WO2007071724A1 - Moyen d'eclairage a diodes electroluminescentes - Google Patents

Moyen d'eclairage a diodes electroluminescentes Download PDF

Info

Publication number
WO2007071724A1
WO2007071724A1 PCT/EP2006/070002 EP2006070002W WO2007071724A1 WO 2007071724 A1 WO2007071724 A1 WO 2007071724A1 EP 2006070002 W EP2006070002 W EP 2006070002W WO 2007071724 A1 WO2007071724 A1 WO 2007071724A1
Authority
WO
WIPO (PCT)
Prior art keywords
diodes
lighting means
means according
sheet
diode
Prior art date
Application number
PCT/EP2006/070002
Other languages
English (en)
Inventor
Hugues Lefevre
Original Assignee
Agc Flat Glass Europe Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc Flat Glass Europe Sa filed Critical Agc Flat Glass Europe Sa
Priority to EA200801569A priority Critical patent/EA012477B1/ru
Priority to EP06841503A priority patent/EP1965976A1/fr
Publication of WO2007071724A1 publication Critical patent/WO2007071724A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10183Coatings of a metallic or dielectric material on a constituent layer of glass or polymer being not continuous, e.g. in edge regions
    • B32B17/10192Coatings of a metallic or dielectric material on a constituent layer of glass or polymer being not continuous, e.g. in edge regions patterned in the form of columns or grids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10541Functional features of the laminated safety glass or glazing comprising a light source or a light guide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0326Inorganic, non-metallic conductor, e.g. indium-tin oxide [ITO]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]

Definitions

  • the present invention relates to lighting using light emitting diodes (LEDs).
  • diodes as light sources is still limited because of the particularities of implementation of these elements. Individually LEDs provide only a relatively low luminous flux. In general, the very limited spectrum of LEDs is also a factor that does not allow a satisfactory color rendering especially compared to that of incandescent lamps.
  • LEDs for lighting has a number of interesting features. Among these, the lifetime of LEDs is particularly remarkable compared to that of incandescent lamps. Another feature is the fact that LEDs dissipate little heat which allows them to be used in conditions that make incandescent lamps inconvenient. A Another very popular characteristic is the luminous efficiency, that is the quantity of light produced by energy consumed. However, the use of diodes as a light source still offers many other advantages in terms of convenience of implementation, in particular because of their very small dimensions, which allows their implantation in locations that prohibit or make it difficult to install light bulbs. incandescence or discharge.
  • Incandescent lamps because of the energy dissipated in heat, have a relatively low luminous efficiency which is between 12 and 20 lm / W. Fluorescence lamps have a much higher efficiency which is between 50 and 80 lm / W.
  • the corresponding characteristic of the LEDs is in permanent progress. It is located with current LEDs between 15 and 60 lm / W and should reach and quickly exceed the level of fluorescent lamps. The estimate of the order of 80 to 100 lm / W at 5 years is presented as the most likely.
  • These luminous efficiency values are those corresponding to the diode itself with the protective envelope.
  • the quality of the latter is an element that can alter the efficiency due to insufficient light transmission.
  • the envelopes used led to a rapid decrease in efficiency due to opacification that could reduce light transmission by 30% or more after only a few hundred hours of operation. Envelopes including ceramics developed recently can prevent this loss of efficiency.
  • the diodes are normally disposed behind the sheet of transparent material which protects them by avoiding exposing them to mechanical hazards related to traditional modes of use.
  • the lighting means are in particular subject to regular cleaning. In the absence of this protective sheet the diodes themselves or their fasteners and connections could be damaged.
  • the diodes In order to constitute conveniently usable lighting assemblies, it has been proposed in particular to arrange the diodes in a laminated assembly of the type consisting of at least two sheets of transparent materials, including a sheet of mineral or organic glass, and a thermoplastic sheet. in which the diodes are incorporated. These sets also include a diode supply circuit most often in the form of one or more conductive layers disposed on the faces of the sheets constituting the laminated assembly. In this type of laminated assembly, the most usual consists of an assembly comprising two rigid sheets associated with one or more thermoplastic sheets.
  • the supply circuit is preferably located. behind the diodes in relation to the face from which the light emanates.
  • the circuit can be opaque.
  • substantially transparent conductive layers makes it possible to arrange the diodes behind these conductive layers.
  • the realization of lighting means must still satisfy various conditions.
  • the luminous flux must be sufficiently concentrated and powerful in particular to limit the dimensions of these means.
  • the nature of the constituents of the laminates and the incorporation of the diodes in materials of a thermoplastic nature must take into account the dissipation of the heat generated by the diodes. This condition is all the more delicate as the dimensions of the diodes being very reduced the heat that their operation produces, is punctually very concentrated.
  • the diodes are incorporated in a weakly conductive medium, that of a thermoplastic sheet, the evacuation of heat is made more difficult.
  • optical characteristics of the materials used in these laminates also partly determine the transmission efficiency of the light flux generated by the diodes. It is necessary to adapt accordingly the mode of incorporation of the diodes in these lighting means.
  • the invention proposes lighting means which take into account these different requirements and others which will appear later in this description.
  • the lighting means comprises a laminated assembly formed of at least one sheet of an organic or inorganic glass associated with at least one thermoplastic sheet in which the diodes are incorporated.
  • the choice of the light-emitting diodes, in particular their power, their operating conditions, and moreover their distribution in the laminated assembly, are such that the luminous flux generated is from less300 Im, preferably at least 500 Im, and most preferably is greater than 1000 Im.
  • the lighting means according to the invention gather on a surface of restricted dimensions a large number of diodes.
  • the conditions for obtaining can also be directly related to the power of these lighting means.
  • the luminous flux reported on the surface of these means is at least 500 Im per square meter of surface of this lighting means.
  • This power is chosen on the one hand to provide illumination means of dimensions compatible with the most common uses and on the other hand to take into account what can be achieved by means of the characteristics of the commercially available diodes.
  • the power can amount to at least 1000 lm / m 2 , and preferably to 2500 lm / m 2 and more.
  • the temperature rise is a factor that limits the point power of each diode.
  • the resorption of the heat generated by the operation of the diodes is relatively modest in the materials traditionally used in the manufacture of these sets. These include glass sheets which are known to be poor conductors of heat, it is it is also the polymeric materials constituting the interlayer sheets in which the diodes are housed.
  • interlayer materials such as polyacetals, in particular polyvinyl butyrals (PVB), ethylene vinyl acetate (EVA) or any analogous material used in particular in conventional manner in laminated glazings.
  • PVB polyvinyl butyrals
  • EVA ethylene vinyl acetate
  • the temperature near the diodes should preferably not exceed 80 ° C. It is advantageously less than 60 ° C.
  • each diode Given the various characteristics of diodes currently commercially available, including the luminous efficiency, but also the dimensions of these diodes which partially condition the heat exchange with the surrounding environment, namely the polymer sheet in which the diodes are housed it is advantageous to limit the operating power of each diode. In practice, it is preferable to ensure that the power dissipated by each diode does not exceed 2 W, and preferably not 1.5 W. Most often the operating power of each diode is maintained at less than 1 W and preferably at less than 0.5 W.
  • the nominal power of the diodes used may be substantially greater than that of their use. It is possible for example to use diodes at half or less of their power nominal. By operating the diodes at a reduced power, their "wear" is slowed down but, above all, their heating is limited. For this reason one can be led to use diodes of 5 W or more.
  • the choice of high nominal powers determines the cost and the volume of the diodes. It is therefore necessary to choose the best compromise between the nominal power and that of operation. As a rule, the operating power will not be less than a quarter and preferably one third of the nominal power. This operating power is also preferably at most 4/5 of the nominal power and preferably at most 3 A of this power.
  • the heating of the lighting means according to the invention arises not only from the diodes but also from the supply circuit thereof.
  • the lighting means in the form of panels offer only a transparent face to the light emitted by all the diodes it is possible to design power circuits in which the joule dissipation is very modest.
  • Metal conductive circuits can indeed offer a very low resistance.
  • the power supply is interposed in the path of the light emitted, and this power supply circuit must remain practically invisible, this is the case of transparent luminous panels, the supply is obtained traditionally either by means of very thin metal son taken in the laminate, or even using conductive layers of very small thicknesses to not obstruct the light transmission.
  • the diodes In domestic applications in particular, it will not exceed a voltage of more than 30Ov.
  • the operating voltage of each LED generally does not exceed 50 volts, and most often is less than 25 volts.
  • the arrangement of the LEDs in series makes it possible to increase the supply voltages very sensitively.
  • the number of LEDs placed in series also determines the reliability of the entire series. If a diode is faulty the whole series is affected. To limit this risk of alteration of the lighting means, one solution is for example to double each diode in parallel.
  • the nature and the configuration of the circuit as well as the supply voltage are chosen so that the Joule effect energy dissipation due to the supply circuit is as low as possible and advantageously is not greater than 50% of the total energy, and preferably not more than 30%.
  • these layers when thin layers constitute the power supply network of the diodes, these layers advantageously offer the lowest resistance compatible with the highest possible light transmission. Under the usual optically acceptable conditions, the light transmission of the layers is advantageously more than 90%.
  • the thin layers used preferably a resistance that is not greater than 30 ⁇ / [], and preferably not greater than 20 ⁇ / Q.
  • the means can offer only one transparent face
  • the other side is advantageously made of a good heat conducting material to facilitate the evacuation thereof.
  • the face in question is advantageously formed of a metal sheet, and in this case is an element of the laminated assembly.
  • the latter is constituted so as to reduce the resistance as much as possible.
  • the feed is advantageously made by means of conducting wires.
  • the diodes with the best light efficiency are used.
  • diodes are offered with a reflective element in the form of a cup whose concave face is turned towards the diode.
  • This construction not only makes it possible to reflect the flux towards one side only of the lighting means, but also the flux is reduced to a beam whose opening can thus be limited.
  • This opening is advantageously such that the incidence of the luminous flux at the interface of the glass sheet with the outside is not greater than 60 degrees of angle, preferably this incidence is kept below 45 degrees of angle and even better at less than
  • FIGS. 1a and 1b show in a cavalier perspective a laminated lighting assembly by means of diodes according to the invention
  • FIG. 2a illustrates in perspective the path of the light flux coming from a diode in a laminate of the type presented in FIG. 1;
  • Figure 2b shows in section and in an enlarged manner the flow of the luminous flux presented in 2a;
  • Figure 3 is a graph illustrating a typical distribution of light intensity as a function of the direction of light flux with respect to the transmission axis.
  • Figure la la presents partially "exploded" the constituent elements of lighting means according to the invention.
  • This form comprises a transparent sheet 1 which is for example a glass sheet which can be transparent or translucent if it is desired a diffuse light effect.
  • a sheet of thermoplastic material 2 transparent as the glass sheet itself is disposed between the sheet 1 and a series of diodes 3 which will be incorporated during assembly in the thermoplastic sheet 2.
  • the diodes 3 are uniformly distributed over a supply circuit constituted for example by a thin conductive layer deposited on a second rigid sheet 5.
  • the diodes and the conductive layer or the conductive wires feeding the diodes are disposed on a flexible sheet which replaces the sheet 5.
  • the flexible sheet carrying the supply circuit is for example a PET sheet.
  • the layer supplying the diodes is divided for example by ablation along lines 4 separating conductive strips.
  • the diodes are connected to two contiguous strips each connected to a terminal of the power supply.
  • the diodes are in parallel in rows of 6, and in series by 9.
  • the diodes are relatively little distant from each other so as to develop a relatively large luminance intensity despite what each offers only a relatively low power typically of the order of 0.5 W or a little more.
  • 54 diodes are collected under dimensions of dimensions, for example 20 ⁇ 30 cm.
  • the assembly of the constituent elements is represented in Ib.
  • the laminated considered brings together the two sheets 1 and 5 through the intermediate sheet 2.
  • the diodes are introduced into the interlayer sheet during a typical operation of forming laminated glazing.
  • the sheets are subjected to pressure, after having been brought to a softening temperature of the interlayer thermoplastic sheet 2.
  • the connectors supplying the conductive strips are not shown. These connectors may be applied at the time of assembly or after it to the two conductive strips at the ends.
  • a luminous flux of 500 Im order equivalent to the flux of a 40 W incandescent lamp In an embodiment obtained by combining two sheets of glass 3mm thick, a 0.76mm PVB interlayer sheet and a set of 54 LEDs sold under the trade name of Nishia Riguel white light, a luminous flux of 500 Im order equivalent to the flux of a 40 W incandescent lamp.
  • the flux per unit area is thus about 8000 lm / m 2 .
  • the dimensions and the number of LEDs can be increased according to the desired flux, provided that the density conditions of the LEDs remain compatible with a local temperature rise meeting the indicated conditions.
  • the conductive circuit consists of a thin layer of tin oxide doped with antimony, deposited on the sheet 5. Its resistance is of the order of 15 ⁇ / Q. In this configuration, the highest temperature near the diode is of the order of 50 0 C.
  • the radiation from the diode 3 incorporated in the interlayer sheet 2 passes through it and the transparent sheet 1.
  • the rays are diffracted or reflected.
  • Figure 2b illustrates this feature for the case for example of a glass sheet 1 in contact with the surrounding air.
  • the index of the glass of the order of 1.5 makes the diode rays that are inclined (alfa) more than about 60 degrees of angle from the normal at the glass / air interface are reflected inwards and by successive reflections do not participate in the luminous flux useful for lighting.
  • the distribution of the luminous flux as a function of the direction relative to the normal to the glass sheet follows a curve of the type shown in FIG.

Landscapes

  • Laminated Bodies (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

La présente invention concerne des moyens d'éclairage dont les éléments générateurs de flux lumineux sont des diodes électroluminescentes. Le moyen d'éclairage à diodes selon l'invention comprend un ensemble feuilleté formé d'au moins une feuille d'un verre organique ou minéral associée à au moins une feuille thermoplastique dans laquelle les diodes sont incorporées, les caractéristiques individuelles de puissance de chaque diode, leurs conditions fonctionnement, et la distribution des diodes sur la surface des feuilles étant telles que le flux lumineux généré est d'au moins 300 lm.

Description

Moyen d'éclairage à diodes électroluminescentes
La présente invention concerne l'éclairage au moyen de diodes électroluminescentes (LED).
L'utilisation de diodes comme sources lumineuses est encore limitée du fait des particularités de mise en oeuvre de ces éléments. Individuellement les LED ne fournissent qu'un flux lumineux relativement faible. En règle générale, le spectre très restreint des LED est aussi un facteur qui ne permet pas un rendu des couleurs satisfaisant notamment par rapport à celui des lampes à incandescence.
On sait néanmoins faire en sorte de produire des LED, ou associations de LED, qui permettent de retrouver une lumière dont le spectre est suffisamment large pour constituer un éclairage donnant un bon rendu des couleurs.
Dans tous les cas l'éclairage au moyen de LED nécessite de rassembler un nombre important d'unités pour atteindre les puissances lumineuses qui correspondent à celles obtenues au moyen de lampes à incandescences ou à décharge, dites à fluorescence.
En dépit des contraintes indiquées ci-dessus l'utilisation de LED pour l'éclairage présente un certain nombre de caractéristiques intéressantes. Parmi celles-ci, la durée de vie des LED est particulièrement remarquable comparée à celle des lampes à incandescence. Une autre caractéristique est le fait que les LED dissipent peu de chaleur ce qui permet de les utiliser dans des conditions qui rendent les lampes à incandescence mal commodes. Une autre caractéristique très recherchée est l'efficacité lumineuse, autrement dit la quantité de lumière produite par énergie consommée. Mais l'utilisation de diodes comme source lumineuse offre encore beaucoup d'autres avantages en terme de commodité de mise en oeuvre notamment en raison de leurs dimensions très réduites qui permetentt leur implantation dans des emplacements qui interdisent ou rendent difficile l'implantation de lampes à incandescence ou à décharge.
Les lampes à incandescence, en raison même de l'énergie dissipée en chaleur, ont une efficacité lumineuse relativement faible qui s'établit entre 12 à 20 lm/W. Les lampes à fluorescence ont une efficacité bien supérieure qui se situe entre 50 et 80 lm/W. La caractéristique correspondante des LED est en progrès permanent. Elle se situe avec les LED actuels entre 15 et 60 lm/W et devrait atteindre et dépasser rapidement le niveau des lampes à fluorescence. L'estimation de l'ordre de 80 à 100 lm/W à terme de 5 ans est présentée comme la plus probable.
Ces valeurs d'efficacité lumineuse sont celles correspondant à la diode proprement dite avec l'enveloppe protectrice. La qualité de cette dernière est un élément qui peut altérer l'efficacité en raison d'une transmission lumineuse insuffisante. Dans un passé récent les enveloppes utilisées conduisaient à une diminution rapide de l'efficacité par suite d'une opacification qui pouvait réduire de 30% ou plus la transmission lumineuse après seulement quelques centaines d'heures de fonctionnement. Les enveloppes notamment céramiques développées récemment permettent d'éviter cette perte d'efficacité.
Pour réaliser un éclairage de puissance suffisante pour les utilisations traditionnellement conduites au moyen de lampes à incandescence ou à fluorescence, compte tenu de la faible puissance de chaque diode, il est nécessaire de les associer en nombre dans un même ensemble. Parmi les moyens rassemblant ces diodes, les plus satisfaisants sont constitués de panneaux comprenant au moins une feuille de matériau transparent. Dans ces panneaux les diodes sont disposées suivant un arrangement qui tient compte de caractéristiques à la fois techniques et esthétiques.
Dans tous les cas les diodes sont disposées normalement derrière la feuille de matériau transparent qui les protège en évitant de les exposer aux aléas mécaniques liés aux modes traditionnels d'utilisation. Les moyens d'éclairage sont en particulier soumis à des nettoyages réguliers. En l'absence de cette feuille protectrice les diodes elles-mêmes ou leurs fixations et connexions risqueraient d'être détériorées.
Pour constituer des ensembles d'éclairage commodément utilisables il a été proposé notamment de disposer les diodes dans un ensemble feuilleté du type constitué d'au moins deux feuilles de matériaux transparents, dont une feuille de verre minéral ou organique, et d'une feuille thermoplastique dans laquelle les diodes sont incorporées. Ces ensembles comprennent encore un circuit d'alimentation des diodes le plus souvent sous forme d'une ou plusieurs couches conductrices disposées sur les faces des feuilles constituant l'ensemble feuilleté. Dans ce type d'assemblage feuilleté, le plus usuel consiste en un ensemble comprenant deux feuilles rigides associées à une ou plusieurs feuilles thermoplastiques.
Dans la pratique lorsque l'éclairage est dirigé d'un seul côté de l'ensemble feuilleté -ce qui est le cas notamment d'éclairage diposé sur un plafond ou une paroi d'un local- le circuit d'alimentation est situé de préférence derrière les diodes par rapport à la face d'où émane la lumière. Dans ce cas le circuit peut être opaque. Le cas échéant l'utilisation de couches conductrices essentiellement transparentes permet de disposer les diodes derrière ces couches conductrices.
La réalisation de moyens d'éclairage doit encore satisfaire à diverses conditions. Le flux lumineux doit être suffisamment concentré et puissant notamment pour limiter les dimensions de ces moyens. A l'opposé la nature des constituants des feuilletés et l'incorporation des diodes dans des matériaux de nature thermoplastique doit tenir compte de la dissipation de la chaleur générée par les diodes. Cette condition est d'autant plus délicate que les dimensions des diodes étant très réduites la chaleur que leur fonctionnement produit, est ponctuellement très concentrée. De plus les diodes étant incorporées dans un milieu faiblement conducteur, celui de a feuille thermoplastique, l'évacuation de la chaleur est rendue plus difficile.
Les caractéristiques optiques des matériaux utilisés dans ces feuilletés conditionnent aussi en partie le rendement de transmission du flux lumineux généré par les diodes. Il est nécessaire d'adapter en conséquence le mode d'incorporation des diodes dans ces moyens d'éclairage.
L'invention propose des moyens d'éclairage qui tiennent compte de ces différentes exigences et d'autres qui apparaîtront dans la suite de cette description.
Le moyen d'éclairage selon l'invention comprend un ensemble feuilleté formé d'au moins une feuille d'un verre organique ou minéral associée à au moins une feuille thermoplastique dans laquelle les diodes sont incorporées. Pour ce moyen d'éclairage le choix des diodes électroluminescentes, en particulier leur puissance, leurs conditions de fonctionnement, et par ailleurs leur distribution dans l'ensemble feuilleté, sont tels que le flux lumineux généré est d'au moins300 Im, de préférence d'au moins 500 Im, et de façon particulièrement préférée est supérieur à 1000 Im.
Pour obtenir ces flux lumineux, les moyens d'éclairage selon l'invention rassemblent sur une surface de dimensions restreintes un nombre important de diodes. Les conditions d'obtention peuvent être aussi rapportées directement à la puissance de ces moyens d'éclairage. Ainsi le flux lumineux rapporté à la surface de ces moyens est d'au moins 500 Im par mètre carré de surface de ce moyen d'éclairage. Cette puissance est choisie d'une part pour offrir des moyens d'éclairage de dimensions compatible avec les usages les plus fréquents et d'autre part pour tenir compte de ce qui peut être réalisé au moyen des caractéristiques propres des diodes commercialement disponibles.
Ce choix est aussi le résultat d'un compromis entre des distributions très denses de diodes telles que le flux lumineux généré soit aussi élevé que possible, et la nécessité de maintenir l'ensemble dans des conditions de température compatibles avec la tenue des matériaux constitutifs d'une part et la meilleure efficacité lumineuse des diodes d'autres part. Fonction notamment de la qualité des diodes utilisées et des matériaux constituant les ensembles feuilletés la puissance peut s'élever au moins à 1000 lm/m2, et de préférence à 2500 lm/m2 et d'avantage.
Pour les ensembles feuilletés l'élévation de température est un facteur qui limite la puissance ponctuelle de chaque diode. La résorption de la chaleur dégagée par le fonctionnement des diodes est relativement modeste dans les matériaux traditionnellement utilisés dans la confection de ces ensembles. Il s'agit notamment des feuilles de verre dont on sait qu'elles sont mauvaises conductrices de la chaleur, il s'agit aussi des matériaux polymères constituant les feuilles intercalaires dans lesquelles les diodes sont logées.
Dans les assemblages selon l'invention on met avantageusement en oeuvre les matériaux intercalaires usuels, tel que les polyacétals, notamment les polyvinylbutyrals (PVB), l'ethylène vinylacétate (EVA) ou de tout matériau analogue utilisé notamment de façon traditionnelle dans les vitrages feuilletés. Avec ces matériaux thermoplastiques, la température à proximité des diodes ne doit pas de préférence dépasser 800C. Elle est avantageusement inférieure à 600C.
II est d'autant plus nécessaire de maintenir la température aussi faible que possible que l'efficacité lumineuse de chaque diode décroît quant la température s'élève. Autrement dit plus la température est élevée plus grande est la part de l'énergie consommée qui se dégage sous forme de chaleur. Cette différence est extrêmement sensible, ainsi l'efficacité lumineuse des diodes peut être réduite de plus 30% lorsque la température de la diode passe de 500C à 800C.
Compte tenu des diverses caractéristiques des diodes actuellement disponibles dans le commerce, notamment de l'efficacité lumineuse, mais aussi des dimensions de ces diodes qui conditionnent en partie les échanges thermiques avec le milieu environnant, à savoir la feuille polymère dans laquelle les diodes sont logées, il est avantageux de limiter la puissance de fonctionnement de chaque diode. En pratique, il est préférable de faire en sorte que la puissance dissipée par chaque diode ne dépasse pas 2 W, et de préférence pas 1,5 W. Le plus souvent la puissance de fonctionnement de chaque diode est maintenue à moins de 1 W et de façon préférée à moins de 0,5 W.
La puissance nominale des diodes utilisées peut être sensiblement supérieure à celle de leur utilisation. Il est possible par exemple d'utiliser des diodes à la moitié ou moins de leur puissance nominale. En faisant fonctionner les diodes à une puissance réduite, on ralentit leur "usure" mais surtout on limite leur échauffement. Pour cette raison on peut être conduit à utiliser des diodes de 5 W ou davantage. Le choix de puissances nominales élevées conditionne le coût et le volume des diodes. Il convient donc de faire le choix du meilleur compromis entre la puissance nominale et celle de fonctionnement. En règle générale la puissance de fonctionnement ne sera pas inférieure au quart et de préférence au tiers de la puissance nominale. Cette puissance de fonctionnement est aussi de préférence au plus des 4/5 èmes de la puissance nominale et de préférence au plus des 3A de cette puissance.
L'échauffement des moyens d'éclairage selon l'invention provient non seulement des diodes mais aussi du circuit d'alimentation de celles-ci. Lorsque les moyens d'éclairage sous forme de panneaux n'offrent qu'une face transparente à la lumière émise par l'ensemble des diodes il est possible de concevoir des circuits d'alimentation dans lesquels la dissipation par effet joule est très modeste. Des circuits conducteurs métalliques peuvent en effet offrir une résistance très faible. Lorsque à l'inverse l'alimentation électrique est interposée sur le trajet de la lumière émise, et que ce circuit d'alimentation doit rester pratiquement invisible, c'est le cas de panneaux lumineux transparents, l'alimentation est obtenue traditionnellement soit au moyen de fils métalliques très fins pris dans le feuilleté, soit encore à l'aide de couches conductrices d'épaisseurs très faibles pour ne pas faire obstacle à la transmission lumineuse. Ces couches bien connues dans le domaine des vitrages feuilletés, notamment des vitrages chauffants, présentent des résistances non négligeables, et ce d'autant plus que leur épaisseur est plus petite. Par ailleurs l'effet joule est d'autant plus marqué localement que le contact de la couche conductrice avec les conducteurs alimentant chaque diode est moins étendu, et qu'en conséquence, à proximité de ces conducteurs le courant électrique se concentre sur une surface restreinte de la couche résultant en un accroissement relatif de la résistance.
Pour réduire au mieux l'effet joule il est avantageux d'alimenter les diodes sous la tension la plus élevée possible compatible avec une utilisation commode. Dans les applications domestiques notamment on ne dépassera pas de préférence une tension de plus de 30Ov. La tension de fonctionnement de chaque LED ne dépasse pas en règle générale 50 volts, et le plus souvent s'établit à moins de 25 volts. La disposition des LEDs en série permet d'accroître les tensions d'alimentation de façon très sensible. Le nombre de LEDs mis en série conditionne aussi la fiabilité de la série tout entière. Si une diode est défaillante toute la série est affectée. Pour limiter ce risque d'altération du moyen d'éclairage, une solution consiste par exemple à doubler chaque diode en parallèle.
Dans tous les cas la nature et la configuration du circuit de même que la tension d'alimentation sont choisies de façon que la dissipation d'énergie par effet joule due au circuit d'alimentation soit aussi faible que possible et avantageusement ne soit pas supérieure à 50% de l'énergie totale, et de préférence pas supérieure à 30%.
Dans le cas de l'invention, lorsque des couches minces constituent le réseau d'alimentation électrique des diodes, ces couches offrent avantageusement la résistance la plus faible compatible avec la transmission lumineuse la plus élevée possible. Dans les conditions habituelles acceptables optiquement, la transmission lumineuse des couches est avantageusement de plus de 90%.
Pour les tensions appliquées convenant pour les ensembles de diodes alimentées, les couches minces utilisées offrent de préférence une résistance qui n'est pas supérieure à 30 Ω/[], et de préférence pas supérieure à 20 Ω/Q.
Lorsque les moyens peuvent n'offrir qu'une face transparente, l'autre face est avantageusement constituée d'un matériau bon conducteur de la chaleur afin de faciliter l'évacuation de celle-ci.
La face en question est avantageusement formée d'une feuille métallique, et dans ce cas est un élément de l'ensemble feuilleté. Dans ce cas il va de soi que pour minimiser les pertes énergétiques du circuit d'alimentation, celui-ci est constitué de façon à réduire le plus possible la résistance. La transparence n'étant plus imposée sur la face comportant la feuille métallique, l'alimentation est avantageusement faite au moyen de fils conducteurs.
Faute de pouvoir éliminer de manière particulièrement commode la chaleur formée en raison des matériaux entrant dans la structure des moyens d'éclairage selon l'invention, on s'efforce de minimiser cette chaleur et pour cela on utilise les diodes offrant la meilleure efficacité lumineuse. Dans la pratique compte tenu des disponibilités on utilise avantageusement des diodes dont l'efficacité lumineuse n'est pas inférieure à 20 lm/W et de préférence supérieure à 30 lm/W. Dans la mesure de leur disponibilité dans le commerce on préfère des diodes dont l'efficacité est égale ou supérieure à 40 lm/W.
Lorsque l'on optimise l'efficacité lumineuse engendrée par les diodes il faut aussi s'efforcer de faire en sorte que la structure des moyens d'éclairage, et donc celle du feuilleté mis en oeuvre transmette au mieux le flux lumineux créé. Il est en particulier nécessaire de faire en sorte que le flux lumineux soit pratiquement disponible dans sa totalité pour l'éclairage. Une part de ce flux du fait des réflexions qui peuvent se développer à l'intérieur du feuilleté, peut être prisonnière de ce feuilleté. Pour éviter que cette part du flux soit significative on s'efforce de limiter l'angle d'émission par rapport à la normale à l'interface entre la feuille de verre organique ou minéral et l'atmosphère environnante.
De manière traditionnelle, des diodes sont offertes avec un élément réfléchissant sous forme d'une coupelle dont la face concave est tournée vers la diode. Cette construction permet non seulement de réfléchir le flux vers une face seulement des moyens d'éclairage, mais encore le flux est ramené à un faisceau dont l'ouverture peut ainsi être limitée. Cette ouverture est avantageusement telle que l'incidence du flux lumineux à l'interface de la feuille de verre avec l'extérieur ne soit pas supérieure à 60 degrés d'angle, de préférence cette incidence est maintenue inférieure à 45 degrés d'angle et mieux encore à moins de
30 degrés.
L'invention est décrite ci-après en détail en faisant référence aux planches de dessins dans lesquelles :
les figures la et Ib présentent en perspective cavalière un ensemble feuilleté d'éclairage au moyen de diodes selon l'invention;
la figure 2a illustre en perspective le cheminement du flux lumineux issu d'une diode dans un feuilleté du type présenté à la figure 1;
la figure 2b présente en coupe et de manière agrandie le cheminement du flux lumineux présenté en 2a;
la figure 3 est un graphique illustrant une répartition typique de l'intensité lumineuse en fonction de la direction du flux lumineux par rapport à l'axe d'émission. La figure la présente de manière partiellement "éclatée" les éléments constitutifs de moyens d'éclairage selon l'invention. Cette forme comporte une feuille transparente 1 qui est par exemple une feuille de verre qui peut être transparente ou translucide si l'on souhaite un effet de lumière diffuse. Une feuille de matériau thermoplastique 2 transparente comme la feuille de verre elle-même est disposée entre la feuille 1 et une série de diodes 3 lesquelles seront incorporées au cours de l'assemblage dans la feuille thermoplastique 2.
Dans la forme présentée les diodes 3 sont uniformément distribuées sur un circuit d'alimentation constitué par exemple par une couche conductrice mince déposée sur une deuxième feuille rigide 5.
Dans une forme alternative les diodes et la couche conductrice ou les fils conducteurs alimentant les diodes sont disposées sur une feuille souple qui se substitue à la feuille 5. La feuille souple portant le circuit d'alimentation est par exemple une feuille de PET.
La couche alimentant les diodes est divisée par exemple par ablation suivant des traits 4 séparant des bandes conductrices. Les diodes sont connectées à deux bandes contiguës chacune reliée à une borne de l'alimentation.
Dans la forme présentée les diodes sont en parallèle en rangée de 6, et en série par 9. Les diodes sont relativement peu distantes les unes des autres de manière à développer une intensité luminance relativement importante en dépit de ce que chacune n'offre qu'une puissance relativement faible typiquement de l'ordre de 0,5 W ou un peu plus. Dans l'exemple présenté 54 diodes sont rassemblées dans des conditions de dimensions par exemple de 20x30 cm.
Toujours pour l'exemple envisagé, l'assemblage des éléments constitutif est représenté en Ib. Le feuilleté considéré rassemble les deux feuilles 1 et 5 par l'intermédiaire de la feuille intercalaire 2. Les diodes sont introduites dans la feuille intercalaire au cours d'une opération typique de formation des vitrages feuilletés. Pour cela les feuilles sont soumises à une pression, après avoir été portées à une température de ramollissement de la feuille thermoplastique intercalaire 2.
Dans l'assemblage réalisé, ne sont pas représentés les connecteurs alimentant les bandes conductrices. Ces connecteurs peuvent êtres appliqués au moment de l'assemblage ou postérieurement à celui-ci aux deux bandes conductrices situées aux extrémités.
Dans une réalisation obtenue en associant deux feuilles de verre de 3mm d'épaisseur, une feuille intercalaire de PVB de 0,76mm et un ensemble de 54 LED vendus sous le nom commercial de Nishia Riguel lumière blanche, on obtient un flux lumineux de l'ordre de 500 Im équivalant au flux d'une lampe à incandescence de 40 W. Le flux par unité de surface s'établit ainsi à environ 8000 lm/m2.
Un ensemble de même nature formé d'un panneau de 50x50 cm, rassemblant 225 LED distribués de façon régulière, développe un flux lumineux de l'ordre de 2000 Im correspondant au flux d'une lampe à incandescence de plus de 150 W.
Bien entendu les dimensions et le nombre de LED peut être accru en fonction du flux souhaité, pour autant que les conditions de densité des LED reste compatible avec une élévation locale de température répondant aux conditions indiquées.
Le circuit conducteur est constitué d'une couche mince d'oxyde d'étain dopé à l'antimoine, déposée sur la feuille 5. Sa résistance est de l'ordre de 15 Ω/Q. Dans cette configuration la température la plus élevée à proximité des diodes est de l'ordre de 500C.
La question de l'efficacité du moyen d'éclairage selon l'invention en fonction de sa configuration optique est illustrée aux figures suivantes. Dans ces figures on suppose la lumière dirigée entièrement à travers la feuille 1. C'est le cas par exemple de luminaire disposé sur une paroi opaque. Dans ce cas les diodes sont choisies avantageusement avec un réflecteur tourné vers la feuille 1.
Le rayonnement issu de la diode 3 incorporée dans la feuille intercalaire 2, traverse celle-ci et la feuille transparente 1.
Suivant l'incidence du rayonnement par rapport à la normale à la face de la feuille 1 tournée vers l'extérieur et l'indice de réfraction de la feuille 1 , les rayons sont diffractés ou réfléchis.
La figure 2b illustre cette particularité pour le cas par exemple d'une feuille 1 en verre en contact avec l'air avoisinant.
L'indice du verre de l'ordre de 1,5, fait que les rayons issus de la diode qui sont inclinés (alfa) de plus d'environ 60 degrés d'angle par rapport à la normale à l'interface verre/air sont réfléchis vers l'intérieur et par réflexions successives ne participent pas du flux lumineux utile pour l'éclairage.
La distribution du flux lumineux en fonction de la direction par rapport à la normale à la feuille de verre suit une courbe de type représenté à la figure 3.

Claims

REVENDICATIONS
1. Moyen d'éclairage à diodes électroluminescentes comprenant un ensemble feuilleté formé d'au moins une feuille d'un verre organique ou minéral associée à au moins une feuille thermoplastique dans laquelle les diodes sont incorporées, les caractéristiques individuelles de puissance de chaque diode, leurs conditions de fonctionnement, et la distribution des diodes sur la surface des feuilles étant telles que le flux lumineux généré est d'au moins 300 Im.
2. Moyen d'éclairage selon la revendication 1 dans lequel le flux lumineux généré est d'au moins 500 Im
3. Moyen d'éclairage à diodes électroluminescentes comprenant un ensemble feuilleté d'une feuille d'un verre organique ou minéral associée à au moins une feuille thermoplastique dans laquelle les diodes sont incorporées, les caractéristiques individuelles de puissance de chaque diode, leurs conditions de fonctionnement, et la distribution des diodes sur la surface des feuilles étant telles que sa puissance soit au moins de 500 Im par mètre carré de surface de ce moyen d'éclairage.
4. Moyen d'éclairage selon la revendication 3 dont la puissance est d'au moins 1000 Im par mètre carré de surface de ce moyen d'éclairage.
5. Moyen d'éclairage selon la revendication 3 dont la puissance est d'au moins 2500 Im par mètre carré de surface de ce moyen d'éclairage.
6. Moyen d'éclairage selon l'une des revendications précédentes dans lequel les caractéristiques individuelles de puissance de chaque diode, la distribution des diodes et la configuration générale du feuilleté sont telles que ponctuellement le fonctionnement continu n'engendre pas pour chaque diode une température locale dépassant 800C.
7. Moyen d'éclairage selon la revendication 6 dans lequel les caractéristiques individuelles de puissance de chaque diode, la distribution des diodes et la configuration générale du feuilleté sont telles que ponctuellement le fonctionnement n'engendre pas pour chaque diode une température locale dépassant 600C.
8. Moyen d'éclairage selon l'une des revendications précédentes dans lequel les diodes ne sont pas utilisées à une puissance individuelle supérieure à 2W.
9. Moyen d'éclairage selon la revendication 8 dans lequel les diodes ne sont pas utilisées à une puissance individuelle supérieure à 1,5 W.
10. Moyen d'éclairage selon la revendication 8 dans lequel les diodes ne sont pas utilisées à une puissance individuelle supérieure à 0,5 W.
11. Moyen d'éclairage selon l'une des revendications précédentes comprenant un ensemble feuilleté avec deux feuilles de verre organique ou minéral de part et d'autre d'une (ou de) feuille(s) intercalaire(s) thermoplastique(s) dans lesquelles les diodes sont incorporées, l'alimentation électrique des diodes étant réalisée par l'intermédiaire d'un circuit électrique constitué d'une couche mince conductrice essentiellement transparente, dont la résistance est telle que la dissipation énergétique par effet joule dans la couche soit inférieure à 50% de l'énergie consommée.
12. Moyen d'éclairage selon l'une des revendications précédentes comprenant un ensemble feuilleté avec deux feuilles de verre organique ou minéral de part et d'autre d'une (ou de) feuille(s) intercalaire(s) thermoplastique(s) dans lesquelles les diodes sont incorporées, l'alimentation électrique des diodes étant réalisée par l'intermédiaire d'un circuit électrique constitué d'une couche mince conductrice essentiellement transparente, dont la résistance est au plus de 30 Ω/D.
13. Moyen d'éclairage selon la revendication 12 dans lequel l'alimentation électrique des diodes est réalisée par l'intermédiaire d'un circuit électrique constitué d'une couche mince conductrice essentiellement transparente, dont la résistance est au plus de 20 Ω/D.
14. Moyen d'éclairage selon l'une des revendications 11 à 13 dans lequel l'alimentation électrique des diodes est réalisée par l'intermédiaire d'un circuit électrique constitué d'une couche mince conductrice essentiellement transparente dont la transmission lumineuse n'est pas inférieure à 90%.
15. Moyen d'éclairage selon l'une des revendications précédentes dans lequel le faisceau lumineux émis par les diodes est dirigé de telle sorte que son incidence avec la normale à l'interface de la feuille de verre avec l'atmosphère ne soit pas supérieure 60 degrés d'angle.
16. Moyen d'éclairage selon la revendication 15 dans lequel le faisceau lumineux émis par les diodes est dirigé de telle sorte que son incidence avec la normale à l'interface de la feuille de verre avec l'atmosphère ne soit pas supérieure à 45 degrés d'angle.
17. Moyen d'éclairage selon l'une des revendications précédentes dans lequel l'assemblage feuilleté comprend en plus de la feuille de verre et de la feuille intercalaire dans laquelle les diodes sont incorporées, une feuille à conduction thermique élevée notamment une feuille métallique.
18. Moyen d'éclairage selon l'une des revendications précédentes dans lequel les diodes utilisées ont une efficacité lumineuse qui n'est pas inférieure à 20 lm/W.
19. Moyen d'éclairage selon la revendication 17 dans lequel les diodes utilisées ont une efficacité lumineuse qui n'est pas inférieure à 30 lm/W
PCT/EP2006/070002 2005-12-20 2006-12-20 Moyen d'eclairage a diodes electroluminescentes WO2007071724A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EA200801569A EA012477B1 (ru) 2005-12-20 2006-12-20 Осветительное средство на основе светодиодов
EP06841503A EP1965976A1 (fr) 2005-12-20 2006-12-20 Moyen d'eclairage a diodes electroluminescentes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05112512 2005-12-20
EP05112512.8 2005-12-20

Publications (1)

Publication Number Publication Date
WO2007071724A1 true WO2007071724A1 (fr) 2007-06-28

Family

ID=36423505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/070002 WO2007071724A1 (fr) 2005-12-20 2006-12-20 Moyen d'eclairage a diodes electroluminescentes

Country Status (3)

Country Link
EP (1) EP1965976A1 (fr)
EA (1) EA012477B1 (fr)
WO (1) WO2007071724A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149276A1 (fr) 2007-06-08 2008-12-11 Koninklijke Philips Electronics N.V. Dispositif d'émission lumineuse
WO2009031084A1 (fr) * 2007-09-04 2009-03-12 Koninklijke Philips Electronics N.V. Dispositif d'émission de lumière
WO2010091742A1 (fr) * 2009-02-12 2010-08-19 Agc Glass Europe Panneau de substrats stratifiés comportant une couche-barrière
WO2012031647A1 (fr) 2010-09-10 2012-03-15 Bgt Bischoff Glastechnik Ag Vitre en verre feuilleté à matrice à led intégrée et procédé de fabrication de ladite vitre en verre feuilleté à matrice à led intégrée
WO2013189794A1 (fr) * 2012-06-19 2013-12-27 Agc Glass Europe Toit vitré comportant des moyens d'éclairage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2617296C2 (ru) * 2012-01-20 2017-04-24 Филипс Лайтинг Холдинг Б.В. Теплопередающее устройство

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010007527A1 (en) * 2000-01-07 2001-07-12 U.S. Philips Corporation Luminaire
US20010026011A1 (en) * 1999-03-15 2001-10-04 Roberts John K. Radiation emitter devices and method of making the same
EP1367870A1 (fr) * 2002-05-27 2003-12-03 Valeo Vision Dispositif support de diode électroluminescente pour système de signalisation automobile, et procédé de fabrication d'un tel dispositif
FR2845458A1 (fr) * 2002-10-02 2004-04-09 Cooper Menvier Sa Dispositif autonome d'eclairage de securite
EP1437215A1 (fr) * 2003-01-10 2004-07-14 Glaverbel Vitrage comportant un élément lumineux
US20040232812A1 (en) * 2003-05-23 2004-11-25 Beeson Karl W. Illumination systems utilizing light emitting diodes and light recycling to enhance output radiance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010026011A1 (en) * 1999-03-15 2001-10-04 Roberts John K. Radiation emitter devices and method of making the same
US20010007527A1 (en) * 2000-01-07 2001-07-12 U.S. Philips Corporation Luminaire
EP1367870A1 (fr) * 2002-05-27 2003-12-03 Valeo Vision Dispositif support de diode électroluminescente pour système de signalisation automobile, et procédé de fabrication d'un tel dispositif
FR2845458A1 (fr) * 2002-10-02 2004-04-09 Cooper Menvier Sa Dispositif autonome d'eclairage de securite
EP1437215A1 (fr) * 2003-01-10 2004-07-14 Glaverbel Vitrage comportant un élément lumineux
US20040232812A1 (en) * 2003-05-23 2004-11-25 Beeson Karl W. Illumination systems utilizing light emitting diodes and light recycling to enhance output radiance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149276A1 (fr) 2007-06-08 2008-12-11 Koninklijke Philips Electronics N.V. Dispositif d'émission lumineuse
US8093789B2 (en) 2007-06-08 2012-01-10 Koninklijke Philips Electronics N.V. Light output device
WO2009031084A1 (fr) * 2007-09-04 2009-03-12 Koninklijke Philips Electronics N.V. Dispositif d'émission de lumière
US8748922B2 (en) 2007-09-04 2014-06-10 Koninklijke Philips N.V. Light output device
WO2010091742A1 (fr) * 2009-02-12 2010-08-19 Agc Glass Europe Panneau de substrats stratifiés comportant une couche-barrière
WO2012031647A1 (fr) 2010-09-10 2012-03-15 Bgt Bischoff Glastechnik Ag Vitre en verre feuilleté à matrice à led intégrée et procédé de fabrication de ladite vitre en verre feuilleté à matrice à led intégrée
EP2441576A1 (fr) 2010-09-10 2012-04-18 BGT Bischoff Glastechnik AG Vitrage feuilleté doté d'une matrice à DEL intégrée et son procédé de fabrication
WO2013189794A1 (fr) * 2012-06-19 2013-12-27 Agc Glass Europe Toit vitré comportant des moyens d'éclairage
BE1020715A3 (fr) * 2012-06-19 2014-04-01 Agc Glass Europe Toit vitre comportant des moyens d'eclairage.
US10202075B2 (en) 2012-06-19 2019-02-12 Agc Glass Europe Sunroof comprising lighting means
EA031901B1 (ru) * 2012-06-19 2019-03-29 Агк Гласс Юроп Стеклянная крыша, содержащая осветительные приборы

Also Published As

Publication number Publication date
EP1965976A1 (fr) 2008-09-10
EA200801569A1 (ru) 2008-12-30
EA012477B1 (ru) 2009-10-30

Similar Documents

Publication Publication Date Title
EP1437215B1 (fr) Vitrage comportant un élément lumineux
EP2861421B1 (fr) Toit vitré comportant des moyens d'éclairage
WO2007071724A1 (fr) Moyen d'eclairage a diodes electroluminescentes
EP1478291B1 (fr) Element de panneau avec une couche chauffante
WO2008074800A1 (fr) Panneau d'affichage
WO2007119019A1 (fr) Panneau lumineux
FR2895781A1 (fr) Structure lumineuse comportant au moins une diode electroluminescente, sa fabrication et ses applications
FR3051761B1 (fr) Toit vitre feuillete lumineux de vehicule, vehicule l'incorporant et fabrication
EP1964450A1 (fr) Structure lumineuse comportant au moins une diode electroluminescente, sa fabrication et ses applications
EP2861422A1 (fr) Toit vitré comportant des moyens d'éclairage et de contrôle de la transmission lumineuse
CA3025135A1 (fr) Toit vitre feuillete lumineux de vehicule, vehicule l'incorporant et fabrication
FR2907194A1 (fr) Complexe eclairant comportant une source lumineuse presentant une nappe de fibres optiques
FR2964722A1 (fr) Panneau miroir et eclairant a diodes electroluminescentes
EP1954526A1 (fr) Panneau émetteur de radiations lumineuses
WO2014020249A1 (fr) Vitrage apte a produire un faisceau de lumiere selon une direction donnee au moyen de leds integrees
EP2886942A1 (fr) Dispositif d'éclairage
EP3493277A1 (fr) Procédé d'interconnexion de cellules photovoltaïques avec une électrode pourvue de nanofils métalliques
EP2046571A1 (fr) Eclairage au moyen de leds
CA2494689A1 (fr) Lampe plane, procede de fabrication et application
CA2831546A1 (fr) Module a diodes electroluminescentes et vitrage lumineux avec un tel module a diodes
EP1535885A1 (fr) Vitrage comportant un élément lumineux
FR3081614A1 (fr) Module photovoltaique comportant une ou plusieurs diodes de bypass en face arriere d'une cellule photovoltaique du module
FR2957952A1 (fr) Element photovoltaique fortement galbe
FR2940523A1 (fr) Tuile photovoltaique.
FR3095686A3 (fr) Bande lumineuse a del

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006841503

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200801569

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2006841503

Country of ref document: EP