form a polymer, to obtain an authentication verifying chip 42 in which radioactive substance particles 43 are mixed.
  • FIG. 35 shows a method of manufacturing the card 21 shown in FIG.
  • This card manufacturing method is based on the following steps.
  • the lower surface of the authentication verifying chip 23 is attached to the substrate 21 and the top plate 24 is attached to the upper surface to obtain a card 20.
  • FIG. 36 shows a method of manufacturing the card 26 shown in FIG.
  • This card manufacturing method is based on the following steps.
  • the injected monomers are cured by a means such as heating to form a polymer, to obtain an authentication verifying chip 23 in which radioactive substance particles 22 are mixed.
  • the authentication verifying chip 23 is attached on the substrate 21 and the surface plate 27 having the opening 28 formed thereon is attached.
  • FIG. 37 shows a method of manufacturing the card 30 shown in FIG.
  • This card manufacturing method is based on the following steps.
  • the synthetic resin monomer in which the radioactive substance particle 22 is mixed is injected into the recess 42, and the radioactive substance particle 22 is mixed in the other part of the mold 423, and the synthetic resin monomer is injected.
  • the injected monomer is cured by a method such as heating to form a polymer, and the authentication verifying chip 32 in which the radioactive substance particles 22 are mixed only in the convex portion is obtained.
  • the lower surface of the authentication verifying chip 32 is attached to the substrate 21 and the surface plate 27 having the opening 28 formed on the upper surface is attached to obtain the card 30.
  • Example 1 of the authentication process flow will be described with reference to FIG.
  • a sensor at the entrance of the card senses that and takes the card into the device.
  • the terminal When loading a card, the terminal reads the magnetic recording unit power card information of the card.
  • the terminal determines whether the inserted card is a card that can be handled by the terminal.
  • the terminal device ejects the card as an improper card which can not be handled.
  • the terminal device performs mechanical scanning using the movement of the card at the time of loading the card, or reads the authentication information of the authentication chip when the card is stopped.
  • the terminal device determines whether the read-in authentication information is positive or not.
  • the terminal device determines that the authentication information is legitimate, it requests the user to perform further input operation such as withdrawal amount.
  • the user performs the input operation of the withdrawal amount and the like according to the request.
  • the host computer determines whether or not the content of the input operation such as the withdrawal amount is appropriate.
  • the host computer determines that the contents of the input operation such as the withdrawal amount are appropriate, the host computer outputs it by withdrawal, discharges the card from the terminal device, and ends the processing.
  • Embodiment 2 of the authentication process flow will be described with reference to FIG.
  • a sensor at the entrance of the card senses that and takes the card into the device.
  • the terminal When loading a card, the terminal reads the magnetic recording unit power card information of the card.
  • the terminal determines whether the inserted card is a card that can be handled by the terminal.
  • the terminal device ejects the card as an improper card which can not be handled.
  • the terminal device performs mechanical scanning using the movement of the card at the time of loading the card, or reads the authentication information of the authentication chip when the card is stopped.
  • the terminal device determines whether the read authentication information is positive or not.
  • the terminal device determines that the authentication information is not correct, the inserted card It determines that the card is not legitimate, stores the card in the terminal and issues an alarm.
  • the terminal device determines that the authentication information is legitimate, it requests the user to perform further input operation such as withdrawal amount.
  • the user performs an input operation such as a withdrawal amount according to the request.
  • the host computer determines whether or not the content of the input operation such as the amount of withdrawal is appropriate.
  • the host computer determines that the contents of the input operation such as the withdrawal amount are appropriate, the host computer outputs it by withdrawal and the like, discharges the card from the terminal device, and ends the processing.
  • a sensor at the entrance of the card senses that and takes the card into the device.
  • the terminal When loading a card, the terminal reads the magnetic recording unit power card information of the card.
  • the terminal determines whether the inserted card is a card that can be handled by the terminal.
  • the terminal device ejects it as an incorrect card that the card can not handle.
  • the terminal device performs mechanical scanning using the movement of the card at the time of loading the card, or reads the authentication information of the authentication chip when the card is stopped.
  • the terminal device determines whether the read-in authentication information is positive or not.
  • the terminal device determines that the authentication information is not correct, the user is requested to perform further input operation such as withdrawal amount.
  • the user performs an input operation such as withdrawal amount according to the request.
  • the card is stored in the terminal device and an alarm is issued.
  • the terminal device determines that the authentication information is legitimate, it requests the user to perform further input operation such as withdrawal amount.
  • the user performs an input operation such as withdrawal amount according to the request.
  • the host computer determines whether or not the content of the input operation such as the amount of withdrawal is appropriate.
  • the card having the authentication verifying chip and the authentication verifying chip described above can be adopted as a bank cash card, a credit card, a prepaid card, a point card, a stock, an ID card, an entrance certificate, a certificate, and the like.

Abstract

Authentication of a card is performed. A radio-active substance is mixed in a card and arrangement of the mixed radio-active substance is detected indirectly by detecting a scintillator or directly by a radiation detection element, thereby performing authentication of the card. Authentication of the card is performed upon entry of the card or after entry of the card by reading information in the authentication chip arranged on the card. Read may be performed in a planar form but read in linear form reduces the processing load. The read line shape may be an arbitrary straight line or a curved line by modifying the read position correlated with movement of the card when the card is inputted. When the card inputted into a terminal device is judged to be an appropriate one such as a forged one, the card is ejected or the inputted inside and an alarm is issued.

Description

明 細 書  Specification
放射性物質チップにより真贋判別可能なカード  A card that can be identified by a radioactive substance chip
技術分野  Technical field
[0001] この出願に係る発明は、カード、紙幣、証券類等偽造されやすぐ真贋認証を必要 とする対象物の構造及びその対象物の真贋を判別する方法に係るものである。 背景技術  [0001] The invention according to this application relates to a structure of an object that requires forgery and authentication immediately, such as a card, a banknote, and a securities, and a method for determining the authenticity of the object. Background art
[0002] カード社会と呼ばれる今日、数多くのカードが出回っており、銀行のキャッシュカー ド、クレジット会社のクレジットカード等所有者の財産に関わるカード、有価証券であ るプリペイドカード及び運転免許証,健康保険証,パスポート等身分証明に関わる力 ードが使用されている。  [0002] There are a large number of cards in circulation today called the card society, and cards related to the property of the bank's cash card, credit card's credit card etc., prepaid card and driver's license, which are securities, health Security cards, passports and other forms of identification are used.
[0003] 財産に関わるカード及び有価証券であるカードの多くは、表面あるいは裏面に設け られた磁気ストライプに必要な情報を書込、 ATM(Automatic Teller's Machine)等の 自動機械あるいは手動読み取り装置を用いて、磁気ストライプ力 磁気情報を読み 取り、各種の処理を実行している。  [0003] Many of cards relating to property and cards, which are securities, write necessary information on magnetic stripes provided on the front or back side, and use an automatic machine such as ATM (Automatic Teller's Machine) or a manual reader. It reads magnetic stripe force magnetic information and executes various processes.
[0004] 図 1に示すのは、現行のキャッシュカード処理フローの例である。  [0004] FIG. 1 shows an example of the current cash card processing flow.
(1)カード所有者が ATM等の端末装置のカード挿入口にキャッシュカードを挿入 すると、カード揷入口のセンサがそのことを感知し、カードを装置内に取り込む。  (1) When the card holder inserts a cash card into the card insertion slot of a terminal such as ATM, a sensor at the card entrance detects that and takes the card into the apparatus.
[0005] (2)カードを取り込む際に、端末装置はカードの磁気記録部力 カード情報を読み 込む。キャッシュカードの場合には、銀行コード,支店コード, 口座種別, 口座番号等 のカード情報を読み込む。なお、クレジットカードの場合には、カード識別番号,有効 期限, 口座種別, 口座番号がカード情報として、磁気記録部に記録されている。また 、キャッシュカードあるいはクレジットカードに暗証番号が記録されている場合がある 力 その場合には暗証番号も読み込まれる。  (2) When the card is taken in, the terminal reads the magnetic recording unit power card information of the card. In the case of a cash card, it reads card information such as bank code, branch code, account type and account number. In the case of a credit card, a card identification number, an expiration date, an account type, and an account number are recorded as card information in the magnetic recording unit. In addition, personal identification numbers may be recorded on cash cards or credit cards. In such cases, personal identification numbers are also read.
[0006] (3)端末装置は、挿入されたカードがその端末装置で取り扱うことが可能なカード であるか否かを判断する。  (3) The terminal device determines whether the inserted card is a card that can be handled by the terminal device.
[0007] (4)読み込んだカード情報から、取扱いが可能であることを示す情報が確認されな 力つた場合、あるいは正規のカードであっても破損あるいは汚損等によりカードの情 報が読みとれな力つた場合には、端末装置はそのカードが取り扱うことが出来ない不 適正なカードであるとして排出する。 (4) If no information indicating that the card can be handled is confirmed from the read card information, or if the card is a legitimate card, the card information may be damaged or corrupted. If the information can not be read, the terminal device ejects the card as an incorrect card that can not be handled.
[0008] (5)カードが正規のものであり、磁気記録部の情報が正しく読みとれた場合には、 ホストコンピュータとの通信が開始される。  (5) If the card is legitimate and the information in the magnetic recording unit is read correctly, communication with the host computer is started.
[0009] (6)ホストコンピュータから暗証番号の入力要求がなされる。 (6) The host computer requests input of the password.
[0010] (7)ホストコンピュータからの要求に対応して、カード利用者が暗証番号を入力する  (7) In response to a request from the host computer, the card user enters a personal identification number
[0011] (8)ホストコンピュータからの要求に対応して、カード利用者が暗証番号を入力する と、ホストコンピュータは入力された暗証番号をホストコンピュータに格納されている読 み込まれたカード情報に対応する暗証番号と比較する。 (8) When the card user inputs a PIN in response to a request from the host computer, the host computer reads the input PIN stored in the host computer. Compare with the corresponding PIN.
[0012] (9)合致しな力つた場合には、カードの磁気記録部にそのことを記録して、再度暗 証番号の入力を求め、再度入力された暗証番号が正当なものであったときはその後 の手続きを行い、合致しな力つた場合には同様にして再々度暗証番号の入力を求め 、暗証番号の誤入力の累計が 3回になると、カードを無効にし端末装置内に取り込む 等の無効処分を行う。  (9) If the force is not matched, the fact is recorded in the magnetic recording section of the card, and the user is again required to input the security number, and the password entered is valid again. When you do the procedure after that, if you do not agree, in the same way ask for the input of the password again, and if the total number of incorrect password input is 3 times, the card is invalidated and taken into the terminal device Perform ineffective disposal etc.
[0013] (10)合致した場合には、ホストコンピュータはカード利用者が正しいカード所有者 であると判断して、引出金額の入力を要求する。  (10) If they match, the host computer determines that the card user is the correct card holder, and requests input of the withdrawal amount.
[0014] (11)利用者が引出要求金額を入力する。 (11) The user inputs a withdrawal request amount.
[0015] (12)引出要求金額が適正であれば、その金額を出金し、キャッシュカードが端末 装置から排出され、通帳への記帳あるいは取扱明細書の発行が行われて、取引は 終了する。  (12) If the withdrawal request amount is appropriate, the amount is withdrawn, the cash card is discharged from the terminal device, the entry into the passbook or the issuance of the statement of account is performed, and the transaction is terminated. .
なお、暗証番号がキャッシュカードに記録されて 、た場合にはその暗証番号が正し いものとして取引が行われるが、その後磁気記録部力もその暗証番号は消去される。  Note that if the password is recorded on the cash card, the transaction is performed as if the password is correct, but then the password is erased from the magnetic recording unit.
[0016] 図 2 (a)に示すのは、図 1に示した現行のキャッシュカード処理フローで使用される キャッシュカードの例である。この図において、 1はプラスティック等力もなるキャッシュ カード本体であり、その表側には情報が記録された磁気ストライプ 2及びキャッシュ力 ードの挿入方向を示す矢印 3が形成されている。なお、図示は省略したが、所要事項 がエンボス文字として掲載されて 、る。 [0017] 磁気ストライプに書き込まれた情報はスキマーと呼ばれる装置を用いて容易に読み 取ることが可能なため、偽造カードが作成され、しばしば偽造カードが使用される被 害が生じている。 [0016] FIG. 2 (a) shows an example of a cash card used in the current cash card processing flow shown in FIG. In this figure, reference numeral 1 denotes a cash card body which is also plastic, and on the front side thereof, a magnetic stripe 2 in which information is recorded and an arrow 3 indicating the insertion direction of the cache card are formed. Although illustration is omitted, the required items are posted as embossed letters. [0017] The information written on the magnetic stripe can be easily read using a device called a skimmer, so counterfeit cards are created, which often results in the use of counterfeit cards.
[0018] その対策として、半導体メモリを内蔵した ICカードが使用されて来ており、磁気カー ドに代わるものとして、銀行等は普及を計っている。  As a countermeasure, an IC card with a built-in semiconductor memory has been used, and banks are trying to spread as a substitute for a magnetic card.
[0019] し力しながら、この ICカードといえども、メモリに保存された情報を読み取ることは可 能であり、手間暇をかけた偽造が行われた場合には、絶対に安全ということはできな い。その上、 ICカードは磁気カードに比べて非常に高価であり、早急な普及は期待 できない。 Even with this IC card, it is possible to read the information stored in the memory, and it is absolutely safe if there is a forgery that takes time and effort. Can not. Furthermore, IC cards are very expensive compared to magnetic cards, and rapid spread can not be expected.
[0020] 銀行のキャッシュカードの場合は、 1つの国の中だけで使用可能であれば済むが、 クレジットカードの場合は外国でも使用可能である必要があり、世界中で使用されて いる全ての磁気カードであるクレジットカードを規格を統一した ICカードに置き換える ことは、事実上不可能である。  [0020] In the case of a bank's cash card, it can be used only in one country, but in the case of a credit card, it needs to be usable in foreign countries, and all of the used in the world. It is virtually impossible to replace a credit card that is a magnetic card with an IC card that conforms to the standard.
[0021] さらに、キャッシュカードとクレジットカードには所有者名等の情報がエンボス力卩ェさ れて設けられており、これらの情報は磁気情報にも用いられているため、エンボス情 報は偽造カード作成の手掛力りとなっている。  Further, since the cash card and the credit card are provided with information such as the name of the holder by embossing, and such information is also used for the magnetic information, the embossed information is forged. It has become a key to card creation.
[0022] これらの磁気カードあるいは ICカードが紛失あるいは盗難に遭った場合には、所有 者がその事実に気がつきやすいが、盗難の後に手元に戻った場合、特に盗難に気 がっかずに戻った場合には、偽造カードの使用による被害が発生しやす!/、。  If the magnetic card or IC card is lost or stolen, the owner is likely to be aware of the fact, but if he or she comes back after the theft, he or she does not particularly notice the theft. In the case, damage caused by the use of counterfeit cards is likely to occur!
[0023] カードの偽造を防止することによる不正使用防止ではなぐカード使用者の適否を 判定するための手段として、これまで 4桁の数字で構成された暗証番号が用いられて きた。この暗証番号にはしばしば類推可能な番号が使用され、これまでに多くの被害 が生じてきた。最近は類推だけでなく盗撮等の手段による暗証番号の盗視までも行 われており、暗証番号による不正使用防止は、きわめて困難となってきている。  [0023] A security code consisting of four digits has been used as a means for determining the propriety of a card user, which is not a means of preventing unauthorized use by preventing card forgery. This secret code is often based on analogical numbers and has caused a lot of damage so far. Recently, not only analogical reasoning but also stealing of PINs by means such as voyeurism has been carried out, and unauthorized use prevention by PINs has become extremely difficult.
[0024] 偽造カードによる被害防止のために、パターン認識技術を利用した生体判別 (バイ オメトリックス)技術が、一部で採用されている。生体判別技術の代表的なものとして、 虹彩判別、指紋判別、掌紋判別、指静脈判別、手掌静脈判別、手甲静脈判別があり 、この内虹彩判別以外の判別には接触型と非接触型があるが、何れも予めパターン を登録する必要があり、パターンの登録に手間がかかり、判別にも時間がかかるため 、運用コストが大きくなる。 In order to prevent damage due to counterfeit cards, biometrics (biometrics) technology using pattern recognition technology is adopted in part. Representative examples of biometric identification techniques include iris discrimination, fingerprint discrimination, palm print discrimination, finger vein discrimination, palm vein discrimination and hand-back vein discrimination, and there are contact type and non-contact type in discrimination other than this inner iris discrimination. But all patterns in advance Because it takes time and effort to register patterns, and it takes time to make decisions, the operation cost increases.
[0025] 接触型の場合には検出装置に直接触れる必要があるため、衛生上あるいは生理 的嫌悪感の問題がある。また、判別部分に負傷した場合、あるいは最悪の場合は判 別部分が失われて他場合には、生体判別は不可能である。また、判別過程において 部分的な判別しか行って ヽな 、ため、万全のものとは 、えな 、。  In the case of the contact type, there is a problem of hygienic or physiological aversion because it is necessary to directly touch the detection device. Also, if the discrimination part is injured, or in the worst case, the discrimination part is lost and otherwise it is impossible to discriminate the living body. In addition, in the discrimination process, only partial discrimination is performed.
[0026] また、カード所有者本人し力使用することが出来ない生体判別システムは、カード を使用する時間あるいはカード処理装置が身近にないため代理人にカードの取扱を 依頼しょうとしても、不可能であり、この点でも使用者にとっては不便である。  [0026] In addition, biometric identification systems that can not use cardholders themselves can not be used even if they try to ask an agent to handle the card because the time to use the card or the card processing device is not familiar. This point is also inconvenient for the user.
[0027] 偽造防止の一つの手段として、クレジットカード,プリペイドカード,紙幣,証券類等 にプラスチックに凹凸を形成したエンボス ·ホログラムが取り付けられている。このェン ボス ·ホログラムは複製することが非常に困難であるため、エンボス ·ホログラムが付さ れたカード類を偽造することは事実上不可能であるが、現在の使用形態では人間が それも一瞥で読み取っているため、類似したエンボスホログラムを使用してカード等 を偽造して使用することは可能である。  [0027] As a means of preventing forgery, embossed holograms in which irregularities are formed on plastic are attached to credit cards, prepaid cards, bills, securities and the like. Because this Enboss hologram is so difficult to duplicate, it is virtually impossible to forge cards with embossed holograms, but in the current usage it is not It is possible to forge a card or the like using a similar embossed hologram because it is read at a glance.
[0028] 図 2 (b)に示すのは、官能によるカード真贋認証が行われるホログラム付きクレジット カードの例である。この図において、 1はプラスティック等からなるクレジットカード本体 であり、その表側には情報が記録された磁気ストライプ 2及びキャッシュカードの挿入 方向を示す矢印 3が形成されている。なお、図示は省略したが、所要事項がエンボス 文字として記載されている。  [0028] Fig. 2 (b) shows an example of a credit card with a hologram on which card authentication of authenticity is performed by a sensory function. In the figure, 1 is a credit card main body made of plastic or the like, and on the front side thereof, an arrow 3 indicating the insertion direction of a magnetic stripe 2 and a cash card in which information is recorded is formed. Although illustration is omitted, the required items are described as embossed letters.
[0029] このキャッシュカード 1は矢印 3が記された部分を先にして端末装置に挿入されるが 、その先端部付近に例えばエンボス ·ホログラムで構成された真贋認証チップ 4が取 り付けられている。  The cash card 1 is inserted into the terminal device with the portion marked with the arrow 3 first, but an authentication verifying chip 4 composed of, for example, an embossed hologram is attached near its tip. There is.
[0030] クレジットカードの場合には、キャッシュカードと異なり、磁気ストライプはカードの裏 面に設けられている力 カードの端末装置への挿入方向は同じなので、結果としてク レジットカードの磁気情報の読み取り方向はキャッシュカードとは逆となる。  In the case of a credit card, unlike a cash card, the magnetic stripe has the same insertion direction to the terminal device of the power card provided on the back of the card, and as a result, the magnetic information of the credit card is read. The direction is opposite to that of a cash card.
[0031] 真贋認証チップ 4はカードを端末装置に挿入する操作者によって、例示したパター ン「A」が、 目視すなわち官能によって確認され、カード端末装置によって読み取られ ることはない。 The authentication verifying chip 4 has a pattern “A” exemplified by the operator who inserts the card into the terminal device, which is visually or sensibly confirmed by the function and read by the card terminal device. There is nothing to do.
[0032] 官能による真贋認証は、判別をする個人の能力にばらつきがあること、及び同一人 であっても判別環境及び心理状態、体調などによるばらつきがあることにより、 1次的 スクリーニングには大きな効果を発揮するが、信頼性は低い。  [0032] Sensory authentication is considered to be a major factor for primary screening due to variations in the ability of the individual making the determination, and variations due to the determination environment, mental state, physical condition, etc., even for the same individual. Effective but less reliable.
[0033] 補助器具による真贋認証は、微細画線、特殊画線、マイクロ文字、特殊形状スクリ ーン等、ルーペ等の拡大器具を用いることによって、あるいは光学的干渉を発生する 特殊フィルタを用いることによって、真贋認証を行う。  [0033] The authentication of authentication by auxiliary equipment may be performed by using a magnifying tool such as a fine line, a special drawing, a micro character, a special shape screen, a loupe or the like, or using a special filter that generates optical interference. To authenticate the authenticity.
[0034] 具体的には、発光基材、発光ラミネートフィルム、発光インキ、サーモク口ミックイン キ、フォトクロミックインキ等、特殊な光学特性を示す材料を基材'ラミネートフィルム' インキ等に混入し、特殊フィルタ、紫外線ランプ等の補助器具を用いるものがあるが、 これらも最終的な判別は人間の官能に頼るため、信頼性は低い。  Specifically, materials exhibiting special optical properties such as a light-emitting substrate, a light-emitting laminate film, a light-emitting ink, a thermochromic ink, a photochromic ink, etc. are mixed into the substrate 'laminate film' ink etc. There are some that use auxiliary tools such as UV lamps, but these are also unreliable because the final discrimination relies on human sensuality.
[0035] 機械処理による真贋認証には、材料の持つ特性を機械的に検出して真贋認証を 行うものであり、検出の対象としては磁気、光学特性等の検出がある。  The authentication by mechanical processing is performed by mechanically detecting the characteristics of the material to perform authentication, and detection targets include detection of magnetic and optical characteristics.
[0036] 具体的には、発光材料,磁性材料を基材'ラミネートフィルム 'インキ等に混入し、検 出機器を用いるもの、コードィ匕した特定の情報を OCR文字,磁気バーコードにより磁 気的あるいは光学的に付与し、磁気 ·光学検出機器を用いるなものがある。  Specifically, a light emitting material, a magnetic material, and the like are mixed in a substrate 'laminate film' ink, etc., and a detection device is used, and specific information coded by an OCR character or magnetic bar code is magnetically detected. Alternatively, there is one that is optically applied and uses a magnetic / optical detection device.
[0037] 機械処理による真贋認証技術として、生体固有の情報に代えて媒体中にランダム 配置された再現性のな 、人工物を利用する人工物メトリタス ·システム (artifact- metric system)が、「金融業務と人工物メトリタス」日本銀行金融研究所 (http:〃丽. imes.bo j.or.jp/japanese/jdps/2004/04-J-12.pdl)及び「第 6回情報セキュリティ ·シンポジウム 「金融分野にける人工物メトリタス」の模様」(http://www.imes.boj.or.jp/japanese/kiny u/2004/kk23-2-6.pdl)に示されて!/、る。  [0037] As an authentication technology by machine processing, an artifact-metric system (artifact-metric system) using an artifact, which is randomly placed in a medium instead of information unique to living body, Business and Artifacts Meritas, "Bank of Japan Financial Research Institute (http: 〃 丽 .imes.bo j.or.jp/japanese/jdps/2004/04-J-12.pdl) and the 6th Information Security · Symposium It is shown in the "pattern of artifact meritatus in the financial field" (http://www.imes.boj.or.jp/japanese/kiny u / 2004 / kk23-2-6.pdl)!
[0038] 人工物メトリタスでは、粒状物の光反射パターン、光ファイバの透過光パターン、ポ リマファイバの視差画像パターン、ファイバの画像パターン、磁性ファイバの磁気パタ ーン、ランダム記録された磁気パターン、磁気ストライプのランダム磁気パターン、メ モリセルのランダム電荷量パターン、導電性ファイバの共振パターン,振動シールの 共鳴パターン等偶然によって形成されるパターンを利用する。  [0038] In the artifact metric, light reflection patterns of particles, transmitted light patterns of optical fibers, parallax image patterns of optical fibers, image patterns of optical fibers, magnetic patterns of magnetic fibers, randomly recorded magnetic patterns, Random magnetic patterns of magnetic stripes, random charge patterns of memory cells, resonant patterns of conductive fibers, resonant patterns of vibrating seals, etc.
[0039] カードの不正使用や偽造の対象となる事項には、カードが利用者に発給される時 に付与される「カード記載情報」と、カードの製造工程で付与される「カード本体情報[0039] Matters subject to fraudulent use or forgery of the card include when the card is issued to the user "Card description information" given to the "card body information given in the manufacturing process of the card"
」がある。(「連携 ICカード券面の偽造防止技術ノヽンドブック」財務省印刷局 (http:〃 w ww.npo.go.jp/ ja/ info/ lcnb.pdl)参照) There is ". (Refer to "Linkage IC card ticket side forgery prevention technology note book" Ministry of Finance Printing Bureau (http: 〃 w ww. Npo. Go. Jp / en / info / lcnb. Pdl))
[0040] カード記載情報は、カード本体に対してカード発給時に印字'付与される情報であ り、所持人情報、有効期限等の発給に関する情報が該当する。 The card entry information is information which is given to the card body at the time of issuance of the card, and corresponds to information on issue such as holder information, expiration date and the like.
[0041] 不正使用の代表的形態である改竄は、カード記載情報の全部、又は一部の記載 情報を書き換える行為であり、正規の情報を消去し、不正な情報を加筆することで行 われる。 Tampering, which is a typical form of unauthorized use, is the act of rewriting all or part of the card-listed information, and is performed by deleting the legitimate information and adding up the illegal information.
[0042] カード本体情報は、発給されたカードからカード記載情報を除 、たカード自体が有 する情報であり、カードの物理的形状、主にプレ印刷工程で付与される背景模様、 下地の印刷層及び保護ラミネート層等、カード基体に付随する情報である。  The card body information is information which the card itself has by removing the card description information from the issued card, and the physical shape of the card, mainly the background pattern given in the pre-printing step, the printing of the background Information associated with the card substrate, such as layers and protective laminate layers.
[0043] 偽造は、カード本体につ 、て行われる不正行為であり、カード本体に付随する情報 である図柄や模様等を複写又は模倣して、外観上近似したカードを作製することで 行われ、具体的には真正なカード券面に付与されている図柄や模様等をスキャナ等 で読み取り、加工、修正等を加え、プリンタ等を使用して行われる。  Forgery is an illicit act performed on the card body, and is performed by copying or imitating a pattern, a pattern, etc., which is information attached to the card body, to produce a card having an appearance similar to that of the card body. Specifically, the pattern, pattern, etc. given to the genuine card note is read by a scanner, etc., processed, corrected, etc., and carried out using a printer, etc.
[0044] カード本体に対する偽造対策技術は、印刷技術に限っても、印刷方式、インク、印 刷模様の組み合わせにより、多数存在するが、決定的なものは現存しない。  [0044] There are many counterfeit-proof techniques for the card body, even in the case of printing technology, depending on the combination of printing method, ink, and print pattern, there is no definitive one yet.
[0045] 偽造を判別する真贋認証方法は、大きく分けて、官能によるもの、補助器具による もの、機械処理によるものがある。  [0045] The authentication method for discriminating forgery can be roughly divided into a sensory test, an auxiliary tool, and a mechanical processing.
[0046] 官能による真贋認証は、視覚、触覚等の人間の官能で真贋を判別するものであり、 視覚によるものには本体の色彩、透かし、見る角度を変化させることによって付与し た模様や色彩等が変化するホログラム等があり、触覚によるものには、付与された凹 凸形状の検知、カード本体の質感の検知等がある。具体的には、ロゴマーク、特殊フ オント、複写防止画線、特色インキ、ホログラム、光学的変化材料、潜像模様等、複製 •複写が困難であり、視覚的に容易に真贋認証が可能なもの、エンボス加工、凹凸付 与、穿孔等、指感的、視覚的に真贋認証を行うものがある。  [0046] Authentication of authenticity by sensuality is to discriminate authenticity with human sensuality such as visual sense and tactile sense, and for visual sense, the color, the watermark of the main body, the pattern or the color imparted by changing the viewing angle There are holograms etc. that change etc., and the ones by touch include detection of given concave / convex shape, detection of texture of card body etc. Specifically, logo marks, special fonts, anticopying lines, special color inks, holograms, optically variable materials, latent image patterns, etc., reproduction, etc. • It is difficult to copy, and it is possible to perform authentication with ease visually. There are products that perform authentication authentication such as finger touching and visual inspection such as embossing, embossing, and perforation.
[0047] 図 3に、特開平 10— 44650号公報に開示された金属粒による人工物メトリクス-チ ップが取り付けられたカードの従来例を示す力 この図において(a)は全体図、(b) は断面図、(c)は真贋認証チップの拡大図である。このカード 1は、真贋認証チップ 用の開口 8が形成された光不透過性であるカード基体 7の上に金属粒 5が混入され た光透過性榭脂である薄板状の人工物メトリタス 'チップ 4が積層され、その上にカー ド基体 7に形成された開口と同じ位置に開口が形成され、磁気ストライプ 2と矢印 3が 形成された不透明なカード表面板 6が積層されている。 [0047] FIG. 3 shows a conventional example of a card having an artificial material metric-chip attached with metal particles disclosed in Japanese Patent Application Laid-Open No. 10-44650. In this figure, (a) is an overall view, b) Is a sectional view, and (c) is an enlarged view of the authentication verifying chip. This card 1 is a thin plate-like artificial metricus' chip, which is a light transmitting resin in which metal particles 5 are mixed on a card base 7 which is light impermeable, in which an opening 8 for an authentication verifying chip is formed. An opaque card surface plate 6 is formed by laminating the magnetic layer 4 and forming an opening at the same position as the opening formed in the card base 7 and forming the magnetic stripe 2 and the arrow 3 thereon.
[0048] 金属粒 5は何らの規則性を有することなく 3次元的に光透過性榭脂中に混入されて いるため、開口を経由して観測される金属粒 5の配置パターンは人工物メトリクス'チ ップ 4各々に固有のものである。このことを利用して、人工物メトリタス 'チップ 4を透過 する光を開口を経由して撮影することにより金属粒 5の配置パターンを観察し、個々 の人工物メトリクス'チップ 4、すなわちカードを識別する。  [0048] Since the metal particles 5 are three-dimensionally mixed in the light transmitting resin without any regularity, the arrangement pattern of the metal particles 5 observed via the opening is artifact metrics 'Tip 4 is unique to each. Using this, the arrangement pattern of metal particles 5 is observed by photographing the light passing through the artifact metric 'chip 4 through the opening, and the individual artifact metrics' chip 4, ie, the card, is identified. Do.
[0049] 図 4に、特開 2003— 29636号公報に開示された繊維による人工物メトリクス'チッ プが取り付けられたカードの他の従来例を示す。この図において(a)は全体図、(b) は断面図、(c)は人工物メトリクス'チップの拡大図である。  [0049] FIG. 4 shows another conventional example of a card having a fiber-based artifact metric 'chip disclosed in Japanese Patent Laid-Open No. 2003-29636. In this figure, (a) is a general view, (b) is a cross-sectional view, and (c) is an enlarged view of an artifact metrics' chip.
[0050] このカードは、光不透過性であるカード基体 1の開口に、透明榭脂中に網目部材 9 と短小繊維 10が 3次元的に混入されて構成された人工物メトリクス ·チップ 8が挿入さ れ、カード基体 1の表面には磁気ストライプ 2と矢印 3が形成されている。人工物メトリ タス 'チップ 8には、網目部材 9のパターンと短小繊維 10とにより干渉パターンが発生 する。  [0050] In this card, there is an artifact-metrics chip 8 in which the mesh member 9 and the short small fibers 10 are three-dimensionally mixed in the transparent resin in the opening of the card base 1 which is light impermeable. The magnetic stripe 2 and the arrow 3 are formed on the surface of the card base 1 inserted. An interference pattern is generated in the artifact metric chip 8 due to the pattern of the mesh member 9 and the short and small fibers 10.
[0051] この干渉パターンは、人工物メトリクス*チップ 8、すなわちカード各々に固有のもの であり、このことを利用して、真贋認証チップの人工物メトリタス 'チップ 8の識別バタ ーンを透過光あるいは反射光により撮影し、カードを識別する。  [0051] This interference pattern is unique to the artifact metrics * chip 8, ie, each card, and this is used to transmit the identification pattern of the artifact metric chip '8 of the authentication verifying chip. Alternatively, take a picture with reflected light to identify the card.
[0052] ノ ィオメトイリクスあるいは人工物メトリタスのようなパターンの機械読み取りは、撮像 装置で読み取ってパターン認識技術によって判別するのが一般的である。そのため 、複写技術による偽造の可能性がある。  [0052] Machine reading of patterns such as psychometrics or artifact metrics is generally read by an imaging device and determined by pattern recognition technology. Therefore, there is a possibility of forgery by copying technology.
[0053] 特開昭 63— 214651号公報に放射性同位体によってカードの真贋を判別する発 明が記載されているが、使用される放射性同位体は γ線という貫通性の高い放射線 を放射する同位体であり、カードのように人体に接近させて携帯するものに内蔵させ ることは危険である。 [0054] このように、カード自体の真贋を認証する技術は確立されておらず、偽造することが 出来な!/ヽカードは実現されて!ヽな ヽ。 Although Japanese Patent Laid-Open Publication No. 63-214651 discloses an invention for discriminating the authenticity of a card by radioactive isotopes, the radioactive isotopes used are isotopes that emit highly penetrating radiation called gamma rays. It is dangerous for the body to be contained in something that is carried close to the human body, such as a card. As described above, the technology for authenticating the authenticity of the card itself has not been established, and it can not be forged! The / ヽ card is realized! An ugly wolf.
また、偽造カードの使用を不可能にする技術も実現されて ヽな ヽ。  In addition, technology that makes it impossible to use counterfeit cards has also been realized.
特許文献 1:特開平 10- 44650号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 10-44650
特許文献 2:特開 2003 - 29636号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2003-29636
特許文献 3:特開昭 63— 214651号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 63-214651
非特許文献 1:「金融業務と人工物メトリタス」日本銀行金融研究所 (http:〃 www.imes. boj.or.jp/japanese/jdps/2004/04-J-12.pdl)  Non Patent Literature 1: "Financial Services and Artifacts", Bank of Japan, Research Institute for Finance (http://www.imes.boj.or.jp/japanese/jdps/2004/04-J-12.pdl)
非特許文献 2 :「第 6回情報セキュリティ 'シンポジウム「金融分野にける人工物メトリク ス」の模様」(http://www•imes.boi.or.jp/japanese/kinyu/2004/kk23— 2— 6.pdf) 非特許文献 3 :「連携 ICカード券面の偽造防止技術ハンドブック」財務省印刷局 (http: Non-Patent Document 2: "The Sixth Information Security 'Symposium: Patterns of Artifacts in the Financial Field" (http: //www•imes.boi.or.jp/japanese/kinyu/2004/kk23- 2 — 6. pdf) Non-Patent Document 3: “Handling Technology for Preventing Counterfeit of IC Card Cards”, Ministry of Finance Printing Bureau (http:
//www.npb.go.jp/ja/info/ichb.pdi) //www.npb.go.jp/ja/info/ichb.pdi)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0055] 特開平 10— 44650号公報に示された金属粉、特開 2003— 29636号公報に示さ れた短小繊維、ともに目視可能であり 2つの異なる傾斜した角度で読み取ることにより 、立体的配置を読み取ることが可能であり、真贋認証チップのパターンがコピーされ 、偽造される可能性が否定できない。  [0055] The metal powder shown in JP-A-10-44650 and the short and small fibers shown in JP-A-2003-29636 are both visible and read at two different inclined angles to obtain a three-dimensional arrangement. It is possible to read, and the pattern of the authentication verification chip is copied, and the possibility of being forged can not be denied.
[0056] また、立体構成パターンを検出するには 1方向からの検出では不可能であり、少な くとも 2つの異なる方向力も検出しなければならない。特開 2003— 29636号公報に は傾斜した角度で読み取ることが示されている力 そのための具体的構成は示され ていない。そして、特開平 10— 44650号公報には傾斜した角度で読み取ることは示 されていない。  Further, in order to detect a three-dimensional configuration pattern, detection from one direction is not possible, and at least two different directional forces must also be detected. Japanese Patent Laid-Open No. 2003-29636 does not show a specific configuration for the force shown to read at an inclined angle. Japanese Patent Application Laid-Open No. 10-44650 does not disclose reading at an inclined angle.
[0057] さらに、特開平 10— 44650号公報に記載された発明、特開 2003— 29636号公 報に記載された発明の真贋認証チップのパターンは全て個々に異なるため、対象力 ードが多くなると比較すべきパターンが多くなり、多数のカードを認証することがきわ めて困難になる。  Furthermore, since the patterns of the authentication verifying chip of the invention described in Japanese Patent Application Laid-Open No. 10-44650 and the inventions described in the invention described in Japanese Patent Application Laid-Open No. 2003-29636 are all different individually, As it becomes more patterns to compare, it becomes extremely difficult to authenticate a large number of cards.
[0058] これらの事情に鑑みて、本出願では、コピー不可能なパターンを有するカード真贋 認証チップを提供することを第 1の課題とする。 [0058] In view of these circumstances, in the present application, a card that has a non-copyable pattern is used. The first task is to provide an authentication chip.
[0059] また、本出願では、コピー不可能なパターンを有する真贋認証チップの製造方法を 提供することを第 2の課題とする。 [0059] Moreover, in the present application, it is a second object to provide a method for producing an authentication verifying chip having a non-copyable pattern.
[0060] また、本出願では、コピー不可能なパターンを読み取るための手段を提供すること を第 3の課題とする。 [0060] Moreover, in the present application, it is a third object to provide means for reading an uncopyable pattern.
[0061] さらに、本出願では、不適切なパターンを有する真贋認証チップが検出されたとき の、対応方法を提供することを第 4の課題とする。  [0061] Furthermore, in the present application, it is a fourth object to provide a response method when an authentication verifying chip having an inappropriate pattern is detected.
課題を解決するための手段  Means to solve the problem
[0062] 第 1の課題を解決するために、本出願においては、微量の放射線を放射する放射 性物質粒を榭脂に混入した真贋認証チップを提供する。 [0062] In order to solve the first problem, the present application provides an authentication verifying chip in which radioactive material particles emitting a small amount of radiation are mixed in a resin.
[0063] 放射性物質粒にはヘリウムの原子核である a線を放射するもの、高速の電子であ るである β線を放射するもの及び短波長の電磁波である γ線を放射するものがある 力、これらの放射線を安全に取り扱うことが可能な真贋認証チップの構造を提供する Some radioactive substance particles emit an a-line, which is a helium nucleus, some emit high-speed electrons that emit β-rays, and some emit short-wave electromagnetic waves that emit γ-rays. To provide a structure of an authentication chip that can handle these radiation safely
[0064] 放射線源に使用する天然の放射性同位体として、 α線放射性同位体として 232Τ h, 235U, 238Uが、 j8線放射性同位体として 40K, 210Pb力ある。また、人工 α線 放射性同位体として 241Am, 244Cmが、 j8線放射性同位体として 60Co, 90Sr, 1 37Csが、 γ線放射性同位体としては何れも人工の放射性同位体として 22Na, 51C r, 54Mn, 57Co, 60Co, 133Ba, 241Am力 ある。 [0064] As natural radioactive isotopes to be used for a radiation source, 232Τ h, 235U and 238U as alpha ray radioactive isotopes, and 40K and 210Pb as j8 ray radioactive isotopes. In addition, 241Am and 244Cm as artificial α-ray radioactive isotopes, 60Co, 90Sr and 137Cs as j8-ray radioactive isotopes, and 22Na, 51C r, 54Mn as γ-ray radioactive isotopes as artificial radioisotopes. 57Co, 60Co, 133Ba, 241Am power.
[0065] 第 2の課題を解決するために、本出願にぉ ヽては、放射性物質粒を混入させた真 贋認証チップが取り付けられたカードを製造する方法を提供する。  In order to solve the second problem, the present application provides a method of manufacturing a card attached with an authentication verifying chip mixed with radioactive substance particles.
[0066] 第 3の課題を解決するために、本出願においては、放射性物質粒の配置パターン を検出する装置を提供する。  [0066] In order to solve the third problem, the present application provides an apparatus for detecting the arrangement pattern of radioactive substance particles.
[0067] 放射線検出装置の 1つは、放射線をシンチレーシヨン検出器によって光に変換し、 シンチレーシヨン光を光検出装置で検出することにより間接的に検出する。  [0067] One of the radiation detection devices converts radiation into light by a scintillation detector, and indirectly detects the scintillation light by detecting the scintillation light with a light detector.
[0068] シンチレーシヨン検出器で使用するシンチレータには、 Nal (Tl) , Csl (Tl) , Bi4Ge 3012等の結晶である無機シンチレータ、プラスチックに無機シンチレータを混入し たプラスチックシンチレータが使用される。 [0069] シンチレーシヨン光検出に使用する光検出装置には、 PN接合型 · PIN接合型'ショ ットキー障壁型 ·アバランシェ型等のフォトダイオード,バイポーラ型 ·電界効果型のフ オトトランジスタが使用可能である。 As a scintillator used in the scintillation detector, an inorganic scintillator which is a crystal such as Nal (Tl), Csl (Tl), Bi4Ge 3012 or the like, and a plastic scintillator obtained by mixing an inorganic scintillator with plastic are used. [0069] As a light detection device used for scintillation light detection, photodiodes such as PN junction type · PIN junction type Schottky barrier type · avalanche type, and bipolar type · field effect type phototransistors can be used. is there.
[0070] シンチレーシヨン検出器 (シンチレータ)としては、面状、線状及び点状のものが使 用可能であり、面状のシンチレータによるシンチレーシヨン光の検出はテレビジョン力 メラ等の撮像装置あるいは面状に光検出素子が配列された光検出装置により、線状 のシンチレータによるシンチレーシヨン光の検出は線状に光検出素子が配列された 光検出素子アレイにより、点状のシンチレータによるシンチレーシヨン光の検出は点 状の光検出素子により、シンチレーシヨン光すなわち放射性物質粒の配置状態を検 出する。  As a scintillation detector (scintillator), planar, linear or dot-like ones can be used, and detection of scintillation light by the planar scintillator is performed by an imaging device such as a television or an imaging device such as a television. The detection of scintillation light by the linear scintillator is performed by the light detection device in which the light detection elements are arrayed in a plane shape. The scintillation light by the point scintillator is formed by the light detection element array in which the light detection elements are arrayed linearly. In the detection of light, the scintillation light, that is, the arrangement of radioactive substance particles is detected by a spot-like light detection element.
[0071] 放射線検出装置の他の 1つは、半導体放射線検出装置により、放射線を直接に検 出する。半導体放射線検出素子としては、 PN接合型 · PIN接合型'ショットキー障壁 型 ·アバランシェ型等のフォトダイオード,バイポーラ型 ·電界効果型のフォトトランジス タが使用可能である。  [0071] The other one of the radiation detection devices directly detects the radiation by the semiconductor radiation detection device. As the semiconductor radiation detection element, photodiodes such as PN junction type, PIN junction type 'Schottky barrier type, avalanche type, etc., and bipolar type / field effect type phototransistors can be used.
[0072] 半導体放射線検出装置は小型の半導体放射線検出素子を面状配置,線状配置 あるいは単体で構成され、面状に配置された半導体放射線検出素子,線状に配置さ れた半導体放射線検出素子あるいは半導体放射線検出素子単体により放射線の放 射状況すなわち放射性物質粒の配置状態を検出する。  The semiconductor radiation detection apparatus is formed of a planar arrangement, a linear arrangement, or a single unit of small-sized semiconductor radiation detection elements, and the semiconductor radiation detection elements arranged in a plane, and the semiconductor radiation detection elements arranged in a linear arrangement. Alternatively, the radiation state of the radiation, that is, the arrangement of radioactive substance particles is detected by the semiconductor radiation detection element alone.
[0073] 第 4の課題を解決するために、本出願においては、不適切な識別パターンを有する カード識別情報媒体が検出されたときに、そのカードを排出して使用を拒否する対応 方法あるいはそのカードを読み取り装置内に取り込んで使用不能とする対応方法を 提供する。 [0073] In order to solve the fourth problem, in the present application, when a card identification information medium having an inappropriate identification pattern is detected, the corresponding method for ejecting the card and refusing the use or the same Provide a method to take the card into the reader and make it unusable.
発明の効果  Effect of the invention
[0074] 放射性物質粒は目視によって識別することはできず、放射線の検出には何らかの 放射線検出手段が必要であり、さらに、放射性物質自体の入手が困難であり、したが つてコピーすることも、偽造することも、きわめて困難である。  [0074] The radioactive substance particles can not be identified visually, the radiation detection requires some means of radiation detection, and furthermore, it is difficult to obtain the radioactive substance itself, so copying can be performed. It is also extremely difficult to forge.
[0075] 不正使用がなされようとした場合に使用を拒否して、被害を未然に防止することが でき、あるいは不正カード使用をある程度容認し、最終的には不正カードを確保する ことにより、不正使用者を特定することが容易になる。不正カード使用の未然防止あ るいは不正カード使用者の特定が容易であることにより、不正使用が抑止される。 図面の簡単な説明 [0075] If unauthorized use is attempted, use can be denied to prevent damage or allow unauthorized card use to some extent and finally secure the unauthorized card. This makes it easier to identify unauthorized users. Prevention of fraudulent card use or easy identification of fraudulent card users deters fraudulent use. Brief description of the drawings
[図 1]現行のキャッシュカード処理フロー図。  [Figure 1] Current cash card processing flow diagram.
[図 2]従来のキャッシュカードの説明図。  [FIG. 2] An explanatory view of a conventional cash card.
[図 3]人工物メトリタスを使用する従来のカードの例。  [Fig. 3] An example of a conventional card using artifact metric.
[図 4]人工物メトリタスを使用する従来のカードの他の例。  [Fig. 4] Another example of a conventional card using artifact metric.
圆 5]本発明の真贋認証チップを取り付けたカードの実施例 1。 圆 5) Example 1 of the card attached with the authentication verifying chip of the present invention.
圆 6]本発明の真贋認証チップを取り付けたカードの実施例 2。 圆 6) Example 2 of the card attached with the authentication verifying chip of the present invention.
圆 7]本発明の真贋認証チップを取り付けたカードの実施例 3。 圆 7] Example 3 of the card attached with the authentication verifying chip of the present invention.
圆 8]本発明の真贋認証チップを取り付けたカードの実施例 4。 圆 8) Example 4 of the card attached with the authentication verifying chip of the present invention.
圆 9]真贋認証チップ取り付け位置の例。 圆 9) Example of authentication chip mounting position.
圆 10]本発明の真贋認証チップ取り付け位置の例。 [10] An example of the authentication verifying chip mounting position of the present invention.
[図 11]乱数に基づ ヽて作成した真贋認証チップの例。  [Figure 11] An example of an authentication chip that is created based on random numbers.
[図 12]真贋認証チップに使用する乱数の例。  [Fig. 12] Example of random numbers used for authentication chip.
[図 13]真贋認証チップに使用する乱数の配列例。  [Fig. 13] An example of the arrangement of random numbers used for the authentication chip.
[図 14]真贋認証チップに使用する乱数を 2進数とした例。  [Fig. 14] An example in which the random number used for the authentication chip is binary.
[図 15]真贋認証チップに使用する乱数を 2進数として配列した例。  [Fig. 15] An example of arranging random numbers to be used for an authentication chip as binary numbers.
[図 16]乱数に基づ ヽて作成した真贋認証チップから、別の真贋認証チップを得る例  [Fig. 16] Example of obtaining another authenticity verification chip from the authenticity verification chip created based on random numbers
[図 17]撮像装置による読取装置。 [FIG. 17] A reader by an imaging device.
[図 18]シンチレ一タと光検出素子マトリクスによる読取装置。  [Fig. 18] A reader using a scintillator and a light detection element matrix.
[図 19]放射線検出素子マトリクスによる読取装置。  [Fig. 19] Reader using a radiation detection element matrix.
[図 20]シンチレ一タと光検出素子アレイによる読取装置。  [Fig. 20] A reader using a scintillator and a photo detector array.
圆 21]放射線検出素子アレイによる読取装置。 [21] A reader using a radiation detection element array.
圆 22]読取素子アレイの構成例。 圆 22] Configuration example of reading element array.
[図 23]放物面鏡とポリゴンミラーによる読取装置。  [Figure 23] Reader with parabolic mirror and polygon mirror.
[図 24]シンチレ一タと光検出素子による読取装置。 圆 25]放射線検出素子による読取装置。 [Fig. 24] A reader using a scintillator and a light detection element. 圆 25] Reader with radiation detection element.
[図 26]複数読取素子による読み取り経路。  [Figure 26] Reading path by multiple reading elements.
圆 27]シンチレ一タと光検出素子を複数用いる読取装置。 [27] A reader using a plurality of scintillators and light detection elements.
[図 28]放射線検出素子を複数用いる読取装置。  [Figure 28] A reader that uses multiple radiation detection elements.
[図 29]読み取り経路例。  [Fig. 29] Reading path example.
[図 30]乱数に基づく真贋認証チップの読取経路。  [Fig. 30] The reading path of the authentication chip based on random numbers.
[図 31]乱数に基づく真贋認証チップの特徴点抽出による読み取り。  [Fig. 31] Reading by feature point extraction of an authentication verifying chip based on random numbers.
[図 32]乱数に基づく真贋認証チップのアナログ読み取り。  [Figure 32] Analog reading of authentication chip based on random number.
[図 33]位置合わせ用マークの説明。  [Fig. 33] Description of alignment marks.
[図 34]図 5の真贋認証カードの製造方法。  [FIG. 34] A method of producing the authentication card of FIG.
圆 35]図 6の真贋認証カードの製造方法。 圆 35] A method of manufacturing the authentication card of FIG.
圆 36]図 7の真贋認証カードの製造方法。 圆 36] A method of manufacturing the authentication card of FIG.
圆 37]図 8の真贋認証カードの製造方法。 圆 37] A method of manufacturing the authentication card of FIG.
[図 38]本発明のキャッシュカード処理フロー図。  FIG. 38 is a flowchart of cash card processing of the present invention.
[図 39]本発明の他のキャッシュカード処理フロー図。  [FIG. 39] Another cash card processing flow diagram of the present invention.
[図 40]本発明のさらに他のキャッシュカード処理フロー図。  FIG. 40 is a flowchart of still another cash card processing of the present invention.
符号の説明 Explanation of sign
1, 20, 41, 26, 30 カード  1, 20, 41, 26, 30 cards
2 磁気ストライプ  2 Magnetic stripe
3 矢印  3 arrow
4, 8, 23, 32, 42, 46 真贋認証チップ  4, 8, 23, 32, 42, 46 Makoto authentication chip
5 金属粒  5 Metal particles
6, 24, 27, 33, 45 表面板  6, 24, 27, 33, 45 face plate
7, 21, 44 基板  7, 21, 44 substrates
9 網目部材  9 Mesh member
10 短小繊維  10 short fiber
43 放射性物質粒子  43 radioactive substance particles
47 ICチップ 48 位置合わせ用マーク 47 IC chip 48 Alignment mark
49 移動方向読み取り開始線  49 Movement direction reading start line
50 移動方向読み取り終了線  50 Movement direction reading end line
51, 52 端部指示線  51, 52 end indication line
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0078] 以下、本件出願に係る発明を実施するための最良の形態を説明する。 Hereinafter, the best mode for carrying out the invention according to the present application will be described.
初めに、カードの実施例を説明する。  First, an embodiment of the card will be described.
[カード実施例 1]  [Card Embodiment 1]
図 5に、カードの実施例 1を示す。この図において、(a)はカードを上力 見た図、( b)はその断面図、(c)は断面図の拡大図である。これらの図において、 41は磁気スト ライプ 2を有するカード本体であり、基板 44の上に真贋認証チップ 42と表面板 45が 積層されている。なお、真贋認証チップ 42と表面板 45の上にさらに他の表面板を積 層することも可能である。  FIG. 5 shows a first embodiment of the card. In this figure, (a) is a view of the card when viewed from above, (b) is a cross-sectional view thereof, and (c) is an enlarged view of the cross-sectional view. In these figures, reference numeral 41 denotes a card body having a magnetic stripe 2, and an authentication verifying chip 42 and a face plate 45 are stacked on a substrate 44. It is also possible to stack another surface plate on the authentication verifying chip 42 and the surface plate 45.
[0079] カード基板 44は従来から多用されている、キャッシュカード等に使用される合成榭 脂厚板あるいはプリペイドカード等で使用される合成樹脂薄板である。表面板 45は、 合成樹脂から構成され、中央部に真贋認証チップ 42が挿入される開口が形成され ている。表面板 45の材料は放射線透過性材料でも、放射線遮蔽材料のどちらも使 用可能である。なお、合成樹脂から構成された真贋認証チップ 42と表面板 45の上に さらに積層された表面板には放射線透過材料が用 、られる。  The card substrate 44 is a synthetic resin thin plate used for cash cards and the like, which is conventionally used frequently, and a synthetic resin thin plate used for a prepaid card and the like. The face plate 45 is made of a synthetic resin, and an opening is formed in the central portion for inserting the authentication verifying chip 42. The material of the face plate 45 may be either a radiolucent material or a radiation shielding material. A radiation transmitting material is used for the surface plate laminated on the authentication verifying chip 42 and the surface plate 45 made of synthetic resin.
[0080] 真贋認証チップ 42は、表面板 45の開口に嵌合する面積及び厚さを有しており、放 射性物質粒 43が混入されている。放射性物質粒には、天然の放射性物質粒として、 232Th, 235U, 238U等の α線放射物質、 40K, 210Pb等の j8線放射物質力あり 、人工の放射性物質粒として、 241Am, 244Cm等の α線放射物質力 60Co, 90 Sr, 137Cs等の j8線放射物質力 22Na, 51Cr, 54Mn, 57Co, 60Co, 133Ba, 241 Am等の γ線放射物質が利用可能である。  The authentication verifying chip 42 has an area and a thickness to fit in the opening of the face plate 45, and the radioactive substance particles 43 are mixed therein. The radioactive substance particles include natural radioactive substance particles such as α-ray emitting substances such as 232Th, 235U and 238U, and j8 ray emitting substances such as 40K and 210Pb, and artificial radioactive substance particles such as 241Am and 244Cm etc. Line-emitting substance force 60Co, 90Sr, 137Cs, etc. j8-line emitting substance power 22Na, 51Cr, 54Mn, 57Co, 60Co, 133Ba, 241 Am, etc. γ-ray emitting substances can be used.
[0081] 放射線被曝の問題を考慮すると、到達距離が長ぐ遮蔽が困難なことから、 γ線放 射物質は避けることが望ましい。また、放射性物質の同位体である非放射性物質の 粒も混入しておくと、放射性物質粒の混入状態は放射線検出手段によらない限り、 確認不可能である。なお、放射性物質粒が混入される合成樹脂は放射線によって変 化しな 、材料であることが望ま 、。 [0081] Given the radiation exposure problem, it is desirable to avoid the use of γ-ray radiation because shielding with long reach is difficult. In addition, if particles of non-radioactive substances, which are isotopes of radioactive substances, are also mixed, the mixing state of radioactive substance particles is not limited by radiation detection means, It can not be confirmed. In addition, the synthetic resin in which radioactive substance particles are mixed is preferably a material that does not change by radiation.
[0082] [カード実施例 2] [Card Embodiment 2]
図 6に、カードの実施例 2を示す。  FIG. 6 shows a second embodiment of the card.
この図において、(a)はカードを上から見た図、(b)はその断面図、(c)は断面図の 拡大図である。これらの図において、 20は磁気ストライプ 2を有するカード本体であり 、基板 21の上に真贋認証チップ 23が積層され、真贋認証チップ 23の上にさらに表 面板 24が積層されている。  In this figure, (a) is a top view of the card, (b) is a cross-sectional view thereof, and (c) is an enlarged view of the cross-sectional view. In these figures, reference numeral 20 denotes a card body having a magnetic stripe 2. An authentication verifying chip 23 is stacked on a substrate 21, and a surface plate 24 is further stacked on the authentication verifying chip 23.
[0083] 基板 21は従来から多用されている、キャッシュカード等に使用される厚板の合成榭 脂厚板あるいはプリペイドカード等で使用される薄板の合成樹脂薄板である。表面板 24は、放射線に対する透過性が高い合成樹脂であり、さらには可視光線に対して不 透明であることが望ましい。可視光線に対して不透明とすることにより、目視によって 放射性物質粒の混入状態を知ることができな 、。  The substrate 21 is a synthetic resin thin plate of a thick plate used conventionally for a cash card or the like, or a thin plate synthetic resin thin plate used for a prepaid card or the like, which has been widely used conventionally. The surface plate 24 is preferably a synthetic resin highly transparent to radiation, and further preferably opaque to visible light. By making it opaque to visible light, it is not possible to know the contamination state of radioactive substance particles by visual observation.
[0084] 真贋認証チップ 23は、合成樹脂からなり、放射性物質粒 22が合成樹脂に混入さ れて構成される。  The authentication verifying chip 23 is made of a synthetic resin, and radioactive particles 22 are mixed in the synthetic resin.
[0085] [カード実施例 3]  [Card Embodiment 3]
図 7に、カードの実施例 3を示す。  FIG. 7 shows a third embodiment of the card.
この図において、(a)はカードを上から見た図、(b)はその断面図、(c)は断面図の 拡大図である。これらの図において、 26は磁気ストライプ 2を有するカード本体であり 、基板 21の上に真贋認証チップ 23が積層され、真贋認証チップ 23の上にさらに表 面板 27が積層されている。  In this figure, (a) is a top view of the card, (b) is a cross-sectional view thereof, and (c) is an enlarged view of the cross-sectional view. In these figures, the reference numeral 26 denotes a card body having a magnetic stripe 2, an authentication verifying chip 23 is stacked on a substrate 21, and a surface plate 27 is further stacked on the authentication verifying chip 23.
[0086] 基板 21及び真贋認証チップ 23は図 5に示されたカードと異なる事項はな 、ので、 煩雑にならないように説明は省略する。合成樹脂である表面板 27は、その中央部に 開口 28が形成され、その開口 28に蓋板 29が嵌着されている。表面板 27は、放射線 に対する透過性の無い材料、すなわち放射線遮蔽性材料で構成され、さら〖こは可視 光線に対して不透明であることが望ましい。蓋板 29は、放射線に対する透過性が高 い材料であり、さらには可視光線に対して不透明であることが望ましい。このような構 造の開口と蓋板を使用することにより、放射線被曝の問題が軽減される。 [0087] [カード実施例 4] Since the substrate 21 and the authentication verifying chip 23 are different from the card shown in FIG. 5, the description will be omitted so as not to be complicated. An opening 28 is formed at the center of the surface plate 27 made of synthetic resin, and a lid plate 29 is fitted in the opening 28. The face plate 27 is preferably made of a material which is not transparent to radiation, that is, a radiation shielding material, and it is desirable that the screen be opaque to visible light. The lid plate 29 is a material highly transparent to radiation, and preferably opaque to visible light. The use of such openings and lids reduces the problem of radiation exposure. [Card Embodiment 4]
図 8に、カードの実施例 4を示す。  FIG. 8 shows a fourth embodiment of the card.
この図において、(a)はカードを上から見た図、(b)はその断面図、(c)は断面図の 拡大図である。これらの図において、 30は磁気ストライプ 2を有するカード本体であり 、基板 21の上に真贋認証チップ 32が積層され、真贋認証チップ 32の上にさらに表 面板 33が積層されている。  In this figure, (a) is a top view of the card, (b) is a cross-sectional view thereof, and (c) is an enlarged view of the cross-sectional view. In these figures, the reference numeral 30 denotes a card body having the magnetic stripe 2. The authentication verifying chip 32 is stacked on the substrate 21 and the surface plate 33 is further stacked on the authentication verifying chip 32.
[0088] 基板 21は従来から多用されている、キャッシュカード等に使用される合成樹脂厚板 あるいはプリペイドカード等で使用される合成樹脂薄板である。表面板 33は、図 7に 示されたカードの表面板 27と同様に、その中央部に開口 34が形成されている。表面 板 33の材料は放射線透過性材料でも、放射線遮蔽材料のどちらも使用可能である The substrate 21 is a synthetic resin thick plate used for a cash card or the like, or a synthetic resin thin plate used for a prepaid card or the like, which has been widely used conventionally. The face plate 33 has an opening 34 formed at its central portion, similar to the face plate 27 of the card shown in FIG. The material of the surface plate 33 may be either a radiolucent material or a radiation shielding material.
[0089] 真贋認証チップ 32には、表面板 33の開口 34に嵌合する厚さに形成された凸部 31 が設けてあり、放射性物質粒 22が凸部 31にのみ混入されている。真贋認証チップ 3 2で使用される材料にっ 、ては、これまでに説明したカードと異なる事項はな 、ので 、煩雑にならないよう、説明は省略する。 The authentication verifying chip 32 is provided with a convex portion 31 formed to have a thickness fitted to the opening 34 of the face plate 33, and radioactive substance particles 22 are mixed only in the convex portion 31. The materials used in the authentication verifying chip 32 are not different from the cards described so far, so the explanation will be omitted so as not to be complicated.
[0090] また、放射性物質粒 22を凸部 31のみに混入するのではなぐ真贋認証チップ 32 の全体に均一に混入することも可能である。その場合の表面板 33は、放射線遮蔽材 料であることが放射線被曝を軽減するために望まし!/ヽ。  It is also possible to uniformly mix the radioactive substance particles 22 into the whole of the authentication chip 32 instead of mixing only with the convex portions 31. In that case, it is desirable that the surface plate 33 be a radiation shielding material to reduce radiation exposure! / 被.
[0091] [カード実施例 5]  [Card Embodiment 5]
図 5〜図 8に示した真贋認証チップはいずれも放射性物質粒が合成樹脂に混入さ れて構成された人工物メトリタスである。人工物メトリタスは複写することは不可能であ る反面、製造する際にパターンを制御することも不可能である。  The authentication chip shown in Figs. 5 to 8 is an artifact metritus composed of radioactive substance particles mixed in a synthetic resin. Artifacts can not be copied, but they can not be controlled during production.
[0092] 次に、カードの実施例 5として、製造する際にパターンを制御することが可能であり ながら、複写が困難である真贋認証チップについて図 11〜図 16により説明する。  Next, as a fifth embodiment of the card, an authentication verifying chip in which copying is difficult while being able to control a pattern at the time of manufacturing will be described with reference to FIG. 11 to FIG.
[0093] 図 11に示すのは、真贋認証チップのパターン例である。この真贋認証チップは、 1 024個の 2値データが 32 X 32のマトリクスに配置されており、いいかえればこの真贋 認証チップは 1024ビットの真贋認証鍵を有している。この図において、「*」の部分 は 2値データ「1」であり、空白の部分は 2値データ「0」である。また、 2値データ「1」の 部分には放射性物質が配置され、「0」の部分には放射性物質が配置されて 、な!/、。 なお、「0」の部分に放射性物質の同位体等の非放射性物質を配置してもよい。 FIG. 11 shows a pattern example of an authentication verifying chip. In this authentication chip, 1,024 binary data are arranged in a 32 × 32 matrix. In other words, this authentication chip has a 1024-bit authentication key. In this figure, the "*" part is binary data "1", and the blank part is binary data "0". In addition, binary data “1” The radioactive substance is disposed in the part, and the radioactive substance is disposed in the part of “0”. /. In addition, you may arrange | position nonradioactive substances, such as an isotope of a radioactive substance, in the part of "0".
[0094] この 2値データを得る方法について説明する。図 12に示すのは、放射性物質の核 崩壊によって放射される放射線を検出することによって得られる、 16進数 256桁の真 性乱数の実例であり、暗号鍵等に使用される乱数は、通常はこのような 16進数として 供給される。 A method of obtaining this binary data will be described. Figure 12 shows an example of a true 256-digit hexadecimal real number obtained by detecting radiation emitted by nuclear decay of radioactive material, and the random numbers used for encryption keys etc. are usually It is supplied as such a hexadecimal number.
[0095] 図 13に、図 12に示した 16進乱数を 8列 32行のマトリクスに配列したものを示す。こ の 16進数は、 4桁の 2進数に置き換えて表現することができる。すなわち、 16進数の 「0」は 2進数の「0000」で、同様に「1」は「0001」で、「2」は「0010」で、「3」は「001 1」で、「4」は「0100」で、「5」は「0101」で、「6」は「0110」で、「7」は「0111」で、「8 」は「1000」で、「9」は「1001」で、「A」は「1010」で、「B」は「1011」で、「C」は「110 0」で、「D」は「1101」で、「E」は「1110」で、「F」は「1111」で、各々表現される。  FIG. 13 shows an arrangement of the hexadecimal random numbers shown in FIG. 12 in a matrix of 8 columns and 32 rows. This hexadecimal number can be expressed by replacing it with a 4-digit binary number. That is, hexadecimal "0" is binary "0000", "1" is "0001", "2" is "0010", "3" is "001 1", "4". Is “0100”, “5” is “0101”, “6” is “0110”, “7” is “0111”, “8” is “1000”, “9” is “1001” , “A” is “1010”, “B” is “1011”, “C” is “1100”, “D” is “1101”, “E” is “1110”, “F” Are respectively represented by "1111".
[0096] このことに基づき、図 12に示した 256桁の 16進乱数を 2進乱数に置き換えたものは 、図 14に示すようになる。 1桁の 16進数は 4桁の 2進数に置き換えられるから、 256桁 の 16進数は 256桁 X 4桁 = 1024桁の 2進数となる。これらの 2進数は乱数発生装置 では直接に得られるものであるから、その場合にはこの置き換え操作は不要である。  Based on this, what is obtained by replacing the 256-digit hexadecimal random number shown in FIG. 12 with a binary random number is as shown in FIG. A single-digit hexadecimal number is replaced by a 4-digit binary number, so a 256-digit hexadecimal number is 256 digits x 4 digits = 1024 digits binary number. Since these binary numbers are obtained directly by the random number generator, this replacement operation is not necessary in that case.
[0097] これを図 13に示した 8列 32行のマトリクスに配列し、さらに 2進数の桁単位に 32列 3 2行のマトリクスに配列したものを図 15に示す。  This is arranged in a matrix of 8 columns and 32 rows shown in FIG. 13, and further arranged in a matrix of 32 columns and 32 rows for each binary digit unit is shown in FIG.
[0098] 最後に、図 15のマトリクス中の 2進数の 0に相当する箇所をデータを書き込むことな くそのままとし、 1に相当する「 *」が表示されて!、る箇所にインクジェット印刷等適宜 な手段で放射性物質を配置することにより、図 12に示した真贋認証チップが得られ る。このように形成された真贋認証チップは 32列 X 32行 X 1ビット = 1024ビットの真 贋認証データ、すなわち 1024ビットの真贋認証鍵を有して 、る。  Finally, the portion corresponding to binary 0 in the matrix in FIG. 15 is left as it is without writing data, and “*” corresponding to 1 is displayed! By placing the radioactive substance by any means, the authentication chip shown in Figure 12 can be obtained. The authentication chip thus formed has 32 columns × 32 rows × 1 bit = 1024 bits of authentication data, ie, a 1024-bit authentication authentication key.
[0099] 図 16により、 1つの乱数列力 複数の真贋認証チップを得る方法を説明する。この 図において、 (a) , (b) , (c) , (d)は各々図 11に示した 32 X 32のマトリクスパターン に基づいて 16 X 16マトリクスパターンを得たものであり、各々(a)は座標(0, 0)を原 点とし、(a)は座標(0, 0)を原点とし、(b)は座標(1, 0)を原点とし、(c)は座標(0, 1 )を原点とし、(d)は座標(1, 1)を起点としている。 このように、図 12に示した乱数列から得られた 1つのマトリクスパターン力も複数の マトリクスパターンを得ることができる。 FIG. 16 illustrates a method of obtaining one random number sequence power and a plurality of authentication verifying chips. In this figure, (a), (b), (c) and (d) are respectively obtained by obtaining a 16 × 16 matrix pattern based on the 32 × 32 matrix pattern shown in FIG. ) Uses coordinates (0, 0) as the origin, (a) as coordinates (0, 0) as the origin, (b) as coordinates (1, 0) as the origin, and (c) as coordinates (0, 1) ) Is the origin, and (d) is the origin of coordinates (1, 1). Thus, one matrix pattern force obtained from the random number sequence shown in FIG. 12 can also obtain a plurality of matrix patterns.
[0100] 1つの乱数列力 複数のマトリクスパターンを得るにはこの他に、図 12に示した乱 数列の使用開始位置を変化させる、あるいは図 13に示したマトリクスパターンの作成 開始位置を変化させる等種々の方法が利用可能である。 One random number sequence force In order to obtain a plurality of matrix patterns, in addition, the use start position of the random number sequence shown in FIG. 12 is changed, or the creation of the matrix pattern shown in FIG. 13 is changed. Various methods are available.
[0101] このようにすることにより、カード発行者が 1つの乱数列をマスター乱数列として秘密 に保管し、そのマスター乱数列に基づいて複数のマトリクスパターンを得ることが可能 になる。また、複数のマトリクスパターンは原点情報によって自動的に管理することが できる。 By doing this, it becomes possible for the card issuer to keep one random number sequence in secret as a master random number sequence, and to obtain a plurality of matrix patterns based on the master random number sequence. Also, multiple matrix patterns can be automatically managed by origin information.
[0102] [真贋認証チップ取付位置例 1]  [Authentication authentication chip mounting position example 1]
図 9に、真贋認証チップ取付位置の実施例 1を示す。真贋認証チップ 46の取り付 け位置は図 5他に示したカード本体のほぼ中央以外の位置の他に、図 9 (a)に示す 中段先頭位置、(b)に示す中段中央位置の他に、(c)に示す中段後部位置、(d)に 示す下段先頭位置、(e)に示す下段中央位置、(f)に示す下段後部位置が可能であ る。上段位置も可能であるが、磁気ストライプ力もの情報読み取りに影響する可能性 がある場合には、上段位置に配置することは避けることが望まし 、。  FIG. 9 shows Example 1 of the authentication verifying chip mounting position. In addition to the positions other than the approximate center of the card main body shown in FIG. 5 and others, the mounting position of the authentication verifying chip 46 is the middle top position shown in FIG. 9A and the middle position shown in FIG. The middle stage rear position shown in (c), the lower head position shown in (d), the lower center position shown in (e), and the lower rear position shown in (f) are possible. Although the upper position is also possible, it is desirable to avoid placing it at the upper position if there is a possibility that the magnetic stripe force may also affect the information reading.
[0103] [真贋認証チップ取付位置例 2]  [Authentication authentication chip mounting position example 2]
カードのセキュリティ強化、ある 1、は利便性の強化の観点力も情報記憶媒体に ICチ ップを用いることが進められている。この ICチップは内部に半導体メモリを有しており 、この半導体メモリは放射線特に電子線である 線に照射されるとメモリが書き換えら れてしまうことがある。  The use of IC chips as information storage media has also been promoted in order to strengthen card security, and in some ways, to enhance convenience. The IC chip has a semiconductor memory inside, and the semiconductor memory may be rewritten when it is irradiated with radiation, particularly a line which is an electron beam.
[0104] 放射線の中 α線は 1枚の紙でも遮蔽することができるため、半導体メモリに対する 影響は殆ど考慮する必要はない。しかし、 |8線の遮蔽には lmm厚のアルミニウム板 あるいは 10mm厚のアクリル板が必要とされる。そこで、 j8線を放射する放射性物質 粒を使用する場合には、図 10 (a) , (c) , (d)および (f)に示すように、真贋認証チッ プ 46と ICチップ 47とを 10mm以上の間隔を開けて配置することにより β線による影響 を回避することができる。  Among the radiation, since the alpha ray can be shielded even with a single sheet of paper, the influence on the semiconductor memory needs to be hardly considered. However, for shielding of the | 8 wire, an aluminum plate of 1 mm thickness or an acrylic plate of 10 mm thickness is required. Therefore, when radioactive particles emitting the j8 line are used, as shown in FIGS. 10 (a), (c), (d) and (f), the authentication chip 46 and the IC chip 47 are used. By placing at a distance of 10 mm or more, the influence of beta rays can be avoided.
[0105] [真贋認証チップ読取装置] 真贋認証チップ読取装置の実施例を説明する。 [Authentication authentication chip reader] An embodiment of an authentication verifying chip reader will be described.
放射性物質粒が配置された真贋認証チップの読み取りを行うには、放射線検出に より放射性物質粒の配置パターンを検出する。放射線の検出には、放射線をシンチ レータによって光に変換し、シンチレーシヨン光を光検出装置で検出することにより間 接的に検出する方法と、放射線を半導体放射線検出装置により直接的に検出する 方法がある。  In order to read an authentication chip on which radioactive substance particles are placed, the arrangement pattern of radioactive substance particles is detected by radiation detection. For detection of radiation, a method of indirectly detecting radiation by converting radiation into light by a scintillator and detecting scintillation light by a light detection device, and a method of directly detecting radiation by a semiconductor radiation detection device There is.
[0106] シンチレータには、放射線によって可視光を発するシンチレータである Nal (Tl) , C sl (Tl) , Bi4Ge3012等の材料をそのまま使用する力、あるいはシンチレータを合成 榭脂中に分散させたプラスチック 'シンチレータによって行うのが一般的である。この 他に液体中にシンチレータを分散させた液体シンチレータもある力 使い勝手はブラ スチック ·シンチレータが優れて!/、る。  [0106] For the scintillator, a material that is a scintillator that emits visible light by radiation such as Nal (Tl), Csl (Tl), Bi4Ge3012, or the like, or a plastic in which the scintillator is dispersed in a synthetic resin It is common to use a scintillator. Besides this, there is also a liquid scintillator in which the scintillator is dispersed in the liquid.
[0107] また、シンチレータが放射線に照射された時に発するシンチレーシヨン光を検出す る光検出装置には、 PN接合型 · PIN接合型 ·ショットキー障壁型 ·アバランシェ型等 のフォトダイオード,バイポーラ型 ·電界効果型のフォトトランジスタが使用可能である  [0107] In addition, as a light detection device that detects scintillation light emitted when the scintillator is irradiated with radiation, PN junction type, PIN junction type, Schottky barrier type, avalanche type photo diode, bipolar type, etc. Field effect phototransistors can be used
[0108] 放射線を直接に検出する放射線検出手段には、半導体放射線検出素子が使用可 能である。放射線を検出する半導体素子には、 PN接合型フォトダイオード, PIN接 合型フォトダイオード,ショットキー障壁型フォトダイオード,アバランシェ型等のフォト ダイオード及びバイポーラ型フォトトランジスタ,電界効果型フォトトランジスタがある。 A semiconductor radiation detection element can be used as a radiation detection means for directly detecting radiation. Semiconductor elements that detect radiation include PN junction type photodiodes, PIN junction type photodiodes, Schottky barrier type photodiodes, photodiodes such as avalanche type and other bipolar type phototransistors, and field effect type phototransistors.
[0109] 放射線を直接に検出する半導体放射線検出装置は、小型の半導体放射線検出素 子を面状に配置して,あるいは線状に配置して、あるいは単体で構成され、このよう に構成された半導体放射線検出装置により、放射線の放射状況すなわち放射性物 質粒の配置状態を検出する。  The semiconductor radiation detection apparatus for detecting radiation directly comprises small semiconductor radiation detection elements arranged in a plane, arranged in a line, or a single unit, and configured in this manner. A semiconductor radiation detection device detects the radiation emission condition, that is, the arrangement of radioactive material particles.
[0110] 読み取り方法には、真贋認証チップをそのまま面として読み取る方法、面を線の集 まりとして読み取る方法及び、面を点の集まりとして読み取る方法がある。  The reading method includes a method of reading an authentication verifying chip as a surface as it is, a method of reading a surface as a collection of lines, and a method of reading a surface as a collection of points.
[0111] 図 17〜図 19に、真贋認証チップを面として読み取る読取装置を示す。  FIG. 17 to FIG. 19 show a reader that reads an authentication verifying chip as a surface.
[読取装置実施例 1]  [Reading apparatus embodiment 1]
図 17において、(a)はカード識別読取装置の検出部の概要構成、(b)はカードと面 状のプラスチック 'シンチレータとの対応関係を示す。 In FIG. 17, (a) shows a schematic configuration of a detection unit of the card identification reader, and (b) shows a card and a surface. The corresponding relationship with the plastic 'scintillator' is shown.
[0112] この図に示すカードは図 5に示した真贋認証チップを有するカードである力 他の 図に示された真贋認証チップを有するカードでも良 、ことは言うまでもな 、。この図に おいて、 41はカード本体、 44は基板、 45はカード上面板、 42は真贋認証チップ、 4 3は放射性物質粒である。また、 301は真贋認証チップ 42を覆い隠す大きさの面状 のプラスチック ·シンチレータ、 300は撮像装置である。  The card shown in this figure is a card having an authentication verifying chip shown in FIG. 5, and the card having an authentication verifying chip shown in the other figures may be, needless to say,. In this figure, 41 is a card body, 44 is a substrate, 45 is a card top plate, 42 is an authentication verifying chip, and 43 is a radioactive substance particle. Reference numeral 301 denotes a sheet-like plastic scintillator of a size that covers the authentication verifying chip 42, and reference numeral 300 denotes an imaging device.
[0113] カード 41が読み取り装置に取り込まれ停止すると、真贋認証チップ 42が面状ブラ スチック ·シンチレータ 301の下に位置する。このような状態になると面状のプラスチッ ク 'シンチレータ 301中のシンチレータが真贋認証チップ 42中に配置された放射性 物質粒 43から放射される放射線によりシンチレーシヨン光を放射する。  When the card 41 is taken into the reader and stopped, the authentication verifying chip 42 is positioned below the planar plastic scintillator 301. In this state, the scintillator in the planar plastic 'scintillator 301 emits scintillation light by the radiation emitted from the radioactive substance particles 43 disposed in the authentication verifying chip 42.
[0114] このシンチレーシヨン光を撮像装置 300で撮影し、撮影された映像により真贋認証 チップ 42の真贋認証情報を得る。得られる情報のパターンは放射性物質粒 43の配 置状況に依存するので、この情報パターンにより、真贋認証チップ 42の情報が読み 取られる。真贋認証チップ 42中の放射性物質粒 42の配置パターンの読み取りの精 度は、撮像装置 300の分解能に依存する。  The scintillation light is photographed by the imaging device 300, and the authenticity verification information of the authenticity verification chip 42 is obtained from the photographed image. Since the pattern of the obtained information depends on the arrangement of the radioactive substance particles 43, the information of the authentication verifying chip 42 can be read by this information pattern. The accuracy of reading the arrangement pattern of the radioactive substance particles 42 in the authentication verifying chip 42 depends on the resolution of the imaging device 300.
[0115] 検出する放射線が α線の場合には、到達距離が短いため、真贋認証チップ 42とプ ラスチック'シンチレータ 301との間隔はできるだけ狭くする必要がある力 検出する 放射線が β線の場合には、到達距離は比較的長いため、真贋認証チップ 42とブラ スチック'シンチレータ 301との間隔は狭くなくてもよい。  If the radiation to be detected is alpha radiation, the distance between the authentication verifying chip 42 and the plastic 'scintillator 301 needs to be as narrow as possible because the reach distance is short. The force to be detected is beta radiation Since the reach distance is relatively long, the distance between the authentication verifying chip 42 and the plastic 'scintillator 301 may not be narrow.
[0116] [読取装置実施例 2]  [Reading apparatus embodiment 2]
図 18に、カード読取装置の実施例 2を示す。この図において、(a)は読取装置の検 出部の概要構成、 (b)はカードと面状の放射線検出装置との対応関係をそれぞれ示 す図である。  FIG. 18 shows a second embodiment of the card reader. In this figure, (a) shows a schematic configuration of a detection unit of the reader, and (b) shows a correspondence between a card and a planar radiation detector.
[0117] この図におけるカード 41は図 17に示されたカードと同じであるので、カードについ ての説明は省略する。 301は真贋認証チップ 42を覆い隠す大きさの面状のプラスチ ック 'シンチレータ、 302は真贋認証チップ 42と同じ大きさにマトリクス状に配置され た複数の光検出素子 303を内蔵する光検出マトリクスである。光検出素子 303はフォ トダイオード、フォトトランジスタ、 CCD, CMOS等力も成る。光検出素子マトリクスで ある。 Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted. Reference numeral 301 denotes a planar plastic 'scintillator having a size that covers the authentication verifying chip 42, and 302 denotes a light detection matrix incorporating a plurality of light detection elements 303 arranged in a matrix in the same size as the authentication verifying chip 42. It is. The light detection element 303 also includes a photodiode, a phototransistor, a CCD, and a CMOS. Photodetector matrix is there.
[0118] カード 41が読取装置に取り込まれ停止すると、真贋認証チップ 42がプラスチック' シンチレータ 301の下に位置する。このような状態になると面状のプラスチック 'シン チレータ 301中のシンチレータが真贋認証チップ 42中に配置された放射性物質粒 4 3から放射される放射線によりシンチレーシヨン光を放射する。  When the card 41 is taken into the reader and stopped, the authentication verifying chip 42 is located under the plastic 'scintillator 301. In such a state, the scintillator in the sheet-like plastic 'scintillator 301 emits scintillation light by radiation emitted from radioactive substance particles 43 disposed in the authentication verifying chip 42.
[0119] このシンチレーシヨン光を光検出素子マトリクス 302を構成する光検出素子 303が 検出し、放射性物質 43の存在位置が電気信号として取り出される。得られる電気信 号のパターンは放射性物質粒 43の配置状況に依存するので、この電気信号のパタ ーンにより、真贋認証チップ 43の情報が読み取られる。真贋認証チップ 42中の放射 性物質粒 43の配置パターンの読み取りの精度は、面状に配置された光検出素子マ トリタス 303の分解能に依存する。  The scintillation light is detected by the light detection element 303 constituting the light detection element matrix 302, and the location of the radioactive substance 43 is extracted as an electric signal. Since the pattern of the obtained electric signal depends on the arrangement of the radioactive substance particles 43, the information of the authentication verifying chip 43 is read by the pattern of the electric signal. The accuracy of reading the arrangement pattern of the radioactive substance particles 43 in the authentication verifying chip 42 depends on the resolution of the light detection element matrix 303 arranged in a plane.
[0120] 検出する放射線が α線の場合には、到達距離が短いため、真贋認証チップ 42とプ ラスチック'シンチレータ 301との間隔はできるだけ狭くする必要がある力 検出する 放射線が β線の場合には、到達距離は比較的長いため、真贋認証チップ 302とブラ スチック'シンチレータ 301との間隔は狭くなくてもよい。  [0120] When the radiation to be detected is alpha radiation, the distance to reach is short, so the distance between the authentication verifying chip 42 and the plastic 'scintillator 301 needs to be as narrow as possible. The force to be detected is beta radiation Since the reach distance is relatively long, the distance between the authentication verifying chip 302 and the plastic 'scintillator 301 may not be narrow.
[0121] [読取装置実施例 3]  [Reading apparatus embodiment 3]
図 19に、放射性物質粒の配置状態を面状に直接的に検出する読取装置の実施 例 3を示す。この図において、(a)はカード識別読み取り装置の検出部の概要構成、 (b)はカードと面状の放射線検出装置との対応関係をそれぞれ示す。  FIG. 19 shows a third embodiment of the reader for directly detecting the arrangement state of radioactive substance particles in a plane. In this figure, (a) shows a schematic configuration of a detection unit of the card identification reader, and (b) shows a correspondence between the card and the planar radiation detector.
[0122] この図におけるカード 41は図 17に示されたカードと同じであるので、カードについ ての説明は省略する。 304は真贋認証チップ 42を覆 ヽ隠す大きさに半導体放射線 検出素子 305が面状に配置された放射線検出素子マトリクスである。  Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted. Reference numeral 304 denotes a radiation detection element matrix in which the semiconductor radiation detection elements 305 are arranged in a plane so as to cover the authentication verifying chip 42.
[0123] カード 41が読取装置に取り込まれ停止すると、真贋認証チップ 42が面状半導体放 射線検出素子マトリクス 304の下に位置する。このような状態になると面状に配置され た放射線検出素子マトリクス 304を構成する放射線検出素子 305が真贋認証チップ 42中に配置された放射性物質粒 43から放射される放射線を検出し、放射線の存在 位置が電気信号として取り出される。得られる電気信号のパターンは放射性物質粒 4 3の配置状況に依存するので、このパターンにより真贋認証チップ 42の情報が読み 取られる。真贋認証チップ 42中の放射性物質粒 43の配置パターンの読み取りの精 度は、面状に配置された放射線検出素子マトリクス 304の分解能に依存する。 When the card 41 is taken into the reading device and stopped, the authentication verifying chip 42 is positioned below the planar semiconductor radiation detecting element matrix 304. In such a state, the radiation detection element 305 constituting the radiation detection element matrix 304 disposed in a plane detects radiation emitted from the radioactive substance particles 43 disposed in the authentication verifying chip 42, and the presence of the radiation is detected. The position is taken out as an electrical signal. Since the pattern of the obtained electric signal depends on the arrangement of the radioactive substance particles 43, the information of the authentication verifying chip 42 is read by this pattern. To be taken. The accuracy of reading the arrangement pattern of the radioactive substance particles 43 in the authentication verifying chip 42 depends on the resolution of the radiation detection element matrix 304 arranged in a plane.
[0124] 検出する放射線が α線の場合には、到達距離が短いため、真贋認証チップ 42と面 状の放射線検出素子マトリクス 304との間隔はできるだけ狭くする必要があるが、検 出する放射線が β線の場合には、到達距離は比較的長いため、真贋認証チップ 42 と面状の放射線検出素子マトリクス 304との間隔は狭くなくてもよい。  If the radiation to be detected is alpha rays, the distance between them is short, so the distance between the authentication verifying chip 42 and the planar radiation detection element matrix 304 needs to be as narrow as possible. In the case of beta rays, the distance between them is relatively long, so the distance between the authentication verifying chip 42 and the planar radiation detection element matrix 304 may not be narrow.
[0125] 図 20〜図 23により、面を線の集合として読み取る読取装置を説明する。  FIGS. 20 to 23 illustrate a reader for reading a surface as a set of lines.
[読取装置実施例 4]  [Reading apparatus embodiment 4]
図 20に、読取カード識別装置の実施例 4を示す。この図において、(a)はカード識 別読み取り装置の検出部の概要構成、 (b)はカードと線状のプラスチック 'シンチレ ータとの対応関係をそれぞれ示す図である。  FIG. 20 shows a fourth embodiment of the reading card identification device. In this figure, (a) shows a schematic configuration of a detection unit of the card identification reader, and (b) shows a correspondence between the card and a linear plastic 'scintillator.
[0126] この図におけるカード 41は図 17に示されたカードと同じであるので、カードについ ての説明は省略する。この図において 306は真贋認証チップ 42の移動方向巾より少 し長い長さを有する線状のプラスチック 'シンチレータ、 307は真贋認証チップ 42と 同じ進行方向巾にアレイ状に配置された複数の光検出素子 303を内蔵する光検出 アレイである。光検出素子 303はフォトダイオード、フォトトランジスタ、 CCD、 CMOS 等から成る。 Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted. In this figure, 306 is a linear plastic 'scintillator having a length slightly longer than the movement direction width of the authentication verifying chip 42, and 307 is a plurality of light detections arranged in an array in the same traveling direction width as the authentication verifying chip 42. It is a light detection array incorporating the element 303. The light detection element 303 is formed of a photodiode, a phototransistor, a CCD, a CMOS or the like.
[0127] 図 17〜図 19に示された読取装置と異なり、この読取装置ではカード 41は読取装 置に取り込まれ停止した後ではなぐ読取装置に取り込まれる取り込み動作中に真 贋認証チップ 42中の放射性物質粒 43の配置状況が読み取られる。  Unlike the reader shown in FIG. 17 to FIG. 19, in this reader, the card 41 is taken into the reader, and after being stopped, the authentication chip 42 is taken in during the taking-in operation to be taken into the reader. The arrangement of radioactive material particles 43 is read.
[0128] カード 41がカード読み取り装置に取り込まれる時に移動しながら線状のプラスチッ ク ·シンチレータ 306の下を通過する。この時に線状のプラスチック ·シンチレータ 30 6が真贋認証チップ 42中に配置された放射性物質粒 43から放射される放射線により シンチレーシヨン光を放射する。  The card 41 passes under the linear plastic scintillator 306 while moving as it is taken into the card reader. At this time, the linear plastic scintillator 306 emits scintillation light by the radiation emitted from the radioactive substance particles 43 disposed in the authentication verifying chip 42.
[0129] このシンチレーシヨン光を線状に配置された光検出素子アレイ 303で検出し、真贋 認証チップの移動に伴って発生する電気信号を個々の光検出素子毎にアナログ的 に連続して、あるいは個々の光検出素子毎にデジタル的に不連続に、あるいはファタ シミリやスキャナのように光検出アレイ内で走査して一枚の画像にして、真贋認証チッ プ 42の情報を読み取る。 The scintillation light is detected by the linearly arranged light detection element array 303, and an electrical signal generated as the authentication chip moves is continuously transmitted in an analog manner for each of the light detection elements. Alternatively, each individual light detection element is digitally discontinuously scanned, or scanned in a light detection array like a facsimile or scanner into a single image, and the authentication verification chip is generated. Read the information in
[0130] 得られる情報のパターンは放射性物質粒 43の配置状況に依存するので、この情報 により真贋認証チップ 42の情報が読み取られる。真贋認証チップ 36中の放射性物 質粒 22の配置パターンの読み取りの精度は、光検出素子アレイの分解能に依存す る。 Since the pattern of the obtained information depends on the arrangement of the radioactive substance particles 43, the information of the authentication verifying chip 42 can be read by this information. The accuracy of reading the arrangement pattern of the radioactive substance particles 22 in the authentication verifying chip 36 depends on the resolution of the light detection element array.
[0131] 検出する放射線が α線の場合には、到達距離が短いため、真贋認証チップ 42と線 状のプラスチック 'シンチレータ 306との間隔はできるだけ狭くする必要がある力 検 出する放射線が β線の場合には、到達距離は比較的長いため、真贋認証チップ 42 と線状のプラスチック 'シンチレータ 306との間隔は狭くなくてもよい。  [0131] When the radiation to be detected is alpha radiation, the distance between the authentication verifying chip 42 and the linear plastic 'scintillator 306 needs to be as small as possible because the reach distance is short. In this case, since the reach distance is relatively long, the distance between the authentication verifying chip 42 and the linear plastic 'scintillator 306 may not be narrow.
[0132] [読取装置実施例 5]  [Reading apparatus embodiment 5]
図 21に、放射性物質粒の配置状態を線状に直接的に検出する読取装置の実施 例 5を示す。この図において、(a)は読取装置の検出部の概要構成、(b)はカードと 線状の放射線検出装置との対応関係をそれぞれ示す図である。  FIG. 21 shows a fifth embodiment of the reader for linearly detecting the arrangement of radioactive substance particles linearly. In this figure, (a) shows a schematic configuration of a detection unit of the reader, and (b) shows a correspondence between a card and a linear radiation detector.
[0133] この図におけるカード 41は図 17に示されたカードと同じであるので、カードについ ての説明は省略する。この図において、 308は真贋認証チップ 42の移動方向巾より 少し長 、長さを有する放射線検出素子であり、その中に複数の放射線検出素子 305 がアレイ状に配置されて 、る。  Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted. In this figure, reference numeral 308 denotes a radiation detection element having a length slightly longer than the movement direction width of the authentication verifying chip 42, in which a plurality of radiation detection elements 305 are arranged in an array.
[0134] 図 20に示した読取装置と同様に、この実施例の読取装置ではカード 41は読取装 置に取り込まれる取り込み動作中に真贋認証チップ 42中の放射性物質粒 43の配置 状況が読み取られる。カード 41が読取装置に取り込まれる時に放射線検出素子ァレ ィ 308の下を通過する。  Similar to the reader shown in FIG. 20, in the reader of this embodiment, the card 41 receives the radioactive substance particles 43 in the authentication verifying chip 42 during the loading operation to be loaded into the reader. . When the card 41 is taken into the reader, it passes under the radiation detection element analyzer 308.
[0135] この時にアレイ配置された放射線検出素子 305が真贋認証チップ 42中に配置され た放射性物質粒 43から放射される放射線を検出し、真贋認証チップ 42の移動に伴 つて発生する電気信号を個々の放射線検出素子毎にアナログ的に連続して、あるい は個々の放射線検出素子毎にデジタル的に不連続に、あるいはファクシミリゃスキヤ ナのように走査して一枚の画像にして、真贋認証チップ 42の情報を読み取る。  At this time, the radiation detection elements 305 arranged in an array detect the radiation emitted from the radioactive substance particles 43 arranged in the authentication verifying chip 42, and the electric signal generated along with the movement of the authentication verifying chip 42 is Each of the individual radiation detection elements may be continuously scanned in an analog fashion, or may be digitally discontinuous for each individual radiation detection element, or scanned like a facsimile or scanner into a single image, as shown in FIG. Read the information of authentication chip 42.
[0136] 得られる情報のパターンは放射性物質粒 43の配置状況に依存するので、この情報 により、真贋認証チップ 42の情報が読み取られる。真贋認証チップ 42中の放射性物 質粒 43の配置パターンの読み取りの精度は、放射線検出素子アレイ 308の分解能 に依存する。 Since the pattern of the obtained information depends on the arrangement of the radioactive substance particles 43, the information of the authentication verifying chip 42 can be read by this information. Radioactive material in the Makoto authentication chip 42 The accuracy of reading the arrangement pattern of the granular material 43 depends on the resolution of the radiation detection element array 308.
[0137] 検出する放射線が α線の場合には、到達距離が短いため、真贋認証チップ 42と半 導体放射線検出素子アレイ 308との間隔はできるだけ狭くする必要がある力 検出 する放射線が β線の場合には、到達距離は比較的長いため、真贋認証チップ 42と 半導体放射線検出素子アレイ 308との間隔は狭くなくてもよい。  When the radiation to be detected is alpha radiation, the distance between the authentication verifying chip 42 and the semiconductor radiation detection element array 308 needs to be as small as possible because the reach distance is short. In this case, since the reach distance is relatively long, the distance between the authentication verifying chip 42 and the semiconductor radiation detecting element array 308 may not be narrow.
[0138] 図 22に、図 20及び図 21の読取装置で用いる光検出素子の配置例を示す。光検 出素子アレイの代表的なものとして、ファクシミリに用いられて ヽるものとイメージスキ ャナに用いられているものとがある。ファクシミリ装置は移動するモノクローム原稿を、 装置に固定された光学的読み取りアレイにより、 8本 Zmm (200dpiに相当)あるいは 16本 Zmm (400dpiに相当)の密度で光学的読み取りを行う。イメージスキャナ装置 は装置上に固定されたカラー原稿を、移動する光学的読み取りアレイにより、 600dpi (24本 Zmmに相当)あるいは 4800dpi (192本 Zmmに相当)の密度で光学的読み 取りを行う。  FIG. 22 shows an arrangement example of the light detection elements used in the reader of FIG. 20 and FIG. Representative examples of the light detection element array include those used for facsimile and those used for image scanners. The facsimile apparatus optically reads a moving monochrome original at a density of 8 Z mm (corresponding to 200 dpi) or 16 Z mm (corresponding to 400 dpi) by an optical reading array fixed to the apparatus. The image scanner device optically reads a color original fixed on the device at a density of 600 dpi (corresponding to 24 Zmm) or 4800 dpi (corresponding to 192 Zmm) by a moving optical reading array.
[0139] 図 22 (a)に、光検出素子が 32である光検出素子アレイの例を示す。この光検出素 子アレイには、基台上に「DOO」から「D31」の 32個の光検出素子が 1列に設けられ ている。なお、配列として (b)に示されたように、光検出素子を千鳥配置とすることも 可能である。この光検出アレイに配置された光検出素子を選択することにより後に説 明する読み取り経路の他に任意の読み取り経路を設定することができる。  FIG. 22 (a) shows an example of a light detection element array in which 32 light detection elements are provided. In the light detection element array, 32 light detection elements “DOO” to “D31” are provided in one row on a base. As shown in (b) as the arrangement, it is possible to arrange the light detection elements in a staggered arrangement. By selecting the light detection elements arranged in this light detection array, an arbitrary reading path can be set in addition to the reading path described later.
[0140] [読取装置実施例 6]  [Reading Apparatus Embodiment 6]
図 23により、新規な構成による検出装置を説明する。  A detection device with a novel configuration will be described with reference to FIG.
回転する多角形柱状の鏡 (ポリゴンミラー)によってレーザビームを反射させて使用 する光走査手段がレーザビームプリンタ等で用いられている。この走査手段はポリゴ ンミラー回転運動のみによって光走査が可能である。  A light scanning means used by reflecting a laser beam by a rotating polygonal columnar mirror (polygon mirror) is used in a laser beam printer or the like. This scanning means can perform light scanning only by polygon mirror rotational movement.
[0141] 平行なビームを得る手段として、反射望遠鏡及びパラボラアンテナで放物面が利用 されている。図 23 (a)に放物面と平行光線との関係を示す。この図において Xとある のは X軸、 Yとあるのは X軸と直交する Y軸であり、 Oは原点である。 Pは Y=—X2と 表現される放物線である。この放物線には Χ=0, Υ=— 1Ζ4の位置に焦点 Fがあり 、 Y軸に平行な直線は放物線 Pで折り返されると、全て焦点 Fに集中する。逆に焦点 Fを基点とする直線は放物線 Pで折り返されると、 Y軸に平行になる。 [0141] As a means of obtaining parallel beams, paraboloids are used in reflection telescopes and parabola antennas. Figure 23 (a) shows the relationship between the paraboloid and parallel rays. In this figure, X is the X axis, Y is the Y axis orthogonal to the X axis, and O is the origin. P is a parabola expressed as Y = -X2. This parabola has focal point F at the position of Χ = 0, Υ =-1 Ζ 4 If a straight line parallel to the Y-axis is folded back at a parabola P, it all focuses on the focal point F. Conversely, a straight line starting from the focal point F is parallel to the Y axis when it is folded back at the parabola P.
[0142] 図 23 (b)に、この原理を応用した読み取り装置の基本的な構成を示す。 FIG. 23 (b) shows the basic configuration of a reader to which this principle is applied.
この図において、 120は放物面を有する反射鏡であり、紙面と垂直方向に長さを有 する半筒状に形成されている。また、図 23 (a)の原点に相当する位置に光を通過さ せる光通過孔 121が形成されている。さらに、半筒状放物面反射鏡 120の焦点に半 筒状放物面反射鏡 120の延長方向軸と平行する回転軸を有し、多角形反射面を有 する多角形鏡 (ポリゴンミラー) 122が配置されている。なお、 124はプラスチック 'シン チレータである。  In this figure, reference numeral 120 denotes a reflector having a paraboloid, which is formed in a semi-cylindrical shape having a length in the direction perpendicular to the paper surface. Further, a light passing hole 121 for passing light is formed at a position corresponding to the origin of FIG. 23 (a). Furthermore, a polygon mirror (polygon mirror) having a polygonal reflecting surface, having a rotation axis parallel to the extension direction axis of the semicylindrical parabolic reflector 120 at the focal point of the semicylindrical parabolic reflector 120 (polygon mirror) 122 are arranged. Reference numeral 124 is a plastic 'scintillator.
[0143] プラスチック 'シンチレータ 124から図 23 (a)の Y軸と平行に発射された実線で示す 光は半筒状放物面反射鏡 120で反射されて焦点に配置されたポリゴンミラー 122に 入射する。ポリゴンミラーに入射した光は反射されて、光通過孔 121を通過して受光 素子 123に入射する。これに対して、破線で示す Y軸と異なる方向に発射された光 は半筒状放物面反射鏡 120で反射されてもポリゴンミラーに入射することはない。  The light indicated by the solid line emitted parallel to the Y-axis in FIG. 23 (a) from the plastic 'scintillator 124 is reflected by the semi-cylindrical parabolic reflector 120 and enters the polygon mirror 122 disposed at the focal point. Do. The light incident on the polygon mirror is reflected and passes through the light passage hole 121 to be incident on the light receiving element 123. On the other hand, light emitted in a direction different from the Y axis indicated by a broken line does not enter the polygon mirror even if it is reflected by the semicylindrical parabolic reflector 120.
[0144] この説明力も理解できるように、プラスチック 'シンチレータ 124から発射された光の 中 Y軸と平行な光のみがポリゴンミラー 122に入射するから、ポリゴンミラーを回転さ せることにより受光素子に入射する光を選択して、プラスチック 'シンチレータ 124の 発光状況を知ることができる。  Among the light emitted from the plastic 'scintillator 124, only light parallel to the Y axis is incident on the polygon mirror 122 so that this explanatory power can be understood, so that the incident light is incident on the light receiving element by rotating the polygon mirror. You can select the light to know the light emission status of the plastic 'scintillator 124.
[0145] 図 23 (b)に示した読取装置では受光素子 123から見てポリゴンミラー 122の裏側に 当たる部分のプラスチック ·シンチレ一タカ 発射された光を読み取ることができな!/、 。この部分に必要な情報を書き込まない、あるいは不要な情報を書き込んで置くこと もできるが、図 23 (c)及び (d)に示す構成によれば、ポリゴンミラー 122の裏側に当た る部分が無くなり、書き込まれた全ての情報を読み取ることができる。  The reading device shown in FIG. 23 (b) can not read the light emitted from the plastic scintillating part of the portion that strikes the back side of the polygon mirror 122 when viewed from the light receiving element 123! Although necessary information may not be written to this portion or unnecessary information may be written, according to the configuration shown in FIGS. 23 (c) and 23 (d), the portion on the back side of the polygon mirror 122 It is lost and all written information can be read.
[0146] 図 24 (c)に示すのは、そのための構成の基本的なものであり、半筒状放物面反射 鏡の半分を使用する。この図において、 125は放物面を有する反射鏡であるが、図 2 4 (a)の Xが負である部分のみにより、紙面と垂直方向に長さを有する半筒状に形成 されている。この場合、図 24 (b)に形成されている光通過孔 121は、不要であるため 形成されていない。さらに、半筒状半放物面反射鏡 125の焦点に半筒状半放物面 反射鏡 125の延長方向軸と平行する回転軸を有し、多角形反射面を有する多角形 鏡 (ポリゴンミラー) 122が配置されている。なお、 126はプラスチック 'シンチレータで ある。 [0146] FIG. 24 (c) shows the basic configuration for that, which uses half of a semi-cylindrical parabolic reflector. In this figure, reference numeral 125 denotes a reflecting mirror having a paraboloid, which is formed in a semi-cylindrical shape having a length in the direction perpendicular to the paper surface only by the portion where X is negative in FIG. . In this case, the light passage hole 121 formed in FIG. 24 (b) is not formed because it is unnecessary. Furthermore, a semi-cylindrical semi-parabolic surface at the focal point of the semi-cylindrical semi-parabolic reflector 125 A polygon mirror (polygon mirror) 122 having a rotation axis parallel to the extension direction axis of the reflecting mirror 125 and having a polygon reflecting surface is disposed. Note that 126 is a plastic 'scintillator.
[0147] プラスチック 'シンチレータ 124から図 23 (a)の Y軸と平行に発射された光は半筒状 半放物面反射鏡 125で反射されて焦点に配置されたポリゴンミラー 122に入射する。 ポリゴンミラーに入射した光は反射されて受光素子 123に入射する。  The light emitted parallel to the Y-axis in FIG. 23 (a) from the plastic 'scintillator 124 is reflected by the semi-cylindrical semi-parabolic reflector 125 and is incident on the polygon mirror 122 disposed at the focal point. The light incident on the polygon mirror is reflected to be incident on the light receiving element 123.
[0148] この読取装置では受光素子 123から見てポリゴンミラー 122の裏側に当たる部分の プラスチック ·シンチレータ 126は端部のみであるから、読み取ることができな 、部分 による影響は小さい。  In this reading device, the portion of the plastic scintillator 126 that strikes the back side of the polygon mirror 122 from the light receiving element 123 is only the end, so it can not be read, and the influence of the portion is small.
[0149] さらに、図 24 (d)に示すように半筒状部分放物面反射鏡 127の中心部をより少なく してオフセット構成を採ることにより、ポリゴンミラー 122によって読みとれな 、部分は 完全になくなり、プラスチック 'シンチレータ 126の全ての部分に書き込まれた情報を 読み取ることが可能となる。  Further, as shown in FIG. 24 (d), by adopting an offset configuration by reducing the central part of the semi-cylindrical partial paraboloid reflector 127, the polygon mirror 122 can not read the part completely. It is then possible to read the information written on all parts of the plastic 'scintillator 126.
[0150] 図 24〜図 29により、面を点の集合として読み取る読取装置を説明する。  [0150] Figure 24 to Figure 29 illustrate a reader that reads a face as a collection of points.
[読取装置実施例 7]  [Reading apparatus embodiment 7]
図 24に、読取装置の実施例 7を示す。図 24に示す読取装置は、図 17〜図 19に示 された面状読取装置あるいは図 20〜図 23に示された線状読取装置と異なり、点状 読取装置によって読み取りを行う。  FIG. 24 shows a seventh embodiment of the reader. Unlike the planar reader shown in FIGS. 17 to 19 or the linear reader shown in FIGS. 20 to 23, the reader shown in FIG. 24 performs reading by a point reader.
[0151] この図において、(a)はカードとカード識別読み取り装置の関係の概要構成、(b)は カード識別方法の説明図である。この図におけるカード 41は図 17に示されたカード と同じであるので、カードについての説明は省略する。また、 310は小面積のプラス チック'シンチレータ、 303はフォトダイオード、フォトトランジスタ, CCD, CMOS等の 光検出素子、 311はプラスチック ·シンチレータ 310と光検出素子 303とを収納する 筐体である。 In this figure, (a) is a schematic configuration of a relation between a card and a card identification reader, and (b) is an explanatory view of a card identification method. Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted. Also, 310 is a small-area plastic 'scintillator, 303 is a light detection element such as a photodiode, phototransistor, CCD, CMOS or the like, and 311 is a housing for housing the plastic scintillator 310 and the light detection element 303.
[0152] 図 17〜図 23に示された読取装置が固定されているのと異なり、図 24に示された読 取装置はカード 41の取り込み方向と直交する方向に移動可能となっている。カード 4 1の取り込み方向と直交する方向への移動は 1点を回転中心とする回転運動による 擬似的直線運動、回転運動力 直線運動への変換による直線運動、あるいはリニア モータ等による直線運動等適宜なものが利用可能である。 Unlike the case where the reader shown in FIGS. 17 to 23 is fixed, the reader shown in FIG. 24 is movable in the direction orthogonal to the card 41 taking-in direction. The movement of the card 4 in the direction orthogonal to the loading direction is simulated linear motion by rotational motion with one point as a rotation center, linear motion by conversion to rotational motion force linear motion, or linear motion An appropriate one such as linear motion by a motor or the like can be used.
[0153] (b)にカード識別読み取り装置の移動経路の代表例を示すが、この例では均一な 速度で (b)に矢印で示す方向に移動し、その結果カード自身の移動方向と合成され た直線経路 312に沿って移動することになり、得られる情報は直線 312上に分布す る点、となる。  (B) shows a typical example of the moving path of the card identification reader, but in this example, it moves in the direction shown by the arrow in (b) at a uniform speed, and as a result, it is combined with the moving direction It will move along the straight line path 312, and the information obtained will be points distributed on the straight line 312.
[0154] この経路 312上にある放射性物質粒からの放射線によりプラスチック 'シンチレータ 310が発光し、その発光を光検出素子 303で検出する。得られる検出信号のパター ンは放射性物質粒の配置状況に依存するので、この電気信号を比較することにより、 個々の真贋認証チップ 42を読み取る。  The radiation from the radioactive substance particles on the path 312 causes the plastic 'scintillator 310 to emit light, which is detected by the light detection element 303. Since the pattern of the detection signal obtained depends on the arrangement of radioactive substance particles, the individual authentication verifying chips 42 are read by comparing the electric signals.
[0155] 真贋認証チップ 42中の放射性物質粒の配置パターンの読み取りの精度は、光検 出素子 303の大きさに依存する。カード識別読み取り装置は、必ずしも移動しなけれ ばならないというものではなぐカード 41の取り込み方向と直交する方向の任意の位 置に移動させて固定して使用することも可能である。プラスチック 'シンチレータとして 図 20に示された線状のプラスチック 'シンチレータ 306を用い、図 24に示された光検 出素子 303と組み合わせることも可能である。  The accuracy of reading the arrangement pattern of radioactive substance particles in the authentication verifying chip 42 depends on the size of the light detecting element 303. The card identification reader can be moved to any position in the direction orthogonal to the taking-in direction of the card 41 and fixed for use without necessarily moving. It is also possible to use the linear plastic 'scintillator 306 shown in FIG. 20 as the plastic' scintillator and to combine it with the light detecting element 303 shown in FIG.
[0156] [読取装置実施例 8]  [Reading apparatus embodiment 8]
図 25に、読取装置の実施例 8を示す。この図において、(a)はカードとカード識別 読み取り装置の関係の概要構成、(b)はカード識別方法の説明図である。この図に おけるカード 41は図 17に示されたカードと同じであるので、カードについての説明は 省略する。この図において、 313は筐体であり、その中に放射線検出素子 305が配 置されている。その他の説明は図 24と同じなので省略する。  FIG. 25 shows Embodiment 8 of the reader. In this figure, (a) is a schematic configuration of a relation between a card and a card identification reader, and (b) is an explanatory view of a card identification method. Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted. In this figure, reference numeral 313 denotes a housing, in which the radiation detection element 305 is disposed. The other descriptions are the same as in FIG.
[0157] また、この読取装置の動作は図 24に示した読取装置の動作と基本的に同じである から、さらなる説明は省略する。  Further, since the operation of this reading device is basically the same as the operation of the reading device shown in FIG. 24, further description will be omitted.
[0158] [読取装置実施例 9]  [Reading apparatus embodiment 9]
図 24及び図 25に示された読取装置は単一の検出素子を使用している。 この検出素子を複数にすることにより、複数の経路による読み取りが可能になり、読 み取りの信頼性を高めることができるが、処理すべき情報は点の集合である線状の 情報であるから、処理の負担が大きくなることはな 、。 [0159] 図 27に、読取装置の実施例 9を示す。この図において、(a)はカードとカード識別 読み取り装置の関係の概要構成、(b)はカード識別方法の説明図、(c)及び (d)は力 ード識別読み取り装置力もの出力信号の例である。この図におけるカード 41は図 17 に示されたカードと同じであるので、カードについての説明は省略する。 The reader shown in FIGS. 24 and 25 uses a single detection element. By using a plurality of detection elements, reading can be performed by a plurality of paths, and reading reliability can be improved. However, the information to be processed is linear information which is a set of points. , The burden of processing will not increase. [0159] FIG. 27 shows a ninth embodiment of the reader. In this figure, (a) is a schematic configuration of the relationship between the card and the card identification reader, (b) is an explanatory view of the card identification method, and (c) and (d) are output signals of the power identification reader power. It is an example. Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted.
[0160] この実施例は図 24に示された実施例の第 1のカード識別読み取り装置の構成にカロ えて、プラスチック 'シンチレータ 316、光検出素子 315及びこれらを収容する筐体 3 17から構成される第 2のカード識別読み取り装置をさらに有している。  This embodiment is similar to the configuration of the first card identification reader of the embodiment shown in FIG. 24, and comprises a plastic 'scintillator 316, a light detection element 315, and a housing 317 for containing them. And a second card identification reader.
[0161] この図に示されたプラスチック 'シンチレータ 316,光検出素子 315,筐体 317から 構成された第 2のカード識別読み取り装置は、プラスチック 'シンチレータ 310、光検 出素子 303、筐体 313から構成される第 1のカード識別読み取り装置の移動方向と 反対の方向に移動する。なおこの移動方向は同じ方向とすることも可能である。  The second card identification reader comprising the plastic 'scintillator 316, the light detection element 315 and the housing 317 shown in this figure is the same as the plastic' scintillator 310, the light detection element 303 and the housing 313. Move in the direction opposite to the direction of movement of the first card identification reader configured. The moving directions may be the same.
[0162] (b)に経路の代表例を示すが、この例では第 1のカード識別読み取り装置と第 2の カード識別読み取り装置は均一な速度で (b)に各々矢印で示す方向に移動し、カー ド自身の移動方向と合成された経路 312, 318に沿って移動する。その結果得られ る識別情報は直線 312及び直線 318上に分布する点となる。  Although a representative example of the route is shown in (b), in this example, the first card identification reader and the second card identification reader move in the direction indicated by the arrows in (b) at uniform speed. , Travel along the path 312, 318 combined with the direction of movement of the card itself. The resulting identification information is distributed on straight line 312 and straight line 318.
[0163] 得られる電気信号のパターンは放射性物質粒の配置状況に依存するので、これら の電気信号を比較することにより、真贋認証チップ 42、すなわちカード 41が識別され る。  [0163] Since the pattern of the obtained electrical signal depends on the arrangement of radioactive material particles, the authentication chip 42, ie, the card 41, is identified by comparing these electrical signals.
[0164] [読取装置実施例 10]  [Reading apparatus embodiment 10]
図 28に、読取装置の実施例 10を示す。この図において、(a)はカードと読取装置 の関係の概要構成、(b)は読取方法の説明図である。この図におけるカード 41は図 17に示されたカードと同じであるので、カードについての説明は省略する。  FIG. 28 shows an embodiment 10 of the reader. In this figure, (a) is a schematic configuration of the relationship between the card and the reader, and (b) is an explanatory view of a reading method. Since the card 41 in this figure is the same as the card shown in FIG. 17, the description of the card is omitted.
[0165] この実施例の読取装置は、図 25に示された実施例の放射線検出素子 305,筐体 3 13から構成される第 1のカード識別読取装置の構成に加えて、半導体放射線検出 素子 320,筐体 319から構成される第 2のカード識別読取装置をさらに有している。  The reading apparatus of this embodiment is a semiconductor radiation detecting element in addition to the configuration of the first card identification reading apparatus including the radiation detecting element 305 and the housing 3 13 of the embodiment shown in FIG. It further comprises a second card identification reader consisting of 320 and a housing 319.
[0166] この読取装置の動作は図 27に示した読取装置の動作と基本的に同じであるから、 さらなる説明は省略する。  The operation of this reader is basically the same as the operation of the reader shown in FIG. 27, so further description is omitted.
[0167] [読取経路] 経路誤差あるいは読み取り装置の不良等により読み取り誤差が生じる可能性があ る場合には図 26に 314に示すように同時に複数の読取装置で読み取り、その平均 値あるいは多数決により、最終的な読み取りデータを決定する。 [Reading Path] If there is a possibility that a reading error may occur due to a path error or a defect in the reading device, as shown at 314 in FIG. 26, reading is simultaneously performed by a plurality of reading devices, and the final read data is determined by the average value or majority decision. decide.
[0168] [読取方法 1]  [Reading method 1]
図 29に、図 24〜図 28に示した読取装置の経路例を示す。この中で、(a) , (b) , (c ) , (d)は、読取経路が 1本である例であり、 (e) , (f) , (g) , (h)、読取経路が 2本である 例である。なお、経路の数を 3本以上にすることが可能であることは、いうまでもない。  FIG. 29 shows an example of the path of the reading device shown in FIG. Among these, (a), (b), (c) and (d) are an example in which there is one reading path, and (e), (f), (g), (h), reading path Here is an example in which there are two. Needless to say, it is possible to increase the number of routes to three or more.
[0169] この図において、(a)及び (e)は、読取装置が固定されていることにより得られる力 ードの取り込み方向と平行な直線の経路である。なお、その位置は任意である。 (b) 及び (f)は、読取装置が不均一な速度で移動することにより得られる曲線経路である 。 (c)及び (d)は、読取装置が均一の速度で往復運動を 1回行うことにより得られる、 V字形の経路である。(d)及び (h)は、読取装置が均一の速度で往復運動を 2回行う ことにより得られる W字形の経路である。  In this figure, (a) and (e) are straight paths parallel to the loading direction of the force guide obtained by fixing the reading device. In addition, the position is arbitrary. (b) and (f) are curvilinear paths obtained by moving the reader at non-uniform speed. (C) and (d) are V-shaped paths obtained by a single reciprocating motion of the reader at uniform speed. (D) and (h) are W-shaped paths obtained by the reader performing two reciprocating movements at a uniform speed.
[0170] これらの経路例は、図 24〜図 28に示された読取装置によって実現される力 それ 以外に図 18〜図 19に示された検出素子マトリクスあるいは図 20〜図 21に示された 検出素子アレイにお!、て、検出素子を切り換えることによつても実現される。  Examples of these paths are the forces realized by the reading device shown in FIGS. 24 to 28. Besides, the sensing element matrices shown in FIGS. 18 to 19 or the forces shown in FIGS. This can also be realized by switching the detection elements to the detection element array.
[0171] [読取方法 2]  [Method 2 of Reading]
この読取方法を図 15に示した真贋認証チップパターンに適用する例を図 30に示 す。図 30において、座標(0, 0)から(31, 31)に向カゝぅ直線状検出経路上の真贋認 証データは、 11000101001001101010101101110111となって!/ヽる。また、座 標(0, 31)から(31, 0)に向力 直線状検出経路上の真贋認証データは、 111001 01001010000000110000010011となって!/ヽる。  An example of applying this reading method to the authentication verifying chip pattern shown in FIG. 15 is shown in FIG. In FIG. 30, from the coordinates (0, 0) to (31, 31), the authentication data on the straight line detection route becomes 11000101001001101010101101111! In addition, the authentication data on the linear detection path toward the coordinates (0, 31) to (31, 0) is 111001 01010010000000110000010011!
[0172] [読取方法 3]  [Method 3 for Reading]
ノ ィオメトリタスにおいては、パターンの特徴点を抽出して判別している。この特徴 点抽出を図 15に示した真贋認証チップに適用することについて図 31により説明する  In metrology, feature points of a pattern are extracted and determined. Application of this feature point extraction to the authentication verifying chip shown in FIG. 15 will be described with reference to FIG.
[0173] 図 31において、 4個以上連続している「0」は白黒反転文字で、同じく 4個以上連続 して 、る「 1」は囲み文字で示して!/、る。 例えば「0000」は、座標(16, 1) · · 'から始まる 13個がある。 In FIG. 31, four or more consecutive “0s” are black and white inverted characters, and four or more consecutive “0s” are indicated by enclosed characters “/”. For example, "0000" has 13 starting with the coordinates (16, 1) · · '.
「00000」は、座標(15, 5) · · 'から始まる 7個がある。  There are seven "00000" starting with the coordinates (15, 5) · · '.
「000000」は、座標(13, 31)から始まる 1個がある。  There is one "000000" starting from the coordinates (13, 31).
「0000000」は、座標(24, 2)から始まる 3個がある。  There are three "0000000" starting from coordinates (24, 2).
「000000000000」 ίま、座標(6, 12)力ら始まる 1偶力 Sある。  "000000000000" 、, coordinates (6, 12) Force 1 start S There is one couple S.
「00000000000000」 ίま、座標(7, 15)力ら始まる 1偶力 Sある。  "0000000000000000" 、, coordinates (7, 15) force start 1 couple S.
[0174] 「1111」は、座標(14, 4) · · ·から始まる 12個がある。 [0174] "1111" has 12 pieces starting from the coordinates (14, 4) · · ·.
「11111」は、座標(0, 7) · · 'から始まる 8個がある。  There are eight "11111" starting with coordinates (0, 7) · · '.
「111111」は、座標(19, 1)から始まる 1個がある。  There is one “111 111” which starts from the coordinates (19, 1).
「1111111」は、座標(12, 19)力も始まる 1個がある。  There is one “1111111”, which also starts the coordinate (12, 19) force.
「11111111」は、座標(17, 6) · · 'から始まる 2個がある。  There are two "11111111" starting with the coordinates (17, 6) · · '.
「1111111111」は、座標(14, 3)から始まる 1個がある。  There is one “1111111111” starting from the coordinates (14, 3).
[0175] これらの特徴点各々を検出し、それらの開始位置座標を検出することにより、真贋 認証チップの真贋を判別することができる。 The authenticity of the authentication chip can be determined by detecting each of these feature points and detecting their start position coordinates.
[0176] 抽出する特徴点は、横 1列に並んだ同じデータ以外に、縦 1列に並んだ同じデータ 、鍵型に並んだ同じデータが利用可能であり、さらには「010101」等の異なるデータ による特定の配列を利用することも可能である。 [0176] As the feature points to be extracted, in addition to the same data arranged in one horizontal row, the same data arranged in one vertical row, the same data arranged in a key type can be used, and furthermore, different ones such as "010101" It is also possible to use specific sequences by data.
[0177] [読取方法 4] [0177] [Reading method 4]
これまでに説明した真贋認証方法では、ディジタル的に記録された真贋認証情報 をディジタル的に処理するものであるが、図 32にディジタル的に記録された真贋認 証情報をアナログ的に処理する構成を示す。  The authentication method described so far processes digitally-processed authentication authentication information digitally, but in FIG. 32, it is configured to analog-process authentication authentication information digitally recorded in FIG. Indicates
[0178] この図において(a)に示された真贋認証パターンを、例えば図 27又は図 28に示さ れた読取装置を用いて 312及び 318に示す経路で走査することにより(b)及び (c)に 示す電気信号が得られる。これらの電気信号パターンを、記憶されている正規の電 気信号パターンとアナログ的に比較することにより、真贋認証チップ、さらにカードの 真贋が判別される。 [0178] By scanning the authentication authentication pattern shown in (a) in this figure, for example, in the path shown in 312 and 318 using the reader shown in FIG. 27 or 28, (b) and (c) The electrical signal shown in) is obtained. By comparing these electric signal patterns with the stored normal electric signal patterns in an analog manner, the authenticity of the authentication verifying chip and the card can be determined.
[0179] [真贋認証チップ読取位置] [Authentication authentication chip reading position]
キャッシュカード及びクレジットカードの物理的規格は汎用性の観点力 厳格に規 定されているため、その上に設けられるものも当然にその物理的規格は厳格である。 しかし、過酷な使用により変形が生じる可能性は否定できない。 Physical standards for cash cards and credit cards are versatile and strict. As a matter of course, what is provided on top of that is of course the physical standard is strict. However, it can not be denied that severe use may cause deformation.
[0180] そのような場合に備えて、真贋認証チップに図 33に示す位置合わせ用マーク 48を 形成しておくことが望ましい。位置合わせ用マークは、最も単純には 1個でよいが、よ り確実に位置合わせを行うためには複数個設ける。  In order to prepare for such a case, it is desirable to form alignment marks 48 shown in FIG. 33 on the authentication verifying chip. Although the number of alignment marks may be one in the simplest way, a plurality of alignment marks may be provided for more accurate alignment.
[0181] 読み取りをより確実に行うために、位置合わせ用マークと兼用して、真贋認証チップ の読み取り開始位置及び読み取り終了位置に何らかのマーク例えば、図 10に示す 移動方向読み取り開始線 49及び移動方向読み取り終了線 50、さらには端部指示線 51, 52を設けておく。  [0181] In order to perform reading more reliably, some marks are also used on the reading start position and reading end position of the authentication verifying chip, for example, as shown in FIG. 10, movement direction reading start line 49 and movement direction. A reading end line 50, and further, end instruction lines 51 and 52 are provided.
[0182] カード識別体上の情報の読み取りは、カード識別体と読み取り装置の相対運動で 行うため、確実な読み取りを行うためにはカード識別体と読み取り装置の運動を同期 させる必要がある。そのためにカード識別体上に同期信号用のマーク 87を形成して おけば、マークに読み込みに読み取り装置の運動を同期させることができる。  [0182] Since reading of information on the card identifier is performed by relative movement of the card identifier and the reader, it is necessary to synchronize the movements of the card identifier and the reader to perform reliable reading. For this purpose, by forming a mark 87 for synchronization signal on the card identification body, it is possible to synchronize the movement of the reader with the reading on the mark.
[0183] 読み取り開始'終了線及び Z又は同期信号用のマークを信号処理の際の信号正 規ィ匕に利用することも出来る。これらの位置合わせ用マーク、読み取り開始'終了線 及び Z又は同期信号用のマークは、何れも蛍光体で構成され、例えばインクジェット プリンタのような適宜な印刷手段で形成することができる。  [0183] The read start 'end line and mark for Z or synchronization signal can also be used for signal integrity in signal processing. These alignment marks, reading start and ending lines, and marks for Z or synchronization signals are all made of phosphors and can be formed by an appropriate printing means such as an ink jet printer.
[0184] 次に、製造方法を説明する。  Next, the manufacturing method will be described.
[製造方法実施例 1]  [Manufacturing Method Example 1]
図 35に、図 5に示されたカード 41の製造方法を示す。  FIG. 35 shows a method of manufacturing the card 41 shown in FIG.
このカード製造方法は、以下の段階による。  This card manufacturing method is based on the following steps.
(1)真贋認証チップ 42の厚さに相当する深さを有する型 321を用意する。  (1) Prepare a mold 321 having a depth corresponding to the thickness of the authentication verifying chip 42.
(2)放射性物質粒 43が混入された合成樹脂モノマを型 321に注入する。  (2) The synthetic resin monomer mixed with radioactive substance particles 43 is injected into a mold 321.
(3)注入されたモノマを加熱等の手段により硬化させてポリマにし、放射性物質粒 43 が混入された真贋認証チップ 42を得る。  (3) The injected monomer is cured by a means such as heating to form a polymer, to obtain an authentication verifying chip 42 in which radioactive substance particles 43 are mixed.
(4)真贋認証チップ 42を型 321から取り出す。  (4) Remove the authentication verifying chip 42 from the mold 321.
(5)真贋認証チップ 42の下面を基板 44に貼り付け、上面に表面板 45を貼り付けて、 カード 41を得る。 [0185] [製造方法実施例 2] (5) The lower surface of the authentication verifying chip 42 is attached to the substrate 44, and the top plate 45 is attached to the upper surface to obtain a card 41. [Manufacturing Method Example 2]
図 35に、図 6に示されたカード 21の製造方法を示す。  FIG. 35 shows a method of manufacturing the card 21 shown in FIG.
このカード製造方法は、以下の段階による。  This card manufacturing method is based on the following steps.
(1)真贋認証チップ 23の厚さに相当する深さを有する型 322を用意する。  (1) Prepare a mold 322 having a depth corresponding to the thickness of the authentication verifying chip 23.
(2)放射性物質粒 22が混入された合成樹脂モノマを型 322に注入する。  (2) The synthetic resin monomer mixed with radioactive substance particles 22 is injected into a mold 322.
(3)注入されたモノマを加熱等の手段により硬化させてポリマにし、放射性物質粒 22 が混入された真贋認証チップ 23を得る。  (3) The injected monomers are cured by a means such as heating to form a polymer, to obtain an authentication verifying chip 23 in which radioactive substance particles 22 are mixed.
(4)真贋認証チップ 23を型 3220から取り出す。  (4) Take out the authentication chip 23 from the mold 3220.
(5)真贋認証チップ 23の下面を基板 21に貼り付け、上面に表面板 24を貼り付けて カード 20を得る。  (5) The lower surface of the authentication verifying chip 23 is attached to the substrate 21 and the top plate 24 is attached to the upper surface to obtain a card 20.
[0186] [製造方法実施例 3]  [Manufacturing Method Example 3]
図 36に、図 7に示されたカード 26の製造方法を示す。  FIG. 36 shows a method of manufacturing the card 26 shown in FIG.
このカード製造方法は、以下の段階による。  This card manufacturing method is based on the following steps.
(1)真贋認証チップ 23の厚さに相当する面積と深さを有する型 322を用意する。 (1) Prepare a mold 322 having an area and a depth corresponding to the thickness of the authentication verifying chip 23.
(2)放射性物質粒 22が混入された合成樹脂モノマを型 43に注入する。 (2) The synthetic resin monomer mixed with radioactive substance particles 22 is injected into a mold 43.
(3)注入されたモノマを加熱等の手段により硬化させてポリマにし、放射性物質粒 22 が混入された真贋認証チップ 23を得る。  (3) The injected monomers are cured by a means such as heating to form a polymer, to obtain an authentication verifying chip 23 in which radioactive substance particles 22 are mixed.
(4)真贋認証チップ 23を型 43から取り出す。  (4) Take out the authentication chip 23 from the mold 43.
(5)基板 21上に真贋認証チップ 23を貼り付け、さらにその上に開口 28が形成された 表面板 27を貼り付ける。  (5) The authentication verifying chip 23 is attached on the substrate 21 and the surface plate 27 having the opening 28 formed thereon is attached.
(6)開口 23に蓋板 29を嵌着して、カード 26を得る。  (6) Insert the lid plate 29 into the opening 23 to obtain the card 26.
[0187] [製造方法実施例 4] [Manufacturing Method Example 4]
図 37に、図 8に示されたカード 30の製造方法を示す。  FIG. 37 shows a method of manufacturing the card 30 shown in FIG.
このカード製造方法は、以下の段階による。  This card manufacturing method is based on the following steps.
(1)真贋認証チップ 32の厚さに相当する深さを有し、中央に凸部 31に対応する凹部 42が形成された型 323を用意する。  (1) Prepare a die 323 having a depth corresponding to the thickness of the authentication verifying chip 32 and having a recess 42 corresponding to the protrusion 31 at the center.
(2)凹部 42に放射性物質粒 22が混入された合成樹脂モノマを注入し、型 423のそ の他の部分に放射性物質粒 22が混入されて 、な ヽ合成樹脂モノマを注入する。 (3)注入されたモノマを加熱等の手段により硬化させてポリマにし、凸部にのみ放射 性物質粒 22が混入された真贋認証チップ 32を得る。 (2) The synthetic resin monomer in which the radioactive substance particle 22 is mixed is injected into the recess 42, and the radioactive substance particle 22 is mixed in the other part of the mold 423, and the synthetic resin monomer is injected. (3) The injected monomer is cured by a method such as heating to form a polymer, and the authentication verifying chip 32 in which the radioactive substance particles 22 are mixed only in the convex portion is obtained.
(4)真贋認証チップ 32を型 323から取り出す。  (4) Remove the authentication verifying chip 32 from the mold 323.
(5)真贋認証チップ 32の下面を基板 21に貼り付け、上面に開口 28が形成された表 面板 27を貼り付けて、カード 30を得る。  (5) The lower surface of the authentication verifying chip 32 is attached to the substrate 21 and the surface plate 27 having the opening 28 formed on the upper surface is attached to obtain the card 30.
[0188] 真贋認証処理フローを説明する。  The authentication processing flow will be described.
[処理フロー実施例 1]。  [Processing flow example 1].
図 38により、真贋認証処理フローの実施例 1を説明する。  Example 1 of the authentication process flow will be described with reference to FIG.
(1)カード利用者が ATM等の端末装置のカード挿入口に矢印部を先頭にしてキヤ ッシュカードを挿入すると、カード揷入口のセンサがそのことを感知し、カードを装置 内に取り込む。  (1) When the card user inserts a cache card into the card insertion slot of a terminal device such as ATM with the arrow part at the top, a sensor at the entrance of the card senses that and takes the card into the device.
[0189] (2)カードを取り込む際に、端末装置はカードの磁気記録部力 カード情報を読み 込む。  (2) When loading a card, the terminal reads the magnetic recording unit power card information of the card.
[0190] (3)端末装置は、挿入されたカードがその端末装置で取り扱うことが可能なカード であるか否かを判断する。  (3) The terminal determines whether the inserted card is a card that can be handled by the terminal.
[0191] (4)読み込んだカード情報から、取扱が可能であることを示す情報が確認されなか つた場合、あるいは正規のカードであっても破損あるいは汚損等によりカードの情報 が読みとれな力つた場合には、端末装置はそのカードが取り扱うことが出来な 、不適 正なカードであるとして排出する。 (4) If no information indicating that the card can be handled is confirmed from the read card information, or even if the card is a legitimate card, if the card information can not be read due to damage or staining. In addition, the terminal device ejects the card as an improper card which can not be handled.
[0192] (5)端末装置は、カード取り込み時のカードの移動を利用する機械的走査、あるい はカードが取り込まれた停止した状態で真贋認証チップ力 真贋認証情報を読み取 る。 (5) The terminal device performs mechanical scanning using the movement of the card at the time of loading the card, or reads the authentication information of the authentication chip when the card is stopped.
[0193] (6)端末装置は、読み込まれた真贋認証情報が正 Uヽか否かを判断する。  (6) The terminal device determines whether the read-in authentication information is positive or not.
[0194] (7)端末装置が真贋認証情報が正しくないと判断したときには、挿入されたカード が正規のものではないと判断し、カードを端末装置力 排出し、処理を終了する。 (7) When the terminal determines that the authentication information is not correct, it is determined that the inserted card is not legitimate, the card is discharged, and the processing is terminated.
[0195] (8)端末装置が、真贋認証情報が正規のものであると判断したときには、出金額等 のさらなる入力操作をユーザに要求する。 (8) When the terminal device determines that the authentication information is legitimate, it requests the user to perform further input operation such as withdrawal amount.
[0196] (9)ユーザが要求に従い、出金額等の入力操作を行う。 [0197] (10)ホストコンピュータは、出金額等の入力操作の内容が適切である力否かを判 断する。 (9) The user performs the input operation of the withdrawal amount and the like according to the request. (10) The host computer determines whether or not the content of the input operation such as the withdrawal amount is appropriate.
[0198] (11)ホストコンピュータは、出金額等の入力操作の内容が残高不足等の理由によ り適切でないと判断したときには、カードを端末装置力 排出し、処理を終了する。  (11) If the host computer determines that the contents of the input operation such as the withdrawal amount are not appropriate due to a lack of balance or the like, the card is discharged from the terminal device, and the processing is terminated.
[0199] (12)ホストコンピュータは、出金額等の入力操作の内容が適切であると判断したと きには、出金等により出力し、カードを端末装置力 排出し、処理を終了する。  (12) When the host computer determines that the contents of the input operation such as the withdrawal amount are appropriate, the host computer outputs it by withdrawal, discharges the card from the terminal device, and ends the processing.
[0200] [処理フロー実施例 2]  [Process Flow Example 2]
図 39により、真贋認証処理フローの実施例 2を説明する。  Embodiment 2 of the authentication process flow will be described with reference to FIG.
この真贋認証処理フロー実施例 2は、真贋認証処理フロー実施例 1では、真贋認 証情報が正しくないときには、カードを端末装置力 排出するのに対し、カード識別 情報が正しくないときには、カードを端末装置に取り込み、警報を発する。このように することにより、不正カードの摘発が容易になる。  In this authentication process flow example 2, in the authentication process flow example 1, when the authentication information is not correct, the card is ejected while the card identification information is not correct, the card is processed. Load the device and issue an alarm. This makes it easier to detect fraudulent cards.
[0201] (1)カード利用者が ATM等の端末装置のカード挿入口に矢印部を先頭にしてキヤ ッシュカードを挿入すると、カード揷入口のセンサがそのことを感知し、カードを装置 内に取り込む。 (1) When the card user inserts a cache card into the card insertion slot of a terminal device such as ATM with the arrow part at the top, a sensor at the entrance of the card senses that and takes the card into the device. .
[0202] (2)カードを取り込む際に、端末装置はカードの磁気記録部力 カード情報を読み 込む。  (2) When loading a card, the terminal reads the magnetic recording unit power card information of the card.
[0203] (3)端末装置は、挿入されたカードがその端末装置で取り扱うことが可能なカード であるか否かを判断する。  (3) The terminal determines whether the inserted card is a card that can be handled by the terminal.
[0204] (4)読み込んだカード情報から、取扱が可能であることを示す情報が確認されなか つた場合、あるいは正規のカードであっても破損あるいは汚損等によりカードの情報 が読みとれな力つた場合には、端末装置はそのカードが取り扱うことが出来な 、不適 正なカードであるとして排出する。 (4) If no information indicating that the card can be handled is confirmed from the read card information, or even if the card is a legitimate card, if the card information can not be read due to damage or staining. In addition, the terminal device ejects the card as an improper card which can not be handled.
[0205] (5)端末装置は、カード取り込み時のカードの移動を利用する機械的走査、あるい はカードが取り込まれた停止した状態で真贋認証チップ力 真贋認証情報を読み取 る。 (5) The terminal device performs mechanical scanning using the movement of the card at the time of loading the card, or reads the authentication information of the authentication chip when the card is stopped.
[0206] (6)端末装置は、読み込まれた真贋認証情報が正 Uヽか否かを判断する。  (6) The terminal device determines whether the read authentication information is positive or not.
[0207] (7)端末装置が真贋認証情報が正しくないと判断したときには、挿入されたカード が正規のものではないと判断し、カードを端末装置内に収納するとともに警報を発す る。 (7) When the terminal device determines that the authentication information is not correct, the inserted card It determines that the card is not legitimate, stores the card in the terminal and issues an alarm.
[0208] この警報は端末機力 離隔した場所でのみ発するようにし、端末機には故障表示 をするようにすれば不正規カード使用者の身柄確保が容易になる。  [0208] If this alarm is issued only at a place where the terminal is far apart, and a failure is displayed on the terminal, securing of the card card card by unauthorized card is facilitated.
[0209] (8)端末装置が、真贋認証情報が正規のものであると判断したときには、出金額等 のさらなる入力操作をユーザに要求する。  (8) When the terminal device determines that the authentication information is legitimate, it requests the user to perform further input operation such as withdrawal amount.
[0210] (9)ユーザが要求に従い、出金額等の入力操作を行う。  (9) The user performs an input operation such as a withdrawal amount according to the request.
[0211] (10)ホストコンピュータは、出金額等の入力操作の内容が適切である力否かを判 断する。  (10) The host computer determines whether or not the content of the input operation such as the amount of withdrawal is appropriate.
[0212] (11)ホストコンピュータは、出金額等の入力操作の内容が残高不足等の理由によ り適切でないと判断したときには、カードを端末装置力 排出し、処理を終了する。  (11) If the host computer determines that the contents of the input operation such as the withdrawal amount are not appropriate due to a lack of balance or the like, the card is discharged from the terminal device, and the processing is terminated.
[0213] (12)ホストコンピュータは、出金額等の入力操作の内容が適切であると判断したと きには、出金等により出力し、カードを端末装置力 排出し、処理を終了する。  (12) When the host computer determines that the contents of the input operation such as the withdrawal amount are appropriate, the host computer outputs it by withdrawal and the like, discharges the card from the terminal device, and ends the processing.
[0214] [処理フロー実施例 3]  [Processing flow example 3]
図 40により、真贋認証処理フローの実施例 3を説明する。  A third embodiment of the authentication process flow will be described with reference to FIG.
この真贋認証処理フロー実施例 3は、真贋認証処理フロー実施例 2では、真贋認 証情報が正しくないときには、直ちにカードを端末装置に取り込み、警報を発するの み対し、カード利用者に操作を行わせる。  In this authentication authentication process flow embodiment 3, in the authentication authentication process flow embodiment 2, when the authentication authentication information is not correct, the card is immediately taken into the terminal device and only an alarm is issued, and the operation is performed to the card user. Let
このようにすることにより、不正カードの摘発が確実になる。  By doing this, it is possible to secure fraudulent cards.
[0215] (1)カード利用者が ATM等の端末装置のカード挿入口に矢印部を先頭にしてキヤ ッシュカードを挿入すると、カード揷入口のセンサがそのことを感知し、カードを装置 内に取り込む。 (1) When the card user inserts a cache card into the card insertion slot of a terminal device such as ATM with the arrow portion at the top, a sensor at the entrance of the card senses that and takes the card into the device. .
[0216] (2)カードを取り込む際に、端末装置はカードの磁気記録部力 カード情報を読み 込む。  (2) When loading a card, the terminal reads the magnetic recording unit power card information of the card.
[0217] (3)端末装置は、挿入されたカードがその端末装置で取り扱うことが可能なカード であるか否かを判断する。  (3) The terminal determines whether the inserted card is a card that can be handled by the terminal.
[0218] (4)読み込んだカード情報から、取扱が可能であることを示す情報が確認されなか つた場合、あるいは正規のカードであっても破損あるいは汚損等によりカードの情報 が読みとれな力つた場合には、端末装置はそのカードが取り扱うことが出来な 、不適 正なカードであるとして排出する。 (4) If the information indicating that the card can be handled is not confirmed from the read card information, or even if the card is a legitimate card, the card information due to damage or staining, etc. If the card can not be read, the terminal device ejects it as an incorrect card that the card can not handle.
[0219] (5)端末装置は、カード取り込み時のカードの移動を利用する機械的走査、あるい はカードが取り込まれた停止した状態で真贋認証チップ力 真贋認証情報を読み取 る。  (5) The terminal device performs mechanical scanning using the movement of the card at the time of loading the card, or reads the authentication information of the authentication chip when the card is stopped.
[0220] (6)端末装置は、読み込まれた真贋認証情報が正 Uヽか否かを判断する。  (6) The terminal device determines whether the read-in authentication information is positive or not.
[0221] (7)端末装置が真贋認証情報が正しくないと判断したときには、出金額等のさらな る入力操作をユーザに要求する。 (7) When the terminal device determines that the authentication information is not correct, the user is requested to perform further input operation such as withdrawal amount.
[0222] (8)ユーザが要求に従い、出金額等の入力操作を行う。 (8) The user performs an input operation such as withdrawal amount according to the request.
[0223] (9)カードを端末装置内に収納するとともに警報を発する。 (9) The card is stored in the terminal device and an alarm is issued.
[0224] この警報は端末機力 離隔した場所でのみ発するようにし、端末機には故障表示 をするようにすれば不正規カード使用者の確保が容易になる。 [0224] If this alarm is issued only at a place where the terminal is far apart and a failure is indicated on the terminal, it is easy to secure an irregular card user.
[0225] (10)端末装置が、真贋認証情報が正規のものであると判断したときには、出金額 等のさらなる入力操作をユーザに要求する。 (10) When the terminal device determines that the authentication information is legitimate, it requests the user to perform further input operation such as withdrawal amount.
[0226] (11)ユーザが要求に従い、出金額等の入力操作を行う。 (11) The user performs an input operation such as withdrawal amount according to the request.
[0227] (12)ホストコンピュータは、出金額等の入力操作の内容が適切である力否かを判 断する。  (12) The host computer determines whether or not the content of the input operation such as the amount of withdrawal is appropriate.
[0228] (14)ホストコンピュータは、出金額等の入力操作の内容が残高不足等の理由によ り適切でないと判断したときには、カードを端末装置力 排出し、処理を終了する。  (14) If the host computer determines that the contents of the input operation such as the withdrawal amount are not appropriate due to a lack of balance, etc., the card is discharged from the terminal device, and the processing is terminated.
[0229] このような構成にすることにより、不正規カード使用者が端末装置を使用する時間 が長くなり身柄確保のための時間が長くなるだけでなぐ操作を行わせることにより、 指紋等の証拠の採取が可能になる。 [0229] With such a configuration, it is possible for the irregular card user to use the terminal device for a long time and only to increase the time for securing the personal pattern, thereby performing an operation such as fingerprint proof. Can be collected.
その際、接触型のタツチスィッチを採用すると指紋の採取がより確実になる。  At that time, if a contact type touch switch is employed, fingerprints can be more surely taken.
産業上の利用可能性  Industrial applicability
[0230] 以上説明した真贋認証チップ、真贋証明チップを有するカードは、銀行キャッシュ カード、クレジットカード、プリペイドカード、ポイントカード、証券、 IDカード、入構証、 証明書等に採用可能である。 [0230] The card having the authentication verifying chip and the authentication verifying chip described above can be adopted as a bank cash card, a credit card, a prepaid card, a point card, a stock, an ID card, an entrance certificate, a certificate, and the like.

Claims

請求の範囲 The scope of the claims
[1] 基板,真贋認証チップ及び表面板カゝら構成され;前記基板の上に前記真贋認証チッ プが積層され、前記真贋認証チップの上にさらに前記表面板が積層され;前記表面 板は、放射線に対する透過性が高い合成樹脂で構成され;前記真贋認証チップは、 合成樹脂から構成され;前記真贋認証チップには、放射性物質粒が混入された、力 ード。  [1] A substrate, an authentication verifying chip, and a face plate cover; the authentication verifying chip is stacked on the substrate, and the face plate is further stacked on the authentication verifying chip; the surface plate is The authentication chip is made of a synthetic resin; and the authentication chip contains radioactive substance particles.
[2] さらに、前記表面板が、可視光線に対して不透明である、請求項 1のカード。  [2] The card of claim 1, further wherein the face plate is opaque to visible light.
[3] 前記真贋認証チップに前記放射性物質粒とともにさらに前記放射性物質の同位体 である非放射性物質粒が混入された、請求項 1又は請求項 2のカード。  [3] The card according to claim 1 or 2, wherein the radioactive substance particles which are isotopes of the radioactive substance are further mixed with the radioactive substance particles in the authentication verifying chip.
[4] 基板,真贋認証チップ及び表面板カゝら構成され;前記基板の上に前記真贋認証チッ プが積層され、前記真贋認証チップの上にさらに前記表面板が積層され;前記表面 板は、放射線に対する透過性がない物質で構成され;前記表面板には、開口が形成 され;前記開口に蓋板が嵌着され;前記蓋板は放射線に対する透過性が高い合成 榭脂で構成され;前記真贋認証チップは、合成樹脂から構成され;前記真贋認証チ ップに、放射性物質粒が混入された、カード。  [4] A substrate, an authentication verifying chip, and a face plate cover; the authentication verifying chip is stacked on the substrate, and the surface plate is further stacked on the authentication verifying chip; the surface plate is An opening formed in the face plate; a cover plate fitted in the opening; the cover plate being made of a synthetic resin highly transparent to radiation; The card according to the present invention, wherein the authentication chip is made of synthetic resin; radioactive particles are mixed in the authentication chip.
[5] さらに、前記蓋板が、可視光線に対して不透明である、請求項 4のカード。  [5] The card according to claim 4, wherein the cover plate is opaque to visible light.
[6] 前記真贋認証チップに前記放射性物質粒とともにさらに前記放射性物質の同位体 である非放射性物質粒が混入された、請求項 4又は請求項 5のカード。  [6] The card according to [4] or [5], wherein non-radioactive material particles which are isotopes of the radioactive material are further mixed with the radioactive material particles in the authentication verifying chip.
[7] 基板,真贋認証チップ及び表面板カゝら構成され;前記基板の上に前記真贋認証チッ プが積層され、前記真贋認証チップの上にさらに前記表面板が積層され;前記表面 板には、開口が形成され;前記真贋認証チップは、合成樹脂から構成され;前記真 贋認証チップには、前記開口に嵌合される凸部が形成され;前記凸部に、放射性物 質粒が混入された、カード。  [7] A substrate, an authentication verifying chip, and a face plate cover; the authentication verifying chip is stacked on the substrate, and the face plate is further stacked on the authentication verifying chip; An opening is formed; the authentication verifying chip is made of a synthetic resin; and the authentication verifying chip is formed with a convex portion fitted to the opening; radioactive particles are mixed in the convex portion Was a card.
[8] 前記真贋認証チップに前記放射性物質粒とともにさらに前記放射性物質の同位体 である非放射性物質粒が混入された、請求項 7のカード。  [8] The card according to [7], wherein the non-radioactive substance particle which is an isotope of the radioactive substance is further mixed with the radioactive substance particle in the authentication verifying chip.
[9] 基板,真贋認証チップ及び表面板力 構成され;前記基板の上に前記表面板が積 層され;前記表面板には、開口が形成され;前記真贋認証チップは、前記開口に嵌 合する形状であり;前記真贋認証チップは、合成樹脂から構成され;前記真贋認証チ ップに、放射性物質粒が混入された、カード。 [9] a substrate, an authentication verifying chip and a surface plate force; the surface plate is stacked on the substrate; an opening is formed in the surface plate; and the authentication verifying chip is fitted in the opening. The authentication verifying chip is made of a synthetic resin; the authentication verifying chip In the cup, radioactive substance particles were mixed, curd.
[10] 前記真贋認証チップに前記放射性物質粒とともにさらに前記放射性物質の同位体 である非放射性物質粒が混入された、請求項 9のカード。  [10] The card according to [9], wherein the non-radioactive substance particle which is an isotope of the radioactive substance is further mixed with the radioactive substance particle in the authentication verifying chip.
[11] 基板及び真贋認証チップから構成され 前記基板の上に前記真贋認証チップが積 層され 前記真贋認証チップに、放射性物質粒が混入された、カード。 [11] A card comprising a substrate and an authentication verifying chip, wherein the authentication verifying chip is stacked on the substrate, and radioactive material particles are mixed in the authentication verifying chip.
[12] 前記真贋認証チップに前記放射性物質粒とともにさらに前記放射性物質の同位体 である非放射性物質粒が混入された、請求項 11のカード。 [12] The card according to [11], wherein the non-radioactive substance particle which is an isotope of the radioactive substance is further mixed with the radioactive substance particle in the authentication verifying chip.
[13] さら〖こ、前記真贋認証チップの上に放射線透過材料である表面板を積層した、請求 項 11又は請求項 12のカード。 [13] The card according to claim 11 or 12, wherein a face plate which is a radiation transmitting material is laminated on the authentication verifying chip.
[14] 前記放射性物質粒が前記真贋認証チップの中央部のみに混入された、請求項 11,[14] The radioactive substance particles are mixed only in the central portion of the authentication chip.
12又は請求項 13のカード。 The card of claim 12 or claim 13.
[15] 基板及び真贋認証チップから構成され 前記基板の上に前記真贋認証チップが積 層され 前記真贋認証チップに、放射性物質粒により真贋認証用パターンが描かれ た、カード。 [15] A card comprising a substrate and an authentication verifying chip, wherein the authentication verifying chip is stacked on the substrate, and a pattern for authenticating authentication is drawn on the authentication verifying chip by radioactive substance particles.
[16] 前記真贋認証チップに前記放射性物質粒とともにさらに前記放射性物質の同位体 である非放射性物質粒が混入された、請求項 15のカード。  [16] The card according to [15], wherein the non-radioactive substance particle which is an isotope of the radioactive substance is further mixed with the radioactive substance particle in the authentication verifying chip.
[17] さら〖こ、前記真贋認証チップの上に放射線透過材料である表面板を積層した、請求 項 15又は請求項 16のカード。 [17] The card according to claim 15 or 16, wherein a face plate which is a radiation transmitting material is laminated on the authentication verifying chip.
[18] 基板及び真贋認証チップから構成され 前記基板の上に前記真贋認証チップが積 層され 前記真贋認証チップに、放射性物質粒がマトリクス状に配置された、カード。 [18] A card comprising a substrate and an authentication verifying chip, wherein the authentication verifying chip is stacked on the substrate, and radioactive substance particles are arranged in a matrix on the authentication verifying chip.
[19] 前記真贋認証チップに前記放射性物質粒とともにさらに前記放射性物質の同位体 である非放射性物質粒が混入された、請求項 15のカード。 [19] The card according to claim 15, wherein the non-radioactive substance particle which is an isotope of the radioactive substance is further mixed with the radioactive substance particle in the authentication verifying chip.
[20] さらに、前記真贋認証チップの上に放射線透過材料である表面板を積層した、請求 項 18又は請求項 19のカード。 [20] The card according to claim 18 or 19, wherein a face plate which is a radiation transmitting material is laminated on the authentication verifying chip.
[21] 基板上に放射性物質による真贋認証情報が記載された真贋認証チップが取り付け られたカードであって、前記真贋認証情報はマトリクス状に配置されたデジタルデー タであり、前記デジタルデータは 2進乱数に基づいて配置されている、カード。 [21] A card on which an authentication verifying chip in which authentication verifying information by radioactive substance is described is attached on a substrate, wherein the authentication verifying information is digital data arranged in a matrix, and the digital data is 2 A card, which is arranged based on a random number.
[22] 前記真贋認証情報がより大きなマトリクス状に配置されたデジタルデータの一部分で ある請求項 21のカード。 [22] The authentication information is a part of digital data arranged in a larger matrix. 22. The card of claim 21.
[23] 真贋認証チップの厚さに相当する深さを有する型に放射性物質粒が混入された合 成榭脂モノマを注入する段階 前記注入されたモノマを硬化させてポリマにして真贋 認証チップを得る段階 前記真贋認証チップの下面に基板を貼り付ける段階 前記 真贋認証チップの上面に表面板を貼り付ける段階力 なるカード製造方法。  [23] Injecting a synthetic resin monomer containing radioactive substance particles into a mold having a depth corresponding to the thickness of the authentication chip, curing the injected monomer to form a polymer to authenticate the authentication chip The method for producing a card according to claim 1, wherein a substrate is attached to the lower surface of the authentication verifying chip, and a front plate is adhered to the upper surface of the authentication verifying chip.
[24] 真贋認証チップの厚さに相当する深さを有する型に放射性物質粒が混入された合 成榭脂モノマを注入する段階 前記注入されたモノマを硬化させてポリマにして真贋 認証チップを得る段階 前記真贋認証チップの下面に基板を貼り付ける段階 前記 真贋認証チップの上面に開口を有する表面板を貼り付ける段階 前記開口に蓋板を 嵌着する段階力 なるカード製造方法。  [24] Injecting a synthetic resin monomer mixed with radioactive substance particles into a mold having a depth corresponding to the thickness of the authentication verifying chip. Curing the injected monomer to form a polymer to obtain an authentication verifying chip. Obtaining a step of attaching a substrate to the lower surface of the authentication verifying chip; affixing a surface plate having an opening on the upper surface of the authentication verifying chip; a card manufacturing method comprising a step of fitting a lid plate in the opening.
[25] 真贋認証チップの厚さに相当する深さを有し、凹部が形成された型放射性物質粒が 混入された合成樹脂モノマを注入する段階 前記注入されたモノマを硬化させてポリ マにして真贋認証チップを得る段階 前記真贋認証チップを上下反転させる段階 上下反転された真贋認証チップの下面に基板を貼り付ける段階 前記真贋認証チッ プの上面に前記凹部に対応する開口が形成された上面板を貼り付ける段階力 なる カード製造方法。  [25] A step of injecting a synthetic resin monomer having a depth corresponding to the thickness of the authentication verifying chip and having a recess formed therein, and curing the injected monomer into a polymer. Obtaining an authentication verifying chip, inverting the authentication verifying chip upside down, attaching a substrate to a lower surface of the authentication verifying chip inverted upside down, an opening corresponding to the recess is formed on the upper surface of the authentication verifying chip. A step-by-step card manufacturing method to attach a face plate.
[26] 真贋認証チップの厚さに相当する面積と深さを有する型に放射性物質粒が混入され た合成樹脂モノマを注入する段階 前記注入されたモノマを硬化させてポリマにし、 真贋認証チップを得る段階 基板の上面に開口が形成された表面板を貼り付ける段 階 前記開口に前記真贋認証チップを嵌着する段階からなるカード製造方法。  [26] Injecting a synthetic resin monomer mixed with radioactive substance particles into a mold having an area and a depth corresponding to the thickness of the authentication verifying chip The cured monomer is hardened into a polymer, and the authentication verifying chip is Obtaining a step of attaching a face plate having an opening formed on the upper surface of the substrate, and fitting the authentication verifying chip into the opening.
[27] 基板に相当する面積と、基板の厚さに加えて真贋認証チップの厚さに相当する深さ を有する型に基板を装填する段階 前記装填された基板上に放射性物質粒を散布 する段階 前記放射性物質粒が散布された基板上に合成樹脂モノマを注入する段 階 前記注入されたモノマを硬化させてポリマにする段階力 なるカード製造方法。  [27] Loading the substrate into a mold having an area corresponding to the substrate and a depth corresponding to the thickness of the authentication authentication chip in addition to the thickness of the substrate The radioactive substance particles are dispersed onto the loaded substrate. In the step of injecting a synthetic resin monomer onto the substrate on which the radioactive substance particles are dispersed, a step of manufacturing a card by curing the injected monomer into a polymer.
[28] 放射性物質を含んだ真贋認証チップの情報を読み取る読取装置であって:前記読 取装置は前記真贋認証チップの面積のシンチレ一タと撮像装置とからなり;前記撮 像装置が前記放射性物質力 の放射線による前記シンチレータのシンチレーシヨン 光を撮影する読取装置。 [28] A reading device for reading information of an authentication verifying chip containing radioactive material: the reading device comprises a scintillator of the area of the authentication verifying chip and an imaging device; the imaging device is the radiation emitting device The reader which photographs the scintillation light of the said scintillator by the radiation of substance power.
[29] 放射性物質を含んだ真贋認証チップの情報を読み取る読取装置であって:前記読 取装置は前記真贋認証チップの面積のシンチレータと前記シンチレータ上に配置さ れた前記真贋認証チップの面積の光検出素子マトリックスとからなり;前記光検出素 子が前記放射性物質力 の放射線による前記シンチレータのシンチレーシヨン光を 検出する読取装置。 [29] A reader for reading information of an authentication verifying chip containing radioactive material: the reading device includes a scintillator of the area of the authentication verifying chip and an area of the authentication verifying chip arranged on the scintillator. A reading device comprising a light detection element matrix; wherein the light detection element detects scintillation light of the scintillator due to the radiation of the radioactive substance power.
[30] 放射性物質を含んだ真贋認証チップの情報を読み取る読取装置であって:前記読 取装置は前記真贋認証チップの巾の長さの線状シンチレータと前記シンチレータ上 に配置され前記真贋認証チップの巾の長さを有する光検出素子アレイとからなり 前 記光検出素子アレイの光検出素子が移動中の真贋認証チップの前記放射性物質か らの放射線による前記シンチレータのシンチレーシヨン光を検出する読取装置。  [30] A reading device for reading information of an authentication verifying chip containing radioactive material: the reading device includes a linear scintillator having a width of the authentication verifying chip and the scintillator, and the authentication verifying chip is disposed Reading the detection of scintillation light of the scintillator by radiation from the radioactive material of the authentication verifying chip in movement of the light detection element of the light detection element array; apparatus.
[31] 放射性物質を含んだ真贋認証チップの情報を読み取る読取装置であって:前記読 取装置はシンチレータと前記シンチレータ上に配置された光検出素子を具え 前記 シンチレータと前記光検出素子は 1体に構成され 前記シンチレータと前記光検出 素子が前記真贋認証チップの巾方向に移動可能であり;前記光検出素子が移動中 の真贋認証チップの前記放射性物質力 の放射線による前記シンチレータのシンチ レーシヨン光を検出する読取装置。  [31] A reading device for reading information of an authentication verifying chip containing radioactive material: the reading device comprises a scintillator and a light detecting element disposed on the scintillator, and the scintillator and the light detecting element are one body. The scintillator and the light detecting element are movable in the width direction of the authentication verifying chip; and the scintillator of the authentication verifying chip on which the light detecting element is moving; Reader to detect.
[32] さらに、もう 1組の 1体に構成されたシンチレ一タと光検出素子を有する:請求項 31の 読取装置。  [32] The reading device according to claim 31, further comprising a scintillator and a light detection element configured in one set of another body.
[33] 放射性物質を含んだ真贋認証チップの情報を読み取る読取装置であって:前記読 取装置は前記真贋認証チップの面積の放射線検出素子マトリックスとからなり 前記 光検出素子が前記放射性物質力 の放射線を検出する読取装置。  [33] A reading device for reading information of an authentication verifying chip containing a radioactive substance: the reading device comprises a radiation detection element matrix of the area of the authentication verifying chip, and the light detecting element is the power of the radioactive substance Reader that detects radiation.
[34] 放射性物質を含んだ真贋認証チップの情報を読み取る読取装置であって:前記読 取装置は前記真贋認証チップの巾の長さの放射線検出素子アレイとからなり 前記 放射線検出素子アレイの放射線検出素子が移動中の真贋認証チップの前記放射性 物質からの放射線を検出する読取装置。  [34] A reading device for reading information of an authentication verifying chip containing radioactive material: the reading device comprises a radiation detecting element array having a width of the authentication verifying chip, and the radiation of the radiation detecting element array A reader for detecting radiation from the radioactive substance of an authentication verifying chip on which a detection element is moving.
[35] 放射性物質を含んだ真贋認証チップの情報を読み取る読取装置であって:前記読 取装置は放射線検出素子を具え 前記放射線検出素子が前記真贋認証チップの巾 方向に移動可能であり 前記放射線検出素子が移動中の真贋認証チップの前記放 射性物質からの放射線を検出する読取装置。 [35] A reader for reading information of an authentication verifying chip containing a radioactive substance: the reading device comprises a radiation detecting element, and the radiation detecting element is movable in the width direction of the authentication verifying chip, the radiation The release of the authentication verifying chip in which the detection element is moving A reader that detects radiation from projectiles.
[36] さらに、もう 1個の放射線検出素子を有する:  [36] In addition, it has one more radiation detection element:
請求項 35の読取装置。  36. The reader of claim 35.
[37] 放物面筒状の反射鏡,ポリゴンミラー,シンチレータ,光検出素子を備え、前記ポリゴ ンミラーの回転軸は前記反射鏡の焦点に配置され、前記反射鏡の背後に光検出素 子が配置された、読取装置。  [37] A parabolic cylindrical reflector, a polygon mirror, a scintillator, and a light detection element are provided, the rotation axis of the polygon mirror is disposed at the focal point of the reflection mirror, and the light detection element is behind the reflection mirror. Placed reader.
[38] 前記放物面が全体放物面であり、前記反射鏡の中央に光通過孔が形成されており、 前記光通過孔の背後に前記反射鏡の背後に前記光検出素子が配置された、請求 項の 37の読取装置。 [38] The paraboloid is a whole paraboloid, and a light passing hole is formed at the center of the reflecting mirror, and the light detecting element is disposed behind the light reflecting hole behind the light passing hole. The reader according to claim 37.
[39] 前記放物面が半放物面である、請求項 37の読取装置。 [39] The reader according to claim 37, wherein the paraboloid is a semi-paraboloid.
[40] 前記放物面が半放物面よりも小さい放物面であり、前記ポリゴンミラーがオフセット配 置されている、請求項 37の読取装置。  [40] The reading device according to claim 37, wherein the paraboloid is a paraboloid smaller than a semiparaboloid, and the polygon mirror is offset.
PCT/JP2006/325227 2005-12-19 2006-12-19 Card capable of performing authentication by radio-active material chip WO2007072796A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007551084A JPWO2007072796A1 (en) 2005-12-19 2006-12-19 A card that can be identified with radioactive material chips

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005365416 2005-12-19
JP2005-365416 2005-12-19
JP2006-090328 2006-03-29
JP2006090328 2006-03-29
JP2006200823 2006-07-24
JP2006-200823 2006-07-24

Publications (1)

Publication Number Publication Date
WO2007072796A1 true WO2007072796A1 (en) 2007-06-28

Family

ID=38188573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325227 WO2007072796A1 (en) 2005-12-19 2006-12-19 Card capable of performing authentication by radio-active material chip

Country Status (3)

Country Link
JP (1) JPWO2007072796A1 (en)
TW (1) TW200734968A (en)
WO (1) WO2007072796A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072387A1 (en) 2007-12-03 2009-06-11 International Frontier Technology Laboratory, Inc. Genuine & counterfeit certification member
US20210247965A1 (en) * 2018-08-13 2021-08-12 Eyl Inc. Random number generation method and random number generator using inorganic scintillator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300859A (en) * 1995-05-12 1996-11-19 Toppan Printing Co Ltd Information recording medium and hologram transfer foil
JPH1016458A (en) * 1996-07-02 1998-01-20 Micro Denshi Syst:Kk Data recording medium and its truth or falsehood deciding system
JP2000132659A (en) * 1998-10-26 2000-05-12 Tokyo Hoso:Kk Certification device, certification method and certification system
JP2000235636A (en) * 1998-12-14 2000-08-29 Hitachi Ltd Information medium using defect information
JP2004150932A (en) * 2002-10-30 2004-05-27 Toshiba Corp Radiation plane surface detector
JP2005017033A (en) * 2003-06-24 2005-01-20 Shimadzu Corp Radiation detector and manufacturing method thereof
JP2005228445A (en) * 2004-02-16 2005-08-25 Nichia Chem Ind Ltd Value guaranteed article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300859A (en) * 1995-05-12 1996-11-19 Toppan Printing Co Ltd Information recording medium and hologram transfer foil
JPH1016458A (en) * 1996-07-02 1998-01-20 Micro Denshi Syst:Kk Data recording medium and its truth or falsehood deciding system
JP2000132659A (en) * 1998-10-26 2000-05-12 Tokyo Hoso:Kk Certification device, certification method and certification system
JP2000235636A (en) * 1998-12-14 2000-08-29 Hitachi Ltd Information medium using defect information
JP2004150932A (en) * 2002-10-30 2004-05-27 Toshiba Corp Radiation plane surface detector
JP2005017033A (en) * 2003-06-24 2005-01-20 Shimadzu Corp Radiation detector and manufacturing method thereof
JP2005228445A (en) * 2004-02-16 2005-08-25 Nichia Chem Ind Ltd Value guaranteed article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072387A1 (en) 2007-12-03 2009-06-11 International Frontier Technology Laboratory, Inc. Genuine & counterfeit certification member
US9202328B2 (en) 2007-12-03 2015-12-01 International Frontier Technology Laboratory, Inc. Authentication verifying method, authentication verifying member and authentication verifying member producing method
US20210247965A1 (en) * 2018-08-13 2021-08-12 Eyl Inc. Random number generation method and random number generator using inorganic scintillator

Also Published As

Publication number Publication date
JPWO2007072796A1 (en) 2009-05-28
TW200734968A (en) 2007-09-16

Similar Documents

Publication Publication Date Title
JP5274020B2 (en) Authentic card
US8408470B2 (en) Object for authentication verification, authentication verifying chip reading device and authentication judging method
US8397987B2 (en) Card which can be authenticated by hologram chip
JP5654541B2 (en) Method and apparatus for creating and subsequently verifying authentic printed articles
US5838814A (en) Security check method and apparatus
US20070113076A1 (en) Keys
GB2434642A (en) Optical Authentication
EP2237247A1 (en) Genuine&counterfeit certification member
JP4935019B2 (en) Article registration apparatus, article registration program, and authentication system
CN104881811B (en) Management method, system and device for electronization of bill information
DE102006049284B4 (en) Method for creating and checking secure plaintext printing and device and information carrier therefor
WO2007072795A1 (en) Card capable of performing true/false judgment by a fluorescent particle chip
CN101405753B (en) Card capable of performing true/false judgment by a fluorescent particle chip
WO2007072796A1 (en) Card capable of performing authentication by radio-active material chip
TW440825B (en) Data storage medium and reading device thereof
EP2001688B1 (en) Equipment to process a presentation of a security print on an information carrier
JP2005193584A (en) Forgery preventing information carrier and its authenticating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551084

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834937

Country of ref document: EP

Kind code of ref document: A1