WO2007068146A1 - Procede et appareil de suppression d'interferences a bande etroite par traitement de fenetrage dans un systeme a spectre etale - Google Patents

Procede et appareil de suppression d'interferences a bande etroite par traitement de fenetrage dans un systeme a spectre etale Download PDF

Info

Publication number
WO2007068146A1
WO2007068146A1 PCT/CN2005/002223 CN2005002223W WO2007068146A1 WO 2007068146 A1 WO2007068146 A1 WO 2007068146A1 CN 2005002223 W CN2005002223 W CN 2005002223W WO 2007068146 A1 WO2007068146 A1 WO 2007068146A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
window
point
energy
data
Prior art date
Application number
PCT/CN2005/002223
Other languages
English (en)
French (fr)
Inventor
Meng Zhao
Jiying Xiang
Chunbo Yao
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to US12/096,051 priority Critical patent/US8068531B2/en
Priority to AT05823414T priority patent/ATE523969T1/de
Priority to ES05823414T priority patent/ES2370328T3/es
Priority to CNB2005800476002A priority patent/CN100544218C/zh
Priority to PT05823414T priority patent/PT1962433E/pt
Priority to PCT/CN2005/002223 priority patent/WO2007068146A1/zh
Priority to EP05823414A priority patent/EP1962433B1/en
Priority to DK05823414.7T priority patent/DK1962433T3/da
Publication of WO2007068146A1 publication Critical patent/WO2007068146A1/zh
Priority to NO20082807A priority patent/NO20082807L/no

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/71Interference-related aspects the interference being narrowband interference
    • H04B1/7102Interference-related aspects the interference being narrowband interference with transform to frequency domain

Definitions

  • the present invention relates to a method and apparatus for narrowband interference cancellation in a wireless communication system, and more particularly to narrowband interference cancellation in a spread spectrum communication system.
  • Spread spectrum communication systems are becoming more common in today's world.
  • Spread spectrum or pseudo-random code (PN) modulation can reduce interference from other users as well as wireless signals.
  • PN pseudo-random code
  • the interference is a narrowband signal, during the cross-correlation of the received signal and the PN sequence, the interference signal spreads over the entire frequency band to reduce the influence of interference. Therefore, the spread spectrum signal can weaken the narrowband interference to a certain extent.
  • a typical spectrum of a spread spectrum signal (eg, spread by a PN sequence) is submerged in noise, as shown in Figure 1.
  • the ideal signal refers to the signal energy actually transmitted by the mobile station, and the noise refers to those additive interferences. Obviously, the ideal signal energy for spread spectrum is generally less than the noise energy.
  • “Strong interference” generally refers to blocking signals or signals sent by televisions, wireless stations or nearby communication devices.
  • “Typical interference” refers to signals sent by low-power sources, such as amateur radios.
  • the processing gain represents the level of interfering signal that the mobile station's extended signal can tolerate.
  • the extended signal can also be recovered when it is affected by typical interference, but the signal cannot be recovered at all when strong interference occurs. And even with typical interference, the system performance can be degraded although the signal can be recovered.
  • the frequency band is swept to protect the CDMA signal from the narrowband signal, but some burst signals are not easily disabled due to their burst characteristics. Therefore, narrowband interference will be disordered and random.
  • Narrowband interference can increase the congestion rate and dropped call rate of the code division multiple access (CDMA) system, overload the RF power control system, increase the power consumption of the mobile station, and reduce the coverage of the base station. In extreme cases, high power interference can even block the entire cell, making normal communication impossible. Therefore, a good solution must be found to eliminate the influence of the narrowband interference signal on the code division multiple access signal, so that the communication quality is guaranteed.
  • CDMA code division multiple access
  • Methods for handling narrowband interference can generally be divided into two categories:
  • This method is generally implemented by acoustic surface technology. Some estimates of the frequency of the interfering signal are made, and based on the estimation result, a narrowband notch device is placed where there is a narrowband interfering signal. (Phase-locked loops can also be used to track narrowband interfering signals.)
  • analog technology has its limitations and is often not flexible enough.
  • the other type is the frequency domain elimination method, which is usually implemented through digital processing.
  • Signal After digitization it is transformed into the frequency domain by Fourier transform, and the data is processed in the frequency domain and then transformed into the time domain output by inverse Fourier transform.
  • the method of processing interference signals in the frequency domain can be summarized into two types.
  • One is to use filters to filter out the effects of interference on the frequency domain data. This method is suitable for situations where interference bandwidth and location are known. This method has certain limitations when the location of the interference in the frequency domain, the interference bandwidth, and the number cannot be clearly determined. Because designing filters that are fully adaptive to change has some difficulty.
  • the other is to calculate the amplitude of the signal at each frequency and then compare the threshold to set the signal that exceeds the threshold to zero or to the noise level.
  • the method can adaptively address multiple narrowband interferences, and process different interference bandwidths and interference frequency variations. However, in this method, only the data exceeding the threshold is processed, but in the actual system, factors such as the selection of the number of points of the Fourier transform may cause the interference spectrum portion to leak to the surrounding frequency points, if the influence of these leakage spectra is not considered at all. It has a certain impact on the suppression performance of narrow-band interference. In severe cases, the suppression level of narrow-band interference cannot meet the requirements of the system. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method and apparatus for eliminating narrowband interference by windowing in a spread spectrum system, which reduces the adverse effect of spectrum leakage on narrowband interference suppression capability.
  • the present invention provides a method for eliminating narrowband interference by windowing processing in a spread spectrum system, comprising the following steps: (a) extracting data of N sample points each time for spectrum conversion, and obtaining transformed N point data;
  • control information update and interference cancellation processing are separately performed, wherein the control information update processing process includes the following steps:
  • the N energy values obtained by accumulating the energy of the M transformed data are respectively determined in the set time period, and the N energy values and the threshold calculated from the energy values are compared. Value, determine the number of narrowband interferences and the width and position of each narrowband interference, M1;
  • the interference cancellation process includes the following steps:
  • the energy value of the data at the points is set according to the points included in each window and the adjustment value information of each point obtained in the current time period or the previous time period. For the corresponding adjustment value, the adjusted data is then inversely spectrally transformed and output.
  • the above method may further have the following features: in the step (b), the threshold value is calculated by multiplying a minimum value of the N energy values by a coefficient, or the threshold The value is obtained by subtracting a part of the maximum energy value from the N energy values and then averaging the remaining energy values, and multiplying by a coefficient. '
  • the above method may further have the following features: In the step (b), if the energy value of the data at a certain point is greater than the threshold, the interference point is considered to be at the point, and each group of consecutive interference points constitutes a narrowband interference, and each The number of interference points included in the narrowband interference is the width of the narrowband interference, thereby determining the number of narrowband interferences in the spectrum of the current data and the width and position of each narrowband interference.
  • the above method may further have the following features:
  • M is determined according to the number of sampling periods included in a time period, and the time period is 6 (Tl20 ms).
  • the window shape is determined as follows: When the energy concentration of the narrowband interference signal is predicted, if the energy of the interference is concentrated, the edge is selected. A steep window, if the energy of the disturbance is dispersed, select a window with a slow edge change.
  • the above method may further have the following features:
  • the adjustment value of each point in the window is set according to the noise level, and the adjustment value of the interference point is set to the noise level, and the edge portion of the window is The adjustment value of the other points is set to a multiple of the noise level.
  • the apparatus for eliminating narrowband interference in a spread spectrum system includes a spectrum transform unit, an interference canceling unit, an interference canceling control unit, and a spectrum inverse transform unit, where: a spectrum transform unit, for extracting N sample points at a time The data is spectrally transformed, the spectrum of the data is obtained, and the data is output to the interference cancellation unit and the interference cancellation control unit;
  • the interference cancellation control unit is configured to determine narrowband interference according to a comparison result of N energy values obtained by accumulating energy of M times of data at N sampling points and threshold values obtained from the energy values in a set period of time Number, width and position, select a window for each narrowband interference, and obtain the adjustment value information of the points and points included in each window, and output to the interference cancellation unit;
  • the interference cancellation unit is configured to: for each point of the N-point data after the spectrum conversion, the energy of the data at the points according to the points included in each window and the adjustment value information of each point obtained in the current time period or the previous time period The value is set to the corresponding adjustment value and output to the inverse spectrum transform unit;
  • the inverse spectrum transform unit is configured to perform inverse spectral transform on the output of the N-point data output by the interference cancellation unit.
  • the above apparatus may further have the following features: the interference cancellation control unit further The energy calculation subunit, the threshold calculation subunit, the interference decision subunit and the window selection unit, wherein the energy calculation subunit is used to calculate the M transformed data for the N sampling points in a set time period
  • the N energy values obtained by the energy accumulation are output to the threshold calculation subunit and the interference determination subunit, and M is an integer greater than or equal to 1;
  • a threshold calculation subunit configured to obtain a threshold for interference determination according to the N energy values, and then output to the interference determination subunit;
  • An interference decision subunit configured to compare the N energy values with the threshold value, and use a point where the energy value is greater than the threshold value as a point where the interference is located, and the continuous interference point forms a narrowband interference, and the narrowband interference is determined.
  • the number of bits and the width and position of each narrowband interference are output to the window selection unit;
  • a window selection unit configured to select a suitable frequency domain adjustment window for each narrowband interference according to the narrowband interference information output by the interference decision subunit, and output the point included in each window and the adjustment value information of each point to the interference cancellation unit.
  • the threshold calculation subunit calculates the threshold value by multiplying a minimum value of the N energy values by a coefficient, or The N energy values are obtained by subtracting a part of the maximum energy value and then averaging the remaining energy values, and multiplying by a coefficient.
  • the above device may further have the following features: when the window selection unit sets the adjustment value of each point in the window, the adjustment value of the interference point is set to a noise level, and the adjustment values of other points of the edge portion of the window are set. Is a multiple of the noise level.
  • the invention is directed to the elimination of narrowband interference in a spread spectrum communication system, and is a method for processing a signal from a frequency domain, and adopts a narrowband interference cancellation processing method, which uses a windowing method to suppress data, and not only processes data exceeding a threshold. At the same time, the data adjacent to the data is processed, the method is flexible, and the shape of the window can be adjusted according to different interference characteristics.
  • the method of the present invention weakens the influence of spectral leakage on the suppression capability of narrowband interference, thereby effectively improving the suppression capability of narrowband interference. BRIEF abstract
  • Figure 1 is a schematic diagram of the spectral energy of a general spread spectrum signal.
  • FIG. 2 is a schematic diagram of the operation of the apparatus for receiving signal processing according to an embodiment of the present invention.
  • 3 is a schematic diagram of the notch processor of FIG. 2.
  • 4A and 4B are schematic views of the shapes of two windows. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 2 is a schematic diagram of a received signal processing apparatus in accordance with an embodiment of the present invention, including a radio frequency converter 100, a digital quantizer 110, a digital downconversion and processor 120, an interference cancellation device 130, and an automatic gain processor 140.
  • the signal is received by the RF converter 100, then sampled by the digital quantizer 110 into a digital signal, input to the digital downconversion and the processor 120 becomes an intermediate frequency signal, and the output intermediate frequency signal 'is input to the interference cancellation device 130 for interference cancellation processing. .
  • the data after interference suppression is input to the automatic gain processor 140 for automatic gain control, and is processed and output to baseband processing.
  • the position design of the interference cancellation device 130 can be placed in front of the automatic gain controller 140 or at the baseband processing. In this embodiment, it is selected to be placed in front of the automatic gain controller 140 due to narrowband interference.
  • the presence of the signal makes the energy of the signal much higher than normal, so that the automatic gain controller 140 cannot perform the gain control normally according to the non-interference signal, and when the interference is high, it will be in a saturated state and cannot work. Therefore, the location selection of the interference cancellation device 130 is an important factor in the design. '
  • Figure 3 shows a schematic diagram of the interference cancellation device 130 of Figure 2, including the following elements:
  • the spectrum transforming unit 200 is configured to extract data of N sampling points at a time for spectrum conversion, obtain a spectrum of the data, and output the data to the interference cancellation unit and the interference cancellation control unit.
  • the interference cancellation control unit 230 is configured to determine a narrowband according to a comparison result of the N energy values obtained by accumulating the energy of the M data at the N sampling points and the threshold values obtained by the energy values in a set period of time.
  • the number of interferences and the width and position of each interference select a window for each narrowband interference, and obtain the adjustment value information of the points and points included in each window, and output to the interference cancellation unit.
  • the specific calculation method is described in detail in the following methods.
  • the interference cancellation unit 210 is configured to perform windowing processing on the N-point data after each spectral transformation, and use the points included in each window obtained by the current time period or the previous time period and the adjustment value information of each point to The energy value of the upper data is set to a corresponding adjustment value, and then the interference-suppressed data is output to the spectral inverse transform unit.
  • the spectral inverse transform unit 220 is configured to perform inverse spectral transform on the N-point data output by the interference cancellation unit and output the same.
  • the interference cancellation control unit 230 further includes:
  • the energy calculation sub-unit 231 is configured to calculate, for a set time period, N energy values obtained by accumulating the energy of the data after the M-transformed data for the N sampling points, and output to the threshold calculation sub-unit and the interference determination sub-unit.
  • M is an integer greater than or equal to 1.
  • the threshold calculation sub-unit 232 is configured to obtain a threshold for interference determination according to the N energy values, and then output to the interference determination sub-unit.
  • the interference decision subunit 233 is configured to compare the N energy values and the threshold value, and use a point where the energy value is greater than the threshold value as a point where the interference is located, and the continuous interference point forms a narrowband interference, thereby determining The number of narrowband interferences, as well as the width (represented by the number of points) and the position of each narrowband interference, are output to the window selection unit 234.
  • the window selection unit 234 is configured to select a suitable frequency domain adjustment window for each narrowband interference according to the narrowband interference information output by the interference decision subunit and the predicted narrowband signal characteristic, and the points included in each window and the points of each point
  • the adjustment value information is output to the interference cancellation unit.
  • the adjustment value of the interference point is set to the noise level, and the adjustment value of the other points is set to a multiple of the noise level.
  • Step 1 extracting data of N sampling points each time to perform spectrum transformation, and obtaining data of the transformed N points;
  • control information update processing and interference cancellation processing are simultaneously performed, wherein the control information update processing procedure includes the following steps:
  • Step 2 Determine a narrowband interference according to a comparison result of the N energy values obtained by accumulating the energy of the M times of data at the N sampling points and a threshold value calculated by the energy values in a set period of time Number and the width and position of each narrowband interference, M is an integer greater than or equal to 1;
  • the duration of the accumulation period should ensure that the power spectrum obtained during the accumulation period is stable and not too short; at the same time, it should be ensured that the narrowband interference characteristics do not change drastically during this period, and it is not too long. Desirable 60 ⁇ ; L20ms.
  • each set of consecutive interference points constitutes a narrowband interference, and each narrowband interference contains interference.
  • the number of points represents the width of the narrowband interference.
  • Step 3 Determine the width, position and shape of the corresponding frequency domain adjustment window according to the width, position and characteristic of each narrowband interference, obtain points included in each window, and determine an adjustment value of each point according to the noise level;
  • the width of the frequency domain adjustment window is determined by the narrowband interference width, and the wider the narrowband interference width, the wider the window width.
  • the width of the selection window is 2 to 3 times the interference width.
  • the window can be divided into a narrowband interference portion and an edge portion on both sides of the narrowband interference. In order to keep the two sides symmetrical, the difference between the window width and the interference width (indicated by the number of points) is made even when determining the window width.
  • the characteristics of narrowband interference can be known in advance, such as whether the energy is concentrated or the edge is steep by the result on the spectrum scanner.
  • One way to judge whether energy is concentrated is: If the interference width is 1, it is directly judged that the interference energy is relatively concentrated. If the interference width is > 1, and the ratio of the energy maximum and the energy minimum in the interference is greater than 0. 707, it is also a relatively concentrated interference energy, otherwise it is a state in which the comparative energy is relatively dispersed.
  • These determination rules can be set by themselves, and the present invention is not limited to one.
  • the shape of the window is selected based on the characteristics of the narrowband interference. If the narrowband interference energy is concentrated, the edge of the interference will be steeper.
  • a window with steep edges If the narrowband interference energy is scattered, the interference edge changes slowly. You can select a window with a slow edge change. If there are many types of interference, or if the time of occurrence is uncertain, and the characteristics of the interfering signal cannot be predicted, a window with an edge characteristic between the two may be used.
  • An example of two windows is shown in Figures 4A and 4B.
  • Fig. 4A shows an inverted trapezoidal window, which is suitable for the case where the interference edge is steep.
  • the window of Figure 4B is more suitable for situations where the edge changes are slow.
  • the method of selecting the shape of the window based on the narrowband interference characteristic can employ the method of the prior art.
  • the adjustment value of the interference point is set to the noise level
  • the adjustment value of the other points of the edge portion of the window is set to a multiple of the noise level
  • the specific multiple is determined by the shape of the window.
  • the double value of the fixed window bottom is 1, and the window top multiple value is 2.
  • the noise level may be obtained by dividing the minimum energy value of the N energy values by the accumulated number of times, or dividing the N energy values by the maximum partial energy value and dividing the mean value of the remaining energy values by the accumulated number of times, or Use existing ones Ways.
  • step one the following steps of the interference cancellation process are simultaneously performed:
  • Step 2' for each point of the N-point data output after the spectrum conversion, according to the points included in each window obtained in the previous time period or the current time period, and the adjustment value information of each point, the data on the points
  • the energy value is set to the corresponding adjustment value, that is, the disturbed area is windowed to suppress the interference;
  • M is generally taken as 1, and after each N point data is taken out, the corresponding window information is calculated according to the secondary data, and then the data is windowed instead of being used as Used for the next data processing.
  • the N-point data processing is performed after the current window information calculation, but in general, the window information calculation and the data suppression are still performed in parallel.
  • processing the data of the next time period with the window information of the current time period does not adversely affect.
  • the adjusted data is inversely spectrally transformed and output as result data, and the process ends.
  • the invention is directed to the elimination of narrowband interference in a spread spectrum communication system, and is a method for processing a signal from a frequency domain, and adopts a narrowband interference cancellation processing method, which uses a windowing method to suppress data, and not only processes data exceeding a threshold.
  • the data adjacent to the data is processed, the method is flexible, and the shape of the window can be adjusted according to different interference characteristics.
  • the method of the present invention weakens the influence of spectral leakage on the suppression capability of narrowband interference, thereby effectively improving the suppression capability of narrowband interference.
  • the present invention has been implemented in the cdma-20001X reverse link. After simulation, the suppression of the narrowband interference suppression system is greatly improved in the presence of large-bandwidth narrowband interference and multiple narrowband interferences, and the performance of the system is improved.
  • the present invention is a versatile technique that can be used in narrowband interference cancellation techniques in any spread spectrum system.

Description

扩频系统中通过加窗处理消除窄带干扰的方法和装置 技术领域
本发明涉及一种无线通讯系统中的窄带干扰消除, 尤其是扩频通讯系统 中窄带干扰消除的方法和装置。 背景技术
扩展频谱通信系统在当今世界越来越普遍。扩展频谱或者伪随机码(PN) 调制可以减少其它用户以及无线信号的干扰。 当干扰是窄带信号时, 在接收 信号和 PN序列的互相关过程中, 干扰信号会扩展到整个频带上从而减弱干 扰的影响。 因此扩频信号在一定程度上可以削弱窄带干扰。
一个扩频信号 (例如: 由 PN序列进行扩频) 的典型频谱是淹没在噪声 中的, 如图 1所示。 理想信号是指移动台实际发送的信号能量, 噪声就是指 那些加性干扰。显然扩频的理想信号能量一般是小于噪声能量的。 "强干扰" ' 一般指阻塞信号或者由电视、 无线台或者附近通信设备发出的信号, "典型 干扰"是指那些由低功率源发出的信号, 例如业余无线电。 处理增益表示移 动台扩展信号可容忍的干扰信号级别。扩展信号受到典型干扰的影响时还可 以进行恢复, 但是当强干扰出现时信号根本就无法再恢复了。 而且即使是典 型干扰, 虽然可以恢复信号但是系统性能也会下降。
在采用 CDMA通信系统前, 都会对频带进行扫频以保护 CDMA信号不受窄 带信号的干扰, 但是一些突发信号由于其突发特性不容易完全被禁止。 因此 窄带干扰会呈现无序性和随机性。 窄带干扰会使得码分多址(CDMA)系统拥 塞率和掉话率升高、 射频功控系统的过载、 增加移动台功率消耗、 减少基站 覆盖范围。 在极端的情况下, 高功率的干扰甚至会阻塞整个小区, 使得正常 的通信无法进行。 因此必须找到一个好的解决方法消除窄带干扰信号对码分 多址信号的影响从而使得通信质量得到保证。
处理窄带干扰方法通常可以分为两类:
一类是让信号(通常是进行模拟处理)通过一个窄带陷波器或者陷波器 组。 该方法一般都是通过声表面类的技术来实现的。 对干扰信号的频率作一 些估计, 根据估计结果, 在有窄带干扰信号的地方放置窄带陷波装置。 (锁 相环也可以用来跟踪窄带干扰信号。 )但是模拟技术本身有其局限性, 而且 往往都不够灵活。
另外一类是频域消除方法, 一般都是通过数字处理过程实现的。 信号经 过数字化以后通过傅立叶变换变换到频域, 在频域对数据进行处理后再通过 逆傅立叶变换变换到时域输出。 在频域处理干扰信号方法可以归结为两种, 一种是在频域数据上使用滤波器滤除干扰的影响。 该种方法适用于已知干扰 带宽和位置的情形。 当干扰在频域的位置、 干扰带宽以及个数不能够明确确 定时, 该方法就会有一定的局限性。 因为设计完全自适应变化的滤波器有一 定的困难。
另一种是计算每个频率上的信号幅度, 然后和门限比较将超过门限的信 号置 0或者降到噪声水平上去。 该方法可以自适应的对多个窄带干扰, 对不 同干扰带宽以及干扰频率变化进行处理。但是在该方法都是仅对超过门限的 数据进行处理, 但是在实际系统中由于傅立叶变换的点数选取等因素会造成 干扰频谱部分向周围的频点泄漏, 如果完全不考虑这些泄漏频谱的影响会对 窄带干扰的抑制性能造成一定的影响, 严重时会导致窄带干扰的抑制水平无 法达到系统的要求。 发明内容
本发明要解决的技术问题是提供一种扩频系统中通过加窗处理消除窄 带干扰的方法和装置, 削弱频谱泄漏对窄带干扰抑制能力的不利影响。
为了解决上述技术问题, 本发明提供了一种扩频系统中通过加窗处理消 除窄带干扰的方法, 包括以下步骤- (a)每次取出 N个采样点的数据进行频谱变换, 得到变换后的 N点的 数据;
然后分别进行控制信息更新和干扰消除处理, 其中控制信息更新处理过 程包括以下步骤:
(b)对 N个采样点, 在设定时间段内, 分别求取 M次变换后数据的能 量累加得到的 N个能量值, 比较这 N个能量值和由这些能量值计算出的门限 值, 确定窄带干扰的个数以及每个窄带干扰的宽度和位置, M 1 ;
(c )根据每个窄带干扰的宽度、 位置, 确定其对应的频域调整窗口的 宽度、 位置和形状, 确定窗内包含的点并得到各点的调整值;
'干扰消除处理过程包括以下步骤:
(b' )对每次频谱变换后的 N点数据, 根据本时间段或前一时间段得 到的每个窗口包含的点及各点的调整值信息, 将这些点上的数据的能量值置 为对应的调整值, 然后对调整后的数据进行逆频谱变换, 输出。 进一步地, 上述方法还可具有以下特点: 所述步骤 (b) 中, 所述门限 值是由所述 N个能量值中的最小值乘以一个系数计算得到的, 或者, 所述门 限值是由所述 N个能量值去掉部分最大的能量值后对剩余能量值求均值, 再 乘以一个系数得到的。 '
进一步地, 上述方法还可具有以下特点: 所述步骤 (b) 中, 如果某点 数据的能量值大于门限就认为在该点为干扰点, 每一组连续的干扰点构成一 个窄带干扰, 每个窄带干扰包含的千扰点的个数为该窄带干扰的宽度, 由此 确定此次数据的谱中窄带干扰的个数以及每个窄带干扰的宽度和位置。
进一步地, 上述方法还可具有以下特点: 所述步骤(b) 中, M是根据一 个时间段中包括的采样周期数来确定的, 该时间段为 6(Tl20ms。
进一步地, 上述方法还可具有以下特点: 所述步骤 (c ) 中, 所述窗口 形状是按以下方式确定的: 在预知窄带干扰信号的能量集中程度时, 如果干 扰的能量集中, 则选择边缘陡峭的窗, 如果干扰的能量分散, 则选择边缘变 化缓慢的窗。
进一步地, 上述方法还可具有以下特点: 所述步骤 (c ) 中, 窗内各点 的调整值是根据噪声水平设定的, 是将干扰点的调整值设为噪声水平, 窗口 边缘部分的其它点的调整值设为噪声水平的倍数。 本发明提供的扩频系统中通过加窗处理消除窄带干扰的装置包括频谱 变换单元、 干扰消除单元、 干扰消除控制单元和频谱逆变换单元, 其中: 频谱变换单元, 用于一次取出 N个采样点的数据进行频谱变换, 获得数 据的谱, 并输出数据到干扰消除单元和干扰消除控制单元;
干扰消除控制单元, 用于在一设定时间段内, 根据 N个采样点上 M次数 据的能量累加得到的 N个能量值和由这些能量值获得的门限值的比较结果, 确定窄带干扰的个数、 宽度和位置, 为每个窄带干扰选择一个窗口, 并得到 每个窗口包含的点和各点的调整值信息, 输出到干扰消除单元;
干扰消除单元, 用于对每次频谱变换后的 N点数据, 根据本时间段或前 一时间段得到的每个窗口包含的点及各点的调整值信息, 将这些点上的数据 的能量值置为对应的调整值后输出到频谱逆变换单元;
频谱逆变换单元, 用于对干扰消除单元输出的 N点数据进行频谱逆变换 后输出。
进一步地, 上述装置还可具有以下特点: 所述干扰消除控制单元进一步 包括能量计算子单元、 门限计算子单元、 干扰判决子单元和窗选择单元, 其 中- 能量计算子单元, 用于一设定时间段内, 对 N个采样点分别计算该点 M 次变换后数据的能量累加得到的 N个能量值, 输出到门限计算子单元和干扰 判定子单元, M为大于等于 1的整数;
门限计算子单元, 用于根据所述 N个能量值, 求取一个用于干扰判断的 门限, 然后输出到干扰判定子单元;
干扰判决子单元, 用于比较所述 N个能量值和所述门限值, 将能量值大 于该门限值的点作为干扰所在的点, 连续的干扰点构成一个窄带干扰, 判定 出窄带干扰的个数以及每个窄带干扰的宽度和位置, 将这些信息输出到窗选 择单元;
窗选择单元, 用于根据干扰判决子单元输出的窄带干扰信息, 为每个窄 带干扰选择一个合适的频域调整窗, 将每个窗口包含的点以及各点的调整值 信息输出到干扰消除单元。
进一步地, 上述装置还可具有以下特点: 所述门限计算子单元在计算所 述门限值时, 是将所述 N个能量值中的最小值乘以一个系数计算得到的, 或 者, 是将所述 N个能量值去掉部分最大的能量值后对剩余能量值求均值, 再 乘以一个系数得到的。
进一步地, 上述装置还可具有以下特点: 所述窗选择单元在设定窗内各 点的调整值时, 是将干扰点的调整值设为噪声水平, 窗口边缘部分的其它点 的调整值设为噪声水平的倍数。 本发明针对扩频通信系统中窄带干扰的消除, 是从频域对信号进行处 理, 所采用的窄带干扰消除处理方法, 是用加窗的方法对数据进行抑制, 不 仅对超过门限的数据进行处理, 同时对这些数据相邻的数据进行处理, 方法 灵活, 而且能根据不同的干扰特性对窗口形状进行调整。 本发明中的方法削 弱了频谱泄漏对窄带干扰抑制能力的影响, 从而可以有效提高窄带干扰的抑 制能力。 附图概述
图 1是一般扩频信号频谱能量示意图。
图 2是本发明实施例接收信号处理的装置工作示意图。 图 3是图 2中陷波处理器的示意图。
图 4A和图 4B是两个窗的形状示意图。 本发明的最佳实施方式
下面结合附图和实施例对本发明做进一步的详细说明。
图 2 是本发明实施例中接收信号处理装置的示意图, 包括射频转换器 100、 数字量化器 110、 数字下变频及处理器 120、 干扰消除装置 130和自动 增益处理器 140。
信号经过射频转换器 100接收, 然后通过数字量化器 110进行采样变成 数字信号, 输入到数字下变频及处理器 120成为中频信号, 输出的中频信号 ' 输入到干扰消除装置 130进行干扰的消除处理。经过干扰抑制后的数据输入 到自动增益处理器 140中进行自动增益控制, 处理后输出至基带处理。
干扰消除装置 130的位置设计, 可以放在自动增益控制器 140的前面, 也可以放在基带处理处,在本实施例中选择将其放在自动增益控制器 140前, 其原因是窄带干扰的存在会使得信号的能量比正常的高出很多, 使自动增益 控制器 140无法按照非干扰信号正常进行增益控制, 当干扰很高时还会使其 处于饱和状态, 无法工作。 因此, 干扰消除装置 130的位置选择是设计中的 一个重要因素。 '
上图仅是一个示例, 实际上各个装置之间还可以加入其它装置。 图 3示出了图 2中干扰消除装置 130的示意图, 包括以下单元:
频谱变换单元 200, 用于一次取出 N个采样点的数据进行频谱变换, 获 得数据的谱, 并输出数据到干扰消除单元和干扰消除控制单元。
干扰消除控制单元 230, 用于在一设定时间段内, 根据 N个采样点上 M 次数据的能量累加得到的 N个能量值和由这些能量值获得的门限值的比较结 果, 确定窄带干扰的个数及每个干扰的宽度和位置, 为每个窄带干扰选择一 个窗口, 并得到每个窗口包含的点和各点的调整值信息, 输出到干扰消除单 元。 具体的计算方法在后面的方法中详细介绍。
干扰消除单元 210, 用于对每次频谱变换后的 N点数据进行加窗处理, 根据本时间段或前一时间段得到的每个窗口包含的点及各点的调整值信息, 将这些点上的数据的能量值置为对应的调整值, 然后将这些经过干扰抑制后 的数据输出到频谱逆变换单元。 频谱逆变换单元 220, 用于对干扰消除单元输出的 N点数据进行频谱逆 变换后输出。
干扰消除控制单元 230进一步包括:
能量计算子单元 231, 用于一设定时间段内, 对 N个采样点分别计算该 点 M次变换后数据的能量累加得到的 N个能量值, 输出到门限计算子单元和 干扰判定子单元, M为大于等于 1的整数。
门限计算子单元 232, 用于根据所述 N个能量值, 求取一个用于干扰判 断的门限, 然后输出到干扰判定子单元。
干扰判决子单元 233, 用于比较所述 N个能量值和所述门限值, 将能量 值大于该门限值的点作为干扰所在的点, 连续的干扰点构成一个窄带干扰, 从而判定出窄带干扰的个数, 以及每个窄带干扰的宽度 (用点数代表)和位 置, 将这些信息输出到窗选择单元 234。
窗选择单元 234, 用于根据干扰判决子单元输出的窄带干扰信息和预知 的窄带信号特性情况, 为每个窄带干扰选择一个合适的频域调整窗, 将每个 窗口包含的点以及各点的调整值信息输出到干扰消除单元。 一般地, 干扰点 的调整值设为噪声水平, 其它点的调整值设为噪声水平的倍数。 基于上述干扰消除装置, 本实施例通过加窗处理消除扩频系统中窄带干 扰的方法包括以下步骤:
步骤一, 每次取出 N个采样点的数据进行频谱变换, 得到变换后的 N点 的数据;
然后同时执行控制信息更新处理和干扰消除处理, 其中控制信息更新处 理过程包括以下步骤:
步骤二, 在一设定时间段内, 根据 N个采样点上 M次数据的能量累加得 到的 N个能量值和由这些能量值计算出的一个门限值的比较结果, 确定窄带 干扰的个数以及每个窄带干扰的宽度和位置, M为大于等于 1的整数;
累加使得估计结果可以更好逼近实际的功率谱从而反应更真实的数据 特性。 累加时间段的时长一方面应该保证累加时间段内得到的功率谱已经稳 定, 不能太短; 同时又应该保证在该时间段内窄带干扰特性不会发生剧烈的 变化, 也不易过长。 可取 60〜; L20ms。
计算门限值时, 可以取这些能量值中的最小值乘以一个 2 的系数, 也 可以去掉部分最大的能量值后对剩余能量值求均值, 以该均值的 3. 0~3. 5倍 作为该门限值, 这两种方法都可以避免窄带干扰所在点能量偏大对于门限值 计算的影响。 但本发明对于门限计算并不作限定。
如果某点数据的能量值大于门限就认为在该点 (代表频率位置)存在窄 带干扰, 文中将其称为干扰点, 每一组连续的干扰点构成一个窄带干扰, 每 个窄带干扰包含的干扰点的个数就代表了窄带干扰的宽度。
步骤三, 根据每个窄带干扰的宽度、 位置和特性情况, 确定对应的频域 调整窗口的宽度、 位置和形状, 得到每个窗口包含的点, 并根据噪声水平确 定各点的调整值;
频域调整窗的宽度由窄带干扰宽度决定, 窄带干扰宽度越宽则窗的宽度 越宽。 在本实施例中, 选择窗的宽度为干扰宽度的 2〜3倍。 窗口可以分为 窄带干扰部分和窄带干扰两边的边缘部分, 为了使两边的部分保持对称, 在 确定窗口宽度时使窗口宽度与干扰宽度的差值 (用点数表示) 为偶数。
有时, 窄带干扰的特性(如滚降特性、 幅度) 可以预先得知, 如通过频 谱扫描仪上的结果判断其能量是否集中、 边缘是否陡峭等。 一种判断能量是 否集中的方式是: 如果干扰宽度为 1, 直接判断属于干扰能量比较集中。 如 果干扰宽度〉 1, 而且该干扰中能量最大值和能量最小值的比例大于 0. 707, 也属于干扰能量比较集中, 否则属于比较能量比较分散的状态。 这些判定规 则可以自己设定, 本发明并不局限于某一种。 窗口的形状是根据窄带干扰的特性来选择的。 如果窄带干扰能量比较集 中, 干扰的边缘就会比较陡峭, 可以选择边缘陡峭的窗, 如果窄带干扰能量 比较分散, 干扰边缘变化就比较缓慢, 可以选择边缘变化缓慢的窗。 如果干 扰的种类很多, 或者出现的时间不确定, 导致无法预测干扰信号的特性时, 可以采用边缘特性介于以上两者之间的窗。 图 4A和图 4B给出了两个窗的例 子。 图 4A为倒梯形窗, 这种窗比较适合干扰边缘比较陡峭的情况。 图 4B这 种窗比较适合干扰边缘变化缓慢的情况。根据窄带干扰特性选择窗口形状的 方法可以采用现有技术的方法。
确定窗内的点的调整值时, 本实施例将干扰点的调整值设为噪声水平, 窗口边缘部分的其它点的调整值设为噪声水平的倍数, 具体的倍数由窗口形 状决定, 如设定窗底的倍数值为 1, 窗顶倍数值为 2, 在窗的各部分宽度和 形状已知时, 可以容易地计算出各点的相对值。 噪声水平可以用所述 N个能 量值中最小的能量值除以累加次数得到, 也可以将所述 N个能量值去掉最大 的部分能量值后剩余能量值的均值除以累加次数得到, 还可以采用现有的各 种方法。
在步骤一之后, 同时执行以下的干扰消除处理的步骤:
步骤二' , 对每次进行频谱变换后输出的 N点数据, 根据上一时间段 或本时间段内得到的每个窗口包含的点及各点的调整值信息, 将这些点上的 数据的能量值置为相应的调整值, 即对受干扰的区域进行加窗处理, 以对干 扰进行抑制;
利用本时间段得到的窗口信息时, 一般将 M取为 1, 每次取出 N点数据 后, 在根据该次数据计算出相应的窗口信息后再对该次数据进行加窗处理, 而不是作为下一次数据处理时使用。 此时, N点数据处理在本次窗口信息计 算之后才进行, 但在总体上, 窗口信息计算和数据抑制还是并行运算的。 本 实施例方法中, 由于对于窄带干扰的持继时间来说, 用本次时间段的窗口信 息处理下一时间段的数据并不会产生不利影响。
步骤三' ,对调整后的数据进行逆频谱变换,作为结果数据输出,结束。 本发明针对扩频通信系统中窄带干扰的消除, 是从频域对信号进行处 理, 所采用的窄带干扰消除处理方法, 是用加窗的方法对数据进行抑制, 不 仅对超过门限的数据进行处理, 同时对这些数据相邻的数据进行处理, 方法 灵活, 而且能根据不同的干扰特性对窗口形状进行调整。 本发明中的方法削 弱了频谱泄漏对窄带干扰抑制能力的影响, 从而可以有效的提高了窄带干扰 的抑制能力。
在上述实施例的基础上, 本发明还可以做各种修正和变化, 这些修正和 变化都应在本发明权利要求的限定范围内。 如, 在对干扰点数据的能量值进 行抑制时, 也可以将其置为 0, 但对原始数据的损害比较大。 工业实用性
本发明已经在 cdma一 20001X反向链路中实现, 经过仿真, 在大能量窄带 干扰以及多个窄带干扰存在的情况下极大的提高了窄带干扰抑制系统的抑 制能力, 改善了系统的性能。 本发明是一个通用的技术, 在任何扩频系统中 窄带干扰消除技术中都可以用到。

Claims

权 利 要 求 书
1、 一种扩频系统中通过加窗处理消除窄带干扰的方法,包括以下步骤:
(a)每次取出 N个采样点的数据进行频谱变换, 得到变换后的 N点的 数据;
然后分别进行控制信息更新和干扰消除处理, 其中控制信息更新处理过 程包括以下步骤:
(b)对 N个采样点, 在设定时间段内, 分别求取 M次变换后数据的能 量累加得到的 N个能量值, 比较这 N个能量值和由这些能量值计算出的门限 值, 确定窄带干扰的个数以及每个窄带干扰的宽度和位置, M 1;
( c ) 根据每个窄带干扰的宽度、 位置, 确定其对应的频域调整窗口的 宽度、 位置和形状, 确定窗内包含的点并得到各点的调整值;
干扰消除处理过程包括以下步骤: '
(b^ )对每次频谱变换后的 N点数据, 根据本时间段或前一时间段得 到的每个窗口包含的点及各点的调整值信息, 将这些点上的数据的能量值置 为对应的调整值, 然后对调整后的数据进行逆频谱变换, 输出。
2、 如权利要求 1所述的方法, 其特征在于, 所述步骤(b) 中, 所述门 限值是由所述 N个能量值中的最小值乘以一个系数计算得到的, 或者, 所述 门限值是由所述 N个能量值去掉部分最大的能量值后对剩余能量值求均值, 再乘以一个系数得到的。
3、 如权利要求 1所述的方法, 其特征在于, 所述步骤(b) 中, 如果某 点数据的能量值大于门限就认为在该点为干扰点, 每一组连续的干扰点构成 一个窄带干扰, 每个窄带干扰包含的干扰点的个数为该窄带干扰的宽度, 由 此确定此次数据的谱中窄带干扰的个数以及每个窄带干扰的宽度和位置。
4、 如权利要求 1所述的方法, 其特征在于, 所述步骤 (b) 中, M是根 据一个时间段中包括的采样周期数来确定的, 该时间段为 6(Tl20mS
5、 如权利要求 1所述的方法, 其特征在于, 所述步骤(c) 中, 所述窗 口形状是按以下方式确定的: 在预知窄带干扰信号的能量集中程度时, 如果 干扰的能量集中, 则选择边缘陡峭的窗, 如果干扰的能量分散, 则选择边缘 变化缓慢的窗。
6、 如权利要求 1所述的方法, 其特征在于, 所述步骤(c ) 中, 窗内各 点的调整值是根据噪声水平设定的, 是将干扰点的调整值设为噪声水平, 窗 口边缘部分的其它点的调整值设为噪声水平的倍数。
7、 一种扩频系统中通过加窗处理消除窄带干扰的装置, 其特征在于, 包括频谱变换单元、 干扰消除单元、 干扰消除控制单元和频谱逆变换单元, 其中:
频谱变换单元, 用于一次取出 N个采样点的数据进行频谱变换, 获得数 据的谱, 并输出数据到干扰消除单元和干扰消除控制单元;
干扰消除控制单元, 用于在一设定时间段内, 根据 N个采样点上 M次数 据的能量累加得到的 N个能量值和由这些能量值获得的门限值的比较结果, 确定窄带干扰的个数、 宽度和位置, 为每个窄带干扰选择一个窗口, 并得到 每个窗口包含的点和各点的调整值信息, 输出到干扰消除单元;
干扰消除单元, 用于对每次频谱变换后的 N点数据, 根据本时间段或前 一时间段得到的每个窗口包含的点及各点的调整值信息, 将这些点上的数据 的能量值置为对应的调整值后输出到频谱逆变换单元;
频谱逆变换单元, 用于对干扰消除单元输出的 N点数据进行频谱逆变换 后输出。
.
8、 如权利要求 7所述的装置, 其特征在于, 所述干扰消除控制单元进 一步包括能量计算子单元、门限计算子单元、干扰判决子单元和窗选择单元, 其中:
能量计算子单元, 用于一设定时间段内, 对 N个采样点分别计算该点 M 次变换后数据的能量累加得到的 N个能量值, 输出到门限计算子单元和干扰 判定子单元, M为大于等于 1的整数;
门限计算子单元, 用于根据所述 N个能量值, 求取一个用于干扰判断的 门限, 然后输出到干扰判定子单元;
干扰判决子单元, 用于比较所述 N个能量值和所述门限值, 将能量值大 于该门限值的点作为干扰所在的点, 连续的干扰点构成一个窄带干扰, 判定 出窄带干扰的个数以及每个窄带干扰的宽度和位置, 将这些信息输出到窗选 择单元;
窗选择单元, 用于根据干扰判决子单元输出的窄带干扰信息, 为每个窄 带干扰选择一个合适的频域调整窗, 将每个窗口包含的点以及各点的调整值 信息输出到干扰消除单元。
9、 如权利要求 8所述的装置, 其特征在于, 所述门限计算子单元在计 算所述门限值时,是将所述 N个能量值中的最小值乘以一个系数计算得到的, 或者, 是将所述 N个能量值去掉部分最大的能量值后对剩余能量值求均值, 再乘以一个系数得到的。
10、 如权利要求 8所述的装置, 其特征在于, 所述窗选择单元在设定窗 内各点的调整值时, 是将干扰点的调整值设为噪声水平, 窗口边缘部分的其
PCT/CN2005/002223 2005-12-16 2005-12-16 Procede et appareil de suppression d'interferences a bande etroite par traitement de fenetrage dans un systeme a spectre etale WO2007068146A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US12/096,051 US8068531B2 (en) 2005-12-16 2005-12-16 Method and apparatus for eliminating narrow band interference by means of windowing processing in spread spectrum system
AT05823414T ATE523969T1 (de) 2005-12-16 2005-12-16 Verfahren und vorrichtung zum beseitigen von schmalbandigen störungen mittels fensterverarbeitung in einem spreizspektrumsystem
ES05823414T ES2370328T3 (es) 2005-12-16 2005-12-16 Procedimiento y aparato para eliminar interferencia de banda estrecha por medio de procesamiento de división de ventanas en un sistema de espectro ensanchado.
CNB2005800476002A CN100544218C (zh) 2005-12-16 2005-12-16 扩频系统中通过加窗处理消除窄带干扰的方法和装置
PT05823414T PT1962433E (pt) 2005-12-16 2005-12-16 Método e aparelho para eliminar interferência de banda estreita através de processamento de gestão de janelas num sistema de espalhamento espectral
PCT/CN2005/002223 WO2007068146A1 (fr) 2005-12-16 2005-12-16 Procede et appareil de suppression d'interferences a bande etroite par traitement de fenetrage dans un systeme a spectre etale
EP05823414A EP1962433B1 (en) 2005-12-16 2005-12-16 Method and apparatus for eliminating narrow band interference by means of windowing processing in spread spectrum system
DK05823414.7T DK1962433T3 (da) 2005-12-16 2005-12-16 Fremgangsmåde og apparat til at eliminere smalbåndsinteferens ved hjælp af vinduesbearbejdning i et spredt spektrum system
NO20082807A NO20082807L (no) 2005-12-16 2008-06-20 Fremgangsmate og apparat for a eliminere smalbandsinterferens ved bruk av vindusteknikkprosessering i spredt spektrums-system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2005/002223 WO2007068146A1 (fr) 2005-12-16 2005-12-16 Procede et appareil de suppression d'interferences a bande etroite par traitement de fenetrage dans un systeme a spectre etale

Publications (1)

Publication Number Publication Date
WO2007068146A1 true WO2007068146A1 (fr) 2007-06-21

Family

ID=38162538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/002223 WO2007068146A1 (fr) 2005-12-16 2005-12-16 Procede et appareil de suppression d'interferences a bande etroite par traitement de fenetrage dans un systeme a spectre etale

Country Status (9)

Country Link
US (1) US8068531B2 (zh)
EP (1) EP1962433B1 (zh)
CN (1) CN100544218C (zh)
AT (1) ATE523969T1 (zh)
DK (1) DK1962433T3 (zh)
ES (1) ES2370328T3 (zh)
NO (1) NO20082807L (zh)
PT (1) PT1962433E (zh)
WO (1) WO2007068146A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908794B2 (en) 2009-11-09 2014-12-09 Nec Corporation Wireless sending apparatus, wireless sending method, storage medium and baseband circuit
CN101741776B (zh) * 2009-11-10 2013-06-05 华为技术有限公司 消除干扰信号的方法以及装置
CN102984103B (zh) 2011-09-07 2015-08-05 华为技术有限公司 扩频系统中的信号处理方法及装置
US9277554B2 (en) * 2012-09-05 2016-03-01 The Boeing Company Servers and methods for operating a communication system
US9118401B1 (en) * 2014-10-28 2015-08-25 Harris Corporation Method of adaptive interference mitigation in wide band spectrum
CN105549035B (zh) * 2015-12-22 2018-05-29 武汉梦芯科技有限公司 一种基带信号频域窄带干扰检测消除装置及方法
GB2546994B (en) 2016-02-03 2019-10-09 Toshiba Res Europe Limited Transmit and receive apparatus and method
CN114337773B (zh) * 2021-12-06 2024-03-26 泰提斯电子科技(上海)有限公司 一种vdes卫星的窄带干扰检测及信道选择方法
CN114362837B (zh) * 2022-01-10 2023-12-29 中国电子科技集团公司第五十四研究所 一种扩频卫星信号窄带干扰自适应消除装置
US11811574B2 (en) * 2022-01-19 2023-11-07 Texas Instruments Incorporated Detection of in-band interference

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612978A (en) 1995-05-30 1997-03-18 Motorola, Inc. Method and apparatus for real-time adaptive interference cancellation in dynamic environments
EP1176731A1 (en) * 2000-07-11 2002-01-30 Texas Instruments Inc. Interference cancellation of a narrow band interferer in a wide band communication device
US6868114B2 (en) * 2001-01-18 2005-03-15 The Titan Corporation Interference suppression in a spread spectrum communications system using non-linear frequency domain excision

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20010952A0 (fi) * 2001-05-07 2001-05-07 Nokia Corp Signaalikomponenttien erottaminen radiojärjestelmän vastaanottimessa
CN1951023A (zh) * 2004-04-29 2007-04-18 皇家飞利浦电子股份有限公司 用于窄带干扰消除的接收机
CN100512027C (zh) * 2005-03-01 2009-07-08 华为技术有限公司 抑制窄带干扰的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612978A (en) 1995-05-30 1997-03-18 Motorola, Inc. Method and apparatus for real-time adaptive interference cancellation in dynamic environments
EP1176731A1 (en) * 2000-07-11 2002-01-30 Texas Instruments Inc. Interference cancellation of a narrow band interferer in a wide band communication device
US6868114B2 (en) * 2001-01-18 2005-03-15 The Titan Corporation Interference suppression in a spread spectrum communications system using non-linear frequency domain excision

Also Published As

Publication number Publication date
US8068531B2 (en) 2011-11-29
DK1962433T3 (da) 2011-11-28
US20080279256A1 (en) 2008-11-13
ATE523969T1 (de) 2011-09-15
EP1962433A4 (en) 2010-04-07
EP1962433B1 (en) 2011-09-07
NO20082807L (no) 2008-06-20
CN100544218C (zh) 2009-09-23
PT1962433E (pt) 2011-11-04
CN101112001A (zh) 2008-01-23
EP1962433A1 (en) 2008-08-27
ES2370328T3 (es) 2011-12-14

Similar Documents

Publication Publication Date Title
WO2007068146A1 (fr) Procede et appareil de suppression d'interferences a bande etroite par traitement de fenetrage dans un systeme a spectre etale
US8199862B2 (en) Arrangements for interference mitigation utilizing estimation
US7822385B2 (en) Adjacent channel interference supression
US8059768B2 (en) Method and device for removing narrow band interference in spreading frequency system
KR100958562B1 (ko) 무선 트랜스시버에서 채널 추정 노이즈를 감소시키는 장치및 방법
US20020155812A1 (en) Interference-signal removing apparatus
JPH10504945A (ja) セルラー通信システムの電力制御方法及び受信器
US7983647B2 (en) Method and apparatus for determining scaling factor in a communication system
US20090264088A1 (en) Method for mitigating interference
CN102904604A (zh) 一种窄带干扰抑制方法和装置
US7039093B2 (en) Arrangement for adaptive baseband filter selection
RU2365042C2 (ru) Способ и устройство устранения узкополосных радиопомех в широкополосной системе
CN101136654B (zh) 一种消除通信系统中窄带干扰的方法及装置
CN100375401C (zh) 扩频系统中窄带干扰消除的方法和装置
US7319846B2 (en) Colored interference identification
Hosseini et al. Enhanced FCME thresholding for wavelet‐based cognitive UWB over fading channels
Biswas et al. Determination of time domain mitigation parameters for coexistence of WiMedia and WiMax systems
Saberali et al. Weak BPSK signal detection in the presence of cochannel interference with time varying characteristics using maximum entropy principle
WO2017036161A1 (zh) 一种自适应滤波方法和装置
Wang CDMA Overlay

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580047600.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12096051

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005823414

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005823414

Country of ref document: EP