WO2007067836A2 - Substituted pyrazole compounds useful as soluble epoxide hydrolase inhibitors - Google Patents
Substituted pyrazole compounds useful as soluble epoxide hydrolase inhibitors Download PDFInfo
- Publication number
- WO2007067836A2 WO2007067836A2 PCT/US2006/060863 US2006060863W WO2007067836A2 WO 2007067836 A2 WO2007067836 A2 WO 2007067836A2 US 2006060863 W US2006060863 W US 2006060863W WO 2007067836 A2 WO2007067836 A2 WO 2007067836A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pyridin
- pyrazol
- mmol
- solution
- trifluoromethyl
- Prior art date
Links
- 108020002908 Epoxide hydrolase Proteins 0.000 title abstract description 54
- 102100025357 Lipid-phosphate phosphatase Human genes 0.000 title abstract description 40
- 229940127514 Epoxide Hydrolase Inhibitors Drugs 0.000 title description 2
- NOIXNOMHHWGUTG-UHFFFAOYSA-N 2-[[4-[4-pyridin-4-yl-1-(2,2,2-trifluoroethyl)pyrazol-3-yl]phenoxy]methyl]quinoline Chemical class C=1C=C(OCC=2N=C3C=CC=CC3=CC=2)C=CC=1C1=NN(CC(F)(F)F)C=C1C1=CC=NC=C1 NOIXNOMHHWGUTG-UHFFFAOYSA-N 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 215
- 238000000034 method Methods 0.000 claims abstract description 31
- -1 benzodioxolanyl Chemical group 0.000 claims description 34
- 125000000217 alkyl group Chemical group 0.000 claims description 20
- 150000003839 salts Chemical class 0.000 claims description 20
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 15
- 206010020772 Hypertension Diseases 0.000 claims description 13
- 201000010099 disease Diseases 0.000 claims description 12
- 125000001072 heteroaryl group Chemical group 0.000 claims description 12
- 125000002252 acyl group Chemical group 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- 125000000623 heterocyclic group Chemical group 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 125000004076 pyridyl group Chemical group 0.000 claims description 9
- 125000003545 alkoxy group Chemical group 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- 125000002757 morpholinyl group Chemical group 0.000 claims description 5
- 125000000719 pyrrolidinyl group Chemical group 0.000 claims description 5
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical compound OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 claims description 4
- 206010002383 Angina Pectoris Diseases 0.000 claims description 3
- 201000001320 Atherosclerosis Diseases 0.000 claims description 3
- 208000031773 Insulin resistance syndrome Diseases 0.000 claims description 3
- 208000032382 Ischaemic stroke Diseases 0.000 claims description 3
- 208000003782 Raynaud disease Diseases 0.000 claims description 3
- 208000012322 Raynaud phenomenon Diseases 0.000 claims description 3
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 claims description 3
- 208000029078 coronary artery disease Diseases 0.000 claims description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 208000028867 ischemia Diseases 0.000 claims description 3
- 125000000842 isoxazolyl group Chemical group 0.000 claims description 3
- 208000017169 kidney disease Diseases 0.000 claims description 3
- 125000002971 oxazolyl group Chemical group 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 125000001424 substituent group Chemical group 0.000 claims description 3
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims description 3
- 125000002015 acyclic group Chemical group 0.000 claims description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 2
- 125000002047 benzodioxolyl group Chemical group O1OC(C2=C1C=CC=C2)* 0.000 claims description 2
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- 125000003386 piperidinyl group Chemical group 0.000 claims description 2
- 125000003831 tetrazolyl group Chemical group 0.000 claims description 2
- 125000000027 (C1-C10) alkoxy group Chemical group 0.000 claims 1
- 101100070541 Podospora anserina (strain S / ATCC MYA-4624 / DSM 980 / FGSC 10383) het-S gene Proteins 0.000 claims 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 93
- 239000000243 solution Substances 0.000 description 452
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 344
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 315
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 140
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 125
- 229940093499 ethyl acetate Drugs 0.000 description 105
- 235000019439 ethyl acetate Nutrition 0.000 description 105
- 238000004587 chromatography analysis Methods 0.000 description 104
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 100
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 92
- 230000002829 reductive effect Effects 0.000 description 85
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 82
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 76
- 239000012044 organic layer Substances 0.000 description 74
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 70
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 70
- 235000019341 magnesium sulphate Nutrition 0.000 description 69
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 65
- 239000000706 filtrate Substances 0.000 description 65
- 239000011541 reaction mixture Substances 0.000 description 58
- KXDAEFPNCMNJSK-UHFFFAOYSA-N benzene carboxamide Natural products NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 49
- 239000007858 starting material Substances 0.000 description 47
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 43
- 229920006395 saturated elastomer Polymers 0.000 description 41
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 38
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 38
- 229910052938 sodium sulfate Inorganic materials 0.000 description 38
- 235000011152 sodium sulphate Nutrition 0.000 description 38
- 238000000746 purification Methods 0.000 description 37
- 239000002904 solvent Substances 0.000 description 37
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 37
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 36
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 34
- 239000011570 nicotinamide Substances 0.000 description 34
- 229960003966 nicotinamide Drugs 0.000 description 34
- 239000007787 solid Substances 0.000 description 34
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 32
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 32
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 32
- 235000017557 sodium bicarbonate Nutrition 0.000 description 32
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 30
- 239000012299 nitrogen atmosphere Substances 0.000 description 30
- 239000011664 nicotinic acid Substances 0.000 description 29
- 238000010992 reflux Methods 0.000 description 29
- 150000001412 amines Chemical class 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 27
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 25
- 239000002253 acid Substances 0.000 description 25
- 239000000047 product Substances 0.000 description 25
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 24
- VUZFFZABSONTJA-UHFFFAOYSA-N 5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-amine Chemical compound C1=NC(N)=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 VUZFFZABSONTJA-UHFFFAOYSA-N 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 23
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 22
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 22
- 238000003786 synthesis reaction Methods 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 235000005152 nicotinamide Nutrition 0.000 description 19
- DFPAKSUCGFBDDF-UHFFFAOYSA-N nicotinic acid amide Natural products NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 19
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 18
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 18
- VSNQXWIAKDDNLI-UHFFFAOYSA-N 6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-amine Chemical compound N1=NC(N)=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 VSNQXWIAKDDNLI-UHFFFAOYSA-N 0.000 description 17
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 17
- 239000003112 inhibitor Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 15
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 15
- 102000005486 Epoxide hydrolase Human genes 0.000 description 14
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 14
- 229910000024 caesium carbonate Inorganic materials 0.000 description 14
- 239000000543 intermediate Substances 0.000 description 14
- 238000001914 filtration Methods 0.000 description 13
- 239000002244 precipitate Substances 0.000 description 13
- 239000000741 silica gel Substances 0.000 description 13
- 229910002027 silica gel Inorganic materials 0.000 description 13
- WEGYGNROSJDEIW-UHFFFAOYSA-N 3-Acetylpyridine Chemical compound CC(=O)C1=CC=CN=C1 WEGYGNROSJDEIW-UHFFFAOYSA-N 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 150000001263 acyl chlorides Chemical class 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 0 *CC*=C(C=C(*c1ccc(NC(Cc2ccccc2)=O)nc1)C(F)(F)I=C)c1cccnc1 Chemical compound *CC*=C(C=C(*c1ccc(NC(Cc2ccccc2)=O)nc1)C(F)(F)I=C)c1cccnc1 0.000 description 10
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical compound OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 10
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 239000000306 component Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 241000700159 Rattus Species 0.000 description 8
- 235000019270 ammonium chloride Nutrition 0.000 description 8
- 239000008346 aqueous phase Substances 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- 239000004202 carbamide Substances 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 239000012074 organic phase Substances 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- PBOOZQFGWNZNQE-UHFFFAOYSA-N 3-bromobenzoyl chloride Chemical compound ClC(=O)C1=CC=CC(Br)=C1 PBOOZQFGWNZNQE-UHFFFAOYSA-N 0.000 description 7
- JPTPGVBKOFTFLL-UHFFFAOYSA-N 6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-3-amine Chemical compound N1=CC(N)=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 JPTPGVBKOFTFLL-UHFFFAOYSA-N 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 150000001408 amides Chemical class 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 7
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- PJUPKRYGDFTMTM-UHFFFAOYSA-N 1-hydroxybenzotriazole;hydrate Chemical compound O.C1=CC=C2N(O)N=NC2=C1 PJUPKRYGDFTMTM-UHFFFAOYSA-N 0.000 description 6
- 206010048554 Endothelial dysfunction Diseases 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 6
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000012131 assay buffer Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000012267 brine Substances 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 6
- 239000002552 dosage form Substances 0.000 description 6
- 230000008694 endothelial dysfunction Effects 0.000 description 6
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 150000002924 oxiranes Chemical class 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- NUKYPUAOHBNCPY-UHFFFAOYSA-N 4-aminopyridine Chemical compound NC1=CC=NC=C1 NUKYPUAOHBNCPY-UHFFFAOYSA-N 0.000 description 5
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 5
- STSCVKRWJPWALQ-UHFFFAOYSA-N TRIFLUOROACETIC ACID ETHYL ESTER Chemical compound CCOC(=O)C(F)(F)F STSCVKRWJPWALQ-UHFFFAOYSA-N 0.000 description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 5
- 230000036772 blood pressure Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 239000012043 crude product Substances 0.000 description 5
- VZFUCHSFHOYXIS-UHFFFAOYSA-N cycloheptane carboxylic acid Natural products OC(=O)C1CCCCCC1 VZFUCHSFHOYXIS-UHFFFAOYSA-N 0.000 description 5
- 125000005594 diketone group Chemical group 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 239000002207 metabolite Substances 0.000 description 5
- 229910000027 potassium carbonate Inorganic materials 0.000 description 5
- 239000012312 sodium hydride Substances 0.000 description 5
- 229910000104 sodium hydride Inorganic materials 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- ICSNLGPSRYBMBD-UHFFFAOYSA-N 2-aminopyridine Chemical compound NC1=CC=CC=N1 ICSNLGPSRYBMBD-UHFFFAOYSA-N 0.000 description 4
- JKISUFPXDCCMCI-UHFFFAOYSA-N 6-[5-hydroxy-3-pyridin-3-yl-5-(trifluoromethyl)-4h-pyrazol-1-yl]pyridine-3-carboxylic acid Chemical compound N1=CC(C(=O)O)=CC=C1N1C(C(F)(F)F)(O)CC(C=2C=NC=CC=2)=N1 JKISUFPXDCCMCI-UHFFFAOYSA-N 0.000 description 4
- 208000024172 Cardiovascular disease Diseases 0.000 description 4
- FBUKMFOXMZRGRB-UHFFFAOYSA-N Coronaric acid Natural products CCCCCC=CCC1OC1CCCCCCCC(O)=O FBUKMFOXMZRGRB-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 101710170970 Leukotoxin Proteins 0.000 description 4
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 150000001350 alkyl halides Chemical class 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 238000002405 diagnostic procedure Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 4
- 229960004979 fampridine Drugs 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 4
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 4
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 4
- 239000000651 prodrug Substances 0.000 description 4
- 229940002612 prodrug Drugs 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000011699 spontaneously hypertensive rat Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000035488 systolic blood pressure Effects 0.000 description 4
- WGTODYJZXSJIAG-UHFFFAOYSA-N tetramethylrhodamine chloride Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C(O)=O WGTODYJZXSJIAG-UHFFFAOYSA-N 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- 239000003039 volatile agent Substances 0.000 description 4
- OJBYZWHAPXIJID-UHFFFAOYSA-N (6-fluoropyridin-3-yl)boronic acid Chemical compound OB(O)C1=CC=C(F)N=C1 OJBYZWHAPXIJID-UHFFFAOYSA-N 0.000 description 3
- HZFHFNYJGVMRFE-UHFFFAOYSA-N (6-fluoropyridin-3-yl)hydrazine Chemical compound NNC1=CC=C(F)N=C1 HZFHFNYJGVMRFE-UHFFFAOYSA-N 0.000 description 3
- BUJSYIACFQICKW-UHFFFAOYSA-N 2-(6-chloropyridazin-3-yl)-5-pyridin-3-yl-3-(trifluoromethyl)-4h-pyrazol-3-ol Chemical compound FC(F)(F)C1(O)CC(C=2C=NC=CC=2)=NN1C1=CC=C(Cl)N=N1 BUJSYIACFQICKW-UHFFFAOYSA-N 0.000 description 3
- KHZYMPDILLAIQY-UHFFFAOYSA-N 3-(3-carboxyphenyl)benzoic acid Chemical compound OC(=O)C1=CC=CC(C=2C=C(C=CC=2)C(O)=O)=C1 KHZYMPDILLAIQY-UHFFFAOYSA-N 0.000 description 3
- GSYIVQLTSZFJRV-UHFFFAOYSA-N 3-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=CC(C(O)=O)=C1 GSYIVQLTSZFJRV-UHFFFAOYSA-N 0.000 description 3
- QDFLJEVKEIXDMX-UHFFFAOYSA-N 4-(2-piperidin-1-ylethoxy)naphthalen-1-amine Chemical compound C12=CC=CC=C2C(N)=CC=C1OCCN1CCCCC1 QDFLJEVKEIXDMX-UHFFFAOYSA-N 0.000 description 3
- ROUMHIWDPQBXSR-UHFFFAOYSA-N 5-[3-ethoxy-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-amine Chemical compound N1=C(OCC)C=C(C(F)(F)F)N1C1=CC=C(N)N=C1 ROUMHIWDPQBXSR-UHFFFAOYSA-N 0.000 description 3
- NQKHEBVLBPRYKH-UHFFFAOYSA-N 6-[3-(1,3-thiazol-2-yl)-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-amine Chemical compound N1=NC(N)=CC=C1N1C(C(F)(F)F)=CC(C=2SC=CN=2)=N1 NQKHEBVLBPRYKH-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000000908 ammonium hydroxide Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Substances N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- RVOJTCZRIKWHDX-UHFFFAOYSA-N cyclohexanecarbonyl chloride Chemical compound ClC(=O)C1CCCCC1 RVOJTCZRIKWHDX-UHFFFAOYSA-N 0.000 description 3
- 235000005911 diet Nutrition 0.000 description 3
- 230000037213 diet Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- RUJPPJYDHHAEEK-UHFFFAOYSA-N ethyl piperidine-4-carboxylate Chemical compound CCOC(=O)C1CCNCC1 RUJPPJYDHHAEEK-UHFFFAOYSA-N 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000002102 hyperpolarization Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 125000002950 monocyclic group Chemical group 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 235000010288 sodium nitrite Nutrition 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- CCPPLLJZDQAOHD-UHFFFAOYSA-N vernolic acid Natural products CCCCCC1OC1CC=CCCCCCCCC(O)=O CCPPLLJZDQAOHD-UHFFFAOYSA-N 0.000 description 3
- CCPPLLJZDQAOHD-GJGKEFFFSA-N (+)-vernolic acid Chemical compound CCCCC[C@H]1O[C@H]1C\C=C/CCCCCCCC(O)=O CCPPLLJZDQAOHD-GJGKEFFFSA-N 0.000 description 2
- FXYQRYGWWZKUFV-UHFFFAOYSA-N (6-chloropyridazin-3-yl)hydrazine Chemical compound NNC1=CC=C(Cl)N=N1 FXYQRYGWWZKUFV-UHFFFAOYSA-N 0.000 description 2
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 2
- WFCLWJHOKCQYOQ-UHFFFAOYSA-N 1-acetylpiperidine-4-carboxylic acid Chemical compound CC(=O)N1CCC(C(O)=O)CC1 WFCLWJHOKCQYOQ-UHFFFAOYSA-N 0.000 description 2
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 2
- INQSLLMRNARXFX-UHFFFAOYSA-N 2-[2-oxo-5-[[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-3-yl]carbamoyl]pyridin-1-yl]acetic acid Chemical compound C1=CC(=O)N(CC(=O)O)C=C1C(=O)NC1=CC=C(N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)N=C1 INQSLLMRNARXFX-UHFFFAOYSA-N 0.000 description 2
- SWELYAHZJBVENN-UHFFFAOYSA-N 2-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]acetic acid Chemical compound C1=C(C(F)(F)F)N(CC(=O)O)N=C1C1=CC=CN=C1 SWELYAHZJBVENN-UHFFFAOYSA-N 0.000 description 2
- FEMYETFSEXUVHS-UHFFFAOYSA-N 2-[5-pyridin-3-yl-3-(trifluoromethyl)pyrazol-1-yl]acetic acid Chemical compound OC(=O)CN1N=C(C(F)(F)F)C=C1C1=CC=CN=C1 FEMYETFSEXUVHS-UHFFFAOYSA-N 0.000 description 2
- GDGXRJDVOKNSCX-UHFFFAOYSA-N 3-(1,3-oxazol-5-yl)benzoic acid Chemical compound OC(=O)C1=CC=CC(C=2OC=NC=2)=C1 GDGXRJDVOKNSCX-UHFFFAOYSA-N 0.000 description 2
- SVXGPJVUJOXPCS-UHFFFAOYSA-N 3-(1,3-oxazol-5-yl)benzoyl chloride Chemical compound ClC(=O)C1=CC=CC(C=2OC=NC=2)=C1 SVXGPJVUJOXPCS-UHFFFAOYSA-N 0.000 description 2
- MQKHEUHWYLQGQB-UHFFFAOYSA-N 3-(2-methyl-1,3-oxazol-5-yl)benzoic acid Chemical compound O1C(C)=NC=C1C1=CC=CC(C(O)=O)=C1 MQKHEUHWYLQGQB-UHFFFAOYSA-N 0.000 description 2
- GZSDQLJRJBYFDH-UHFFFAOYSA-N 3-(2-methyl-1,3-oxazol-5-yl)benzoyl chloride Chemical compound O1C(C)=NC=C1C1=CC=CC(C(Cl)=O)=C1 GZSDQLJRJBYFDH-UHFFFAOYSA-N 0.000 description 2
- MUBBBHIZDYDRNW-UHFFFAOYSA-N 3-(6-fluoropyridin-3-yl)benzoic acid Chemical compound OC(=O)C1=CC=CC(C=2C=NC(F)=CC=2)=C1 MUBBBHIZDYDRNW-UHFFFAOYSA-N 0.000 description 2
- XFMWDBCWQGALHU-UHFFFAOYSA-N 3-(6-fluoropyridin-3-yl)benzoyl chloride Chemical compound C1=NC(F)=CC=C1C1=CC=CC(C(Cl)=O)=C1 XFMWDBCWQGALHU-UHFFFAOYSA-N 0.000 description 2
- YGWITLOOKDFNML-UHFFFAOYSA-N 3-(6-methoxypyridin-3-yl)-n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]benzamide Chemical compound C1=NC(OC)=CC=C1C1=CC=CC(C(=O)NC=2N=NC(=CC=2)N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)=C1 YGWITLOOKDFNML-UHFFFAOYSA-N 0.000 description 2
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 2
- ZGCNEMWYXWIEDV-UHFFFAOYSA-N 3-bromo-n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]benzamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1NC(=O)C1=CC=CC(Br)=C1 ZGCNEMWYXWIEDV-UHFFFAOYSA-N 0.000 description 2
- PHQGLSUKWBVDRC-UHFFFAOYSA-N 3-carbonochloridoylpiperidine-1-carboxylic acid Chemical compound OC(=O)N1CCCC(C(Cl)=O)C1 PHQGLSUKWBVDRC-UHFFFAOYSA-N 0.000 description 2
- MIKUGJVXTNHQPD-UHFFFAOYSA-N 3-cyano-n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]benzamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=N1)=CC=C1NC(=O)C1=CC=CC(C#N)=C1 MIKUGJVXTNHQPD-UHFFFAOYSA-N 0.000 description 2
- RPESZQVUWMFBEO-UHFFFAOYSA-N 3-cyanobenzoyl chloride Chemical compound ClC(=O)C1=CC=CC(C#N)=C1 RPESZQVUWMFBEO-UHFFFAOYSA-N 0.000 description 2
- VSKFQESEPGOWBS-UHFFFAOYSA-N 3-morpholin-4-ylbenzoic acid Chemical compound OC(=O)C1=CC=CC(N2CCOCC2)=C1 VSKFQESEPGOWBS-UHFFFAOYSA-N 0.000 description 2
- KRCMQJRTVOAZQG-UHFFFAOYSA-N 3-morpholin-4-ylbenzoyl chloride Chemical compound ClC(=O)C1=CC=CC(N2CCOCC2)=C1 KRCMQJRTVOAZQG-UHFFFAOYSA-N 0.000 description 2
- HPVUGOBQRQUWMK-UHFFFAOYSA-N 3-phenylmethoxybenzoyl chloride Chemical compound ClC(=O)C1=CC=CC(OCC=2C=CC=CC=2)=C1 HPVUGOBQRQUWMK-UHFFFAOYSA-N 0.000 description 2
- XFZWBJNMCIHLLI-UHFFFAOYSA-N 3-propan-2-ylsulfonylbenzoic acid Chemical compound CC(C)S(=O)(=O)C1=CC=CC(C(O)=O)=C1 XFZWBJNMCIHLLI-UHFFFAOYSA-N 0.000 description 2
- GOBHUCDJFMLNFN-UHFFFAOYSA-N 4-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 GOBHUCDJFMLNFN-UHFFFAOYSA-N 0.000 description 2
- NHEUGAWNRICDLS-UHFFFAOYSA-N 4-[5-pyridin-3-yl-3-(trifluoromethyl)pyrazol-1-yl]benzonitrile Chemical compound C=1C=C(C#N)C=CC=1N1N=C(C(F)(F)F)C=C1C1=CC=CN=C1 NHEUGAWNRICDLS-UHFFFAOYSA-N 0.000 description 2
- ONQWDDKBUJZLGU-UHFFFAOYSA-N 5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridine-2-carboxylic acid Chemical compound C1=NC(C(=O)O)=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 ONQWDDKBUJZLGU-UHFFFAOYSA-N 0.000 description 2
- CIMMUKYNUQGJIO-UHFFFAOYSA-N 5-[5-hydroxy-3-pyridin-3-yl-5-(trifluoromethyl)-4h-pyrazol-1-yl]pyridine-2-carbonitrile Chemical compound FC(F)(F)C1(O)CC(C=2C=NC=CC=2)=NN1C1=CC=C(C#N)N=C1 CIMMUKYNUQGJIO-UHFFFAOYSA-N 0.000 description 2
- LNWRXPFBGATJRN-UHFFFAOYSA-N 5-[5-pyridin-3-yl-3-(trifluoromethyl)pyrazol-1-yl]pyrimidin-2-amine Chemical compound C1=NC(N)=NC=C1N1C(C=2C=NC=CC=2)=CC(C(F)(F)F)=N1 LNWRXPFBGATJRN-UHFFFAOYSA-N 0.000 description 2
- MYUQKYGWKHTRPG-UHFFFAOYSA-N 5-bromo-2-fluoropyridine Chemical compound FC1=CC=C(Br)C=N1 MYUQKYGWKHTRPG-UHFFFAOYSA-N 0.000 description 2
- LUAXCADPBGMDTG-UHFFFAOYSA-N 5-hydrazinylpyridine-2-carbonitrile Chemical compound NNC1=CC=C(C#N)N=C1 LUAXCADPBGMDTG-UHFFFAOYSA-N 0.000 description 2
- JGTMPWXGJJQPDJ-UHFFFAOYSA-N 6-[3-(6-methoxypyridin-3-yl)-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-amine Chemical compound C1=NC(OC)=CC=C1C1=NN(C=2N=NC(N)=CC=2)C(C(F)(F)F)=C1 JGTMPWXGJJQPDJ-UHFFFAOYSA-N 0.000 description 2
- HBBSDZXXUIHKJE-UHFFFAOYSA-N 6-hydrazinylpyridine-3-carboxylic acid Chemical compound NNC1=CC=C(C(O)=O)C=N1 HBBSDZXXUIHKJE-UHFFFAOYSA-N 0.000 description 2
- BLHCMGRVFXRYRN-UHFFFAOYSA-N 6-hydroxynicotinic acid Chemical compound OC(=O)C1=CC=C(O)N=C1 BLHCMGRVFXRYRN-UHFFFAOYSA-N 0.000 description 2
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 102000005862 Angiotensin II Human genes 0.000 description 2
- 101800000733 Angiotensin-2 Proteins 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 2
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 102000004157 Hydrolases Human genes 0.000 description 2
- 108090000604 Hydrolases Proteins 0.000 description 2
- CZGUSIXMZVURDU-JZXHSEFVSA-N Ile(5)-angiotensin II Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C([O-])=O)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=[NH2+])NC(=O)[C@@H]([NH3+])CC([O-])=O)C(C)C)C1=CC=C(O)C=C1 CZGUSIXMZVURDU-JZXHSEFVSA-N 0.000 description 2
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 2
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 2
- MGLWJOGYGFPRQA-UHFFFAOYSA-N [4-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]phenyl]methanamine Chemical compound C1=CC(CN)=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 MGLWJOGYGFPRQA-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 2
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 2
- 229950006323 angiotensin ii Drugs 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 125000005605 benzo group Chemical group 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- STIAPHVBRDNOAJ-UHFFFAOYSA-N carbamimidoylazanium;carbonate Chemical compound NC(N)=N.NC(N)=N.OC(O)=O STIAPHVBRDNOAJ-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000035487 diastolic blood pressure Effects 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 210000003038 endothelium Anatomy 0.000 description 2
- XGJSFLOIRBHTHR-UHFFFAOYSA-N ethyl 2-[2-oxo-5-[[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-3-yl]carbamoyl]pyridin-1-yl]acetate Chemical compound C1=CC(=O)N(CC(=O)OCC)C=C1C(=O)NC1=CC=C(N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)N=C1 XGJSFLOIRBHTHR-UHFFFAOYSA-N 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 238000002875 fluorescence polarization Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 230000003907 kidney function Effects 0.000 description 2
- 235000020778 linoleic acid Nutrition 0.000 description 2
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- DATHOCDTDDUESC-UHFFFAOYSA-N methyl 2-oxo-1h-pyridine-4-carboxylate Chemical compound COC(=O)C=1C=CNC(=O)C=1 DATHOCDTDDUESC-UHFFFAOYSA-N 0.000 description 2
- JKKAJBRBOVEEGT-UHFFFAOYSA-N methyl 3-(1,3-oxazol-5-yl)benzoate Chemical compound COC(=O)C1=CC=CC(C=2OC=NC=2)=C1 JKKAJBRBOVEEGT-UHFFFAOYSA-N 0.000 description 2
- AGDLBSZJTZPVKN-UHFFFAOYSA-N methyl 3-(6-fluoropyridin-3-yl)benzoate Chemical compound COC(=O)C1=CC=CC(C=2C=NC(F)=CC=2)=C1 AGDLBSZJTZPVKN-UHFFFAOYSA-N 0.000 description 2
- UZHOTUXOPYLESN-UHFFFAOYSA-N methyl 3-morpholin-4-ylbenzoate Chemical compound COC(=O)C1=CC=CC(N2CCOCC2)=C1 UZHOTUXOPYLESN-UHFFFAOYSA-N 0.000 description 2
- PAHISUDITATEPV-UHFFFAOYSA-N methyl 3-propan-2-ylsulfonylbenzoate Chemical compound COC(=O)C1=CC=CC(S(=O)(=O)C(C)C)=C1 PAHISUDITATEPV-UHFFFAOYSA-N 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- WITWZJNZWRWQMN-UHFFFAOYSA-N n-(5-aminopyridin-2-yl)cyclohexanecarboxamide Chemical compound N1=CC(N)=CC=C1NC(=O)C1CCCCC1 WITWZJNZWRWQMN-UHFFFAOYSA-N 0.000 description 2
- IPMYMGOVWSRULX-UHFFFAOYSA-N n-(5-bromopyrazin-2-yl)cyclohexanecarboxamide Chemical compound C1=NC(Br)=CN=C1NC(=O)C1CCCCC1 IPMYMGOVWSRULX-UHFFFAOYSA-N 0.000 description 2
- FNDVMZSMVRBBQV-UHFFFAOYSA-N n-(5-hydrazinylpyridin-2-yl)cyclohexanecarboxamide Chemical compound N1=CC(NN)=CC=C1NC(=O)C1CCCCC1 FNDVMZSMVRBBQV-UHFFFAOYSA-N 0.000 description 2
- FRLQBKOLKNVBJT-UHFFFAOYSA-N n-(5-nitropyridin-2-yl)cyclohexanecarboxamide Chemical compound N1=CC([N+](=O)[O-])=CC=C1NC(=O)C1CCCCC1 FRLQBKOLKNVBJT-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- RWIVICVCHVMHMU-UHFFFAOYSA-N n-aminoethylmorpholine Chemical compound NCCN1CCOCC1 RWIVICVCHVMHMU-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 229960003512 nicotinic acid Drugs 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 125000006574 non-aromatic ring group Chemical group 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- LJXQPZWIHJMPQQ-UHFFFAOYSA-N pyrimidin-2-amine Chemical compound NC1=NC=CC=N1 LJXQPZWIHJMPQQ-UHFFFAOYSA-N 0.000 description 2
- HZFPPBMKGYINDF-UHFFFAOYSA-N pyrimidin-5-ylboronic acid Chemical compound OB(O)C1=CN=CN=C1 HZFPPBMKGYINDF-UHFFFAOYSA-N 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052979 sodium sulfide Inorganic materials 0.000 description 2
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 2
- 235000011150 stannous chloride Nutrition 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 2
- 230000024883 vasodilation Effects 0.000 description 2
- DXOYQVHGIODESM-MFYAFOOZSA-N (11R,12S)-EET Chemical compound CCCCC\C=C/C[C@@H]1O[C@@H]1C\C=C/C\C=C/CCCC(O)=O DXOYQVHGIODESM-MFYAFOOZSA-N 0.000 description 1
- ALTLCJHSJMGSLT-UHFFFAOYSA-N (3-methoxycarbonylphenyl)boronic acid Chemical compound COC(=O)C1=CC=CC(B(O)O)=C1 ALTLCJHSJMGSLT-UHFFFAOYSA-N 0.000 description 1
- MJEZWFADUUJROF-UHFFFAOYSA-N (4-hydroxynaphthalen-1-yl)carbamic acid Chemical compound C1=CC=C2C(NC(=O)O)=CC=C(O)C2=C1 MJEZWFADUUJROF-UHFFFAOYSA-N 0.000 description 1
- DDWAPSXNXHYQLK-UHFFFAOYSA-N (5-nitropyridin-2-yl)hydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=N1 DDWAPSXNXHYQLK-UHFFFAOYSA-N 0.000 description 1
- DHADXDMPEUWEAS-UHFFFAOYSA-N (6-methoxypyridin-3-yl)boronic acid Chemical compound COC1=CC=C(B(O)O)C=N1 DHADXDMPEUWEAS-UHFFFAOYSA-N 0.000 description 1
- XJLSEXAGTJCILF-RXMQYKEDSA-N (R)-nipecotic acid zwitterion Chemical compound OC(=O)[C@@H]1CCCNC1 XJLSEXAGTJCILF-RXMQYKEDSA-N 0.000 description 1
- NDQXKKFRNOPRDW-UHFFFAOYSA-N 1,1,1-triethoxyethane Chemical compound CCOC(C)(OCC)OCC NDQXKKFRNOPRDW-UHFFFAOYSA-N 0.000 description 1
- 125000005940 1,4-dioxanyl group Chemical group 0.000 description 1
- UDHAWRUAECEBHC-UHFFFAOYSA-N 1-iodo-4-methylbenzene Chemical compound CC1=CC=C(I)C=C1 UDHAWRUAECEBHC-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- DXOYQVHGIODESM-KROJNAHFSA-N 11,12-EET Chemical compound CCCCC\C=C/CC1OC1C\C=C/C\C=C/CCCC(O)=O DXOYQVHGIODESM-KROJNAHFSA-N 0.000 description 1
- JBSCUHKPLGKXKH-ILYOTBPNSA-N 14,15-EET Chemical compound CCCCCC1OC1C\C=C/C\C=C/C\C=C/CCCC(O)=O JBSCUHKPLGKXKH-ILYOTBPNSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- YXYOLVAXVPOIMA-UHFFFAOYSA-N 2,3-dihydro-1-benzofuran-5-carboxylic acid Chemical compound OC(=O)C1=CC=C2OCCC2=C1 YXYOLVAXVPOIMA-UHFFFAOYSA-N 0.000 description 1
- FUIUATRKBRZCQD-UHFFFAOYSA-N 2,4-dichloro-1-(isocyanatomethyl)benzene Chemical compound ClC1=CC=C(CN=C=O)C(Cl)=C1 FUIUATRKBRZCQD-UHFFFAOYSA-N 0.000 description 1
- OFKNLQSJUCXVRY-UHFFFAOYSA-N 2-(3-carboxyphenyl)benzoic acid Chemical compound OC(=O)C1=CC=CC(C=2C(=CC=CC=2)C(O)=O)=C1 OFKNLQSJUCXVRY-UHFFFAOYSA-N 0.000 description 1
- IDKLTXODKTXXEF-UHFFFAOYSA-N 2-(5-nitropyridin-2-yl)-5-pyridin-3-yl-3-(trifluoromethyl)-4h-pyrazol-3-ol Chemical compound FC(F)(F)C1(O)CC(C=2C=NC=CC=2)=NN1C1=CC=C([N+]([O-])=O)C=N1 IDKLTXODKTXXEF-UHFFFAOYSA-N 0.000 description 1
- QPKNFEVLZVJGBM-UHFFFAOYSA-N 2-aminonaphthalen-1-ol Chemical compound C1=CC=CC2=C(O)C(N)=CC=C21 QPKNFEVLZVJGBM-UHFFFAOYSA-N 0.000 description 1
- NZCKTGCKFJDGFD-UHFFFAOYSA-N 2-bromobenzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1Br NZCKTGCKFJDGFD-UHFFFAOYSA-N 0.000 description 1
- RBFXQMHQBVFZHT-UHFFFAOYSA-N 2-chloro-n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-3-yl]benzamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=C1)=CC=C1NC(=O)C1=CC=CC=C1Cl RBFXQMHQBVFZHT-UHFFFAOYSA-N 0.000 description 1
- NPRZWOJTSGFSBF-UHFFFAOYSA-N 2-chloropyridine-4-carbonyl chloride Chemical compound ClC(=O)C1=CC=NC(Cl)=C1 NPRZWOJTSGFSBF-UHFFFAOYSA-N 0.000 description 1
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 1
- ZSENFLSNAPYOFO-UHFFFAOYSA-N 2-fluoro-n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]pyridine-4-carboxamide Chemical compound C1=NC(F)=CC(C(=O)NC=2N=CC(=CC=2)N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)=C1 ZSENFLSNAPYOFO-UHFFFAOYSA-N 0.000 description 1
- LLLVHTWJGWNRBD-UHFFFAOYSA-N 2-fluoropyridine-3-carboxylic acid Chemical compound OC(=O)C1=CC=CN=C1F LLLVHTWJGWNRBD-UHFFFAOYSA-N 0.000 description 1
- CFXAQZHOTMBMKJ-UHFFFAOYSA-N 2-phenyl-n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]acetamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1NC(=O)CC1=CC=CC=C1 CFXAQZHOTMBMKJ-UHFFFAOYSA-N 0.000 description 1
- WRAORWSJOJMDPN-UHFFFAOYSA-N 2-phenyl-n-[[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]methyl]acetamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1CNC(=O)CC1=CC=CC=C1 WRAORWSJOJMDPN-UHFFFAOYSA-N 0.000 description 1
- QDAPLAQUCGQBLG-UHFFFAOYSA-N 2-pyridin-3-yl-n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]pyridine-4-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=N1)=CC=C1NC(=O)C(C=1)=CC=NC=1C1=CC=CN=C1 QDAPLAQUCGQBLG-UHFFFAOYSA-N 0.000 description 1
- YCTWEFVAUBJZBM-UHFFFAOYSA-N 2h-pyrimidin-1-ylboronic acid Chemical compound OB(O)N1CN=CC=C1 YCTWEFVAUBJZBM-UHFFFAOYSA-N 0.000 description 1
- IFTSMMRBBQELIC-UHFFFAOYSA-N 3-(2-hydroxyphenyl)-n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]benzamide Chemical compound OC1=CC=CC=C1C1=CC=CC(C(=O)NC=2N=NC(=CC=2)N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)=C1 IFTSMMRBBQELIC-UHFFFAOYSA-N 0.000 description 1
- GCNKYTFNDAMYHM-UHFFFAOYSA-N 3-(3-methylsulfonylphenyl)-n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]benzamide Chemical compound CS(=O)(=O)C1=CC=CC(C=2C=C(C=CC=2)C(=O)NC=2N=NC(=CC=2)N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)=C1 GCNKYTFNDAMYHM-UHFFFAOYSA-N 0.000 description 1
- UBGRYAIGZVJXED-UHFFFAOYSA-N 3-(4-acetylpiperazin-1-yl)-n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]benzamide Chemical compound C1CN(C(=O)C)CCN1C1=CC=CC(C(=O)NC=2N=NC(=CC=2)N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)=C1 UBGRYAIGZVJXED-UHFFFAOYSA-N 0.000 description 1
- XAFMVLJTHNBTAL-UHFFFAOYSA-N 3-(4-methylpiperazin-1-yl)-n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]benzamide Chemical compound C1CN(C)CCN1C1=CC=CC(C(=O)NC=2N=NC(=CC=2)N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)=C1 XAFMVLJTHNBTAL-UHFFFAOYSA-N 0.000 description 1
- UTZYNOXKLLDMSS-UHFFFAOYSA-N 3-(6-nitropyridin-3-yl)-n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]benzamide Chemical compound C1=NC([N+](=O)[O-])=CC=C1C1=CC=CC(C(=O)NC=2N=NC(=CC=2)N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)=C1 UTZYNOXKLLDMSS-UHFFFAOYSA-N 0.000 description 1
- UTZKLODUDPSLBT-UHFFFAOYSA-N 3-(methylsulfamoyl)benzoic acid Chemical compound CNS(=O)(=O)C1=CC=CC(C(O)=O)=C1 UTZKLODUDPSLBT-UHFFFAOYSA-N 0.000 description 1
- VEMVTQMHMNSWEE-UHFFFAOYSA-N 3-(propan-2-ylsulfamoyl)-n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]benzamide Chemical compound CC(C)NS(=O)(=O)C1=CC=CC(C(=O)NC=2N=CC(=CC=2)N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)=C1 VEMVTQMHMNSWEE-UHFFFAOYSA-N 0.000 description 1
- PPOAKFKPEGCORJ-UHFFFAOYSA-N 3-[3-(morpholine-4-carbonyl)phenyl]benzoic acid Chemical compound OC(=O)C1=CC=CC(C=2C=C(C=CC=2)C(=O)N2CCOCC2)=C1 PPOAKFKPEGCORJ-UHFFFAOYSA-N 0.000 description 1
- RXLPFEIDGAGJFI-UHFFFAOYSA-N 3-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]-1h-pyridazin-6-one Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C=1C=CC(=O)NN=1 RXLPFEIDGAGJFI-UHFFFAOYSA-N 0.000 description 1
- BRBXRORXAJVOGF-UHFFFAOYSA-N 3-[4-(morpholine-4-carbonyl)phenyl]-n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]benzamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1NC(=O)C(C=1)=CC=CC=1C(C=C1)=CC=C1C(=O)N1CCOCC1 BRBXRORXAJVOGF-UHFFFAOYSA-N 0.000 description 1
- QPBYTKLGVBLUQR-UHFFFAOYSA-N 3-[4-(morpholine-4-carbonyl)phenyl]benzoic acid Chemical compound OC(=O)C1=CC=CC(C=2C=CC(=CC=2)C(=O)N2CCOCC2)=C1 QPBYTKLGVBLUQR-UHFFFAOYSA-N 0.000 description 1
- UYWGSGWRKZNDHT-UHFFFAOYSA-N 3-[4-(oxolane-2-carbonyl)piperazin-1-yl]-n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]benzamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1NC(=O)C(C=1)=CC=CC=1N(CC1)CCN1C(=O)C1CCCO1 UYWGSGWRKZNDHT-UHFFFAOYSA-N 0.000 description 1
- RONRUVNYWDNCNW-UHFFFAOYSA-N 3-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]pyridine-4-carboxamide Chemical compound N1=CC(=CC=C1)C1=NN(C(=C1)C(F)(F)F)C=1C=CC(=NC1)C1=C(C(=O)N)C=CN=C1 RONRUVNYWDNCNW-UHFFFAOYSA-N 0.000 description 1
- LWPPMZGUXYDMFZ-UHFFFAOYSA-N 3-[[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]carbamoyl]benzoic acid Chemical compound OC(=O)C1=CC=CC(C(=O)NC=2N=CC(=CC=2)N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)=C1 LWPPMZGUXYDMFZ-UHFFFAOYSA-N 0.000 description 1
- CHZPJUSFUDUEMZ-UHFFFAOYSA-N 3-acetylbenzoic acid Chemical compound CC(=O)C1=CC=CC(C(O)=O)=C1 CHZPJUSFUDUEMZ-UHFFFAOYSA-N 0.000 description 1
- NLPHAZLCNNDGPS-UHFFFAOYSA-N 3-bromo-5-(chloromethyl)pyridine Chemical compound ClCC1=CN=CC(Br)=C1 NLPHAZLCNNDGPS-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- HADZSOZVTCEMNP-UHFFFAOYSA-N 3-cyano-5-fluorobenzoic acid Chemical compound OC(=O)C1=CC(F)=CC(C#N)=C1 HADZSOZVTCEMNP-UHFFFAOYSA-N 0.000 description 1
- IKPKLNKLHFXVHJ-UHFFFAOYSA-N 3-cyano-n-[6-[3-(6-methoxypyridin-3-yl)-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]benzamide Chemical compound C1=NC(OC)=CC=C1C1=NN(C=2N=NC(NC(=O)C=3C=C(C=CC=3)C#N)=CC=2)C(C(F)(F)F)=C1 IKPKLNKLHFXVHJ-UHFFFAOYSA-N 0.000 description 1
- PFKITESTTSWHMP-UHFFFAOYSA-N 3-fluoro-4-phenylbenzoic acid Chemical compound FC1=CC(C(=O)O)=CC=C1C1=CC=CC=C1 PFKITESTTSWHMP-UHFFFAOYSA-N 0.000 description 1
- CISXCTKEQYOZAM-UHFFFAOYSA-N 3-phenylmethoxybenzoic acid Chemical compound OC(=O)C1=CC=CC(OCC=2C=CC=CC=2)=C1 CISXCTKEQYOZAM-UHFFFAOYSA-N 0.000 description 1
- XIZXADDGOCJZAL-UHFFFAOYSA-N 3h-dioxole-5-carboxylic acid Chemical compound OC(=O)C1=CCOO1 XIZXADDGOCJZAL-UHFFFAOYSA-N 0.000 description 1
- FLSBZXWDASEHJU-UHFFFAOYSA-N 4,4-diphenylbutanoic acid Chemical compound C=1C=CC=CC=1C(CCC(=O)O)C1=CC=CC=C1 FLSBZXWDASEHJU-UHFFFAOYSA-N 0.000 description 1
- ZYTCRZMJZJPYEG-UHFFFAOYSA-N 4-(methylcarbamoyl)benzoic acid Chemical compound CNC(=O)C1=CC=C(C(O)=O)C=C1 ZYTCRZMJZJPYEG-UHFFFAOYSA-N 0.000 description 1
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 1
- GWRSATNRNFYMDI-UHFFFAOYSA-N 4-[(9-cyclopentyl-7,7-difluoro-5-methyl-6-oxo-8h-pyrimido[4,5-b][1,4]diazepin-2-yl)amino]-2-fluoro-5-methoxy-n-(1-methylpiperidin-4-yl)benzamide Chemical compound FC=1C=C(NC=2N=C3N(C4CCCC4)CC(F)(F)C(=O)N(C)C3=CN=2)C(OC)=CC=1C(=O)NC1CCN(C)CC1 GWRSATNRNFYMDI-UHFFFAOYSA-N 0.000 description 1
- JAPACGAHCZQJNG-UHFFFAOYSA-N 4-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]benzonitrile Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C1=CC=C(C#N)C=C1 JAPACGAHCZQJNG-UHFFFAOYSA-N 0.000 description 1
- GNSWWHPSUCFQPQ-UHFFFAOYSA-N 4-[5-phenyl-3-(trifluoromethyl)pyrazol-1-yl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1N1C(C=2C=CC=CC=2)=CC(C(F)(F)F)=N1 GNSWWHPSUCFQPQ-UHFFFAOYSA-N 0.000 description 1
- UDVGDJGKBUIMBG-UHFFFAOYSA-N 4-[5-pyridin-3-yl-3-(trifluoromethyl)pyrazol-1-yl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1N1C(C=2C=NC=CC=2)=CC(C(F)(F)F)=N1 UDVGDJGKBUIMBG-UHFFFAOYSA-N 0.000 description 1
- PCNFLKVWBDNNOW-UHFFFAOYSA-N 4-hydrazinylbenzoic acid Chemical compound NNC1=CC=C(C(O)=O)C=C1 PCNFLKVWBDNNOW-UHFFFAOYSA-N 0.000 description 1
- DZUUSHCOMPROCJ-UHFFFAOYSA-N 4-hydrazinylbenzonitrile Chemical compound NNC1=CC=C(C#N)C=C1 DZUUSHCOMPROCJ-UHFFFAOYSA-N 0.000 description 1
- QYRFXSATEZBGOS-UHFFFAOYSA-N 4-morpholin-4-ylbenzoyl chloride Chemical compound C1=CC(C(=O)Cl)=CC=C1N1CCOCC1 QYRFXSATEZBGOS-UHFFFAOYSA-N 0.000 description 1
- XVAJKPNTGSKZSQ-UHFFFAOYSA-N 4-morpholinobenzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1N1CCOCC1 XVAJKPNTGSKZSQ-UHFFFAOYSA-N 0.000 description 1
- NNJMFJSKMRYHSR-UHFFFAOYSA-N 4-phenylbenzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=CC=C1 NNJMFJSKMRYHSR-UHFFFAOYSA-N 0.000 description 1
- MONXPAOUZRDHEI-UHFFFAOYSA-N 5-[3-ethoxy-5-(trifluoromethyl)pyrazol-1-yl]-2-fluoropyridine Chemical compound N1=C(OCC)C=C(C(F)(F)F)N1C1=CC=C(F)N=C1 MONXPAOUZRDHEI-UHFFFAOYSA-N 0.000 description 1
- QJJSUDNAXLPBQL-UHFFFAOYSA-N 5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]-n-[4-(trifluoromethoxy)phenyl]pyridine-2-carboxamide Chemical compound C1=CC(OC(F)(F)F)=CC=C1NC(=O)C1=CC=C(N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)C=N1 QJJSUDNAXLPBQL-UHFFFAOYSA-N 0.000 description 1
- IFOXWHQFTSCNQB-UHFFFAOYSA-N 5-aminopyridine-2-carbonitrile Chemical compound NC1=CC=C(C#N)N=C1 IFOXWHQFTSCNQB-UHFFFAOYSA-N 0.000 description 1
- PVTGSGDQQGWLPP-UHFFFAOYSA-N 5-bromo-n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]pyridine-3-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=N1)=CC=C1NC(=O)C1=CN=CC(Br)=C1 PVTGSGDQQGWLPP-UHFFFAOYSA-N 0.000 description 1
- KRRTXVSBTPCDOS-UHFFFAOYSA-N 5-bromopyrazin-2-amine Chemical compound NC1=CN=C(Br)C=N1 KRRTXVSBTPCDOS-UHFFFAOYSA-N 0.000 description 1
- DFJANQNOZLHVSY-UHFFFAOYSA-N 5-ethoxy-2-(6-fluoropyridin-3-yl)-3-(trifluoromethyl)-4h-pyrazol-3-ol Chemical compound FC(F)(F)C1(O)CC(OCC)=NN1C1=CC=C(F)N=C1 DFJANQNOZLHVSY-UHFFFAOYSA-N 0.000 description 1
- RMTSLZJISCPGBT-UHFFFAOYSA-N 5-methylidenetridecane Chemical compound CCCCCCCCC(=C)CCCC RMTSLZJISCPGBT-UHFFFAOYSA-N 0.000 description 1
- PGVVCZIKGXVUJY-UHFFFAOYSA-N 5-nitro-2-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridine Chemical compound N1=CC([N+](=O)[O-])=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 PGVVCZIKGXVUJY-UHFFFAOYSA-N 0.000 description 1
- UGSBCCAHDVCHGI-UHFFFAOYSA-N 5-nitropyridin-2-amine Chemical compound NC1=CC=C([N+]([O-])=O)C=N1 UGSBCCAHDVCHGI-UHFFFAOYSA-N 0.000 description 1
- VWROZIQSIORBDU-UHFFFAOYSA-N 5-pyridin-3-yl-n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]pyridine-3-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=N1)=CC=C1NC(=O)C(C=1)=CN=CC=1C1=CC=CN=C1 VWROZIQSIORBDU-UHFFFAOYSA-N 0.000 description 1
- YTHMOBMZVVFNBE-UHFFFAOYSA-N 6-fluoropyridin-3-amine Chemical compound NC1=CC=C(F)N=C1 YTHMOBMZVVFNBE-UHFFFAOYSA-N 0.000 description 1
- NPDJYPQRWCICMH-UHFFFAOYSA-N 6-oxo-1-propyl-n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]pyridine-3-carboxamide Chemical compound C1=CC(=O)N(CCC)C=C1C(=O)NC1=CC=C(N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)C=N1 NPDJYPQRWCICMH-UHFFFAOYSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- QVOVTKKHCWCADG-WQRHYEAKSA-N C=[N]=C(/C=C(/C(F)F)\Nc(cc1)ncc1C(Nc1ccncc1)=O)c1cnccc1 Chemical compound C=[N]=C(/C=C(/C(F)F)\Nc(cc1)ncc1C(Nc1ccncc1)=O)c1cnccc1 QVOVTKKHCWCADG-WQRHYEAKSA-N 0.000 description 1
- MIXIYBKROJWDHE-UHFFFAOYSA-N CC(C)(C)OC(NC(C1C2=CC=CC1)=CC=C2OCCN1CCCCC1)=O Chemical compound CC(C)(C)OC(NC(C1C2=CC=CC1)=CC=C2OCCN1CCCCC1)=O MIXIYBKROJWDHE-UHFFFAOYSA-N 0.000 description 1
- JFULMYLJLWDQCM-UHFFFAOYSA-N CC(C)(C)OC(Nc(c1ccccc11)ccc1O)O Chemical compound CC(C)(C)OC(Nc(c1ccccc11)ccc1O)O JFULMYLJLWDQCM-UHFFFAOYSA-N 0.000 description 1
- HLXFMADZRYRLBV-UHFFFAOYSA-N CC(CC=C1)C=C1C(CC(C(F)(F)F)=O)=O Chemical compound CC(CC=C1)C=C1C(CC(C(F)(F)F)=O)=O HLXFMADZRYRLBV-UHFFFAOYSA-N 0.000 description 1
- FMCYKWZOVRDPSA-UHFFFAOYSA-N CC(S(c1cc(C(Nc(nc2)ccc2-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)=O)ccc1)(=O)=O)=C Chemical compound CC(S(c1cc(C(Nc(nc2)ccc2-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)=O)ccc1)(=O)=O)=C FMCYKWZOVRDPSA-UHFFFAOYSA-N 0.000 description 1
- RITUJUBSEXGAOU-UHFFFAOYSA-N CC(c1cc(-c2cccnc2)n[n]1-c(nc1)ccc1NC(c1cc(C(F)(F)F)ccc1)=O)(F)F Chemical compound CC(c1cc(-c2cccnc2)n[n]1-c(nc1)ccc1NC(c1cc(C(F)(F)F)ccc1)=O)(F)F RITUJUBSEXGAOU-UHFFFAOYSA-N 0.000 description 1
- RXQZWJVWPCPHAJ-UHFFFAOYSA-N CC(c1cccc(N2CCN(CCOC)CC2)c1)=O Chemical compound CC(c1cccc(N2CCN(CCOC)CC2)c1)=O RXQZWJVWPCPHAJ-UHFFFAOYSA-N 0.000 description 1
- CCDFHDVRPGIJMT-UHFFFAOYSA-N CCOC(CN(C=C(C=C1)/C(/O)=[O]/C)C1=O)=O Chemical compound CCOC(CN(C=C(C=C1)/C(/O)=[O]/C)C1=O)=O CCDFHDVRPGIJMT-UHFFFAOYSA-N 0.000 description 1
- ABZZOKXWBGVZPE-UHFFFAOYSA-N CCOC(CN(C=C(C=C1)C(Cl)=O)C1=O)=O Chemical compound CCOC(CN(C=C(C=C1)C(Cl)=O)C1=O)=O ABZZOKXWBGVZPE-UHFFFAOYSA-N 0.000 description 1
- GJQJDJLCUJGYNT-UHFFFAOYSA-N CNC(c(cc1)ccc1-c1cccc(C(Nc(cc2)nnc2-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)=O)c1)=O Chemical compound CNC(c(cc1)ccc1-c1cccc(C(Nc(cc2)nnc2-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)=O)c1)=O GJQJDJLCUJGYNT-UHFFFAOYSA-N 0.000 description 1
- JFNFZFLXOGCJEC-UHFFFAOYSA-N COCCN(C=C(C=C1)C(Cl)=O)C1=O Chemical compound COCCN(C=C(C=C1)C(Cl)=O)C1=O JFNFZFLXOGCJEC-UHFFFAOYSA-N 0.000 description 1
- RUGPECRKGZFPPY-UHFFFAOYSA-N COCCN(C=C(C=C1)C(O)=O)C1=O Chemical compound COCCN(C=C(C=C1)C(O)=O)C1=O RUGPECRKGZFPPY-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- WNRWEBKEQARBKV-UHFFFAOYSA-N ClCCN1CCCCC1 Chemical compound ClCCN1CCCCC1 WNRWEBKEQARBKV-UHFFFAOYSA-N 0.000 description 1
- 241001091551 Clio Species 0.000 description 1
- 101001077839 Corynebacterium sp. (strain C12) Soluble epoxide hydrolase Proteins 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 206010070538 Gestational hypertension Diseases 0.000 description 1
- 201000005624 HELLP Syndrome Diseases 0.000 description 1
- 101001077840 Homo sapiens Lipid-phosphate phosphatase Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 241000575946 Ione Species 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- LTXREWYXXSTFRX-QGZVFWFLSA-N Linagliptin Chemical compound N=1C=2N(C)C(=O)N(CC=3N=C4C=CC=CC4=C(C)N=3)C(=O)C=2N(CC#CC)C=1N1CCC[C@@H](N)C1 LTXREWYXXSTFRX-QGZVFWFLSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- GNBJCCIIUQURGA-UHFFFAOYSA-N N#Cc1cc(C(Nc2ccc(-[n](c(C(F)(F)F)c3)nc3-c3cccnc3)nc2)=O)ccc1 Chemical compound N#Cc1cc(C(Nc2ccc(-[n](c(C(F)(F)F)c3)nc3-c3cccnc3)nc2)=O)ccc1 GNBJCCIIUQURGA-UHFFFAOYSA-N 0.000 description 1
- DJYRRQFAEXIYBA-KIYAJJHYSA-N N=C(/C=C(/C(F)(F)F)\Nc1ccc(NC(c2cccc(-c3cccc(C(N4CCCC4)=O)c3)c2)=O)nn1)c1cccnc1 Chemical compound N=C(/C=C(/C(F)(F)F)\Nc1ccc(NC(c2cccc(-c3cccc(C(N4CCCC4)=O)c3)c2)=O)nn1)c1cccnc1 DJYRRQFAEXIYBA-KIYAJJHYSA-N 0.000 description 1
- KGBTXGMHXZMSFB-UHFFFAOYSA-N N=C(CC(C(F)(F)F)(NC1N=CC(C(Nc(c2c3cccc2)ccc3OCCN2CCCCC2)=O)=CC1)O)c1cccnc1 Chemical compound N=C(CC(C(F)(F)F)(NC1N=CC(C(Nc(c2c3cccc2)ccc3OCCN2CCCCC2)=O)=CC1)O)c1cccnc1 KGBTXGMHXZMSFB-UHFFFAOYSA-N 0.000 description 1
- 101710198130 NADPH-cytochrome P450 reductase Proteins 0.000 description 1
- ABJQKDJOYSQVFX-UHFFFAOYSA-N Nc(cc1)c(cccc2)c2c1O Chemical compound Nc(cc1)c(cccc2)c2c1O ABJQKDJOYSQVFX-UHFFFAOYSA-N 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- HFKZORMLPHCPNK-UHFFFAOYSA-N O=C(c(cc1)cc2c1OCCO2)Nc1ccc(-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)nn1 Chemical compound O=C(c(cc1)cc2c1OCCO2)Nc1ccc(-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)nn1 HFKZORMLPHCPNK-UHFFFAOYSA-N 0.000 description 1
- BURKZCUZCKLMDR-UHFFFAOYSA-N O=C(c(cc1)cnc1N1CCOCC1)Nc1ccc(-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)nn1 Chemical compound O=C(c(cc1)cnc1N1CCOCC1)Nc1ccc(-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)nn1 BURKZCUZCKLMDR-UHFFFAOYSA-N 0.000 description 1
- WZCCXDCAAPAUQB-UHFFFAOYSA-N O=C(c1cc(Br)ccc1)Nc(cc1)nnc1-[n](c(C(F)(F)F)c1)nc1-c1ncc[s]1 Chemical compound O=C(c1cc(Br)ccc1)Nc(cc1)nnc1-[n](c(C(F)(F)F)c1)nc1-c1ncc[s]1 WZCCXDCAAPAUQB-UHFFFAOYSA-N 0.000 description 1
- AMXWIEFEIQWPAA-UHFFFAOYSA-N O=C(c1cc(C(Nc(cc2)ncc2-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)=O)ccc1)Nc1ccccn1 Chemical compound O=C(c1cc(C(Nc(cc2)ncc2-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)=O)ccc1)Nc1ccccn1 AMXWIEFEIQWPAA-UHFFFAOYSA-N 0.000 description 1
- HTBURRHSVCRBRY-UHFFFAOYSA-N O=C(c1cc(N2CCCC2)ccc1)Nc(nc1)ccc1-[n](c(C(F)(F)F)c1)nc1-c1cccnc1 Chemical compound O=C(c1cc(N2CCCC2)ccc1)Nc(nc1)ccc1-[n](c(C(F)(F)F)c1)nc1-c1cccnc1 HTBURRHSVCRBRY-UHFFFAOYSA-N 0.000 description 1
- XQQWCSXKGOMPHW-UHFFFAOYSA-N O=C(c1cc(Oc2ccccc2)ccc1)Nc(cc1)cnc1-[n](c(C(F)(F)F)c1)nc1-c1cccnc1 Chemical compound O=C(c1cc(Oc2ccccc2)ccc1)Nc(cc1)cnc1-[n](c(C(F)(F)F)c1)nc1-c1cccnc1 XQQWCSXKGOMPHW-UHFFFAOYSA-N 0.000 description 1
- ULZSNFOVRKMVSL-UHFFFAOYSA-N O=C(c1ccc(C(F)(F)F)nc1)Nc(cc1)ncc1N(CC(C(F)(F)F)=C1)N=C1c1cccnc1 Chemical compound O=C(c1ccc(C(F)(F)F)nc1)Nc(cc1)ncc1N(CC(C(F)(F)F)=C1)N=C1c1cccnc1 ULZSNFOVRKMVSL-UHFFFAOYSA-N 0.000 description 1
- XCVRUGLMTLZPFK-UHFFFAOYSA-N O=C(c1cccc(Oc2ccccc2)c1)Nc1ccc(-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)nn1 Chemical compound O=C(c1cccc(Oc2ccccc2)c1)Nc1ccc(-[n](c(C(F)(F)F)c2)nc2-c2cccnc2)nn1 XCVRUGLMTLZPFK-UHFFFAOYSA-N 0.000 description 1
- RBXHRDANHSOYPE-UHFFFAOYSA-N O=C(c1cccc(S(N2CCCCC2)(=O)=O)c1)Nc(nc1)ccc1-[n](c(C(F)(F)F)c1)nc1-c1cccnc1 Chemical compound O=C(c1cccc(S(N2CCCCC2)(=O)=O)c1)Nc(nc1)ccc1-[n](c(C(F)(F)F)c1)nc1-c1cccnc1 RBXHRDANHSOYPE-UHFFFAOYSA-N 0.000 description 1
- RTZOHGSDJDFFAC-UHFFFAOYSA-N OC(c(cc1)ccc1-c1cc(C(CNc2ccc(-[n](c(C(F)(F)F)c3)nc3-c3cccnc3)nn2)=O)ccc1)=O Chemical compound OC(c(cc1)ccc1-c1cc(C(CNc2ccc(-[n](c(C(F)(F)F)c3)nc3-c3cccnc3)nn2)=O)ccc1)=O RTZOHGSDJDFFAC-UHFFFAOYSA-N 0.000 description 1
- BQNFSCKZPXSZKY-UHFFFAOYSA-N Oc1cc(-c2cc(C(Nc3ccc(-[n](c(C(F)(F)F)c4)nc4-c4cccnc4)nn3)=O)ccc2)ccc1 Chemical compound Oc1cc(-c2cc(C(Nc3ccc(-[n](c(C(F)(F)F)c4)nc4-c4cccnc4)nn3)=O)ccc2)ccc1 BQNFSCKZPXSZKY-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 102000004257 Potassium Channel Human genes 0.000 description 1
- 208000005347 Pregnancy-Induced Hypertension Diseases 0.000 description 1
- 101001019659 Rattus norvegicus Lipid-phosphate phosphatase Proteins 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 241000906446 Theraps Species 0.000 description 1
- 241000534944 Thia Species 0.000 description 1
- 208000035868 Vascular inflammations Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- OAVRECZZGKSTRW-UHFFFAOYSA-N [4-(2-piperidin-1-ylethoxy)naphthalen-1-yl]carbamic acid Chemical compound C12=CC=CC=C2C(NC(=O)O)=CC=C1OCCN1CCCCC1 OAVRECZZGKSTRW-UHFFFAOYSA-N 0.000 description 1
- WYNPGMYWEBLGOK-UHFFFAOYSA-N [4-[5-pyridin-3-yl-3-(trifluoromethyl)pyrazol-1-yl]phenyl]methanamine Chemical compound C1=CC(CN)=CC=C1N1C(C=2C=NC=CC=2)=CC(C(F)(F)F)=N1 WYNPGMYWEBLGOK-UHFFFAOYSA-N 0.000 description 1
- IQBOHMVEBUIVFI-UHFFFAOYSA-O [NH2+]=C(CC(C(F)(F)F)(Nc(cc1)ncc1C(O)=O)O)c1cccnc1 Chemical compound [NH2+]=C(CC(C(F)(F)F)(Nc(cc1)ncc1C(O)=O)O)c1cccnc1 IQBOHMVEBUIVFI-UHFFFAOYSA-O 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000007801 affinity label Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 210000002821 alveolar epithelial cell Anatomy 0.000 description 1
- 210000001132 alveolar macrophage Anatomy 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003276 anti-hypertensive effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 210000000702 aorta abdominal Anatomy 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000008107 benzenesulfonic acids Chemical class 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000009460 calcium influx Effects 0.000 description 1
- 239000007894 caplet Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 108010021637 cholesterol-5 alpha,6 alpha-epoxide hydrase Proteins 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 125000006254 cycloalkyl carbonyl group Chemical group 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004856 decahydroquinolinyl group Chemical group N1(CCCC2CCCCC12)* 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SMRRYUGQTFYZGD-UHFFFAOYSA-K diacetyloxythallanyl acetate Chemical compound [Tl+3].CC([O-])=O.CC([O-])=O.CC([O-])=O SMRRYUGQTFYZGD-UHFFFAOYSA-K 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- LWJYMKDMGMOTSB-UHFFFAOYSA-L dichlorotin;hydrate Chemical compound O.Cl[Sn]Cl LWJYMKDMGMOTSB-UHFFFAOYSA-L 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 1
- 125000005046 dihydronaphthyl group Chemical group 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- XHFGWHUWQXTGAT-UHFFFAOYSA-N dimethylamine hydrochloride Natural products CNC(C)C XHFGWHUWQXTGAT-UHFFFAOYSA-N 0.000 description 1
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 1
- 125000004276 dioxalanyl group Chemical group 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 150000002121 epoxyeicosatrienoic acids Chemical class 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- LTNJYSFHLRMRKJ-UHFFFAOYSA-N ethyl 2-[2-oxo-5-[[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]carbamoyl]pyridin-1-yl]acetate Chemical compound C1=CC(=O)N(CC(=O)OCC)C=C1C(=O)NC1=CC=C(N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)C=N1 LTNJYSFHLRMRKJ-UHFFFAOYSA-N 0.000 description 1
- HGRUAENLUJTQRC-UHFFFAOYSA-N ethyl 2-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]acetate Chemical compound C1=C(C(F)(F)F)N(CC(=O)OCC)N=C1C1=CC=CN=C1 HGRUAENLUJTQRC-UHFFFAOYSA-N 0.000 description 1
- JHUVKWPHNYUAIH-UHFFFAOYSA-N ethyl 2-[5-pyridin-3-yl-3-(trifluoromethyl)pyrazol-1-yl]acetate Chemical compound CCOC(=O)CN1N=C(C(F)(F)F)C=C1C1=CC=CN=C1 JHUVKWPHNYUAIH-UHFFFAOYSA-N 0.000 description 1
- GETVBTMFGVOGRW-UHFFFAOYSA-N ethyl 2-hydrazinylacetate Chemical compound CCOC(=O)CNN GETVBTMFGVOGRW-UHFFFAOYSA-N 0.000 description 1
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 102000045920 human EPHX2 Human genes 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- MSYBLBLAMDYKKZ-UHFFFAOYSA-N hydron;pyridine-3-carbonyl chloride;chloride Chemical compound Cl.ClC(=O)C1=CC=CN=C1 MSYBLBLAMDYKKZ-UHFFFAOYSA-N 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 230000001631 hypertensive effect Effects 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 210000004692 intercellular junction Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- YDNLNVZZTACNJX-UHFFFAOYSA-N isocyanatomethylbenzene Chemical compound O=C=NCC1=CC=CC=C1 YDNLNVZZTACNJX-UHFFFAOYSA-N 0.000 description 1
- FMKOJHQHASLBPH-UHFFFAOYSA-N isopropyl iodide Chemical compound CC(C)I FMKOJHQHASLBPH-UHFFFAOYSA-N 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 230000023404 leukocyte cell-cell adhesion Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- UVSBCUAQEZINCQ-UHFFFAOYSA-N methyl 3-formylbenzoate Chemical compound COC(=O)C1=CC=CC(C=O)=C1 UVSBCUAQEZINCQ-UHFFFAOYSA-N 0.000 description 1
- FQHBFGNJEMETPH-UHFFFAOYSA-N methyl 3-propan-2-ylsulfanylbenzoate Chemical compound COC(=O)C1=CC=CC(SC(C)C)=C1 FQHBFGNJEMETPH-UHFFFAOYSA-N 0.000 description 1
- SRGOMBXXNIVIPR-UHFFFAOYSA-N methyl 3-sulfanylbenzoate Chemical compound COC(=O)C1=CC=CC(S)=C1 SRGOMBXXNIVIPR-UHFFFAOYSA-N 0.000 description 1
- GPKGXCWOCAUNLQ-UHFFFAOYSA-N methyl 4-(methylcarbamoyl)benzoate Chemical compound CNC(=O)C1=CC=C(C(=O)OC)C=C1 GPKGXCWOCAUNLQ-UHFFFAOYSA-N 0.000 description 1
- AXCXQOXKENJMIE-UHFFFAOYSA-N methyl 5-[[4-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]benzoyl]amino]pentanoate Chemical compound C1=CC(C(=O)NCCCCC(=O)OC)=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 AXCXQOXKENJMIE-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 210000002464 muscle smooth vascular Anatomy 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- MCVWGLHQASFMOQ-UHFFFAOYSA-N n-(1h-benzimidazol-2-yl)-6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridine-3-carboxamide Chemical compound N=1N(C=2N=CC(=CC=2)C(=O)NC=2NC3=CC=CC=C3N=2)C(C(F)(F)F)=CC=1C1=CC=CN=C1 MCVWGLHQASFMOQ-UHFFFAOYSA-N 0.000 description 1
- LGYWNSBYADAXJY-UHFFFAOYSA-N n-(2,3-dihydro-1,4-benzodioxin-6-yl)-6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridine-3-carboxamide Chemical compound N=1N(C=2N=CC(=CC=2)C(=O)NC=2C=C3OCCOC3=CC=2)C(C(F)(F)F)=CC=1C1=CC=CN=C1 LGYWNSBYADAXJY-UHFFFAOYSA-N 0.000 description 1
- XXAIZWDGMDOIDK-UHFFFAOYSA-N n-(2-phenoxyethyl)-6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridine-3-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=C1)=CC=C1C(=O)NCCOC1=CC=CC=C1 XXAIZWDGMDOIDK-UHFFFAOYSA-N 0.000 description 1
- JSHUWBQQIXASCO-UHFFFAOYSA-N n-(2-phenylethyl)-4-[5-pyridin-3-yl-3-(trifluoromethyl)pyrazol-1-yl]benzamide Chemical compound C=1C=C(C(=O)NCCC=2C=CC=CC=2)C=CC=1N1N=C(C(F)(F)F)C=C1C1=CC=CN=C1 JSHUWBQQIXASCO-UHFFFAOYSA-N 0.000 description 1
- GRYMZXZJKAHWST-UHFFFAOYSA-N n-(3-ethoxypropyl)-4-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]benzamide Chemical compound C1=CC(C(=O)NCCCOCC)=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 GRYMZXZJKAHWST-UHFFFAOYSA-N 0.000 description 1
- ORMWXDLGYXDURI-UHFFFAOYSA-N n-(3-phenylpropyl)-4-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]benzamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=C1)=CC=C1C(=O)NCCCC1=CC=CC=C1 ORMWXDLGYXDURI-UHFFFAOYSA-N 0.000 description 1
- NWDVUMBUBUMFOV-UHFFFAOYSA-N n-(5-bicyclo[2.2.1]hept-2-enylmethyl)-4-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]benzamide Chemical compound N=1N(C=2C=CC(=CC=2)C(=O)NCC2C3CC(C=C3)C2)C(C(F)(F)F)=CC=1C1=CC=CN=C1 NWDVUMBUBUMFOV-UHFFFAOYSA-N 0.000 description 1
- GXWJUEJPNBOWHF-UHFFFAOYSA-N n-(5-hydrazinylpyrazin-2-yl)cyclohexanecarboxamide Chemical compound C1=NC(NN)=CN=C1NC(=O)C1CCCCC1 GXWJUEJPNBOWHF-UHFFFAOYSA-N 0.000 description 1
- PYPYPIJNIWSNLA-UHFFFAOYSA-N n-(6-cyanopyridin-3-yl)-6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridine-3-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=C1)=CC=C1C(=O)NC1=CC=C(C#N)N=C1 PYPYPIJNIWSNLA-UHFFFAOYSA-N 0.000 description 1
- FBTONMSFDPVWBT-UHFFFAOYSA-N n-[3-(4-hydroxyphenyl)propyl]-4-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]benzamide Chemical compound C1=CC(O)=CC=C1CCCNC(=O)C1=CC=C(N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)C=C1 FBTONMSFDPVWBT-UHFFFAOYSA-N 0.000 description 1
- UPJXFSZPSVPUNC-UHFFFAOYSA-N n-[5-(dimethylamino)pentyl]-4-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]benzamide Chemical compound C1=CC(C(=O)NCCCCCN(C)C)=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 UPJXFSZPSVPUNC-UHFFFAOYSA-N 0.000 description 1
- ZNMKGNCGXHUBRL-UHFFFAOYSA-N n-[5-(methylamino)-5-oxopentyl]-4-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]benzamide Chemical compound C1=CC(C(=O)NCCCCC(=O)NC)=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 ZNMKGNCGXHUBRL-UHFFFAOYSA-N 0.000 description 1
- LYLFVZSKACYWTK-UHFFFAOYSA-N n-[5-[3-ethoxy-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]-3-methylsulfonylbenzamide Chemical compound N1=C(OCC)C=C(C(F)(F)F)N1C(C=N1)=CC=C1NC(=O)C1=CC=CC(S(C)(=O)=O)=C1 LYLFVZSKACYWTK-UHFFFAOYSA-N 0.000 description 1
- ABDBCFWERLRCOL-UHFFFAOYSA-N n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyrazin-2-yl]cyclohexanecarboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=C1)=CN=C1NC(=O)C1CCCCC1 ABDBCFWERLRCOL-UHFFFAOYSA-N 0.000 description 1
- VQHCGTVOYUGTNB-UHFFFAOYSA-N n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyrazin-2-yl]naphthalene-1-carboxamide Chemical compound N=1N(C=2N=CC(NC(=O)C=3C4=CC=CC=C4C=CC=3)=NC=2)C(C(F)(F)F)=CC=1C1=CC=CN=C1 VQHCGTVOYUGTNB-UHFFFAOYSA-N 0.000 description 1
- SEXXFDGZLKJQLT-UHFFFAOYSA-N n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]-3-(trifluoromethyl)benzamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 SEXXFDGZLKJQLT-UHFFFAOYSA-N 0.000 description 1
- CZWUWSLDBPIOEV-UHFFFAOYSA-N n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]-3-pyrimidin-5-ylbenzamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1NC(=O)C(C=1)=CC=CC=1C1=CN=CN=C1 CZWUWSLDBPIOEV-UHFFFAOYSA-N 0.000 description 1
- NDWYMCQKOJOMLQ-UHFFFAOYSA-N n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]-6-(trifluoromethyl)pyridine-3-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1NC(=O)C1=CC=C(C(F)(F)F)N=C1 NDWYMCQKOJOMLQ-UHFFFAOYSA-N 0.000 description 1
- KMURUQNGPHXLFB-UHFFFAOYSA-N n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]cyclohexanecarboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1NC(=O)C1CCCCC1 KMURUQNGPHXLFB-UHFFFAOYSA-N 0.000 description 1
- DIQHJFZGRGXMOK-UHFFFAOYSA-N n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]oxane-4-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1NC(=O)C1CCOCC1 DIQHJFZGRGXMOK-UHFFFAOYSA-N 0.000 description 1
- FUXZHUWQOAABPQ-UHFFFAOYSA-N n-[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]oxolane-3-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1NC(=O)C1CCOC1 FUXZHUWQOAABPQ-UHFFFAOYSA-N 0.000 description 1
- YMSHBEVLZOZHFI-UHFFFAOYSA-N n-[5-[5-pyridin-3-yl-3-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]acetamide Chemical compound C1=NC(NC(=O)C)=CC=C1N1C(C=2C=NC=CC=2)=CC(C(F)(F)F)=N1 YMSHBEVLZOZHFI-UHFFFAOYSA-N 0.000 description 1
- GZDSKEIWQCZXET-UHFFFAOYSA-N n-[5-[5-pyridin-3-yl-3-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]benzamide Chemical compound C=1C=C(NC(=O)C=2C=CC=CC=2)N=CC=1N1N=C(C(F)(F)F)C=C1C1=CC=CN=C1 GZDSKEIWQCZXET-UHFFFAOYSA-N 0.000 description 1
- LHCDAGCENPWJMS-UHFFFAOYSA-N n-[5-[5-pyridin-3-yl-3-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]cyclohexanecarboxamide Chemical compound C=1C=C(NC(=O)C2CCCCC2)N=CC=1N1N=C(C(F)(F)F)C=C1C1=CC=CN=C1 LHCDAGCENPWJMS-UHFFFAOYSA-N 0.000 description 1
- WGHYKCDQSDTSGA-UHFFFAOYSA-N n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]-1-benzofuran-5-carboxamide Chemical compound N=1N(C=2N=NC(NC(=O)C=3C=C4C=COC4=CC=3)=CC=2)C(C(F)(F)F)=CC=1C1=CC=CN=C1 WGHYKCDQSDTSGA-UHFFFAOYSA-N 0.000 description 1
- OFNPDUOFIONSAX-UHFFFAOYSA-N n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]-3-[3-(pyrrolidine-1-carbonyl)phenyl]benzamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=N1)=CC=C1NC(=O)C(C=1)=CC=CC=1C(C=1)=CC=CC=1C(=O)N1CCCC1 OFNPDUOFIONSAX-UHFFFAOYSA-N 0.000 description 1
- YXMVDYMBHNXBFH-UHFFFAOYSA-N n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]oxane-4-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=N1)=CC=C1NC(=O)C1CCOCC1 YXMVDYMBHNXBFH-UHFFFAOYSA-N 0.000 description 1
- PEJWJHHPWDVATI-UHFFFAOYSA-N n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridazin-3-yl]pyridine-3-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=N1)=CC=C1NC(=O)C1=CC=CN=C1 PEJWJHHPWDVATI-UHFFFAOYSA-N 0.000 description 1
- AETUHBQHUDDDMP-UHFFFAOYSA-N n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-3-yl]-3-(2-pyrrolidin-1-ylethoxy)benzamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=C1)=CC=C1NC(=O)C(C=1)=CC=CC=1OCCN1CCCC1 AETUHBQHUDDDMP-UHFFFAOYSA-N 0.000 description 1
- MCPXRAOCXGBMMR-UHFFFAOYSA-N n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-3-yl]-3-(trifluoromethoxy)benzamide Chemical compound FC(F)(F)OC1=CC=CC(C(=O)NC=2C=NC(=CC=2)N2C(=CC(=N2)C=2C=NC=CC=2)C(F)(F)F)=C1 MCPXRAOCXGBMMR-UHFFFAOYSA-N 0.000 description 1
- WOMYUHWZIVYRSQ-UHFFFAOYSA-N n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-3-yl]oxane-4-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=C1)=CC=C1NC(=O)C1CCOCC1 WOMYUHWZIVYRSQ-UHFFFAOYSA-N 0.000 description 1
- AUIROBNSIGOIED-UHFFFAOYSA-N n-[6-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-3-yl]pyridine-2-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(N=C1)=CC=C1NC(=O)C1=CC=CC=N1 AUIROBNSIGOIED-UHFFFAOYSA-N 0.000 description 1
- SHGJDRDCEDTFSF-UHFFFAOYSA-N n-[[5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridin-2-yl]methyl]cyclohexanecarboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1CNC(=O)C1CCCCC1 SHGJDRDCEDTFSF-UHFFFAOYSA-N 0.000 description 1
- IMIMWRPOOBJBRA-UHFFFAOYSA-N n-benzyl-5-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]pyridine-2-carboxamide Chemical compound FC(F)(F)C1=CC(C=2C=NC=CC=2)=NN1C(C=N1)=CC=C1C(=O)NCC1=CC=CC=C1 IMIMWRPOOBJBRA-UHFFFAOYSA-N 0.000 description 1
- UHGPKWXXCKHDTE-UHFFFAOYSA-N n-hexyl-4-[3-pyridin-3-yl-5-(trifluoromethyl)pyrazol-1-yl]benzamide Chemical compound C1=CC(C(=O)NCCCCCC)=CC=C1N1C(C(F)(F)F)=CC(C=2C=NC=CC=2)=N1 UHGPKWXXCKHDTE-UHFFFAOYSA-N 0.000 description 1
- PVWOIHVRPOBWPI-UHFFFAOYSA-N n-propyl iodide Chemical compound CCCI PVWOIHVRPOBWPI-UHFFFAOYSA-N 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N nicotinic acid Natural products OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- HVFSJXUIRWUHRG-UHFFFAOYSA-N oic acid Natural products C1CC2C3CC=C4CC(OC5C(C(O)C(O)C(CO)O5)O)CC(O)C4(C)C3CCC2(C)C1C(C)C(O)CC(C)=C(C)C(=O)OC1OC(COC(C)=O)C(O)C(O)C1OC(C(C1O)O)OC(COC(C)=O)C1OC1OC(CO)C(O)C(O)C1O HVFSJXUIRWUHRG-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- RYGUCYSSMOFTSH-UHFFFAOYSA-N oxane-4-carbonyl chloride Chemical compound ClC(=O)C1CCOCC1 RYGUCYSSMOFTSH-UHFFFAOYSA-N 0.000 description 1
- AVPKHOTUOHDTLW-UHFFFAOYSA-N oxane-4-carboxylic acid Chemical compound OC(=O)C1CCOCC1 AVPKHOTUOHDTLW-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000005897 peptide coupling reaction Methods 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- UQGMJZQVDNZRKT-UHFFFAOYSA-N phenyl-(3-phenyloxiran-2-yl)methanone Chemical class C=1C=CC=CC=1C(=O)C1OC1C1=CC=CC=C1 UQGMJZQVDNZRKT-UHFFFAOYSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 108020001213 potassium channel Proteins 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 208000036335 preeclampsia/eclampsia 1 Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229940080818 propionamide Drugs 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- XFTQRUTUGRCSGO-UHFFFAOYSA-N pyrazin-2-amine Chemical class NC1=CN=CC=N1 XFTQRUTUGRCSGO-UHFFFAOYSA-N 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- IIVUJUOJERNGQX-UHFFFAOYSA-N pyrimidine-5-carboxylic acid Chemical compound OC(=O)C1=CN=CN=C1 IIVUJUOJERNGQX-UHFFFAOYSA-N 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 210000005227 renal system Anatomy 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- GDVXBLGVBZJTCC-UHFFFAOYSA-N tert-butyl n-(4-hydroxynaphthalen-1-yl)carbamate Chemical compound C1=CC=C2C(NC(=O)OC(C)(C)C)=CC=C(O)C2=C1 GDVXBLGVBZJTCC-UHFFFAOYSA-N 0.000 description 1
- CXDWLAFXYUEKFP-UHFFFAOYSA-N tert-butyl n-[4-(2-piperidin-1-ylethoxy)naphthalen-1-yl]carbamate Chemical compound C12=CC=CC=C2C(NC(=O)OC(C)(C)C)=CC=C1OCCN1CCCCC1 CXDWLAFXYUEKFP-UHFFFAOYSA-N 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- WCNFFKHKJLERFM-UHFFFAOYSA-N thiomorpholinyl sulfone group Chemical group N1(CCSCC1)S(=O)(=O)N1CCSCC1 WCNFFKHKJLERFM-UHFFFAOYSA-N 0.000 description 1
- ZCAGUOCUDGWENZ-UHFFFAOYSA-N thiomorpholinyl sulfoxide group Chemical group N1(CCSCC1)S(=O)N1CCSCC1 ZCAGUOCUDGWENZ-UHFFFAOYSA-N 0.000 description 1
- QERYCTSHXKAMIS-UHFFFAOYSA-N thiophene-2-carboxylic acid Chemical compound OC(=O)C1=CC=CS1 QERYCTSHXKAMIS-UHFFFAOYSA-N 0.000 description 1
- CFOAUYCPAUGDFF-UHFFFAOYSA-N tosmic Chemical compound CC1=CC=C(S(=O)(=O)C[N+]#[C-])C=C1 CFOAUYCPAUGDFF-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- GYUURHMITDQTRU-UHFFFAOYSA-N tributyl(pyridin-2-yl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CC=CC=N1 GYUURHMITDQTRU-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 description 1
- SEDZOYHHAIAQIW-UHFFFAOYSA-N trimethylsilyl azide Chemical compound C[Si](C)(C)N=[N+]=[N-] SEDZOYHHAIAQIW-UHFFFAOYSA-N 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 230000001196 vasorelaxation Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000002676 xenobiotic agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/12—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/08—Vasodilators for multiple indications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/14—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D231/18—One oxygen or sulfur atom
- C07D231/20—One oxygen atom attached in position 3 or 5
- C07D231/22—One oxygen atom attached in position 3 or 5 with aryl radicals attached to ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
Definitions
- This invention relates to compounds possessing anti-sEH activity and methods of using soluble epoxide hydrolase (sEH) inhibitors for diseases related to cardiovascular disease.
- sEH soluble epoxide hydrolase
- Epoxide hydrolases are a group of enzymes ubiquitous in nature, detected in species ranging from plants to mammals. These enzymes are functionally related in that they all catalyze the addition of water to an epoxide, resulting in a diol. Epoxide hydrolases are important metabolizing enzymes in living systems and their diol products are frequently found as intermediates hi the metabolic pathway of xenobiotics. Epoxide hydrolases are therefore important enzymes for the detoxification of epoxides by conversion to their corresponding, non-rcactivc diols.
- epoxide hydrolases In mammals, several types of epoxide hydrolases have been characterized including soluble epoxide hydrolase (sEH), also referred to as cytosolic epoxide hydrolase, cholesterol epoxide hydrolase, LT A4 hydrolase, hepoxilin hydrolase, and microsomal epoxide hydrolase (Fretland and Omiecinski, Chemico-Bio logical Interactions, 129: 41- 59 (2000)).
- Epoxide hydrolases have been found in all tissues examined in vertebrates including heart, kidney and liver (Vogel, et al., Eur J. Biochemistry, 126: 425-431 (1982); Schladt et al., Biochem.
- Epoxide hydrolases have also been detected in human blood components including lymphocytes (e.g. T-lymphocytes), monocytes, erythrocytes, platelets and plasma. In the blood, most of the sEH detected was present in lymphocytes (Seidegard et al., Cancer Research, 44: 3654-3660 (1984)).
- the epoxide hydrolases differ in their specificity towards epoxide substrates. For example, sEH is selective for aliphatic epoxides such as epoxide fatty acids while microsomal epoxide hydrolase (mEH) is more selective for cyclic and arene epoxides.
- the primary known physiological substrates of sEH arc four rcgioisomcric cis epoxides of arachidoriic acid, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid, also known as epoxyeicosatrienoic acids or EETs.
- Also known to be substrates for sEH are epoxides of linoleic acid known as leukotoxin or isoleukotoxin. Both the EETs and the leukotoxins are generated by members of the cytochrome P450 monooxygenase family (Capdevila, et al., J. Lipid Res., 41: 163-181 (2000)).
- EETs function as chemical autocrine and paracrine mediators in the cardiovascular and renal systems (Spector, et al, Progress in Lipid Research, 43: 55-90 (2004); Newman, et al., Progress in Lipid Research 44: 1-51 (2005)). EETs appear to be able to function as endothelial derived hyperpolarizing factor (EDHF) in various vascular beds due to their ability to cause hyperpolarization of the membranes of vascular smooth muscle cells with resultant vasodilation (Weintraub, et al., Circ. Res., 81: 258-267 (1997)).
- EDHF endothelial derived hyperpolarizing factor
- EDHF is synthesized from arachidonic acid by various cytochrome P450 enzymes in endothelial cells proximal to vascular smooth muscle (Quilley, et al., Brit. Pharm., 54: 1059 (1997); Quilley and McGiff, TIPS, 21 : 121-124 (2000)); Fleming and Busse, Nephrol. Dial.
- endothelium dependent vasorelaxation is also a characteristic feature of the syndrome known as endothelial dysfunction (Goligorsky, et. al., Hypertension, 37[part 2]:744-748 (2001)).
- Endothelial dysfunction plays a significant role in a large number of pathological conditions including type 1 and type 2 diabetes, insulin resistance syndrome, hypertension, atherosclerosis, coronary artery disease, angina, ischemia, ischemic stroke, Raynaud's disease and renal disease.
- EETs concentration would have a beneficial therapeutic effect in patients where endothelial dysfunction plays a causative role.
- Other effects of EETs that may influence hypertension involve effects on kidney function.
- DHETs levels of various EETs and their hydrolysis products, the DHETs, increase significantly both in the kidneys of spontaneously hypertensive rats (SHR) (Yu, et al., Circ. Res. 87: 992-998 (2000)) and in women suffering from pregnancy induced hypertension (Catclla, ct al., Proc. Natl. Acad. Sci. U.S.A., 87: 5893-5897 (1990)).
- EETs especially 11,12- EET, also have been shown to exhibit anti-inflammatory properties (Node, et al., Science, 285: 1276-1279 (1999); Campbell, TIPS, 21: 125-127 (2000); Zcldin and Liao, TIPS, 21 : 127-128 (2000)). Node, ct al. have demonstrated 11,12-EET decreases expression of cytokine induced endothelial cell adhesion molecules, especially VCAM-I . They further showed that EETs prevent leukocyte adhesion to the vascular wall and that the mechanism responsible involves inhibition of NF- ⁇ B and TKB kinase.
- DHETs produced by sEH may have potent biological effects.
- sEH metabolism of epoxides produced from linoleic acid (leukotoxin and isoleukotoxin) produces leukotoxin and isoleukotoxin diols (Greene, et al., Arch.
- chalcone oxide derivatives Miyamoto, et al. Arch. Biochem. Biophys., 254: 203-213 (1987)
- various trans-3-phenylglycidols Dietze, et al., Biochem. Pharm. 42: 1163-1175 (1991); Dietze, et al., Comp.Biochem. Physiol. B, 104: 309-314 (1993)).
- Hammock et al. have disclosed certain biologically stable inhibitors of sEH for the treatment of inflammatory diseases, for use in affinity separations of epoxide hydrolases and in agricultural applications (U.S. PatentNo. 6,150,415).
- the Hammock '415 patent also generally describes that the disclosed pharmacophores can be used to deliver a reactive functionality to the catalytic site, e.g., alkylating agents or Michael acceptors, and that these reactive functionalities can be used to deliver fluorescent or affinity labels to the enzyme active site for enzyme detection (col. 4, line 66 to col. 5, line 5).
- Certain urea and carbamate inhibitors of sEH have also been described in the literature (Morisseau et al., Proc.
- WO 00/23060 discloses a method of treating immunological disorders mediated by T- lymphocytes by administration of an inhibitor of sEH.
- Several l-(4- aminophenyl)pyrazoles are given as examples of inhibitors of sEH.
- US patent 6,150,415 to Hammock is directed to a method of inhibiting an epoxide hydrolase, using compounds having the structure
- X and Y is each independently nitrogen, oxygen, or sulfur, and X can further be carbon
- at least one of Rl -R4 is hydrogen
- R2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen
- R4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen
- Rl and R3 is each independently H, Cl-20 substituted or unsubstituted alkyl, cycloalkyl, aryl, acyl, or heterocyclic.
- Rl and R3 is each independently H, Cl-20 substituted or unsubstituted alkyl, cycloalkyl, aryl, acyl, or heterocyclic.
- Related to the Hammock patent is US 6,531 ,506 to Kroetz et al. which claims a method of treating hypertension using of an inhibitor of epoxide hydrolase, also claimed are methods of treating hypertension using compounds similar to those described in the Hammock patent. Neither of these patents teaches or suggests methods
- inhibitors of sEH are useful therefore, in the treatment of cardiovascular diseases such as endothelial dysfunction either by preventing the degradation of sEH substrates that have beneficial effects or by preventing the formation of metabolites that have adverse effects.
- R 2 is chosen from heteroaryl and carbocycle optionally substituted by Ci_io alky], Ci-io alkoxy each substituent of R 2 is optionally halogenated;
- R. 3 is chosen from heteroaryl, heterocycle, carbocycle., Ar 2 -ArI- and an acyclic moiety chosen from : -NH-(CH 2 ) t -An, -NH-(CH 2 )t-O-Ari, -NH-Ari, d_io alkyl, -Ci -10 alkyl- Ari, O-Ci-io alkyl-Ari, Ar 2 -L-ATi- and -Ci.io alkyl(phenyl)2, or R3 is L;
- AJ * I and Ar 2 are each independently heteroaryl, heterocycle or carbocycle, each optionally substituted by one or more Ci -I0 alkyl, C 1 -I o alkoxy, -NR x Ry, -C(O)-NR x R y , R x -S(O)HO.-, Het-C(O)-, Het ⁇ S(O) m -, NO 2 , OH, halogen, CLIO alkoxycarbonyl, CO 2 , CN, C 1- I 0 acyl, -S(O) m -NR x R y , R x -S(O) m -NHR y , -(CH 2 ) t -OH wherein Het is pyrrolidinyl or morpholinyl; m is 0-2; n is 0-5; t is 0-5; or the pharmaceutically acceptable salts thereof.
- R2 is chosen from pyridinyl, phenyl and cyclohexyl optionally substituted by Ci-10 alkyl, Ci_io alkoxy each substituent of R 2 is optionally halogenated;
- Rs is chosen from phenyl, pyridinone, pyridinyl, -NH-(CH2)t-Ari, -NH-(CH 2 )t-O-Ari, - NH-Ari, Cu 1 O alkyl, -Ci -1 O alkyl-Ari and -C 1 - I o alkyl(phenyl) 2 ;
- Art and Ar2 are each independently phenyl, pyridinone, pyridinyl, morpholinyl, bcnzofuranyl, pipcridinyl, cyclohcxcnyl, bcnzodioxolanyl, pyrrolidinyl, tctrazolyl, oxazolyl, isoxazolyl, pyrimidinyl or benzodioxolyl.
- the component R 2 is: and the component is chosen from those shown in the table II below;
- Some of the compounds of the invention can exist in more than one tautomeric form.
- the invention includes methods using all such tautomers.
- C ⁇ alkoxy includes the organic radical Ci ⁇ alkyl with a terminal oxygen, such as methoxy, ethoxy, propoxy, butoxy.
- lower referred to above and hereinafter in connection with organic radicals or compounds respectively defines such as branched or unbranched with up to and including 7, preferably up to and including 4 and advantageously one or two carbon atoms.
- a cyclic group shall be understood to mean carbocycle, heterocycle or heteroaryl, each may be partially or fully halogenated.
- An acyl group is a radical defined as -C(O)-R, where R is an organic radical or a cyclic group.
- Acyl represents, for example, carbocyclic or heterocyclic aroyl,
- Carbocycles include hydrocarbon rings containing from three to fourteen carbon atoms. These carbocycles may be either aromatic either aromatic or non-aromatic ring systems.
- the non-aromatic ring systems may be mono- or polyunsaturated, monocyclic, bicyclic or tricyclic and may be bridged.
- Preferred carbocycles include but arc not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptanyl, cycloheptenyl, phenyl, benzyl, indanyl, indenyl, benzocyclobutanyl, dihydronaphthyl, tetrahydronaphthyl, naphthyl, decahydronaphthyl,
- cycloheptanyl adamantyl, norbornyl, fluorene, and benzocycloheptenyl.
- cycloalkyl such as cyclobutanyl and cyclobutyl shall be used interchangeably.
- heterocycle refers to a stable nonaromatic 4-8 membered (but preferably, 5 or 6 membered) monocyclic or nonaromatic 8-11 membered bicyclic heterocycle radical which may be either saturated or unsaturated.
- Each heterocycle consists of carbon atoms and one or more, preferably from 1 to 4 heteroatoms chosen from nitrogen, oxygen and sulfur.
- the heterocycle may be attached by any atom of the cycle, which results in the creation of a stable structure.
- heterocycles include but are not limited to, for example pyrrolidinyl, pyrrolinyl, morpholinyl, thiomorpholinyl, thiomorpholinyl sulfoxide, thiomorpholinyl sulfone, dioxalanyl, piperidinyl, piperazinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrofuranyl, 1,3- dioxolanone, 1,3-dioxanone, 1,4-dioxanyl, piperidinonyl, tetrahydropyrimidonyl, pcntamcthylcnc sulfide, pcntamcthylcnc sulfoxide, pcntamcthylcnc sulfonc,
- heteroaryl shall be understood to mean an aromatic 5-8 membered monocyclic or 8-11 membered bicyclic ring containing 1-4 heteroatoms such as N, O and S.
- heteroaryls include aziridinyl, thienyl, furanyl, isoxazolyl, oxazolyl, thiazolyl, thiadiazolyl, tetrazolyl, pyrazolyl, pyrrolyl, imidazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyranyl, quinoxalinyl, indolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzothienyl, quinolinyl, quinazolinyl, naphthyridinyl, indazolyl, triazolyl, pyrazolo[3,4-b]pyrimidinyl, purinyl, pyrrolo[2,3- b]pyridinyl, pyrazolo[3,4-b]pyridinyl, tubercidinyl,
- hctcroatom as used herein shall be understood to mean atoms other than carbon such as oxygen, nitrogen, sulfur and phosphorous.
- nitrogen and “sulfur” include any oxidized form of nitrogen and sulfur and the quaternized form of any basic nitrogen.
- AU heteroatoms in open chain or cyclic radicals include all oxidized forms. In all alkyl groups or carbon chains one or more carbon atoms can be optionally replaced by heteroatoms: O, S or N, it shall be understood that if N is not substituted then it is NH, it shall also be understood that the heteroatoms may replace either terminal carbon atoms or internal carbon atoms within a branched or unbranched carbon chain.
- Such groups can be substituted as herein above described by groups such as oxo to result in defintions such as but not limited to: alkoxycarbonyl, acyl, amido and tbioxo.
- aryl as used herein shall be understood to mean aromatic carbocycle or heteroaryl as defined herein.
- Each aryl or heteroaryl unless otherwise specified includes it's partially or fully hydrogcnatcd derivative and/or is partially or fully halogcnatcd.
- quinolinyl may include decahydroquinolinyl and tetrahydroquinolinyl
- naphthyl may include it's hydrogenated derivatives such as tetrahydranaphthyl.
- Other partially or fully hydrogenated derivatives of the aryl and heteroaryl compounds described herein will be apparent to one of ordinary skill in the art.
- halogen as used in the present specification shall be understood to mean bromine, chlorine, fluorine or iodine, preferably fluorine.
- alkyl a nonlimiting example would be -CH 2 CHF 2 , -CF3 etc.
- the invention includes pharmaceutically acceptable derivatives of compounds of the invention.
- a "pharmaceutically acceptable derivative” refers to any pharmaceutically acceptable salt or ester, or any other compound which, upon administration to a patient, is capable of providing (directly or indirectly) a compound useful for the invention, or a pharmacologically active metabolite or pharmacologically active residue thereof.
- a pharmacologically active metabolite shall be understood to mean any compound of the invention capable of being metabolized enzymatically or chemically. This includes, for example, hydroxylated or oxidized derivative compounds of the invention.
- Pharmaceutically acceptable salts include those derived from pharmaceutically acceptable inorganic and organic acids and bases.
- suitable acids include hydrochloric, hydrobromic, sulfuric, nitric, perchloric, fumaric, maleic, phosphoric, glycolic, lactic, salicylic, succinic, toluene-p-sulfuric, tartaric, acetic, citric,
- salts derived from appropriate bases include alkali metal (e.g., sodium), alkaline earth metal (e.g., magnesium), ammonium and N-(C 1-C4 alkyl)4 + salts.
- prodrugs of compounds of the invention include those compounds that, upon simple chemical
- transformation arc modified to produce compounds of the invention.
- Simple chemical transformations include hydrolysis, oxidation and reduction.
- the prodrug when administered to a patient, the prodrug may be transformed into a compound disclosed hereinabove, thereby imparting the desired pharmacological effect.
- the invention also provides processes for making compounds of Formula (I), (II) and (Ia -Ih).
- R 2 , R 3 , X 1 , X 2 and G in the formulas below shall have the meaning Of R 2 , R3, X 1 , X2 and G in Formula (I), (II) and (Ia -Ih) of the invention described herein above.
- reaction conditions and reaction times may vary depending on the particular reactants used. Unless otherwise specified, solvents, temperatures, pressures, and other reaction conditions may be readily selected by one of ordinary skill in the art. Specific procedures are provided in the Synthetic Examples section. Typically, reaction progress may be monitored by thin layer chromatography (TLC), if desired, and intermediates and products may be purified by chromatography on silica gel and/or by recrystallization.
- TLC thin layer chromatography
- amide coupling of an amine (III or VII) with a carboxylic acid (TV) provides the desired compound of formula (I) or (II) wherein G is -NHCOR 3 .
- Standard peptide coupling reactions known in the art see for example M. Bodanszky, 1984, The Practice of Peptide Synthesis, Springer-Verlag) may be employed in these syntheses.
- An example of suitable coupling conditions is treatment of a solution of the carboxylic acid in a suitable solvent such as DMF with EDC, HOBT 5 and a base such as diisopropylethylamine, followed by the desired amine.
- amide coupling of a carboxylic acid (V or VIII) with an amine (VI) provides the desired compound of formula (I) or (II) wherein G is - CONHR 3 .
- reaction of the carboxylic acid with reagents such as oxalyl chloride provides the corresponding acid chloride.
- reaction of the acid chloride with the desired amine in a suitable solvent provides the compound of formula (1) or (II).
- the intermediate amines of formula (TTT) and (VTT) may be synthesized by the method outlined in scheme 2.
- reaction of a ketone (IX) with ethyl trifluoroacetate (X) in the presence of a suitable base, in a suitable solvent provides a diketone (XI).
- reaction of diketone (Xl) with a hydrazine of formula (XlIl), in a suitable solvent, followed by reaction with ammonium hydroxide provides the desired intermediates (III and (VII).
- the hydrazine (XIII) may be either commercially available or may be prepared from the corresponding amine (XII) by using standard literature procedure.
- reaction of diketone (XI) with a hydrazine of formula (XIV) 5 in a suitable solvent provides the desired intermediate (VIII) and the trifiuoromcthyl alcohol (XV).
- a suitable reagent at a suitable temperature, provides the desired intermediate (V).
- the hydrazine (XIV) may be either commercially available or may be prepared from the corresponding amine by using standard literature procedure.
- Compounds of formula Ih may be prepared by the method shown in scheme 4
- reaction of the diketone (XI) with ethyl hydrazinoacetate in a suitable solvent provides the two pyrazole regioisomers (XXIA and XXIB).
- Reaction of the pyrazole of formula (XXIA) with phosphoryl chloride in dimethylformamide in a suitable solvent such as dimethylformamide, at a suitable temperature provides an intermediate of formula (XXII). Heating the diamino intermediate (XXII) in a suitable solvent in the presence of a suitable base provides the amino pyrimidine of formula (XXIII).
- the aqueous layer is acidified to pH 5 using acetic acid and the solid is filtered, rinsed with ice cold ether (200 mL) to give 4,4,4,-trifluoro-l-pyridin-3-yl- butane-l,3-dione (35.7 g, 82 %).
- reaction mixture is basified with 1 M aqueous potassium hydroxide, the solid is filtered off, and the aqueous layer is extracted with ethyl acetate (75 mL, 3 x). The organic layers are combined, dried over sodium sulfate and concentrated under vacuo to give crude (6- fluoro-pyridin-3-yl)-hydrazine (1.12 g, 68 %).
- reaction mixture is diluted with ethyl acetate, washed with water (100 mL, 3 x), dried over sodium sulfate and concentrated under vacuo.
- the mixture is purified by chromatography to give l-ethoxycarbonylmethyl- ⁇ -oxo-lj ⁇ -dihydro-pyridine-S- carboxylic acid benzyl ester (1.33 g, 48 %).
- reaction mixture is acidified to pH 6 using 4 M HCl in dioxane and then concentrated under vacuo to give ⁇ 2-oxo-5-[5-(3-pyridin-3- yl-5-trifl.uoromethyl-pyrazol- 1 -yl)-pyridin-2-ylcarbamoyl]-2H-pyridin- 1 -yl ⁇ -acetic acid.
- reaction mixture is allowed to cool to room temperature, diluted with ethyl acetate, washed with water (50 mL, 3 x), dried over sodium sulfate and concentrated under vacuo.
- the mixture is purified by chromatography to give 6-oxo-l-/7-tolyl-l,6-dihydro-pyridme-3-carboxylic acid ethyl ester (85 mg; 16.5 %).
- Step a A solution of 2-fluoronicotinic acid (200 mg, 1.42 mmol) in thionyl chloride (5.0 mL) is heated at reflux for 1 hour and then concentrated under vacuo. Pyridine (2.5 mL) is then added to the preformed acid chloride followed by a solution of 5-(3-pyridine-3-yl- 5-trifiuoromethyl-pyrazol-l-yl)pyridin-2-ylarnine (200 mg, 0.66 mmol) ,prepared according to example 1, in pyridine (2.5 mL).
- Step a A solution of 2-amino-5-nitropyridine (1.5 g, 10.78 mmol), triethylamine (1.6 mL, 11.43 mmol), cyclohexanecarbonyl chloride (1.44 mL, 10.76 mmol) in tetrahydrofuran (25 mL) is stirred at room temperature for 2 hours.
- the reaction mixture is concentrated under vacuo, diluted with ethyl acetate, washed with 1 M aqueous HCl (75 mL, 3 x), dried over sodium sulfate and concentrated under vacuo.
- the crude product is purified by chromatography to give cyclohexanecarboxylic acid (5-nitro-pyridin-2-yl)-amide (Ig, 37 %).
- cyclohexanecarboxylic acid (5-amino-pyridin-2-yl)-amide (200 mg, 0.912 mmol) in 6 M aqueous HCl (5 mL) at 0 0 C and is stirred for 45 min.
- Tin(II)chloride (412 mg. 1.826 mmol) is added and the reaction mixture is allowed to warm to room temperature slowly while stirring for 16 hours.
- reaction mixture is basified with 40 % aqueous potassium hydroxide, extracted with ethyl acetate (25 mL, 3 x), and the organic layers are combined, dried over sodium sulfate and concentrated under vacuo to give cyclohexanecarboxylic acid (5-hydrazino-pyridin-2-yl)-amide (150 mg, 70 %).
- Step d A solution of 4,4.4,-trifluoro-l-pyridin-3-yl-butane-l,3-dione (120 mg, 0.55 mmol), prepared according to example 1 , cyclohexanecarboxylic acid (5-hydrazino-pyridin-2- yl)-amide (150 mg, 0.64 mmol), acetic acid (1 mL) in ethanol (10 mL) is heated at reflux for 2 hours, allowed to cool to room temperature, and concentrated under vacuo. The mixture is purified by chromatography to give the title compound (60mg, 26 %). LC-MS (M + +!: 432.04.
- 4-Aminopyridine 35 mg, 0.37 mmol is added to a stirred solution of 4-(3-pyridin-3-yl- 5-trifluoromethyl-pyrazol-l-yl)-benzoic acid (100 mg, 0.3 mmol), l-[3-(dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride (150 mg, 0.77 mmol), 1rieth.ylam.ine (0.1 mL, 0.71 mmol) in dichloromcthanc (5.0 mL) at room temperature and the reaction is stirred for 16 hours.
- Example 12 iV-Pyridin-4-yl-4-(5-pyridin-3-yI-3-trifluoromethyl-pyrazol-l-yl)- benzamide
- Example 13 iV-[4-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzyl]- nicotinamide
- reaction mixture is concentrated under vacuo, diluted with ethyl acetate, washed with water (3 x), dried over sodium sulfate and concentrated under vacuo to give 4-(3- pyridin-S-yl-S-trifluoronicthyl-pyrazol-l-y ⁇ -bcnzonitrilc (356 mg, 60 %).
- Lithium aluminum hydride (130 mg, 3.42 mmol) is added to a solution of 4-(3-pyridin- 3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzonitrile (356 mg; 1.13 mmol) in ether (5 mL) at 0 0 C and is allowed to stir for 4 hours.
- the reaction mixture is quenched by the dropwise addition of water (130 uL), then 15 % aqueous sodium hydroxide solution (130 ⁇ L) and water (390 ⁇ L), and is then stirred at room temperature for 15 min.
- reaction mixture is filtered through celite, dried over sodium sulfate, and concentrated under vacuo to give 4-(3-pyridin-3-yl-5-trifiuoromethyl-pyrazol-l-yl)-benzylamine (250 mg, 70 %).
- Lithium aluminum hydride (50 mg, 1.32 mmol) is added to a solution of 4-(5-pyridin-3- yl-3-trifluoromethyl-pyrazol-l-yl)-benzonitrile (200 mg, 0.64 mmol), prepared according to example 13 in ether (5 mL) and at 0 0 C and allowed to stir for 4 hours.
- the reaction mixture is quenched by the dropwise addition of 1 M aqueous sodium hydroxide solution (100 ⁇ L) and then stirred for 15 min.
- reaction mixture is filtered through Celite, dried over sodium sulfate and concentrated under vacuo to give 4-(5- pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-benzylamine (100 mg, 49 %).
- Step b A solution of 4-(5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l -yl)-ben2ylamine (50 mg,
- Hcptanoic acid 4-(5-pyridin-3-yl-3-trifluoromcth.yl-pyrazol-l-yl)-bcnzylamidc; LC-MS (M + +l): 431.43.
- 5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridm-2-ylamine is prepared according to example 1.
- Example 18 iV-Methyl-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridin-2-yl]-isophthalamide
- Step a N-[5-(3-Pyridin-3-yl-54rifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-isophthalamic acid methyl ester is prepared according to example 16.
- iV-[5-(3-Pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-isophthalamic acid methyl ester (1.5 g, 3.2 mmol) is dissolved in dioxanc (60 mL) and lithium hydroxide monohydratc (269 mg, 6.4 mmol) in water (10 mL) is added. The mixture is stirred for 6.5 hours at room temperature.
- N-Ben2yl-iV " -methyl-iV'-[5-(3-pyridm-3-yl-5-trifluorometliyl-pyrazol-l-yl)-pyridin-2-yl]- isophthalamide; LC-MS (M + +!): 557.21.
- Methylamine (1.1 mL of 2 M solution in tetrahydrofuran, 2.2 mr ⁇ ol) and triethylamine (0.6 mL, 4.3 mmol) are added to dichloromethane (10 mL) at 0 0 C. Then 3- chlorosulfonyl-bcnzoic acid (500 mg, 2.2 mmol) is added in small portions. The mixture is stirred for 30 minutes at 0 0 C before 1 M aqueous HCl (8 mL) is added. The mixture is extracted with ethyl acetate (25 mL, 3 x). The organic layers are combined and dried over sodium sulfate.
- Example 20 7V-Methyl-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazo]-l-yl)- pyridin-2-yl] -terephthalamide
- Methylamine (1 .4 mL of a 2 M solution in tetrahydrofuran, 2.8 mmol) is then added to the reaction and the mixture is stirred for 45 min. After the reaction is complete, water (5 mL) is added and the mixture is extracted with ethyl acetate (5 mL, 3 x). The organic layers are combined and dried over sodium sulfate. Removal of the solvent under vacuum affords iV-Methyl- terephthalamic acid methyl ester (380 mg, 71 %) which is used in the next step without further purification.
- Step b Lithium hydroxide monohydrate (120 mg, 2.9 rnmol), dissolved in water (3 mL), is added to a solution of N-methyl-terephthalamic acid methyl ester (380 mg, 2.0 mmol) in dioxane (11 mL) at room temperature. The mixture is stirred for 16 hours, and aqueous 1 M HCl (6 mL) is added and the mixture is extracted with ethyl acetate (20 mL, 3 x). The organic layers arc combined and dried over sodium sulfate. Removal of the solvent under vacuum affords N-methyl-terephthalamic acid with 95% purity (334 mg, 90 %).
- Lithium hydroxide monohydrate (100 mg, 2.4 mmol), dissolved in water (2.0 mL), is added to the solution of crude 3-(propane-2-sulfonyl)-benzoic acid methyl ester (290 mg, 1.20 mmol) in dioxane (3.0 mL). The mixture is stirred for 1 hour and aqueous 1 M HCl (5 mL) is added. The aqueous phase is then extracted with ethyl acetate (20 mL, 3 x) and the organic layers are combined and dried over sodium sulfate to give crude 3- (propane-2-sulfonyl)-benzoic acid (241 mg, 1.06 mmol) which is pure enough for the next step.
- 5-Nitro-2-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridine (150 mg, 0.45 mmol) is dissolved in ethanol (15 mL) with gentle heating. Catalytic amounts of 10 % palladium on carbon are added and the solution is hydrogenated under balloon pressure overnight. The mixture is filtered through Celite and evaporated. The resulting product, 6-(3-Pyridin-3-yl-5-trifiuoromethyl-pyrazol-l-yl)-pyridin-3-ylamine (125 mg, 91%) is used without further purification.
- 6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-ylamine (20 mg, 0.065 mmol) is dissolved in tetrahydrofuran (2 mL) and TV ⁇ N-diisopropylethylamine (35 ⁇ L, 0.2 mmol) and cyclohexanecarbonyl chloride (14 ⁇ L, 0.1 mmol) is added successively. The solution is stirred for 30 min after which it is diluted with saturated aqueous ammonium chloride solution. The aqueous phase is extracted with dichloromethane and the combined organic phases are dried over magnesium sulfate. The solvent is evaporated and the residue is purified by chromatography to afford the title compound (8 mg, 30 %).
- Example 24 Tetrahydro-pyran-4-carboxylic acid [6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l -yl)-pyridin-3-yl]-amide
- Tetrahydro-pyran-4-carboxylic acid (175 rng, 1.3 mmol) is dissolved in
- 6-(3-Pyridin-3-yl-5-trifluorornethyl-pyrazol-l-yl)-pyridin-3-ylar ⁇ ine (20 mg, 0.065 mmol), prepared according to step d in example 22, is dissolved in tetrahydrofuran (2 mL) and iVliV-diisopropylethylamine (35 ⁇ L, 0.2 mmol), and tetrahydro-pyran-4- carbonyl chloride (16 mg, 0.1 mmol) are added successively. The solution is stirred for 30 rnin after which it is diluted with saturated aqueous ammonium chloride solution.
- 6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-ylamine (215 mg, 0.7 mmol), prepared according to step d in example 22, is dissolved in tetrahydrofuran (10 mL) and N,iV-diisopropylethylamine (370 ⁇ L, 2.1 mmol), and 3-benzyloxyl-benzoyl chloride (200 ⁇ L, 0.84 mmol) is added successively. The solution is stirred for 30 min after which it is diluted with saturated aqueous ammonium chloride solution. The aqueous phase is extracted with dichloromethane and the combined organic phases are dried over magnesium sulfate.
- Example 30 l-(2-Methoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carboxylic acid [6- (3-pyridin-3-yl-5-trifluoromethyI-pyrazol-l-yl)-pyridin-3-yl]-amide
- the following compound is prepared according to example 30 by replacing the carboxylic acid in step a with l-(2-Ethoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3- carboxylic acid, prepared according to example 3.
- Example 32 l-Dimethylcarbamoylmethyl- ⁇ -oxo-lj ⁇ -dihydro-pyridine-S-carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-amide
- the organic phase is extracted with saturated aqueous sodium bicarbonate solution and saturated aqueous ammonium chloride solution and all the aqueous layers are combined and back-extracted with ethyl acetate.
- the organic layers are combined, dried over magnesium sulfate, filtered, and evaporated.
- the residue is purified by chromatography to afford ⁇ 2-oxo-5-[6-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3- ylcarbamoyl]-2H-pyridin-l-yl ⁇ -acetic acid ethyl ester (521 mg, 62 %).
- Ster l-(2-Ethoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carboxylic acid (1.4 g, 6.8 mmol), prepared according to step c in example 3, is dissolved in tetrahydrofuran (20 mL) and oxalyl chloride (1.2 mL, 13.7 mmol), and catalytic amounts of dimethylformamide are added. The solution is stirred for 1 hour after which all volatiles are evaporated. The residue is dried under high vacuum for three hours.
- the acid chloride is rc-dissolvcd in pyridine (20 mL), 5-(3-ethoxy-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-ylamine (620 mg, 2.3 mmol) is added, and the solution is stirred for 1 hour. The solution is evaporated and the residue is partitioned between ethyl acetate and saturated sodium bicarbonate solution. The organic phase is extracted with saturated aqueous sodium bicarbonate solution and saturated ammonium chloride solution. The solvent is dried over magnesium sulfate, filtered, and evaporated. The residue is purified by
- the following compound is prepared according to example 33 by replacing the carboxylic acid in step e with 3-Morphol ⁇ n-4-yl-benzoic acid prepared according to step b in example 57.
- Example 36 iV-Pyridin-4-yl-6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- nicotinamide
- Example 37 iV-(3,3-Diphenyl-propyl)-6-(3-pyridin-3-yl-5-trifluoromethyI-pyrazoI- l-yl)-nicotinamide
- 6-(5-Hydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicotiiiic acid is prepared according to step b in example 36.
- 6-(5-hydroxy-3-pyridin- 3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicotinic acid 70 mg, 0.199 mmol
- dimethylformamide 5mL
- yV.JV-diphenylpropyl amine 55 ⁇ L, 0.398 mmol
- l-(3-dimethylaminopropyl)-3-ethylcarbodiimide 114 mg, 0.59 mmol
- 1- hydroxybenzo-triazole hydrate 81 mg, 0.59 mr ⁇ ol
- diisopropylethyl amine 0.1 mL, 0.59 mmol
- iy-(3 5 3-Diphenyl-propyl)-6-(5-hydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5-dihydro- pyrazol-l-yl)-nicotinamide (60 mg, 0.110 mmol) is dissolved in acetic acid (3 mL) at room temperature. The solution is heated to 120 °C for 6 hours. The resulting solution is cooled to room temperature and is extracted with ethyl acetate (10 mL, 3 x) and water (15 mL). The combined organic layer is dried with magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (58 mg, 67 %). LC-MS (M + +l): 528.37.
- Example 38 iV-[4-(2-Pipe ⁇ din-l-yl-ethoxy)-naphthalen-l-yl]-6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-nicotinamide
- 6-(5-Hydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicoth ⁇ .ic acid is prepared according step b prepare example 36.
- To a solution of 6-(5-hydroxy-3- pyridin-3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicotinic acid (50 mg, 0.142 mmol) in dimethylformamide (10 mL) are added 4-(2-piperidin-l-yl-ethoxy)- naphthalen-1-ylamine (58 mg, 0.213 mmol), l-(3-dimethylarninopropyl)-3- ethylcarbodiimide (83 mg, 0.426 mmol), 1-hydroxybenzo-triazole hydrate (38 mg, 0.284 mmol) and diisopropyl-cthyl amine (0.049 mL,
- Example 39 iV-Hexyl-6-(5-hydroxy-3-pyridin-3-yl-5-trifluoromethyI-4,5-dihydro- pyrazol-l-yl)-nicotinamide
- 6-(5-Hydroxy-3-pyridin-3 -yl-5-trifluoromethyl-4,5-dihydro-pyrazol- 1 -yl)-nicotinic acid is prepared according to step b in example 36.
- 6-(5-hydroxy-3-pyridin- 3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicotinic acid 70 mg, 0.199 mmol
- dimethylformamide 5mL
- iV-hexylamine 0.053 mL, 0.398 mmol
- l-(3- dimethylaminopropyl)-3-ethylcarbodiimide 114 mg, 0.59 mmol
- 1-hydroxybenzo- triazole hydrate 81 mg, 0.59 mmol
- diisopropylethyl amine 0.1 mL, 0.59 mmol
- Step a 4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione is prepared according to step a in example 35.
- 4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione (883 mg, 4 mmol) is dissolved in ethanol (10 mL) and 3-chloro-6-hydrazinopyridazine (145 mg, 3.4 mmol), 12 M aqueous HCl (0.5 mL) are added at room temperature. The solution is heated up to 80 0 C for 6 hours and is then cooled to room temperature. The solution is concentrated under reduced pressure and the residue is dissolved in boiling ethanol (5 mL).
- 4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione is prepared according to step a in example 35.
- 4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione (122 mg, 0.56 mmol) is dissolved in ethanol (5 mL) and 5-hydrazino-pyridine-2-carbonitrile (50 mg, 3.4 mmol) in 12 M aqueous HCl (1 mL) are added at room temperature. The solution is heated up to 80 ° C for 6 hours and is then cooled to room temperature. The solution is concentrated under reduced pressure and the residue is dissolved in boiling ethanol (5 mL).
- Example 42 Cyclohexanecarboxylic acid [5-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyrazin-2-yl]-amide
- cyclohexanecarboxylic acid (5-bromo-pyrazin-2-yl)-amide (20 mg, 0.07 mmol) in ethanol (5 mL) is added hydrazine (0.01 mL, 0.35 mmol) at room temperature.
- the solution is heated to 120 0 C in a microwave reactor for 3 hours.
- the solution is cooled to room temperature and concentrated under reduced pressure.
- the residue is purified by chromatography to afford cyclohexanecarboxylic acid (5- hydrazmo-pyrazin-2-yi)-amide (10 mg, 61 %).
- 4.4,4-Trifluoro-l-pyridin-3-yl-butane-1.3-dione is prepared according to step a in example 35.
- 4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione (36 mg, 0.17 mmol) is dissolved in ethanol (5 mL) and cyclohexanecarboxylic acid (5-hydrazino-pyrazin-2- yl)-amide (20 mg, 0.085 mmol), 12 M aqueous HCl (1 mL) are added at room temperature. The solution is heated up to 50 0 C for 1 hour and then cooled to room temperature.
- 4,4,4-Trifluoro-l-pyrid ⁇ i-3-yl-butane-l 5 3-dione is prepared according to step a in example 35.
- a solution of 4,4,4-trifluoro-l-pyridin-3-yl-butane-l,3-dione (200 mg, 0.92 mmol) in cthanol (5 mL) arc added ethyl hydrazinoacctatc hydrochloride (220 mg, 1.82 mmol) and 12 M aqueous HCl (0.5 mL).
- the solution is heated to 80° C for 2 hours.
- the solution is cooled to room temperature and concentrated under reduced pressure.
- Step b To a solution of (5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-acetic acid ethyl ester (200 mg, 0.67 mmol) in methanol (10 mL) are added lithium hydroxide (84 mg, 2 mmol) and water (2 mL) at room temperature. The solution is stirred at the same temperature for 30 minutes. The solution is acidified to pH 2 with 12 M aqueous HCl in an ice bath. The resulting solution is concentrated under reduced pressure and the residual solution is diluted with water (10 mL) and extracted ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and filtered.
- Phosphoryl chloride (0.35 mmL 3.7 mmol) is added dropwise to a dimethylformamide (2 mL) at 0 °C under nitrogen atmosphere. The solution is stirred at the same temperature for 15 minutes. A solution of (5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l- yl)-acetic acid (500 mg, 1.8 mmol) in dimethylformamide (2 mL) is added to the above solution. The solution is heated up to 105 0 C for 3 hours and then cooled to room temperature. The resulting reddish brown oil is poured into a solution of sodium hexafluorophosphate (948 mg, 5.5 mmol) in ice water (10 mL). The solid that precipitates out of the solution is collected by filtration. The brown hydroscopic (Z)-
- Step a (S-Pyridin-S-yl-S-trifluorometliyl-pyrazol-l-y ⁇ -acetic acid ethyl ester is prepared according to step a in example 43.
- the solution is acidified to pH 2 with 12 M aqueous HCl in an ice bath.
- Phosphoryl chloride (0.18 mmL 1.85 mmol) is added dropwise to dimethylformamide (2 mL) at 0 °C under nitrogen atmosphere. The solution is stirred at the same temperature for 15 minutes. A solution of (3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-acetic acid (250 mg, 0.9 mmol) in dimethylformamide (2 mL) is added to the above solution. The solution is heated up to 105 0 C for 3 hours and then cooled to room temperature. The resulting reddish brown oil is poured into a solution of sodium hcxafluorophosphatc (474 mg, 2.8 mmol) in ice water (10 mL). The solid that precipitates out of the solution is collected by filtration. The brown hydroscopic (Z)-
- Nl ,N 1 , ⁇ r ,N -Te1xamethyl-2-(3-pyridin-3 -yl-5 -trifluoromethyl-pyrazol- 1 -yl)-propene- 1,3 -diamine hexafluorophosphate (163 mg, 52 %) is used in the next step of the synthesis without further purification.
- Step d To a solution of 5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyrimidin-2-ylamme (10 mg, 0.033 mmol) in pyridine (5 mL) are added 4-(dimethylamino)pyridine (8 mg, 0.066 mmol) and benzoyl chloride (0.006 mL, 0.05 mmol) at room temperature. The solution is stirred at the same temperature for 24 hours. Saturated aqueous sodium bicarbonate solution (5 mL) is added and the solution mixture is diluted with water (10 mL) and extracted with ethyl acetate (20 mL, 3 x).
- Step a 4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione is prepared according to step a in example 35.
- To a solution of 4,4,4-trifluoro-l-pyridin-3-yl-butane-l,3-dione (883 mg, 4.1 mmol) in ethanol (10 mL) are added 3-chloro-6-hydrazinopyridazine (500 mg, 3.4 mmol) and 12 M aqueous HCl (1 mL).
- the solution is heated up to 80 0 C for 6 hours.
- the solution is cooled to room temperature and then concentrated under reduced pressure.
- the residue is dissolved in boiling ethanol (3 mL).
- Example 46 Tetrahydro-pyran-4-carboxylic acid [6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridazin-3-yl]-amide
- 6-(3-Pyridin-3-yl-5-trifluorom.ethyl-pyrazol-l-yl)-pyridazin-3-ylamine is prepared according to step b in example 45.
- 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylaminc (30 mg, 0.098 mmol) in dimcthylformamidc (10 mL) are added tetrahydropyran-4-yl-carbonylic acid (19 mg, 0.147 mmol), l-(3- dimethylaminopropyl)-3-ethylcarbodiimide (58 mg, 0.29 mmol), 1-hydroxybenzo- triazole hydrate (26 mg, 0.196 mmol) and ⁇ iV-diisopropylethylamine (0.034 mL, 0.196 mmol).
- Example 47 4-Morpholin-4-yl-iV-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazoI-l- yl)-pyridazin-3-yl]-benzamide
- 6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamme is prepared according to step b in example 45.
- 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylamine 200 mg, 0.65 mmol
- tetrahyfrofuran 10 mL
- a ⁇ iV-diisopropylethylamine (0.23 mL, 1.0 mmol
- 4-morpholm ⁇ 4-yl-benzoyl chloride (294 mg, 1.3 mmol) respectively at 0 0 C under nitrogen atmosphere.
- Example 48 Biphenyl-3,3'-dicarboxylic acid 3'-dimethylamide 3- ⁇ [6-(3-pyridin-3- yl-S-trifluoromethyl-pyrazol-l-yty-pyridazin-S-yll-amide ⁇
- Biphenyl-3-carboxy lie acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-amide; LC-MS (M + +l): 487.36.
- Biphenyl-3,3'-dicarboxylic acid 3'-amide 3- ⁇ [6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-yl]-amide ⁇ ; LC-MS (M + +l): 530.4.
- Step a 6-(3-Pyridin-3-yl-5-trifluorometh.yl-pyrazol-l-yl)-pyridazin-3-ylamine is prepared according to step b in example 45.
- 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylatnme 100 mg, 0.33 nrmol
- iV.N-diisopropylethylamme (0.28 mL, 1.6 mmol
- 2-bromobenzoyl chloride 0.085 mL, 0.65 mmol
- Example 50 7V-[6-(3-Pyridin-3-yl-5-trifluoromethyI-pyrazol-l-yl)-pyridazin-3-yl] - 5-pyrimidin-5-yl-nicotinamide
- 6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamine is prepared according to step b in example 45.
- 6-(3-py ⁇ idin-3-yl-5-trifluorornethyl- pyrazol-l-yl)-pyridazin-3-ylamine 250 mg, 0.816 mmol
- tetrahydrofuran 10 mL
- ⁇ N-diisopropylethylamine (0.43 mL, 2.45 mmol
- 5-bromonicotinyl chloride 360 mg, 1.63 mmol
- 6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamme is prepared according to step b in example 45.
- 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylamine 100 mg, 0.327 mmol
- tetrahydrofuran 10 mL
- ⁇ iV-diisopropylethylamine (0.28 mL, 1.63 mmol
- 3-Oxazol-5-yl-benzoyl chloride 136 mg, 0.65 mmol
- 6-(3-Pyridin-3-yl-5-trifluoroinethyl- ⁇ yrazol-l-yl)-pyridazin-3-ylainine is prepared according to step b in example 45.
- 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylamine 300 mg, 0.98 mmol
- iV,N-diisopropylethylamine (0.43 mL, 2.45 mmol
- 2-chloropyridine-4- carbonyl chloride (345 mg, 1.96 mmol) respectively at 0 0 C under nitrogen atmosphere.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Diabetes (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Emergency Medicine (AREA)
- Endocrinology (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Disclosed are compounds active against soluble epoxide hydrolase (sEH), compositions thereof and methods of using and making same.
Description
Substituted JPyrazole Compounds Useful as
Soluble Epoxide Hydrolase Inhibitors
APPLICATION DATA
This application claims benefit to US provisional application serial no. 60/742,350 filed December 5, 2005.
BACKGROUND OF THE INVENTION 1. TECHNICAL FIELD
This invention relates to compounds possessing anti-sEH activity and methods of using soluble epoxide hydrolase (sEH) inhibitors for diseases related to cardiovascular disease. 2. BACKGROUND INFORMATION
Epoxide hydrolases are a group of enzymes ubiquitous in nature, detected in species ranging from plants to mammals. These enzymes are functionally related in that they all catalyze the addition of water to an epoxide, resulting in a diol. Epoxide hydrolases are important metabolizing enzymes in living systems and their diol products are frequently found as intermediates hi the metabolic pathway of xenobiotics. Epoxide hydrolases are therefore important enzymes for the detoxification of epoxides by conversion to their corresponding, non-rcactivc diols.
In mammals, several types of epoxide hydrolases have been characterized including soluble epoxide hydrolase (sEH), also referred to as cytosolic epoxide hydrolase, cholesterol epoxide hydrolase, LT A4 hydrolase, hepoxilin hydrolase, and microsomal epoxide hydrolase (Fretland and Omiecinski, Chemico-Bio logical Interactions, 129: 41- 59 (2000)). Epoxide hydrolases have been found in all tissues examined in vertebrates including heart, kidney and liver (Vogel, et al., Eur J. Biochemistry, 126: 425-431 (1982); Schladt et al., Biochem. Pharmacol., 35: 3309-3316 (1986)). Epoxide hydrolases have also been detected in human blood components including lymphocytes (e.g. T-lymphocytes), monocytes, erythrocytes, platelets and plasma. In the blood, most of the sEH detected was present in lymphocytes (Seidegard et al., Cancer Research, 44: 3654-3660 (1984)).
The epoxide hydrolases differ in their specificity towards epoxide substrates. For example, sEH is selective for aliphatic epoxides such as epoxide fatty acids while microsomal epoxide hydrolase (mEH) is more selective for cyclic and arene epoxides. The primary known physiological substrates of sEH arc four rcgioisomcric cis epoxides of arachidoriic acid, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid, also known as epoxyeicosatrienoic acids or EETs. Also known to be substrates for sEH are epoxides of linoleic acid known as leukotoxin or isoleukotoxin. Both the EETs and the leukotoxins are generated by members of the cytochrome P450 monooxygenase family (Capdevila, et al., J. Lipid Res., 41: 163-181 (2000)).
EETs function as chemical autocrine and paracrine mediators in the cardiovascular and renal systems (Spector, et al, Progress in Lipid Research, 43: 55-90 (2004); Newman, et al., Progress in Lipid Research 44: 1-51 (2005)). EETs appear to be able to function as endothelial derived hyperpolarizing factor (EDHF) in various vascular beds due to their ability to cause hyperpolarization of the membranes of vascular smooth muscle cells with resultant vasodilation (Weintraub, et al., Circ. Res., 81: 258-267 (1997)). EDHF is synthesized from arachidonic acid by various cytochrome P450 enzymes in endothelial cells proximal to vascular smooth muscle (Quilley, et al., Brit. Pharm., 54: 1059 (1997); Quilley and McGiff, TIPS, 21 : 121-124 (2000)); Fleming and Busse, Nephrol. Dial.
Transplant, 13: 2721-2723 (1998)). In the vascular smooth muscle cells EETs provoke signaling pathways which lead to activation of BKCa2+ channels (big Ca2+ activated potassium channels) and inhibition of L-type Ca2+ channels, ultimately resulting in hyperpolarization of membrane potential, inhibition of Ca2+ influx and relaxation (Li et al., Circ. Res., 85: 349-356 (1999)). Endothelium dependent vasodilation has been shown to be impaired in different forms of experimental hypertension as well as in human hypertension (Lind, et al., Blood Pressure, 9: 4-15 (2000)). Impaired
endothelium dependent vasorelaxation is also a characteristic feature of the syndrome known as endothelial dysfunction (Goligorsky, et. al., Hypertension, 37[part 2]:744-748 (2001)). Endothelial dysfunction plays a significant role in a large number of pathological conditions including type 1 and type 2 diabetes, insulin resistance syndrome, hypertension, atherosclerosis, coronary artery disease, angina, ischemia, ischemic stroke, Raynaud's disease and renal disease. Hence, it is likely that enhancement of EETs concentration would have a beneficial therapeutic effect in
patients where endothelial dysfunction plays a causative role. Other effects of EETs that may influence hypertension involve effects on kidney function. Levels of various EETs and their hydrolysis products, the DHETs, increase significantly both in the kidneys of spontaneously hypertensive rats (SHR) (Yu, et al., Circ. Res. 87: 992-998 (2000)) and in women suffering from pregnancy induced hypertension (Catclla, ct al., Proc. Natl. Acad. Sci. U.S.A., 87: 5893-5897 (1990)). In angiotensin II infused rats the treatment with a selective sEH inhibitor attenuated the afferent arteriolar diameter in the kidney and lowered urinary albumin secretion, a marker of compromised renal function, suggesting antihypertensive and renal vascular protective effects of increased EETs levels (Zhao, et al, 15: 1244-1253 (2004)). In the spontaneously hypertensive rat model, both cytochrome P450 and sEH activities were found to increase (Yu et al., Molecular Pharmacology, 57: 1011-1020 (2000)). Addition of a known sEH inhibitor was shown to decrease the blood pressure to normal levels. Furthermore, administration of a selective sEH inhibitor to angiotensin II treated rats was demonstrated to lower systolic blood pressure (Imig, et al, Hypertension, 39: 690-694 (2002)). Finally, male soluble epoxide hydrolase null mice exhibited a phenotype characterized by lower blood pressure than their wild-type counterparts (Sinai, et al., J. Biol. Chem., 275: 40504- 40510 (2000)). EETs, especially 11,12- EET, also have been shown to exhibit anti-inflammatory properties (Node, et al., Science, 285: 1276-1279 (1999); Campbell, TIPS, 21: 125-127 (2000); Zcldin and Liao, TIPS, 21 : 127-128 (2000)). Node, ct al. have demonstrated 11,12-EET decreases expression of cytokine induced endothelial cell adhesion molecules, especially VCAM-I . They further showed that EETs prevent leukocyte adhesion to the vascular wall and that the mechanism responsible involves inhibition of NF-κB and TKB kinase. Vascular inflammation plays a role in endothelial dysfunction (Kessler, et al., Circulation, 99: 1878-1884 (1999)). Hence, the ability of EETs to inhibit the NF-κB pathway should also help ameliorate this condition. In addition, the administration of EETs and/or the administration of a selective sEH inhibitor was demonstrated to attenuate tobacco smoke induced inflammation, as assessed total bronchoalveolar lavage cell numbers and concornittant reduction in neutrophils, alveolar macrophages, and lymphocytes (Smith, et al, 102: 2186-2191 (2005)).
In addition to the physiological effect of some substrates of sEH (EETs, mentioned above), some diols, i.e. DHETs, produced by sEH may have potent biological effects. For example, sEH metabolism of epoxides produced from linoleic acid (leukotoxin and isoleukotoxin) produces leukotoxin and isoleukotoxin diols (Greene, et al., Arch.
Biochcm. Biophys. 376(2): 420-432 (2000)). These diols were shown to be toxic to cultured rat alveolar epithelial cells, increasing intracellular calcium levels, increasing intercellular junction permeability and promoting loss of epithelial integrity
(Moghaddam et al., Nature Medicine, 3: 562-566 (1997)). Therefore these diols could contribute to the etiology of diseases such as adult respiratory distress syndrome where lung leukotoxin levels have been shown to be elevated (Ishizaki, et al., PuIm. Pharm.& Therap., 12: 145-155 (1999)). Hammock, et al. have disclosed the treatment of inflammatory diseases, in particular adult respiratory distress syndrome and other acute inflammatory conditions mediated by lipid metabolites, by the administration of inhibitors of epoxide hydrolase (WO 98/06261; U.S. Patent No. 5,955,496).
A number of classes of sEH inhibitors have been identified. Among these are chalcone oxide derivatives (Miyamoto, et al. Arch. Biochem. Biophys., 254: 203-213 (1987)) and various trans-3-phenylglycidols (Dietze, et al., Biochem. Pharm. 42: 1163-1175 (1991); Dietze, et al., Comp.Biochem. Physiol. B, 104: 309-314 (1993)).
More recently, Hammock et al. have disclosed certain biologically stable inhibitors of sEH for the treatment of inflammatory diseases, for use in affinity separations of epoxide hydrolases and in agricultural applications (U.S. PatentNo. 6,150,415). The Hammock '415 patent also generally describes that the disclosed pharmacophores can be used to deliver a reactive functionality to the catalytic site, e.g., alkylating agents or Michael acceptors, and that these reactive functionalities can be used to deliver fluorescent or affinity labels to the enzyme active site for enzyme detection (col. 4, line 66 to col. 5, line 5). Certain urea and carbamate inhibitors of sEH have also been described in the literature (Morisseau et al., Proc. Natl. Acad. ScI, 96: 8849-8854 (1999); Argiriadi et al., J. Biol. Chem., 275 (20): 15265-15270 (2000); Nakagawa et al. Bioorg. Med. Chem., 8: 2663-2673 (2000); US 2005/0026844 and Kim, et al., J. Med. Chem. 47(8): 2110-2122 (2004) both of which describe inhibitors with additional, tethered oxo pharmacophores).
WO 00/23060 discloses a method of treating immunological disorders mediated by T- lymphocytes by administration of an inhibitor of sEH. Several l-(4- aminophenyl)pyrazoles are given as examples of inhibitors of sEH. US patent 6,150,415 to Hammock is directed to a method of inhibiting an epoxide hydrolase, using compounds having the structure
wherein X and Y is each independently nitrogen, oxygen, or sulfur, and X can further be carbon, at least one of Rl -R4 is hydrogen, R2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen, R4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen, Rl and R3 is each independently H, Cl-20 substituted or unsubstituted alkyl, cycloalkyl, aryl, acyl, or heterocyclic. Related to the Hammock patent is US 6,531 ,506 to Kroetz et al. which claims a method of treating hypertension using of an inhibitor of epoxide hydrolase, also claimed are methods of treating hypertension using compounds similar to those described in the Hammock patent. Neither of these patents teaches or suggests methods of treating cardiovascular diseases using the particular sEH inhibitors described herein.
As outlined in the discussion above, inhibitors of sEH are useful therefore, in the treatment of cardiovascular diseases such as endothelial dysfunction either by preventing the degradation of sEH substrates that have beneficial effects or by preventing the formation of metabolites that have adverse effects.
All references cited above and throughout this application are incorporated herein by reference in their entirety.
BRIEF SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide compounds active as sEH inhibitors of the formula I as described herein below.
It is a further object of the invention to provide a method of treating hypertension by administering to a patient a compound of the formula I as described herein below.
It is yet a further object to provide methods of making the compounds described herein below.
DETAILED DESCRIPTION OF THE INVENTION
In a first generic embodiment, there is provided a compound of the formula (I) wherein:
Xi-X2 is -CH=CH-, -N=CH-, -C=N- or -N=N-;
R2 is chosen from heteroaryl and carbocycle optionally substituted by Ci_io alky], Ci-io alkoxy each substituent of R2 is optionally halogenated;
R.3 is chosen from heteroaryl, heterocycle, carbocycle., Ar2-ArI- and an acyclic moiety chosen from : -NH-(CH2)t-An, -NH-(CH2)t-O-Ari, -NH-Ari, d_io alkyl, -Ci-10 alkyl- Ari, O-Ci-io alkyl-Ari, Ar2-L-ATi- and -Ci.io alkyl(phenyl)2, or R3 is L;
L is a Ci-10 alkyl chain optionally interrupted by O, S or NRx and optionally substituted by oxo (=O);
AJ* I and Ar2 are each independently heteroaryl, heterocycle or carbocycle, each optionally substituted by one or more Ci-I0 alkyl, C1 -Io alkoxy, -NRxRy, -C(O)-NRxRy, Rx-S(O)HO.-, Het-C(O)-, Het~S(O)m-, NO2, OH, halogen, CLIO alkoxycarbonyl, CO2,
CN, C1-I0 acyl, -S(O)m-NRxRy, Rx-S(O)m-NHRy, -(CH2)t-OH wherein Het is pyrrolidinyl or morpholinyl; m is 0-2; n is 0-5; t is 0-5; or the pharmaceutically acceptable salts thereof.
In another embodiment, there is provided a compound of the formula (I) as described immediately above and wherein:
R2 is chosen from pyridinyl, phenyl and cyclohexyl optionally substituted by Ci-10 alkyl, Ci_io alkoxy each substituent of R2 is optionally halogenated;
Rs is chosen from phenyl, pyridinone, pyridinyl, -NH-(CH2)t-Ari, -NH-(CH2)t-O-Ari, - NH-Ari, Cu1O alkyl, -Ci-1O alkyl-Ari and -C1-Io alkyl(phenyl)2;
Art and Ar2 are each independently phenyl, pyridinone, pyridinyl, morpholinyl, bcnzofuranyl, pipcridinyl, cyclohcxcnyl, bcnzodioxolanyl, pyrrolidinyl, tctrazolyl, oxazolyl, isoxazolyl, pyrimidinyl or benzodioxolyl.
In another generic aspect of the invention, there is provided a compound of the formula (Ia):
or the pharmaceutically acceptable salts thereof.
In another generic aspect of the invention, there is provided a compound of the formula (Ib):
wherein for the Formula (Tb), the component R2 is:
and the component
is chosen from those shown in the table II below;
or the pharmaceutically acceptable salts thereof.
In another generic aspect of the invention, there is provided a compound of the formula (Ic) or (Id):
or the pharmaceutically acceptable salts thereof.
In another generic aspect of the invention, there is provided a compound of the formula (IeX (If), (Ig) or (Ih):
or the pharmaceutically acceptable salts thereof.
In one aspect of the invention, there is provided the following compounds which can be made according to the general synthetic procedures and examples which follow:
or the pharmaceutically acceptable salts thereof. In all the compounds disclosed hereinabove in this application, in the event the nomenclature is in conflict with the structure, it shall be understood that the compound is defined by the structure.
The invention includes the use of any compounds of described above containing one or more asymmetric carbon atoms may occur as racemates and racemic mixtures, single cnantiomcrs, diastcrcomcric mixtures and individual diastcrcomcrs. All such isomeric forms of these compounds are expressly included in the present invention. Each stereogenic carbon may be in the R or S configuration, or a combination of
configurations.
Some of the compounds of the invention can exist in more than one tautomeric form. The invention includes methods using all such tautomers.
All terms as used herein in this specification, unless otherwise stated, shall be understood in their ordinary meaning as known in the art. For example, C^alkoxy includes the organic radical Ci^alkyl with a terminal oxygen, such as methoxy, ethoxy, propoxy, butoxy.
All organic radicals: alkyl, alkenyl and alkynyl groups, or such groups which are incorporated in other radicals such as acyl and alkoxy, shall be understood as being branched or unbranched where structurally possible and unless otherwise specified, and may be partially or fully halogenated.
The term "lower" referred to above and hereinafter in connection with organic radicals or compounds respectively defines such as branched or unbranched with up to and including 7, preferably up to and including 4 and advantageously one or two carbon atoms.
A cyclic group shall be understood to mean carbocycle, heterocycle or heteroaryl, each may be partially or fully halogenated. An acyl group is a radical defined as -C(O)-R, where R is an organic radical or a cyclic group. Acyl represents, for example, carbocyclic or heterocyclic aroyl,
cycloalkylcarbonyl, (oxa or thia)-cycloalkylcarbonyl, lower alkanoyl, (lower alkoxy, hydroxy or acyloxy)-lower alkanoyl, (mono- or di- carbocyclic or heterocyclic)-(lower alkanoyl or lower alkoxy-, hydroxy- or acyloxy- substituted lower alkanoyl), or biaroyl.
Carbocycles include hydrocarbon rings containing from three to fourteen carbon atoms. These carbocycles may be either aromatic either aromatic or non-aromatic ring systems. The non-aromatic ring systems may be mono- or polyunsaturated, monocyclic, bicyclic or tricyclic and may be bridged. Preferred carbocycles include but arc not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptanyl, cycloheptenyl, phenyl, benzyl, indanyl, indenyl, benzocyclobutanyl, dihydronaphthyl, tetrahydronaphthyl, naphthyl, decahydronaphthyl,
benzocycloheptanyl, adamantyl, norbornyl, fluorene, and benzocycloheptenyl. Certain terms for cycloalkyl such as cyclobutanyl and cyclobutyl shall be used interchangeably.
The term "heterocycle" refers to a stable nonaromatic 4-8 membered (but preferably, 5 or 6 membered) monocyclic or nonaromatic 8-11 membered bicyclic heterocycle radical which may be either saturated or unsaturated. Each heterocycle consists of carbon atoms and one or more, preferably from 1 to 4 heteroatoms chosen from nitrogen, oxygen and sulfur. The heterocycle may be attached by any atom of the cycle, which results in the creation of a stable structure. Unless otherwise stated, heterocycles include but are not limited to, for example pyrrolidinyl, pyrrolinyl, morpholinyl, thiomorpholinyl, thiomorpholinyl sulfoxide, thiomorpholinyl sulfone, dioxalanyl, piperidinyl, piperazinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrofuranyl, 1,3- dioxolanone, 1,3-dioxanone, 1,4-dioxanyl, piperidinonyl, tetrahydropyrimidonyl, pcntamcthylcnc sulfide, pcntamcthylcnc sulfoxide, pcntamcthylcnc sulfonc,
tetramethylene sulfide, tetramethylene sulfoxide and tetramethylene sulfone. The term "heteroaryl" shall be understood to mean an aromatic 5-8 membered monocyclic or 8-11 membered bicyclic ring containing 1-4 heteroatoms such as N, O and S. Unless otherwise stated, such heteroaryls include aziridinyl, thienyl, furanyl, isoxazolyl, oxazolyl, thiazolyl, thiadiazolyl, tetrazolyl, pyrazolyl, pyrrolyl, imidazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyranyl, quinoxalinyl, indolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzothienyl, quinolinyl, quinazolinyl, naphthyridinyl, indazolyl, triazolyl, pyrazolo[3,4-b]pyrimidinyl, purinyl, pyrrolo[2,3- b]pyridinyl, pyrazolo[3,4-b]pyridinyl, tubercidinyl, oxazo[4,5-έ]pyridinyl, imidazo[4,5- &]pyridinyl and
The term "hctcroatom" as used herein shall be understood to mean atoms other than carbon such as oxygen, nitrogen, sulfur and phosphorous.
As used herein, "nitrogen" and "sulfur" include any oxidized form of nitrogen and sulfur and the quaternized form of any basic nitrogen. AU heteroatoms in open chain or cyclic radicals include all oxidized forms. In all alkyl groups or carbon chains one or more carbon atoms can be optionally replaced by heteroatoms: O, S or N, it shall be understood that if N is not substituted then it is NH, it shall also be understood that the heteroatoms may replace either terminal carbon atoms or internal carbon atoms within a branched or unbranched carbon chain. Such groups can be substituted as herein above described by groups such as oxo to result in defintions such as but not limited to: alkoxycarbonyl, acyl, amido and tbioxo.
The term "aryl" as used herein shall be understood to mean aromatic carbocycle or heteroaryl as defined herein. Each aryl or heteroaryl unless otherwise specified includes it's partially or fully hydrogcnatcd derivative and/or is partially or fully halogcnatcd. For example, quinolinyl may include decahydroquinolinyl and tetrahydroquinolinyl, naphthyl may include it's hydrogenated derivatives such as tetrahydranaphthyl. Other partially or fully hydrogenated derivatives of the aryl and heteroaryl compounds described herein will be apparent to one of ordinary skill in the art.
The term "halogen" as used in the present specification shall be understood to mean bromine, chlorine, fluorine or iodine, preferably fluorine. The definitions "partially or fully halogenated"; partially or fully fluorinated; "substituted by one or more halogen atoms", includes for example, mono, di or tri halo derivatives on one or more carbon atoms. For alkyl, a nonlimiting example would be -CH2CHF2, -CF3 etc.
The compounds of the invention are only those which are contemplated to be
'chemically stable' as will be appreciated by those skilled in the art. For example, a
compound which would have a 'dangling valency', or a 'carbanion' are not compounds contemplated by the inventive methods disclosed herein.
The invention includes pharmaceutically acceptable derivatives of compounds of the invention. A "pharmaceutically acceptable derivative" refers to any pharmaceutically acceptable salt or ester, or any other compound which, upon administration to a patient, is capable of providing (directly or indirectly) a compound useful for the invention, or a pharmacologically active metabolite or pharmacologically active residue thereof. A pharmacologically active metabolite shall be understood to mean any compound of the invention capable of being metabolized enzymatically or chemically. This includes, for example, hydroxylated or oxidized derivative compounds of the invention.
Pharmaceutically acceptable salts include those derived from pharmaceutically acceptable inorganic and organic acids and bases. Examples of suitable acids include hydrochloric, hydrobromic, sulfuric, nitric, perchloric, fumaric, maleic, phosphoric, glycolic, lactic, salicylic, succinic, toluene-p-sulfuric, tartaric, acetic, citric,
methanesulfonic, formic, benzoic, malonic, naphthalene-2-sulfuric and benzenesulfonic acids. Other acids, such as oxalic acid, while not themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds and their pharmaceutically acceptable acid addition salts. Salts derived from appropriate bases include alkali metal (e.g., sodium), alkaline earth metal (e.g., magnesium), ammonium and N-(C 1-C4 alkyl)4+ salts.
In addition, within the scope of the invention is use of prodrugs of compounds of the invention. Prodrugs include those compounds that, upon simple chemical
transformation, arc modified to produce compounds of the invention. Simple chemical transformations include hydrolysis, oxidation and reduction. Specifically, when a prodrug is administered to a patient, the prodrug may be transformed into a compound disclosed hereinabove, thereby imparting the desired pharmacological effect.
The compounds described herein are either commercially available or can be made by methods and any necessary intermediates well known in the art .
In order that this invention be more fully understood, the following examples are set forth. These examples are for the purpose of illustrating preferred embodiments of this invention, and are not to be construed as limiting the scope of the invention in any way. The examples which follow arc illustrative and, as recognized by one skilled in the art, particular reagents or conditions could be modified as needed for individual compounds without undue experimentation. Starting materials used in the scheme below are either commercially available or easily prepared from commercially available materials by those skilled in the art.
GENERAL SYNTHETIC METHODS
The invention also provides processes for making compounds of Formula (I), (II) and (Ia -Ih). In all schemes, unless specified otherwise, R2, R3, X1, X2 and G in the formulas below shall have the meaning Of R2, R3, X1, X2 and G in Formula (I), (II) and (Ia -Ih) of the invention described herein above.
Optinuun reaction conditions and reaction times may vary depending on the particular reactants used. Unless otherwise specified, solvents, temperatures, pressures, and other reaction conditions may be readily selected by one of ordinary skill in the art. Specific procedures are provided in the Synthetic Examples section. Typically, reaction progress may be monitored by thin layer chromatography (TLC), if desired, and intermediates and products may be purified by chromatography on silica gel and/or by recrystallization.
The appropriately substituted starting materials and intermediates used in the preparation of compounds of the invention are either commercially available or readily prepared by methods known in the literature to those skilled in the art, and are illustrated in the synthetic examples below.
Compounds of Formula (I), (II) and (Ia -If) may be synthesized by the method illustrated in Scheme 1
Scheme 1
As illustrated in scheme 1, amide coupling of an amine (III or VII) with a carboxylic acid (TV) provides the desired compound of formula (I) or (II) wherein G is -NHCOR3. Standard peptide coupling reactions known in the art (see for example M. Bodanszky, 1984, The Practice of Peptide Synthesis, Springer-Verlag) may be employed in these syntheses. An example of suitable coupling conditions is treatment of a solution of the carboxylic acid in a suitable solvent such as DMF with EDC, HOBT5 and a base such as diisopropylethylamine, followed by the desired amine. Similarly, amide coupling of a carboxylic acid (V or VIII)
with an amine (VI) provides the desired compound of formula (I) or (II) wherein G is - CONHR3.
Alternatively, reaction of the carboxylic acid with reagents such as oxalyl chloride provides the corresponding acid chloride. Reaction of the acid chloride with the desired amine in a suitable solvent provides the compound of formula (1) or (II).
Further modification of the initial product of formula (I) or (11) by methods known in the art and illustrated in the Examples below, may be used to prepare additional compounds of this invention.
The intermediate amines of formula (TTT) and (VTT) may be synthesized by the method outlined in scheme 2.
Scheme 2
As shown in scheme 2, reaction of a ketone (IX) with ethyl trifluoroacetate (X) in the presence of a suitable base, in a suitable solvent provides a diketone (XI). Reaction of diketone (Xl) with a hydrazine of formula (XlIl), in a suitable solvent, followed by reaction with ammonium hydroxide provides the desired intermediates (III and (VII).
The hydrazine (XIII) may be either commercially available or may be prepared from the corresponding amine (XII) by using standard literature procedure.
Intermediate carboxylic acids of formula (V) and (VIII) may be synthesized by the method shown in scheme 3
Scheme 3
As illustrated in scheme 3, reaction of diketone (XI) with a hydrazine of formula (XIV)5 in a suitable solvent, provides the desired intermediate (VIII) and the trifiuoromcthyl alcohol (XV). Dehydration of alcohol (XV) with a suitable reagent, at a suitable temperature, provides the desired intermediate (V).
The hydrazine (XIV) may be either commercially available or may be prepared from the corresponding amine by using standard literature procedure. Compounds of formula Ih may be prepared by the method shown in scheme 4
Scheme 4
As illustrated in scheme 4, amide coupling of a halogenated pyrazine amine (XVI), wherein Hal is chloro, bromo or iodo, with a carboxylic acid chloride (XVII) in a suitable solvent, in the presence of a suitable base, provides the coupled intermediate of formula (XVIII) wherein G is -NHCOR3. Reaction of the intermediate (XVIII) with hydrazine at a suitable temperature provides a hydrazine of formula (XIX). Reaction of the hydrazine (XIX) with diketone (XI) followed by dehydration provides a compound of formula (Ih)
Compounds of formula (Ig) may be made by the synthetic scheme 5, shown below.
Scheme 5
As illustrated in scheme 5, reaction of the diketone (XI) with ethyl hydrazinoacetate in a suitable solvent provides the two pyrazole regioisomers (XXIA and XXIB). Reaction of the pyrazole of formula (XXIA) with phosphoryl chloride in dimethylformamide in a suitable
solvent such as dimethylformamide, at a suitable temperature, provides an intermediate of formula (XXII). Heating the diamino intermediate (XXII) in a suitable solvent in the presence of a suitable base provides the amino pyrimidine of formula (XXIII). Amide coupling of the amino pyrimidine (XXIII), with a carboxylic acid chloride (XVII) in a suitable solvent, in the presence of a suitable base, provides a compound of formula (Ig) wherein G is - NHCOR3.
SYNTHETIC METHODS
Experimental Examples
Example 1: 3-Cyano-5-fluoro-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- py ridin-2-yl] -benzamide
Sodium (4.6 g; 0.20 mol) is added to a solution of methanol (50 mL) at 0 0C and allowed to warm to room temperature and then stirred for Ih. The solvent is removed under vacuo, ether (250 mL) is added to the sodium methoxide formed, and the mixture is cooled to 0 0C, before the slow addition of ethyl trifluoroacetate (24 mL, 0.20 mol) and 3-acetylpyridine (22 mL, 0.20 mol). The reaction mixture is heated at reflux for 2 hours, allowed to cool to room temperature, diluted with water (100 mL) and washed with ether (3 x). The aqueous layer is acidified to pH 5 using acetic acid and the solid is
filtered, rinsed with ice cold ether (200 mL) to give 4,4,4,-trifluoro-l-pyridin-3-yl- butane-l,3-dione (35.7 g, 82 %).
Step b
Sodium nitrite (1.38 g, 0.020 mol) in water (4.0 mL) is added dropwise to a stirred solution of 5-amino-2-fluoropyridine (1.5 g; 0.013 mol) in 6 M aqueous HCl (5 mL) at - 20 0C. The reaction mixture is allowed to warm to 10 0C and stirred for 30 min before being cooled back to - 20 0C. Tin (II) chloride (6 g, 0.027 mol) is added to the reaction mixture and allowed to warm to 10 0C then stirred for a further 60 min. The reaction mixture is basified with 1 M aqueous potassium hydroxide, the solid is filtered off, and the aqueous layer is extracted with ethyl acetate (75 mL, 3 x). The organic layers are combined, dried over sodium sulfate and concentrated under vacuo to give crude (6- fluoro-pyridin-3-yl)-hydrazine (1.12 g, 68 %).
Step c
A solution of (6-fluoro-pyridin-3-yl)-hydrazine (900 mg, 7.1 mmol), acetic acid (3.0 mL) in ethanol (25 mL) is added to a stirred solution of 4,4,4,-trifluoro-l-pyridin-3-yl- butane- 1, 3 -dione (1.54 g; 7.1 mmol) in ethanol (25 mL). The reaction mixture is heated at reflux for 16 hours, allowed to cool to room temperature, and concentrated under vacuo. The complex is purified by chromatography to give 2-(6-fluoro-pyridin-3-yl)-5- pyridin-3-yl-3-trifluoromethyi-3,4-dihydro-2H-pyrazol-3-ol (960 mg, 42 %). Step d
A solution of 2-(6-fluoro-pyridin-3-yl)-5-pyridin-3-yl-3-trifluoromethyl-3,4-dihydro- 2H~-pyrazol-3-ol (326 mg, 1.0 mmol), in concentrated ammonium hydroxide (1.5 mL) and dioxane (1.5 mL) is heated at 125 0C under microwave conditions for 2 hours. The reaction mixture is allowed to cool to room temperature and concentrated under vacuo. The mixture is purified by chromatography to give 5-(3-pyridine-3-yl-5-trifluorornethyl- pyrazol-l-yl)pyridin-2-ylamine (177 mg, 58 %).
A solution of 3-cyano-5-fluorobenzoic acid (110 mg, 0.66 mmol) in thionyl chloride (2.5 mL) is refluxed for 1 hour and then concentrated under vacuo. Pyridine (2.5 mL) is then added to the preformed acid chloride followed by the addition of 5-(3-pyridine-3- yl-5-trifluoromcthyl-pyrazol-l-yl)pyridin-2-ylaminc (100 mg, 0.33 mmol) in pyridine (2.5 mL). The reaction mixture is stirred for 1 hour, diluted with ethyl acetate, washed with water (25 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The product is recrystallized with ethyl acetate/hexanes to give the title compound (85 mg, 57 %). LC-MS (M++!): 452.92.
The following compounds are prepared according to example 1 by replacing the carboxylic acid in step e with commercially available starting materials.
Cyclohexanecarboxylic acid [5 -(3 -pyridin-3 -yl-5-trifluoromethyl-pyrazol- 1 -yl)-pyridin- 2-yl]-amide; LC-MS (M1+!): 415.96.
3 -Methoxy-JV-[5-(3 -pyridin-3 -yl-5 -trifluoromethyl-pyrazol- 1 -yl)-pyridin-2-yl] - benzamide; LC-MS (M++!): 439.96.
2-Phenyl-N-[5-(3-pyridin-3-yl-5-trifluorom ethyl-pyrazol-l-yl)-pyridin-2-yl]-acetamide; LC-MS (M++1): 424.34.
Tetrahydro-pyran-4-carboxylic acid [5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol- 1-yl)- pyridin-2-yl]-amide; LC-MS (M++l): 418.45.
3-Benzyloxy-Λ/-[5-(3-pyτidin-3-yl-5-trifluoromethyl-pyrazol-l -yl)-pyridin-2-yl]- benzamide; LC-MS (M++!): 516.05).
S-Phcnoxy-N-tS-CS-pyridin-S-yl-S-trifluoromcthyl-pyrazol-l-yn-pyridm^-yll- benzamide; LC-MS (M++!): 502.41.
Tetrahydro-furan-3-carboxylic acid [5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridin-2-yl]-amide; LC-MS (M++l): 404.34.
3-Hydroxy-iV-[5-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- benzamide; LC-MS (M++!): 426.40.
4-Fluoro-7V-[5-(3-pyridin-3-yl-5-trifluoromcth.yl-pyrazol-l-yl)-pyridin-2-yl]-3- trifluoromethyl-benzamide; LC-MS (M++!): 495.97.
2-Fluoro-biphenyl-4-carboxylic acid [5-(3-pyridin-3-yl-5-trifluorometh.yl-pyrazol-l -yl)- pyridm-2-yl]-amide; LC-MS (M++l): 504.26.
iy"-[5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-6-trifluoromethoxy- nicotinamide; LC-MS (M++!): 508.94.
2-Fluoro-Ar-[5-(3-pyridin-3-yl-5-1xifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- isonicotinamide; LC-MS (M++l): 428.94.
3-Cyano-4-methoxy-Λir-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- benzamide; LC-MS (M++!): 464.99.
6-Methoxy-iV-[5-(3-pyridin-3-yl-5-trifluoroineth.yl-pyrazol-l-yl)-pyridin-2-yl]- nicotinamide; LC-MS (M++!): 441.01.
Example 2: 3-Cyano-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin- 2-yl]-benzamide
A solution of 5-(3-pyridine-3-yl-5-trifluorometh.yl-pyrazol-l-yl)pyridiα-2-ylamiiie (100 mg, 0.33 mmol), prepared according to example 1, 3-cyanobenzoyl chloride (150 mg, 0.91 mmol) in pyridine (2.5 mL) is heated at reflux for 2 hours. The reaction mixture is allowed to cool to room temperature, diluted with ethyl acetate, washed with water (25 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The mixture is purified by chromatography to give the title compound (21 mg, 15 %). LC-MS (M++ 1): 435.40. The following compounds are prepared according to example 2 by replacing the acyl chloride with commercially available starting materials.
N-[5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridm-2-yl]-nicotinaiiiide; LC- MS (M++!): 411.55.
2,3-Dihydro-benzofuran-5-carboxylic acid [5-(3-pyτidin-3-yl-5-trifluoromethyl-pyrazol- l-yl)-pyridin-2-yl]-amide; LC-MS (M++!): 452.02.
N-[5 -(3 -Pyridin-3 -yl-5 -trifluoromethyl-pyrazol- 1 -yl)-pyridin-2-yl] -6-trifluoromethyl- nicotinamide; LC-MS (M++!): 479.03.
6-Phenoxy-iV-[5-(3-pyridm-3-yl-5-trifluororαethyl-pyrazol-l-yl)-pyridin-2-yl]- nicotinamide; LC-MS (M++!): 503.39.
N-[5-(3-Pyridin-3-yl-5-trifluororaethyl-pyrazol-l-yl)-pyridin-2-yl]-isonicotinamide; LC-MS (M++!): 411.04.
l-Acetyl-piperidine-4-carboxylic acid [5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-pyridin-2-yl]-arnide; LC-MS (M++l): 459.44.
N-[5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-3-trifluoromethyl- benzamide; LC-MS (M++!): 478.36.
Pyrimidine-5-carboxylic acid [5-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l -yl)- pyridin-2-yl]-atnidc; LC-MS (M++!): 412.41.
3-Cyano-iV-[5-(3-pyridin-3-yl-5-trifluorornethyl-pyrazol-l-yl)-pyridin-2-yl]-benzarnide; LC-MS (M++!): 435.40.
3-Methyl-iV"-[5-(3-pyridin-3-yl-5-trifluoromethLyl-pyrazol-l-yl)-pyridm-2-yl]- benzamide; LC-MS (M++!): 424.04.
5-Bromo-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- nicotinamide; LC-MS (M++!): 491.32.
N-[5-(3-P5^idin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-3-trifluoromethoxy- benzamide; LC-MS (M++!): 494.36.
3-Nitro-N-[5-(3-pyridin-3-yl-5-Mfluoromcthyl-pyrazol-l-yl)--pyridin-2-yl]-bcnzaπiidc; LC-MS (M++!): 455.40.
6-Morpholin-4-yl-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- nicotinamide; LC-MS (M+H-I): 496.41.
Example 3: l-(2-Methoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carboxylic acid [5- (3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide
A solution of 6-hydroxynicotinic acid (15.0 g, 107.83 mmol) in thionyl chloride (20 mL) is heated at reflux for 1 hour. The reaction mixture is allowed to cool room temperature, concentrated under vacuo, treated with ethanol (100 mL), and filtered to give desired solid. The solid is washed with ether (200 mL, 3 x), and dried to give 6- oxo-l,6-dihydro-pyridine-3-carboxylic acid ethyl ester (17.3 g, 96 %).
Step b
A solution of ό-oxo-l^-dihydro-pyridine-S-carboxylic acid ethyl ester (1 g, 5.98 mmol), 2-bromocthyl methyl ether (0.85 mL; 9.00 mmol), potassium hydroxide (1.17 g; 20.85 mmol) in ethanol (150 mL) is heated at reflux for 16 hours. The reaction is allowed to cool to room temperature, and concentrated under vacuo. The crude product is diluted with ethyl acetate, washed with water (50 mL, 3 x), dried over sodium sulfate and concentrated under vacuo to give l-(2-methoxy-ethyl)-6-oxo-l,6-dihydro-pyridine- 3-carboxylic acid ethyl ester (370 mg, 27 %).
Stet
A solution of l-(2-methoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carboxylic acid ethyl ester (370 mg, 1.64 mmol), lithium hydroxide (140 mg, 3.34 mmol) in dioxane (3 mL) and water (3 mL) is stirred at room temperature for 1 hour. The dioxane is removed under vacuo, the aqueous layer is washed with water (50 mL, 2 x), and then acidified to pH 5 using 1 M aqueous HCl and extracted with ethyl acetate (50 mL, 3 x). The ethyl acetate layers are combined, dried over sodium sulfate and concentrated under vacuo to give l-(2-methoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carboxylic acid (280 mg, 86 %).
Steυ d A solution of l-(2-methoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carboxylic acid (280 mg, 1.42 mmol) in thionyl chloride (5.0 mL) is heated at reflux for 1 hour and then concentrated under vacuo. Pyridine (2.5 mL) is added to the preformed acid chloride followed by the addition of a solution of 5-(3-pyridine-3-yl-5-trifluoromethyl-pyrazol-l- yl)pyridin-2-ylamine (220 mg, 0.72 mmol), prepared according to example 1, in pyridine (2.5 mL). The reaction mixture is stirred for 1 hour, diluted with ethyl acetate, washed with water (50 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The mixture is purified by chromatography to give the title compound (259 mg, 74 %). LC-MS (M+H-I): 485.04.
The following compounds are prepared according to example 3 by replacing the alkyl halide in step b with commercially available starting materials.
6-Oxo-l ,6-dihydro-pyridme-3-carboxylic acid [5-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++!): 427.39.
1 -Methyl -6-oxo-l ,6-dihydro-pyridine-3-carboxylic acid [5-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++!): 440.97.
l-Ethyl-ό-oxo-ljό-dihydro-pyridine-S-carboxylic acid [5-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++!): 455.38.
6-Oxo-l -propyl-1 ,6-dihydro-pyridine-3-carboxylic acid [5-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++!): 469.35.
1 -(2-Ethoxy-ethyl)-6-oxo-l jβ-dihydro-pyridine-S-carboxylic acid [5-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++l): 499.02.
l-(2-Morpholin-4-yl-cthyl)-6-oxo-l,6-diliydro-pyridinc-3-carboxylic acid [5-(3-pyridin- 3-yl-5-trifluoroniethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++l): 540.84.
6-Oxo-l-(2-ρyrrolidin-l-yl-ethyl)-l,6-diliydro-pyridine-3-carboxylic acid [5-(3-pyridin- 3-yl-5-trifluorometliyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++l): 524.89.
1 -Benzyl-6-oxo-l ,6-dihydro-pyridrne-3-carboxylic acid [5-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++l): 517.29.
β-Oxo-l-pyridin-S-ylmethyl-ljό-dihydro-pyridine-S-carboxylic acid [5-(3-pyridin-3-yl- 5-trifluoroniethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++l): 518.35.
l-(2-Hydroxy-cthyl)-6-oxo-l .β-dihydro-pyridinc-S-carboxylic acid [5-(3-pyridin-3-yl- 5-trifl.uoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++l): 471.27.
6-Oxo-l -pyridin-2-ylmethyl-l ,6-dihydro-pyridine-3-carboxylic acid [5-(3-pyridin-3-yl- 5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++l): 517.90.
6-Oxo-l-pyridin-4-ylmethyl-l,6-dihydro-pyridine-3-carboxylic acid [5-(3-pyridin-3-yl- 5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++!): 517.92. Example 4: l-(2-Morpholin-4-yl-2-oxo-ethyl)-6-oxo-l,6-dihydro-pyridine-3- carboxylic acid [5-(3-pyridin-3-yI-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl] - amide
Step a
A solution of 6-hydroxynicotinic acid (17.0 g, 122.2 mmol) in thionyl chloride (20 mL) is heated at reflux for 1 hour. The reaction mixture is allowed to cool to room temperature, concentrated under vacuo, treated with benzyl alcohol (25 mL), triturated with ethyl acetate, filtered and dried to give 6-oxo-l,6-dihydro-pyridine-3-carboxylic acid benzyl ester (17.9 g, 64 %).
Steυ b
Sodium hydride (700 mg of a 60% dispersion in mineral oil; 17.50 mmol) is added slowly to a stirred solution of 6-oxo-l,6-dihydro-pyridine-3-carboxylic acid benzyl ester (2 g, 8.7 mmol) in tctrahydrofuran (25 mL) at 0 0C. The reaction mixture is allowed to warm to room temperature, stirred for a further 30 min, followed by the addition of ethyl bromoacetate (1.45 mL, 13.08 mmol) and then stirred for an additional 4 hours. The reaction mixture is diluted with ethyl acetate, washed with water (100 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The mixture is purified by chromatography to give l-ethoxycarbonylmethyl-ό-oxo-ljό-dihydro-pyridine-S- carboxylic acid benzyl ester (1.33 g, 48 %).
Ste A solution of 1 -ethoxycarbonylmethyl-6-oxo-l ,6-dihydro-pyridine-3-carboxylic acid benzyl ester (1.33 g, 4.22 mmol), Palladium on carbon (260 mg, 10 % wt (dry basis) on activated carbon, wet degussa type) in ethanol (25 mL) is stirred under an hydrogen atmosphere at room temperature for 4 hours. The reaction mixture is filtered through Celite to give 1 -ethoxycarbonylmethyl-6-oxo-l, 6-dihydro-pyridine-3-carboxylic acid (900 mg, 95 %).
Stcp d
A solution of 1 -ethoxycarbonylmethyl-6-oxo-l ,6-dihydro-pyridine-3-carboxylic acid (900 mg, 4.0 mmol) in oxalyl chloride (5.0 mL) and dimethylformamide (1 drop) is stirred at room temperature for 1 hour and then concentrated under vacuo. Pyridine (5 mL) is then added to the preformed acid chloride followed by the addition of a solution of 5-(3-pyridine-3-yl-5-trifluoromethyl-pyrazol-l-yl)pyridin-2-ylamine (610 mg; 2.0 mmol), prepared according to example 1, in pyridine (5 mL). The reaction mixture is stirred for 1 hour, diluted with ethyl acetate, washed with water (50 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The mixture is purified by
chromatography to give (2-oxo-5-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridin-2-ylcarbamoyl]-2H-pyridin-l-yl} -acetic acid ethyl ester (494 mg, 48 %). LC- MS (M++l): 513.15.
Step e and f
A solution of {2-oxo-5-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2- ylcarbamoyl]-2H-pyridm-l~yl} -acetic acid ethyl ester (40 mg, 0.08 mmol), lithium hydroxide monohydrate (10 mg; 0.24 mmol) in dioxane (2.5 mL) and water (2.5 mL) is stirred at room temperature for 1 hour. The reaction mixture is acidified to pH 6 using 4 M HCl in dioxane and then concentrated under vacuo to give {2-oxo-5-[5-(3-pyridin-3- yl-5-trifl.uoromethyl-pyrazol- 1 -yl)-pyridin-2-ylcarbamoyl]-2H-pyridin- 1 -yl} -acetic acid. To the above acid is added morpholine (35 μL; 0.401 mmol), 1 -hydroxybenzotriazole (55 mg; 0.39 mmol) and dimethylformamide (5.0 mL) and this mixture is stirrred for 15 min before the addition of l-[3-(dimethylamino)propyl]-3-ethylcarbodiimide
hydrochloride (75 mg, 0.39 mmol). The reaction mixture is stirred for 16 hours at room temperature and then concentrated under vacuo. The reaction mixture is diluted with ethyl acetate, washed with water (10 mL, 3x), dried over sodium sulfate and
concentrated under vacuo. The mixture is purified by chromatography to give the title compound (14 mg, 10 %). LC-MS (M++l): 554.28.
The following compounds are prepared according to example 4 by replacing the amine in step f with commercially available starting materials.
l-Dimethylcarbamoylmethyl-β-oxo-ljό-dihydro-pyridine-S-carboxylic acid [5 -(3- pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++l): 512.03 (MH-H+).
l-Diethylcarbamoylmethyl-ό-oxo-ljό-dihydro-pyridine-S-carboxylic acid [5-(3-pyridin- 3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++l): 540.05.
Example 5: 6-Oxo-l-/>-tolyl-l,6-dihydro-pyridine-3-carboxylic acid [5-(3-pyridin-3- yI-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide
A mixture of ό-oxo-ljό-dihydro-pyridine-S-carboxylic acid ethyl ester (335 mg, 2.00 mmol), prepared according to example 3, 4-iodo-toluene (525 mg, 2.41 mmol), Copper (I) iodide (80 mg, 0.42 mmol), iVIN'-dimethylethylenediamine (90 μL, 0.85 mmol), potassium phosphate (850 mg, 4.00 mmol) in dioxane (3.0 mL) is heated under a nitrogen atmosphere at 110 °C in a sealed tube for 16 hours. The reaction mixture is allowed to cool to room temperature, diluted with ethyl acetate, washed with water (50 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The mixture is
purified by chromatography to give 6-oxo-l-/7-tolyl-l,6-dihydro-pyridme-3-carboxylic acid ethyl ester (85 mg; 16.5 %).
Step b & c
A solution of ό-oxo-l-j^-tolyl-ljό-dihydro-pyridine-S-carboxylic acid ethyl ester (85 mg, 0.33 mmoi), lithium hydroxide (30 mg, 0.72 mmol) in dioxane (2.5 mL) and water (2.5 mL) is stirred at room temperature for 1 hour. The reaction mixture is acidified to pH 5 using 4 M HCl in dioxane, and concentrated under vacuo to give 6-oxo-l-/?-tolyl-l,6- dihydro-pyridine-3-carboxylic acid.
A solution of the above residue in thionyl chloride (5.0 mL) is heated at reflux for 1 hour and then concentrated under vacuo. Pyridine (2.5 mL) is then added to the preformed acid chloride followed by the addition of a solution of 5-(3-pyridine-3-yl-5- trifluoromethyl-pyrazol-l-yl)pyridin-2-ylamme (70 mg, 0.23 mmol), prepared according to example 1, in pyridine (2.5 mL). The reaction mixture is stirred for 1 hour, diluted with ethyl acetate, washed with water (25 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The mixture is purified by chromatography to give the title compound (19 mg, 16 %). LC-MS (M++l): 517.01.
Example 6: 2-Dimethylamino-ΛL[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridin-2-yl] -isonicotinamide
Step a
A solution of 2-fluoronicotinic acid (200 mg, 1.42 mmol) in thionyl chloride (5.0 mL) is heated at reflux for 1 hour and then concentrated under vacuo. Pyridine (2.5 mL) is then added to the preformed acid chloride followed by a solution of 5-(3-pyridine-3-yl- 5-trifiuoromethyl-pyrazol-l-yl)pyridin-2-ylarnine (200 mg, 0.66 mmol) ,prepared according to example 1, in pyridine (2.5 mL). The reaction mixture is stirred for 1 hour, diluted with ethyl acetate, washed with water (25 mL, 3 x), dried over sodium sulfate and then concentrated under vacuo. The mixture is purified by chromatography to give 2-fluoro-N-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- isonicotinamide (100 mg, 41 %). LC-MS (M++l): 428.94.
Step b
A solution of 2-fiuoro-N-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2- yl]-isonicotinamide (45 mg, 0.11 mmol), dimethylamine hydrochloride (20 mg, 0.25 mmol), triethylamine (35 μL, 0.25 mmol) in dimethylformamide (2.0 mL) is heated at 100 0C for 48 hours. The reaction mixture is concentrated under vacuo and the crude product is purified by chromatography to give the title compound. LC-MS (M++l): 453.97. The following compounds are prepared according to example 6 by replacing the amine in step b with commercially available starting materials.
2-Morpholin-4-yl-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- isonicotinamide; LC-MS (M++l): 496.98.
2-Diethylamino-7V-[5-(3-pyridm-3-yl-5-trifluoroinethyl-pyrazol-l-yl)-pyridin--2-yl]- isonicotinamide; LC-MS (M++l): 482.05.
Example 7: 1-MethyI-2-oxo-l,2-dihydro-pyridine-4-carboxyIic acid [5-(3-pyridin- 3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide
Ste
A solution of methyl isonicotinate-iV-oxide (3 g, 19.59 nxmol) in acetic anhydride (30 mJL) is heated at reflux for 16 hours. The reaction mixture is allowed to cool to room temperature, concentrated under vacuo, diluted with methanol and with celite added, the mixture is heated at reflux for 30 min. The reaction mixture is filtered, reduced under vacuo and triturated with methanol to give 2-hydroxy-isonicotinic acid methyl ester (400 mg, 13 %).
Sodium hydride (80 mg of a 60 % dispersion in mineral oil, 3.3 mmol) is added to a solution of 2-hydroxy-isonicotinic acid methyl ester (200 mg, 1.31 mmol) in
dimethylformamide (2.5 mL) at room temperature and stirred for 30 min. Methyl iodide (175 mg, 2.81 mmol) is added to the reaction mixture and stirred for 16 hours at room temperature. The reaction mixture is diluted with ethyl acetate, washed with water (25 mL, 3 x), dried over sodium sulfate and concentrated under vacuo to give 1 - methyl-2-oxo-l,2-dihydro-pyridine-4-carboxylic acid methyl ester (100 mg, 46 %).
Step c & d
A solution of l-methyl-2-oxo-l,2-dihydxo-pyridine-4-cafboxylic acid methyl ester (100 mg, 0.60 mmol), lithium hydroxide monohydrate (50 mg, 1.19 mmol) in dioxane (2.5 rriL) and water (2.5 mL) is stirred at room temperature for 2 hours. The reaction mixture is acidified to pH 6 using 4 M HCl in dioxane and then concentrated under vacuo to give l-methyl-2-oxo-l,2-dihydro-pyridine-4-carboxy lie acid.
The above acid is heated at reflux in thionyl chloride (5.0 mL) for 1 hour and then concentrated under vacuo. Pyridine (2.5 mL) is then added to the preformed acid chloride followed by a solution of 5-(3-pyridine-3-yl-5-trifluoromethyl-pyrazol-l- yl)pyridin-2-ylamine (90 mg; 0.30 mmol), prepared according to example 1, in pyridine (2.5 mL). The reaction mixture is stirred for 1 hour, diluted with ethyl acetate, washed with water (25 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The mixture is purified by chromatography to give the title compound (18 mg, 14 %). LC- MS (M+H-I): 441.01. The following compounds are prepared according to example 7 by replacing the alkyl halide in step b with commercially available starting materials.
1 -Ethyl-2-oxo-l ,2-dihydro-pyridine-4-carboxylic acid [5-(3-pyridin-3-yl-5- trifluoromethyl-ρyrazol-l-yl)-ρyridin-2-yl]-amide; LC-MS (M++l): 454.97.
l-(2-Ethoxy-ethyl)-2-oxo-l ,2-dihydro-pyridine-4-carboxylic acid [5-(3-pyridin-3-yl-5- trifluoroniethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++l): 498.97 (M+H+).
Example 8: N- [5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl] -3- pyrimidin-5-yl-benzamide
Step a
A solution of 5-(3-pyridme-3-yl-5-trifluoromethyl-pyrazol-l-yl)pyridin-2-ylamine (140 mg, 0.46 mrαol), prepared according to example I5 3-bromobenzoyl chloride (150 μL, 1.12 mmol) in pyridine (5.0 mL) is heated at reflux for 2 hours. The reaction mixture is allowed to cool to room temperature, concentrated under vacuo, and the mixture is purified by chromatography to give 3-bromo-N-[5-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridin-2-yl]-benzamide (116 mg, 52 %). LC-MS (M++l): 490.27.
A solution of 3-bromo-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2- yl]-benzamide (100 mg, 0.21 mmol), 5-pyrimidylboronic acid (50 mg, 0.40 mmol), tctrakis(triphcnylphosphinc)palladium(0) (24 mg; 0.02 mmol), cesium carbonate (66
mg, 0.20 mmol) in dimethylformamide (4 mL) is heated at 100 °C under microwave conditions for 10 min. The reaction mixture is diluted with ethyl acetate, washed with water (25 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The crude mixture is purified by chromatography to give the title compound (12 mg, 12 %). LC- MS (M++l): 489.88.
The following compound is prepared according to example 8 by replacing the alkyl halide in step b with commercially available starting material.
3-Pyridin-3-yl-7V-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- benzamide; LC-MS (M++!): 487.38.
Example 9: l-(2,4-Dichloro-benzyl)-3-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol- l-yl)-pyridin-2-yl] -urea
A solution of 5-(3-pyridine-3-yl-5-trifluoromethyl-pyrazol-l-yl)pyridiα-2-ylamine (50 mg, 0.16 mmol), prepared according to example 1, 2,4-dichlorobenzylisocyanate (25 μL, 0.17 mmol) in acetonitrile (2.5 mL) is stirred at room temperature for 16 hours. The reaction mixture is filtered to give a crude solid product which is purified by
chromatography to give the title compound (33 mg, 40 %. LC-MS (M++l): 507.27.
The following compounds are prepared according to example 9 by replacing the isocyanate with commercially available starting materials.
l-Benzyl-3-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-urea; LC- MS (M++!): 439.01.
l-Phenyl-3-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-urea; LC- MS (M++l): 424.95.
l-(2-Ethoxy-benzyl)-3-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- urea; LC-MS (M++l): 482.98.
Example 10: Cyclohexanecarboxylic acid [5-(5-pyridin-3-yl-3-trifluoromethyl- pyrazol-l-yl)-pyridin-2-yl]-amide
Step a
A solution of 2-amino-5-nitropyridine (1.5 g, 10.78 mmol), triethylamine (1.6 mL, 11.43 mmol), cyclohexanecarbonyl chloride (1.44 mL, 10.76 mmol) in tetrahydrofuran (25 mL) is stirred at room temperature for 2 hours. The reaction mixture is concentrated under vacuo, diluted with ethyl acetate, washed with 1 M aqueous HCl (75 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The crude product is purified by chromatography to give cyclohexanecarboxylic acid (5-nitro-pyridin-2-yl)-amide (Ig, 37 %).
A solution of cyclohexanecarboxylic acid (5-nitro-pyridin-2-yl)-amide (1 g, 4.01 mmol), palladium on carbon (150 mg, 10% wt (dry basis) on activated carbon, wet degussa type) in methanol (25 mL) is stirred under an hydrogen atmosphere at room temperature for 16 hours. The reaction mixture is filtered to give
cyclohexanecarboxylic acid (5-amino-pyridin-2-yl)-amide (0.9 g, 99 %).
Ste
Sodium nitrite (95 mg, 1.0 mmol) is added slowly to a solution of
cyclohexanecarboxylic acid (5-amino-pyridin-2-yl)-amide (200 mg, 0.912 mmol) in 6 M aqueous HCl (5 mL) at 0 0C and is stirred for 45 min. Tin(II)chloride (412 mg. 1.826 mmol) is added and the reaction mixture is allowed to warm to room temperature slowly while stirring for 16 hours. The reaction mixture is basified with 40 % aqueous potassium hydroxide, extracted with ethyl acetate (25 mL, 3 x), and the organic layers are combined, dried over sodium sulfate and concentrated under vacuo to give cyclohexanecarboxylic acid (5-hydrazino-pyridin-2-yl)-amide (150 mg, 70 %).
Step d A solution of 4,4.4,-trifluoro-l-pyridin-3-yl-butane-l,3-dione (120 mg, 0.55 mmol), prepared according to example 1 , cyclohexanecarboxylic acid (5-hydrazino-pyridin-2- yl)-amide (150 mg, 0.64 mmol), acetic acid (1 mL) in ethanol (10 mL) is heated at reflux for 2 hours, allowed to cool to room temperature, and concentrated under vacuo.
The mixture is purified by chromatography to give the title compound (60mg, 26 %). LC-MS (M++!): 432.04.
The following compounds are prepared according to example 10 by replacing the acyl chloride in step a with commercially available starting materials.
N-[5-(5-Pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-acetamide; LC-MS (M+H-I): 348.41.
Heptanoic acid [5 -(5 -pyridin-3 -y 1-3 -trifluoromethyl-pyrazol- 1 -y l)-pyridin-2-yl] -amide LC-MS (M++!): 418.41.
N-[5-(5-Pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-benzamide; LC-MS (M+H-I): 409.90.
N-[5-(5-Pyridin-3-yl-3-Mfluororaethyl-pyrazol-l-yl)-pyridin-2-yl]-nicotinamide; LC- MS (M++!): 411.35.
3-Mcthoxy-JV-[5-(5-pyridin-3-yl-3-trifluorom.cthyl-pyrazol-l-yl)-pyridIn-2-yl]- benzamide; LC-MS (M++!): 440.33.
Example 11: iV-Pyridin-4-yl-4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- benzamide
A solution of 45454,-trifluoro-l-pyridin-3-yl-butane-l,3-dione (5.0 g, 23.03 mmol), prepared according to example 1, 4-hydrazinobenzoic acid (3.5 g, 23.00 mmol) is heated at reflux in ethanol (250 mL) for 16 hours. The reaction mixture is allowed to cool to room temperature, and the solid is filtered to give 4-(5-pyridin-3-yl-3- trifluoromcthyl-pyrazol-l-yl)-bcnzoic acid (2.44 g, 30 %). The mother liquor is concentrated under vacuo, then triturated with ethyl acetate and filtered to give 4-(5- phenyl-3-trifluoromethyl-pyrazol-l-yl)-benzoic acid (1.56 g, 20 %).
Step b
A solution of 4-(5-hydroxy-3 -phenyl-5-trifluoromethyl-4,5-dihy dro-pyrazol- 1 -y I)- benzoic acid (2.0 g, 5.69 mmol) in acetic acid (25 mL) is heated at reflux for 16 hours. The reaction mixture is concentrated under vacuo, triturated with ethyl acetate and filtered to give 4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzoic acid (0.93 g, 49 %).
Ste
4-Aminopyridine (35 mg, 0.37 mmol) is added to a stirred solution of 4-(3-pyridin-3-yl- 5-trifluoromethyl-pyrazol-l-yl)-benzoic acid (100 mg, 0.3 mmol), l-[3-(dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride (150 mg, 0.77 mmol), 1rieth.ylam.ine (0.1 mL, 0.71 mmol) in dichloromcthanc (5.0 mL) at room temperature and the reaction is stirred for 16 hours. The reaction mixture is diluted with dichloromethane, washed with saturated aqueous sodium bicarbonate solution (25 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The mixture is purified by chromatography to give the title compound (43 mg, 35 %). LC-MS (M++l): 409.98.
The following compounds are prepared according to example 11 by replacing the amine in step c with commercially available starting materials.
N-Methyl-N-pyridin--4-yl-4-(3 -pyridin-3 -yl-5-trifluorometh.yl-pyrazol- 1 -yl)-benzamide; LC-MS (M++!): 424.40.
iV-Hexyl-4-(3 -pyridin-3 -yl-5-trifluorometliyl-pyrazol- 1 -yl)-benzamide; LC-MS (M++ 1 ) : 417.46.
Λ^-(3,3-Diphenyl-propyl)-4-(3-pyτidin-3-yl-5-trifluoroτnethyl-pyτazol-l -yl)-benzamide; LC-MS (M++!): 527.45.
iV-Benzyl-4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzamide; LC-MS (M++!): 423.45.
4-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-jV-(4-trifluoromethoxy-phenyl)- benzamide; LC-MS (M++!): 493.36 (M+H4).
N-Cyclohexyl-4-(3-pyriditi-3-yl-5-trifluoromethyl-pyrazol-l-yl)-beiizarQide; LC-MS (M++l): 415.47.
iV"-(4-Ainino-cyclohexyl)-4-(3-pyridin-3-yl-5-trifluoronietliyl-pyrazol-l-yl)-benzarnide; LC-MS (M++!): 431.39.
N-Phcncthyl-4-(3-pyridm-3-yl-5-trifluoromcthyl-pyrazol-l-yl)-bcnzainidc; LC-MS (M++!): 437.69.
N-(3-Phenyl-propyl)-4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzamide; LC- MS (M++!): 451.52.
4-(3 -Pyridin-3 -yl-S-trifluoromcthyl-pyrazol- 1 ^
LC-MS (M++!): 417.41.
iV-(2-Dimethylamino-ethyl)-4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- benzamide; LC-MS (M++!): 404.34.
Λ^(2-Methoxy-ethyl)-4-(3-pyridin-3-yl--5-trifluoromethyl-pyrazol-l-yl)-benzamide; LC- MS (M++!): 391.37.
N-Diinethylarninomethyl-4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzainide; LC-MS (M++!): 389.38.
N-(5-Dimethylamino-pentyl)-4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- benzamide; LC-MS (M++!): 445.98.
iV-(6-Dimethylamino-hexyl)-4-(3 -pyridin-3 -yl-5-trifluoromethyl-pyrazol- 1 -yl)- bcnzamidc; LC-MS (M++!): 459.99.
4-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l -yl)-iV-(4-pyrrolidin- 1 -yl-butyl)- benzamide; LC-MS (M++!): 457.94.
iV-Cycloliexylmeth.yl-4-(3-pyridin-3-yl-5-trifluorometliyl-pyrazol-l-yl)-benzamide; LC- MS (M++!): 429.40.
N-(5-Hydroxy-pentyl)-4-(3-pyridin-3-yl-5-trifluorornethyl-pyrazol-l-yl)-benzainide; LC-MS (M++!): 419.38.
N"-(4-Hydroxy-cyclohexyl)-4-(3-pyridm-3-yl-5-trifluorometliyl-pyrazol-l-yl)- benzamide; LC-MS (M++!): 431.39.
6-[4-(3-Pyridin-3-yl-5-trifliioromethyl-pyrazol-l-yl)-benzoylam.mo]-hexanoic acid methyl ester; LC-MS (M++!): 461.43.
iV-Adamantan-2-yl-4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzatnide; LC- MS (M++l): 466.98.
6-[4-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l -yl)-benzoylamino]-hexan.oic acid; LC- MS (M++l): 446.94.
4-(3-Pyridin-3-yl-5-triflυorornethyl-p5π'azol-l-yl)-N-(tetrah.ydro-pyran-4-ylmethyl)- benzamide; LC-MS (M++!): 430.94.
N-[3-(4-Hydroxy-phenyl)-propyl]-4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- benzamide; LC-MS (M+l): 466.94.
N-(3-Ethoxy-propyl)-4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzamide; LC- MS (M++!): 419.40.
yV-Adarnantan- 1 -ylmethyl-4-(3-pyridin-3-yl-5-trifluorornethyl-pyrazol- 1 -yl)-benzamide; LC-MS (M++!): 481.42.
N-(4-Methoxy-butyl)-4-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzamide; LC- MS (M++l): 420.40.
N-(2-Propoxy-ethyl)-4-(3-pyridin-3-yl-5-trifliιoromethyl-pyrazol-l-yl)-ben2;amide; LC- MS (M++!): 418.98.
4-[4-(3-Pyridin-3-yl-5-trifluorometh.yl-pyrazol-l -yl)-benzoylamino]-butyric acid methyl ester; LC-MS (M1+!): 432.97.
5-[4-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzoylamino]-pentanoic acid methyl ester; LC-MS (M++!): 446.97.
Λr-(3-Methylcarbamoyl-propyl)-4-(3-pyridin-3-yl-5-trifluoroτnethy]-pyrazol-l-yl)- benzamide; LC-MS (M++!): 431.97.
N-(4-Methylcarbamoyl-butyl)-4-(3-pyridin-3 -yl-5-trifluoromethyl-pyrazol- 1 -yl)- benzamide; LC-MS (M++!): 446.00.
N-Bicyclo[2.2.1]hept-5-en-2-ylmethyl-4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-benzamide; LC-MS (M++!): 439.36.
4-Aminopyridine (28 mg, 0.30 mmol) is added to a stirred solution of 4-(5-Pyridin-3-yl- 3-trifluoromethyl-pyrazol-l-yl)-benzoic acid (80 mg, 0.24 mmol), prepared according to example 11, l-[3-(dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride (116 mg, 0.60 mmol), dimethylaminopyridine (1 mg) in dichloromethane (2.5 mL) at room temperature and the reaction is stirred for 16 hours. The reaction mixture is diluted with dichloromethane, washed with saturated aqueous sodium bicarbonate solution (25 mL, 3. x), dried over sodium sulfate and concentrated under vacuo. The mixture is purified by chromatography to give the title compound (24 mg, 24 %). LC-MS (M++l): 41,0.43.
The following compounds are prepared according to example 12 by replacing the amine with commercially available starting materials.
N-Methyl-iV'-pyridm-4-yl-4-(5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-benzamide; LC-MS (M++!): 424.40.
Λ^-Hexyl-4-(5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-benzamide; LC-MS (M++l): 417.46.
N-(3,3-Diphenyl-propyl)-4-(5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-benzarnid.e; LC-MS (M++!): 527.47.
iV-Benzyl-4-(5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-benzamide; LC-MS (M++l): 423.43.
4-(5-Pyridin-3-yl-3-triflυorornethyl-pyrazol-l-yl)-iV-(4-triflυoromethoxy-plienyl)- benzamide.; LC-MS (M++!): 493.38.
N-Cyclohexyl-4-(5-pyridin-3-yl-3-trifluoroinethyl-pyrazol-l-yl)-benzarnide; LC-MS (M++l): 415.46.
N-Phenethyl-4-(5-pyridin-3-yl-3-trifluoromethyl-pyrazol- 1 -yl)-benzamide; LC-MS (M++l): 436.95.
JV-(3 -Phenyl-propyl)-4-(5-pyridin-3 -yl-3 -trifluoromethyl-pyrazol- 1 -yl)-benzamide; LC- MS (M++!): 451.55.
4-(5-Pyridin-3-yl-3-trifluorom6thyl-pyra2θl-l-yl)-iV-' (tetrahydro-pyran-4-yl)-ben2;amide LC-MS (M++!): 417.41.
Example 13: iV-[4-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzyl]- nicotinamide
Ster
A solution, of 4-cyanophenylhydrazine (4.2 g, 24.9 mmol), acetic acid (3.0 mL) in ethanol (25 mL) is added to a stirred solution of 4,4,4,-trifluoro-1-pyridin-3-yl-butane- 1,3-dione (5.4 g, 24.9 mmol), prepared according to example 1, in ethanol (25 mL). The reaction mixture is heated at reflux for 16 hours, allowed to cool to room temperature, and the solid is filtered to give 4-(5-hydroxy-3-pyridin-3-yl~5- trifluorom.ethyl-4,5-dihydro-pyrazol-l-yl)-benzonitrile (1.5 g, 18 % ). The mother liquor is concentrated under vacuo, then triturated with ethyl acetate and filtered to give 4-(5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-benzonitrile (5.48 g, 70 %).
A solution of 4-(5-hydroxy-3-pyridin-3-yl-5-"trifluoromethyl-4,5-dihydro-pyrazol-l-yl)- benzonitrile (620 mg, 1.87 mmol) in acetic acid (25 mL) is heated at reflux for 16 hours. The reaction mixture is concentrated under vacuo, diluted with ethyl acetate, washed with water (3 x), dried over sodium sulfate and concentrated under vacuo to give 4-(3- pyridin-S-yl-S-trifluoronicthyl-pyrazol-l-y^-bcnzonitrilc (356 mg, 60 %).
Ster
Lithium aluminum hydride (130 mg, 3.42 mmol) is added to a solution of 4-(3-pyridin- 3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzonitrile (356 mg; 1.13 mmol) in ether (5 mL) at 0 0C and is allowed to stir for 4 hours. The reaction mixture is quenched by the dropwise addition of water (130 uL), then 15 % aqueous sodium hydroxide solution (130 μL) and water (390 μL), and is then stirred at room temperature for 15 min. The reaction mixture is filtered through celite, dried over sodium sulfate, and concentrated under vacuo to give 4-(3-pyridin-3-yl-5-trifiuoromethyl-pyrazol-l-yl)-benzylamine (250 mg, 70 %).
A solution of 4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzylamine (50 mg, 0.16 mmol), nicotinoyl chloride hydrochloride (50 mg, 0.35 mmol), triethylamine (100 μL, 0.72 mmol) in dichloromcthanc (2.5 mL) is stirred at room temperature for 4 hours. The reaction mixture is diluted with ethyl acetate, washed with water (25 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The mixture is purified by chromatography to give the title compound (15 mg, 23 %). LC-MS (M++!): 423.35.
The following compounds are prepared according to example 13 by replacing the acyl chloride in step d with commercially available starting materials.
N-[5-(3-Pyridin-3-yl-5-Wfluoromethyl-pyrazol-l-yl)-pyridin-2-ylinethyl]-benzamide; LC-MS (M++!): 423.36.
Heptanoic acid [5 -(3 -pyridin-3 -y 1-5 -trifluoromethyl-pyrazol- 1 -y l)-pyridin-2-ylmethyl]- amide; LC-MS (M++l): 431.47.
Cyclohexanecarboxylic acid [5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin- 2-ylmethyl]-amide; LC-MS (M++!): 429.07.
2-Phenyl-N-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-ylmethyl]- acetamide; LC-MS (M++!): 437.36.
l-Ethyl-6-oxo-l ,6-dihydro-pyridine-3-carboxylic acid 4-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-benzylamide; LC-MS (M++!): 468.18.
Example 14: l-Benzyl-3-[4-(3-pyridϊn-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzyl]- urea
A solution of N-[4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-ben2yl]- nicotinamide 100 rng, 0.31 mrαol), prepared according to example 13, benzylisocyanate (45 μ.L, 0.032 mmol) in acetonitrile (2.5 mL) is stirred at room temperature for 16 hours. The reaction mixture is filtered, and concentrated under vacuo. The mixture is purified by chromatography to give the title compound (26 mg, 18 %). LC-MS (M++l): 452.02.
The following compounds are prepared according to example 14 by replacing the isocyanate with commercially available starting materials.
l-(2,4-Dichloro-benzyl)-3-[4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzyl]- urea; LC-MS (M++l): 519.96.
l-Phenyl-3-[4-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-benzyl]-urea; LC-MS (M++l): 438.17.
Lithium aluminum hydride (50 mg, 1.32 mmol) is added to a solution of 4-(5-pyridin-3- yl-3-trifluoromethyl-pyrazol-l-yl)-benzonitrile (200 mg, 0.64 mmol), prepared according to example 13 in ether (5 mL) and at 0 0C and allowed to stir for 4 hours. The reaction mixture is quenched by the dropwise addition of 1 M aqueous sodium hydroxide solution (100 μL) and then stirred for 15 min. The reaction mixture is filtered through Celite, dried over sodium sulfate and concentrated under vacuo to give 4-(5- pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-benzylamine (100 mg, 49 %).
Step b A solution of 4-(5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l -yl)-ben2ylamine (50 mg,
0.16 mrnol), benzoyl chloride (25 μL, 0.22 mmol), triethylamine (100 μL, 0.72 mmol) in dichloromethane (2.5 mL) is stirred at room temperature for 4 hours. The reaction mixture is diluted with ethyl acetate, washed with water (25 mL, 3 x), dried over sodium sulfate and concentrated under vacuo. The crude mixture is purified by chromatography to give the title compound (32 mg, 48 %). LC-MS (M++l): 423.35.
The following compound is prepared according to example 15 by replacing the acyl chloride in step b with commercially available starting materials.
Hcptanoic acid 4-(5-pyridin-3-yl-3-trifluoromcth.yl-pyrazol-l-yl)-bcnzylamidc; LC-MS (M++l): 431.43.
Example 16: 3-Methanesulfonyl-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-pyridin-2-yI] -benzamide
5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-ylamine is prepared according to example 1. To the solution of 3-mcthancsulfonyl-bcnzoic acid (98.4 mg, 0.49 mmol) in tetrahydrofuran (2 mL) at room temperature is added oxalyl chloride (0.09 mL, 0.98 mmol) and 1 drop of dimethylformamide. The reaction mixture is stirred for 1 hour, and then the solvent and excess reagent are removed under vacuum. The residue is further dried under high vacuum for 1 hour after which pyridine (1.0 mL) is added to the residue. 5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2- ylamine (75 mg, 0.25 mmol) in pyridine (1.0 mL) is added to the solution and the mixture is stirred for 1 hour at room temperature. Water (15 mL) is added and the mixture is extracted with ethyl acetate (15 mL, 3 x). The organic layers are combined, dried over sodium sulfate and concentrated under vacuum. The residue is purified by chromatography to give the title compound (108 mg, 90%). LC-MS (M++l): 487.98.
The following compounds are prepared according to example 16 by replacing the carboxylic acid with commercially available starting materials.
3-(Cyano-methyl-methyl)-N-[5-(3-pyridin-3-yl-5-trifliιoromethyl-pyrazol-l-yl)-pyridm- 2-yl]-benzamide; LC-MS (M++l): 462.99.
4-Cyano-N-[5-(3-pyridin-3-yl-5-trifluorornethyl-pyrazol-l-yl)-pyridin-2-yl]-ben2;amide; LC-MS (M++l): 435.05.
2-Methanesυ.lfonyl-Λ/-[5-(3-pyridin-3-yl-5-trifluorornethyl-pyrazol-l -yl)-pyridiri-2-yl]- benzamide; LC-MS (M++!): 487.91.
4-Methanesulfonyl-iV'-[5-(3-pyridm-3-yl-5-trifluorometb,yl-pyrazol-l-yl)-pyridin-2-yl]- benzamide; LC-MS (M++!): 488.06.
2-Cyano-iV"-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-p3^idin-2-yl]-berizamide; LC-MS (M++!): 435.04.
4-Fluoro-3-(piperidine- 1 -sulfonyl)-N-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l - yl)-ρyridin-2-yl]-benzamide; LC-MS (M++l): 575.03.
3-Isopropoxy-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- benzamide; LC-MS (M++!): 468.11.
3J5-Bis-methanesulfonyl-Λr-[5-(3-pyridin-3-yl-5-trifluoromethyl-ρyrazol-l-yl)-pyridin- 2-yl]-benzamide; LC-MS (M++l): 566.06.
3-Brorno-4-fluoro-iV"-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- bcnzamidc; LC-MS (M+): 506.32.
3-Iodo-4-methyl-iV-[5-(3-pyridin-3-yl-5-trifluoroinetliyl-pyrazol-l-yl)-pyridin-2-yl]- bcnzamidc; LC-MS (M++!): 550.01.
4-fer/-Butyl-iV-[5-(3-pyridin-3-yl-5-tri.fluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- benzamide; LC-MS (M++!): 466.16.
4-Fluoro-N-[5-(3-pyridin-3-yl-5-trifluoroniethyl-pyrazol-l-yl)-pyridin-2-yl]-benzamide; LC-MS (M++!): 428.07. /
N-[5-(3-Pyridin-3-yl-5-trifluoromethyl-pyτazol-l-yl)-pyridin-2-yl]-isophthalamic acid methyl ester; LC-MS (M4"+!): 468.09.
Example 17: Biphenyl-3,4f-dicarboxylic acid 4 '-Diethylamide 3-{[5-(3-pyridin-3-yl- 5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide}
5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridm-2-ylamine is prepared according to example 1. To the solution of 5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol- l-yl)-pyridin-2-ylamine (200 mg, 0.66 mmol) in pyridine (2.0 mL) at room temperature is added 3-bromo-benzoyl chloride (0.22 mL, 1.64 mmol) and the mixture is stirred for 1 hour. Then water (20 mL) is added and a pale yellow solid forms. The solid is filtered, washed with water, and then re-dissolved in tetrahydrofuran (20 mL). Hydrazine (0.2 mL of a 1 M solution in tetrahydrofuran) is added and the mixture is stirred for 15 min before all the solvent is removed under vacuum to give 320 mg of 3-Bromo-JV-[5-(3-
pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-benzamide with 85% purity. This solid is used in the next step without further purification.
Stcϋ b
3-Broino-iV-[5-(3-pyridin-3-yl-5-trifluoroinethyl-pyrazol-l-yl)-pyridin-2-yl]-benzarnide (100 nig 0.18 rnmol), 4-(N-methylarninocarbonyl)phenylboronic acid (63 mg 0.35 mmol), tetrakis(triphenylphosphine)palladium(0) (31 mg, 0.03 mmol) and cesium carbonate (57 mg, 0.18 mmol) are placed in a microwave reaction tube and
dimethylformamide (2 mL) is added. The mixture is microwaved at 120 0C for 2.5 hours. Water (7 mL) is added and the mixture is extracted with ethyl acetate (5 mL, 3 x). The organic layers are combined, washed with water (5 mL, 3 x) and dried over sodium sulfate to give crude product. The residue is purified by chromatography to give the title compound (47 mg, 50%). LC-MS (M++!): 543.03.
The following compounds are prepared according to example 17 by replacing the boronic acid in step b with commercially available starting materials.
4'-(Morpholine-4-carbonyl)-biphenyl-3-carboxylic acid [5-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++!): 599.08.
4'-(Pyrτolidine-l-carbonyl)-biplien.yl-3-carboxylic acid [5-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-amide LC-MS (M1"+!): 583.02.
4'-Mcthancsulfonyl-biphcnyl-3-carboxylic acid [5-(3-pyridin-3-yl-5-trifluoroincthyl- pyrazol-l-yl)-pyridin-2-yl]-amide; LC-MS (M++!): 564.03.
Example 18: iV-Methyl-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridin-2-yl]-isophthalamide
Step a
N-[5-(3-Pyridin-3-yl-54rifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-isophthalamic acid methyl ester is prepared according to example 16. iV-[5-(3-Pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-isophthalamic acid methyl ester (1.5 g, 3.2 mmol) is dissolved in dioxanc (60 mL) and lithium hydroxide monohydratc (269 mg, 6.4 mmol) in water (10 mL) is added. The mixture is stirred for 6.5 hours at room temperature. Then 1 M aqueous HCl (8.0 mL) is added and a white solid forms. Water (200 mL) is added and the mixture is extracted with ethyl acetate (200 mL, 3 x). The organic layers are combined and dried over sodium sulfate. Removal of the solvent under vacuum affords iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l -yl)-pyridin-2- yl]-isophthalamic acid (1.4 g, 98 %) which is used in the next step without further purification.
Step b
To the suspension of N-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- isophthalamic acid (800 mg,1.77 mmol) in tetrahydrofuran (25 mL) at room
temperature are added methylamine (4.4 mL of a 2 M in tetrahydrofuran, 8.8 mmol,) and l-hydroxybenzotriazole (1.15 g, 8.5 mmol). l-(3-Dimethylaminopropyl)-3- ethylcarbodiimide (1.44 g, 7.5 mmol) is then added in small portions and the reaction mixture is stirred for 1 hour. Saturated aqueous sodium bicarbonate solution (20 mL) and water (20 mL) arc added and the mixture is extracted with ethyl acetate (60 mL, 3 x). The organic layers are combined and dried over sodium sulfate to give the crude product. Purification by re-crystallization and chromatography affords the title compound (682 mg, 83 %). LC-MS (M++l): 466.99.
The following compounds are prepared according to example 18 by replacing the amine in step b with commercially available starting materials.
N-Ethyl -N'-[5 -(3 -pyri din-3 -y] -5 -tri fluorom ethyl -pyrazol - 1 -yl )-pyridin -2-yl] - isophthalamide; LC-MS (M++!): 481.08.
N,N-Dimethyl-N'-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyraκol-l-y1)-pyridm-1-yl]- isophthalamide; LC-MS (M++!): 481.11.
3-(Morpholine-4-carbonyl)-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridin-2-yl]-benzamide; LC-MS (M++!): 523.16.
iV-Isopropyl-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-ρyridin-2-yl]- isophthalamide; LC-MS (M++!): 495.16.
Λ?-Phenyl-N'-[5-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- isophthalamide; LC-MS (M++!): 529.16.
N-Benzyl-iV-[5-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- isophthalamide; LC-MS (M++!): 543.18.
N-Pyridin-4-yl-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]- isophthalamide; LC-MS (M++!): 530.15.
iV-Pyridin-3 -ylmethyl-iV- [5-(3 -pyridin-3 -yl-5-trifluoromethy 1-pyrazol- 1 -yl)-pyridin-2- yl]-isophthalamide; LC-MS (M++!): 544.16.
N-Pyridin-2-ylmethyl-Λ^-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2- yl]-isophthalamide; LC-MS (M++!): 544.16.
N-Pyridin-3-yl-NI-[5-(3-pyridin-3-yl-5-trifluoroineth.yl-pyrazol-l-yl)-pyridm-2-yl]- isophthalamide; LC-MS (M++!): 530.13.
N-Pyridin-4-ylmethyl-Λ^-[5-(3-pyridin-3-yl-5-1τifluoromethyl-pyrazol-l-yl)-pyridin-2- yl]-isophthalamide; LC-MS (MT+1): 544.16.
iV-Pyridin-2-yl-iV'-[5-(3-pyridin-3-yl-5-trifluorometh.yl-pyrazol-l-yl)-pyridin-2-yl]- isophthalamide; LC-MS (M++!): 530.13.
N-Cyclohexylmethyl-iV'-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridm-2- yl]-isophthalamide; LC-MS (M++l): 549.24.
iV-Cyclohexyl-N'-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridm-2-yl]- isophthalamide; LC-MS (M++!): 535.23.
N-Ben2yl-iV"-methyl-iV'-[5-(3-pyridm-3-yl-5-trifluorometliyl-pyrazol-l-yl)-pyridin-2-yl]- isophthalamide; LC-MS (M++!): 557.21.
N-Me1iiyl-N-pyridin-2-yl-Λ^-[5-(3-pyridin-3-yl-5-triflυoromethyl-pyrazol-l-yl)-pyridin- 2-yl]-isophthalamide; LC-MS (M++l): 544.16.
Example 19: 3-Methylsulfamoyl-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-pyridin-2-yl] -benzamide
Methylamine (1.1 mL of 2 M solution in tetrahydrofuran, 2.2 mrαol) and triethylamine (0.6 mL, 4.3 mmol) are added to dichloromethane (10 mL) at 0 0C. Then 3- chlorosulfonyl-bcnzoic acid (500 mg, 2.2 mmol) is added in small portions. The mixture is stirred for 30 minutes at 0 0C before 1 M aqueous HCl (8 mL) is added. The mixture is extracted with ethyl acetate (25 mL, 3 x). The organic layers are combined and dried over sodium sulfate. Removal of solvent under vacuum affords 3-methylsulfamoyl- benzoic acid (480 mg) with 92% purity (2.1 mmol, 95 %). This material is used in the next step without further purification.
5-(3-Pyridin-3-yl-5-trifluoromethyl-pyτazol-l -yl)-pyridin-2-ylamine is prepared according to example 1. To the solution of 3-mcthylsulfamoyl-bcnzoic acid (250 mg, 1.07 rnmol) in tetrahydrofuran (10 mL) at room temperature is added oxalyl chloride (0.19 mL5 2.14 mmol) and 0.1 mL of dimethylformamide. The reaction mixture is stirred for 1 hour, and then the solvent and excess reagent are removed under vacuum. The residue is further dried under high vacuum for 1 hour after which pyridine (2.5 mL), THF (0.5 mL) and dimemylformamide (1.0 mL) are added to the residue. 5-(3- Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-ylamine (80 mg, 0.26 mmol) in pyridine (2.5 mL) is added to the solution and the mixture is stirred for 1 hour at room temperature. Water (15 mL) is added and the mixture is extracted with ethyl acetate (15 mL, 3 x). The organic layers are combined, dried over sodium sulfate and concentrated under vacuum. The residue is purified by chromatography to give the title compound (88 mg, 67%). LC-MS (M++!): 502.94.
The following compounds are prepared according to example 19 by replacing the amine in step a with commercially available starting materials.
3-Isopropylsulfamoyl-N-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2- yl]-benzamide; LC-MS (M++l): 530.98.
3-Dimethylsulfamoyl-N-[5-(3-pyridin-3-yl-5-trifluorometh.yl-pyrazol-l-yl)-pyridin-2- yl]-benzamide; LC-MS (M++l): 516.97.
3-(Morpholine-4-sυlfonyl)-iV'-[5-(3-pyτidm-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridin-2-yl]-benzamide; LC-MS (M++l): 559.01.
3 -(Piperid ine- 1 -sυ lfonyl)-iV- [5 -(3 -pyridin-3 -yl-5-trifluoromethyl-pyrazol- 1 -yl)-pyridin- 2-yl]-benzamide; LC-MS (M++l): 557.06.
3 -Benzylsulfamoyl-TV- [5-(3 -pyridin-3 -yl-5-trifluororαethyl-pyrazol- 1 -yl)-pyridin-2-yl] - benzamide; LC-MS (Nd+-I-I): 579.18.
Example 20: 7V-Methyl-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazo]-l-yl)- pyridin-2-yl] -terephthalamide
Ste
To a solution of tcrcphthalic acid monomcthyl ester (500mg, 2.8 mmol) in toluene (2.5 mL) at room temperature are added dimethylformatni.de (10 drops) and thionyl chloride (0.41 mL, (5.6 mmol). The mixture is heated up to 92 0C for 1 hour. It is then cooled to room temperature and the solvent and excess thionyl chloride are removed under vacuum. The residue is dried for 1 hour under high vacuum and pyridine (1 mL) and dimethylformamide (1 mL) are added to dissolve the residue. Methylamine (1 .4 mL of a 2 M solution in tetrahydrofuran, 2.8 mmol) is then added to the reaction and the mixture is stirred for 45 min. After the reaction is complete, water (5 mL) is added and the mixture is extracted with ethyl acetate (5 mL, 3 x). The organic layers are combined and dried over sodium sulfate. Removal of the solvent under vacuum affords iV-Methyl- terephthalamic acid methyl ester (380 mg, 71 %) which is used in the next step without further purification.
Step b
Lithium hydroxide monohydrate (120 mg, 2.9 rnmol), dissolved in water (3 mL), is added to a solution of N-methyl-terephthalamic acid methyl ester (380 mg, 2.0 mmol) in dioxane (11 mL) at room temperature. The mixture is stirred for 16 hours, and aqueous 1 M HCl (6 mL) is added and the mixture is extracted with ethyl acetate (20 mL, 3 x). The organic layers arc combined and dried over sodium sulfate. Removal of the solvent under vacuum affords N-methyl-terephthalamic acid with 95% purity (334 mg, 90 %).
Step c
5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-ylamine is prepared according to example 1. To the solution of iV-methyl-terephthalamic acid (104 mg, 0.58 mmol) in tetrahydrofuran (5.0 mL) at room temperature is added oxalyl chloride (0.10 mL, 1.15 mmol) and 0.1 mL of dimethylformamide. The reaction mixture is stirred for 1 hour, and then the solvent and excess reagent are removed under vacuum. The residue is further dried under high vacuum for 1 hour after which pyridine (2.0 mL) and dimethylformamide (1.0 mL) are added to the residue. 5-(3-Pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-2-ylamine (75 mg, 0.25 mmol) in pyridine (2.0 mL) is added to the solution and the mixture is stirred for 1 hour at room temperature. Water (5 mL) is added and the mixture is extracted with ethyl acetate (20 mL, 3 x). The organic layers are combined, dried over sodium sulfate and concentrated under vacuum. The residue is purified by chromatography and rc-crystallization to give the title compound (21.8 mg, 19%). LC-MS (M++l): 467.13.
Example 21 : 3-(Propane-2-sulfonyl)-Λ?-[5-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridin-2-yl]-benzamide
To a solution of 3-mercaptobenzoic acid methyl ester (637 mg, 3.8 mmol) and 2-iodo- propane (0.57 mL, 5.7 mmol) in tetrahydrofuran (5.0 mL) at room temperature is added sodium hydride (303 mg of a 60 % dispersion in mineral oil, 7.6 mmol) in small portions over 5 min. The mixture is stirred for 1 hour at room temperature, and then aqueousl M HCl (15 mL) is added. The mixture is extracted with ethyl acetate (30 mL, 3 x) and the organic layers are combined and dried over sodium sulfate. Removal of the solvent under vacuum affords the crude 3-isopropylsulfanyl-benzoic acid methyl ester (798 mg, 3.8 mmol) which is used in the next step without further purification. <
To a solution of crude 3-isopropylsulfanyl-bcnzoic acid methyl ester (798 mg, 3.8 mmol) in dichloromethane at room temperature is added 3-chloroperoxybenzoic acid (2.0 g, 8.1 mmol) in small portions over 10 min. The mixture is stirred for 1 hour and aqueous saturated sodium bicarbonate solution (40 mL) is added. The aqueous phase is
then extracted with ethyl acetate (60 mL, 3 x), the organic layers are combined, and washed with aqueous saturated sodium bicarbonate solution (10 mL, 2 x) and water (10 mL). The organic layer is then dried over sodium sulfate and removal of the solvent under vacuum affords crude 3-(propane-2-sulfonyl)-benzoic acid methyl ester which is used in the next step without further purification.
Stet
Lithium hydroxide monohydrate (100 mg, 2.4 mmol), dissolved in water (2.0 mL), is added to the solution of crude 3-(propane-2-sulfonyl)-benzoic acid methyl ester (290 mg, 1.20 mmol) in dioxane (3.0 mL). The mixture is stirred for 1 hour and aqueous 1 M HCl (5 mL) is added. The aqueous phase is then extracted with ethyl acetate (20 mL, 3 x) and the organic layers are combined and dried over sodium sulfate to give crude 3- (propane-2-sulfonyl)-benzoic acid (241 mg, 1.06 mmol) which is pure enough for the next step.
Steυ d
5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-ylamine is prepared according to example 1. To the solution of 3-(propane-2-sulfonyl)-benzoic acid (240 mg, 1.05 mmol) in tetrahydrofuran (5.0 mL) at room temperature are added oxalyl chloride (0.18 mL, 2.10 mmol) and 0.2 mL of dimcthylformamidc. The reaction mixture is stirred for 1 hour, and then the solvent and excess reagent are removed under vacuum. The residue is further dried under high vacuum for 1 hour after which pyridine (2.0 mL) is added to the residue. 5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2- ylamine (75 mg, 0.25 mmol) in pyridine (2.0 mL) is added to the suspension and the mixture is stirred for 1 hour at room temperature. Water (10 mL) is added and the mixture is extracted with ethyl acetate (20 mL, 3 x). The organic layers are combined, dried over sodium sulfate and concentrated under vacuum. The residue is purified by chromatography to give the title compound (240 mg, 89%). LC-MS (M++!): 516.17.
Example 22: Cyclohexanecarboxylic acid [6-(3-pyridin-3-yI-5-trifluoromethyl- pyrazol-l-yl)-pyridin-3-yl]-amide
Step a
To a solution of ethyl trifluoroacetate (24 mL, 0.202 mol) in ether (250 mL) are added sodium mcthoxidc (10.9 g, 0.202 mol) and 3-acctylpyridinc (22 mL, 0.202 mol) at room temperature. The solution is heated at reflux for 2 hours. The reaction is cooled to room temperature and water (100 mL) is added. The resulting mixture is extracted with ether (100 mL) and the aqueous layer is collected. The aqueous solution is acidified to pH 4 with acetic acid. The precipitate is collected by filtration and dried under vacuum. The resulting product, 4,4,4-trifluoro-l-pyridin-3-yl-butane-l,3-dione (32.8 g, 75.5%), is used without further purification.
A solution of 4,4,4-trifluoro-l-pyridin-3-yl-butane-l,3-dione (651 mg, 3 mmol) and 5- nitro-2-hydrazino-pyridine (462 mg, 3 mmol) in anhydrous ethanol (15 mL) is heated in a sealed flask at 50 0C for 24 hours. The precipitate is filtered off and washed with
ether. The resulting product, 2-(5-Nitro-pyridin-2-yl)-5-pyridin-3-yl-3-trifluoromethyl- 3,4-dihydro-2H-pyrazol-3-ol (465 mg, 44%) is used without further purification.
Stet
2-(5-Nitro-pyridin-2-yl)-5-pyridin-3-yl-3-trifluoroinethyl-3,4-dihydro--2iϊ-pyrazol-3-ol (465 mg, 1.32 mrαol) is dissolved in acetic acid (3 mL) and the solution is microwaved at 2000C for 2 hours. The solution is evaporated and the resulting product, 5-Nitro-2-(3- pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridine (440 mg, 100%) is used without further purification.
5-Nitro-2-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridine (150 mg, 0.45 mmol) is dissolved in ethanol (15 mL) with gentle heating. Catalytic amounts of 10 % palladium on carbon are added and the solution is hydrogenated under balloon pressure overnight. The mixture is filtered through Celite and evaporated. The resulting product, 6-(3-Pyridin-3-yl-5-trifiuoromethyl-pyrazol-l-yl)-pyridin-3-ylamine (125 mg, 91%) is used without further purification.
Step e
6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-ylamine (20 mg, 0.065 mmol) is dissolved in tetrahydrofuran (2 mL) and TV^N-diisopropylethylamine (35 μL, 0.2 mmol) and cyclohexanecarbonyl chloride (14 μL, 0.1 mmol) is added successively. The solution is stirred for 30 min after which it is diluted with saturated aqueous ammonium chloride solution. The aqueous phase is extracted with dichloromethane and the combined organic phases are dried over magnesium sulfate. The solvent is evaporated and the residue is purified by chromatography to afford the title compound (8 mg, 30 %). LC-MS (M++l): 416.40.
The following compounds are prepared according to example 22 by replacing the acyl chloride in step e with commercially available starting materials.
Heptanoic acid [6-(3-pyridin-3-yl-5-trifluoroniethyl-pyrazol-l-yl)-pyridin-3-yl]-amide; LC-MS (M++!): 418.39.
iV-[6-(3-Pyridm-3-yl-5-Mfluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-4-trifluoromethoxy- benzamide; LC-MS (M++!): 494.29.
2-Phenyl-Λr-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-acetamide; LC-MS (M++!): 424.36.
3-Phenyl-iV"-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridm-3-yl]- propionamide; LC-MS (M++!): 438.39.
jV-[6-(3 -Pyridin-3 -yl-5-trifluoromethy 1-pyrazol- 1 -yl)-pyridin-3 -yl] -isonicotinamide; LC-MS (M++l): 41 1.34.
4-Chloro-N-[6-(3-pyridm-3-yl-5-trifluoroinethyl-pyrazol-l-yl)-pyridin-3-yl]-beiizarnide; LC-MS (M++!): 444.30.
iV-[6-(3 -Pyridin-3 -yl-5-trifluoromethyl-pyrazol- 1 -y l)-pyridin-3 -yl] -benzamide; LC-MS (M+H-I): 410.33.
N-[6-(3-P5T-idin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-nicotmaiiiide; LC- MS (M++!): 411.35.
Pyridine-2-carboxylic acid [6-(3 -pyridin-3 -yl-5 -trifluoromethyl-pyrazol- 1 -yl)-pyridin-3 - yl]-amide; LC-MS (M++1 ): 41 1.34.
2-Chloro-N-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-benzamide; LC-MS (M++1): 444.28.
3-Chloro-N-[6-(3-pyridin-S-yl-S-trifluoromethyl-pyrazol-l-yO-pyridin-S-ylJ-benzamide; LC-MS (M++!): 444.29.
3-Cyano-iV-[6-(3-pyridin-3-yl-5-trifluoroinethyl-pyrazol-l-yl)-pyridin-3-yl]-benzamide; LC-MS (M++!): 435.31.
3 -Mcthoxy-N -[6-(3 -pyridin-3 -yl-5-trifluoromcthyl-pyrazol- 1 -yl)-pyridin-3 -yl] - benzamide; LC-MS (M++1): 440.34.
N-[6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-y1-pyridm-3-yl]-3-trifluoromethyl- benzamide; LC-MS (M++1): 478.29.
3-Brorno-iV-[6-(3-pyridin-3-yl-5-1xifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-benzarnide; LC-MS (M++!): 489.20.
3-Methyl-Λr-[6-(3-pyridin-3-yl-5-trifluorornethyl-pyrazol-l-yl)-pyridin-3-yl]- benzamide; LC-MS (M++!): 424.35.
3-Nitro-N-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-benzaniide; LC-MS (M++!): 455.30.
3-Fluoro-N-[6-(3-pyridin-3-yl-5-1xifluoromctibLyl-pyrazol-l-yl)-pyridm-3-yl]-bcnzamidc; LC-MS (M++!): 428.37.
3,5-Difluoro-iV-[6-(3-pyτidin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridm-3-yl]- benzamide; LC-MS (M1+!): 446.33.
3,5-Dichloro-iV-[6-(3-pyridiα-3-yl-5-tri.fluoromethyl-pyrazol-l-yl)-pyridin-3-yl]- benzamide; LC-MS (M++!): 478.23.
5-Bromo-N-[6-(3-pyridin-3-yl-5-triflxιorojtnethyl-pyrazol-l-yl)-pyridin-3-yl]- nicotinamide; LC-MS (M4"+!): 489.26.
3-Dimethylamino-iV-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]- benzamide; LC-MS (M++!): 453.38.
Benzo[l,3]dioxole-5-carboxylic acid [6-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridin-3-yl]-amide; LC-MS (M++!): 454.32.
2-Chloro-iV-[6-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]- isonicotinamide; LC-MS (M++!): 445.31.
N -[6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-3-trifluoromethoxy- benzamide; LC-MS (M++1): 494.33.
3,5-Dimethoxy-N-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-y1-pyridin-3-yl]- benzamide; LC-MS (M++1): 470.35.
2-Chloro-iV-[6-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]- nicotinamide; LC-MS (M++!): 445.30.
l-Acetyl-piperidine-4-carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-pyridin-3-yl]-amide; LC-MS (M++!): 459.40.
3,5-Diethoxy-Λr-[6-(3-pyrid.in-3-yl-5-trifluoromethyl-pyrazoH-yl)-pyridin-3-yl]- benzamide; LC-MS (M++!): 498.38.
3 -Ethoxy-iV- [6-(3 -pyridin-3 -yl-5-trifluoromethyl-pyrazol- 1 -yl)-pyridin-3 -yl] - benzamide; LC-MS (M++!): 454.36.
2-Chloro-6-methyl-N-[6-(3-pyridin-3-yl-5-trifluorotnethyl-pyrazol-l-yl)-pyridin-3-yl]- isonicotinamide; LC-MS (M++!): 459.27.
4-Methyl-3,4-dihydro-2H-benzo[l ,4]oxazine-7-carboxylic acid [6-(3-pyridin-3-yl-5- trifluoromethyl-ρyrazol-l-yl)-ρyridin-3-yl]-amide; LC-MS (M++!): 481.36.
ό-Phenoxy-iV-fό-CS-pyridin-S-yl-S-trifluorometliyl-pyrazol-l-y^-pyridin-S-yl]- nicotinamide; LC-MS (M'+l): 503.05.
Example 23: 3-Amino-7V-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazoI-l-yl)- pyridin-3-yI] -benzamide
3-Nitro-N-[6-(3-pyridin-3-yl-5-1xifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-benzamide (42 mg, 0.09 mmol), prepared according to example 22, is dissolved in cthanol (5 mL) with gentle heating. Catalytic amounts of 10 % palladium on carbon are added and the solution is hydrogenated under balloon pressure for four hours. The mixture is filtered through Celite and evaporated. The residue is purified by chromatography to afford the title compound (16 mg, 43%). LC-MS (M++!): 425.33.
Example 24: Tetrahydro-pyran-4-carboxylic acid [6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l -yl)-pyridin-3-yl]-amide
Step a
Tetrahydro-pyran-4-carboxylic acid (175 rng, 1.3 mmol) is dissolved in
dichloromethane (7 mL) and oxalyl chloride (0.23 mL, 2.6 mmol), and catalytic amounts of dimethylformamide are added. The solution is stirred for one hour after which all volatiles are evaporated. The residue is dried under high vacuum for three hours and the resulting product, tctrahydro-pyran-4-carbonyl chloride (192 mg, 100%), is used without further purification.
Step b
6-(3-Pyridin-3-yl-5-trifluorornethyl-pyrazol-l-yl)-pyridin-3-ylarπine (20 mg, 0.065 mmol), prepared according to step d in example 22, is dissolved in tetrahydrofuran (2 mL) and iVliV-diisopropylethylamine (35 μL, 0.2 mmol), and tetrahydro-pyran-4- carbonyl chloride (16 mg, 0.1 mmol) are added successively. The solution is stirred for 30 rnin after which it is diluted with saturated aqueous ammonium chloride solution. The aqueous phase is extracted with dichloromethane and the combined organic phases are dried over magnesium sulfate. The solvent is evaporated and the residue is purified by chromatography to afford the title compound (12 mg, 44 %). LC-MS (M++l):
418.37.
The following compounds are prepared according to example 24 by replacing the carboxylic acid in step a with commercially available starting materials.
4-Phenyl-iV-[6-(3-pyridm-3-yl-5-trifluorometh.yl-pyrazol-l-yl)-pyridin-3-yl]- butyramide; LC-MS (M++l): 452.36.
3-Phenoxy-iV-[6-(3-pyridin-3-yl-5-trifluororαetliyl-pyrazol-l-yl)-pyridin-3-yl]- benzamide; LC-MS (M++!): 502.42.
3 -Methanes ulfony l-N- [6-(3 -pyridin-3 -y 1-5-trifl uoromethy 1-pyrazol- 1 -y l)-pyridin-3 -y 1] - benzamide; LC-MS (M++!): 488.02
The following compound is prepared according to example 24 by replacing the carboxylic acid in step a with 4,4-diphenyl-butyric acid, prepared according to Chem. Pharm. Bull. 1990, 38(6), 1570.
4,4-Diphcnyl-N-[6-(3-pyridin-3-yl-5-trifluoromcthyl-pyrazol-l-yl)-pyridin-3-yl]- butyramide; LC-MS (M++!): 528.40.
Example 25: 2-(3-Morpholin-4-yl-propylamino)-7V-[6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazoI-l-yl)-pyridϊn-3-ylJ-isonicotinamide
2-Ch.loro-N-[6-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]- isonicotinamide (40 mg, 0.09 mmol), prepared according to example 22, is dissolved in tctrahydrofuran (3 mL), 3-Morpholin-4-yl-propylaminc (128 mg, 0.9 mmol) is added, and the solution is microwaved for 14 hours at 150 °C. The mixture is diluted with saturated sodium bicarbonate solution and the aqueous phase is extracted with dichloromethane. The combined phases are washed with brine, and dried over magnesium sulfate. The solvent is evaporated and the residue is purified by chromatography to afford the title compound (27 mg, 54 %). LC-MS (M '+1): 553.02.
The following compound is prepared according to example 25 by replacing the amine with commercially available starting material.
2-(2-Morpholin-4-yl-ethylamino)--V-[6-(3 -pyridin-S-yl-S-trifluorornethyl-pyrazol- 1 -yl)- pyridin-3-yl]-isonicotmamide; LC-MS (M++l): 539.33.
Example 26: 2-(2-Morpholin-4-yl-ethylamino)-7V-[6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-nicotinamide
2-Chloro-N-[6-(3-pyridin-3-yl-5-trifluoroniethyl-pyrazol-l-yl)-pyridin-3-yl]- nicotinamide (19 mg, 0.04 mmol), prepared according to example 22, is dissolved in dimethylformamide (2 mL), 4-(2-aminoethyl)morpholine is added (28 μL, 0.2 mmol), and the solution is microwaved at 120 0C for 1 hour. The mixture is diluted with saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. The organic extracts are washed with water, brine, and dried over magnesium sulfate. The solvent is evaporated and the residue is purified by chromatography to afford the title compound (7 mg, 39%). LC-MS (M++!): 538.95.
The following compound is prepared according to example 26 by replacing the amine with commercially available starting material.
2-Dimethylamino-iV-[6-(3-pyridin-3-yl-5-trifiuoromethyl-pyra2;ol-l-yl)-pyridin-3-yl]- nicotinamide; LC-MS (M++!): 453.88.
Example 27: 3-Propoxy-iV-l6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- py ridin-3-yl] -benzamide
3-Benzyloxyl-benzoic acid (460 mg, 2 mmol), prepared according to J. Chem. Soc. 1943, 430, is dissolved in dichloromethane (10 mL) and oxalyl chloride (1.5 iriL of a 2 M solution in dichloromethane, 3 mmol), and catalytic amounts of dimethylformamide are added. The solution is stirred for 1 hour after which all volatiles are evaporated. The residue is dried under high vacuum for three hours and the resulting product, 3- benzyloxyl-benzoyl chloride (490 mg, 100%), is used without further purification.
6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-ylamine (215 mg, 0.7 mmol), prepared according to step d in example 22, is dissolved in tetrahydrofuran (10 mL) and N,iV-diisopropylethylamine (370 μL, 2.1 mmol), and 3-benzyloxyl-benzoyl chloride (200 μL, 0.84 mmol) is added successively. The solution is stirred for 30 min after which it is diluted with saturated aqueous ammonium chloride solution. The aqueous phase is extracted with dichloromethane and the combined organic phases are
dried over magnesium sulfate. The solvent is evaporated and the residue is purified by chromatography to afford 3-benzyloxy-iV-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol- l-yl)-pyridin-3-yl]-benzamide (253 mg, 70 %).
Stct
3 -Benzyloxy-iV-[6-(3 -pyridin-3 -yl-5 -trifluoromethyl-pyrazol- 1 -yl)-pyridin-3 -yl] - benzamide (240 mg, 0.47 mmol) is dissolved in ethanol (10 mL), catalytic amounts of 10 % palladium on carbon are added and the solution is hydrogenated under a balloon atmosphere overnight. The mixture is filtered through Celite, the solvent is evaporated, and the residue is purified by chromatography to afford 3-hydroxy-iV-[6-(3-pyridin-3-yl- 5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-benzamide (185 mg, 92 %).
Steυ d
3-Hydroxy-iV-[6-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]- benzamide (20 mg, 0.05 mmol), propyl iodide (5 μL, 0.05 mmol), and potassium carbonate (15 mg, 0.11 mmol) are placed in a sealable tube and dissolved in acetonitrile (3 mL). The tube is heated at 70 0C overnight. The solution is poured into saturated aqueous ammonium chloride solution and the aqueous phase is extracted with dichloromethane. The extract is dried over magnesium sulfate, filtered, and evaporated. The residue is purified by chromatography to afford the title compound (13 mg, 59%). LC-MS (MM): 468.38.
The following compounds are prepared according to example 27 by replacing the alkyl halide in step d with commercially available starting materials.
3-Butoxy-iV-[6-(3-pyridin-3-yl-5-trifluoromethyl-ρyrazol-l -yl)-pyridin-3-yl]- benzamide; LC-MS (M++!): 482.40.
3 -Phenethyloxy-iV- [6-(3 -pyridin-3 -yl-5-trifluorornethyl-pyrazol- 1 -y l)-pyridin-3 -yl] - benzamide; LC-MS (M++!): 530.36.
Example 28: 3-[2-(2-Oxo-pyrrolidin-l-yl)-ethoxy]-iV-[6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridin-3-ylJ-benzamide
3-Hydroxy-iV-[6-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]- benzamide (40 mg, 0.09 mmol), prepared according to step c in example 27, triphenylphosphine (94 mg, 0.36 mmol), and l -(2-hydroxyethyl)-2-pyrrolidinone (52 μL, 0.45 mmol) is dissolved in tetrahydrofuran (3 mL) and diethyl azodicarboxylate (57 μL, 0.36 mmol) is added at room temperature. The solution is stirred for 4 hours and then evaporated. The residue is purified by chromatography to afford the title compound (43 mg, 89%). LC-MS (M++!): 537.11.
The following compounds are prepared according to example 28 by replacing the alcohol with commercially available starting materials.
N-[6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l -yl)-pyridin-3-yl]-3-(2-pyrrolidin- 1 -yl- ethoxy)-benzamide; LC-MS (M++!): 523.17.
3 -(2-Morpholin-4-yl-ethoxy)-iV- [6-(3-pyridin-3 -yl-5 -trifluoromethyl-pyrazol- 1 -yl)- pyridiii-3-yl]-benzamide; LC-MS (M++l): 539.14.
3-(3-Morpholin-4-yl-propoxy)-7/-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridin-3-yl]-benzatnide; LC-MS (M++l): 553.14.
3-(2-Pyridin-2-yl-ethoxy)-iV-[6-(3-pyridin-3-yl-5-trifluoroπiethyl-pyrazol-l-yl)-pyτidin- 3-yl]-benzaπύde; LC-MS (M++l): 531.42.
3-(2-Pyridin-4-yl-ethoxy)-iV-[6-(3-pyridm-3-yl-5-triflxιoroinethyl-pyrazol-l-yl)-pyridin- 3-yl]-benzamide; LC-MS (M++l): 531.40.
Example 29: Λ^-Lβ-CS-Pyridin-S-yl-S-trifluoromethyl-pyrazoI-l-yO-pyridin-S-ylJ-S- pyrimϊdin-5-yl-benzamide
To a solution of 3-Brorno-Λr-[6-(3-pyridin-3-yl-5-trifluorornethyl-pyrazol-l-yl)-pyridin- 3-yl]-benzamide (72 mg, 0.15 mmol), prepared according to example 22, in
dimethylformamide (5 mL) is added 3-pyrimidine boronic acid (37 mg, 0.30 mmol), tetrakis(triphenylphosphine)palladium(0) (17 mg, 0.015 mmol), and cesium carbonate (49 mg, 0.15 mmol). The solution is heated to 100 °C in a microwave reactor for 10 minutes. The brown solution is cooled down, diluted with water, and extracted with ethyl acetate. The combined organic layers are washed with water (20 mL, 4 x), brine, dried over magnesium sulfate, and then evaporated. The residue is purified by chromatography to afford the title compound (29 mg, 40 %). LC-MS (M++l): 488.36.
Example 30: l-(2-Methoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carboxylic acid [6- (3-pyridin-3-yl-5-trifluoromethyI-pyrazol-l-yl)-pyridin-3-yl]-amide
Stet
l-(2-Methoxy-ethyl)-6-oxo-l,6-dihydro-pyxidine-3-carboxylic acid (485 mg, 2.46 mmol), prepared according to step c in example 3, is dissolved in tetrahydrofuran (30 mL) and oxalyl chloride (0.43 mL, 4.9 mmol), and catalytic amounts of
dimcthylformatni.de arc added. The solution is stirred for 1 hour after which all volatilcs are evaporated. The residue is dried under high vacuum for three hours and the resulting product, l-(2-Methoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carbonyl chloride (530 rng, 100 %), is used without further purification. Step b
Crude l-(2-methoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carbonyl chloride (530 mg, 2.46 mmol) is dissolved in pyridine (30 mL), 6-(3-Pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridin-3-ylamine (500 mg, 1.64 mmol), prepared according to step d in example 22, is added and the solution is stirred for 60 min. The solution is evaporated, dried under high vacuum, and the residue is partitioned between ethyl acetate and water. The organic phase is extracted with saturated aqueous sodium bicarbonate solution and saturated aqueous ammonium chloride solution and all the aqueous layers are combined and back-extracted with ethyl acetate. The organic layers are combined, dried over magnesium sulfate, filtered, and evaporated. The residue is purified by chromatography to afford the title compound (565 mg, 71 %). LC-MS (M++l): 485.26.
The following compound is prepared according to example 30 by replacing the carboxylic acid in step a with l-(2-Ethoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3- carboxylic acid, prepared according to example 3.
l-(2-Ethoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carboxylic acid [6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-ρyridin-3-yl]-amide; LC-MS (M++l): 499.22.
Example 31: l-Cl-Hydroxy-ethyty-tf-oxo-ljδ-dihydro-pyridine-S-carboxylic acid [6- (3-pyridin-3-yI-5-trϊfluoromethyl-pyrazol-l-yl)-pyridin-3-ylJ-amide
l-(2-Methoxy-ethyl)-6-oxo-l ,6-diliydro-pyridme-3-carboxylic acid [6-(3-pyridin-3-yl- 5-trifluoroniethyl-pyrazol-l-yl)-pyridin-3-yl]-aniide (100 mg, 0.2 mmol), prepared according to example 30, was dissolved in dichloromethane (5 mL) and boron tribromide (0.4 mL of a 1 M solution in dichloromethane, 0.4 mmol) is added dropwise at - 78 0C. The solution is allowed to warm up to room temperature over the course of 1 hour. The reaction is quenched by the addition of methanol (2 mL), diluted with saturated sodium bicarbonate solution and extracted with dichloromethane. The organic layers are combined, dried over MgSO4, filtered, and evaporated. The residue is purified by chromatography to afford the title compound (68 mg, 70 %). LC-MS (M++l):
471.03.
Example 32: l-Dimethylcarbamoylmethyl-ό-oxo-ljβ-dihydro-pyridine-S-carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-yl]-amide
l-Ethoxycarbonylmethyl-ό-oxo-ljό-dihydro-pyridine-S-carboxylic acid (554 mg, 2.46 mmol), prepared according to step c in example 4, is dissolved in tetrahydrofuran (30 mJL) and oxalyl chloride (0.43 mL, 4.9 mmol), and catalytic amounts of
dimethylformamide are added. The solution is stirred for 1 hour after which all volatiles are evaporated. The residue is dried under high vacuum for three hours and the resulting product, l-(2-Methoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carbonyl chloride (598 mg, 100 %), is used without further purification.
l-Ethoxycarbonylmcthyl-6-oxo-l,6-dihydro-pyridinc-3-carbonyl chloride (598 mg, 2.46 mmol) is dissolved in pyridine (30 mL), 6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-pyridin-3-ylamine (500 mg, 1.64 mmol), prepared according to step d in example 22, is added and the solution is stirred for 60 min. The solution is evaporated, dried
under high vacuum, and the residue is partitioned between ethyl acetate and water. The organic phase is extracted with saturated aqueous sodium bicarbonate solution and saturated aqueous ammonium chloride solution and all the aqueous layers are combined and back-extracted with ethyl acetate. The organic layers are combined, dried over magnesium sulfate, filtered, and evaporated. The residue is purified by chromatography to afford {2-oxo-5-[6-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3- ylcarbamoyl]-2H-pyridin-l-yl} -acetic acid ethyl ester (521 mg, 62 %).
Steυ c
{2-Oxo-5-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-ylcarbamoyl]- 2H-pyridin-l-yl} -acetic acid ethyl ester (50 mg, 0.1 mmol) is dissolved in dioxane (2.5 mL) and LiOH (5mg, 0.2 mmol), dissolved in water (2.5 mL), is added. The solution is stirred for 2 hours after which it was acidified (~ pΗ 2) with aqueous 1 M HCl. The precipitate is filtered off and the aqueous solution is extracted with ethyl acetate. The extracts are washed with water and brine, dried over magnesium sulfate, and
evaporated. The residue is combined with the precipitate to afford {2-oxo-5-[6-(3- pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-ylcarbamoyl]-2H-pyridin-l-yl}- acetic acid (25 mg, 51 %), which was used without further purification.
Step d
{2-Oxo-5-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-3-ylcarbamoyl]- 2H-pyridin-l-yl} -acetic acid (57 mg, 0.12 mmol), l-[3-(dimethylamino)propyl]-2- ethylcarbodiimide hydrochloride (113 mg, 0.59 mmol), and 1-hydroxybenzotriazole hydrate (79 mg, 0.59 mmol) are dissolved in tetrahydrofuran, dimethylamine (0.3 mL of a 2 M solution in tetrahydrofuran, 0.6 mmol) is added and the suspension is vigorously stirred overnight. Methanol is added to dissolve the solids and the solution is then diluted with brine. The aqueous phase is extracted with dichloromethane several times, and the combined organic phases are dried over magnesium sulfate, filtered, and evaporated. The residue is purified by chromatography to afford the title compound (38 mg, 63 %). LC-MS (M++l): 512.28.
Example 33: l-(2-Ethoxy-ethyl)-6-oxo-l,6-dϊhydro-pyridine-3-carboxylic acid [5- (3-ethoxy-5-trifluoromethyl-pyrazoI-l-yl)-pyridin-2-yl]-amide
Step a
To a stirred solution of ethyl orthoacetate (5.7 mL, 30 mmol) and pyridine (5.6 mL, 69 mmol) in chloroform (30 mL) is added dropwise, with ice cooling, trifluoroacetic anhydride (8.7 mL, 61 mmol) and the mixture is stirred at room temperature for 1 hour. The solution is quickly washed with ice-cold aqueous 10 % sodium carbonate solution and water, and dried over sodium sulfate. The solvent and pyridine are evaporated and
the residue is dried under high vacuum to afford 4.4-diethoxy-l,l,l-trifluoro-but-3-en- 2-one (5.7 g, 90 %).
Step b
454-Diethoxy-l,l,l-txifluoro-but-3-en-2-one (2.1 g, 10 mmol).and 2-fluoro-5-hydrazino- pyridine (1.4 g, 11 mmol), prepared according to step b in example I5 are dissolved in ethanol/water (40 mL, 9/l)and the solution is microwaved for 30 min at 100 0C. The solution is cooled to room, temperature, evaporated, and the residue is re-dissolved in ethyl acetate. The organic solution is dried over magnesium sulfate, filtered, and evaporated. The residue is purified by chromatography to afford 5-ethoxy-2-(6-fluoro- pyridin-3-yl)-3-trifluoromethyl-3,4-dihydro-2H-pyrazol-3-ol (1.35 g, 46 %).
5-Ethoxy-2-(6-fluoro-pyridin-3-yl)-3-trifluoromethyl-3,4-dihydro-2i7-pyrazol-3-ol (1.35 g, 4.6 mmol) is dissolved in acetic acid (30 mL) and the solution is microwaved for 45 min at 100 0C. The solution is evaporated and the residue is filtered through a plug of silica gel to afford 5-(3-3thoxy-5-trifluoromethyl-pyrazol-l-yl)-2-fluoro- pyridine (640 mg, 50 %).
Step d
5-(3-Ethoxy-5-trifluoromethyl-pyrazol-l-yl)-2-fluoro-pyridine (1 g, 3.6 mmol) is dissolved in dioxane (4 mL) and an equal amount of concentrated ammonium hydroxide is added. The solution is microwaved at 130 0C for 120 min, after which the solution is evaporated. The residue is re-dissolved in dichloromethane, magnesium sulfate is added and the solution is filtered and evaporated. The residue is purified by chromatography to afford 5-(3-ethoxy-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-ylamine (710 mg, 72 %)
Ster
l-(2-Ethoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carboxylic acid (1.4 g, 6.8 mmol), prepared according to step c in example 3, is dissolved in tetrahydrofuran (20 mL) and oxalyl chloride (1.2 mL, 13.7 mmol), and catalytic amounts of dimethylformamide are added. The solution is stirred for 1 hour after which all volatiles are evaporated. The residue is dried under high vacuum for three hours. The acid chloride is rc-dissolvcd in pyridine (20 mL), 5-(3-ethoxy-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-ylamine (620 mg, 2.3 mmol) is added, and the solution is stirred for 1 hour. The solution is evaporated and the residue is partitioned between ethyl acetate and saturated sodium bicarbonate solution. The organic phase is extracted with saturated aqueous sodium bicarbonate solution and saturated ammonium chloride solution. The solvent is dried over magnesium sulfate, filtered, and evaporated. The residue is purified by
chromatography to afford the title compound (800 mg, 75%). LC-MS (M++!): 466.08.
The following compounds are prepared according to example 33 by replacing the carboxylic acid in step e with commercially available starting materials.
N-[5-(3-Ethoxy-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-3-methanesulfonyl- benzamide; LC-MS (M++!): 455.25.
yV-[5-(3-Ethoxy-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-2-morpholin-4-yl- isonicotinamide; LC-MS (M++l): 462.29.
The following compound is prepared according to example 33 by replacing the carboxylic acid in step e with 3-Morpholϊn-4-yl-benzoic acid prepared according to step b in example 57.
Λr-[5-(3-Etlioxy-5-trifluoroniethyl-pyrazol-l-yl)-pyridin-2-yl]-3-morpholin-4-yl- benzamide; LC-MS (M++!): 462.29.
Example 34: 3-Cyano-iV-[6-(3-ethoxy-5-trifluoromethyl-pyrazol--l-yl)-pyridin-3- yl]-benzamide
5-(3-Ethoxy-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-ylamine (40 mg, 0.15 mmol), prepared according to step d in example 33, is dissolved in pyridine (4 mL), 3- cyanobenzoyl chloride (36 mg, 0.22 mmol) is added, and the solution is stirred for 1 hour. The solution is evaporated and the residue is partitioned between ethyl acetate and saturated sodium bicarbonate solution. The organic phase is extracted with saturated aqueous sodium bicarbonate solution and saturated aqueous ammonium chloride solution. The solvent is dried over magnesium sulfate, filtered, and evaporated. The residue is purified by chromatography to afford the title compound (33 mg, 56 %). LC- MS (M++l): 402.37
The following compound is prepared according to example 34 by replacing the acyl chloride with commercially available starting material.
3-Bromo-iV-[5-(3-ethoxy-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-benzamide; LC- MS (M++l): 457.13
Example 35: 4'-(Pyrrolidine-l-carbonyl)-biphenyl-3-carboxyIic acid [5-(3-ethoxy- 5-trifluoromethyI-pyrazol-l-yl)-pyridin-2-yI]-amide
To a solution of 3-Bromo-iV-[5-(3-etlioxy-5-trifluoroπiethyl-pyrazol-l-yl)-pyridin-2-yl]- benzamide (55 mg, 0.12 mrαol), prepared according example 34, in dimethylformamide (3 tnL) is added 4-(Pyrrolidinc-l-carbonyl)-phcnyl boronic acid (53 mg, 0.24 mmol), tetrakistriphenylphosphine palladium(O) (14 mg, 0.012 mmol), and cesium carbonate (39 mg, 0.12 mmol). The solution is heated to 140 °C in a microwave reactor for 2 hours. The brown solution is cooled down, diluted with water, and extracted with ethyl acetate. The combined organic layers are washed with water, brine, dried over magnesium sulfate, and then evaporated. The residue is purified by chromatography to afford the title compound (31 mg, 47 %). LC-MS (M÷+l): 550.32.
Example 36: iV-Pyridin-4-yl-6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- nicotinamide
Ste
To a solution of ethyl trifluoroacetate (24 mL, 0.202 mol) in ether (250 mL) are added sodium methoxide (10.9 g, 0.202 mol) and 3-acetylpyridine (22 mL, 0.202 mol) at room temperature. The solution is heated at reflux for 2 hours. The reaction is cooled to room temperature and water (100 mL) is added. The resulting mixture is extracted with ether (100 mL) and the aqueous layer is collected. The aqueous solution is acidified to pH 4 with 0.2 M acetic acid. The solid that precipitates out from the solution is collected by means of filtration and is dried under vacuum. The resulting product, 4,4,4-trifluoro-l-pvridin-3-yl-butane-l,3-dione (32.8 g, 75.5 %), is used in the next step of the synthesis without further purification. Step b
To a solution of 4,4,4-trifluoro-l-pyridin-3-yl-butane-l,3-ά'ione (142 mg, 0.653 mmol) in ethanol (5 mL) are added 6-hydrazinonicotinic acid (100 mg, 0.653 mmol) and aqueous 12 M HCl (0.1 mL) at room temperature. The solution is heated up to 80 °C for 6 hours. The solution is cooled to room temperature and concentrated under reduced pressure. The solid residue is then dissolved in boiling ethanol (3 mL). Ethyl acetate (20 mL) is added to the solution and the solid that precipitates out of the solution is collected by means of filtration. The solid is washed with cold ethanol (5 mL) and then dried under vacuum. The resulting product, 6-(5-hydroxy-3-pyridm-3-yl-5- trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicotinic acid (210 mg, 91.3 %), is used in the next step of the synthesis without further purification.
To a solution of 6-(5-hyd.roxy-3-pyridin-3-yl-5-triflu.oromethyl-4,5-dihydro-pyrazol-l- yl)-nicotinic acid (30 mg, 0.085 mmol) in dimethylformamide (5mL) are added 4- amino-pyridine (17 mg, 0.180 mmol), l-(3-dimctliylaminopropyl)-3-cthylcarbodiimidc hydrochloride (52 mg, 0.270 mmol), 1-hydroxybenzotriazole hydrate (24 mg, 0.180 mmol) and diisopropylethyl amine (0.032 mL, 0.180 mmol) at room temperature. The solution is stirred at the same temperature for 24 hours. Saturated aqueous sodium bicarbonate solution (5 mL) is added and the solution mixture is extracted with ethylacetate (20 mL). The organic layer is dried with magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure. The residue is purified by chromatography to afford the title compound (19.2 mg, 52 %). LC-MS (M++!): 411.36
The following compounds are prepared according to example 36 by replacing the amine in step c with commercially available starting materials.
6-(3 -Pyridin-3 -yl-5 -trifluoromethyl-pyrazol- 1 -yl)-iV-(4-trifluoromethoxy-phenyl)- nicotinamide; LC-MS (M++!): 493.88.
Λr-Cyclohexyl-6-(3-pyridin-3-yl-5-trifluorornethyl-pyrazol-l-yl)-nicotinamide; LC-MS (M++l): 416.39.
N-Naphthalen-2-yl-6-(3-pyridin-3-yl-5-trifluorornethyl-pyrazol-l-y1)-nicotinarnide; LC- MS (M++l): 460.35.
N-(6-Cyano-pyridin-3-yl)-6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- nicotinamide;
LC-MS (M++!): 436.34.
N-Naphthalen- 1 -yl-6-(3 -pyridin-S-yl-S-trifluoroniethyl-pyrazol- 1 -yl)-nicotinamide; LC- MS (M++!): 460.38.
N-(2 ,3 -Dihydro-benzo [ 1 ,4] dioxin-6-yl)-6-(3 -pyridin-3 -yl-5 -trifluoromethyl-pyrazol- 1 - yl)-nicotinamide; LC-MS (M++l): 468.33.
iV^(6-Hydroxy-pyridin-3-yl)-6-(3 -pyxidm-S-yl-S-trifluoromethyl-pyrazol- 1 -yl)- nicotinamide; LC-MS (M++!): 427.32.
N-Benzo[l53]dioxol-5-yl~6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- nicotinamide; LC-MS (M++!): 454.34.
Example 37: iV-(3,3-Diphenyl-propyl)-6-(3-pyridin-3-yl-5-trifluoromethyI-pyrazoI- l-yl)-nicotinamide
6-(5-Hydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicotiiiic acid is prepared according to step b in example 36. To a solution of 6-(5-hydroxy-3-pyridin- 3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicotinic acid (70 mg, 0.199 mmol) in dimethylformamide (5mL) are added yV.JV-diphenylpropyl amine (55 μL, 0.398 mmol),
l-(3-dimethylaminopropyl)-3-ethylcarbodiimide (114 mg, 0.59 mmol), 1- hydroxybenzo-triazole hydrate (81 mg, 0.59 mrαol) and diisopropylethyl amine (0.1 mL, 0.59 mmol) at room temperature. The solution is stirred at the same temperature for 24 hours. Saturated aqueous sodium bicarbonate solution (5 mL) is added and the solution mixture is extracted with ethyl acetate (20 mL). The organic layer is dried with magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure. The residue is purified by chromatography to afford iV-(3,3-diphenyl-propyl)-6-(5- hydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicotinamide (54 mg, 49 %).
iy-(353-Diphenyl-propyl)-6-(5-hydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5-dihydro- pyrazol-l-yl)-nicotinamide (60 mg, 0.110 mmol) is dissolved in acetic acid (3 mL) at room temperature. The solution is heated to 120 °C for 6 hours. The resulting solution is cooled to room temperature and is extracted with ethyl acetate (10 mL, 3 x) and water (15 mL). The combined organic layer is dried with magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (58 mg, 67 %). LC-MS (M++l): 528.37.
The following compounds are prepared according to example 37 by replacing the amine in step a with commercially available starting materials.
N-B cnκyl-6-(3 -pyridin-3 -yl-5 -trifluoromcthyl-pyrazol- 1 -yl)-nicotinamidc; LC-MS (M++l): 424.36.
N-(2-Phenoxy-ethyl)-6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-nicotinamide; LC-MS (M++!): 454.36.
N-(lH-Benzoimidazol-2-yl)-6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- nicotinamide; LC-MS (M1"): 449.87.
Example 38: iV-[4-(2-Pipeπdin-l-yl-ethoxy)-naphthalen-l-yl]-6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-nicotinamide
To a solution of aminonaphthol (89 g, 0.458 mol) in tetrahydrofuran (700 mL) is added tricthylaminc (70.4 mL, 0.504 mol) at room temperature. The solution is stirred at the same temperature for 30 minutes and a solution of di-^-butyl dicarbonate (103 g, 0.472 mol) in tetrahydrofuran (100 mL) is added. The resulting solution is heated up to 65 0C for 5 hours. The solution is cooled to room temperature and the solid that precipitates out from solution is removed by means of filtration. The filtrate is concentrated under reduced pressure and the residue is dried under vacuum to afford (4-hydroxy- naphthalen-l-yl)-carbamic acid tert-butyl ester (118.8 g, 47.5 %).
To a solution of (4-hydroxy-naphthalen-l-yl)-carbamic acid /er/-butyl ester (100 mg, 0.386 mmol) in dimethylformamide (10 mL) are added l-(2-chloroethyl)piperidine monochloride (136 mg, 0.736 mmol) and potassium carbonate (160 mg, 1.158 mmol) at room temperature. The solution is stirred at the same temperature for 12 hours. The solution is extracted with ethyl acetate (20 mL, 3 x) and water (30 mL) and the combined organic layers are dried over magnesium sulfate and filtered. The filtrate is
concentrated under reduced pressure and the residue, [4-(2-piperidin-l-yl-ethoxy)- naphthalen-l-yl]-carbamic acid ter^-butyl ester (143 mg, 70 %), is used in the next step of the synthesis without further purification.
Stc
To a solution of [4-(2-piperidin-l-yl-ethoxy)-naphthalen-l-yl]-carbamic acid tert-butyl ester (100 mg, 0.270 mmol) in ethanol (10 mL) is added aqueous 12 M HCl (0.5 mL) at room temperature. The solution is heated up to 50 0C for 12 hours and then cooled to room temperature. The solution is concentrated under reduced pressure and the residue is purified by chromatography to afford 4-(2-piperidin-l-yl-ethoxy)-naphthalen-l- ylamine (73 mg, 70 %).
Steυ d
6-(5-Hydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicothτ.ic acid is prepared according step b prepare example 36. To a solution of 6-(5-hydroxy-3- pyridin-3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicotinic acid (50 mg, 0.142 mmol) in dimethylformamide (10 mL) are added 4-(2-piperidin-l-yl-ethoxy)- naphthalen-1-ylamine (58 mg, 0.213 mmol), l-(3-dimethylarninopropyl)-3- ethylcarbodiimide (83 mg, 0.426 mmol), 1-hydroxybenzo-triazole hydrate (38 mg, 0.284 mmol) and diisopropyl-cthyl amine (0.049 mL, 0.284 mmol) at room temperature. The solution is stirred at the same temperature for 24 hours. Saturated aqueous sodium bicarbonate solution (5 mL) is added and the solution mixture is extracted with ethyl acetate (20 mL). The organic layer is dried over magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure and the residue is purified by
chromatography to afford 6-(5-Hydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5-dihydro- pyrazol- 1 -yl)-iV-[4-(2-morpholin-4-yl-ethoxy)-naphthalen- 1 -yl]-nicotinamide (65mg, 76
%).
Step e
6-(5-Hydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-iV-[4-(2- morpholin-4-yl-ethoxy)-naphthalen-l-yl]-nicotinamide (50 mg, 0.083 mmol) is
dissolved in acetic acid (5 mL) at room temperature. The solution is heated to 120 0C for 6 hours. The resulting solution is cooled to room temperature and is extracted with ethyl acetate (10 mL, 3 x) and water (15 mL). The combined organic layer is dried with magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (8 mg, 16 %). LC-MS (M++!): 586.95. ■
The following compound is prepared according to example 38 by replacing the amine in step a with commercially available starting material.
iV-[4-(2-Morpholin-4-yl-ethoxy)-naphthalen-l-yl]-6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-nicotinamide; LC-MS (M++l): 589.4
Example 39: iV-Hexyl-6-(5-hydroxy-3-pyridin-3-yl-5-trifluoromethyI-4,5-dihydro- pyrazol-l-yl)-nicotinamide
6-(5-Hydroxy-3-pyridin-3 -yl-5-trifluoromethyl-4,5-dihydro-pyrazol- 1 -yl)-nicotinic acid is prepared according to step b in example 36. To a solution of 6-(5-hydroxy-3-pyridin- 3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-nicotinic acid (70 mg, 0.199 mmol) in dimethylformamide (5mL) are added iV-hexylamine (0.053 mL, 0.398 mmol), l-(3- dimethylaminopropyl)-3-ethylcarbodiimide (114 mg, 0.59 mmol), 1-hydroxybenzo- triazole hydrate (81 mg, 0.59 mmol), and diisopropylethyl amine (0.1 mL, 0.59 mmol) at room temperature. The solution is stirred at the same temperature for 24 hours.
Saturated aqueous sodium bicarbonate solution (5 mL) is added and the solution mixture is extracted with ethyl acetate (20 mL). The organic layer is dried over magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford iV-hexyl-6-(5-hydroxy-3-pyridin-3- yl-5-trifiuoromcthyl-4.5-dihydro-pyrazol-l-yl)-nicotinamidc (60 mg, 69 %). LC-MS (M+): 435.97.
The following compounds are prepared according to example 39 by replacing the amine with commercially available starting materials.
iV-Cyclohexyl-6-(5-hydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l- yl)-nicotinamide; LC-MS (M+): 433.98.
N-(2,3-Dihydro-benzo[l,4]dioxin-6-yl)-6-(5-hydroxy-3-pyridm-3-yl-5-trifluorom.ethyl- 4,5-dihydro-pyrazol-l-yl)-nicotinaniide; LC-MS (M++l): 486.39.
Example 40: 6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-2H-pyridazin-3-one
Step a 4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione is prepared according to step a in example 35. 4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione (883 mg, 4 mmol) is dissolved in ethanol (10 mL) and 3-chloro-6-hydrazinopyridazine (145 mg, 3.4 mmol), 12 M aqueous HCl (0.5 mL) are added at room temperature. The solution is heated up to 80 0C for 6 hours and is then cooled to room temperature. The solution is concentrated under reduced pressure and the residue is dissolved in boiling ethanol (5 mL). Ethyl acetate (30 mL) is added to the solution and the precipitate is collected by means of filtration. The solid is washed with cold ethanol (1 mL) and dried under vacuum. The resulting product, 2-(6-chloro-pyridazin-3-yl)-5-pyridin-3-yl-3- trifluoromethyl-3,4-dihydro-2H-pyrazol-3-ol (650 mg, 56 %), is used in the next step of the synthesis without further purification.
Steυ b
2-(6-Chloro-pyridazin-3 -yl)-5-pyridin-3 -yl-3 -trifluoromethyl-3 ,4-dihydro-2H-pyrazol- 3-ol (150 mg, 0.44 mmol) is dissolved in acetic acid (10 mL) at room temperature. The solution is heated to 120 °C for 6 hours. The resulting solution is cooled to room temperature and extracted with ethyl acetate (20 mL, 3 x) and water (30 mL). The combined organic layer is dried with magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (134 mg, 69%). LC-MS (M+): 307.96.
Example 41 : 5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yI)-pyridϊne-2- carboxylic acid pyridin-4-ylamide
To a solution of 5-amino-2-cyanopyridine (200 mg, 1.6 rnmol) in 6 M aqueous HCl (10 mL) is added sodium nitrite (116 mg, 1.6 mmol) at 0 0C. The solution is stirred at the same temperature for 1 hour. Tin(II)chloride hydrate (742 mg, 3.2 mmol) is added and the solution is allowed to warm to room temperature. The solution is kept in an ice bath and potassium hydroxide is added to neutralize the solution to pH 7. The solid that precipitates out from the solution is collected by filtration and is washed with cold ethanol (5 mL). The resulting product, 5-hydrazino-pyridine-2-carbonitrile (216 mg, 83 %), is dried under vacuum and used in the next step of the synthesis without further purification.
4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione is prepared according to step a in example 35. 4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione (122 mg, 0.56 mmol) is dissolved in ethanol (5 mL) and 5-hydrazino-pyridine-2-carbonitrile (50 mg, 3.4 mmol) in 12 M aqueous HCl (1 mL) are added at room temperature. The solution is heated up to 80 ° C for 6 hours and is then cooled to room temperature. The solution is concentrated under reduced pressure and the residue is dissolved in boiling ethanol (5 mL). ethyl acetate (30 mL) is added to the solution and the solid that precipitates out of
solution is collected by means of filtration. The solid is washed with cold ethanol (1 mL) and dried under vacuum. The resulting product, 5-(5-hydroxy-3-pyridin-3-yl-5- trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-pyridine-2-carbonitrile (52 mg, 42 %), is used in the next step of the synthesis without further purification.
To a solution of 5-(5-Hydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l- yl)-pyridine-2-carbonitrile (50 mg, 0.150 mmol) in ethanol (5 mL) is added potassium hydroxide (84 mg, 1.5 mmol). The solution is heated in a sealed tube at 80 °C for 6 hours and then cooled to room temperature. The solution is acidified to pH 2 with 12 M aqueous HCl and concentrated under reduced pressure. The residual solid is collected by filtration and is washed with cold ether (5 mL). The product, 5-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridine-2-carboxylic acid (50 mg, 80 %), is used in the next step of the synthesis without further purification.
Step d
To a solution of 5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridine-2-carboxylic acid (50 mg, 0.15 mmol) in dimethylformamide (5 mL) are added 4-aminopyridine (21 mg, 0.225 mmol), l-(3-dimethylaminopropyl)-3-ethylcarbodiimide (86 mg, 0.45 mmol), 1-hydroxybcnzo-triazolc hydrate (20 mg, 0.15 mmol) and diisopropylcthyl amine (0.05 mL, 0.3 mmol) at room temperature. The solution is stirred at the same temperature for 24 hours. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (18 mg, 29 %). LC-MS (M++l): 411.34. The following compounds are prepared according to example 41 by replacing the amine in step d with commercially available starting materials.
5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol- 1 -yl)-pyridine-2-carboxylic acid benzylamide; LC-MS (M++!): 424.34.
5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l -yl)-pyridine-2-carboxylic acid (4- trifluoromethoxy-phenyl)-amide; LC-MS (M++l): 494.28
5-(3-Pyridin-3-yl-5-triflυoromethyl-pyrazol-l-yl)-pyridine-2-carboxylic acid naph.thalen-2-ylamide; LC-MS (M++l): 460.34
Example 42: Cyclohexanecarboxylic acid [5-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyrazin-2-yl]-amide
To a solution of 2-amino-5-bromopyrazine (200 mg, 1.15 mmol) in tetrahydrofuran (10 mL) are added diisopropylethyl amine (0.4 mL, 2.29 mmol) and cyclohexanecarbonyl chloride (0.18 mL, 1.38 mmol) at 0 0C. The solution is stirred at the same temperature for 1 hour. Saturated aqueous ammonium chloride solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford cyclohexanecarboxylic acid (5-bromo-pyrazin-2-yl)-amide (300 mg, 92 %).
Steυ b
To a solution of cyclohexanecarboxylic acid (5-bromo-pyrazin-2-yl)-amide (20 mg, 0.07 mmol) in ethanol (5 mL) is added hydrazine (0.01 mL, 0.35 mmol) at room temperature. The solution is heated to 120 0C in a microwave reactor for 3 hours. The solution is cooled to room temperature and concentrated under reduced pressure. The residue is purified by chromatography to afford cyclohexanecarboxylic acid (5- hydrazmo-pyrazin-2-yi)-amide (10 mg, 61 %).
Steυ c
4.4,4-Trifluoro-l-pyridin-3-yl-butane-1.3-dione is prepared according to step a in example 35. 4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione (36 mg, 0.17 mmol) is dissolved in ethanol (5 mL) and cyclohexanecarboxylic acid (5-hydrazino-pyrazin-2- yl)-amide (20 mg, 0.085 mmol), 12 M aqueous HCl (1 mL) are added at room temperature. The solution is heated up to 50 0C for 1 hour and then cooled to room temperature. The solution is concentrated under reduced pressure and the residue is purified by chromatography to afford cyclohexanecarboxylic acid [5-(5 -hydroxy-3- pyridin-3-yl-5-trifluoromethyl-4,5-dihydro-pyrazol-l-yl)-pyrazin-2-yl]-armde (20 mg, 54 %).
Steυ d
Cyclohexanecarboxylic acid [5-(5-h.ydroxy-3-pyridin-3-yl-5-trifluoromethyl-4,5- dihydro-pvrazol-l-yl)-pyrazin-2-yl]-amide (50 mg, 0.115 mmol) is dissolved in acetic acid (5 mL) at room temperature. The solution is heated to 120 0C for 1 hour. The resulting solution is cooled to room temperature and is extracted with ethyl acetate (10 mL, 3 x) and water (15 mL). The combined organic layer is dried with magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (13 mg, 27 %). LC-MS (M++l): 417.36.
The following compounds are prepared according to example 42 by replacing the acyl chloride in step a with commercially available starting materials.
N-[5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyrazin-2-yl]-benzamid2; LC-MS (M++l): 411.33.
3-Mcthoxy-7V-[5-(3-pyridin-3-yl-5-trifluoromcthyl-pyrazol-l-yl)-pyrazm-2-yl]- benzamide; LC-MS (M+): 440.88.
Naphthalene- 1 -carboxylic acid [5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol- 1 -yl)- pyrazin-2-yl]-amide; LC-MS (M+): 460.89.
4,4,4-Trifluoro-l-pyridήi-3-yl-butane-l53-dione is prepared according to step a in example 35. To a solution of 4,4,4-trifluoro-l-pyridin-3-yl-butane-l,3-dione (200 mg, 0.92 mmol) in cthanol (5 mL) arc added ethyl hydrazinoacctatc hydrochloride (220 mg, 1.82 mmol) and 12 M aqueous HCl (0.5 mL). The solution is heated to 80° C for 2 hours. The solution is cooled to room temperature and concentrated under reduced pressure. The residual solid is collected by mean of filtration and is washed with cold ethanol (20 mL). NMR studies reveal this solid to be the major regioisomer, 5-pyridin- 3-yl-3-trifluoromethyl-pyrazol-l-yl)-acetic acid ethyl ester (160 mg, 58 %). The filtrate was then concentrated under reduced pressure and the residue purified by
chromatography to afford the minor regioisomer, 3-Pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-acetic acid ethyl ester (53 mg, 19 %).
Step b
To a solution of (5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-acetic acid ethyl ester (200 mg, 0.67 mmol) in methanol (10 mL) are added lithium hydroxide (84 mg, 2 mmol) and water (2 mL) at room temperature. The solution is stirred at the same temperature for 30 minutes. The solution is acidified to pH 2 with 12 M aqueous HCl in an ice bath. The resulting solution is concentrated under reduced pressure and the residual solution is diluted with water (10 mL) and extracted ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure and the residue is dried under vacuum. The resulting product, (5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-acetic acid (100 mg, 55 %) is used in the next step of the synthesis without further purification.
Stet
Phosphoryl chloride (0.35 mmL 3.7 mmol) is added dropwise to a dimethylformamide (2 mL) at 0 °C under nitrogen atmosphere. The solution is stirred at the same temperature for 15 minutes. A solution of (5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l- yl)-acetic acid (500 mg, 1.8 mmol) in dimethylformamide (2 mL) is added to the above solution. The solution is heated up to 105 0C for 3 hours and then cooled to room temperature. The resulting reddish brown oil is poured into a solution of sodium hexafluorophosphate (948 mg, 5.5 mmol) in ice water (10 mL). The solid that precipitates out of the solution is collected by filtration. The brown hydroscopic (Z)-
IV ,/V ,AP5A/ ^-Tetramethyl-2-(5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l -yl)-propene- 1,3 -diamine hexafluorophosphate (325 mg, 52 %) is used in the next step of the synthesis without further purification.
Step d
To a solution of the above (Z)-iVrl,N1,N3,N3-Tetramethyl-2-(5-pyridin-3-yl-3- trifluoromethyl-pyrazol-l-yl)-propene- 1,3 -diamine hexafluorophosphate (200 mg, 0.41 mmol) in ethanol (10 mL) are added sodium hydride (83 mg, 2.1 mmol) and guanidine carbonate (90 mg, 0.49 mmol) at room temperature under nitrogen atmosphere. The solution is heated up to 80 0C for 6 hours. The solution is cooled to room temperature and then cooled in an ice bath. Water (10 mL) is added and the solution is extracted
with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford 5-(5-Pyridin-3-yl-3-trifluoromethyl-pyrazol-l- yl)-pyrimidin-2-ylamine (76 mg, 60 %).
Ste
To a solution of 5-(5-pyridin-3-yl-3-trifluoromethyl-pyrazol-l-yl)-pyrimidin-2-ylamine (20 mg, 0.065 mmol) in pyridine (5 mL) are added 4-N,N-dimethylaminopyridine (15.8 mg, 0.13 mmol) and benzoyl chloride (0.009 mL, 0.078 mmol) at room temperature. The solution is stirred at the same temperature for 24 hours. Saturated aqueous sodium bicarbonate solution (5 mL) is added and the solution mixture is diluted with water (10 mL) and extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate, filtered, concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (19 mg, 73 %). LC- MS (M+H-I): 411.34.
Example 44: Λ^-[5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyrimidin-2-yI]- benzamide
Step a
(S-Pyridin-S-yl-S-trifluorometliyl-pyrazol-l-y^-acetic acid ethyl ester is prepared according to step a in example 43. To a solution of (3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-acetic acid ethyl ester (50 mg, 0.17 mmol) in methanol (5 mL) are added lithium hydroxide (21 mg, 0.5 mmol) and water (1 mL) at room temperature. The solution is stirred at the same temperature for 30 minutes. The solution is acidified to pH 2 with 12 M aqueous HCl in an ice bath. The resulting solution is concentrated under reduced pressure and the residue is diluted with water (10 mL) and extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried with magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the solid is dried under vacuum. The resulting product, (3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-acetic acid (20 mg, 55 %) is used in the next step of the synthesis without further purification.
Step b
Phosphoryl chloride (0.18 mmL 1.85 mmol) is added dropwise to dimethylformamide (2 mL) at 0 °C under nitrogen atmosphere. The solution is stirred at the same temperature for 15 minutes. A solution of (3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-acetic acid (250 mg, 0.9 mmol) in dimethylformamide (2 mL) is added to the above solution. The solution is heated up to 105 0C for 3 hours and then cooled to room temperature. The resulting reddish brown oil is poured into a solution of sodium hcxafluorophosphatc (474 mg, 2.8 mmol) in ice water (10 mL). The solid that precipitates out of the solution is collected by filtration. The brown hydroscopic (Z)-
Nl ,N1 ,Λr ,N -Te1xamethyl-2-(3-pyridin-3 -yl-5 -trifluoromethyl-pyrazol- 1 -yl)-propene- 1,3 -diamine hexafluorophosphate (163 mg, 52 %) is used in the next step of the synthesis without further purification.
Stet To a solution of the above (Z)-N1 ,N1^5N3 -Tetramethyl-2-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-propene-l,3-diamine hexafluorophosphate (20 mg, 0.041 mmol) in ethanol (5 mL) are added sodium hydride (8 mg, 0.205 mmol) and guanidine carbonate (15 mg, 0.49 mmol) at room temperature under nitrogen atmosphere. The
solution is heated up to 80 0C for 6 hours. The solution is cooled to room temperature and then put into an ice bath. Water (10 mL) is added and the solution is then extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried with magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford 5-(3-Pyridin-3-yl-5-trifluoromcthyl- pyrazol-l-yl)-pyrimidin-2-ylamine (9 mg, 71 %).
Step d To a solution of 5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyrimidin-2-ylamme (10 mg, 0.033 mmol) in pyridine (5 mL) are added 4-(dimethylamino)pyridine (8 mg, 0.066 mmol) and benzoyl chloride (0.006 mL, 0.05 mmol) at room temperature. The solution is stirred at the same temperature for 24 hours. Saturated aqueous sodium bicarbonate solution (5 mL) is added and the solution mixture is diluted with water (10 mL) and extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate, filtered, concentrated under reduced pressure, and the residue is purified by chromatography to afford the title compound (6.5 mg, 48 %) as a white solid LC-MS (M+H-I): 411.02. Example 45: 3-Bromo-7V-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yI]-benzamide
major
Step a
4,4,4-Trifluoro-l-pyridin-3-yl-butane-l,3-dione is prepared according to step a in example 35. To a solution of 4,4,4-trifluoro-l-pyridin-3-yl-butane-l,3-dione (883 mg, 4.1 mmol) in ethanol (10 mL) are added 3-chloro-6-hydrazinopyridazine (500 mg, 3.4 mmol) and 12 M aqueous HCl (1 mL). The solution is heated up to 80 0C for 6 hours. The solution is cooled to room temperature and then concentrated under reduced pressure. The residue is dissolved in boiling ethanol (3 mL). Ethyl acetate (20 mL) is added and the solid that precipitates out of solution is collected by means of filtration. The solid is washed with cold ethanol (5 mL) and dried under vacuum. The resulting solid is confirmed by NMR to be the major product, 2-(6-chloro-pyridazin-3-yl)-5- pyridin-3-yl-3-trifluoromethyl-3,4-dihydro-2H-pyrazol-3-ol (650 mg, 56 %). The filtrate is concentrated under reduced pressure and the residue is purified by
chromatography to afford the minor product, 2-(6-chloro-pyridazin-3-yl)-3-pyridin-3- yl-5-trifluoromethyl-3,4-dihydro-2Hr-pyrazol-3-ol (450 mg, 39 %). Step b
2-(6-Chloro-pyridazin-3-yl)-5-pyridin-3-yl-3-trifluoromethyl-3,4-dihydro-2H:-pyrazol- 3-ol (30 mg, 0.087 mmol) is dissolved in 7 M ammonia in methanol (5 mL) in a sealed tube. The solution is heated up to 110 0C for 8 hours in a microwave reactor. The solution is cooled to room temperature and then concentrated under reduced pressure. The residue is purified by chromatography to afford 6-(3-pyridin-3-yl-5- trifluoromcthyl-pyrazol-l-yl)-pyridazin-3-ylaminc (18 mg, 68 %).
Step c
To a solution of 6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamine (50 mg, 0.16 mmol) in tetrahydrofuran (5 mL) are added ΛζiV-diisopropylethylamine (0.057 mL, 0.33 mmol) and 3-bromobenzoyl chloride (0.026 mL, 0.196 mmol) at 0 0C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtrated. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (39 mg, 49 %). LC- MS (M++l): 491.21.
The following compounds are prepared according to example 45 by replacing the acyl chloride in step c with commercially available starting materials.
Cyclohexanecarboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazm-3-yl]-amide; LC-MS (M++1): 417.36.
N-[6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-y1)-pyridazin-3-y1]-isonicotmamide; LC-MS (M++l): 412.36.
3 -Methoxy-iV-[6-(3 -pyridin-3 -yl-5-triuoromethyl-pyrazol- 1 -yl)-pyridazin-3 -yl] - benzamide; LC-MS (M++l): 440.9.
iV'-[6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-y^-pyridazin-S-ylJ-berLzainidei LC- MS (M++!): 411.35
Naphthalene- 1 -carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol- 1 -yl)- pyridazm-3-yl]-amide; LC-MS (M1+!): 461.34.
Benzo[δ]thiophene-2-carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-pyridazin-3-yl]-amide; LC-MS (M++l): 467.3.
N-[6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-yl]-nicotinamide; LC- MS (M++!): 412.33.
4-Chloromethyl-jV- [6-(3 -pyridin-3 -yl- 5-trifluoromethy 1-pyrazol- 1 -yl)-pyridazin-3 -yl] - benzamide; LC-MS (M++!): 459.29.
Benzofuran-5-carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-amide; LC-MS (M++l): 451.33.
Tsoxazole-5-carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l -yl)- pyridazin-3-yl]-amide; LC-MS (M++l): 401.92.
3 -Chloromethyl-iV- [6-(3 -pyridin-3 -yl-5 -trifluoromethyl-pyrazol- 1 -yl)-pyridazin-3 -yl] - benzamide; LC-MS (M++!): 458.89.
4-te7^-Butyl-N-[6-(3-pyridin-3-yl-5-triflυoroinetb.yl-pyrazol-l-yl)-pyridazin-3-yl]- benzamide; LC-MS (M++!): 467.37.
4-Bromo-N-[6-(3-pyridin-3-yl-5-trifluorometliyl-pyrazol-l-yl)-pyridazin-3-yl]- benzamide; LC-MS (M++!): 489.96.
4-Methoxy-iVr-[6-(3-pyridin-3-yl-5-trifluorometh.yl-pyrazol-l-yl)-pyridazin-3-yl]- benzamide; LC-MS (M++!): 441.38.
Biphenyl-4-carboxylic acid [6-(3-pyriditi-3-yl-5-trifluoromethyl-pyrazol-l -yl)- pyridazin-3-yl]-amide; LC-MS (M++!): 487.38.
2,3-Dihydro-benzofiiran-5-carboxylic acid [6-(3-ρyridin-3-yl-5-trifluoromethyl-pyrazol- l-yl)-pyridazin-3-yl]-amide; LC-MS (M++!): 453.35.
233-Dihydro-benzo[l,4]dioxine-6-carboxylic acid [6-(3-pyridIn-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-yl]-amide; LC-MS (M++!): 469.3.
2-(2,4-Dichloro-phenyl)-N-[6-(3-pyridm-3-yl-5-ixifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-acetamide; LC-MS (M++!): 495.94.
2-Phenyl-iV-[6-(3-pyridin-3-yl-5-trifluoroinethyl-pyrazol-l-yl)-pyridazm-3-yl]- acetamide; LC-MS (M++!): 425.02.
2-Bromo-iV-[6-(3-pyridm-3-yl-5-trifluoroniethyl-pyrazol-l-yl)-pyridazm-3-yl]- benzamide; LC-MS (M++!): 489.27.
5-BrOTTiO-N-[O-(S-PyTi din-3-yl-5-trifluoroτnethyl-pyrazol-l-yl)-ρyridazin-3-yl]- nicotinamide; LC-MS (M++!): 490.29..
2-Chloro-N- [6-(3 -pyridm-3 -yl-5-trifluoromethyl-pyrazol- 1 -yl)-pyridazin-3 -yl] - isonicotinaπήde; LC-MS (M++!): 446.37.
S-Cyano-N-fό-CS-pyridin-S-yl-S-trifluoromethyl-pyrazol-l-yO-pyridazin-S-yl]- benzamide; LC-MS (M++l): 436.35.
6-Moφholin-4-yl-Λir-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-yl]- nicotinamide; LC-MS (M++!): 497.32.
Example 46: Tetrahydro-pyran-4-carboxylic acid [6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridazin-3-yl]-amide
6-(3-Pyridin-3-yl-5-trifluorom.ethyl-pyrazol-l-yl)-pyridazin-3-ylamine is prepared according to step b in example 45. To a solution of 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylaminc (30 mg, 0.098 mmol) in dimcthylformamidc (10 mL) are added tetrahydropyran-4-yl-carbonylic acid (19 mg, 0.147 mmol), l-(3- dimethylaminopropyl)-3-ethylcarbodiimide (58 mg, 0.29 mmol), 1-hydroxybenzo- triazole hydrate (26 mg, 0.196 mmol) and ΛζiV-diisopropylethylamine (0.034 mL, 0.196 mmol). The solution is stirred at room temperature for 24 hours. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure. The residue is
purified by chromatography to afford the title compound (5 mg, 12%). LC-MS (M++!): 418.94.
Example 47: 4-Morpholin-4-yl-iV-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazoI-l- yl)-pyridazin-3-yl]-benzamide
Step a
To a suspension of 4-morpholinobenzoic acid (500 mg, 2.4 mmol) in dicloromethane (20 mL) is added oxalyl chloride (0.4 mL, 4.8 mmol) at room temperature under nitrogen atmosphere. The solution is heated at reflux for 3 hours. The solution is concentrated under reduced pressure and the residue, 4-morpholin-4-yl-benzoyl chloride (340 mg, 62 %), is used in the next step of the synthesis without further purification.
Step b
6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamme is prepared according to step b in example 45. To a solution of 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylamine (200 mg, 0.65 mmol) in tetrahyfrofuran (10 mL) are added AζiV-diisopropylethylamine (0.23 mL, 1.0 mmol) and 4-morpholm~4-yl-benzoyl chloride (294 mg, 1.3 mmol) respectively at 0 0C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate
(20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (183 mg, 57 %). LC-MS (M++!):
496.31.
The following compounds are prepared according to example 47 by replacing the carboxylic acid with commercially available starting materials.
3-Benzyloxy-iV-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-yl]- benzamide; LC-MS (M++!): 516.06.
3-Hydroxy-Λ/-[6-(3 -pyridin-3 -yl-5-trifluoromethyl-pyrazol- 1 -yl)-pyridazin-3 -yl]- benzamide; LC-MS (M++!): 427.03.
3-[6-(3-Pyridin-3-yl-5-trifluoromcthyl-pyrazol-l-yl)-pyridazin-3-ylcarbamoyl]- piperidine-1 -carboxylic acid tert-butyl ester; LC-MS (M++!): 517.15.
S-Phenoxy-N-fβ-CS-pyridm-S-yl-S-trifluoromethyl-pyrazol-l-y^-pyridazin-S-yl]- bcnzamidc; LC-MS (M++!): 503.38.
Example 48: Biphenyl-3,3'-dicarboxylic acid 3'-dimethylamide 3-{[6-(3-pyridin-3- yl-S-trifluoromethyl-pyrazol-l-yty-pyridazin-S-yll-amide}
To a solution of 3-bromo-iV-[6-(3-pyridm-3-yl-5-trifluororαethyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide (60 mg, 0.123 mmol), prepared according example 45, in dimethylformamide (5 mL) are added [3-(N,iV-dimethylaminocarbonyl)phenyl]boronic acid (47 mg, 0.25 mmol), tetrakis(triphenylphosphine)palladmm(0) (14 mg, 0.012 mmol) and cesium carbonate (40 mg, 0.123 mmol). The solution is heated to 100 0C for 10 minutes in a microwave reactor. The reddish brown solution is cooled to room temperature and 3-mercaptopropyl-funcationalized silica gel (500 mg) is added to the solution. The resulting solution is stirred for 30 minutes and filtered. Water (20 mL) is added to the filtrate and the resulting mixture is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (33 mg, 49 %). LC-MS (M++l): 558.69.
The following compounds are prepared according to example 48 by replacing the boronic acid with commercially available starting materials.
3'-[6-(3-Pyridin-3-yl-5-trifluorornethyl-pyrazol-l-yl)-pyridazin-3-ylcarbainoyl]- biphenyl-3-carboxylic acid methyl ester; LC-MS (M+-Hl): 545.37.
Biphenyl-3-carboxy lie acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-amide; LC-MS (M++l): 487.36.
3 -Cy clohex- 1 -enyl-JV-[6-(3 -pyridin-3 -yl-5-trifluoroinethyl-pyrazol- 1 -yl)-pyridazin-3 - yl]-benκamide; LC-MS (M++l): 491.41.
iV-[6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridaziii-3-yl]-3-pyrimidm-5-yl- benzamide; LC-MS (M++!): 489.05.
Biphenyl-3,4'-dicarboxylic acid 4'-dimethylamide 3-{[6-(3-pyridin-3-yl-5- trifl.uoromethyl-ρyrazol-l-yl)-pyridazin-3-yl]-amide}; LC-MS (M++l): 558.7.
S'-Hydroxy-biphenyl-S-carboxylic acid [6-(3-pyridin-3-yl-5-1xifluororαethyl-pyrazol-l- yl)-pyridazin-3-yl]-amide; LC-MS (M++l): 503.1.
S'-tβ-CS-Pyridin-S-yl-S-trifluoromcthyl-pyrazol-l-y^-pyridazin-S-ylcarbamoyl]- biphenyl-3-carboxylic acid; LC-MS (M++l): 531.09.
3 -Pyridin-3 -yl-iV-[6-(3 -pyridin-3 -yl-S-trifluoromcthyl-pyrazol- 1 -yl)-pyridazin-3 -yl] - benzamide; LC-MS (M++!): 488.4.
3 -Pyridin-4-yl-JV-[6-(3 -pyridin-3 -yl-5-trifluoromethyl-pyrazol- 1 -yl)-pyridazin-3 -yl] - benzamide; LC-MS (M'+l): 488.4.
2'-Hydroxy-biphenyl-3-carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol- 1 - yl)-pyridazin-3-yl]-amide; LC-MS (M1+!): 503.08.
4'-Hydroxy-biphenyl-3-carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-pyridazin-3-yl]-amidc; LC-MS (M++!): 503.08.
3'-[6-(3-Pyridin-3-yl-5-trifluoroπieth.yl-pyrazol-l-yl)-pyridazin-3-ylcarbamoyl]- biphenyl-2-carboxylic acid; LC-MS (M++!): 531.08.
3 '-[6-(3 -Pyrid in-3 -yl-5 -triflii oromethyl-pyrazol- 1 -yl)-pyridazin-3 -ylcarbamoyl] - biρhenyl-4-carboxylic acid; LC-MS (M++l): 531.1.
Biphenyl-2,3'-dicarboxylic acid 2-amide 3'-{[6-(3-pyridin-3-yl-5-trifluorometb.yl- pyrazol-l-yl)-pyridazin-3-yl]-amide}; LC-MS (M++l): 530.43.
Biphenyl-3,3'-dicarboxylic acid 3'-amide 3-{[6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-yl]-amide}; LC-MS (M++l): 530.4.
Biphenyl-3,4'-dicarboxylic acid 4' -amide 3-{[6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-yl]-amide}; LC-MS (M++l): 530.39.
3-(6-Metiioxy-pyridin-3-yl)-N-[6-(3-pytidin-3-yl-5-triflυorometh.yl-pyrazol-l-yl)- pyridazin-3-yl]-benzarnide; LC-MS (M++l): 518.1.
3 '-Methanesulfonyl-biphenyl-3 -carboxylic acid [6-(3 -pyridin-3 -yl-5 -trifluoromethyl- pyrazol- 1 -yl)-pyridazin-3 -yl] -amide
LC-MS (M++!): 565.05
3 '-Methoxy-bipheny 1-3 -carboxylic acid [6-(3 -pyridin-3 -yl-5-trifluoromethyl-pyrazol-l- yl)-pyridazin-3-yl]-amide; LC-MS (M++l): 517.4.
Biphenyl-3,3'-dicarboxylic acid 3'-methylamide 3-{[6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridazin-3-yl]-amide}; LC-MS (M++!): 544.46.
3-(2-Chloro-pyridm-4-yl)-Λr-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide; LC-MS (M+): 521.06.
3'-(Morpholine-4-carbonyl)-biphenyl-3-carboxylic acid [6-(3-pyridin-3-yl-5- trifIuoromethyl-pyrazol-1-yl)-pyridazin-3-yl]-amide; LC-MS (M'+l): 600.57.
3'-(Pyrrolidine-l-carbonyl)-biphenyl-3-carboxylic acid [6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridazin-3-yl]-amide; LC-MS (M++!): 584.66.
4'-(Pyrrolidine- 1 -carbony^-biphenyl-S-carboxylic acid [6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-ρyridazin-3-yl]-amide; LC-MS (M++!): 584.64.
4'-(Morpholine-4-carbonyl)-biphenyl-3-carboxylic acid [6-(3-pyτidin-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridazin-3-yl]-amide; LC-MS (M++!): 600.57.
Biphenyl-3,4'-dicarboxylic acid 4'-methylamide 3-{[6-(3-pyridin-3-yl~5- trifluoromethyl-pyrazol-l-yl)-pyridazin-3-yl]-amide}; LC-MS (M++!): 544.04.
3-(6-Chloro-pyridin-3-yl)-Λ^[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide; LC-MS (M++!): 522.25.
Example 49: Biphenyl-2-carboxyIic acid l6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazoI-l-yl)-pyridazin-3-yI]-amide
Step a 6-(3-Pyridin-3-yl-5-trifluorometh.yl-pyrazol-l-yl)-pyridazin-3-ylamine is prepared according to step b in example 45. To a solution of 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylatnme (100 mg, 0.33 nrmol) in tetrahydrofuran (10 mL) are added iV.N-diisopropylethylamme (0.28 mL, 1.6 mmol) and 2-bromobenzoyl chloride (0.085 mL, 0.65 mmol) respectively at 0 0C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by
chromatography to afford 2-Bromo--/V-[6-(3-pyridui-3-yl-5-trifluoromethyl-pyrazol-l- yl)-pyridazin-3-yl]-benzamide (140 mg, 88 %)..
To a solution of 2-bromo-iV-[6-(3-pyridin-3-yl-5-trifiuoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide (50 mg, 0.102 mmol) in dimethylformamide (5 mL) are
added phenylboronic acid (26 mg, 0.204 rnmol),
tetrakis(triphenylphosphine)palladium(0) (14 mg, 0.012 mmol) and cesium carbonate (33 mg, 0.102 mmol). The solution is heated to 100 0C for 10 minutes in a microwave reactor. The reddish brown solution is cooled to room temperature and 3- mcrcaptopropyl-funcationalizcd silica gel (500 mg) is added to the solution. The resulting solution is stirred for 30 minutes and filtered. Water (20 mL) is added to the filtrate and the resulting mixture is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (11 mg, 22 %). LC-MS (M++!): 487.41.
Example 50: 7V-[6-(3-Pyridin-3-yl-5-trifluoromethyI-pyrazol-l-yl)-pyridazin-3-yl] - 5-pyrimidin-5-yl-nicotinamide
Step a
6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamine is prepared according to step b in example 45. To a solution of 6-(3-pyτidin-3-yl-5-trifluorornethyl- pyrazol-l-yl)-pyridazin-3-ylamine (250 mg, 0.816 mmol) in tetrahydrofuran (10 mL) are added ΛζN-diisopropylethylamine (0.43 mL, 2.45 mmol) and 5-bromonicotinyl chloride (360 mg, 1.63 mmol) respectively at 0 °C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then
filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford 5-bromo-N-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol- l-yl)-pyridazin-3-yl] -nicotinamide (270 mg, 68 %).
Stcτ> b
To a solution of 5-bromo-7V-[6-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl] -nicotinamide (60 mg, 0.122 mmol) in dimethylformamide (5 mL) are added 5-pyrimidinylboronic acid (30 mg, 0.24 mmol),
tetrakis(triphenylphosphine)palladium(0) (14 mg, 0.012 mmol) and cesium carbonate (40 mg, 0.123 mmol). The solution is heated to 100 0C for 10 minutes in a microwave reactor. The reddish brown solution is cooled to room temperature and 3- mercaptopropyl-funcationalized silica gel (500 mg) is added to the solution. The resulting solution is stirred for 30 minutes and then filtered. Water (20 mL) is added to the filtrate and the resulting mixture is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (20 mg, 34%). LC-MS (M++l): 490.44.
The following compounds are prepared according to example 50 by replacing the boronic acid in step b with commercially available starting materials.
5-Phenyl-iV- [6-(3 -pyridin-3 -yl- 5-trifluoromethyl-pyrazol- 1 -yi)-pyridazin-3 -yl] - nicotinamide; LC-MS (M++!): 488.38.
[3,3']Bipyridinyl-5-carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-amide; LC-MS (M++l): 489.36.
Example 51 : 3-OxazoI-5-yl-iV- [6-(3-pyridin-3-yI-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl] -benzamide
Step a
To a solution of methyl-3-formylbenzoate (300 mg, 1.828 mmol) in methanol (20 mL) are added tosylmethyl isocyanide (541 rng, 2.7 mmol) and potassium carbonate (505 mg, 3.7 mmol) at room temperature. The solution mixture is heated at reflux for 3 hours. The solution is then cooled to room temperature and concentrated under reduced pressure. The residue, 3-oxazol-5-yl-benzoic acid methyl ester (200 mg, 54 %), is used in the next step of the synthesis without further purification.
To a solution of 3-oxazol-5-yl-benzoic acid methyl ester (300 mg, 1.48 mmol) in methanol (20 mL) and water (5 mL) is added lithium hydroxide (71 mg, 2.9 mmol) at room temperature. The solution is stirred at the same temperature for 24 hours. The solution is cooled in an ice bath and 12 M aqueous HCl is added to adjust the pH of the solution to 2. The solution is concentrated under reduced pressure and the remaining solid is collected by means of filtration. The solid is washed with cold methanol (5 mL) and dried under vacuum. The resulting product, 3-oxazol-5-yl-benzoic acid (164 mg, 59 %), is used in the next step of the synthesis without further purification.
StCT
To a solution of 3-oxazol-5-yl-benzoic acid (100 nag, 0.53 mmol) in dichlrormethane (10 mL) is added oxalyl chloride (0.14 mL, 1.59 mmol) at room temperature under nitrogen atmosphere. The solution is heated at reflux for 3 hours and then cooled to room temperature. The solution is concentrated under reduced pressure and the residue, 3-oxazol-5-yl-benzoyl chloride (95 mg, 87 %), is used in the next step of the synthesis without further purification. Step d
6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamme is prepared according to step b in example 45. To a solution of 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylamine (100 mg, 0.327 mmol) in tetrahydrofuran (10 mL) are added ΛζiV-diisopropylethylamine (0.28 mL, 1.63 mmol) and 3-Oxazol-5-yl-benzoyl chloride (136 mg, 0.65 mmol) respectively at 0 0C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (45 mg, 29 %). LC-MS (M++l):
478.39. Example 52: 2-Phenyl-iV-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl] -isonicotinamide
Ste
6-(3-Pyridin-3-yl-5-trifluoroinethyl-ρyrazol-l-yl)-pyridazin-3-ylainine is prepared according to step b in example 45. To a solution of 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylamine (300 mg, 0.98 mmol) in tetrahydrofuran (10 mL) are added iV,N-diisopropylethylamine (0.43 mL, 2.45 mmol) and 2-chloropyridine-4- carbonyl chloride (345 mg, 1.96 mmol) respectively at 0 0C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. . Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford 2-chloro--/V-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-pyridazin-3-yl]-isonicotinamide (350 mg, 80 %).
Step b To a solution of 2-chloro-iV-[6-(3 -pyridin-3 -yl-5-trifluoromethyl-pyrazol- 1 -yl)- pyridaziii-3-yl]-isonicotinamide (60 mg, 0.135 mmol) in dimethylformamide (5 mL) are added phcnylboronic acid (34 mg, 0.27 mmol),
tetrakis(triphenylphosphine)palladium(0) (16 mg, 0.013 mmol) and cesium carbonate (44 mg, 0.135 mmol). The solution is heated to 100 0C for 10 minutes in a microwave reactor. The reddish brown solution is cooled to room temperature and 3- mercaptopropyl-funcationalized silica gel (500 mg) is added to the solution. The
resulting solution is stirred for 30 minutes and then filtered. Water (20 mL) is added to the filtrate and the resulting mixture is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford to afford the title compound (5 mg, 8 %). LC-MS (M++!): 488.38
The following compounds are prepared according to example 52 by replacing the boronic acid in step b with commercially available starting materials.
-V-[6-(3 -Pyridin-S-yl-S-trifluoromethyl-pyrazol- 1 -yl)-pyridazin-3 -yl]-2-pyrimidin-5-yl- isonicotinamide; LC-MS (M++l): 490.37.
[2,3']Bipyridinyl-4-carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-amide; LC-MS (M++1): 489.34.
Example 53: 3-Pyridin-2-yl-7V-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl] -benzamide
To a solution of 3-bromo-iV-[6-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide (60 mg, 0.123 mmol), prepared according example 45, in dimethylformamide (5 mL) are added 2-tri-n-butylstannyl pyridine (90 mg, 0.25 mmol)
and tefrakis(rriphenylphosphine)palladium(0) (14mg, 0.012 mmol). The solution is heated to 120 °C in a microwave reactor for 2 hours. The reddish brown solution is cooled to room temperature and 3-mercaptopropyl-functionalized silica gel (500 mg) is added to adsorb the palladium residue. The resulting pale yellow solution mixture is filtered. Water (20 mL) is added to the filtrate and the solution is extracted with ethyl acetate (2OmL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (12 mg, 20%). LC-MS
(M++l): 488.34.
Example 54: iV-[6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazoI-l-yl)-pyridazin-3-yl]- 3-(liϊ-tetrazol-5-yl)-benzamide
6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamine is prepared according to step b in example 45). To a solution of 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylamine (200 mg, 0.65 mmol) in etrahydrofuran (10 mL) are added
(0.34 mL, 1.96 mmol) and 3-cynaobenzoyl chloride (216 mg, 1.31 mrnol) respectively at 0 °C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by
chromatography to afford 3-cyano-N-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-pyridazin-3-yl]-benzamide (150 mg, 53 %).
Step b
To a solution of 3-cyano-iV-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-beπzamide (50 mg, 0.12 mmol) in dimethylformamide (4 mL) are added azidotrimethylsilane (0.03 mL, 0.23 mmol) and dibutyltin oxide (87.5 mg, 0.35 mmol) at room temperature. The solution is heated up to 100 0C for 20 minutes in a microwave reactor. The solution is cooled to room temperature and water (20 mL) is added. The solution is extracted with ethyl acetate (2OmL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (23 mg, 42 %) as a white solid. LC-MS (M++l): 479.03.
Example 55: 3-(2-Methyl-oxazol-5-yl)-iV-[6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-yl]-benzamide
Step a
To a stirring solution of thallium (III) acetate (2.3 g, 6.1 mmol) in acetonitrile (10 mL) is added trifluoromethansulfonic acid (0.81 mL, 9.1 mmol) at room temperature. The mixture is stirred at the same temperature for 10 minutes. A solution of 3-acetylbenzoic acid (500 mg, 3 mmol) in acetonitrile (5 mL) is added to the above mixture and the resulting solution is heated at reflux for 90 minutes. The solution is cooled to room
temperature and concentrated under reduced pressure. The residue is extracted with ethyl acetate (20 mL, 3 x) and water (10 mL). The combined organic layers are dried over magnesium sulfate and then filtered. The residue is purified by chromatography to afford 3-(2-Methyl-oxazol-5-yl)-benzoic acid (250 mg, 40 %) as a white solid.
Step b
To a solution of 3-(2-methyl-oxazol-5-yl)-benzoic acid (500 mg, 2.5 mmol) in dichloromethane (10 mL) is added oxalyl chloride (0.64 mL, 7.38 mmol) at room temperature under nitrogen atmosphere. The solution is heated at reflux for 3 hours and then cooled to room temperature. The solution is concentrated under reduced pressure and the residue, 3-(2-methyl-oxazol-5-yl)-benzoyl chloride (420 mg, 77 %), is used in the next step of the synthesis without further purification. Step c
6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamine is prepared according to step b in example 45. To a solution of 6-(3-pyridin-3-yl-5-trifluoromethyl- pyraκol-l-yl)-pyridazin-3-ylamme (50 mg, 0.163 mmol) in tetrahydrofuran (10 mL) are added ΛζiV-diisopropylethylamine (0.14 mL, 0.816 mmol) and 3-(2-methyl-oxazol-5- yl)-benzoyl chloride (72 mg, 0.33 mmol) respectively at 0 0C under nitrogen
atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (10 mg. 13 %). LC- MS (M+H-I): 492.34.
Example 56: l-Ethyl-ό-oxo-l^-dihydro-pyridine-S-carboxylic acid [β-(3-pyridin-3- yl-5-trifluoromethyl-pyrazol-l-yI)-pyridazin-3-yI]-amide and 6-Ethoxy-iV-[6-(3- pyridxn-3-yI-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylI-nicotmainide
To a solution of l-ethyl-β-oxo-ljβ-diliydro-pyridine-S-carboxylic acid (500 mg, 2.9 mmol), prepared according to step c example 3, in dichloromethane (20 mL) is added oxalyl chloride (0.5 mL, 5.9 mmol) at room temperature under nitrogen atmosphere. The solution is heated at reflux for 3 hours and is then cooled to room temperature. The solution is concentrated under reduced pressure and the residue, 1 -ethyl -6-oxo-l ,6- dihydro-pyridine-3-carbonyl chloride (354 mg, 64 %), is used in the next step of the synthesis without further purification.
6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamine is prepared according to step b in example 45. To a solution of 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylarnine (200 mg, 0.653 mmol) in tetrahydrofuran (10 mL) are added ΛζN-diisopropylethylamine (0.23 mL, 1.31 mmol) and l-ethyl-6-oxo-l,6- dihydro-pyridine-3-carbonyl chloride (182 mg, 0.98 mmol) respectively at 0 0C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour.
Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford l-ethyl-6-oxo-l,6-dihydro-
pyridine-3-carboxylic acid [6-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin- 3-yl]-amide (31 mg, 10%), LC-MS (M++l): 456.80, and 6-ethoxy-iV-[6-(3-pyridin-3-yl- 5-trifluorometliyl-pyrazol-l-yl)-pyridazin-3-yl]-mcotmainide (16 mg, 5 %) LC-MS (M++l): 456.61.
Example 57: 3-(6-FIuoro-pyridin-3-yϊ)-iV- [6-(3-py ridiπ-3-yI-5-trifluoromethyl- pyrazoI-l-yl)-pyridazin-3-yl]-benzamide
Step a
To a solution of 3-inetlioxycarbonylphenylboronic acid (300 mg, 1.67 mmol) in dimethylformamide (5 mL) are added 5-bromo-2-fluoropyridine (0.34 mL, 3.3 mmol), tetrakis(triphenylphosphine)palladium(0) ( 192 mg, 0.17 mmol) and cesium carbonate (543 mg, 1.7 mmol). The solution is heated to 120 0C in a microwave reactor for 20 minutes. The reddish brown solution is cooled room temperature and 3-mccaptopropyl- functionalized silica gel (500 mg) is added to adsorb the palladium residue. The resulting pale yellow solution mixture is filtered. The filtrate is washed with water (10 mL) and then extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford 3-(6-fluoro- pyridin-3-yl)-benzoic acid methyl ester (260 mg, 68 %).
To a solution of 3-(6-fluoro-pyridin-3-yl)-benzoic acid methyl ester (200 mg, 0.87 mmol) in 1,4-dioxane (20 mL) and water (5 mL) is added lithium hydroxide (41 mg, 1.7 mmol) at room temperature. The solution is stirred at room temperature for 4 hours. The solvent is removed under reduced pressure. The residue is acidified to pH 2 with 12 M aqueous HCl . The resulting solution was extracted with ethyl acetate (20 mL, 3 x) and water (10 mL). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford 3-(6-fluoro-pyridin-3-yl)-benzoic acid (150 mg, 80 %).
Step c
To a solution of 3-(6-fluoro-pyridin-3-yl)-benzoic acid (200 mg, 0.92 mmol) in dichloromethane (20 mL) is added oxalyl chloride (0.16 mL, 1.84 mmol) at room temperature under nitrogen atmosphere. The solution is heated at reflux for 3 hours and is then cooled to room temperature. The solution is concentrated under reduced pressure and the residue, 3-(6-fluoro-pyridin-3-yl)-benzoyl chloride (180 mg, 83 %), is used in the next step of the synthesis without further purification. Step d
6-(3-Pyridin-3-yl-5-trifluoromcthyl-pyrazol-l-yl)-pyridazin-3-ylaminc is prepared according to step b in example 45. To a solution of 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridaκin-3-ylamine (200 mg, 0.653 mmol) in tetrahydrofuran (10 mL) are added iV;N-diisopropylethylamine (0.23 mL, 1.31 mmol) and 3-(6-fluoro-pyridin-3- yl)-benzoyl chloride (307 mg, 1.31 mmol) respectively at 0 0C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (95 mg, 29 %). LC- MS (M++l): 506.03.
The following compounds are prepared according to example 57 by replacing the 5-bromo-2-fluoropyridine in step a with commercially available starting materials.
3-(6-Nitro-pyridin-3-yl)-N-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin- 3-yl]-benzamide; LC-MS (M++l): 533.26.
3 -(6-Methyl-pyridin-3 -yl)-JV- [6-(3 -pyridin-3 -yl-5-trifluorometliyl-pyrazol- 1 -yl)- pyridazin-3-yl]-benzamide; LC-MS (M++l): 502.28.
Example 58: 3-Morpholin-4-yl-7V-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l- yl)-pyridazin-3-yl] -benzamide
To a solution of (3-methoxycarbonylphenyl)boronic acid (100 mg, 0.56 mmol) in toluene (5 mL) are added morpholine (0.1 mL, 1.1 mmol), copper (II) acetate (10 mg, 0.056 mmol) and myristic acid (25 mg, 0.11 mmol) at room temperature. The solution is stirred at the same temperature for 12 hours. The mixture is filtered and the filtrate is concentrated under reduced pressure. The residue is purified by chromatography to afford 3-morpholin-4-yl-benzoic acid methyl ester (90 mg, 73 %).
To a solution of 3-morpholin-4-yl-benzoic acid methyl ester (200 mg, 0.9 mmol) in 1,4- dioxane (20 mL) and water (5 mL) is added lithium hydroxide (43 mg, 1.8 mmol) at room temperature. The solution is stirred at room temperature for 4 hours. The solvent is removed under reduced pressure. The residue is acidified to pH 2 with 12 M aqueous HCl. The resulting solution was extracted with ethyl acetate (20 mL, 3 x) and water (10 mL). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford 3-morpholin-4-yl-benzoic acid (160 mg, 85 %).
Step c
To a solution of 3-morpholin-4-yl-benzoic acid (160 mg, 0.77 mmol) in
dichloromcthanc (20 mL) is added oxalyl chloride (0.14 mL, 1.54 mmol) at room temperature under nitrogen atmosphere. The solution is heated at reflux for 3 hours and is then cooled to room temperature. The solution is concentrated under reduced pressure and the residue product, 3-morpholin-4-yl-benzoyl chloride (160 mg, 92 %), is used in the next step of the synthesis without further purification.
Step d 6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamine is prepared according to step b in example 45. To a solution of 6-(3-pyridin-3-yl-5-trifluorornethyl- pyrazol-l-yl)-pyridazin-3-ylamine (200 mg, 0.653 mmol) in tetrahydrofuran (10 mL) are added ΛζiV-diisopropylethylamine (0.23 mL, 1.31 mmol) and 3-morpholin-4-yl- benzoyl chloride (295 mg, 1.31 mmol) respectively at 0 0C under nitrogen atmosphere.
The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (20 mg, 6 %). LC-MS (M++l): 496.01.
The following compounds are prepared according to example 58 by replacing morpholine in step a with commercially available starting materials.
3-Piperidin-l-yl-iV-[6-(3-pyridin-3-yl-5-trifiuoromethyl-pyrazol-l-yl)-pyridazm-3-yl]- benzamide; LC-MS (M++!): 494.32.
3-(2,6-Diinethyl-τnorpholm-4-yl)-iV'-[6-(3-pyridm-3-yl-5-trifiuoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide; LC-MS (M++l): 524.31.
3-Irnidazol-l-yl-iV-[6-(3-pyridin-3-yl-5-trifiuoroinethyl-pyrazol-l-yl)-pyridazm-3-yl]- benzamide; LC-MS (M++!): 477.24.
Example 59: 3-(6-Oxo-l,6-dihydro-pyridin-3-yl)-iV-[6-(3-pyπdin-3-yl-5- trifluoromethyϊ-pyrazol-l-yI)-pyridazin-3-yl]-benzamide
Step a To a solution of 3-bromo-i\^-[6-(3-pyridm-3-yl-5-trifluorometliyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide (60 mg, 0.123 mmol), prepared according to example 45, in dimethylformamide (5 mL) are added (2-methoxy-5-pyridinyl)boronic acid (38 mg, 0.25 mmol), tetrakis(triphenylphosphine)palladium(0) (14 mg, 0.012 mmol) and cesium carbonate (40 mg, 0.123 mmol). The solution is heated to 100 0C for 10 minutes in a microwave reactor. The reddish brown solution is cooled to room temperature and 3- mercaptopropyl-funcationalized silica gel (500 mg) is added to the solution. The resulting solution is stirred for 30 minutes and is filtered. Water (20 mL) is added to the filtrate and the resulting mixture is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford 3-(6-methoxy-pyridin-3-yl)-N-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide (15 mg, 24 %).
Step b
To a solution of sodium sulfide (30 mg, 0.39 mmol) in l,3-dimcthyl-2-imidazolinonc (5 mL) is added trimethylsilyl chloride (0.05 mL, 0.39 mmol) at room temperature under nitrogen atmosphere. The solution is allowed to stir for 30 minutes at the same temperature prior to the addition of 3-(6-methoxy-pyridin-3-yl)-iV-[6-(3-pyridm-3-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridazin-3-yl]-benzamide (100 mg5 0.19 mmol). The solution mixture is sealed and heated to 150 0C in a microwave reactor for 10 minutes.
The solution is cooled to room temperature, diluted with water (10 mL), and extracted with dichloromethane (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by to afford the title compound (5 mg, 5 %). LC-MS (M++ 1): 503.94.
Example 60: 3-Bromo-JV-{6-[3-(6-morpholin-4-yl-pyridin-3-yl)-5-trifluoromethyl- pyrazol-l-yl]-pyridazin-3-yl}-benzamide
6-[3-(6-morpholin-4-yl-pyridin-3-yl)-5-trifluoromcthyl-pyrazol-l-yl]-pyridazin-3- ylamine is prepared according to example 45 by replacing 3-acetylpyridine with l-(6- morpholin-4-yl-pyridin-3-yl)-ethanone (prepared according to step a in example 36). To a solution of 6-[3-(6-morpholin-4-yl-pyridm-3-yl)-5-trifluoromethyl-pyrazol-l-yl]- pyridazin-3-ylamine (200 mg, 0.511 mmol) in tetrahydrofuran (20 mL) are added N,N- diisopropylethylamine (0.27 mL, 1 .53 mmol) and 3-bromobenzoyl chloride (0.14 mL, 1 mmol) respectively at 0 °C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtrated. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (150 mg, 51%). LC-MS (M++l): 576.14.
The following compound is prepared according to example 60 by replacing the acyl chloride with commercially available starting material.
3 -Cyano-iV- { 6-[3 -(6-morpholin-4-yl-pyridin-3 -yl)-5 -trifluoromethyl-pyrazol- 1 -yl] - pyridazin-3-yl}-benzamide; LC-MS (M++l): 521.3.
Example 61 : 3-(6-Fluoro-pyridin-3-yl)-iV-{6-[3-(6-morphoIin-4-yI-pyridin-3-yl)-5- trifluoromethyl-pyrazol-l-yl]-pyridazin-3~yl}-benzamide
To a solution of 3-bromo-iV-{6-[3-(6-morpholin-4-yl-pyridin-3-yl)-5-trifluoromethyl- pyrazol-l-yl]-pyridazm-3-yl}-benzamide (80 mg, 0.14 mmol), prepared according to example 59, in dimethylformamide (5 mL) are added 2-£luoropyridine-5-boronic acid (39 mg, 0.28 mmol), Tctrakis-(triphcnylphosphinc)palladium(0) (16 mg, 0.014 mmol) and cesium carbonate (45 mg, 0.14 mmol). The solution is heated to 100 °C for 10 minutes in a microwave reactor. The reddish brown solution is cooled to room temperature and 3-mercaptopropyl-funcationalized silica gel (500 mg) is added to the solution. The resulting solution is stirred for 30 minutes and then filtered. Water (20 mL) is added to the filtrate and the resulting mixture is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (52 mg, 63 %). LC-MS (M++l): 591.24
Example 62: l-{3-[6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3- ylcarbamoylj-phenylj-piperidine^-carboxylic acid ethyl ester
To a solution of 3-bromo-iV-[6-(3-pyridin-3-yl-5-triiluoromethyl-pyrazol-l-yl)- pyridazin-3-yi]-benzamide (200 mg, 0.4 mmol), prepared according to example 45, in
dimethylsulfoxide (4 mL) are added ethyl isonipecotate (0.13 mL, 0.8 mmol), copper (I) iodide (8 mg, 0.04 mmol). L-prolinc (9 mg5 0.08 mmol) and potassium carbonate (57 mg, 0.4 mmol) respectively. The solution mixture is heated up to 90 0C in a microwave reactor for 90 minutes. The resulting solution is cooled to room temperature and is washed with water (10 mL). The solution mixture is extracted with ethyl acetate (20 mL, 3 x) and the combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (9 mg, 3%). LC-MS (M++l): 566.26
The following compounds are prepared according to example 62 by replacing the amine with commercially available starting materials.
3-(4-Methyl-piperazin-l-yl)-N-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide; LC-MS (M++l): 509.28.
3-(4-Acetyl-piperazin-l-yl)-N-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide; LC-MS (M++l): 537.29.
3-(3,5-Dirnethyl-piperidin-l -yl)-N-[6-(3-pyridin-3-yl-5-trifluorornethyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide; LC-MS (M++!): 522.34.
N-[6-(3-Pyridin-3-yl-5-trifluoroniethyl-pyrazol-l-yl)-pyridazin-3-yl]-3-pyrrolidm-l-yl- benzamide; LC-MS (M++!): 480.27.
3-(4-Isopropyl-piperazin-l-yl)-iV-[6-(3-pyridin-3-yl-5-trifluoroπietliyl-pyrazol-l-yl)- pyridazin-3-yl]-benzamide; LC-MS (M++!): 537.29.
Example 63: Piperidine-3-carboxylic acid [6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazoI-l-yl)-pyridazin-3-yI]-amide
Ste
To a solution of 1 -(tert-butoxycarbony^-S-piperdinecarboxylic acid (300 mg, 1.31 mmol) in dichloromethane (20 mL) is added oxalyl chloride (0.23 mL, 2.6 mmol) at room temperature under nitrogen atmosphere. The solution is heated at reflμx for 3 hours and then cooled to room temperature. The solution is concentrated under reduced pressure and the residue, 3-chlorocarbonyl-piperidine-l-carboxylic acid tert-bvάy\ ester (250 mg, 77 %), is used in the next step of the synthesis without further purification.
6-(3-Pyridm-3-yl-5-tri£luoromethyl-pyrazol-l-yl)-pyridazin-3-ylamme is prepared according to step b in example 45. To a solution of 6-(3-pyridm-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-ylamine (100 mg, 0.33 mmol) in tetrahydrofuran (10 mL) are added ΛζN-diisopropylcthylaminc (0.17 mL, 0.98 mmol) and 3-chlorocarbonyl- piperidine-1-carboxylic acid fert-butyl ester (162 mg, 0.65 mmol) respectively at 0 0C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford 3-[6-(3-pyridin-3-yl-5- trifluoromethyl-pyrazol- 1 -yl)-pyridazin-3 -ylcarbamoylj-piperidine- 1 -carboxylic acid tert-butyl ester (103 mg, 61 %).
To a solution of S-fό-CS-pyridin-S-yl-S-trifluoromethyl-pyrazol-l-yO-pyridazin-S- ylcarbamoyl]-pipcridinc-l-carboxylic acid tert-butyl ester (50 mg, 0.01 mmol) in dichloromethane (10 mL) is added trifluoromethansulfonic acid (0.1 mL) at room temperature. The solution is stirred at the same temperature for 1 hour. The solution is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (28 mg, 70 %). LC-MS (M++!): 417.12.
Example 64: 3-Bromo-JV-{6-[3-(6-methoxy-pyridin-3-yl)-5-trifluoromethyl- pyrazol-l-yl]-pyridazin-3-yl}-benzamide
6-[3-(6-Methoxy-pyridin-3-yl)-5-trifluoromethyl-pyrazol-l-yl]-pyridazin-3-ylamine is prepared according to example 45 by replacing 3-acetylpyridine with l-(6-methoxy- pyridin-3-yi)-ethanone (prepared according to step a in example 36). To a solution of 6- [3-(6-methoxy-pyridin-3-yl)-5-trifluoromethyl-pyrazol-l-yl]-pyridazin-3-ylamine (200 mg, 0.6 mmol) in tetrahydrofuran (10 mL) are added 7V,iV-diisopropylethylamme (0.3 mL, 1.8 mmol) and 3-bromobenzoyl chloride (0.16 mL, 1.2 mmol) respectively at 0 0C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by to afford the title compound (260 mg, 84 %). LC-MS (M++l): 521.18.
The following compound is prepared according to example 64 by replacing the acyl chloride with commercially available starting material.
3-Cyano-N-{6-[3-(6-meth.oxy-pyridin-3-yl)-5-trifluorornethyl-pyrazol-l-yl]-pyridazin- 3-yl}-benzamide; LC-MS (M++l): 466.31.
Example 65: 3-(6-Fluoro-pyridin-3-yl)-iV-{6-[3K6-methoxy-pyridin-3-yI)-5- trifluoromethyl-pyrazol-l-yI]-pyridazin-3-yl}-benzamide
To a solution of 3-bromo-iV"-{6-[3-(6-methoxy-pyridin-3-yl)-5-trifluoronietliyl-pyrazol- l -yl]-pyridazin-3-yl}-benzamide (100 mg, 0.19 mmol), prepared according to example 63, in dimethylformamide (5 mL) are added 2-fluoropyridine-5-boronic acid (54 mg, 0.39 mmol), tetrakis(triphenylphosphine)palladium(0) (22 mg, 0.019 mmol) and cesium carbonate (63 mg, 0.19 mmol). The solution is heated to 100 0C for 10 minutes in a microwave reactor. The reddish brown solution is cooled to room temperature and 3- mercaptopropyl-funcationalized silica gel (500 mg) is added to the solution. The resulting solution is stirred for 30 minutes and is filtered. Water (20 mL) is added to the filtrate and the resulting mixture is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (47 mg, 46 %). LC-MS (M++l): 536.25.
The following compound is prepared according to example 65 by replacing the boronic acid with commercially available starting material.
4'-(Pyrrolidinc-l-carbonyl)-biphcnyl-3-carboxylic acid {6-[3-(6-mcthoxy-pyridm-3-yl)- 5-trifluoromethyl-pyrazol-l-yl]-pyridazin-3-yl} -amide; LC-MS (M++l): 614.62.
Example 66: S-Cyano-iV-lδ-CS-Cό-oxo-ljδ-dihydro-pyridin-S-y^-S-trifluoromethyl- pyrazol-l-yl]-pyridazin-3-yI}-benzamide
To a solution of sodium sulfide (28 mg, 0.36 mmol) in l,3-dimethyl-2-imidazolinone (5 mL) is added trimethylsilyl chloride (0.05 mL, 0.36 mmol) at room temperature under nitrogen atmosphere. The solution is allowed to stir for 30 minutes at the same temperature prior to the addition of 3-cyano-N-{6-[3-(6-methoxy-pyridin-3-yl)-5- trifluoromethyl-pyrazol-l-yl]-pyridazin-3-yl}-benzamide (84 mg, 0.18 mmol), prepared according to example 63. The mixture is sealed and then heated up to 150 °C in a microwave reactor for 10 minutes. The solution is cooled to room temperature, diluted with water (10 mL) and extracted with dichloromethane (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (6 mg, 7 %). LC-MS (M++l): 452.30. Example 67: 3-Bromo-iV-[6-(3-thiazol-2-yl-5-trifluoromethyl-pyrazol-l-yl)- py ridazin-3-yl] -benzamide
6-(3-Thiazol-2-yl-5-trifluoromethyl-pyrazol- 1 -yl)-pyridazin-3-ylamine is prepared according to example 45 by replacing 3-acetylpyridine with l-thiazol-2-yl-ethanone (prepared according to step a in example 36). To a solution of 6-(3-thiazol-2-yl-5- trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamine (200 mg, 0.6 mmol) in
tetrahydrofuran (10 mL) are added ΛζiV-diisopropyletliylamine (0.3 mL, 1.8 mmol) and 3-bromobenzoyl chloride (0.16 mL, 1.2 mmol) respectively at 0 °C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution,(10 mL) is added and the solution is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (150 mg, 47 %). LC- MS (M++l): 497.02.
The following compound is prepared according to example 67 by replacing the acyl chloride with commercially available starting material.
3-Cyano-N-[6-(3-thiazol-2-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazm-3-yl]- benzamide; LC-MS (M++!): 442.23.
Example 68: 3-(6-Fluoro-pyridin-3-yl)-iV-[6-(3-thiazol-2-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazin-3-yl]-benzamide
To a solution of 3-bromo-JV-[6-(3-thiazol-2-yl-5-trifluoroinetliyl-pyrazol-l-yl)- pyridazin-3-yl]-benzarnide (33) (100 mg, 0.2 mmol) in dimethylfoπnamide (5 mL) are added 2-fluoropyridine-5-boronic acid (57 mg, 0.4 mmol), tetrakis(triphenylphosphine)- palladium(0) (23 mg, 0.02 mmol) and cesium carbonate (66 mg, 0.2 mmol). The solution is heated to 100 °C for 10 minutes in a microwave reactor. The reddish brown solution is cooled to room temperature and 3-mercaptopropyl-funcationalized silica gel (500 mg) is added to the solution. The resulting solution is stirred for 30 minutes and then filtered. Water (20 mL) is added to the filtrate and the resulting mixture is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (21 mg, 20 %). LC-MS (M++!): 512.21.
Example 69: l-{3-f6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3- ylcarbamoyI]-phenyl}-piperidine-4-carboxylic acid
To a solution of l-{3-[6-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3- ylcarbamoyl]-phenyl}-piperidine-4-carboxylic acid ethyl ester (50 mg, 0.088 mmol), prepared according to example 61, in 1,4-dioxane (10 mL) and water (1 mL) is added lithium hydroxide (4 mg, 0.18 mmol) at room temperature. The solution is stirred at the same temperature for 6 hours. The solvent is removed under reduced pressure and the residue is purified by chromatography to afford the title compound (20 mg, 42 %). LC- MS (M++l): 538.22.
Example 70: l-(2-Ethoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carboxylic acid [6- (3-pyridin-3-yI-5-trifluoromethyI-pyrazol-l-yl)-pyridazin-3-ylJ-amide
Step a
To a solution of l-(2-ethoxy-ethyl)-6-oxo-l ,6-dihydro-pyridine-3-carboxylic acid (300 mg, 1.42 mmol), prepared according to step c in example 3, in dichloromethane (20 mL) is added oxalyl chloride (0.25 mL, 2.8 mmol) at room temperature under nitrogen atmosphere. The solution is heated at reflux for 3 hours and then cooled to room temperature. The solution is concentrated under reduced pressure and the residue, l-(2- ethoxy-ethyl)-6-oxo-l,6-dihydro-pyridine-3-carbonyl chloride (250 mg, 77 %), is used in the next step of the synthesis without further purification.
Steτt b
6-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridazin-3-ylamine is prepared according to step b in example 45. To a solution of 6-(3-pyridin-3-yl-5-trifluoromethyl- pyrazol-l-yl)-pyridazm-3-ylammc (100 mg, 0.33 mmol) in tctrahydrofuran (20 mL) arc added JVIN-diisopropylethylarnine (0.17 mL, 0.98 mmol) and l-(2-ethoxy-ethyl)-6-oxo- l,6-dihydro-pyridine-3-carbonyl chloride (150 mg, 0.65 mmol) respectively at 0 °C under nitrogen atmosphere. The solution is stirred at the same temperature for 1 hour. Saturated aqueous sodium bicarbonate solution (10 mL) is added and the solution is
extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by to afford the title compound (70 mg, 43 %). LC-MS (M++l): 500.30.
Example 71: 3-(6-Fluoro-pyridin-3-yl)-iV-[5-(3-pyridin-3-yl-5-trifluoromethyl- pyrazoI-l-yl)-pyridin-2-yl]-benzamide
To a solution of 3-bromo-N-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin- 2-yl]-benzamide (100 mg, 0.2 mmol), prepared according to step a in example 8, in dimethylformamide (5 mL) are added 2-fluoropyridine-5-boronic acid (57 mg, 0.4 mmol), tetrakis(triphenylphosphine)palladium(0) (23 mg5 0.02 mmol) and cesium carbonate (66 mg, 0.2 mmol). The solution is heated to 100 0C for 10 minutes in a microwave reactor. The reddish brown solution is cooled to room temperature and 3- mercaptopropyl-funcationalized silica gel (500 mg) is added to the solution. The resulting solution is stirred for 30 minutes and then filtered. Water (20 mL) is added to the filtrate and the resulting mixture is extracted with ethyl acetate (20 mL, 3 x). The combined organic layers are dried over magnesium sulfate and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by to afford the title compound (51 mg, 49 %). LC-MS (M÷+l): 505.27.
Example 72: l-{3-[5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2- ylcarbamoyl]-phenyl}-piperidine-4-carboxylic acid ethyl ester
To a solution of 3-bromo-N"-[5-(3-pyridin-3-yl-5-trifluorometliyl-pyrazol-l-yl)-pyrid.in- 2-yl]-benzamide (100 mg, 0.21 mmol), prepared according to step a in example 8, in dimethylsulfoxide (4 mL) are added ethyl isonipecotate (0.06 mL, 0.4 mmol), Cu (T) iodide (4 mg, 0.02 mmol), L-proline (5 mg, 0.04 mmol) and potassium carbonate (28 mg, 0.21 mmol) respectively. The solution mixture is heated up to 90 0C in a microwave reactor for 90 minutes. The resulting solution is cooled to room temperature and then diluted with water (10 mL). The solution mixture is extracted with ethyl acetate (20 mL, 3 x), the combined organic layers are dried over magnesium sulfate, and then filtered. The filtrate is concentrated under reduced pressure and the residue is purified by chromatography to afford the title compound (23 mg, 20 %). LC-MS (M++l): 565.30.
The following compounds are prepared according to example 72 by replacing the amine with commercially available starting materials.
3 -Piperidin- 1 -yl-JV-[5-(3 -pyridin-S-yl-S-trifluoromethyl-pyrazol- 1 -yl)-pyridin-2-yl] - benzamide; LC-MS (M++!): 493.36.
3-(4-Methyl-piperazin-l-yl)-N-[5-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)- pyridin-2-yl]-benzamide; LC-MS (TVI++!): 508.31.
N-[5-(3-Pyridm-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-3-pyrrolidin-l-yl- benzamide; LC-MS (M++!): 479.27.
N-[5-(3-Pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2-yl]-3-[4-(tetrahydro- furan-2-carbonyl)-piperazin-l -yl]-benzamide; LC-MS (M++ 1 ) : 591.6.
4-{3-[5-(3-Pyridin-3-yl-5-trifluorometh.yl-pyrazol-l-yl)-pyridin-2-ylcarbamoyl]- phenyl}-piperazine-l-carboxylic acid ethyl ester; LC-MS (M++!): 565.48.
3-[4-(2-Methoxy-etliyl)-piperazin-l-yl]-Λ?'-[5-(3-pyridin-3-yl-5-trifluoroinethyl-pyτazol- l-yl)-pyridin-2-yl]-benzamide; LC-MS (M++!): 552.27.
3-(4-Acetyl-piperazin-l-yl)-yV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazoI-l -yl)- pyridin-2-yl]-benzamide; LC-MS (M++!): 536.25.
iy"-[5-(3-Pyridin-3-yl-5-trifluororαethyl-pyrazol-l-yl)-pyridin-2-yl]-3-pyrrolidin-l-yl- benzamide; LC-MS (M++!): 479.27.
3-(4-Ethyl-piperazin- 1 -yl)-N-[5-(3-pyridm-3-yl-5-trifluoromethyl-pyrazol- 1 -yl)-pyridin- 2-yl]-benzamide; LC-MS (M++!): 522.3.
3-(4-lsopropyl-piperazin-l -yl)-jV-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyτazol- 1 -yl)- pyridin-2-yl]-benzamide; LC-MS (M++l): 536.34.
Example 73: l-fS-tδ-CS-I'yridiii-S-yl-S-trifluoromethyl-pyrazol-l-yy-pyridin^- yIcarbamoyl]-phenyl}-piperidine-4-carboxylic acid
To a solution of l-{3-[5-(3-pyridin-3-yl-5-trifluoromethyl-pyrazol-l-yl)-pyridin-2- ylcarbamoyl]-phcnyl}-pipcridinc-4-carboxylic acid ethyl ester (50 mg, 0.089 mmol), prepared according to example 71, in 1,4-dioxane (10 mL) and water (1 mL) is added lithium hydroxide (4 mg, 0.18 rnrnol) at room temperature. The solution is stirred at the same temperature for 6 hours. The solvent is removed under reduced pressure and the residue is purified by chromatography to afford the title compound (19 mg, 40 %). LC- MS (M1+!): 536.50.
METHODS OF USE
In accordance with the invention, there are provided methods of using the compounds as desreribed herein and their pharmaceutically acceptable derivatives. The compounds used in the invention prevent the degradation of sEH substrates that have beneficial effects or prevent the formation of metabolites that have adverse effects. The inhibition
of sEH is an attractive means for preventing and treating a variety of cardiovascular diseases or conditions e.g., endothelial dysfunction. Thus, the methods of the invention are useful for the treatment of such conditions. These encompass diseases including, but not limited to, type 1 and type 2 diabetes, insulin resistance syndrome, hypertension, atherosclerosis, coronary artery disease, angina, ischemia, ischemic stroke, Raynaud's disease and renal disease.
For therapeutic use, the compounds may be administered in any conventional dosage form in any conventional manner. Routes of administration include, but are not limited to, intravenously, intramuscularly, subcutaneously, intrasynovially, by infusion, sublingually, transdermally, orally, topically or by inhalation. The preferred modes of administration are oral and intravenous.
The compounds described herein may be administered alone or in combination with adjuvants that enhance stability of the inhibitors, facilitate administration of
pharmaceutic compositions containing them in certain embodiments, provide increased dissolution or dispersion, increase inhibitory activity, provide adjunct therapy, and the like, including other active ingredients. Advantageously, such combination therapies utilize lower dosages of the conventional therapeutics, thus avoiding possible toxicity and adverse side effects incurred when those agents are used as monotherapies.
Compounds of the invention may be physically combined with the conventional therapeutics or other adjuvants into a single pharmaceutical composition.
Advantageously, the compounds may then be administered together in a single dosage form. In some embodiments, the pharmaceutical compositions comprising such combinations of compounds contain at least about 5%, but more preferably at least about 20%, of a compound (w/w) or a combination thereof. The optimum percentage (w/w) of a compound of the invention may vary and is within the purview of those skilled in the art. Alternatively, the compounds may be administered separately (either serially or in parallel). Separate dosing allows for greater flexibility in the dosing regime.
As mentioned above, dosage forms of the above-described compounds include pharmaceutically acceptable carriers and adjuvants known to those of ordinary skill in the art. These carriers and adjuvants include, for example, ion exchangers, alumina,
aluminum stearate, lecithin, serum proteins, buffer substances, water, salts or electrolytes and cellulose-based substances. Preferred dosage forms include, tablet, capsule, caplet, liquid, solution, suspension, emulsion, lozenges, syrup, reconstitutable powder, granule, suppository and transdermal patch. Methods for preparing such dosage forms arc known (sec, for example, H.C. Ansel and N.G. Popovish,
Pharmaceutical Dosage Forms and Drug Delivery Systems, 5th ed., Lea and Febiger (1990)). Dosage levels and requirements are well-recognized in the art and may be selected by those of ordinary skill in the art from available methods and techniques suitable for a particular patient. In some embodiments, dosage levels range from about 1-1000 mg/dose for a 70 kg patient. Although one dose per day may be sufficient, up to 5 doses per day may be given. For oral doses, up to 2000 mg/day may be required. As the skilled artisan will appreciate, lower or higher doses may be required depending on particular factors. For instance, specific dosage and treatment regimens will depend on factors such as the patient's general health profile, the severity and course of the patient's disorder or disposition thereto, and the judgment of the treating physician.
The term "patient" includes both human and non-human mammals.
The term "effective amount" means an amount of a compound according to the invention which, in the context of which it is administered or used, is sufficient to achieve the desired effect or result. Depending on the context, the term effective amount may include or be synonymous with a pharmaceutically effective amount or a diagnostically effective amount. The terms "pharmaceutically effective amount" or "therapeutically effective amount" means an amount of a compound according to the invention which, when administered to a patient in need thereof, is sufficient to effect treatment for disease-states, conditions, or disorders for which the compounds have utility. Such an amount would be sufficient to elicit the biological or medical response of a tissue, system, or patient that is sought by a researcher or clinician. The amount of a compound of according to the invention which constitutes a therapeutically effective amount will vary depending on such factors as the compound and its biological activity, the composition used for administration, the time of administration, the route of administration, the rate of excretion of the compound, the duration of treatment, the type of disease-state or
disorder being treated and its severity, drugs used in combination with or coincidentally with the compounds of the invention, and the age, body weight, general health, sex, and diet of the patient. Such a therapeutically effective amount can be determined routinely by one of ordinary skill in the art having regard to their own knowledge, the prior art, and this disclosure.
The term "diagnostically effective amount" means an amount of a compound according to the invention which, when used in a diagnostic method, apparatus, or assay, is sufficient to achieve the desired diagnostic effect or the desired biological activity necessary for the diagnostic method, apparatus, or assay. Such an amount would be sufficient to elicit the biological or medical response in a diagnostic method, apparatus, or assay, which may include a biological or medical response in a patient or in a in vitro or in vivo tissue or system, that is sought by a researcher or clinician. The amount of a compound according to the invention which constitutes a diagnostically effective amount will vary depending on such factors as the compound and its biological activity, the diagnostic method, apparatus, or assay used, the composition used for
administration, the time of administration, the route of administration, the rate of excretion of the compound, the duration of administration, drugs and other compounds used in combination with or coincidentally with the compounds of the invention, and, if a patient is the subject of the diagnostic administration, the age, body weight, general health, sex, and diet of the patient. Such a diagnostically effective amount can be determined routinely by one of ordinary skill in the art having regard to their own knowledge, the prior art, and this disclosure. The terms "treating" or "treatment" mean the treatment of a disease-state in a patient, and include:
(i) preventing the disease-state from occurring in a patient, in particular, when such patient is genetically or otherwise predisposed to the disease-state but has not yet been diagnosed as having it;
(ii) inhibiting or ameliorating the disease-state in a patient, i.e., arresting or slowing its development; or
(iii) relieving the disease-state in a patient, i.e., causing regression or cure of the disease-state.
In vitro assay for inhibition of hsEH
This high throughput screen identifies compounds that inhibit the interaction of human soluble epoxide hydrolase (sEH) with a tetramethyl rhodamine (TAMRA)-labeled probe. The UHTS employs the Zymark Allegro modular robotic system to dispense reagents, buffers, and test compounds into cither 96-wcll or 384-wcll black microtitcr plates (from Costar). The assay buffer is: 20 mM TES, 200 mM NaCl, 0.05% w/v CHAPS, 1 mM TCEP5 pH = 7.0. Test compounds dissolved in neat DMSO at 5 mg/mL are diluted to 0.5 mg/mL in neat DMSO. The 0.5 mg/mL solutions are further diluted to 30 μg/mL in assay buffer containing DMSO such that the final concentration of DMSO is 30 %. For 384-well format, a mixture of 10.35 nM human sEH and 2.59 nM probe is prepared in assay buffer and 60 μL is added to each well for a final sEH concentration of 10 nM and a final probe concentration of 2.5 nM. 2.1 μL of diluted test compound is then added to each well, where the final assay concentration will be 1 μg/mL test compound and 1 % DMSO. The final volume in each well is 62.1 μL. Positive controls are reaction mixtures containing no test compound; negative controls (blanks) are reaction mixtures containing 3 μM BI00611349XX. For 96-well format, the final concentration of all reaction components remains the same. 135 μL sEH/probe mixture is added to wells containing 15 μL test compound so that the final well volume is 150 mL. After incubating the reaction for 30 minutes at room temperature, the plates are read for fluorescence polarization in the LJL Analyst set to 530 nm excitation, 580 nm emission, using the Rh 561 dichroic mirror.
In vitro assay for inhibition of msEH
This screen identifies compounds that inhibit the interaction of rat soluble epoxide hydrolase (sEH) with a tetramethyl rhodamine (TAMRA)-labeled probe. The assay employs a Multimek, a Multidrop, and manual multi-channel pipettors to dispense reagents, buffers, and test compounds into 96-well black microliter plates (Costar 3792). The assay buffer is: 20 mM TES, 200 mM NaCl5 0.05% w/v CHAPS, 1 mM TCEP5 pH = 7.0. Test compounds dissolved in neat DMSO at 10 mM are diluted to 1.5 mM in neat DMSO. The 1.5 mM solutions are serially diluted using 3-fold dilutions in neat DMSO in polypropylene plates. Assay buffer is added to the wells such that the compounds are diluted 10-fbld and the DMSO concentration is 10 %. A mixture of 11.1 nM rat sEH and 2.78 nM probe is prepared in assay buffer. 15 uL of diluted test compound is added to each well, where the final maximum assay concentration will be
3 uM test compound and 1 % DMSO. 135 uL of sEH/probe mixture is added to each well for a final sEH concentration of 10 nM and a final probe concentration of 2.5 nM. The final volume in each well is 150 uL. Positive controls are reaction mixtures containing no test compound; negative controls (blanks) are reaction mixtures containing 3 uM BI00611349XX. After incubating the reaction for 30 minutes at room temperature, the plates are read for fluorescence polarization in the LJL Analyst set to 530 nm excitation, 580 nm emission, using the Rh 561 dichroic mirror.
In vivo models of Hypertension
Compounds were administered to spontaneous hypertensive rats (SHR) or Dahl Salt Sensitive (D-SS) rats on a high salt diet. Tail plethysmography was used to record changes in systolic blood pressure (SBP) and heart rate (HR) at selected time points after dosing in conscious, resting rats. As an alternative, radio transmitters were surgically implanted in the abdominal aorta to facilitate continuous monitoring of SBP, diastolic blood pressure (DBP), mean blood pressure (MBP) and HR via telemetry in conscious, unrestrained rats. Efficacy was evaluated based on the ability of compound treatment to affect a statistically significant lowering of blood pressure compared to respective vehicle (placebo) control groups.
Claims
1. A compound of the formula (!) wherein:
wherein G
Xx-X2 is -CH=CH-, -N=CH-, -C=N- or -N=N-; R2 is chosen from heteroaryl and carbocycle optionally substituted by Q_io alkyl, Ci-1O alkoxy each substitucnt of R2 is optionally halogcnatcd;
R3 is chosen from heteroaryl, heterocycle, carbocycle, Ar2-Ar1- and an acyclic moiety chosen from : -NH-(CH2)^Ar1, -NH-(CH2VO-Ar1, -NH-Ar1, Ci-10 alkyl, -C1-I0 alkyl- Ari, O-Ci-10 alkyl-Ari, Ar2-L-Ar1- and -Ci-io alkyl(phenyl)2, or R3 is L;
L is a C1-IO alkyl chain optionally interrupted by O, S OrNRx and optionally substituted by oxo (=O);
Ar1 and Ar2 are each independently heteroaryl, heterocycle or carbocycle, each optionally substituted by one or more Cno alkyl, Ci-10 alkoxy, -NRxRy, -C(O)-NRxRy, Rx-S(O)m-, Het-C(O)-, Het-S(O)m-5 NO2, OH, halogen, Ci-I0 alkoxycarbonyl, CO2, CN, Ci-10 acyl, -S(O)1n-NRxRy, Rx-S(O)m-NHRy, -(CH2)t-OH wherein Het is pyrrolidinyl or morpholinyl; m is 0-2; n is 0-5;
t is 0-5; or the pharmaceutically acceptable salts thereof.
2. The compound according to claim 1 wherein:
R2 is chosen from pyridinyl, phenyl and cyclohexyl optionally substituted by C1-1O alkyl, C1-10 alkoxy each substituent of R2 is optionally halogenated;
R3 is chosen from phenyl, pyridinone, pyridinyl, -NH-(CH2)t-Ari, -NH-(CH2VO-Ar1,
NH-Ari, C1-Io alkyl, -C1-10 alkyl-Ari and -C1-1O alkyl(phenyl)2;
Ari and Ar2 are each independently phenyl, pyridinone, pyridinyl, morpholinyl, benzofuranyl, piperidinyl, cyclohexenyl, benzodioxolanyl, pyrrolidinyl, tetrazolyl, oxazolyl, isoxazolyl, pyrirnidinyl or benzodioxolyl.
3. A compound of the formula (Ia):
or the pharmaceutically acceptable salts thereof.
4. A compound of the formula (Ib):
wherein for the Formula (Ib), the component R2 is:
and the component
, is chosen from those shown in the table II below;
Table TT
or the pharmaceutically acceptable salts thereof.
wherein for the Formula (Ic) or (Id), the component R2 is:
and the component
, is chosen from those shown in the table III below;
or the pharmaceutically acceptable salts thereof.
6. A compound of the formula (Ie), (If), (Ig) or (Ih):
wherein for the Formula (Te), (Tf), (Tg) or (Th), the component R2 is:
and the component
, is chosen from those shown in the table IV below;
or the pharmaceutically acceptable salts thereof.
7. A compound chosen from :
or the pharmaceutically acceptable salts thereof.
8. A method of treating a disease or condition chosen from type 1 and type 2 diabetes, insulin resistance syndrome, hypertension, atherosclerosis, coronary artery disease, angina, ischemia, ischemic stroke, Raynaud's disease and renal disease, said method comprising administering to a patient a pharmaceutically effective amount of a compound according to one of claims 1 - 7.
9. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound according to one of claims 1-7 and one or more pharmaceutically acceptable carriers.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002630233A CA2630233A1 (en) | 2005-12-05 | 2006-11-14 | Substituted pyrazole compounds useful as soluble epoxide hydrolase inhibitors |
EP06839868A EP1960367A2 (en) | 2005-12-05 | 2006-11-14 | Substituted pyrazole compounds useful as soluble epoxide hydrolase inhibitors |
US12/095,928 US20090227588A1 (en) | 2005-12-05 | 2006-11-14 | Substituted pyrazole compounds useful as soluble epoxide hyrolase inhibitors |
JP2008544601A JP2009518442A (en) | 2005-12-05 | 2006-11-14 | Substituted pyrazole compounds useful as soluble epoxide hydrolase inhibitors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US74235005P | 2005-12-05 | 2005-12-05 | |
US60/742,350 | 2005-12-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007067836A2 true WO2007067836A2 (en) | 2007-06-14 |
WO2007067836A3 WO2007067836A3 (en) | 2007-11-15 |
Family
ID=37781745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/060863 WO2007067836A2 (en) | 2005-12-05 | 2006-11-14 | Substituted pyrazole compounds useful as soluble epoxide hydrolase inhibitors |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090227588A1 (en) |
EP (1) | EP1960367A2 (en) |
JP (1) | JP2009518442A (en) |
CA (1) | CA2630233A1 (en) |
WO (1) | WO2007067836A2 (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008022171A1 (en) * | 2006-08-17 | 2008-02-21 | Boehringer Ingelheim International Gmbh | Methods of using aryl sulfonyl compounds effective as soluble epoxide hydrolase inhibitors |
WO2009131065A1 (en) * | 2008-04-24 | 2009-10-29 | 萬有製薬株式会社 | Long-chain fatty acid elongation enzyme inhibitor comprising arylsulfonyl derivative as active ingredient |
WO2009154190A1 (en) * | 2008-06-17 | 2009-12-23 | アステラス製薬株式会社 | Pyridone compound |
EP1848435A4 (en) * | 2005-01-25 | 2010-09-29 | Synta Pharmaceuticals Corp | Compounds for inflammation and immune-related uses |
WO2012052412A1 (en) | 2010-10-22 | 2012-04-26 | Bayer Cropscience Ag | Novel heterocyclic compounds as pesticides |
US8314087B2 (en) * | 2007-02-16 | 2012-11-20 | Amgen Inc. | Nitrogen-containing heterocyclyl ketones and methods of use |
AU2008205252B2 (en) * | 2007-01-09 | 2013-02-21 | Amgen Inc. | Bis-aryl amide derivatives useful for the treatment of cancer |
US8536186B2 (en) | 2008-08-04 | 2013-09-17 | Chdi Foundation, Inc. | Certain kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
WO2014067962A1 (en) | 2012-10-31 | 2014-05-08 | Bayer Cropscience Ag | Novel heterocyclic compounds as pest control agents |
US8883785B2 (en) | 2010-01-25 | 2014-11-11 | Chdi Foundation, Inc. | Certain kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
US9227923B2 (en) | 2009-08-14 | 2016-01-05 | Bayer Intellectual Property Gmbh | Pesticidal carboxamides |
US9428464B2 (en) | 2011-08-30 | 2016-08-30 | Chdi Foundation, Inc. | Kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
US9540391B2 (en) | 2013-01-17 | 2017-01-10 | Sanofi | Isomannide derivatives as inhibitors of soluble epoxide hydrolase |
CN106687445A (en) * | 2014-09-17 | 2017-05-17 | 维颂公司 | Pyrazolyl-substituted pyridone compounds as serine protease inhibitors |
WO2017152117A1 (en) * | 2016-03-03 | 2017-09-08 | Cornell University | Small molecule ire1-alpha inhibitors |
WO2017202957A1 (en) | 2016-05-25 | 2017-11-30 | Johann Wolfgang Goethe-Universität Frankfurt am Main | Treatment and diagnosis of non-proliferative diabetic retinopathy |
WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
WO2018019711A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Substituted halogen(thio)acyl compounds |
US9938236B2 (en) | 2012-12-27 | 2018-04-10 | Drexel University | Antiviral agents against HBV infection |
US9951025B2 (en) | 2013-03-15 | 2018-04-24 | Verseon Corporation | Halogenopyrazoles as inhibitors of thrombin |
US9963440B2 (en) | 2010-03-30 | 2018-05-08 | Verseon Corporation | Multisubstituted aromatic compounds as inhibitors of thrombin |
US9981918B2 (en) | 2011-08-30 | 2018-05-29 | Chdi Foundation, Inc. | Kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
US10058541B2 (en) | 2013-03-15 | 2018-08-28 | Verseon Corporation | Multisubstituted aromatic compounds as serine protease inhibitors |
US10258621B2 (en) | 2014-07-17 | 2019-04-16 | Chdi Foundation, Inc. | Methods and compositions for treating HIV-related disorders |
US10532995B2 (en) | 2015-02-27 | 2020-01-14 | Verseon Corporation | Substituted pyrazole compounds as serine protease inhibitors |
CN113939295A (en) * | 2019-03-20 | 2022-01-14 | 金翅雀生物公司 | Pyridazinones and methods of use thereof |
CN114276331A (en) * | 2022-01-04 | 2022-04-05 | 中国药科大学 | 4-aminopiperidine compound and preparation method, pharmaceutical composition and application thereof |
US11952365B2 (en) | 2020-06-10 | 2024-04-09 | Aligos Therapeutics, Inc. | Anti-viral compounds |
WO2024105225A1 (en) | 2022-11-18 | 2024-05-23 | Universitat De Barcelona | Synergistic combinations of a sigma receptor 1 (s1r) antagonist and a soluble epoxide hydrolase inhibitor (sehi) and their use in the treatment of pain |
US12065428B2 (en) | 2021-09-17 | 2024-08-20 | Aligos Therapeutics, Inc. | Anti-viral compounds |
US12252481B2 (en) | 2021-07-09 | 2025-03-18 | Aligos Therapeutics, Inc. | Anti-viral compounds |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9096532B2 (en) | 2010-12-13 | 2015-08-04 | The Regents Of The University Of California | Pyrazole inhibitors of COX-2 and sEH |
KR102190848B1 (en) * | 2012-05-15 | 2020-12-15 | 노파르티스 아게 | Compounds and compositions for inhibiting the activity of abl1, abl2 and bcr-abl1 |
WO2014141110A2 (en) * | 2013-03-14 | 2014-09-18 | Curadev Pharma Pvt. Ltd. | Aminonitriles as kynurenine pathway inhibitors |
WO2020113088A1 (en) | 2018-11-30 | 2020-06-04 | Nuvation Bio Inc. | Diarylhydantoin compounds and methods of use thereof |
AU2019387370A1 (en) * | 2018-11-30 | 2021-06-10 | Nuvation Bio Inc. | Pyrrole and pyrazole compounds and methods of use thereof |
US11739078B2 (en) | 2019-02-22 | 2023-08-29 | Insilico Medicine Ip Limited | Methods of inhibiting kinases |
AU2022225035A1 (en) | 2021-02-24 | 2023-08-31 | Insilico Medicine Ip Limited | Analogs for the treatment of disease |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999051580A1 (en) * | 1998-04-08 | 1999-10-14 | Abbott Laboratories | Pyrazole inhibitors of cytokine production |
WO1999062885A1 (en) * | 1998-06-05 | 1999-12-09 | Boehringer Ingelheim Pharmaceuticals, Inc. | Substituted 1-(4-aminophenyl)pyrazoles and their use as anti-inflammatory agents |
WO2000023060A2 (en) * | 1998-10-20 | 2000-04-27 | Boehringer Ingelheim Pharmaceuticals, Inc. | Method of treating immunological disorders mediated by t-lymphocytes |
WO2003002555A1 (en) * | 2001-06-29 | 2003-01-09 | Boehringer Ingelheim Pharmaceuticals Inc. | Methods of using soluble epoxide hydrolase inhibitors |
-
2006
- 2006-11-14 WO PCT/US2006/060863 patent/WO2007067836A2/en active Application Filing
- 2006-11-14 CA CA002630233A patent/CA2630233A1/en not_active Abandoned
- 2006-11-14 JP JP2008544601A patent/JP2009518442A/en active Pending
- 2006-11-14 US US12/095,928 patent/US20090227588A1/en not_active Abandoned
- 2006-11-14 EP EP06839868A patent/EP1960367A2/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999051580A1 (en) * | 1998-04-08 | 1999-10-14 | Abbott Laboratories | Pyrazole inhibitors of cytokine production |
WO1999062885A1 (en) * | 1998-06-05 | 1999-12-09 | Boehringer Ingelheim Pharmaceuticals, Inc. | Substituted 1-(4-aminophenyl)pyrazoles and their use as anti-inflammatory agents |
WO2000023060A2 (en) * | 1998-10-20 | 2000-04-27 | Boehringer Ingelheim Pharmaceuticals, Inc. | Method of treating immunological disorders mediated by t-lymphocytes |
WO2003002555A1 (en) * | 2001-06-29 | 2003-01-09 | Boehringer Ingelheim Pharmaceuticals Inc. | Methods of using soluble epoxide hydrolase inhibitors |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8518950B2 (en) | 2005-01-25 | 2013-08-27 | Synta Pharmaceuticals Corp. | 2-amido pyrazines for inflammation and immune related uses |
US9493427B2 (en) | 2005-01-25 | 2016-11-15 | Synta Pharmaceuticals Corp. | Compounds for inflammation and immune-related uses |
EP1848435A4 (en) * | 2005-01-25 | 2010-09-29 | Synta Pharmaceuticals Corp | Compounds for inflammation and immune-related uses |
US9090570B2 (en) | 2005-01-25 | 2015-07-28 | Synta Pharmaceuticals Corp. | Compounds for inflammation and immune-related uses |
WO2008022171A1 (en) * | 2006-08-17 | 2008-02-21 | Boehringer Ingelheim International Gmbh | Methods of using aryl sulfonyl compounds effective as soluble epoxide hydrolase inhibitors |
AU2008205252B2 (en) * | 2007-01-09 | 2013-02-21 | Amgen Inc. | Bis-aryl amide derivatives useful for the treatment of cancer |
US8314087B2 (en) * | 2007-02-16 | 2012-11-20 | Amgen Inc. | Nitrogen-containing heterocyclyl ketones and methods of use |
US8420823B2 (en) | 2008-04-24 | 2013-04-16 | Msd K.K. | Long-chain fatty acyl elongase inhibitor comprising arylsulfonyl derivative as active ingredient |
WO2009131065A1 (en) * | 2008-04-24 | 2009-10-29 | 萬有製薬株式会社 | Long-chain fatty acid elongation enzyme inhibitor comprising arylsulfonyl derivative as active ingredient |
JP5501226B2 (en) * | 2008-04-24 | 2014-05-21 | Msd株式会社 | Long-chain fatty acid elongation enzyme inhibitor comprising an arylsulfonyl derivative as an active ingredient |
AU2009239116B2 (en) * | 2008-04-24 | 2013-05-30 | Msd K.K. | Long-chain fatty acid elongation enzyme inhibitor comprising arylsulfonyl derivative as active ingredient |
WO2009154190A1 (en) * | 2008-06-17 | 2009-12-23 | アステラス製薬株式会社 | Pyridone compound |
US8536186B2 (en) | 2008-08-04 | 2013-09-17 | Chdi Foundation, Inc. | Certain kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
US9145373B2 (en) | 2008-08-04 | 2015-09-29 | Chdi Foundation, Inc. | Certain kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
US9227923B2 (en) | 2009-08-14 | 2016-01-05 | Bayer Intellectual Property Gmbh | Pesticidal carboxamides |
US8883785B2 (en) | 2010-01-25 | 2014-11-11 | Chdi Foundation, Inc. | Certain kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
US10653674B2 (en) | 2010-03-30 | 2020-05-19 | Verseon Corporation | Multisubstituted aromatic compounds as inhibitors of thrombin |
US9963440B2 (en) | 2010-03-30 | 2018-05-08 | Verseon Corporation | Multisubstituted aromatic compounds as inhibitors of thrombin |
WO2012052412A1 (en) | 2010-10-22 | 2012-04-26 | Bayer Cropscience Ag | Novel heterocyclic compounds as pesticides |
US9173396B2 (en) | 2010-10-22 | 2015-11-03 | Bayer Intellectual Property Gmbh | Heterocyclic compounds as pesticides |
US9428464B2 (en) | 2011-08-30 | 2016-08-30 | Chdi Foundation, Inc. | Kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
US9981918B2 (en) | 2011-08-30 | 2018-05-29 | Chdi Foundation, Inc. | Kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
WO2014067962A1 (en) | 2012-10-31 | 2014-05-08 | Bayer Cropscience Ag | Novel heterocyclic compounds as pest control agents |
US9938236B2 (en) | 2012-12-27 | 2018-04-10 | Drexel University | Antiviral agents against HBV infection |
US9540391B2 (en) | 2013-01-17 | 2017-01-10 | Sanofi | Isomannide derivatives as inhibitors of soluble epoxide hydrolase |
US10251872B2 (en) | 2013-03-15 | 2019-04-09 | Verseon Corporation | Multisubstituted aromatic compounds as serine protease inhibitors |
US10058541B2 (en) | 2013-03-15 | 2018-08-28 | Verseon Corporation | Multisubstituted aromatic compounds as serine protease inhibitors |
US9951025B2 (en) | 2013-03-15 | 2018-04-24 | Verseon Corporation | Halogenopyrazoles as inhibitors of thrombin |
US10258621B2 (en) | 2014-07-17 | 2019-04-16 | Chdi Foundation, Inc. | Methods and compositions for treating HIV-related disorders |
US10189810B2 (en) | 2014-09-17 | 2019-01-29 | Verseon Corporation | Pyrazolyl-substituted pyridone compounds as serine protease inhibitors |
CN106687445A (en) * | 2014-09-17 | 2017-05-17 | 维颂公司 | Pyrazolyl-substituted pyridone compounds as serine protease inhibitors |
EP3194369A4 (en) * | 2014-09-17 | 2018-02-28 | Verseon Corporation | Pyrazolyl-substituted pyridone compounds as serine protease inhibitors |
US10532995B2 (en) | 2015-02-27 | 2020-01-14 | Verseon Corporation | Substituted pyrazole compounds as serine protease inhibitors |
US10988461B2 (en) | 2016-03-03 | 2021-04-27 | Cornell University | Small molecule IRE1-α inhibitors |
US10125123B2 (en) | 2016-03-03 | 2018-11-13 | Cornell University | Small molecule IRE1-α inhibitors |
WO2017152117A1 (en) * | 2016-03-03 | 2017-09-08 | Cornell University | Small molecule ire1-alpha inhibitors |
WO2017202957A1 (en) | 2016-05-25 | 2017-11-30 | Johann Wolfgang Goethe-Universität Frankfurt am Main | Treatment and diagnosis of non-proliferative diabetic retinopathy |
WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
WO2018019711A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Substituted halogen(thio)acyl compounds |
CN113939295A (en) * | 2019-03-20 | 2022-01-14 | 金翅雀生物公司 | Pyridazinones and methods of use thereof |
US11952365B2 (en) | 2020-06-10 | 2024-04-09 | Aligos Therapeutics, Inc. | Anti-viral compounds |
US12252481B2 (en) | 2021-07-09 | 2025-03-18 | Aligos Therapeutics, Inc. | Anti-viral compounds |
US12065428B2 (en) | 2021-09-17 | 2024-08-20 | Aligos Therapeutics, Inc. | Anti-viral compounds |
CN114276331A (en) * | 2022-01-04 | 2022-04-05 | 中国药科大学 | 4-aminopiperidine compound and preparation method, pharmaceutical composition and application thereof |
CN114276331B (en) * | 2022-01-04 | 2023-05-23 | 中国药科大学 | 4-aminopiperidine compound and preparation method, pharmaceutical composition and application thereof |
WO2024105225A1 (en) | 2022-11-18 | 2024-05-23 | Universitat De Barcelona | Synergistic combinations of a sigma receptor 1 (s1r) antagonist and a soluble epoxide hydrolase inhibitor (sehi) and their use in the treatment of pain |
Also Published As
Publication number | Publication date |
---|---|
US20090227588A1 (en) | 2009-09-10 |
EP1960367A2 (en) | 2008-08-27 |
JP2009518442A (en) | 2009-05-07 |
WO2007067836A3 (en) | 2007-11-15 |
CA2630233A1 (en) | 2007-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1960367A2 (en) | Substituted pyrazole compounds useful as soluble epoxide hydrolase inhibitors | |
US20060276515A1 (en) | Soluble Epoxide Hydrolase Inhibitors and Methods of Using Same | |
AU2003276802B2 (en) | 2-pyridone derivatives as inhibitors of neutrophile elastase | |
EP1442024B1 (en) | AMINOBENZAMIDE DERIVATIVES AS GLYCOGEN SYNTHASE KINASE 3$g(b) INHIBITORS | |
KR101121700B1 (en) | Indazole derivatives useful as l-cpt1 inhibitors | |
CN102066359B (en) | Novel heteroaryl carboxamide derivatives | |
US20090099184A1 (en) | Substituted pyridineamide compounds useful as soluble epoxide hydrolase inhibitors | |
KR101472647B1 (en) | 4-phenoxy-nicotinamide or 4-phenoxy-pyrimidine-5-carboxamide compounds | |
US20030203926A1 (en) | Anilinopyrimidine derivatives as IKK inhibitors and compositions and methods related thereto | |
JP2020512976A (en) | Apoptosis signal-regulated kinase 1 (ASK1) inhibitor compound | |
NZ337698A (en) | Nicotinamide derivatives for selective inhibition of phosphodiesterase type 4 (PDE4) and the production of tumour necrosis factor (TNF) useful for the treatment of respiratory, rheumatoid and allergic diseases | |
JP2005530748A (en) | Histone deacetylase inhibitor | |
WO2005063738A1 (en) | Novel 2-heteroaryl-substituted benzimidazole derivative | |
CN102036961A (en) | Pyridines and pyrazines as inhibitors of PI3K | |
WO1999065897A1 (en) | Inhibitors of glycogen synthase kinase 3 | |
AU2002363177A1 (en) | Aminobenzamide derivatives as glycogen synthase kinase 3Beta inhibitors | |
JP2010111699A (en) | NICOTINAMIDE DERIVATIVE USEFUL AS p38 INHIBITOR | |
TW201038554A (en) | Nicotinamide derivatives, their preparation and their therapeutic application | |
US7906533B2 (en) | Nicotinamide pyridinureas as vascular endothelial growth factor (VEGF) receptor kinase inhibitors | |
EP1807416B1 (en) | Nicotinamide pyridinureas as vascular endothelial growth factor (VEGF) receptor kinase inhibitors | |
EP2627637B1 (en) | N-pyridin-3-yl or n-pyrazin-2-yl carboxamides | |
US20080280904A1 (en) | N-Substituted Pyridinone or Pyrimidinone Compounds Useful as Soluble Epoxide Hydrolase Inhibitors | |
JP2009513649A (en) | Kinase inhibitor | |
PL188801B1 (en) | New sulphonamides and pharmaceuticals containing these new sulphonamides | |
HK1181655B (en) | Heteroarylmethyl amides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006839868 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2630233 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008544601 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12095928 Country of ref document: US |