WO2007064009A1 - Light emitting element, light emitting device and electronic device - Google Patents

Light emitting element, light emitting device and electronic device Download PDF

Info

Publication number
WO2007064009A1
WO2007064009A1 PCT/JP2006/324142 JP2006324142W WO2007064009A1 WO 2007064009 A1 WO2007064009 A1 WO 2007064009A1 JP 2006324142 W JP2006324142 W JP 2006324142W WO 2007064009 A1 WO2007064009 A1 WO 2007064009A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
organic compound
emitting element
metal oxide
Prior art date
Application number
PCT/JP2006/324142
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Iwaki
Hisaso Ikeda
Junichiro Sakata
Satoshi Seo
Tomoya Aoyama
Takahiro Kawakami
Masahiko Hayakawa
Yumiko Fujiwara
Koichiro Kamata
Ryoji Nomura
Original Assignee
Semiconductor Energy Laboratory Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co., Ltd. filed Critical Semiconductor Energy Laboratory Co., Ltd.
Publication of WO2007064009A1 publication Critical patent/WO2007064009A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a current excitation type light emitting element.
  • the present invention relates to a light-emitting device and an electronic device having a light-emitting element.
  • excited states formed by organic compounds can be singlet excited states and triplet excited states.
  • Light emission from singlet excited states is called fluorescence
  • light emission from triplet excited states is called phosphorescence. ing.
  • Such a light emitting element is formed of, for example, an organic thin film of about 0.1 im, it is a great advantage that it can be manufactured in a book-type lightweight. Also, since the time from carrier injection to light emission is about 1 / second or less, the response speed is very high. One of the features is that it is fast. These characteristics are considered suitable for flat panel display elements.
  • these light-emitting elements are formed in a film shape, planar light emission can be easily obtained by forming a large-area element. This is a feature that is difficult to obtain with a point light source typified by an incandescent bulb or LED, or a line light source typified by a fluorescent lamp, and therefore has a high utility value as a surface light source that can be applied to lighting.
  • Non-Patent Document 1 a method using a PIN structure has been reported (see Non-Patent Document 1).
  • PIN devices consist of a P-doped layer and an N-doped layer, and many researchers are searching for the best donor receptor and host.
  • Another issue for the practical application of light-emitting elements is short-circuiting between electrodes.
  • the short between electrodes is caused by fine particles remaining on the substrate. Since the thickness of the thin film of the light emitting element is usually about 0.1 m, even a fine particle of about 0.1 m easily causes a short circuit between the electrodes. Since the light emitting element in which the short-circuit between the electrodes has occurred cannot emit light, these are recognized as saddle points. For example, when the light-emitting element is used as a flat panel display element, such a defect greatly reduces the commercial value of the display panel, resulting in an increase in panel cost.
  • One of the methods for preventing these inter-electrode shorts is to increase the thickness of the buffer layer.
  • the power consumption of the light-emitting element increases by increasing the thickness.
  • the present invention provides a novel light-emitting element that can simultaneously reduce power consumption and suppress the occurrence of defects.
  • the present inventors have found that the problem can be solved by using a composite of an organic compound and a metal oxide formed from an organic compound and a metal oxide.
  • one aspect of the present invention includes a complex using an organic compound and a metal oxide, and a charge is transferred from a ⁇ orbit of an atom in the organic compound to a d orbit of a metal atom of the metal oxide. It is a light emitting element characterized by the above.
  • the metal atom is preferably a transition metal. Further, a metal belonging to Groups 4 to 8 in the element periodic table is preferable. Especially with molybdenum Preferably there is.
  • the organic compound is preferably an aromatic amine compound.
  • the charge is transferred from the p orbital of the nitrogen atom of the aromatic amine compound.
  • the organic compound is preferably an aromatic hydrocarbon.
  • the present invention also includes a light emitting device having the above-described light emitting element.
  • Another aspect of the present invention includes a pixel including a composite including an organic compound and a metal oxide, and the number of increased pixel defects after driving at 85 for 60 hours is 0. 0 8 7% or less.
  • Another aspect of the present invention includes a pixel including a composite including an organic compound and a metal oxide, and the increase in pixel defects after driving for 60 hours at ⁇ 40 is 0% of the total number of pixels. 0 8 7% or less of a light emitting device.
  • Another aspect of the present invention includes a pixel including a composite including an organic compound and a metal oxide. After driving for 85 hours for 4 hours and for 400 hours for 4 hours, driving for 60 hours
  • the light emitting device is characterized in that the increase in the number of pixel defects is 0.087% or less of the total number of pixels.
  • one aspect of the present invention includes a pixel having a complex using an organic compound and a metal oxide.
  • the light emitting device is characterized in that the number of pixel defects after driving for 4 hours at 85: 4, driving for 4 hours at 1 and 40 hours is less than 3 per 1000 mm 2 of display area. .
  • one aspect of the present invention includes a layer including a complex using an organic compound and a metal oxide, and a layer including a complex including the organic compound and the metal oxide according to the emission color of each pixel.
  • the light-emitting device is characterized in that the film thicknesses are different.
  • a light-emitting device in this specification includes an image display device, a light-emitting device, or a light source (including a lighting device).
  • a module in which a connector, for example, FPC (Flexible Printed Circuit) or TAB (Tape Automated Bonding) tape or TC P (Tae Carrier Package) is attached to the light emitting element All modules that have a printed wiring board on the end of TAB tape or TCP, or modules that have ICs (integrated circuits) directly mounted on the light-emitting elements using the COG (Ch i On G 1 ass) method are included in the light-emitting device. .
  • an electronic apparatus of the present invention includes a display unit, and the display unit includes the above-described light emitting element and a control unit that controls light emission of the light emitting element.
  • the composite of the organic compound and the metal oxide used for the light-emitting element of the present invention has high conductivity, the driving voltage can be reduced even when used as a thick buffer layer. Thus, power consumption of the light emitting element can be reduced. [0 0 2 5]
  • the formation of defects can be suppressed by forming a thick buffer layer using a composite of an organic compound and a metal oxide.
  • a light-emitting element a light-emitting device, and an electronic device in which power consumption is reduced and generation of defects is suppressed can be provided.
  • FIG. 1 illustrates a light-emitting element of the present invention.
  • FIG. 2 illustrates a light-emitting element of the present invention.
  • FIG. 3 illustrates a light-emitting element of the present invention.
  • FIG 4 illustrates a light-emitting element of the present invention.
  • FIG 5 illustrates a light-emitting element of the present invention.
  • FIG. 6 illustrates a light-emitting element of the present invention.
  • FIG. 7 illustrates a light-emitting device of the present invention.
  • FIG. 8 illustrates a light-emitting device of the present invention.
  • FIG. 9 illustrates an electronic device using the light-emitting device of the present invention.
  • FIG. 10 illustrates a light-emitting device of the present invention.
  • FIG. 1 illustrates a light-emitting element of the present invention.
  • FIG. 1 2 A graph showing the voltage-current density characteristics of a film containing a composite of an organic compound and a metal oxide.
  • FIG. 13 shows an absorption spectrum of a film containing a composite of an organic compound and a metal oxide.
  • FIG. 14 shows calculation results of a film containing a composite of an organic compound and a metal oxide.
  • FIG. 15 shows calculation results of a film containing a composite of an organic compound and a metal oxide.
  • FIG 16 illustrates a light-emitting element of the present invention.
  • FIG. 17 is a graph showing voltage vs. current density characteristics of a light-emitting element in which the thickness of a layer containing a composite of an organic compound and a metal oxide is changed.
  • FIG. 18 illustrates a light-emitting element of the present invention. .
  • FIG. 19 is a graph showing voltage-luminance characteristics of the light-emitting element of the present invention.
  • FIG. 20 is a graph showing a change in normalized luminance time of the light-emitting element of the present invention.
  • FIG. 21 is a graph showing voltage-luminance characteristics of the light-emitting element of the present invention.
  • FIG. 22 shows a change in normalized luminance time of the light-emitting element of the present invention.
  • FIG. 23 illustrates a light-emitting element of the present invention.
  • FIG. 24 is a diagram showing the calculation results of atomic charges of N P B molecules.
  • FIG. 25 is a graph showing current density-luminance characteristics of a light-emitting element of the present invention.
  • FIG. 26 shows the luminance and current efficiency of the panel of the present invention.
  • FIG. 27 is a graph showing the film thickness dependence of a layer containing a composite of an organic compound and a metal oxide with increased point defects in the panel of the present invention.
  • FIG. 28 is a diagram showing an increased number of point defects in various environmental operation tests of the panel of the present invention.
  • FIG. 29 is a diagram showing a cross-sectional TEM photograph of a point defect portion.
  • FIG. 30 is a diagram showing an ESR measurement result of a composite of an organic compound containing DNTPD and molybdenum oxide and a metal oxide.
  • FIG. 31 shows ESR measurement results of a DNTPD single film.
  • FIG. 32 is a diagram showing the ESR measurement results of a molybdenum oxide single film.
  • FIG. 33 shows a 1 H-NMR chart of N, N′-bis (spiro-1,9′-bifluorene-1-yl) 1 N, N′-diphenylbenzidine.
  • Fig. 34 shows a DSC chart of N, N '-bis (9,9, 1 bifluorene-2-yl on spiro) — N, ⁇ ' -diphenylbenzidine.
  • composite means that not only two materials are mixed but also mixed at a molecular level so that charge can be transferred between the materials. .
  • a composite of an organic compound and a metal oxide used for the light-emitting element of the present invention includes an organic compound and a metal oxide.
  • the organic compound various compounds such as aromatic amine compounds, carbazol derivatives, aromatic hydrocarbons, and high molecular compounds (oligomers, dendrimers, polymers, etc.) can be used.
  • the organic compound is preferably an organic compound having a high hole transporting property. Specifically, it is preferable to use a substance having a hole mobility of more than 10- 6 cm 2 ZVs. However, other substances may be used as long as they have a property of transporting more holes than electrons.
  • organic compounds that can be used in the complex of organic compound and metal oxide are specifically listed.
  • aromatic amine compounds include 4,4'-bis [N— (1_naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB), 4, 4'-bis [N- (3 monomethylphenyl).
  • a complex of an organic compound and a metal oxide having no absorption peak can be obtained in the wavelength region of 450 nm to 800 nm.
  • Aromatic amines contained in complexes of organic compounds and metal oxides that do not have an absorption peak in the wavelength range of 450 nm to 800 nm include N, N '-di (p-tolyl) -N, N' —Diphenyl—p-phenylenediamine (abbreviation: DTDPPA), 4, 4, 1bis [N— (4-diphenylaminophenyl) 1 N-phenylamino] biphenyl (abbreviation: DPAB), 4, 4 '—Bis (N— ⁇ 4— [N— (3-Methylphenyl) 1 N-phenylamino] Phenyl ⁇ —N-phenylamino) Biphenyl (abbreviation: DNTPD), 1, 3, 5—Tris [ N- (4-diphenylaminophenyl) 1 N-phenylamino] benzene (abbreviation: DP A3 B), and the like can be given.
  • force rubazole derivatives that can be used in composites of organic compounds and metal oxides include 3— [N- (9-phenylcarbazol-luyl 3-yl) -N-phenylamino. ] — 9-phenylcarbazol (abbreviation: PC z PCA 1), 3, 6_bis [N— (9-phenylcarbazole-3-yl) —N-phenylamino] 1-9 phenylcarbazole ( Abbreviations: PCz PCA2), 3— [N- (1-Naphtyl) -N- (9_phenylcarbazole—3-yl) amino] 1 9 1-phenylcarbazo (Abbreviation: PCz PCNl).
  • CBP 4'-di (N—force rubazolyl) biphenyl
  • TCPB 1, 3, 5— ⁇ lith [4_ (N-carbazolyl) phenyl] benzene
  • C z PA 9-[ 4- (N-carbazolyl)] phenyl 10-phenylanthracene
  • C z PA 2, 3, 5, 6-triphenyl-1,1,4-bis [4- (N-carbazolyl) phenyl] Benzene or the like
  • Aromatic hydrocarbons that can be used in composites of organic compounds and metal oxides include, for example, 9, 10-di (naphthenylene-2-yl) — 2-tert-butylanthracene ( Abbreviations: t-BuDNA), 9, 10-di (naphtholene 1-yl) 1 2-tert-butylanthracene, 9, 10-bis (3,5-diphenylphenyl) anthracene (abbreviation: DPPA) , 9, 10-di (4-Ferphenyl) 1 2-tert-butylanthracene (abbreviation: t-BuDBA), 9, 10-di (naphthalene 2-yl) anthracene (abbreviation: DNA), 9 , 10-Diphenylanthracene (abbreviation: DPAn th), 2-tert-ptylanthracene (abbreviation: t- BuAnth), 9, 10-di (4-methylnaphthalen
  • aromatic hydrocarbon that can be used for the composite of the organic compound and the metal oxide may have a Biel skeleton.
  • aromatic hydrocarbons having a vinyl group include 4, 4 'monobis (2, 2-diphenylvinyl) biphenyl (abbreviation: DPV B i), 9, 10-bis [4— (2 , 2-diphenylvinyl) phenyl] anthracene (abbreviation: DPVPA).
  • PVK N-vinylcarbazole
  • PVTPA poly (4_vinyltriphenylamine
  • a transition metal oxide is preferable.
  • an oxide of a metal belonging to Groups 4 to 8 in the periodic table is preferable.
  • vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and rhenium oxide are preferable because of their high electron-accepting properties.
  • molybdenum oxide is particularly preferable because it is stable in the air, has a low hygroscopic property, and is easy to handle.
  • any method may be used regardless of a wet method or a dry method.
  • a composite of an organic compound and a metal oxide can be manufactured by co-evaporating the organic compound and the metal oxide described above.
  • a solution containing the above-described organic compound and metal alkoxide is applied and fired.
  • a composite of an organic compound and a metal oxide can be produced.
  • molybdenum oxide is preferable from the viewpoint of a manufacturing process because molybdenum oxide is easily evaporated in a vacuum.
  • resistivity was measured.
  • a film containing a composite of organic compound and metal oxide was formed by co-evaporation of NPB and molybdenum oxide (VI), and the resistivity was measured.
  • the thickness of the film containing the complex of organic compound and metal oxide is 200 nm, and the ratio of NPB and molybdenum oxide contained in the film containing the complex of organic compound and metal oxide is NPB: Molybdenum oxide was adjusted to be 1: 0.25.
  • the co-evaporation method is an evaporation method in which evaporation is performed simultaneously from a plurality of evaporation sources in one processing chamber.
  • the resistivity of the film containing a composite of an organic compound and a metal oxide using NPB and molybdenum oxide was 3 ⁇ 10 5 ⁇ ⁇ cm.
  • the resistivity of a film containing a composite of an organic compound and a metal oxide is very small compared to other organic layers. This feature makes it possible to increase the thickness of the device and prevent short-circuiting of the device. In addition, it is easy to obtain a film thickness that is suitable for optical design using Sengen.
  • Device 1 As a composite of an organic compound and a metal oxide, Device 1 was manufactured using a film containing a composite of an organic compound and a metal oxide in which NPB and molybdenum oxide were mixed. Was measured.
  • Figure 12 shows the voltage-current density characteristics of element 1.
  • the IV characteristics of Comparative Element 2 using an NPB film and Comparative Element 3 using a molybdenum oxide film were also measured.
  • Element 1 was fabricated by the following method.
  • An organic compound is formed by depositing indium oxide-tin oxide (ITO) on a glass substrate and co-depositing NPB and molybdenum oxide (VI) on the ITO. And a metal oxide composite film were formed.
  • the film thickness of the layer containing the composite of the organic compound and the metal oxide is 200 nm, and the ratio of NPB and molybdenum oxide contained in the film containing the composite of the organic compound and the metal oxide is as follows: NPB: Molybdenum oxide was adjusted to 1: 0.375.
  • aluminum (A 1) was formed over the film containing the composite of the organic compound and the metal oxide, and device 1 was manufactured.
  • a film containing a composite of an organic compound and a metal oxide can have an almost ohmic electrode contact.
  • a film containing a composite of an organic compound and a metal oxide can be forward-biased and reverse-biased. It was found that the characteristics did not change. In addition, the film containing a composite of organic compound and metal oxide had a lower resistance than the NPB film as well as the molybdenum oxide film.
  • FIG. 13 shows absorption spectra of a film containing a composite of an organic compound in which NPB and molybdenum oxide are mixed and a metal oxide, and an NPB film and a molybdenum oxide film.
  • a film containing a composite using NPB and molybdenum oxide was manufactured by the following method.
  • a film containing a composite of an organic compound and a metal oxide was formed by co-evaporation of NPB and molybdenum oxide (VI) on a stone substrate.
  • Figure 30 shows the ESR spectrum of the complex of organic compound and metal oxide.
  • Aromatic amine compound 4, 4 'monobis (N- ⁇ 4- [N- (3-methylphenyl) 1 N-phenylamino] phenyl ⁇ -N-phenylamino) by co-evaporation on a quartz substrate
  • a layer containing biphenyl (abbreviation: DNTPD) and molybdenum oxide was formed to a thickness of 200 nm.
  • DNTPD biphenyl
  • molybdenum oxide was formed to a thickness of 200 nm.
  • co-evaporation was performed so that the ratio of DNTPD to molybdenum oxide was 1: 0.5 by weight.
  • An ESR electron spin on electron spin
  • ESR measurement a strong magnetic field is applied to a sample with unpaired electrons, the energy level of unpaired electrons causes Zeman splitting, and the resonance absorption transition of microwaves, which is the energy difference between the levels, is measured. This is the measurement method used.
  • the presence of unpaired electrons and the spin state can be determined by measuring the frequency at which absorption occurs and the strength of the magnetic field.
  • the electron spin concentration can be obtained from the absorption intensity.
  • an electron spin resonance analyzer, J ES—TE200 manufactured by JEOL
  • manganese supported on magnesium oxide was used as a magnetic field calibration sample.
  • Figure 30 shows the ESR measurement results. As comparative examples, ESR measurements were also performed on DNTPD single films (thickness 200 nm) and molybdenum oxide single films (thickness 200 nm).
  • Figure 31 shows the ESR measurement results of the DNTPD single film
  • Figure 32 shows the ESR measurement results of the molybdenum oxide single film.
  • ESR signal was not detected in the DNTPD single film and molybdenum oxide single film, but ESR signal was detected in the layer containing DNTPD and molybdenum oxide. From this, it was found that the layer containing DNTPD and molybdenum oxide has unpaired electrons. In other words, including DNTPD and molybdenum oxide The layers were found to be in different electronic states from the DNTPD and molybdenum oxide single films. From FIG. 30, the g value of the layer containing DNTPD and molybdenum oxide is 2.0 0 25, which is very close to 2.0 0 2 3 which is the free electron g value. all right. On the other hand, the line width was found to be very narrow at 0.77 mT.
  • the fact that the current-voltage characteristics of the forward bias and reverse bias of the element 3 using a composite of an organic compound and a metal oxide are the same can be explained by the higher carrier density concentration.
  • the anode is different between I T O and A 1 in the forward and reverse directions. Since the work function of A 1 is smaller than that of I T O, no current flows in the reverse bias even though the current flows in the forward bias in the N P B film.
  • the carrier density concentration is high, so that carriers move between the anode and the film containing a composite of an organic compound and a metal oxide, and the anode Even when A 1 is selected, the injection barrier is reduced.
  • holes can be injected efficiently. That is, in the case of a film containing a composite of an organic compound and a metal oxide, since the work function dependence of the anode is small, various materials can be used as the anode. In other words, the electrode material can be selected without depending on the work function, and the range of options for the electrode material is expanded.
  • Figure 15 shows the calculation results.
  • Figure 15 shows the density of states of s-orbitals, p-orbitals, d-orbitals of molybdenum (Mo), and P-orbitals of oxygen (O).
  • the electron acceptor level must be closest to the Fermi level and higher than the Fermi level.
  • Figure 15 shows that molybdenum's s, p, d orbitals and oxygen P orbital satisfy this requirement. However, as shown in Fig. 15, it can be seen that the d-orbital of molybdenum has the highest density of states.
  • the light-emitting element of the present invention has a plurality of layers between a pair of electrodes.
  • the plurality of layers are formed of a material or a carrier having a high carrier injection property so that a light emitting region is formed at a position away from the electrode, that is, a carrier (carrier) is recombined at a position away from the electrode.
  • the layers are stacked by combining layers containing a substance having a high transportability.
  • the light-emitting element includes the first electrode 102, the first layer 103, the second layer 104, and the third layer stacked in order on the first electrode 102.
  • the layer is composed of a layer 105, a fourth layer 106, and a second electrode 1007 provided thereon.
  • the following description will be made on the assumption that the first electrode 102 functions as an anode and the second electrode 107 functions as a cathode.
  • the substrate 10 1 is used as a support for the light emitting element.
  • the substrate 101 for example, glass or plastic can be used. Note that other materials may be used as long as the light-emitting element functions as a support in the manufacturing process.
  • the first electrode 102 various metals, alloys, electrically conductive compounds, and mixtures thereof can be used.
  • ITO indium oxide-tin oxide
  • I ZO indium zinc oxide
  • IW ZO indium oxide containing tungsten oxide and zinc oxide
  • ITO indium oxide-tin oxide
  • I ZO indium oxide-tin oxide
  • I ZO indium oxide-zinc oxide
  • I ZO can be formed by a sputtering method using an evening get obtained by adding 1 to 20 wt% of zinc oxide to indium oxide.
  • Indium oxide containing tungsten oxide and zinc oxide uses a target containing 0.5 to 5 wt% tungsten oxide and 0.1 to 1 wt% zinc oxide with respect to indium oxide. It can be formed by sputtering.
  • gold Au
  • platinum P t
  • nickel N i
  • tandasten W
  • chromium C r
  • molybdenum 1 ⁇ 0
  • iron (6) cobalt
  • Co cobalt
  • titanium Ti
  • Copper Cu
  • Palladium Pd
  • Aluminum Al
  • Aluminum-silicon A1-Si
  • Aluminum-titanium A1-Ti
  • Aluminum Mu-silicon- Copper A l _S i—Cu
  • T i N metal nitride
  • the work function is large ( The work function is preferably 4.0 eV or more.
  • the first electrode 102 is not limited to a material having a high work function, and a material having a low work function can also be used.
  • the first layer 103 is a buffer layer. That is, the layer includes the composite of the organic compound and the metal oxide described in Embodiment 1. [0074]
  • the second layer 104 is a layer containing a substance having a high hole-transport property.
  • a substance having a high hole-transport property for example, 4, 4'-bis [N- (1-naphthyl) 1 N-phenylamino] biphenyl (abbreviation: NPB) and N, N'-bis (3-methylphenyl) 1 N, ⁇ '—Diphenyl— [1, 1, -biphenyl] —4, 4, azimin (abbreviation: TPD), 4, 4', 4 "—Tris (N, N-diphenylamino) Triphenylamine (abbreviation: TDATA ), 4, 4, 4 "— Tris [N— (3-Methylphenyl) 1 N-phenylamino] Triphenylamine (abbreviation: MTDATA) and other aromatic amines (ie, benzene ring-nitrogen And the like).
  • NPB 4, 4'-bis [N- (1-naph
  • the materials mentioned here are mainly 1 0— A substance having a hole mobility of s or more. However, any other substance may be used as long as it has a property of transporting more holes than electrons. In other words, various compounds such as aromatic amine compounds, strong rubazole derivatives, aromatic hydrocarbons, and high molecular compounds (oligomers, dendrimers, polymers, etc.) shown in Embodiment Mode 1 can be used.
  • the second layer 104 is not limited to a single layer, and may be a stack of two or more layers containing any of the above substances.
  • the third layer 105 is a layer containing a substance having a high light-emitting property.
  • Various materials can be used.
  • a highly luminescent substance tris (8_ quinolinolato) aluminum (abbreviation: A 1 q), 9, 10 0-di (2-naphthyl) anthracene (abbreviation: DNA), 4, 4 '-bis [ N_ (1-Naphtyl) 1 N-Phenylamino] Biphenyl (abbreviation: NPB) and other materials with high carrier transport properties and good film quality (that is, difficult to crystallize) are freely combined.
  • highly luminescent substances include N, N'-dimethylquinacridone (abbreviation: DMQd), N, N'-diphenylquinacridone (abbreviation: DPQd), and 3_ (2-benthothiazoyl).
  • the fourth layer 106 is a layer containing a substance having a high electron transporting property.
  • a substance having a high electron transporting property For example, tris (8-quinolinolato) aluminum (abbreviation: A 1 q), tris (4-methyl-8_quinolinolato) aluminum (abbreviation: A 1 mq 3 ), bis (1 0 —Hydroxybenzo [h] —quinolinato) Beryllium (abbreviation: BeBq 2 ), Bis (2-methyl_8-quinolinolato) mono 4-phenylphenolatoaluminum (abbreviation: BA 1 Q), etc. And metal complexes having a nzoquinoline skeleton.
  • bis [2- (2-hydroxyphenyl) monobenzoxazolate] zinc (abbreviation: Zn (BOX) 2
  • bis [2- (2-hydroxyphenyl) monobenzothiazola ⁇ ] zinc (abbreviation: Metal complexes having an oxazole-based or thiazole-based ligand such as Zn (BTZ) 2 ) can also be used.
  • the substances mentioned here are Ru substance der having a predominantly 10- 6 cm 2 ZV s or more electron mobility. Note that any substance other than the above substances may be used for the fourth layer 106 as long as it has a property of transporting more electrons than holes.
  • the fourth layer 106 is not limited to a single layer, and may be a stack of two or more layers containing any of the above substances.
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (work function of 3.8 eV or less) can be used as a material for forming the second electrode 107.
  • cathode materials include elements belonging to Group 1 or Group 2 of the Periodic Table of Elements, ie, alkali metals such as lithium (L i) and cesium (C s), and magnesium (Mg), calcium (Ca ), Alkaline earth metals such as strontium (Sr), and alloys containing these (Mg: Ag, A 1: Li).
  • the layer that has the function of promoting electron injection is made of an alkali metal or an alkaline earth metal such as lithium fluoride (L i F), cesium fluoride (C s F), or calcium fluoride (CaF 2 ).
  • an alkali metal or an alkaline earth metal such as lithium fluoride (L i F), cesium fluoride (C s F), or calcium fluoride (CaF 2 ).
  • Compounds can be used.
  • a layer made of a substance having an electron transporting property containing an alkali metal or an alkaline earth metal for example, A 1 Q containing magnesium (Mg) can be used. [0 0 7 9]
  • the formation method of the first layer 10 3, the second layer 1 0 4, the third layer 1 0 5, and the fourth layer 1 0 6 may be a method other than the above evaporation method.
  • an ink jet method or a spin coat method may be used.
  • each electrode or each layer may be formed using a different film formation method.
  • the light-emitting element of the present invention having the above structure is a layer containing a highly light-emitting substance in which current flows due to a potential difference generated between the first electrode 102 and the second electrode 107.
  • a certain third layer 10 5 holes and electrons recombine to emit light. That is, the light emitting region is formed in the third layer 105.
  • one or both of the first electrode 10 2 and the second electrode 10 7 are made of a light-transmitting substance.
  • the first electrode 10 2 is made of a light-transmitting substance
  • light emission is extracted from the substrate side through the first electrode 10 2 as shown in FIG.
  • the second electrode 10 7 is made of a light-transmitting substance, as shown in FIG. 1 (b)
  • light emission passes through the second electrode 10 7 and is opposite to the substrate.
  • both the first electrode 1 0 2 and the second electrode 1 0 7 are made of a light-transmitting substance, as shown in FIG. 1 (c)
  • light emission occurs in the first electrode 1 0 2 And through the second electrode 107 and taken out from the substrate side and both the substrate and the opposite side.
  • the structure of the layer provided between the first electrode 102 and the second electrode 107 is not limited to the above.
  • a region where holes and electrons recombine is formed at a site away from the first electrode 102 and the second electrode 107. Any structure other than those described above may be used as long as the structure includes the layer including the composite material described in Embodiment 1.
  • a substance having a high electron transporting property or a substance having a high hole transporting property, a substance having a high electron injecting property, a substance having a high hole injecting property, a bipolar property (electron and positive) A layer made of a substance having a high hole transporting property may be freely combined with a layer containing the composite material of the present invention. Further, a carrier recombination site may be controlled by providing a layer made of a silicon oxide film or the like over the first electrode 102.
  • the light-emitting element shown in FIG. 2 includes a first layer 30 3 containing a substance having a high electron-transport property on a first electrode 30 2 functioning as a cathode, and a second layer 3 containing a substance having a high light-emitting property.
  • fourth layer containing a composite of the organic compound and metal oxide described in Embodiment 1 3 0 6 functioning as an anode
  • the second electrode 3 07 is laminated in order.
  • Reference numeral 3 0 1 denotes a substrate.
  • a light emitting element is manufactured over a substrate made of glass, plastic, or the like.
  • a passive light-emitting device can be manufactured.
  • a thin film transistor (TFT) may be formed over a substrate made of glass, plastic, or the like, and a light emitting element may be formed over an electrode electrically connected to the TFT.
  • TFT thin film transistor
  • An active matrix light-emitting device that controls driving of the light-emitting diode can be manufactured.
  • the TFT structure is not particularly limited. A Sugaga type TFT or a reverse Suga type TFT can be used.
  • the drive circuit formed on the TFT array substrate may be composed of N-type and P-type TFTs, or may be composed of only one of N-type and P-type. . Further, there is no particular limitation on the crystallinity of a semiconductor film used for TFT. An amorphous semiconductor film may be used, or a crystalline semiconductor film may be used.
  • a light-emitting element of the present invention includes a layer including the composite of the organic compound and metal oxide described in Embodiment 1.
  • a layer including a composite of an organic compound and a metal oxide has high conductivity due to the intrinsic generation of carriers. Therefore, low-voltage driving of the light-emitting element can be realized.
  • a layer including a composite of an organic compound and a metal oxide used in the light-emitting element of the present invention is formed thickly without increasing driving voltage or power consumption, the composite of an organic compound and a metal oxide is used.
  • optical design utilizing the microcavity effect and the interference effect can be performed. Therefore, a light-emitting element with high color purity and low display quality depending on the viewing angle can be manufactured.
  • the layer including the composite of the organic compound and the metal oxide used for the light-emitting element of the present invention has a high carrier density, it can be in ohmic contact with the electrode. That is, the contact resistance with the electrode is small. Therefore, the electrode material can be selected without considering the work function and the like, and the options for the electrode material are expanded.
  • the film thickness between electrodes of a normal light emitting element is 100 nm to 1550 nm
  • the film thickness between electrodes of a light emitting element using a layer containing a composite material is The thickness may be from 500 nm, preferably from 200 nm to 500 nm.
  • the layer including the composite of the organic compound and the metal oxide used in the light-emitting element of the present invention can be formed by vacuum deposition, any layer containing the light-emitting substance is formed by vacuum deposition.
  • the layers can also be formed in the same vacuum apparatus, and the light emitting elements can be formed consistently in the vacuum. Therefore, it is possible to prevent the adhesion of minute foreign matters in the manufacturing process and improve the yield.
  • the layer including the composite of the organic compound and the metal oxide used in the light-emitting element of the present invention includes the organic compound and the metal oxide, the stress generated between the electrode and the layer including the light-emitting substance. Can be relaxed.
  • Embodiment 3 a light-emitting element having a structure different from the structure shown in Embodiment 2 will be described with reference to FIGS.
  • a layer including a composite of an organic compound and a metal oxide can be provided so as to be in contact with an electrode functioning as a cathode.
  • FIG. 5 (a) shows an example of the structure of the light emitting element of the present invention.
  • the case where the first electrode 40 01 functions as an anode and the second electrode 40 2 functions as a cathode will be described.
  • the first layer 4 1 1 is a layer containing a substance having a high light-emitting property.
  • the second layer 4 1 2 is a layer containing one compound selected from electron donating substances and a compound having a high electron transporting property, and the third layer 4 1 3 is described in Embodiment 1.
  • the layer includes a composite of an organic compound and a metal oxide.
  • the electron donating substance contained in the second layer 4 1 2 is preferably alkali metal or alkaline earth metal and oxides or salts thereof. Specific examples include lithium, cesium, calcium, lithium oxide, calcium oxide, barium oxide, and cesium carbonate.
  • FIG. 5 (a) when a voltage is applied, electrons are exchanged near the interface between the second layer 4 1 2 and the third layer 4 1 3.
  • the second layer 4 1 2 transports electrons to the first layer 4 1 1, while the third layer 4 1 3 transports holes to the second electrode 4 0 Transport to 2. That is, the second layer 4 1 2 and the third layer 4 1 3 together serve as a carrier generation layer.
  • the third layer 4 1 3 has a function of transporting holes to the second electrode 40 2.
  • the third layer 413 exhibits extremely high hole injection property and hole transport property. Therefore, the driving voltage of the light emitting element can be reduced. In addition, when the third layer 413 is thickened, an increase in driving voltage can be suppressed.
  • the thickness of the third layer 413 can be increased, an increase in driving voltage can be suppressed, so the thickness of the third layer 413 can be set freely, and light emission from the first layer 41 1 can be prevented.
  • the extraction efficiency can be improved.
  • the film thickness of the third layer 413 can be set so that the color purity of light emission from the first layer 41 1 is improved.
  • FIG. 5A when the second electrode 402 is formed by sputtering, damage to the first layer 41 1 in which a light-emitting substance is present can be reduced. .
  • the light-emitting element of this embodiment also has various variations by changing materials of the first electrode 40.1 and the second electrode 402.
  • the schematic diagram is shown in Fig. 5 (b), Fig. 5 (c) and Fig. 6.
  • the reference numerals in FIG. Reference numeral 400 denotes a substrate carrying the light emitting element of the present invention.
  • FIG. 5 shows an example in which the first layer 411, the second layer 412, and the third layer 413 are configured in this order from the substrate 400 side.
  • the first electrode 401 is made light transmissive and the second electrode 402 is made light-shielding (particularly reflective) so that light is emitted from the substrate 400 side as shown in Fig. 5 (a). It becomes.
  • the first electrode 401 has a light shielding property (particularly By making the second electrode 402 light transmissive, light is emitted from the opposite side of the substrate 400 as shown in FIG. 5 (b).
  • both the first electrode 401 and the second electrode 402 light transmissive light is emitted to both the substrate 400 side and the opposite side of the substrate 400 as shown in FIG. 5 (c).
  • the structure which performs is also attained.
  • FIG. 6 shows an example in which the third layer 413, the second layer 412, and the first layer 411 are configured in this order from the substrate 400 side.
  • the first electrode 401 is made light-shielding (particularly reflective) and the second electrode 402 is made light-transmissive so that light can be extracted from the substrate 400 side as shown in FIG. 6 (a).
  • the first electrode 401 light-transmissive and the second electrode 402 light-shielding (especially reflective) light can be extracted from the opposite side of the substrate 400 as shown in FIG. 6 (b).
  • both the first electrode 401 and the second electrode 402 light transmissive light is emitted to both the substrate 400 side and the opposite side of the substrate 400 as shown in FIG. 6 (c).
  • the structure which performs is also attained.
  • the first layer 411, the second layer 412, and the third layer 413 are sequentially stacked to form the second electrode 402.
  • the third layer 413, the second layer 412, and the first layer 411 are sequentially stacked to form the first electrode 401. May be formed.
  • Embodiment 4 a light-emitting element having a structure different from the structures shown in Embodiments 2 and 3 will be described with reference to FIGS.
  • a layer including a composite of an organic compound and a metal oxide can be provided so as to be in contact with two electrodes of the light-emitting element.
  • FIG. 3 (a) shows an example of the structure of the light emitting element of the present invention.
  • a first layer 211, a second layer 212, a third layer 213, and a fourth layer 214 are stacked between the first electrode 201 and the second electrode 202.
  • the case where the first electrode 201 functions as an anode and the second electrode 202 functions as a cathode is described.
  • the first electrode 201 and the second electrode 202 can have the same structure as that in Embodiment 2.
  • the first layer 211 is a layer including a complex of the organic compound and the metal oxide described in Embodiment 1
  • the second layer 212 is a layer including a substance having a high light-emitting property.
  • the third layer 213 is a layer containing an electron-donating substance and a compound having a high electron-transport property
  • the fourth layer 214 is a layer containing a composite of the organic compound and metal oxide described in Embodiment 1. is there.
  • the electron donating substance contained in the third layer 213 is preferably an alkali metal or alkaline earth metal and oxides or salts thereof. Specific examples include lithium, cesium, calcium, lithium oxide, calcium oxide, barium oxide, cesium carbonate, and the like.
  • the fourth layer 214 transports holes to the second electrode 202. That is, the third layer 213 And the fourth layer 2 1 4 together serve as a carrier generation layer. Further, it can be said that the fourth layer 2 14 has a function of transporting holes to the second electrode 20 2. It is also possible to obtain an evening light emitting element by stacking the second layer and the third layer again between the fourth layer 2 14 and the second electrode 20 2. It is.
  • the first layer 2 11 1 and the fourth layer 2 1 4 exhibit extremely high hole injection properties and hole transport properties. Therefore, the driving voltage of the light emitting element can be reduced.
  • the first layer 2 1 1 and the fourth layer 2 1 4 are made thicker, an increase in the driving voltage of the light emitting element can be suppressed, so the first layer 2 1 1 and the fourth layer
  • the film thickness of the layer 2 14 can be set freely, and the light extraction efficiency from the second layer 2 1 2 can be improved.
  • the film thicknesses of the first layer 2 11 1 and the fourth layer 2 14 can be set so that the color purity of light emitted from the second layer 2 1 2 is improved.
  • the light emitting element of this embodiment can make the anode side and the cathode side of the second layer responsible for the light emitting function very thick, and can effectively prevent a short circuit of the light emitting element.
  • Fig. 3 (a) as an example, when the second electrode 20 2 is formed by sputtering, damage to the second layer 2 1 2 containing the light-emitting substance is caused. It can also be reduced.
  • the first layer 2 11 1 and the fourth layer 2 14 are made of the same material, a layer made of the same material can be provided on both sides of the layer responsible for the light emitting function. There is also an effect of suppressing stress strain.
  • the first electrode 2 0 1 and the second electrode 2 0 By changing the 2 materials, it has various variations.
  • the schematic diagram is shown in Fig. 3 (b), Fig. 3 (c) and Fig. 4.
  • FIG. 3 (b), FIG. 3 (c) and FIG. 4 the reference numerals in FIG. 3 (a) are cited.
  • Reference numeral 200 denotes a substrate carrying the light emitting element of the present invention.
  • FIG. 3 shows an example in which the first layer 21 1, the second layer 212, the third layer 213, and the fourth layer 214 are configured in this order from the substrate 200 side.
  • the first electrode 201 is made light-transmitting
  • the second electrode 202 is made light-shielding (particularly reflective) so that light is emitted from the substrate 200 side as shown in FIG. Become.
  • the first electrode 201 light-shielding (particularly reflective) and the second electrode 202 light-transmissive light is emitted from the opposite side of the substrate 200 as shown in FIG. It becomes composition.
  • both the first electrode 20 1 and the second electrode 202 light transmissive light is emitted to both the substrate 200 side and the opposite side of the substrate 200 as shown in FIG.
  • the structure which performs is also attained.
  • FIG. 4 shows an example in which the fourth layer 214, the third layer 213, the second layer 212, and the first layer 211 are formed in this order from the substrate 200 side.
  • the first electrode 201 is made light-shielding (particularly reflective)
  • the second electrode 202 is made light-transmissive so that light is extracted from the substrate 200 side as shown in FIG. .
  • the first electrode 201 light-transmissive and the second electrode 202 light-shielding (particularly reflective) the light can be extracted from the opposite side of the substrate 200 as shown in FIG. 4 (b).
  • the first electrode 20 1 and the second electrode 202 light transmissive, light is emitted to both the substrate 200 side and the opposite side of the substrate 200 as shown in FIG. 4 (c).
  • the structure which performs is also attained.
  • the first layer 71 1 includes one compound selected from an electron-donating substance and a compound having a high electron-transport property
  • the second layer 712 has a light-emitting property.
  • material The third layer 713 is a layer containing a composite of the organic compound and metal oxide shown in Embodiment 1 and the fourth layer 714 is selected from among electron donating substances. It is also possible to employ a structure containing the above compound and a compound having a high electron transporting property.
  • the first layer 211, the second layer 212, the third layer 213, and the fourth layer 214 are sequentially stacked.
  • the fourth layer 214, the third layer 213, the second layer 212, and the first layer 202 are formed.
  • the layer 211 may be sequentially stacked to form the first electrode.
  • a light-emitting element having a structure which is different from the structures described in Embodiments 2 to 4 will be described.
  • the structure described in this embodiment is a structure in which the composite material of the present invention is applied as a charge generation layer of a light-emitting element having a structure in which a plurality of light-emitting units are stacked.
  • a light-emitting element having a structure in which a plurality of light-emitting units are stacked (hereinafter referred to as a stacked element) will be described.
  • the light-emitting element has a plurality of light-emitting units between the first electrode and the second electrode.
  • Figure 11 shows a stacked element in which two light emitting units are stacked. [0 1 2 3]
  • a first light emitting unit 51 1 1 and a second light emitting unit 51 2 are stacked between a first electrode 5 01 and a second electrode 5 02.
  • a charge generation layer 5 13 is formed between the first light emitting unit 5 1 1 and the second light emitting unit 5 1 2.
  • first electrode 5 0 1 and the second electrode 5 0 2 can be used for the first electrode 5 0 1 and the second electrode 5 0 2.
  • the first light-emitting unit 5 111 and the second light-emitting unit 51 12 can each have various configurations.
  • the charge generation layer 5 1 3 contains the composite of the organic compound and metal oxide described in Embodiment 1. Since a composite of an organic compound and a metal oxide is excellent in carrier injecting property and carrier transporting property, low voltage driving and low current driving can be realized.
  • the charge generation layer 5 13 may be formed by combining a composite of an organic compound and a metal oxide with another material.
  • a layer including a composite of an organic compound and a metal oxide, one compound selected from electron donating substances, and a compound having a high electron transporting property are included. You may form combining a layer.
  • a layer including a composite of an organic compound and a metal oxide may be combined with a transparent conductive film.
  • a light-emitting element having two light-emitting units has been described.
  • a light-emitting element in which three or more light-emitting units are stacked has the same structure as that of the organic compound described in Embodiment Mode 1.
  • Metal oxide composites can be applied.
  • three The light emitting element in which the light emitting units are stacked is stacked in the order of the first light emitting unit, the first charge generating layer, the second light emitting unit, the second charge generating layer, and the third light emitting unit.
  • the composite of the compound and the metal oxide may be contained in any one of the charge generation layers, or may be contained in all the charge generation layers.
  • the thickness of at least one of the layers excluding the first electrode and the second electrode is different for each light-emitting element that emits each emission color.
  • the light extraction efficiency for each emission color can be increased.
  • a light-emitting element that emits red color (R), green color (G), and blue color (B) includes a first electrode 1101, which is a reflective electrode, and a light-transmitting element.
  • Second electrode 1102 having the same properties, and the first layer 1 1 1 1 1 R, 1 1 11 G, 1 1 1 1 B, the second layer 1 1 12 R, 1 1 12G, 1 1 12 B, third layer 1 1 13 R, 1 1 13 G, 1 1 13 B, fourth layer 1 1 14 R, 1 1 14 G, 1 1 14 B Then, the first layer 1 1 1 1 1 R, 1 1 1 1 G, and 1 1 1 1 B are made different for each emission color.
  • the first layer 1 1 1 1 to the second electrode Holes are injected into layers 1 1 12. Electrons are exchanged near the interface between the third layer 1 1 13 and the fourth layer 1 1 14 to generate electrons and holes, and the third layer 1 1 13 Is transported to the second layer 1 1 1 2, while the fourth layer 1 1 14 transports holes to the second electrode 1 1 02. Holes and electrons recombine in the second layer 1 1 12 to bring the luminescent material into an excited state. The excited luminescent material emits light when returning to the ground state.
  • m l 4, 3 / 4, 5/4- ⁇
  • the optical distance between the light emitting region and the reflective electrode that is, the refractive index X distance is (2m ⁇ 1) Z4 times the emission wavelength (m is an arbitrary positive integer). Further, the thickness of any one of the first layer to the fourth layer is made different for each light emitting element.
  • the thickness of the layer between the layer where the electrons and holes are recombined and the reflective electrode may be different (the layer where the electrons and holes are recombined). Therefore, the thickness of the light-transmitting electrode may be different from that of the light-transmitting electrode, and the thickness of both of the electrodes may be different.
  • the light-emitting element of the present invention is characterized in that a layer including the composite of the organic compound and the metal oxide described in Embodiment 1 is used for the layer to be thickened.
  • the driving voltage increases, which is not preferable.
  • the composite of the organic compound and metal oxide described in Embodiment 1 is used for the layer to be thickened, the driving voltage can be lowered and the increase in driving voltage due to the thickening can be suppressed. it can.
  • the optical distance between the light emitting region of the red light emitting element (R) and the reflective electrode is 14 times the emission wavelength
  • the light emitting region of the green light emitting element (G) and the reflective electrode The optical distance was 3 Z 4 times the emission wavelength
  • the optical distance between the light emitting region of the blue light emitting element (B) and the reflective electrode was 5 Z 4 times the emission wavelength.
  • the present invention is not limited to this value, and the value of m can be set appropriately. Further, as shown in FIG. 10, the value of m which is (2 m ⁇ 1) / 4 times the emission wavelength may be different for each light emitting element. .
  • any of the first to fourth layers it is possible to prevent the first electrode and the second electrode from being short-circuited and to increase the yield, which is very preferable. .
  • the film thickness of at least the first layer to the fourth layer can be made different for each emission color.
  • the thickness of the layer between the layer where the electrons and holes are recombined and the reflective electrode be different for each emission color.
  • the composite of the organic compound and metal oxide shown in Embodiment Mode 1 It is preferable to use a layer containing, because the driving voltage is not increased.
  • FIG. 7A is a top view illustrating the light-emitting device
  • FIG. 7B is a cross-sectional view taken along lines A—A ′ and B—B ′ in FIG. 7A.
  • Reference numeral 601 indicated by a dotted line denotes a drive circuit portion (source side drive circuit)
  • 602 denotes a pixel portion
  • 603 denotes a drive circuit portion (gate side drive circuit).
  • Reference numeral 604 denotes a sealing substrate
  • reference numeral 605 denotes a sealing material
  • an inner side surrounded by the sealing material 605 is a space 607.
  • the routing wiring 608 is a wiring for transmitting a signal input to the source side driving circuit 601 and the gate side driving circuit 603, and from the FPC (flexible printed circuit) 609 serving as an external input terminal, Receives clock signal, start signal, reset signal, etc.
  • FPC flexible printed circuit
  • a printed wiring board PWB
  • the light-emitting device in this specification includes not only the light-emitting device body but also a state in which an FPC or PWB is attached thereto.
  • a drive circuit portion and a pixel portion are formed on the element substrate 610.
  • the source side driver which is a drive circuit portion, is formed.
  • a moving circuit 601 and one pixel in the pixel portion 602 are shown.
  • the source side driver circuit 601 is a CMOS circuit in which an n-channel TFT 623 and a p-channel TFT 624 are combined.
  • the TFT forming the driving circuit may be formed of various CMOS circuits, PMOS circuits, or NMOS circuits.
  • CMOS circuits complementary metal-oxide-semiconductor circuits
  • PMOS circuits PMOS circuits
  • NMOS circuits CMOS circuits
  • a driver integrated type in which a driver circuit is formed over a substrate is shown. However, this is not always necessary, and the driver circuit can be formed outside the substrate.
  • the pixel portion 602 is formed by a plurality of pixels including a switching TFT 611, a current control TFT 612, and a first electrode 613 electrically connected to the drain thereof.
  • an insulator 614 is formed so as to cover an end portion of the first electrode 613.
  • it is formed by using a positive type photosensitive acrylic resin film.
  • a curved surface having a curvature is formed at the upper end portion or the lower end portion of the insulator 614.
  • the insulator 614 it is preferable that only the upper end portion of the insulator 614 has a curved surface having a curvature radius (0.2 / m to 3 wm).
  • the insulator 614 either a negative type that becomes insoluble in an etchant by light irradiation or a positive type that becomes soluble in an etchant by light irradiation can be used.
  • a layer 616 containing a light-emitting substance and a second electrode 617 are formed over the first electrode 613, respectively.
  • a material used for the first electrode 613 functioning as an anode various metals, alloys, electrically conductive compounds, and mixtures thereof, metals, compounds, and alloys can be used.
  • the material is formed with a large work function (work function 4. O eV or more).
  • a three-layer structure of a titanium nitride film, a titanium nitride film, a film containing aluminum as a main component, and a titanium nitride film can be used. Note that, when a laminated structure is used, resistance as a wiring is low, a good ohmic contact can be obtained, and a function as an anode can be obtained.
  • the layer 616 containing a light-emitting substance is formed by various methods such as an evaporation method using an evaporation mask, an ink-jet method, and a spin coating method.
  • the layer 616 containing a light-emitting substance has a layer containing a composite of an organic compound and a metal oxide described in Embodiment 1.
  • another material constituting the light-emitting substance-containing layer 616 may be a low molecular weight material, a molecular weight material (including an oligomer or a dendrimer), or a high molecular weight material.
  • a material used for the layer containing a light-emitting substance not only an organic compound but also an inorganic compound may be used.
  • a material used for the second electrode 617 formed on the layer 616 containing a light-emitting substance and functioning as a cathode includes a metal, an alloy, an electrically conductive compound having a low work function (work function of 3.8 eV or less). , And mixtures thereof can be used.
  • cathode materials include elements belonging to Group 1 or Group 2 of the Periodic Table of Elements, that is, alkali metals such as lithium (L i) and cesium (C s), and magnesium (Mg), Examples thereof include alkaline earth metals such as calcium (Ca) and strontium (Sr), and alloys containing these (Mg: Ag, A1: Li).
  • the second electrode 617 includes a thin metal film, a transparent conductive film (indium oxide-acid Stacking with tin oxide (ITO), indium tin oxide containing silicon or silicon oxide, zinc oxide indium oxide (I ⁇ ), indium oxide containing tungsten oxide and zinc oxide (IWZO), etc.) It is also possible to use it.
  • ITO indium oxide-acid Stacking with tin oxide
  • I ⁇ indium tin oxide containing silicon or silicon oxide
  • IWZO indium oxide containing tungsten oxide and zinc oxide
  • the sealing substrate 604 is bonded to the element substrate 610 with the sealing material 605, whereby the light emitting element 618 is provided in the space 607 surrounded by the element substrate 610, the sealing substrate 604, and the sealing material 605. It has become.
  • the space 607 is filled with a filler, and may be filled with a sealant 605 in addition to being filled with an inert gas (such as nitrogen or argon).
  • an epoxy resin is preferably used for the sealing material 605.
  • these materials are materials that do not transmit moisture and oxygen as much as possible.
  • the plastic substrate made of FRP (Fiberglass-Reinforced Plastics), PVF (Polyvinyl fluoride), Mylar, polyester or acrylic is used as the material for the sealing substrate 604. Can be used.
  • the light-emitting device of the present invention includes a layer including the composite of the organic compound and metal oxide described in Embodiment 1.
  • a layer including a composite of an organic compound and a metal oxide has high conductivity due to the intrinsic generation of carriers. Therefore, low-voltage driving of the light-emitting element can be realized. Thus, power consumption of the light-emitting device can be reduced.
  • the layer containing the composite of the organic compound and the metal oxide used in the light-emitting device of the present invention is thick.
  • FIG. 8 is a perspective view of a passive light emitting device manufactured by applying the present invention.
  • a layer 9 5 5 containing a light emitting substance is provided between an electrode 9 5 2 and an electrode 9 5 6.
  • the end of the electrode 9 52 is covered with an insulating layer 9 53.
  • a partition wall layer 9 5 4 is provided on the insulating layer 9 5 3.
  • the side wall of the partition wall layer 95 4 has an inclination such that the distance between one side wall and the other side wall becomes narrower as it approaches the substrate surface.
  • the cross section in the short side direction of the partition wall layer 954 is trapezoidal, and the bottom side (the side facing the insulating layer 953 in the same direction as the surface direction of the insulating layer 953) is the upper side. (The side facing the same direction as the surface of the insulating layer 953, and the side not contacting the insulating layer 953) is shorter.
  • a passive light emitting device can also be driven with low power consumption by including the light emitting element of the present invention that operates at a low driving voltage.
  • An electronic device of the present invention includes a layer including the composite of the organic compound and metal oxide described in Embodiment 1, and includes a display portion with low power consumption.
  • a highly reliable display portion in which short-circuiting due to minute foreign matters or external impacts is suppressed is suppressed. It is also possible to provide electronic devices having
  • FIG. 9B illustrates a television device according to the present invention, which includes a housing 9101, a support base 9102, a display portion 9103, a speaker portion 9104, a video input terminal 9105, and the like.
  • display portion 9103 is formed by arranging light-emitting elements similar to those described in Embodiments 2 to 6 in a matrix.
  • the light-emitting element is characterized by high luminous efficiency and low driving voltage. It is also possible to prevent short-circuiting due to minute foreign matter or external impacts. Since the display portion 9103 including the light-emitting elements has similar features, this television set has no deterioration in image quality and has low power consumption.
  • the deterioration compensation function and the power supply circuit can be greatly reduced or reduced in the television device.
  • 1 and support base 9 1 0 2 can be reduced in size and weight. Since the television set according to the present invention has low power consumption, high image quality, and small size and light weight, it can provide a product suitable for the living environment.
  • FIG. 9 (B) shows a computer according to the present invention, including a main body 9 2 0 1, a housing 9 2 0 2, a display portion 9 2 0 3, a keyboard 9 2 0 4, an external connection port 9 2 0 5, and a pointing mouse Including 9 2 0 6 etc.
  • the display portion 9203 is formed by arranging light-emitting elements similar to those described in Embodiments 2 to 6 in a matrix.
  • the light-emitting element has a feature of high luminous efficiency and low driving voltage. It is also possible to prevent a short circuit due to a minute foreign matter or an external impact. Since the display portion 9203 formed using the light-emitting elements has similar characteristics, image quality is not deteriorated in this combination and power consumption is reduced.
  • the main unit 9 2 0 1 and the housing 9 2 0 2 can be reduced in size and weight. is there. Since the computer according to the present invention achieves low power consumption, high image quality, and a small size and light weight, a product suitable for the environment can be provided. In addition, it is possible to carry around, and it is possible to provide a combu evening that has a display portion that is resistant to external shocks when carrying around.
  • FIG. 9 (C) shows a mobile phone according to the present invention.
  • display portion 943 is configured by arranging light-emitting elements similar to those described in Embodiments 2 to 6 in a matrix.
  • the light-emitting element has a feature of high luminous efficiency and low driving voltage. In addition, short-circuit due to minute foreign matter or external impact is prevented. It is also possible to do.
  • the display portion 943 composed of the light-emitting elements has similar characteristics, this mobile phone has no deterioration in image quality and has low power consumption. Because of these features, deterioration compensation functions and power supply circuits can be greatly reduced or reduced in mobile phones, so the main body 9 4 0 1 and the housing 9 4 0 2 can be made smaller and lighter. Is possible. Since the mobile phone according to the present invention has low power consumption, high image quality, and small size and light weight, a product suitable for carrying can be provided. In addition, a product having a display portion that is resistant to impact when being carried can be provided.
  • FIG. 9 (D) shows a camera according to the present invention, including a main body 9 5 0 1, a display unit 9 5 0 2, a housing 9 5 0 3, an external connection port 9 5 0 4, a remote control receiving unit 9 5 0 5, Image receiving unit 9 5 0 6, battery 9 5 0 7, audio input unit 9 5 0 8, operation keys 9 5 0 9, eyepiece 9 5 10, etc.
  • the display unit 952 is configured by arranging light-emitting elements similar to those described in Embodiments 2 to 6 in a matrix.
  • the light-emitting element has characteristics such as high luminous efficiency, low driving voltage, and prevention of short-circuit due to minute foreign matter or external impact.
  • the display portion 9520 composed of the light-emitting elements has the same characteristics, this camera has no deterioration in image quality, and 'low power consumption' is achieved.
  • the deterioration compensation function can greatly reduce or reduce the power supply circuit in the camera, so that the main body 9 5 0 1 can be reduced in size and weight.
  • the camera according to the present invention low power consumption, high image quality, and reduction in size and weight are achieved; therefore, a product suitable for carrying can be provided.
  • a product having a display portion that is resistant to impact when carried can be provided.
  • the applicable range of the light-emitting device of the present invention is so wide that the light-emitting device can be applied to electronic devices in various fields.
  • the light-emitting device of the present invention it is possible to provide an electronic device having a display portion with low power consumption and high reliability. It becomes.
  • Figure 16 shows the structure of a light-emitting element using a composite of an organic compound and a metal oxide.
  • indium oxide-tin oxide containing silicon oxide was formed over a glass substrate 2101 by a sputtering method, whereby the first electrode 2102 was formed.
  • the film thickness was 1 10 nm and the electrode area was 2 mm x 2 mm.
  • the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward. Then evacuating the vacuum apparatus was evacuated to about 10- 4 P a, on the first electrode 2102 by co-evaporation of NPB and molybdenum oxide (VI), a composite of an organic compound and a metal oxide A layer 2103 containing a body was formed. The film thickness of the layer containing the complex of organic compound and metal oxide was changed to 60 nm, 90 nm, 120 nm, and 150 nm.
  • the ratio of NPB and molybdenum oxide (VI) contained in the layer containing the composite of organic compound and metal oxide was adjusted so that molybdenum oxide (VI) was 10% by volume.
  • the co-evaporation method is an evaporation method in which evaporation is simultaneously performed from a plurality of evaporation sources in one processing chamber.
  • NPB was formed to a thickness of 10 nm by a vapor deposition method using resistance heating, whereby a hole transport layer 2104 was formed.
  • a light emitting layer 2 105 having a thickness of 40 nm was formed.
  • Coumarin 6 is dispersed in the layer composed of A 1 Q.
  • a 1 Q was deposited on the light-emitting layer 2 105 to have a thickness of 30 nm by using a resistance heating vapor deposition method to form an electron transport layer 2106.
  • an electron injection layer 2107 was formed on the electron transport layer 2106 by a vapor deposition method using resistance heating so as to have a thickness of 1 nm.
  • a second electrode 2108 is formed by depositing aluminum to a thickness of 200 nm on the electron injection layer 2107 using a resistance heating vapor deposition method, and the light-emitting element of the present invention is manufactured. did.
  • FIG. 17 shows voltage-current density characteristics of the light-emitting element of the present invention.
  • FIG. 25 shows current density-luminance characteristics of the light-emitting element of the present invention.
  • the driving voltage at 1000 c dZm 2 is 5.5 V when the layer containing the composite of the organic compound and the metal oxide is 50 nm, but 5.5 V even at 150 ⁇ m. Met. This is because the resistivity of a layer containing a composite of an organic compound and a metal oxide is very small compared to other organic layers. This feature makes it possible to increase the thickness of the device and prevent short-circuiting of the device. Also, optical design using interference etc. It is easy to obtain a film thickness that is suitable for processing.
  • a light-emitting element of the present invention will be described with reference to FIG.
  • indium oxide-tin oxide containing silicon oxide was formed over a glass substrate 2201 by a sputtering method, whereby a first electrode 2202 was formed.
  • the film thickness was 110 nm and the electrode area was 2 mm x 2 mm.
  • a layer 2203 containing a composite of an organic compound and a metal oxide was formed by co-evaporation of biphenyl (abbreviation: BS PB), molybdenum oxide (VI), and rubrene.
  • the thickness of the layer containing the composite of organic compound and metal oxide was 12 Onm.
  • NPB was formed to a thickness of 10 nm by vapor deposition using resistance heating to form a hole transport layer 2204.
  • a 1 q and coumarin 6 are co-evaporated to form a hole transport layer 2204
  • a light emitting layer 2205 having a thickness of 37.5 nm was formed.
  • Coumarin 6 is dispersed in the layer composed of A 1 Q.
  • a 1 Q was deposited on the light emitting layer 2205 to have a thickness of 37.5 nm by using a resistance heating vapor deposition method, whereby an electron transport layer 2206 was formed.
  • an electron injection layer 2207 was formed on the electron transport layer 2206 by a vapor deposition method using resistance heating so as to have a thickness of 1 nm.
  • a second electrode 2208 is formed by depositing aluminum on the electron injection layer 2207 so as to have a film thickness of 200 nm by using a resistance heating vapor deposition method. Produced.
  • indium oxide-tin oxide containing silicon oxide was formed over a glass substrate by a sputtering method to form a first electrode.
  • the film thickness was 1 1 O nm, and the electrode area was 2 mm x 2 mm.
  • the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward.
  • BSPB was deposited on the first electrode to a thickness of 5 O nm by vapor deposition using resistance heating.
  • a 10 nm NPB film is formed on BSPB by vapor deposition using resistance heating. Formed with thickness.
  • a light emitting layer having a thickness of 37.5 nm was formed on 8.
  • Coumarin 6 is dispersed in the layer composed of A 1 Q.
  • a 1 Q was deposited on the light-emitting layer to a thickness of 37.5 nm using a resistance heating vapor deposition method to form an electron transport layer.
  • an electron injection layer was formed by depositing calcium fluoride to a thickness of 1 nm on the electron transport layer by vapor deposition using resistance heating.
  • FIG. 19 shows voltage-luminance characteristics of the light-emitting element 1 and the comparative light-emitting element 1.
  • the comparative light-emitting element 1 is not practical because the driving voltage of the light-emitting element becomes very high, but the light-emitting element 1 of the present invention using a layer containing a composite of an organic compound and a metal oxide is It can be seen that the drive voltage has been reduced. In other words, the voltage is lowered by mixing BSPB with molybdenum oxide to form a composite of an organic compound and a metal oxide.
  • FIG. 20 shows the results of a constant current driving test of the light-emitting element 1 and the comparative light-emitting element 1 at an initial luminance of 3000 cdZm 2 .
  • Light-emitting element 1 is longer than comparative light-emitting element 1. It can be seen that the service life is improved and the reliability is improved.
  • the driving voltage can be reduced by using a composite of an organic compound and a metal oxide for a light emitting element. It was also found that reliability was improved.
  • a light-emitting element of the present invention will be described with reference to FIG.
  • indium oxide-tin oxide containing silicon oxide was formed over a glass substrate 2201 by a sputtering method, whereby a first electrode 2202 was formed.
  • the film thickness was 1 10 nm and the electrode area was 2 mm x 2 mm.
  • the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward. Then evacuating the vacuum apparatus was evacuated to about 10- 4 P a, on the first electrode 2202 by co-evaporation of t- BuDN A and molybdenum oxide (VI), an organic compound and metal oxide A layer 2203 containing a composite of objects is formed.
  • the film thickness of the layer containing the complex of organic compound and metal oxide was 12 Onm.
  • the ratio of t-BuDNA to molybdenum oxide (VI) contained in the layer containing the complex of organic compound and metal oxide is t-Bu DNA: acid by weight ratio.
  • Molybdenum fluoride was adjusted to be 1: 0.5.
  • the co-evaporation method is an evaporation method in which evaporation is performed simultaneously from a plurality of evaporation sources in one processing chamber.
  • NPB was formed to a thickness of 10 nm by a vapor deposition method using resistance heating, whereby a hole transport layer 2204 was formed.
  • a 1 q and coumarin 6 were co-evaporated to form a light emitting layer 2205 having a thickness of 37.5 nm on the hole transport layer 2 204.
  • Coumarin 6 is dispersed in the layer composed of A 1 Q.
  • a 1 Q was deposited on the light emitting layer 2 205 to a thickness of 37.5 nm by using a resistance heating vapor deposition method to form an electron transport layer 2206.
  • an electron injection layer 2207 was formed on the electron transport layer 2206 by a vapor deposition method using resistance heating so as to have a thickness of 1 nm. ⁇
  • a second electrode 2208 is formed by depositing aluminum on the electron injection layer 2207 so as to have a film thickness of 200 nm using a resistance heating vapor deposition method, and the light-emitting element 2 of the present invention is formed. Produced.
  • indium tin oxide containing silicon oxide was formed over a glass substrate by a sputtering method to form a first electrode.
  • the film thickness was 1 l Onm, and the electrode area was 2 mm x 2 mm.
  • the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward. Thereafter, t-BuDNA was deposited on the first electrode to a thickness of 50 nm by vapor deposition using resistance heating.
  • NPB n-on BuDNA
  • a 1 q and coumarin 6 were co-evaporated to form a 37.5 nm light-emitting layer on NPB.
  • the weight ratio between A 1 q and coumarin 6 was adjusted to be 1: 0.01 (2 Al Q: coumarin 6).
  • Coumarin 6 is dispersed in the layer composed of A 1 Q.
  • a 1 q was deposited on the light emitting layer to a thickness of 37.5 nm to form an electron transport layer.
  • an electron injection layer was formed by depositing calcium fluoride to a thickness of 1 nm on the electron transport layer by vapor deposition using resistance heating.
  • a comparative light-emitting element 2 was fabricated by forming a second electrode by depositing aluminum on the electron injection layer to a thickness of 200 nm. did. '
  • FIG. 21 shows voltage-luminance characteristics of the light-emitting element 2 and the comparative light-emitting element 2.
  • Comparative luminescent element The element 2 is not practical because the driving voltage of the light emitting element becomes very high, but the driving voltage of the light emitting element 2 of the present invention using a layer containing a composite of an organic compound and a metal oxide is low. It can be seen that it has been reduced.
  • t-BuDN A is mixed with molybdenum oxide to form a composite of an organic compound and a metal oxide, thereby reducing the voltage.
  • FIG. 22 shows the results of a constant current driving test of the light-emitting element 2 and the comparative light-emitting element 2 at an initial luminance of 3000 cdZm 2 . It can be seen that the light-emitting element 2 has a longer life than the comparative light-emitting element 2 and has improved reliability.
  • the driving voltage can be reduced by using a composite of an organic compound and a metal oxide for a light emitting element. It was also found that reliability was improved.
  • mixing with molybdenum oxide to form a composite of an organic compound and a metal oxide not only makes it possible to use a variety of anodes, but also widens the choice of organic compounds.
  • a material with a high glass transition point (Tg) but low conductivity, such as t-BuDNA can be used for a light emitting device, and a device with high heat resistance can be manufactured.
  • indium oxide-tin oxide containing silicon oxide was formed over a glass substrate 2201 by a sputtering method, so that a first electrode 2202 was formed.
  • the film thickness was 110 nm, and the electrode area was 2 mm x 2 mm.
  • the co-evaporation method is an evaporation method in which evaporation is performed simultaneously from a plurality of evaporation sources in one processing chamber.
  • NPB was formed to a thickness of 10 nm by a vapor deposition method using resistance heating, whereby a hole transport layer 2204 was formed.
  • a light emitting layer 2205 having a thickness of 37.5 nm was formed on the hole transport layer 2204 by co-evaporation of Al q and coumarin 6.
  • Coumarin 6 is dispersed in the layer composed of A 1 Q.
  • a 1 Q was deposited on the light emitting layer 2205 to have a thickness of 37.5 nm by using a resistance heating vapor deposition method, whereby an electron transport layer 2206 was formed.
  • a film of calcium fluoride having a thickness of 1 nm was formed by a vapor deposition method using resistance heating to form an electron injection layer 2207.
  • a second electrode 2208 is formed by depositing aluminum to a thickness of 200 nm on the electron injection layer 2207 using a resistance heating vapor deposition method, and the light-emitting element 3 of the present invention is formed. Produced.
  • indium oxide-tin oxide containing silicon oxide was formed over a glass substrate by a sputtering method to form a first electrode.
  • the film thickness was 1 1 Onm, and the electrode area was 2 mm x 2 mm.
  • the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward. Thereafter, copper phthalocyanine (abbreviation: CuPc) was deposited on the first electrode to a thickness of 20 nm by a vapor deposition method using resistance heating.
  • CuPc copper phthalocyanine
  • NPB was formed with a film thickness of 40 nm on CuPc by vapor deposition using resistance heating.
  • a 1 q and coumarin 6 were co-evaporated to form a light emitting layer having a thickness of 37.5 nm on NPB.
  • Coumarin 6 is dispersed in the layer composed of A 1 q.
  • Alq was deposited on the light emitting layer so as to have a film thickness of 37.5 nm to form an electron transport layer.
  • an electron injection layer was formed by depositing calcium fluoride to a thickness of 1 nm on the electron transport layer by vapor deposition using resistance heating.
  • a second electrode is formed by depositing aluminum on the electron injection layer so as to have a thickness of 20 O nm. Was made.
  • the voltage-luminance characteristics of the light-emitting element 3 and the comparative light-emitting element 3 are shown in FIG.
  • the light-emitting element 3 using a layer containing a composite of an organic compound and a metal oxide has a driving voltage lower than that of the comparative light-emitting element 3.
  • the driving voltage can be reduced by using a composite of an organic compound and a metal oxide for a light emitting element.
  • Table 1 shows the basic specifications of the active matrix display fabricated in this example
  • Table 2 shows the element structure.
  • the display used in this example is capable of color display by RGB color separation, but in order to eliminate the occurrence of point defects due to the effect of color separation, vapor deposition is performed on the entire surface in a single green color. Yes.
  • Table 2 also shows the structure of a comparative display using copper phthalocyanine (CuPc) instead of a complex of organic compound and metal oxide.
  • CuPc copper phthalocyanine
  • Figure 26 shows the luminance and current efficiency when the thickness of the layer containing a composite of an organic compound and metal oxide using NPB and molybdenum oxide is changed.
  • the light extraction efficiency is affected by the thickness of the layer containing the complex of organic compound and metal oxide.
  • the brightness changes periodically.
  • the thickness of the layer containing the composite of the organic compound and metal oxide is increased from 30 nm to 150 nm, the reduction in luminance can be suppressed to about 10%.
  • Figure 27 shows the film thickness dependence of the layer containing a complex of organic compounds and metal oxides with increased point defects.
  • the panel used for the measurement was driven at room temperature for 1 hour and then temperature cycled.
  • the film thickness of the layer containing the composite of organic compound and metal oxide was 40 nm, an increase of nearly 20 point defects per panel was observed after 60 hours of temperature cycling.
  • the number of point defects was reduced to about 2 or less even after the same temperature cycle operation.
  • the display area of the panel used for the measurement in Fig. 27 is 36 mm x 48 mm, and the aperture ratio is 39%.
  • the film thickness of the layer containing a complex of organic compound and metal oxide is 1550 nm. The standard condition for the layer containing the composite of organic compound and metal oxide in the test was adopted.
  • Figure 28 shows the number of increased point defects in various environmental operation tests.
  • Table 3 shows the conditions for each operation test.
  • This panel has a monitor element through which a constant current flows, in addition to the pixel part specified in Table 1.
  • the drive voltage of the light-emitting element in the pixel unit reflects the voltage of the monitor element, and it is corrected so that the brightness is constant over time and changes over time (Hiroyuki Miyak eeta 1 ., SID '05 Digestof Technological Papers, Vol. X XXVI, p 240-243).
  • Figure 29 shows a cross-sectional TEM photograph of a typical fine particle part that is the cause of point defects. It can be seen that it is difficult to obtain good coverage when a thin hole injection layer such as Cu Pc is used. Since the film thickness of the light-emitting element is very small, if good coverage cannot be obtained, it can easily lead to a short circuit between the electrodes. Special When spherical particles such as (a) and (b) are present, the lower side of the particle has an inversely tapered shape, so it is relatively good by increasing the film thickness using a composite of organic compound and metal oxide. Coverage can be obtained.
  • the layer containing a light-emitting substance when an active matrix display is manufactured using a layer containing a composite of an organic compound and a metal oxide exhibiting high conductivity, the layer containing a light-emitting substance can be made thick without greatly degrading the characteristics. I was able to confirm. In addition, increasing the thickness of the layer containing a composite of an organic compound and a metal oxide was effective in suppressing point defects caused by fine particles. In particular, it has been found that it exhibits a significant suppression effect against the increasing type of point defects that are likely to occur in harsh environments such as temperature cycle operation stress.
  • a 6.5_in c h, WQVG A active matrix panel was fabricated using a layer containing a composite of an organic compound and a metal oxide. An NTSC ratio of 83% could be obtained by adjusting the thickness of the organic layer and the layer containing the composite of organic compound and metal oxide. In addition, this panel had very few dark spots due to a short circuit between the electrodes. ⁇ [Example 7]
  • Magnesium (1.26 g, 0.052 mo 1) was placed in a 10 OmL three-necked flask, and the system was evacuated and heated and stirred for 30 minutes to activate. After cooling to room temperature, place the system under a nitrogen stream, add 5 mL of jetyl ether and a few drops of dibromoethane, and add 2-bromobiphenyl 1 1.65 g (0. 05 0 mo 1) dissolved in 15 mL of jet ether. After dripping slowly, the solution was refluxed for 3 hours after the completion of the dripping to obtain a structureier reagent.
  • BSPB N, N, -bis (spiro 9,9, 1 bifluorene 1 2-yl) 1 N, N '-diphenyl pendidine
  • reaction solution was cooled to room temperature, water was added, and the precipitated solid was collected by suction filtration and washed with dichloromethane.
  • the resulting white solid was purified by alumina column chromatography (Kuroguchi Form) and recrystallized from dichloromethane to obtain 2.66 g of a white powdery solid in a yield of 93%.
  • N, N ′ bis (s) represented by the structural formula (1) was obtained. It was confirmed that the substance was N, N'-diphenylbenzidine (abbreviation: BSPB).
  • a differential scanning calorimetric analyzer (DSC: Differenci Al Sc n i n CA n ri cal me try, manufactured by Perkin Elmer, model number: Py ris 1 DSC).
  • the DSC measurement was performed according to the following procedure. First, the sample (the obtained compound) was heated to 450 ° C. at a temperature increase rate of 40 / min, and then the sample was cooled to a glass state at a temperature increase rate of 40 minutes. And the sample in the glass state was heated at a rate of temperature increase of 1 O tZ, and the measurement results shown in Fig. 34 were obtained.
  • Fig. 34 the measurement results shown in Fig. 34 were obtained.
  • the horizontal axis represents temperature () and the vertical axis represents heat flow (upward is endothermic) (mW). From the measurement results, it was found that the obtained compound had a glass transition temperature of 1 72 ° C. and a crystallization temperature of 2 68 t :. Also, from the intersection of the tangent at 3 1 2 and the tangent at 3 2: ⁇ 3 2 8, it was found that the melting point was 3 2 3 and ⁇ 3 2 4. That is, the BSPB synthesized as in this example has a glass transition temperature of 1550 ° C. or higher, preferably 1 6 Ot: up to 30 0 0, and a melting point of 1 80 0 up to 4 0 0 It can be seen that it is in the range of ° C.
  • the obtained compound has a high glass transition temperature of 1 7 2 and has good heat resistance. Further, in FIG. 34, the peak representing crystallization of the obtained compound is broad, and it was found that the obtained compound is a substance that is difficult to crystallize.
  • the composite of an organic compound and a metal oxide according to the present invention is useful for simultaneously reducing power consumption and suppressing the occurrence of defects.
  • a light emitting element and a light emitting device using the light emitting element Suitable for use in electronic equipment.

Abstract

Provided are a light emitting element, a light emitting device and an electronic device, which use a compound material wherein charges are moved to the d orbital of a metal atom of a metal oxide from the p orbital of an atom in an organic compound. Since the compound material has a high conductivity, a drive voltage can be reduced even when the compound is used as a thick buffer layer. Therefore, power consumption of the light emitting element is reduced and generation of defects is suppressed.

Description

明細書 発光素子、 発光装置並びに電子機器 【技術分野】  LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
【0 0 0 1】  [0 0 0 1]
本発明は、 電流励起型の発光素子に関する。 また、 発光素子を有する発光装置、 電子機器に関する。  The present invention relates to a current excitation type light emitting element. In addition, the present invention relates to a light-emitting device and an electronic device having a light-emitting element.
【背景技術】  [Background]
【0 0 0 2】  [0 0 0 2]
近年、 発光性の有機化合物を用いた発光素子の研究開発が盛んに行われている。 これら発光素子の基本的な構成は、 一対の電極間に発光性の有機化合物を含む層を 挟んだものである。 この素子に電圧を印加することにより、 一対の電極から電子お よびホールがそれぞれ発光性の有機化合物を含む層に注入され、 電流が流れる。 そ して、 それらキャリア (電子およびホール) が再結合することにより、 発光性の有 機化合物が励起状態を形成し、 その励起状態が基底状態に戻る際に発光する。 この ようなメ力二ズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。  In recent years, research and development of light-emitting elements using light-emitting organic compounds have been actively conducted. The basic structure of these light-emitting elements is such that a layer containing a light-emitting organic compound is sandwiched between a pair of electrodes. By applying a voltage to this element, electrons and holes are each injected from the pair of electrodes into the layer containing a light-emitting organic compound, and a current flows. Then, these carriers (electrons and holes) recombine, so that the luminescent organic compound forms an excited state, and emits light when the excited state returns to the ground state. Due to such a mechanism, such a light-emitting element is called a current-excitation light-emitting element.
【0 0 0 3】  [0 0 0 3]
なお、 有機化合物が形成する励起状態の種類としては、 一重項励起状態と三重項 励起状態が可能であり、 一重項励起状態からの発光が蛍光、 三重項励起状態からの 発光が燐光と呼ばれている。  Note that the types of excited states formed by organic compounds can be singlet excited states and triplet excited states. Light emission from singlet excited states is called fluorescence, and light emission from triplet excited states is called phosphorescence. ing.
【0 0 0 4】  [0 0 0 4]
このような発光素子は、 例えば 0 . 1 i m程度の有機薄膜で形成されるため、 簿 型軽量に作製できることが大きな利点である。 また、 キャリアが注入されてから発 光に至るまでの時間は 1 /秒程度あるいはそれ以下であるため、 非常に応答速度が 速いことも特長の一つである。 これらの特性は、 フラットパネルディスプレイ素子 として好適であると考えられている。 Since such a light emitting element is formed of, for example, an organic thin film of about 0.1 im, it is a great advantage that it can be manufactured in a book-type lightweight. Also, since the time from carrier injection to light emission is about 1 / second or less, the response speed is very high. One of the features is that it is fast. These characteristics are considered suitable for flat panel display elements.
【0 0 0 5】  [0 0 0 5]
また、 これらの発光素子は膜状に形成されるため、 大面積の素子を形成すること により、 面状の発光を容易に得ることができる。 このことは、 白熱電球や L E Dに 代表される点光源、あるいは蛍光灯に代表される線光源では得難い特色であるため、 照明等に応用できる面光源としての利用価値も高い。  In addition, since these light-emitting elements are formed in a film shape, planar light emission can be easily obtained by forming a large-area element. This is a feature that is difficult to obtain with a point light source typified by an incandescent bulb or LED, or a line light source typified by a fluorescent lamp, and therefore has a high utility value as a surface light source that can be applied to lighting.
【0 0 0 6】  [0 0 0 6]
しかし、 発光素子の実用化に向けての課題として、 消費電力の低減がある。 消費 電力を低減するためには、 電流効率を向上させる方法、 駆動電圧を低減する方法の 二種類が挙げられる。 駆動電圧を低減する方法としては、 P I N構造を使用する方 法が報告されている (非特許文献 1参照)。  However, there is a reduction in power consumption as an issue for the practical application of light-emitting elements. There are two methods for reducing power consumption: improving current efficiency and reducing drive voltage. As a method for reducing the drive voltage, a method using a PIN structure has been reported (see Non-Patent Document 1).
【0 0 0 7】  [0 0 0 7]
P I N素子は P—ドープされた層と N—ドープされた層により構成されており、 多くの研究者が最適なドナーゃァクセプターおよびホストの探索を行っている。  PIN devices consist of a P-doped layer and an N-doped layer, and many researchers are searching for the best donor receptor and host.
【0 0 0 8】  [0 0 0 8]
発光素子の実用化に向けてのもう一つの課題は、 電極間ショートである。 電極間 ショートは基板上に残った微粒子等に起因する。発光素子の薄膜の膜厚は、通常 0 . 1 m程度であるため、 0 . 1 m程度の微粒子でさえ、 簡単に電極間のショート を引き起こす。 電極間ショートが生じた発光素子は発光することができないため、 これらは喑点として認識される。 このような欠陥は、 例えば発光素子をフラットパ ネルディスプレイ素子として用いる場合、 ディスプレイパネルの商品価値を大きく 下げてしまい、 結果としてパネルコス卜の増大を引き起こす。  Another issue for the practical application of light-emitting elements is short-circuiting between electrodes. The short between electrodes is caused by fine particles remaining on the substrate. Since the thickness of the thin film of the light emitting element is usually about 0.1 m, even a fine particle of about 0.1 m easily causes a short circuit between the electrodes. Since the light emitting element in which the short-circuit between the electrodes has occurred cannot emit light, these are recognized as saddle points. For example, when the light-emitting element is used as a flat panel display element, such a defect greatly reduces the commercial value of the display panel, resulting in an increase in panel cost.
【0 0 0 9】  [0 0 0 9]
これらの電極間ショートを防止する方法の一つは、バッファ一層の厚膜化である。 しかし、 多くの有機化合物は導電性が低いため、 厚膜化することにより発光素子の 消費電力は増大してしまう。 One of the methods for preventing these inter-electrode shorts is to increase the thickness of the buffer layer. However, since many organic compounds have low conductivity, the power consumption of the light-emitting element increases by increasing the thickness.
【非特許文献 1】  [Non-Patent Document 1]
J an B i r n s t o c k , e t a 1. , Fu l l y Or an i c P I N OLED s wi t h H i gh Powe r E f f i c i e nc y, L i f e t ime, and Th e rma l S t a b i l i t y", Eu r oD i s p 1 a y 2005, 195 (2005)  J an B irnstock, eta 1., Fu lly Or an ic PIN OLED s wi th H i gh Powe r E fficie nc y, L ifet ime, and Therma l Stability ", Eu roD isp 1 ay 2005, 195 (2005)
【発明の開示】  DISCLOSURE OF THE INVENTION
【発明が解決しょうとする課題】  [Problems to be solved by the invention]
【0010】  [0010]
そこで本発明では、 消費電力の低減と欠陥の発生の抑制を同時に実現する、 新規 な発光素子を提供する。 また、 消費電力の低減と欠陥の発生の抑制を同時に実現す る発光装置、 電子機器を提供する。  Accordingly, the present invention provides a novel light-emitting element that can simultaneously reduce power consumption and suppress the occurrence of defects. We also provide light-emitting devices and electronic devices that can simultaneously reduce power consumption and suppress defects.
【課題を解決するための手段】  [Means for Solving the Problems]
【001 1】  [001 1]
本発明者らは、 鋭意検討を重ねた結果、 有機化合物と金属酸化物から形 ΐ£される 有機化合物と金属酸化物の複合体を用いることにより、 課題を解決できることを見 出した。  As a result of intensive studies, the present inventors have found that the problem can be solved by using a composite of an organic compound and a metal oxide formed from an organic compound and a metal oxide.
【0012】  [0012]
すなわち、 本発明の一は、 有機化合物と金属酸化物を用いた複合体を有し、 前記 有機化合物中の原子の ρ軌道から、 前記金属酸化物の金属原子の d軌道に電荷が移 動していることを特徴とする発光素子である。  That is, one aspect of the present invention includes a complex using an organic compound and a metal oxide, and a charge is transferred from a ρ orbit of an atom in the organic compound to a d orbit of a metal atom of the metal oxide. It is a light emitting element characterized by the above.
【0013】  [0013]
上記構成において、 金属原子は、 遷移金属であることが好ましい。 また、 元素周 期表における 4乃至 8族に属する金属であることが好ましい。 特に、 モリブデンで あることが好ましい。 In the above structure, the metal atom is preferably a transition metal. Further, a metal belonging to Groups 4 to 8 in the element periodic table is preferable. Especially with molybdenum Preferably there is.
【0 0 1 4】  [0 0 1 4]
また、 上記構成において、 有機化合物は、 芳香族ァミン化合物であることが好ま しい。 有機化合物が芳香族ァミン化合物である場合、 芳香族ァミン化合物の窒素原 子の p軌道から、 電荷が移動している。  In the above structure, the organic compound is preferably an aromatic amine compound. When the organic compound is an aromatic amine compound, the charge is transferred from the p orbital of the nitrogen atom of the aromatic amine compound.
【0 0 1 5】  [0 0 1 5]
また、 上記構成において、 前記有機化合物は、 芳香族炭化水素であることが好ま しい。 '  In the above structure, the organic compound is preferably an aromatic hydrocarbon. '
【0 0 1 6】  [0 0 1 6]
本発明は、 上述した発光素子を有する発光装置も範疇に含めるものである。  The present invention also includes a light emitting device having the above-described light emitting element.
【0 0 1 7】  [0 0 1 7]
また、 本発明の一は、 有機化合物と金属酸化物を用いた複合体を有する画素を有 し、 8 5 で 6 6 0時間駆動した後の画素欠陥の増加数が、総画素数の 0 . 0 8 7 % 以下であることを特徴とする発光装置である。  Another aspect of the present invention includes a pixel including a composite including an organic compound and a metal oxide, and the number of increased pixel defects after driving at 85 for 60 hours is 0. 0 8 7% or less.
【0 0 1 8】  [0 0 1 8]
また、 本発明の一は、 有機化合物と金属酸化物を用いた複合体を有する画素を有 し、 — 4 0 で 6 6 0時間駆動した後の画素欠陥の増加数が、 総画素数の 0 . 0 8 7 %以下であることを特徴とする発光装置である。  Another aspect of the present invention includes a pixel including a composite including an organic compound and a metal oxide, and the increase in pixel defects after driving for 60 hours at −40 is 0% of the total number of pixels. 0 8 7% or less of a light emitting device.
【0 0 1 9】  [0 0 1 9]
また、 本発明の一は、 有機化合物と金属酸化物を用いた複合体を有する画素を有 し、 8 5 で 4時間駆動、 _ 4 0 で 4時間駆動を繰り返し、 6 6 0時間駆動した 後の画素欠陥の増加数が、 総画素数の 0 . 0 8 7 %以下であることを特徴とする発 光装置である。 '  Another aspect of the present invention includes a pixel including a composite including an organic compound and a metal oxide. After driving for 85 hours for 4 hours and for 400 hours for 4 hours, driving for 60 hours The light emitting device is characterized in that the increase in the number of pixel defects is 0.087% or less of the total number of pixels. '
【0 0 2 0】  [0 0 2 0]
また、 本発明の一は、 有機化合物と金属酸化物を用いた複合体を有する画素を有 し、 85 :で 4時間駆動、 一 40 で 4時間駆動を繰り返し、 60時間駆動した後 の画素欠陥の増加数が、表示面積 1000mm2あたり 3個以下であることを特徴と する発光装置である。 In addition, one aspect of the present invention includes a pixel having a complex using an organic compound and a metal oxide. The light emitting device is characterized in that the number of pixel defects after driving for 4 hours at 85: 4, driving for 4 hours at 1 and 40 hours is less than 3 per 1000 mm 2 of display area. .
【0021】  [0021]
また、 本発明の一は、 有機化合物と金属酸化物を用いた複合体を含む層を有し、 各画素の発光色に応じて、 前記有機化合物と金属酸化物を用いた複合体を含む層の 膜厚が異なることを特徴とする発光装置である。  In addition, one aspect of the present invention includes a layer including a complex using an organic compound and a metal oxide, and a layer including a complex including the organic compound and the metal oxide according to the emission color of each pixel. The light-emitting device is characterized in that the film thicknesses are different.
【0022】  [0022]
なお、 本明細書中における発光装置とは、 画像表示デバイス、 発光デバイス、 も しくは光源 (照明装置含む) を含むものとする。 また、 発光素子にコネクタ一、 例 えば FPC (F l e x i b l e P r i n t e d C i r c u i t) もしくは T A B (Tap e Au t oma t e d Bond i ng) テープもしくは TC P (T a e C a r r i e r Pa c k a g e) が取り付けられたモジュール、 TAB テープや T C Pの先にプリント配線板が設けられたモジュール、 または発光素子に COG (Ch i On G 1 a s s ) 方式により I C (集積回路) が直接実装さ れたモジュールも全て発光装置に含むものとする。  Note that a light-emitting device in this specification includes an image display device, a light-emitting device, or a light source (including a lighting device). In addition, a module in which a connector, for example, FPC (Flexible Printed Circuit) or TAB (Tape Automated Bonding) tape or TC P (Tae Carrier Package) is attached to the light emitting element, All modules that have a printed wiring board on the end of TAB tape or TCP, or modules that have ICs (integrated circuits) directly mounted on the light-emitting elements using the COG (Ch i On G 1 ass) method are included in the light-emitting device. .
【0023】  [0023]
また、 本発明の発光素子を表示部に用いた電子機器も本発明の範疇に含めるもの とする。 したがって、 本発明の電子機器は、 表示部を有し、 表示部は、 上述した発 光素子と発光素子の発光を制御する制御手段とを備えたことを特徴とする。  In addition, an electronic device using the light-emitting element of the present invention for the display portion is also included in the category of the present invention. Therefore, an electronic apparatus of the present invention includes a display unit, and the display unit includes the above-described light emitting element and a control unit that controls light emission of the light emitting element.
【発明の効果】  【The invention's effect】
【0024】  [0024]
本発明の発光素子に用いる有機化合物と金属酸化物の複合体は高い導電性を有し ているため、 厚いバッファー層として用いても駆動電圧を低減することができる。 よって、 発光素子の消費電力を低減することができる。 【0 0 2 5】 Since the composite of the organic compound and the metal oxide used for the light-emitting element of the present invention has high conductivity, the driving voltage can be reduced even when used as a thick buffer layer. Thus, power consumption of the light emitting element can be reduced. [0 0 2 5]
また、 有機化合物と金属酸化物の複合体を用いて厚いバッファ一層を形成するこ とにより、 欠陥の発生を抑制することができる。  In addition, the formation of defects can be suppressed by forming a thick buffer layer using a composite of an organic compound and a metal oxide.
【0 0 2 6】  [0 0 2 6]
よって、 消費電力が低減され、 欠陥の発生が抑制された発光素子、 発光装置、 並 びに電子機器を提供することができる。  Thus, a light-emitting element, a light-emitting device, and an electronic device in which power consumption is reduced and generation of defects is suppressed can be provided.
【図面の簡単な説明】 [Brief description of the drawings]
【0 0 2 7】  [0 0 2 7]
【図 1】 本発明の発光素子を説明する図。  FIG. 1 illustrates a light-emitting element of the present invention.
【図 2】 本発明の発光素子を説明する図。  FIG. 2 illustrates a light-emitting element of the present invention.
【図 3】 本発明の発光素子を説明する図。  FIG. 3 illustrates a light-emitting element of the present invention.
【図 4】 本発明の発光素子を説明する図。  FIG 4 illustrates a light-emitting element of the present invention.
【図 5】 本発明の発光素子を説明する図。  FIG 5 illustrates a light-emitting element of the present invention.
【図 6】 本発明の発光素子を説明する図。  FIG. 6 illustrates a light-emitting element of the present invention.
【図 7】 本発明の発光装置を説明する図。  FIG. 7 illustrates a light-emitting device of the present invention.
【図 8】 本発明の発光装置を説明する図。  FIG. 8 illustrates a light-emitting device of the present invention.
【図 9】 本発明の発光装置を用いた電子機器を説明する図。  FIG. 9 illustrates an electronic device using the light-emitting device of the present invention.
【図 1 0】 本発明の発光装置を説明する図。  FIG. 10 illustrates a light-emitting device of the present invention.
【図 1 1】 本発明の発光素子を説明する図。  FIG. 1 illustrates a light-emitting element of the present invention.
【図 1 2】 有機化合物と金属酸化物の複合体を含む膜の電圧一電流密度特性を示 す図。  [Fig. 1 2] A graph showing the voltage-current density characteristics of a film containing a composite of an organic compound and a metal oxide.
【図 1 3】 有機化合物と金属酸化物の複合体を含む膜の吸収スぺクトルを示す図。 【図 1 4】 有機化合物と金属酸化物の複合体を含む膜の計算結果を示す図。  FIG. 13 shows an absorption spectrum of a film containing a composite of an organic compound and a metal oxide. FIG. 14 shows calculation results of a film containing a composite of an organic compound and a metal oxide.
【図 1 5】 有機化合物と金属酸化物の複合体を含む膜の計算結果を示す図。 【図 16】 本発明の発光素子を説明する図。 FIG. 15 shows calculation results of a film containing a composite of an organic compound and a metal oxide. FIG 16 illustrates a light-emitting element of the present invention.
【図 1 7】 有機化合物と金属酸化物の複合体を含む層の膜厚を変化させた発光素 子の電圧一 -電流密度特性を示す図。  FIG. 17 is a graph showing voltage vs. current density characteristics of a light-emitting element in which the thickness of a layer containing a composite of an organic compound and a metal oxide is changed.
【図 1 8】 本発明の発光素子を説明する図。 .  FIG. 18 illustrates a light-emitting element of the present invention. .
【図 1 9】 本発明の発光素子の電圧一輝度特性を示す図。  FIG. 19 is a graph showing voltage-luminance characteristics of the light-emitting element of the present invention.
【図 2 0】 本発明の発光素子の規格化輝度時間変化を示す図。  FIG. 20 is a graph showing a change in normalized luminance time of the light-emitting element of the present invention.
【図 2 1】 本発明の発光素子の電圧一輝度特性を示す図。  FIG. 21 is a graph showing voltage-luminance characteristics of the light-emitting element of the present invention.
【図 2 2] 本発明の発光素子の規格化輝度時間変化を示す図。  FIG. 22 shows a change in normalized luminance time of the light-emitting element of the present invention.
【図 2 3] 本発明の発光素子を説明する図。  FIG. 23 illustrates a light-emitting element of the present invention.
【図 2 4】 N P B分子の原子電荷の計算結果を示す図。  FIG. 24 is a diagram showing the calculation results of atomic charges of N P B molecules.
【図 2 5】 本発明の発光素子の電流密度一輝度特性を示す図。  FIG. 25 is a graph showing current density-luminance characteristics of a light-emitting element of the present invention.
【図 2 6] 本発明のパネルの輝度及び電流効率を示す図。  FIG. 26 shows the luminance and current efficiency of the panel of the present invention.
【図 2 7] 本発明のパネルの増加型点欠陥の有機化合物と金属酸化物の複合体を 含む層の膜厚依存性を示す図。  FIG. 27 is a graph showing the film thickness dependence of a layer containing a composite of an organic compound and a metal oxide with increased point defects in the panel of the present invention.
【図 28】 本発明のパネルの各種環境動作試験における増加型点欠陥数を示す図。 【図 29】 点欠陥部分の断面 TEM写真を示す図。  FIG. 28 is a diagram showing an increased number of point defects in various environmental operation tests of the panel of the present invention. FIG. 29 is a diagram showing a cross-sectional TEM photograph of a point defect portion.
【図 30】 DNTPDと酸化モリブデンとを含む有機化合物と金属酸化物の複合 体の E S R測定結果を示す図。  FIG. 30 is a diagram showing an ESR measurement result of a composite of an organic compound containing DNTPD and molybdenum oxide and a metal oxide.
【図 31】 DNTPD単膜の ESR測定結果を示す図。  FIG. 31 shows ESR measurement results of a DNTPD single film.
【図 32】 酸化モリブデン単膜の ESR測定結果を示す図。  FIG. 32 is a diagram showing the ESR measurement results of a molybdenum oxide single film.
【図 33】 N, N' —ビス (スピロ一 9, 9 ' ービフルオレン一 2—ィル) 一 N, N' —ジフエニルベンジジンの1 H— NMRチャートを示す図。 FIG. 33 shows a 1 H-NMR chart of N, N′-bis (spiro-1,9′-bifluorene-1-yl) 1 N, N′-diphenylbenzidine.
【図 34】 N, N' —ビス (スピロに 9, 9, 一ビフルオレン— 2—ィル) — N, Ν' —ジフエニルベンジジンの D S Cチャートを示す図。 【発明を実施するための最良の形態】 Fig. 34 shows a DSC chart of N, N '-bis (9,9, 1 bifluorene-2-yl on spiro) — N, Ν' -diphenylbenzidine. BEST MODE FOR CARRYING OUT THE INVENTION
【0028】  [0028]
以下、 本発明の実施の態様について図面を用 t て詳細に説明する。 但し、 本発明 は以下の説明に限定されず、 本発明の趣旨及びその範囲から逸脱することなくその 形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、 本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
【0029】  [0029]
(実施の形態 1)  (Embodiment 1)
本実施の形態では、 本発明の発光素子に用いる有機化合物と金属酸化物の複合体 について説明する。 なお、 本明細書中において、 複合とは、 単に 2つの材料を混合 させるだけでなく、 分子レベルで混合し、 これによつて材料間での電荷の授受が行 われ得る状態になることを言う。  In this embodiment mode, a composite of an organic compound and a metal oxide used for the light-emitting element of the present invention will be described. In this specification, the term “composite” means that not only two materials are mixed but also mixed at a molecular level so that charge can be transferred between the materials. .
【0030】  [0030]
本発明の発光素子に用いる有機化合物と金属酸化物の複合体は、 有機化合物と金 属酸化物から構成される。 有機化合物としては、 芳香族ァミン化合物、 カルバゾ一 ル誘導体、 芳香族炭化水素、 高分子化合物 (オリゴマー、 デンドリマー、 'ポリマー 等) など、 種々の化合物を用いることができる。 なお、 有機化合物としては、 正孔 輸送性の高い有機化合物であることが好ましい。 具体的には、 10— 6cm2ZVs 以上の正孔移動度を有する物質であることが好ましい。 但し、 電子よりも正孔の輸 送性の高い物質であれば、 これら以外のものを用いてもよい。 以下では、 有機化合 物と金属酸化物の複合体に用いることのできる有機化合物を具体的に列挙する。 A composite of an organic compound and a metal oxide used for the light-emitting element of the present invention includes an organic compound and a metal oxide. As the organic compound, various compounds such as aromatic amine compounds, carbazol derivatives, aromatic hydrocarbons, and high molecular compounds (oligomers, dendrimers, polymers, etc.) can be used. The organic compound is preferably an organic compound having a high hole transporting property. Specifically, it is preferable to use a substance having a hole mobility of more than 10- 6 cm 2 ZVs. However, other substances may be used as long as they have a property of transporting more holes than electrons. In the following, organic compounds that can be used in the complex of organic compound and metal oxide are specifically listed.
【0031】  [0031]
例えば、 芳香族ァミン化合物としては、 4, 4' 一ビス [N— (1_ナフチル) —N—フエニルァミノ] ビフエ二ル (略称: NPB) 、 4, 4' —ビス [N— (3 一メチルフエニル)一N—フエニルァミノ] ビフエニル(略称: TPD)、 4, 4' , 4 ' , ートリス (Ν, Ν—ジフエニルァミノ) 卜りフエニルァミン (略称: TDA ΤΑ) 、 4, 4' , 4' , ートリス [Ν— (3—メチルフエニル) 一 Ν—フエニル ァミノ] トリフエニルァミン (略称: MTDATA) 、 4, 4 ' —ビス [Ν—フエ ニル— Ν— (スピロフルオレン一 2—ィル)] ビフエ二ル (略称: BSPB) などを 挙げることができる。 For example, aromatic amine compounds include 4,4'-bis [N— (1_naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB), 4, 4'-bis [N- (3 monomethylphenyl). ) 1 N-phenylamino] Biphenyl (abbreviation: TPD), 4, 4 ', 4 ', thoris (Ν, Ν-diphenylamino) 卜 phenylamine (abbreviation: TDA 略), 4, 4', 4 ', thoris [Ν- (3-methylphenyl) Ν-phenylamine] triphenylamine (abbreviation) : MTDATA), 4, 4'-bis [Ν-phenyl-Ν- (spirofluorene 2-yl)] biphenyl (abbreviation: BSPB).
【0032】  [0032]
また、 以下に示す有機化合物を用いることにより、 450 nm〜800 nmの波 長領域において、 吸収ピークを有しない有機化合物と金属酸化物の複合体を得るこ とができる。  In addition, by using the organic compound shown below, a complex of an organic compound and a metal oxide having no absorption peak can be obtained in the wavelength region of 450 nm to 800 nm.
【0033】  0033
450 n m〜 800 nmの波長領域において、 吸収ピークを有しない有機化合物 と金属酸化物の複合体に含まれる芳香族ァミンとしては、 N, N' —ジ (p—トリ ル) -N, N'—ジフエニル— p—フエ二レンジァミン(略称: DTDPPA)、 4, 4, 一ビス [N— (4—ジフエニルァミノフエ二ル) 一 N—フエニルァミノ] ビフ ェニル (略称: DPAB)、 4, 4' —ビス (N— {4— [N— (3—メチルフエ二 ル) 一N—フエニルァミノ] フエ二ル} —N—フエニルァミノ) ビフエ二ル (略称: DNTPD)、 1, 3, 5—トリス [N— (4—ジフエニルァミノフエニル) 一 N— フエニルァミノ] ベンゼン (略称: DP A3 B) 等を挙げることができる。  Aromatic amines contained in complexes of organic compounds and metal oxides that do not have an absorption peak in the wavelength range of 450 nm to 800 nm include N, N '-di (p-tolyl) -N, N' —Diphenyl—p-phenylenediamine (abbreviation: DTDPPA), 4, 4, 1bis [N— (4-diphenylaminophenyl) 1 N-phenylamino] biphenyl (abbreviation: DPAB), 4, 4 '—Bis (N— {4— [N— (3-Methylphenyl) 1 N-phenylamino] Phenyl} —N-phenylamino) Biphenyl (abbreviation: DNTPD), 1, 3, 5—Tris [ N- (4-diphenylaminophenyl) 1 N-phenylamino] benzene (abbreviation: DP A3 B), and the like can be given.
【0034】  [0034]
また、 有機化合物と金属酸化物の複合体に用いることのできる力ルバゾール誘導 体としては、 具体的には、 3— [N- (9—フエ二ルカルバゾ一ルー 3—ィル) ― N—フエニルァミノ] — 9—フエ二ルカルバゾ一ル (略称: PC z PCA 1)、 3, 6_ビス [N— (9—フエ二ルカルバゾールー 3—ィル) —N—フエニルァミノ] 一 9一フエ二ルカルバゾール(略称: PCz PCA2)、 3— [N- (1—ナフチル) -N- (9 _フエ二ルカルバゾール— 3—ィル) ァミノ] 一 9一フエ二ルカルバゾ ール (略称: PCz PCNl) 等を挙げることができる。 Specific examples of force rubazole derivatives that can be used in composites of organic compounds and metal oxides include 3— [N- (9-phenylcarbazol-luyl 3-yl) -N-phenylamino. ] — 9-phenylcarbazol (abbreviation: PC z PCA 1), 3, 6_bis [N— (9-phenylcarbazole-3-yl) —N-phenylamino] 1-9 phenylcarbazole ( Abbreviations: PCz PCA2), 3— [N- (1-Naphtyl) -N- (9_phenylcarbazole—3-yl) amino] 1 9 1-phenylcarbazo (Abbreviation: PCz PCNl).
【0035】  [0035]
また、 4, 4' ージ (N—力ルバゾリル) ビフエ二ル (略称: CBP)、 1, 3, 5—卜リス [4_ (N—カルバゾリル) フエニル] ベンゼン (略称: TCPB)、 9 - [4- (N—カルバゾリル)] フエ二ルー 10—フエ二ルアントラセン (略称: C z PA)、 2, 3, 5, 6—トリフエニル一 1, 4一ビス [4— (N—カルバゾリル) フエニル] ベンゼン等を用いることができる。  In addition, 4, 4'-di (N—force rubazolyl) biphenyl (abbreviation: CBP), 1, 3, 5— 卜 lith [4_ (N-carbazolyl) phenyl] benzene (abbreviation: TCPB), 9-[ 4- (N-carbazolyl)] phenyl 10-phenylanthracene (abbreviation: C z PA), 2, 3, 5, 6-triphenyl-1,1,4-bis [4- (N-carbazolyl) phenyl] Benzene or the like can be used.
【0036】  [0036]
また、 有機化合物と金属酸化物の複合体に用いることのできる芳香族炭化水素と しては、 例えば、 9, 10—ジ (ナフ夕レン— 2—ィル) — 2— t e r t—ブチル アントラセン (略称: t— BuDNA)、 9, 10—ジ (ナフ夕レン一 1—ィル) 一 2— t e r t—ブチルアントラセン、 9, 10—ビス (3, 5—ジフエニルフエ二 ル) アントラセン (略称: DPPA)、 9, 10—ジ (4—フエエルフェ二ル) 一 2 - t e r t—ブチルアントラセン (略称: t— BuDBA)、 9, 10—ジ (ナフタ レン一 2—ィル) アントラセン (略称: DNA)、 9, 10—ジフエ二ルアントラセ ン (略称: DPAn t h)、 2 - t e r t—プチルアントラセン (略称: t— BuA n t h)、 9, 10—ジ (4—メチルナフ夕レン一 1—ィル) アントラセン (略称: DMNA)、 2 - t e r t—プチル一 9, 10—ビス [2— (ナフタレン— 1—ィル) フエニル] アントラセン、 9, 10—ビス [2— (ナフタレン一 1—ィル) フエ二 リレ] アントラセン、 2, 3, 6, 7—テトラメチルー 9, 10—ジ (ナフタレン— 1—ィル) アントラセン、 2, 3, 6, 7—テトラメチルー 9, 10—ジ (ナフ夕 レン一 2—ィル) アントラセン、 9, 9 ' —ビアントリル、 10, 10' —ジフエ ニル一 9, 9' —ビアントリ Jレ、 10·, 10 ' ―ジ (2—フエニルフエニル) 一 9, 9' _ビアントリル、 10, 10, 一ビス [(2, 3, 4, 5, 6—ペン夕フエニル) フエニル] 一 9, 9 ' —ビアントリル、 アントラセン、 テトラセン、 ルブレン、 ぺ リレン、 2, 5, 8, 1 1ーテトラ (t e r t—プチル) ペリレン等が挙げられる。 また、 この他、 ペン夕セン、 コロネン等も用いることができる。 このように、 I X 10— 6cm2ZV s以上の正孔移動度を有し、 炭素数 14〜42である芳香族炭化 水素を用いることがより好ましい。 Aromatic hydrocarbons that can be used in composites of organic compounds and metal oxides include, for example, 9, 10-di (naphthenylene-2-yl) — 2-tert-butylanthracene ( Abbreviations: t-BuDNA), 9, 10-di (naphtholene 1-yl) 1 2-tert-butylanthracene, 9, 10-bis (3,5-diphenylphenyl) anthracene (abbreviation: DPPA) , 9, 10-di (4-Ferphenyl) 1 2-tert-butylanthracene (abbreviation: t-BuDBA), 9, 10-di (naphthalene 2-yl) anthracene (abbreviation: DNA), 9 , 10-Diphenylanthracene (abbreviation: DPAn th), 2-tert-ptylanthracene (abbreviation: t- BuAnth), 9, 10-di (4-methylnaphthalene 1-yl) anthracene (abbreviation: DMNA), 2-tert-butyl-1,9-bis [2- (naphthalene-1-yl) phenyl] Nthracene, 9, 10-bis [2- (Naphthalene 1-yl) phenylene chloride] Anthracene, 2, 3, 6, 7-Tetramethyl-9, 10-di (Naphthalene-1-yl) Anthracene, 2, 3, 6, 7-Tetramethyl-9,10-di (Nafu Ren 1-yl) Anthracene, 9, 9 '—Bianthryl, 10, 10' —Diphenyl 9,9 '—Biantri J, 10 · , 10 '-di (2-phenylphenyl) 1,9,9' _Bianthryl, 10, 10, one bis [(2, 3, 4, 5, 6-Peneven phenyl) phenyl] 1,9,9 '-Bianthryl, Anthracene, tetracene, rubrene, pen Rylene, 2, 5, 8, 11-tetra (tert-butyl) perylene. In addition, Pen Yusen and Coronene can also be used. Thus, IX 10- 6 cm 2 has a ZV s or hole mobility is more preferably an aromatic hydrocarbon which has 14 to 42 carbon atoms.
【0037】  [0037]
なお、有機化合物と金属酸化物の複合体に用いることのできる芳香族炭化水素は、 ビエル骨格を有していてもよい。 ビニル基を有している芳香族炭化水素としては、 例えば、 4, 4' 一ビス (2, 2—ジフエ二ルビニル) ビフエニル (略称: DPV B i)、 9, 10—ビス [4— (2, 2—ジフエ二ルビニル) フエニル] アントラセ ン (略称: DPVPA) 等が挙げられる。  Note that the aromatic hydrocarbon that can be used for the composite of the organic compound and the metal oxide may have a Biel skeleton. Examples of aromatic hydrocarbons having a vinyl group include 4, 4 'monobis (2, 2-diphenylvinyl) biphenyl (abbreviation: DPV B i), 9, 10-bis [4— (2 , 2-diphenylvinyl) phenyl] anthracene (abbreviation: DPVPA).
【0038】  [0038]
また、 ポリ (N—ビニルカルバゾール) (略称: PVK) やポリ (4 _ビニルトリ フエニルァミン) (略称: PVTPA) 等の高分子化合物を用いることもできる。  Alternatively, a high molecular compound such as poly (N-vinylcarbazole) (abbreviation: PVK) or poly (4_vinyltriphenylamine) (abbreviation: PVTPA) can be used.
【0039】  [0039]
また、 有機化合物と金属酸化物の複合体に用いる金属酸化物としては、 遷移金属 酸化物が好ましい。 また元素周期表における 4乃至 8族に属する金属の酸化物であ ることが好ましい。 具体的には、 酸化バナジウム、 酸化ニオブ、 酸化タンタル、 酸 化クロム、 酸化モリブデン、 酸化タングステン、 酸化マンガン、 酸化レニウムは電 子受容性が高いため好ましい。 中でも特に、 酸化モリブデンは大気中でも安定であ り、 吸湿性が低く、 扱いやすく好ましい。  Further, as the metal oxide used for the composite of the organic compound and the metal oxide, a transition metal oxide is preferable. In addition, an oxide of a metal belonging to Groups 4 to 8 in the periodic table is preferable. Specifically, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and rhenium oxide are preferable because of their high electron-accepting properties. Among these, molybdenum oxide is particularly preferable because it is stable in the air, has a low hygroscopic property, and is easy to handle.
【0040】  [0040]
有機化合物と金属酸化物の複合体を形成する方法としては、 湿式法、 乾式法を問 わず、 どのような手法を用いても良い。 例えば、 上述した有機化合物と金属酸化物 とを共蒸着することにより、 有機化合物と金属酸化物の複合体を作製することがで きる。 また、 上述した有機化合物と金属アルコキシドを含む溶液を塗布し、 焼成す ることによって、有機化合物と金属酸化物の複合体を作製することができる。なお、 有機化合物と金属酸化物の複合体を共蒸着法により形成する場合、 酸化モリブデン は真空中で蒸発しやすいため、 作製プロセスの面から好ましい。 As a method for forming a complex of an organic compound and a metal oxide, any method may be used regardless of a wet method or a dry method. For example, a composite of an organic compound and a metal oxide can be manufactured by co-evaporating the organic compound and the metal oxide described above. In addition, a solution containing the above-described organic compound and metal alkoxide is applied and fired. Thus, a composite of an organic compound and a metal oxide can be produced. Note that when a composite of an organic compound and a metal oxide is formed by a co-evaporation method, molybdenum oxide is preferable from the viewpoint of a manufacturing process because molybdenum oxide is easily evaporated in a vacuum.
【0041】  [0041]
本発明の発光素子に用いる有機化合物と金属酸化物の複合体は高い導電性を示す ことを確かめるため、 抵抗率を測定した。  In order to confirm that the composite of the organic compound and metal oxide used in the light-emitting element of the present invention exhibits high conductivity, resistivity was measured.
【0042】  [0042]
NPBと酸化モリブデン (V I) とを共蒸着することにより、 有機化合物と金属 酸化物の複合体を含む膜を形成し、 その抵抗率について測定した。 有機化合物と金 属酸化物の複合体を含む膜の膜厚は 200 nmとし、 有機化合物と金属酸化物の複 合体を含む膜に含まれる NPBと酸化モリブデンとの比率は、 重量比で NPB:酸 化モリブデン =1 : 0. 25となるように調節した。 なお、 共蒸着法とは、 一つの 処理室内で複数の蒸発源から同時に蒸着を行う蒸着法である。  A film containing a composite of organic compound and metal oxide was formed by co-evaporation of NPB and molybdenum oxide (VI), and the resistivity was measured. The thickness of the film containing the complex of organic compound and metal oxide is 200 nm, and the ratio of NPB and molybdenum oxide contained in the film containing the complex of organic compound and metal oxide is NPB: Molybdenum oxide was adjusted to be 1: 0.25. Note that the co-evaporation method is an evaporation method in which evaporation is performed simultaneously from a plurality of evaporation sources in one processing chamber.
【0043】  [0043]
NPBと酸化モリブデンとを用いた有機化合物と金属酸化物の複合体を含む膜の 抵抗率は、 3 X 105Ω · cmであった。 つまり、 有機化合物と金属酸化物の複合体 を含む膜の抵抗率は、 他の有機層に比べて非常に小さい。 この特徴が素子の厚膜化 を可能にし、 素子のショートを防止できる。 また千渉等を利用した光学設計をする 際にも適した膜厚を得ることが容易である。 The resistivity of the film containing a composite of an organic compound and a metal oxide using NPB and molybdenum oxide was 3 × 10 5 Ω · cm. In other words, the resistivity of a film containing a composite of an organic compound and a metal oxide is very small compared to other organic layers. This feature makes it possible to increase the thickness of the device and prevent short-circuiting of the device. In addition, it is easy to obtain a film thickness that is suitable for optical design using Sengen.
【0044】  [0044]
また、 有機化合物と金属酸化物の複合体として、 NPBと酸化モリブデンを混合 させた有機化合物と金属酸化物の複合体を含む膜を用いた素子 1を作製し、 素子 1 の電圧一電流密度特性を測定した。 図 12に素子 1の電圧一電流密度特性を示す。 比較として N P B膜を用いた比較素子 2及び酸化モリブデン膜を用いた比較素子 3 の I—V特性も測定した。 【0045】 In addition, as a composite of an organic compound and a metal oxide, Device 1 was manufactured using a film containing a composite of an organic compound and a metal oxide in which NPB and molybdenum oxide were mixed. Was measured. Figure 12 shows the voltage-current density characteristics of element 1. For comparison, the IV characteristics of Comparative Element 2 using an NPB film and Comparative Element 3 using a molybdenum oxide film were also measured. [0045]
素子 1は、 以下の方法で作製した。 ガラス基板上に、 酸化インジウム—酸化スズ ( I TO: I nd i um T i n Ox i d e) を成膜し、 I TO上に、 NPBと 酸化モリブデン (V I) とを共蒸着することにより、 有機化合物と金属酸化物の複 合体を含む膜を成膜した。 有機化合物と金属酸化物の複合体を含む層の膜厚は 20 0 nmとし、 有機化合物と金属酸化物の複合体を含む膜に含まれる NPBと酸化モ リブデンとの比率は、 重量比では、 NPB :酸化モリブデン = 1 : 0. 375とな るように調節した。 そして、 有機化合物と金属酸化物の複合体を含む膜上に、 アル ミニゥム (A 1) を成膜し、 素子 1を作製した。  Element 1 was fabricated by the following method. An organic compound is formed by depositing indium oxide-tin oxide (ITO) on a glass substrate and co-depositing NPB and molybdenum oxide (VI) on the ITO. And a metal oxide composite film were formed. The film thickness of the layer containing the composite of the organic compound and the metal oxide is 200 nm, and the ratio of NPB and molybdenum oxide contained in the film containing the composite of the organic compound and the metal oxide is as follows: NPB: Molybdenum oxide was adjusted to 1: 0.375. Then, aluminum (A 1) was formed over the film containing the composite of the organic compound and the metal oxide, and device 1 was manufactured.
【0046】  [0046]
比較素子 2は、 素子 1の有機化合物と金属酸化物の複合体を含む膜の代わりに N PB膜を 200 nmの膜厚で形成した。  In Comparative Element 2, an NPB film having a thickness of 200 nm was formed instead of the film containing the complex of the organic compound and metal oxide of Element 1.
【0047】  [0047]
比較素子 3は、 素子 1の有機化合物と金属酸化物の複合体を含む膜の代わりに酸 化モリブデン膜を 7 Onmの膜厚で形成した。  In Comparative Element 3, a molybdenum oxide film having a thickness of 7 Onm was formed instead of the film containing the complex of the organic compound and metal oxide of Element 1.
【0048】  [0048]
素子 1および比較素子 2、 比較素子 3の電圧一電流密度特性を図 12に示す。 N PB膜を用いた比較素子 2と有機化合物と金属酸化物の複合体を用いた素子 1を比 ベると、 酸化モリブデンを混入することで極めて低抵抗になっているのがわかる。 10111八 (:1112時で抵抗が約100分の 1になった。 The voltage-current density characteristics of element 1, comparative element 2, and comparative element 3 are shown in FIG. Comparing comparative element 2 using an NPB film and element 1 using a composite of an organic compound and a metal oxide, it can be seen that the resistance is extremely low by incorporating molybdenum oxide. 10111 eight (: 111 2 o'clock, the resistance became about 1/100.
【0049】  [0049]
また、 図 12からわかるように、 有機化合物と金属酸化物の複合体を含む膜では ほぼォーミックな電極コンタク卜が可能である。  In addition, as can be seen from FIG. 12, a film containing a composite of an organic compound and a metal oxide can have an almost ohmic electrode contact.
【0050】  [0050]
また、 有機化合物と金属酸化物の複合体を含む膜は順バイアス及び逆バイアスで も特性が変わらないことがわかった。 また、 有機化合物と金属酸化物の複合体を含 む膜は N P B膜だけでなく酸化モリブデン膜と比べても低抵抗化していた。 A film containing a composite of an organic compound and a metal oxide can be forward-biased and reverse-biased. It was found that the characteristics did not change. In addition, the film containing a composite of organic compound and metal oxide had a lower resistance than the NPB film as well as the molybdenum oxide film.
【0051】  [0051]
また、 図 13に、 NPBと酸化モリブデンを混合させた有機化合物と金属酸化物 の複合体を含む膜、 および NPB膜、 酸化モリブデン膜の吸収スペクトルを示す。  FIG. 13 shows absorption spectra of a film containing a composite of an organic compound in which NPB and molybdenum oxide are mixed and a metal oxide, and an NPB film and a molybdenum oxide film.
【0052】  [0052]
NPBと酸化モリブデンを用いた複合体を含む膜は、 以下の方法で作製した。 石 英基板上に、 NPBと酸化モリブデン (V I) とを共蒸着することにより、 有機化 合物と金属酸化物の複合体を含む膜を成膜した。 有機化合物と金属酸化物の複合体 を含む膜に含まれる NPBと酸化モリブデンとの比率は、 重量比では、 NPB :酸 化モリブデン = 1 : 1となるように調節した。  A film containing a composite using NPB and molybdenum oxide was manufactured by the following method. A film containing a composite of an organic compound and a metal oxide was formed by co-evaporation of NPB and molybdenum oxide (VI) on a stone substrate. The ratio of NPB and molybdenum oxide contained in the film containing the composite of the organic compound and the metal oxide was adjusted so that the weight ratio was NPB: molybdenum oxide = 1: 1.
【0053】  [0053]
比較素子 5は、 有機化合物と金属酸化物の複合体の膜の代わりに N P B膜を形成 した。  In Comparative Element 5, an N PB film was formed instead of a composite film of an organic compound and a metal oxide.
【0054】  [0054]
比較素子 6は、 有機化合物と金属酸化物の複合体の膜の代わりに酸化モリブデン 膜を形成した。  In Comparative Element 6, a molybdenum oxide film was formed instead of a composite film of an organic compound and a metal oxide.
【0055】  [0055]
図 13に示すように、 NPBと酸化モリブデンから構成される有機化合物と金属 酸化物の複合体の吸収スペクトルでは、 500 nm近辺、 および 1300 nm近辺 に吸収が観測される。 これらの吸収は個々の材料には見られない吸収である。 この ことは、 NPBから酸化モリブデンへの電荷の移動が起こっていることを示唆して いる。 '  As shown in Fig. 13, in the absorption spectrum of a complex of an organic compound composed of NPB and molybdenum oxide and a metal oxide, absorption is observed around 500 nm and around 1300 nm. These absorptions are not found in individual materials. This suggests that there is a charge transfer from NPB to molybdenum oxide. '
【0056】  [0056]
また、 有機化合物と金属酸化物の複合体の ESRスペクトルを図 30に示す。 【0057】 Figure 30 shows the ESR spectrum of the complex of organic compound and metal oxide. [0057]
石英基板上に、 共蒸着法により、 芳香族ァミン化合物である 4, 4' 一ビス (N - {4- [N- (3—メチルフエニル) 一N—フエニルァミノ] フエ二ル} -N- フエニルァミノ) ビフエニル (略称: DNTPD) と酸化モリブデンとを含む層を 200 nmの膜厚となるように形成した。 この時、 D NT P Dと酸化モリブデンの 比率が重量比で 1 : 0. 5となるように共蒸着した。 この DNTPDと酸化モリブ デンとを含む層の E SR (E l e c t r on S p i n Re s on an c e :電 子スピン共鳴) 測定を行った。 ESR測定とは、 不対電子を有する試料に強い磁場 をかけて、 不対電子のエネルギー準位がゼ一マン分裂を起こし、 その準位間のエネ ルギー差であるマイクロ波の共鳴吸収遷移を利用した測定方法である。 この ESR 測定では、 吸収が起きるときの周波数、 および磁場の強さを測定することで、 不対 電子の有無、 スピン状態がわかる。 さらに、 吸収強度から、 電子スピンの濃度を求 めることもできる。 今回の測定は、 電子スピン共鳴分析装置、 J ES— TE200 (日本電子製) を使用し、 共振周波数 9. 3GHz、 変調周波数 100 kHz、 変 調幅 0. 63mT、 増幅度 50、 時定数 0. 1 s e c、 マイクロ波入力 1 mW、 掃 引時間 4m i n、測定温度は室温、 の条件で行った。なお、磁場校正用試料として、 酸化マグネシウムに担持されたマンガンを用いた。 その ESR測定結果を図 30に 示す。 また、 比較例として、 DNTPD単膜 (膜厚 200 nm)、 酸化モリブデン単 膜 (膜厚 200 nm) についても E S R測定を行った。 DNTPD単膜の ESR測 定結果を図 31に、 酸化モリブデン単膜の ESR測定結果を図 32に示す。  Aromatic amine compound 4, 4 'monobis (N-{4- [N- (3-methylphenyl) 1 N-phenylamino] phenyl} -N-phenylamino) by co-evaporation on a quartz substrate A layer containing biphenyl (abbreviation: DNTPD) and molybdenum oxide was formed to a thickness of 200 nm. At this time, co-evaporation was performed so that the ratio of DNTPD to molybdenum oxide was 1: 0.5 by weight. An ESR (electron spin on electron spin) measurement of the layer containing DNTPD and molybdenum oxide was performed. In ESR measurement, a strong magnetic field is applied to a sample with unpaired electrons, the energy level of unpaired electrons causes Zeman splitting, and the resonance absorption transition of microwaves, which is the energy difference between the levels, is measured. This is the measurement method used. In this ESR measurement, the presence of unpaired electrons and the spin state can be determined by measuring the frequency at which absorption occurs and the strength of the magnetic field. In addition, the electron spin concentration can be obtained from the absorption intensity. In this measurement, an electron spin resonance analyzer, J ES—TE200 (manufactured by JEOL), was used. Resonance frequency 9.3 GHz, modulation frequency 100 kHz, modulation width 0.63 mT, amplification factor 50, time constant 0.1 sec, microwave input 1 mW, sweep time 4 min, measurement temperature was room temperature. Note that manganese supported on magnesium oxide was used as a magnetic field calibration sample. Figure 30 shows the ESR measurement results. As comparative examples, ESR measurements were also performed on DNTPD single films (thickness 200 nm) and molybdenum oxide single films (thickness 200 nm). Figure 31 shows the ESR measurement results of the DNTPD single film, and Figure 32 shows the ESR measurement results of the molybdenum oxide single film.
【0058】  [0058]
図 30〜図 32より、 D NT PD単膜および酸化モリブデン単膜では ESRシグ ナルが検出されなかったが、 DNTPDと酸化モリブデンとを含む層では E S Rシ グナルが検出された。 このことから、 DNTPDと酸化モリブデンとを含む層は、. 不対電子を有することがわかった。 つまり、 DNTPDと酸化モリブデンとを含む 層は、 D N T P D単膜および酸化モリブデン単膜とは異なる電子状態にあるという ことがわかった。 なお、 図 3 0より、 D N T P Dと酸化モリブデンとを含む層の g 値は 2 . 0 0 2 5と求まり、 自由電子の g値である 2 . 0 0 2 3と非常に近い値で あることがわかった。 一方、 線幅は 0 . 7 7 mTと非常に狭いことがわかった。 From Fig. 30 to Fig. 32, ESR signal was not detected in the DNTPD single film and molybdenum oxide single film, but ESR signal was detected in the layer containing DNTPD and molybdenum oxide. From this, it was found that the layer containing DNTPD and molybdenum oxide has unpaired electrons. In other words, including DNTPD and molybdenum oxide The layers were found to be in different electronic states from the DNTPD and molybdenum oxide single films. From FIG. 30, the g value of the layer containing DNTPD and molybdenum oxide is 2.0 0 25, which is very close to 2.0 0 2 3 which is the free electron g value. all right. On the other hand, the line width was found to be very narrow at 0.77 mT.
【0 0 5 9】  [0 0 5 9]
図 3 0から分かるように、 有機化合物と金属酸化物の複合体は E S Rシグナルが 観測されている。 従って、 これらの現象は、 上記電荷移動の証拠となる。 つまり、 N P Bと酸化モリブデンは電荷移動錯体を形成していると考えられる。 電荷移動錯 体が形成すると膜中のキャリア濃度が高まり低抵抗になる。 そのため、 有機化合物 と金属酸化物の複合体は優れた導電性を与えると考えられる。  As can be seen from Fig. 30, an ESR signal is observed in the complex of organic compound and metal oxide. Therefore, these phenomena are evidence of the charge transfer. In other words, N P B and molybdenum oxide are considered to form a charge transfer complex. When the charge transfer complex is formed, the carrier concentration in the film increases and the resistance decreases. Therefore, it is considered that a composite of an organic compound and a metal oxide gives excellent conductivity.
【0 0 6 0】  [0 0 6 0]
また、 有機化合物と金属酸化物の複合体を用いた素子 3の順バイァスと逆バイァ スで電流一電圧特性が同じであることも、 キヤリァ密度濃度が高くなつたことで説 明できる。 上記の素子構造では順方向と逆方向では陽極が I T Oと A 1で異なる。 I T Oより A 1の仕事関数の方が小さいので、 N P B膜では順バイアスで電流が流 れても逆バイアスでは電流が流れなかった。 しかしながら有機化合物と金属酸化物 の複合体を含む膜の場合はキヤリァ密度濃度が高いために、 陽極と有機化合物と金 属酸化物の複合体を含む膜の間でキャリアの移動が起こり、 陽極を A 1とした場合 でも注入障壁が小さくなる。 そのために効率よくホールを注入できる。 すなわち、 有機化合物と金属酸化物の複合体を含む膜の場合は陽極の仕事関数依存性が小さい ために多種の材料が陽極として採用できる。 つまり、 仕事関数に依存せずに電極材 料を選択することが可能となり、 電極材料の選択肢の幅が広がる。  Moreover, the fact that the current-voltage characteristics of the forward bias and reverse bias of the element 3 using a composite of an organic compound and a metal oxide are the same can be explained by the higher carrier density concentration. In the above device structure, the anode is different between I T O and A 1 in the forward and reverse directions. Since the work function of A 1 is smaller than that of I T O, no current flows in the reverse bias even though the current flows in the forward bias in the N P B film. However, in the case of a film containing a composite of an organic compound and a metal oxide, the carrier density concentration is high, so that carriers move between the anode and the film containing a composite of an organic compound and a metal oxide, and the anode Even when A 1 is selected, the injection barrier is reduced. Therefore, holes can be injected efficiently. That is, in the case of a film containing a composite of an organic compound and a metal oxide, since the work function dependence of the anode is small, various materials can be used as the anode. In other words, the electrode material can be selected without depending on the work function, and the range of options for the electrode material is expanded.
【0 0 6 1】  [0 0 6 1]
有機化合物と金属酸化物の複合体の電荷移動の詳細を解明することを目的として、 スーパーコンピュータを用いた計算を行った。 初期モデルとして、 N P B分子 3つ と、 Mo5015の組成からなる Moクラス夕一二つを採用し、 これを T i gh t— B i nd i ng Qu an t um Ch em i c a l Mo l e c u l a r D y n am i c s C a 1 c u 1 a t i o nによって最適化を行った。 各ステップの時 間は 0. 05 f s (フェムト秒) であり、 一定温度、 一定圧力のもと、 合計 500 00ステップの計算を行った。 図 14に、 有機化合物と金属酸化物の複合体を含む 膜の最適化した構造を示す。 NPB分子とモリブデンクラス夕一が互いに凝集して いることが分かる。このことが、スムースな電子移動に寄与していると考えられる。 In order to elucidate the details of charge transfer in the complex of organic compound and metal oxide, we performed calculations using a supercomputer. As an initial model, three NPB molecules And two Mo class evenings composed of Mo 5 0 15 are used, and this is used as a T i gh t—B i nd i ng Qu ant t um Ch em ical Mo le cular Mo n d yn am ics C a 1 cu 1 Optimized by ation. The time for each step was 0.05 fs (femtosecond), and a total of 500,000 steps were calculated at a constant temperature and pressure. Figure 14 shows the optimized structure of a film containing a complex of organic compound and metal oxide. It can be seen that the NPB molecule and the molybdenum class are aggregated together. This is considered to contribute to smooth electron transfer.
【0062】  [0062]
同様の計算を単一の NPB分子、 および単一のクラスターについても行った。 図 15に計算結果を示す。 図 15は、 モリブデン (Mo) の s -軌道、 p—軌道、 d 一軌道、 および酸素 (O) の P—軌道の状態密度 (Th e De n s i t y o f S t a t e s : DOS) を示している。  Similar calculations were performed for a single NPB molecule and a single cluster. Figure 15 shows the calculation results. Figure 15 shows the density of states of s-orbitals, p-orbitals, d-orbitals of molybdenum (Mo), and P-orbitals of oxygen (O).
【0063】  [0063]
電子のァクセプターレベルはフェルミ準位に最も近く、 かつフェルミ準位よりも 高いエネルギー軌道である必要がある。 モリブデンの s、 p、 d軌道、 ならびに、 酸素の P軌道がこの要求を満足することが図 15から分かる。 しかし、 図 15に示 すように、 モリブデンの d軌道が最も状態密度が大きいことが分かる。  The electron acceptor level must be closest to the Fermi level and higher than the Fermi level. Figure 15 shows that molybdenum's s, p, d orbitals and oxygen P orbital satisfy this requirement. However, as shown in Fig. 15, it can be seen that the d-orbital of molybdenum has the highest density of states.
【0064】  [0064]
また、 NPB分子の原子電荷を計算した。 半経験的分子軌道計算プログラム MO PAC 2000を用い、 EF PM5 PREC I SE ESPをキーワードとし、 分子表面の静電ポテンシャルより原子電荷を計算した。 その結果を図 24に示す。 NPB分子中、 窒素原子が最もマイナスの電荷が大きいことがわかった、 具体的に は、 二つの窒素原子はそれぞれ— 0ノ 6584、 - 0. 6323という原子電荷を 有することがわかった。  We also calculated the atomic charge of NPB molecule. The semi-empirical molecular orbital calculation program MO PAC 2000 was used, and the atomic charge was calculated from the electrostatic potential of the molecular surface using EF PM5 PREC I SE ESP as a keyword. The results are shown in FIG. In the NPB molecule, the nitrogen atom was found to have the largest negative charge. Specifically, the two nitrogen atoms were found to have atomic charges of −0-6584 and −0.6323, respectively.
【0065】 これらの結果は、 N P Bの窒素原子からモリブデンの d軌道に電荷が移動するこ とを意味している。 つまり、 有機化合物中の原子の p軌道から、 金属酸化物の金属 原子の d軌道に電荷が移動していることを意味している。 この電荷移動の結果、 有 機化合物と金属酸化物の複合体を含む膜中のキヤリァ数が増大し、 その結果高い導 電性を実現していると考えられる。 [0065] These results mean that the charge moves from the nitrogen atom of NPB to the d orbital of molybdenum. This means that the charge is moving from the p orbit of the atom in the organic compound to the d orbit of the metal atom of the metal oxide. As a result of this charge transfer, the number of carriers in the film containing a complex of an organic compound and a metal oxide is increased, and as a result, high conductivity is considered to be realized.
【0 0 6 6】  [0 0 6 6]
なお、 本実施の形態は、 他の実施の形態と適宜組み合わせることが可能である。  Note that this embodiment can be combined with any of the other embodiments as appropriate.
【0 0 6 7】  [0 0 6 7]
(実施の形態 2 )  (Embodiment 2)
本発明の発光素子は、 一対の電極間に複数の層を有する。 当該複数の層は、 電極 から離れたところに発光領域が形成されるように、 つまり電極から離れた部位でキ ャリア (担体) の再結合が行われるように、 キャリア注入性の高い物質やキャリア 輸送性の高い物質を含む層を組み合わせて積層されたものである。  The light-emitting element of the present invention has a plurality of layers between a pair of electrodes. The plurality of layers are formed of a material or a carrier having a high carrier injection property so that a light emitting region is formed at a position away from the electrode, that is, a carrier (carrier) is recombined at a position away from the electrode. The layers are stacked by combining layers containing a substance having a high transportability.
【0 0 6 8】  [0 0 6 8]
本発明の発光素子の一態様について図 1 ( a ) を用いて以下に説明する。  One mode of the light-emitting element of the present invention will be described below with reference to FIG.
【0 0 6 9】  [0 0 6 9]
本形態において、 発光素子は、 第 1の電極 1 0 2と、 第 1の電極 1 0 2の上に順 に積層した第 1の層 1 0 3、第 2の層 1 0 4、第 3の層 1 0 5、第 4の層 1 0 6と、 さらにその上に設けられた第 2の電極 1 0 7とから構成されている。 なお、 本形態 では第 1の電極 1 0 2は陽極として機能し、 第 2の電極 1 0 7は陰極として機能す るものとして以下説明をする。  In this embodiment, the light-emitting element includes the first electrode 102, the first layer 103, the second layer 104, and the third layer stacked in order on the first electrode 102. The layer is composed of a layer 105, a fourth layer 106, and a second electrode 1007 provided thereon. In the present embodiment, the following description will be made on the assumption that the first electrode 102 functions as an anode and the second electrode 107 functions as a cathode.
【0 0 7 0】  [0 0 7 0]
基板 1 0 1上は発光素子の支持体として用いられる。 基板 1 0 1としては、 例え ばガラス、 またはプラスチックなどを用いることができる。 なお、 発光素子を作製 工程において支持体として機能するものであれば、 これら以外のものでもよい。 【0071】 The substrate 10 1 is used as a support for the light emitting element. As the substrate 101, for example, glass or plastic can be used. Note that other materials may be used as long as the light-emitting element functions as a support in the manufacturing process. [0071]
第 1の電極 102としては、 さまざまな金属、 合金、 電気伝導性化合物、 および これらの混合物を用いることができる。 例えば、 .酸化インジウム—酸化スズ (I T O: I nd i um T i n O x i d e )、 珪素若しくは酸化珪素を含有した酸化ィ ンジゥム—酸化スズ、 酸化インジウム一酸化亜鉛 (I ZO: I nd i um Z i n c 〇x i d e)、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IW ZO) 等が挙げられる。 これらの導電性金属酸化物膜は、 通常スパッ夕により成膜 される。 例えば、 酸化インジウム—酸化亜鉛 (I ZO) は、 酸化インジウムに対し 1〜20w t %の酸化亜鉛を加えた夕ーゲットを用いてスパッタリング法により形 成することができる。 また、 酸化タングステン及び酸化亜鉛を含有した酸化インジ ゥム( I WZO)は、酸化インジウムに対し酸化タングステンを 0. 5〜5wt %、 酸化亜鉛を 0. l〜lwt %含有したターゲッ卜を用いてスパッタリング法により 形成することができる。 この他、 金 (Au)、 白金 (P t)、 ニッケル (N i )、 タン ダステン (W)、 クロム (C r)、 モリブデン (1^ 0)、 鉄 ( 6)、 コバルト (Co)、 チタン (T i)、 銅 (Cu)、 パラジウム (Pd)、 アルミニウム (A l)、 アルミ二 ゥム—シリコン (A 1— S i )、 アルミニウム一チタン (A 1— T i )、 アルミニゥ ムーシリコン—銅 (A l _S i—Cu) または金属材料の窒化物 (T i N) 等、 を 用いることができるが、 第 1の電極を陽極として用いる場合には、 その中でも、 仕 事関数の大きい(仕事関数 4. 0 e V以上)などで形成されていることが好ましい。  As the first electrode 102, various metals, alloys, electrically conductive compounds, and mixtures thereof can be used. For example, indium oxide-tin oxide (ITO), indium oxide-tin oxide containing silicon or silicon oxide, indium zinc oxide (I ZO: I nd i um Z inc) Xide), indium oxide containing tungsten oxide and zinc oxide (IW ZO), and the like. These conductive metal oxide films are usually formed by sputtering. For example, indium oxide-zinc oxide (I ZO) can be formed by a sputtering method using an evening get obtained by adding 1 to 20 wt% of zinc oxide to indium oxide. Indium oxide containing tungsten oxide and zinc oxide (I WZO) uses a target containing 0.5 to 5 wt% tungsten oxide and 0.1 to 1 wt% zinc oxide with respect to indium oxide. It can be formed by sputtering. In addition, gold (Au), platinum (P t), nickel (N i), tandasten (W), chromium (C r), molybdenum (1 ^ 0), iron (6), cobalt (Co), titanium (Ti), Copper (Cu), Palladium (Pd), Aluminum (Al), Aluminum-silicon (A1-Si), Aluminum-titanium (A1-Ti), Aluminum Mu-silicon- Copper (A l _S i—Cu) or a metal nitride (T i N) can be used. However, when the first electrode is used as the anode, the work function is large ( The work function is preferably 4.0 eV or more.
【0072】  [0072]
なお、 本発明の発光素子において、 第 1の電極 102は仕事関数の大きい材料に 限定されず、 仕事関数の小さい材料を用いることもできる。  Note that in the light-emitting element of the present invention, the first electrode 102 is not limited to a material having a high work function, and a material having a low work function can also be used.
【0073】  [0073]
第 1の層 103は、 バッファ一層である。 すなわち、 実施の形態 1で示した有機 化合物と金属酸化物の複合体を含む層である。 【0074】 The first layer 103 is a buffer layer. That is, the layer includes the composite of the organic compound and the metal oxide described in Embodiment 1. [0074]
第 2の層 104は、 正孔輸送性の高い物質を含む層である。 正孔輸送性の高い物 質としては、 例えば 4, 4' —ビス [N— (1—ナフチル) 一 N—フエニルァミノ] ビフエニル (略称: NPB) や N, N' —ビス (3—メチルフエニル) 一 N, Ν' —ジフエニル— [1, 1, ービフエニル] —4, 4, ージァミン (略称: TPD)、 4, 4 ', 4 " —トリス (N, N—ジフエニルァミノ) トリフエニルァミン (略称: TDATA)、 4, 4,, 4 " —トリス [N— (3—メチルフエニル) 一 N—フエ二 ルァミノ] トリフエニルァミン (略称: MTDATA) などの芳香族ァミン系 (即 ち、 ベンゼン環—窒素の結合を有する) の化合物等が挙げられる。 ここに述べた物 質は、 主に 1 0— s以上の正孔移動度を有する物質である。 但し、 電子 よりも正孔の輸送性の高い物質であれば、 これら以外のものを用いてもよい。 つま り、 実施の形態 1で示した、 芳香族ァミン化合物、 力ルバゾール誘導体、 芳香族炭 化水素、 高分子化合物 (オリゴマー、 デンドリマー、 ポリマー等) など、 種々の化 合物を用いることができる。 なお、 第 2の層 104は、 単層のものだけでなく、 上 記物質を含む層が二層以上積層したものであってもよい。 The second layer 104 is a layer containing a substance having a high hole-transport property. For example, 4, 4'-bis [N- (1-naphthyl) 1 N-phenylamino] biphenyl (abbreviation: NPB) and N, N'-bis (3-methylphenyl) 1 N, Ν '—Diphenyl— [1, 1, -biphenyl] —4, 4, azimin (abbreviation: TPD), 4, 4', 4 "—Tris (N, N-diphenylamino) Triphenylamine (abbreviation: TDATA ), 4, 4, 4 "— Tris [N— (3-Methylphenyl) 1 N-phenylamino] Triphenylamine (abbreviation: MTDATA) and other aromatic amines (ie, benzene ring-nitrogen And the like). The materials mentioned here are mainly 1 0— A substance having a hole mobility of s or more. However, any other substance may be used as long as it has a property of transporting more holes than electrons. In other words, various compounds such as aromatic amine compounds, strong rubazole derivatives, aromatic hydrocarbons, and high molecular compounds (oligomers, dendrimers, polymers, etc.) shown in Embodiment Mode 1 can be used. Note that the second layer 104 is not limited to a single layer, and may be a stack of two or more layers containing any of the above substances.
【0075】  [0075]
第 3の層 105は、 発光性の高い物質を含む層である。 種々の材料を用いること ができる。 例えば、 発光性の高い物質と、 トリス (8_キノリノラト) アルミニゥ ム (略称: A 1 q)や 9, 1 0—ジ(2—ナフチル) アントラセン (略称: DNA)、 4, 4' —ビス [N_ (1—ナフチル) 一 N—フエニルァミノ] ビフエ二ル (略称: NPB) 等のキャリア輸送性が高く膜質がよい (つまり結晶化しにくい) 物質とを 自由に組み合わせて構成される。 発光性の高い物質としては、 具体的には、 N, N' —ジメチルキナクリドン(略称: DMQd)、 N, N' —ジフエニルキナクリドン(略 称: DPQd)や 3_ (2—べンソチアゾィル) 一 7—ジェチルァミノクマリン (略 称:クマリン 6)、 4— (ジシァノメチレン) — 2—メチルー 6 _ (p—ジメチルァ ミノスチリル) 一4H—ピラン (略称: DCM1)、 4一 (ジシァノメチレン) -2 —メチル一 6— (ジュ口リジン一 4一^ fルーピニル) —4H—ピラン (略称: DC M2)、 N, N—ジメチルキナクリドン (略称: DMQd)、 9, 10—ジフエニル アントラセン、 5, 12—ジフエ二ルテトラセン (略称: DPT)、 クマリン 6、 ぺ リレン、 ルブレンなどの一重項発光材料 (蛍光材料) や、 ビス (2— (2' —ベン ゾチェ二ル) ピリジナトー N, C3') (ァセチルァセトナト) イリジウム (略称: I r (b t p) 2 (a c a c)) などの三重項発光材料 (燐光材料) などを用いること ができる。 但し、 A 1 Qや DNAは発光性も高い物質であるため、 これらの物質を 単独で用いた構成とし、 第 3の層 105としても構わない。 The third layer 105 is a layer containing a substance having a high light-emitting property. Various materials can be used. For example, a highly luminescent substance, tris (8_ quinolinolato) aluminum (abbreviation: A 1 q), 9, 10 0-di (2-naphthyl) anthracene (abbreviation: DNA), 4, 4 '-bis [ N_ (1-Naphtyl) 1 N-Phenylamino] Biphenyl (abbreviation: NPB) and other materials with high carrier transport properties and good film quality (that is, difficult to crystallize) are freely combined. Specific examples of highly luminescent substances include N, N'-dimethylquinacridone (abbreviation: DMQd), N, N'-diphenylquinacridone (abbreviation: DPQd), and 3_ (2-benthothiazoyl). —Jetylaminocoumarin (abbreviation: Coumarin 6), 4— (Disanomethylene) — 2-Methyl-6 _ (p-Dimethyla) Minostyryl) 1 4H-pyran (abbreviation: DCM1), 4 1 (disyanomethylene) -2 —methyl 1 6— (julysine 1 4 1 ^ f lupinyl) —4H-pyran (abbreviation: DC M2), N, N— Singlet luminescent materials (fluorescent materials) such as dimethylquinacridone (abbreviation: DMQd), 9, 10-diphenylanthracene, 5,12-diphenyltetracene (abbreviation: DPT), coumarin 6, perylene, rubrene, and bis (2 — (2 '— Benzocheril) Pyridinato N, C 3 ') (Acetylasetonato) Iridium (abbreviation: I r (btp) 2 (acac)) and other triplet light emitting materials (phosphorescent materials) Can be used. However, since A 1 Q and DNA are highly luminescent substances, these substances may be used alone and the third layer 105 may be used.
【0076】  [0076]
第 4の層 106は、 電子輸送性の高い物質を含む層である。 電子輸送性の高い物 質としては、 例えばトリス (8—キノリノラト) アルミニウム (略称: A 1 q)、 ト リス (4—メチルー 8 _キノリノラト) アルミニウム (略称: A 1 mq 3), ビス (1 0—ヒドロキシベンゾ [h] —キノリナト) ベリリウム (略称: BeBq2)、 ビス (2—メチル _ 8—キノリノラト) 一 4—フエニルフエノラトーアルミニウム (略 称: BA 1 Q) など、 キノリン骨格またはべンゾキノリン骨格を有する金属錯体等 が挙げられる。 また、 この他ビス [2— (2—ヒドロキシフエニル) 一ベンゾォキ サゾラト] 亜鉛 (略称: Zn (BOX) 2)、 ビス [2— (2—ヒドロキシフエニル) 一べンゾチアゾラ卜] 亜鉛 (略称: Zn (BTZ) 2) などのォキサゾール系、 チア ゾール系配位子を有する金属錯体なども用いることができる。 さらに、 金属錯体以 外にも、 2― (4—ビフエ二リル) — 5— (4— t e r t—ブチルフエニル)― 1, 3, 4—ォキサジァゾ一ル (略称: PBD) や、 1, 3—ビス [5— (p— t e r t—ブチルフエニル) — 1, 3, 4—ォキサジァゾ一ルー 2—^ Γル] ベンゼン (略 称: OXD— 7)、 3—(4— t e r t—ブチルフエニル) 一 4一フエ二ルー 5—(4 —ビフエ二リル) _ 1, 2, 4—トリアゾール (略称: TAZ)、 3— (4— t e r t—ブチルフエニル) _4— (4一ェチルフエニル) —5— (4—ビフエ二リル) 一 1, 2, 4—トリァゾール (略称: p— E t TAZ)、 バソフェナント口リン (略 称: BPhe n)、 バソキュプロイン (略称: BCP) なども用いることができる。 ここに述べた物質は、 主に 10— 6cm2ZV s以上の電子移動度を有する物質であ る。 なお、 正孔よりも電子の輸送性の高い物質であれば、 上記以外の物質を第 4の 層 106として用いても構わない。 また、 第 4の層 106は、 単層のものだけでな く、 上記物質を含む層が二層以上積層したものとしてもよい。 The fourth layer 106 is a layer containing a substance having a high electron transporting property. For example, tris (8-quinolinolato) aluminum (abbreviation: A 1 q), tris (4-methyl-8_quinolinolato) aluminum (abbreviation: A 1 mq 3 ), bis (1 0 —Hydroxybenzo [h] —quinolinato) Beryllium (abbreviation: BeBq 2 ), Bis (2-methyl_8-quinolinolato) mono 4-phenylphenolatoaluminum (abbreviation: BA 1 Q), etc. And metal complexes having a nzoquinoline skeleton. In addition, bis [2- (2-hydroxyphenyl) monobenzoxazolate] zinc (abbreviation: Zn (BOX) 2 ), bis [2- (2-hydroxyphenyl) monobenzothiazola 卜] zinc (abbreviation: Metal complexes having an oxazole-based or thiazole-based ligand such as Zn (BTZ) 2 ) can also be used. In addition to metal complexes, 2- (4-biphenylyl) — 5— (4-tert-butylphenyl) — 1, 3, 4-oxazodiazole (abbreviation: PBD) and 1, 3-bis [5— (p— tert-butylphenyl) — 1, 3, 4— oxadiazo 2-ru benzene] (abbreviation: OXD— 7), 3— (4-tert-butylphenyl) 1 4- 1 phenyl Lou 5— (4 —biphenylyl) _ 1, 2, 4—triazole (abbreviation: TAZ), 3— (4— ter t-butylphenyl) _4— (4-ethylphenyl) —5— (4-biphenylyl) 1, 2, 4-triazole (abbreviation: p—E t TAZ), bathophenant mouth phosphorus (abbreviation: BPhen), Bathocuproine (abbreviation: BCP) can also be used. The substances mentioned here are Ru substance der having a predominantly 10- 6 cm 2 ZV s or more electron mobility. Note that any substance other than the above substances may be used for the fourth layer 106 as long as it has a property of transporting more electrons than holes. The fourth layer 106 is not limited to a single layer, and may be a stack of two or more layers containing any of the above substances.
【0077】  [0077]
第 2の電極 107を形成する物質としては、 仕事関数の小さい (仕事関数 3. 8 eV以下) 金属、 合金、 電気伝導性化合物、 およびこれらの混合物などを用いるこ とができる。 このような陰極材料の具体例としては、 元素周期表の 1族または 2族 に属する元素、 すなわちリチウム (L i) やセシウム (C s) 等のアルカリ金属、 およびマグネシウム (Mg)、 カルシウム (Ca)、 ストロンチウム (S r) 等のァ ルカリ土類金属、 およびこれらを含む合金 (Mg : Ag、 A 1 : L i) が挙げられ る。 しかしながら、 第 2の電極 107と発光層との間に、 電子注入を促す機能を有 する層を、 当該第 2の電極と積層して設けることにより、 仕事関数の大小に関わら ず、 A l、 Ag、 酸化インジウム一酸化スズ (I TO)、 珪素若しくは酸化珪素を含 有した酸化インジウム一酸化スズ、 酸化インジウム一酸化亜鉛 (I ΖΟ)、 酸化タン ダステン及び酸化亜鉛を含有した酸化インジウム (IWZO) 等様々な導電性材料 を第 2の電極 107として用いることができる。  As a material for forming the second electrode 107, a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (work function of 3.8 eV or less) can be used. Specific examples of such cathode materials include elements belonging to Group 1 or Group 2 of the Periodic Table of Elements, ie, alkali metals such as lithium (L i) and cesium (C s), and magnesium (Mg), calcium (Ca ), Alkaline earth metals such as strontium (Sr), and alloys containing these (Mg: Ag, A 1: Li). However, by providing a layer having a function of accelerating electron injection between the second electrode 107 and the light-emitting layer by stacking with the second electrode, regardless of the work function, Al, Ag, indium tin oxide (ITO), indium tin oxide containing silicon or silicon oxide, indium oxide zinc oxide (I ΖΟ), indium oxide containing tandastene oxide and zinc oxide (IWZO) Various conductive materials such as the above can be used for the second electrode 107.
【0078】  [0078]
なお、 電子注入を促す機能を有する層としては、 フッ化リチウム (L i F)、 フッ 化セシウム (C s F)、 フッ化カルジゥム (CaF2) 等のようなアルカリ金属又は アルカリ土類金属の化合物を用いることができる。 また、 この他、 電子輸送性を有 する物質からなる層中にアルカリ金属又はアルカリ土類金属を含有させたもの、 例 えば A 1 Q中にマグネシウム (M g ) を含有させたもの等を用いることができる。 【0 0 7 9】 Note that the layer that has the function of promoting electron injection is made of an alkali metal or an alkaline earth metal such as lithium fluoride (L i F), cesium fluoride (C s F), or calcium fluoride (CaF 2 ). Compounds can be used. In addition, a layer made of a substance having an electron transporting property containing an alkali metal or an alkaline earth metal, for example For example, A 1 Q containing magnesium (Mg) can be used. [0 0 7 9]
また、 第 1の層 1 0 3、 第 2の層 1 0 4、 第 3の層 1 0 5、 第 4の層 1 0 6の形 成方法は、 上記のような蒸着法以外の方法でもよい。 例えばインクジェット法また はスピンコート法など用いても構わない。 また各電極または各層ごとに異なる成膜 方法を用いて形成しても構わない。  Further, the formation method of the first layer 10 3, the second layer 1 0 4, the third layer 1 0 5, and the fourth layer 1 0 6 may be a method other than the above evaporation method. . For example, an ink jet method or a spin coat method may be used. In addition, each electrode or each layer may be formed using a different film formation method.
【0 0 8 0】  [0 0 8 0]
以上のような構成を有する本発明の発光素子は、 第 1の電極 1 0 2と第 2の電極 1 0 7との間に生じた電位差により電流が流れ、 発光性の高い物質を含む層である 第 3の層 1 0 5において正孔と電子とが再結合し、 発光するものである。 つまり第 3の層 1 0 5に発光領域が形成されるような構成となっている。 但し、 第 3の層 1 0 5の全てが発光領域として機能する必要はなく、 例えば、 第 3の層 1 0 5のうち 第 2の層 1 0 4側または第 4の層 1 0 6側にのみ発光領域が形成されるようなもの であってもよい。  The light-emitting element of the present invention having the above structure is a layer containing a highly light-emitting substance in which current flows due to a potential difference generated between the first electrode 102 and the second electrode 107. In a certain third layer 10 5, holes and electrons recombine to emit light. That is, the light emitting region is formed in the third layer 105. However, it is not necessary for all of the third layers 105 to function as light emitting regions, for example, on the second layer 104 side or the fourth layer 106 side of the third layer 105. Only a light emitting region may be formed.
【0 0 8 1】  [0 0 8 1]
発光は、 第 1の電極 1 0 2または第 2の電極 1 0 7のいずれか一方または両方を 通って外部に取り出される。 従って、 第 1の電極 1 0 2または第 2の電極 1 0 7の いずれか一方または両方は、 透光性を有する物質で成る。 第 1の電極 1 0 2のみが 透光性を有する物質からなるものである場合、 図 1 ( a ) に示すように、 発光は第 1の電極 1 0 2を通って基板側から取り出される。 また、 第 2の電極 1 0 7のみが 透光性を有する物質からなるものである場合、 図 1 ( b ) に示すように、 発光は第 2の電極 1 0 7を通って基板と逆側から取り出される。 第 1の電極 1 0 2および第 2の電極 1 0 7がいずれも透光性を有する物質からなるものである場合、 図 1 ( c ) に示すように、 発光は第 1の電極 1 0 2および第 2の電極 1 0 7を通って、 基板側 および基板と逆側の両方から取り出される。 【0 0 8 2】 Light emission is extracted outside through one or both of the first electrode 102 and the second electrode 107. Accordingly, one or both of the first electrode 10 2 and the second electrode 10 7 are made of a light-transmitting substance. In the case where only the first electrode 10 2 is made of a light-transmitting substance, light emission is extracted from the substrate side through the first electrode 10 2 as shown in FIG. In addition, when only the second electrode 10 7 is made of a light-transmitting substance, as shown in FIG. 1 (b), light emission passes through the second electrode 10 7 and is opposite to the substrate. Taken from. When both the first electrode 1 0 2 and the second electrode 1 0 7 are made of a light-transmitting substance, as shown in FIG. 1 (c), light emission occurs in the first electrode 1 0 2 And through the second electrode 107 and taken out from the substrate side and both the substrate and the opposite side. [0 0 8 2]
なお、 第 1の電極 1 0 2と第 2の電極 1 0 7との間に設けられる層の構成は、 上 記のものには限定されない。 発光領域と金属とが近接することによって生じる消光 が抑制されるように、 第 1の電極 1 0 2および第 2の電極 1 0 7から離れた部位に 正孔と電子とが再結合する領域を設けた構成であり、 且つ、 実施の形態 1で示した 複合材料を含む層を有するものであれば、 上記以外のものでもよい。  Note that the structure of the layer provided between the first electrode 102 and the second electrode 107 is not limited to the above. In order to suppress quenching caused by the proximity of the light emitting region and the metal, a region where holes and electrons recombine is formed at a site away from the first electrode 102 and the second electrode 107. Any structure other than those described above may be used as long as the structure includes the layer including the composite material described in Embodiment 1.
【0 0 8 3】  [0 0 8 3]
つまり、 層の積層構造については特に限定されず、 電子輸送性の高い物質または 正孔輸送性の高い物質、 電子注入性の高い物質、 正孔注入性の高い物質、 バイポー ラ性 (電子及び正孔の輸送性の高い物質) の物質等から成る層を、 本発明の複合材 料を含む層と自由に組み合わせて構成すればよい。また、第 1の電極 1 0 2上には、 酸化珪素膜等からなる層を設けることによってキャリアの再結合部位を制御したも のであってもよい。  In other words, there is no particular limitation on the layered structure of the layers, and a substance having a high electron transporting property or a substance having a high hole transporting property, a substance having a high electron injecting property, a substance having a high hole injecting property, a bipolar property (electron and positive A layer made of a substance having a high hole transporting property may be freely combined with a layer containing the composite material of the present invention. Further, a carrier recombination site may be controlled by providing a layer made of a silicon oxide film or the like over the first electrode 102.
【0 0 8 4】  [0 0 8 4]
図 2に示す発光素子は、 陰極として機能する第 1の電極 3 0 2の上に電子輸送性 の高い物質を含む第 1の層 3 0 3、 発光性の高い物質を含む第 2の層 3ひ 4、 正孔 輸送性の高い物質を含む第 3の層 3 0 5、 実施の形態 1で示した有機化合物と金属 酸化物の複合体を含む第 4の層 3 0 6、 陽極として機能する第 2の電極 3 0 7とが 順に積層された構成となっている。 なお、 3 0 1は基板である。  The light-emitting element shown in FIG. 2 includes a first layer 30 3 containing a substance having a high electron-transport property on a first electrode 30 2 functioning as a cathode, and a second layer 3 containing a substance having a high light-emitting property. (4) Third layer containing a substance having a high hole-transport property 3 0 5, fourth layer containing a composite of the organic compound and metal oxide described in Embodiment 1 3 0 6, functioning as an anode The second electrode 3 07 is laminated in order. Reference numeral 3 0 1 denotes a substrate.
【0 0 8 5】  [0 0 8 5]
本実施の形態においては、 ガラス、 プラスチックなどからなる基板上に発光素子 を作製している。 一基板上にこのような発光素子を複数作製することで、 パッシブ 型の発光装置を作製することができる。 また、 ガラス、 プラスチックなどからなる 基板上に、 例えば、 薄膜トランジスタ (T F T) を形成し、 T F Tと電気的に接続 された電極上に発光素子を作製してもよい。 これにより、 T F Tによって発光素子 の駆動を制御するアクティブマトリクス型の発光装置を作製できる。 なお、 T F T の構造は、 特に限定されない。 ス夕ガ型の T F Tでもよいし、 逆ス夕ガ型の丁 F T でもよい。 また、 T F Tアレイ基板に形成される駆動用回路についても、 N型およ び P型の T F Tからなるものでもよいし、 若しくは N型または P型のいずれか一方 からのみなるものであってもよい。 また、 T F Tに用いられる半導体膜の結晶性に ついても特に限定されない。 非晶質半導体膜を用いてもよいし、 結晶性半導体膜を 用いてもよい。 In this embodiment mode, a light emitting element is manufactured over a substrate made of glass, plastic, or the like. By manufacturing a plurality of such light-emitting elements over one substrate, a passive light-emitting device can be manufactured. Further, for example, a thin film transistor (TFT) may be formed over a substrate made of glass, plastic, or the like, and a light emitting element may be formed over an electrode electrically connected to the TFT. Thereby, the light emitting element by TFT An active matrix light-emitting device that controls driving of the light-emitting diode can be manufactured. The TFT structure is not particularly limited. A Sugaga type TFT or a reverse Suga type TFT can be used. Also, the drive circuit formed on the TFT array substrate may be composed of N-type and P-type TFTs, or may be composed of only one of N-type and P-type. . Further, there is no particular limitation on the crystallinity of a semiconductor film used for TFT. An amorphous semiconductor film may be used, or a crystalline semiconductor film may be used.
【0 0 8 6】  [0 0 8 6]
本発明の発光素子は、 実施の形態 1で示した有機化合物と金属酸化物の複合体を 含む層を有する。 有機化合物と金属酸化物の複合体を含む層は、 キャリアが内在的 に発生していることにより導電性が高く、 そのため発光素子の低電圧駆動を実現す ることができる。  A light-emitting element of the present invention includes a layer including the composite of the organic compound and metal oxide described in Embodiment 1. A layer including a composite of an organic compound and a metal oxide has high conductivity due to the intrinsic generation of carriers. Therefore, low-voltage driving of the light-emitting element can be realized.
【0 0 8 7】  [0 0 8 7]
また、 本発明の発光素子に用いる有機化合物と金属酸化物の複合体を含む層は厚 く形成しても駆動電圧や消費電力の上昇が伴わないため、 有機化合物と金属酸化物 の複合体を含む層の膜厚を調整することによってマイクロキヤビティ効果や干渉効 果を利用した光学設計を行うことができる。 よって、 色純度が良く、 見る角度に依 存する色の変化などが小さい表示品質の良い発光素子を作製することが出来るよう になる。  In addition, since a layer including a composite of an organic compound and a metal oxide used in the light-emitting element of the present invention is formed thickly without increasing driving voltage or power consumption, the composite of an organic compound and a metal oxide is used. By adjusting the thickness of the layer to be included, optical design utilizing the microcavity effect and the interference effect can be performed. Therefore, a light-emitting element with high color purity and low display quality depending on the viewing angle can be manufactured.
【0 0 8 8】  [0 0 8 8]
また、 本発明の発光素子に用いる有機化合物と金属酸化物の複合体を含む層は、 キャリア密度が高いため、 電極とオーム接触することが可能である。 つまり、 電極 との接触抵抗が小さい。 そのため、 仕事関数等を考慮することなく、 電極材料を選 ぶことができ電極材料の選択肢が広がる。  In addition, since the layer including the composite of the organic compound and the metal oxide used for the light-emitting element of the present invention has a high carrier density, it can be in ohmic contact with the electrode. That is, the contact resistance with the electrode is small. Therefore, the electrode material can be selected without considering the work function and the like, and the options for the electrode material are expanded.
【0 0 8 9】 また、 本発明を適用することにより、 従来はャリア注入層として使用できなかつ た有機化合物でも金属酸化物と混合し、 有機化合物と金属酸化物の複合体にするこ とで注入性の高いキャリア注入層として利用できる。 つまり、 有機化合物の選択の 幅も広がる。 例えば、 ガラス転移点 (T g ) が高いが導電性が低い材料も発光素子 に使用することができるようになり、 耐熱性の高い素子も作製が可能になる。 [0 0 8 9] In addition, by applying the present invention, even an organic compound that could not be used as a carrier injection layer in the past is mixed with a metal oxide to form a composite of an organic compound and a metal oxide, thereby injecting a highly injectable carrier. Available as a layer. In other words, the range of selection of organic compounds is expanded. For example, a material having a high glass transition point (T g) but low conductivity can be used for a light-emitting element, and an element having high heat resistance can be manufactured.
【0 0 9 0】  [0 0 9 0]
また、 有機化合物と金属酸化物の複合体を含む層を厚膜化することにより、 微小 な異物や衝撃等によるショートを防止することができるため、 信頼性の高い発光素 子を得ることができる。 例えば、 通常の発光素子の電極間の膜厚が 1 0 0 n m〜 1 5 0 n mであるのに対し、 複合材料を含む層を用いた発光素子の電極間の膜厚は、 1 0 0〜5 0 0 n m、 好ましくは、 2 0 0〜 5 0 0 n mとすることができる。  In addition, by increasing the thickness of the layer containing a composite of an organic compound and a metal oxide, a short circuit due to minute foreign matter or impact can be prevented, so that a highly reliable light-emitting element can be obtained. . For example, the film thickness between electrodes of a normal light emitting element is 100 nm to 1550 nm, whereas the film thickness between electrodes of a light emitting element using a layer containing a composite material is The thickness may be from 500 nm, preferably from 200 nm to 500 nm.
【0 0 9 1】  [0 0 9 1]
また、 本発明の発光素子に用いる有機化合物と金属酸化物の複合体を含む層は、 真空蒸着で形成することができるため、 発光物質を含む層を真空蒸着で形成する場 合は、 いずれの層も同一の真空装置内で成膜することが可能であり、 発光素子を真 空一貫で形成することができる。 よって、 製造工程における微小な異物の付着を防 ぐことができ、 歩止まりを向上させることができる。  In addition, since the layer including the composite of the organic compound and the metal oxide used in the light-emitting element of the present invention can be formed by vacuum deposition, any layer containing the light-emitting substance is formed by vacuum deposition. The layers can also be formed in the same vacuum apparatus, and the light emitting elements can be formed consistently in the vacuum. Therefore, it is possible to prevent the adhesion of minute foreign matters in the manufacturing process and improve the yield.
【0 0 9 2】  [0 0 9 2]
また、 本発明の発光素子に用いる有機化合物と金属酸化物の複合体を含む層は、 有機化合物と金属酸化物とを含んでいるため、 電極と、 発光物質を含む層との間に 生じる応力を緩和させることができる。  In addition, since the layer including the composite of the organic compound and the metal oxide used in the light-emitting element of the present invention includes the organic compound and the metal oxide, the stress generated between the electrode and the layer including the light-emitting substance. Can be relaxed.
【0 0 9 3】  [0 0 9 3]
なお、 本実施の形態は、 他の実施の形態と適宜組み合わせることが可能である。  Note that this embodiment can be combined with any of the other embodiments as appropriate.
【0 0 9 4】  [0 0 9 4]
(実施の形態 3 ) 本実施の形態では、 卖施の形態 2に示した構成とは異なる構成を有する発光素子 について、 図 5および図 6を用いて説明する。 本実施の形態で示す構成では、 陰極 として機能する電極に接するように有機化合物と金属酸化物の複合体を含む層を設 けることができる。 (Embodiment 3) In this embodiment, a light-emitting element having a structure different from the structure shown in Embodiment 2 will be described with reference to FIGS. In the structure described in this embodiment, a layer including a composite of an organic compound and a metal oxide can be provided so as to be in contact with an electrode functioning as a cathode.
【0 0 9 5】  [0 0 9 5]
図 5 ( a ) に本発明の発光素子の構造の一例を示す。 第 1の電極 4 0 1と、 第 2 の電極 4 0 2との間に、 第 1の層 4 1 1、 第 2の層 4 1 2、 第 3の層 4 1 3が積層 された構成となっている。 本実施の形態では、 第 1の電極 4 0 1が陽極として機能 し、 第 2の電極 4 0 2が陰極として機能する場合について説明する。  FIG. 5 (a) shows an example of the structure of the light emitting element of the present invention. A structure in which a first layer 4 1 1, a second layer 4 1 2, and a third layer 4 1 3 are stacked between a first electrode 4 0 1 and a second electrode 4 0 2; It has become. In this embodiment, the case where the first electrode 40 01 functions as an anode and the second electrode 40 2 functions as a cathode will be described.
【0 0 9 6】  [0 0 9 6]
第 1の電極 4 0 1、 第 2の電極 4 0 2は、 実施の形態 2と同じ構成を適用するこ とができる。 また、 第 1の層 4 1 1は発光性の高い物質を含む層である。 第 2の層 4 1 2は電子供与性物質の中から選ばれた一の化合物と電子輸送性の高い化合物と を含む層であり、 第 3の層 4 1 3は実施の形態 1で示した有機化合物と金属酸化物 の複合体を含む層である。 第 2の層 4 1 2に含まれる電子供与性物質としては、 ァ ルカリ金属またはアルカリ土類金属およびそれらの酸化物や塩であることが好まし い。 具体的には、 リチウム、 セシウム、 カルシウム、 リチウム酸化物、 カルシウム 酸化物、 バリウム酸化物、 炭酸セシウム等が挙げられる。  The same structure as that in Embodiment Mode 2 can be applied to the first electrode 4 01 and the second electrode 40 2. In addition, the first layer 4 1 1 is a layer containing a substance having a high light-emitting property. The second layer 4 1 2 is a layer containing one compound selected from electron donating substances and a compound having a high electron transporting property, and the third layer 4 1 3 is described in Embodiment 1. The layer includes a composite of an organic compound and a metal oxide. The electron donating substance contained in the second layer 4 1 2 is preferably alkali metal or alkaline earth metal and oxides or salts thereof. Specific examples include lithium, cesium, calcium, lithium oxide, calcium oxide, barium oxide, and cesium carbonate.
【0 0 9 7】  [0 0 9 7]
このような構成とすることにより、 図 5 ( a ) に示した通り、 電圧を印加するこ とにより第 2の層 4 1 2および第 3の層 4 1 3の界面近傍にて電子の授受が行われ、 電子と正孔が発生し、第 2の層 4 1 2は電子を第 1の層 4 1 1に輸送すると同時に、 第 3の層 4 1 3は正孔を第 2の電極 4 0 2に輸送する。 すなわち、 第 2の層 4 1 2 と第 3の層 4 1 3とを合わせて、 キャリア発生層としての役割を果たしている。 ま た、 第 3の層 4 1 3は、 正孔を第 2の電極 4 0 2に輸送する機能を担っていると言 える。 With such a configuration, as shown in FIG. 5 (a), when a voltage is applied, electrons are exchanged near the interface between the second layer 4 1 2 and the third layer 4 1 3. The second layer 4 1 2 transports electrons to the first layer 4 1 1, while the third layer 4 1 3 transports holes to the second electrode 4 0 Transport to 2. That is, the second layer 4 1 2 and the third layer 4 1 3 together serve as a carrier generation layer. The third layer 4 1 3 has a function of transporting holes to the second electrode 40 2. Yeah.
【0098】  [0098]
また、第 3の層 413は、極めて高い正孔注入性、正孔輸送性を示す。そのため、 発光素子の駆動電圧を低減することができる。 また、 第 3の層 413を厚膜化した 場合、 駆動電圧の上昇を抑制することができる。  The third layer 413 exhibits extremely high hole injection property and hole transport property. Therefore, the driving voltage of the light emitting element can be reduced. In addition, when the third layer 413 is thickened, an increase in driving voltage can be suppressed.
【0099】  [0099]
また、 第 3の層 413を厚膜化しても、 駆動電圧の上昇を抑制することができる ため、 第 3の層 413の膜厚の自由に設定でき、 第 1の層 41 1からの発光の取り 出し効率を向上させることができる。 また、 第 1の層 41 1からの発光の色純度が 向上するように、 第 3の層 413の膜厚を設定することも可能である。  In addition, even if the thickness of the third layer 413 is increased, an increase in driving voltage can be suppressed, so the thickness of the third layer 413 can be set freely, and light emission from the first layer 41 1 can be prevented. The extraction efficiency can be improved. In addition, the film thickness of the third layer 413 can be set so that the color purity of light emission from the first layer 41 1 is improved.
【0100】  [0100]
また、 図 5 (a) を例に取ると、 第 2の電極 402をスパッタリングにより成膜 する場合などは、 発光性の物質が存在する第 1の層 41 1へのダメージを低減する こともできる。  Further, taking FIG. 5A as an example, when the second electrode 402 is formed by sputtering, damage to the first layer 41 1 in which a light-emitting substance is present can be reduced. .
【0101】  [0101]
なお、 本実施の形態の発光素子においても、 第 1の電極 40.1や第 2の電極 40 2の材料を変えることで、様々なバリエーションを有する。その模式図を図 5 (b)、 図 5 (c) および図 6に示す。 なお、 図 5 (b)、 図 5 (c) および図 6では、 図 5 (a) の符号を引用する。 また、 400は、 本発明の発光素子を担持する基板であ る。  Note that the light-emitting element of this embodiment also has various variations by changing materials of the first electrode 40.1 and the second electrode 402. The schematic diagram is shown in Fig. 5 (b), Fig. 5 (c) and Fig. 6. In FIG. 5 (b), FIG. 5 (c) and FIG. 6, the reference numerals in FIG. Reference numeral 400 denotes a substrate carrying the light emitting element of the present invention.
【0102】  [0102]
図 5は、 基板 400側から第 1の層 41 1、 第 2の層 412、 第 3の層 413の 順で構成されている場合の例である。' この時、 第 1の電極 401を光透過性とし、 第 2の電極 402を遮光性 (特に反射性) とすることで、 図 5 (a) のように基板 400側から光を射出する構成となる。 また、 第 1の電極 401を遮光性 (特に反 射性) とし、 第 2の電極 402を光透過性とすることで、 図 5 (b) のように基板 400の逆側から光を射出する構成となる。 さらに、 第 1の電極 401、 第 2の電 極 402の両方を光透過性とすることで、 図 5 (c) に示すように、 基板 400側 と基板 400の逆側の両方に光を射出する構成も可能となる。 FIG. 5 shows an example in which the first layer 411, the second layer 412, and the third layer 413 are configured in this order from the substrate 400 side. 'At this time, the first electrode 401 is made light transmissive and the second electrode 402 is made light-shielding (particularly reflective) so that light is emitted from the substrate 400 side as shown in Fig. 5 (a). It becomes. In addition, the first electrode 401 has a light shielding property (particularly By making the second electrode 402 light transmissive, light is emitted from the opposite side of the substrate 400 as shown in FIG. 5 (b). Furthermore, by making both the first electrode 401 and the second electrode 402 light transmissive, light is emitted to both the substrate 400 side and the opposite side of the substrate 400 as shown in FIG. 5 (c). The structure which performs is also attained.
【0103】  [0103]
図 6は、 基板 400側から第 3の層 413、 第 2の層 412、 第 1の層 41 1の 順で構成されている場合の例である。 この時、 第 1の電極 401を遮光性 (特に反 射性) とし、 第 2の電極 402を光透過性とすることで、 図 6 (a) のように基板 400側から光を取り出す構成となる。 また、 第 1の電極 401を光透過性とし、 第 2の電極 402を遮光性 (特に反射性) とすることで、 図 6 (b) のように基板 400と逆側から光を取り出す構成となる。 さらに、 第 1の電極 401、 第 2の電 極 402の両方を光透過性とすることで、 図 6 (c) に示すように、 基板 400側 と基板 400の逆側の両方に光を射出する構成も可能となる。  FIG. 6 shows an example in which the third layer 413, the second layer 412, and the first layer 411 are configured in this order from the substrate 400 side. At this time, the first electrode 401 is made light-shielding (particularly reflective) and the second electrode 402 is made light-transmissive so that light can be extracted from the substrate 400 side as shown in FIG. 6 (a). Become. In addition, by making the first electrode 401 light-transmissive and the second electrode 402 light-shielding (especially reflective), light can be extracted from the opposite side of the substrate 400 as shown in FIG. 6 (b). Become. Furthermore, by making both the first electrode 401 and the second electrode 402 light transmissive, light is emitted to both the substrate 400 side and the opposite side of the substrate 400 as shown in FIG. 6 (c). The structure which performs is also attained.
【0104】  [0104]
なお、 本実施の形態における発光素子を作製する場合には、 湿式法、 乾式法を問 わず、 種々の方法を用いることができる。  Note that in the case of manufacturing the light-emitting element in this embodiment mode, various methods can be used regardless of a wet method or a dry method.
【0105】  [0105]
また、 図 5に示すように、 第 1の電極 401を形成した後、 第 1の層 41 1、 第 2の層 412、 第 3の層 413を順次積層し、 第 2の電極 402を形成してもよい し、 図 6に示すように、 第 2の電極 402を形成した後、 第 3の層 413、 第 2の 層 412、 第 1の層 41 1を順次積層し、 第 1の電極 401を形成してもよい。  In addition, as shown in FIG. 5, after the first electrode 401 is formed, the first layer 411, the second layer 412, and the third layer 413 are sequentially stacked to form the second electrode 402. Alternatively, as shown in FIG. 6, after the second electrode 402 is formed, the third layer 413, the second layer 412, and the first layer 411 are sequentially stacked to form the first electrode 401. May be formed.
【0106】  [0106]
なお、 本実施の形態は、 他の実施の形態と適宜組み合わせることが可能である。  Note that this embodiment can be combined with any of the other embodiments as appropriate.
【0107】  [0107]
(実施の形態 4) 本実施の形態では、 実施の形態 2および実施の形態 3に示した構成とは異なる構 成を有する発光素子について、 図 3および図 4を用いて説明する。 本実施の形態で 示す構成は、 発光素子の 2つの電極に接するように有機化合物と金属酸化物の複合 体を含む層を設けることができる。 (Embodiment 4) In this embodiment, a light-emitting element having a structure different from the structures shown in Embodiments 2 and 3 will be described with reference to FIGS. In the structure described in this embodiment, a layer including a composite of an organic compound and a metal oxide can be provided so as to be in contact with two electrodes of the light-emitting element.
【0108】  [0108]
図 3 (a) に本発明の発光素子の構造の一例を示す。 第 1の電極 201と、 第 2 の電極 202との間に、 第 1の層 21 1、 第 2の層 212、 第 3の層 213、 第 4 の層 214が積層された構成となっている。 本実施の形態では、 第 1の電極 201 が陽極として機能し、 第 2の電極 202が陰極として機能する場合について説明す る。  FIG. 3 (a) shows an example of the structure of the light emitting element of the present invention. A first layer 211, a second layer 212, a third layer 213, and a fourth layer 214 are stacked between the first electrode 201 and the second electrode 202. . In this embodiment, the case where the first electrode 201 functions as an anode and the second electrode 202 functions as a cathode is described.
【0109】  [0109]
第 1の電極 201、 第 2の電極 202は、 実施の形態 2と同じ構成を適用するこ とができる。 また、 第 1の層 21 1は実施の形態 1で示した有機化合物と金属酸化 物の複合体を含む層であり、 第 2の層 212は発光性の高い物質を含む層である。 第 3の層 213は電子供与性物質と電子輸送性の高い化合物とを含む層であり、 第 4の層 214は実施の形態 1で示した有機化合物と金属酸化物の複合体を含む層で ある。 第 3の層 213に含まれる電子供与性物質としては、 アルカリ金属またはァ ルカリ土類金属およびそれらの酸化物や塩であることが好ましい。 具体的には、 リ チウム、 セシウム、 カルシウム、 リチウム酸化物、 カルシウム酸化物、 バリウム酸 化物、 炭酸セシウム等が挙げられる。  The first electrode 201 and the second electrode 202 can have the same structure as that in Embodiment 2. In addition, the first layer 211 is a layer including a complex of the organic compound and the metal oxide described in Embodiment 1, and the second layer 212 is a layer including a substance having a high light-emitting property. The third layer 213 is a layer containing an electron-donating substance and a compound having a high electron-transport property, and the fourth layer 214 is a layer containing a composite of the organic compound and metal oxide described in Embodiment 1. is there. The electron donating substance contained in the third layer 213 is preferably an alkali metal or alkaline earth metal and oxides or salts thereof. Specific examples include lithium, cesium, calcium, lithium oxide, calcium oxide, barium oxide, cesium carbonate, and the like.
【01 10】  [01 10]
このような構成とすることにより、 図 3 (a) に示した通り、 電圧を印加するこ とにより第 3の層 213および第 4の層 214の界面近傍にて電子の授受が行われ、 電子と正孔が発生し、第 3の層 213は電子を第 2の層 212に輸送すると同時に.、 第 4の層 2 14は正孔を第 2の電極 202に輸送する。 すなわち、 第 3の層 213 と第 4の層 2 1 4とを合わせて、 キャリア発生層としての役割を果たしている。 ま た、 第 4の層 2 1 4は、 正孔を第 2の電極 2 0 2に輸送する機能を担っていると言 える。 なお、 第 4の層 2 1 4と第 2の電極 2 0 2との間に、 さらに第 2の層および 第 3の層を再び積層することで、 夕ンデム型の発光素子とすることも可能である。 With such a configuration, as shown in FIG. 3 (a), when a voltage is applied, electrons are exchanged near the interface between the third layer 213 and the fourth layer 214. At the same time as the third layer 213 transports electrons to the second layer 212, the fourth layer 214 transports holes to the second electrode 202. That is, the third layer 213 And the fourth layer 2 1 4 together serve as a carrier generation layer. Further, it can be said that the fourth layer 2 14 has a function of transporting holes to the second electrode 20 2. It is also possible to obtain an evening light emitting element by stacking the second layer and the third layer again between the fourth layer 2 14 and the second electrode 20 2. It is.
【0 1 1 1】  [0 1 1 1]
また、 第 1の層 2 1 1や第 4の層 2 1 4は、 極めて高い正孔注入性、 正孔輸送性 を示す。 そのため、 発光素子の駆動電圧を低減することができる。  In addition, the first layer 2 11 1 and the fourth layer 2 1 4 exhibit extremely high hole injection properties and hole transport properties. Therefore, the driving voltage of the light emitting element can be reduced.
また、 第 1の層 2 1 1や第 4の層 2 1 4を厚膜化した場合、 駆動電圧の上昇を抑制 することができる。 In addition, when the first layer 2 11 1 or the fourth layer 2 14 is thickened, an increase in driving voltage can be suppressed.
【0 1 1 2】  [0 1 1 2]
また、 第 1の層 2 1 1や第 4の層 2 1 4を厚膜化しても、 発光素子の駆動電圧の 上昇を抑制することができるため、 第 1の層 2 1 1や第 4の層 2 1 4の膜厚の自由 に設定でき、第 2の層 2 1 2からの発光の取り出し効率を向上させることができる。 また、 第 2の層 2 1 2からの発光の色純度が向上するように、 第 1の層 2 1 1や第 4の層 2 1 4の膜厚を設定することも可能である。  In addition, even if the first layer 2 1 1 and the fourth layer 2 1 4 are made thicker, an increase in the driving voltage of the light emitting element can be suppressed, so the first layer 2 1 1 and the fourth layer The film thickness of the layer 2 14 can be set freely, and the light extraction efficiency from the second layer 2 1 2 can be improved. In addition, the film thicknesses of the first layer 2 11 1 and the fourth layer 2 14 can be set so that the color purity of light emitted from the second layer 2 1 2 is improved.
【0 1 1 3】  [0 1 1 3]
また、 本実施の形態の発光素子は、 発光機能を担う第 2の層の陽極側および陰極 側を非常に厚くすることが可能となり、 さらに発光素子のショートを効果的に防止 できる。 また、 図 3 ( a ) を例に取ると、 第 2の電極 2 0 2をスパッタリングによ り成膜する場合などは、 発光性の物質が存在する第 2の層 2 1 2へのダメージを低 減することもできる。 さらに、 第 1の層 2 1 1と第 4の層 2 1 4を同じ材料で構成 することにより、 発光機能を担う層を挟んで両側に同じ材料で構成された層を設け ることができるため、 応力歪みを抑制する効果もある。  In addition, the light emitting element of this embodiment can make the anode side and the cathode side of the second layer responsible for the light emitting function very thick, and can effectively prevent a short circuit of the light emitting element. Taking Fig. 3 (a) as an example, when the second electrode 20 2 is formed by sputtering, damage to the second layer 2 1 2 containing the light-emitting substance is caused. It can also be reduced. Furthermore, since the first layer 2 11 1 and the fourth layer 2 14 are made of the same material, a layer made of the same material can be provided on both sides of the layer responsible for the light emitting function. There is also an effect of suppressing stress strain.
【0 1 1 4】  [0 1 1 4]
なお、 本実施の形態の発光素子においても、 第 1の電極 2 0 1や第 2の電極 2 0 2の材料を変えることで、様々なバリエーシヨンを有する。その模式図を図 3 ( b )、 図 3 (c) および図 4に示す。 なお、 図 3 (b)、 図 3 (c) および図 4では、 図 3 (a) の符号を引用する。 また、 200は、 本発明の発光素子を担持する基板であ る。 Note that also in the light-emitting element of this embodiment mode, the first electrode 2 0 1 and the second electrode 2 0 By changing the 2 materials, it has various variations. The schematic diagram is shown in Fig. 3 (b), Fig. 3 (c) and Fig. 4. In FIG. 3 (b), FIG. 3 (c) and FIG. 4, the reference numerals in FIG. 3 (a) are cited. Reference numeral 200 denotes a substrate carrying the light emitting element of the present invention.
【01 15】  [01 15]
図 3は、 基板 200側から第 1の層 21 1、 第 2の層 212、 第 3の層 213、 第 4の層 214の順で構成されている場合の例である。 この時、 第 1の電極 201 を光透過性とし、第 2の電極 202を遮光性(特に反射性)とすることで、図 3 (a) のように基板 200側から光を射出する構成となる。 また、 第 1の電極 201を遮 光性 (特に反射性) とし、 第 2の電極 202を光透過性とすることで、 図 3 (b) のように基板 200の逆側から光を射出する構成となる。 さらに、 第 1の電極 20 1、 第 2の電極 202の両方を光透過性とすることで、 図 3 (c) に示すように、 基板 200側と基板 200の逆側の両方に光を射出する構成も可能となる。  FIG. 3 shows an example in which the first layer 21 1, the second layer 212, the third layer 213, and the fourth layer 214 are configured in this order from the substrate 200 side. At this time, the first electrode 201 is made light-transmitting, and the second electrode 202 is made light-shielding (particularly reflective) so that light is emitted from the substrate 200 side as shown in FIG. Become. Further, by making the first electrode 201 light-shielding (particularly reflective) and the second electrode 202 light-transmissive, light is emitted from the opposite side of the substrate 200 as shown in FIG. It becomes composition. Furthermore, by making both the first electrode 20 1 and the second electrode 202 light transmissive, light is emitted to both the substrate 200 side and the opposite side of the substrate 200 as shown in FIG. The structure which performs is also attained.
【01 16】  [01 16]
図 4は、 基板 200側から第 4の層 214、 第 3の層 213、 第 2の層 212、 第 1の層 21 1の順で構成されている場合の例である。 この時、 第 1の電極 201 を遮光性(特に反射性)とし、第 2の電極 202を光透過性とすることで、図 4 (a) のように基板 200側から光を取り出す構成となる。 また、 第 1の電極 201を光 透過性とし、 第 2の電極 202を遮光性 (特に反射性) とすることで、 図 4 (b) のように基板 200と逆側から光を取り出す構成となる。 さらに、 第 1の電極 20 1、 第 2の電極 202の両方を光透過性とすることで、 図 4 (c) に示すように、 基板 200側と基板 200の逆側の両方に光を射出する構成も可能となる。  FIG. 4 shows an example in which the fourth layer 214, the third layer 213, the second layer 212, and the first layer 211 are formed in this order from the substrate 200 side. At this time, the first electrode 201 is made light-shielding (particularly reflective), and the second electrode 202 is made light-transmissive so that light is extracted from the substrate 200 side as shown in FIG. . Further, by making the first electrode 201 light-transmissive and the second electrode 202 light-shielding (particularly reflective), the light can be extracted from the opposite side of the substrate 200 as shown in FIG. 4 (b). Become. Furthermore, by making both the first electrode 20 1 and the second electrode 202 light transmissive, light is emitted to both the substrate 200 side and the opposite side of the substrate 200 as shown in FIG. 4 (c). The structure which performs is also attained.
【01 17】  [01 17]
なお、 図 23に示すように、 第 1の層 71 1が、 電子供与性物質の中から選ばれ た一の化合物と電子輸送性の高い化合物とを含み、 第 2の層 712が発光性の物質 を含み、 第 3の層 713が実施の形態 1で示した有機化合物と金属酸化物の複合 ¾: を含む層であり、 第 4の層 714が、 電子供与性物質の中から選ばれた一の化合物 と電子輸送性の高い化合物とを含む構成にすることも可能である。 Note that as shown in FIG. 23, the first layer 71 1 includes one compound selected from an electron-donating substance and a compound having a high electron-transport property, and the second layer 712 has a light-emitting property. material The third layer 713 is a layer containing a composite of the organic compound and metal oxide shown in Embodiment 1 and the fourth layer 714 is selected from among electron donating substances. It is also possible to employ a structure containing the above compound and a compound having a high electron transporting property.
【01 18】  [01 18]
なお、 本実施の形態における発光素子を作製する場合には、 湿式法、 乾式法を問 わず、 種々の方法を用いることができる。  Note that in the case of manufacturing the light-emitting element in this embodiment mode, various methods can be used regardless of a wet method or a dry method.
【01 19】  [01 19]
また、 図 3に示すように、 第 1の電極 201を形成した後、 第 1の層 21 1、 第 2の層 212、 第 3の層 213、 第 4の層 214を順次積層し、 第 2の電極 202 を形成してもよいし、 図 4に図示するように、 第 2の電極 202を形成した後、 第 4の層 214、 第 3の層 213、 第 2の層 212、 第 1の層 21 1を順次積層し、 第 1の電極を形成してもよい。  Further, as shown in FIG. 3, after the first electrode 201 is formed, the first layer 211, the second layer 212, the third layer 213, and the fourth layer 214 are sequentially stacked, As shown in FIG. 4, after forming the second electrode 202, the fourth layer 214, the third layer 213, the second layer 212, and the first layer 202 are formed. The layer 211 may be sequentially stacked to form the first electrode.
【0120】  [0120]
なお、 本実施の形態は、 他の実施の形態と適宜組み合わせることが可能である。  Note that this embodiment can be combined with any of the other embodiments as appropriate.
【0121】  [0121]
(実施の形態 5)  (Embodiment 5)
本実施の形態では、 実施の形態 2〜実施の形態 4に示した構成とは異なる構成を 有する発光素子について説明する。 本実施の形態で示す構成は、 複数の発光ュニッ トを積層した構成の発光素子の電荷発生層として、 本発明の複合材料を適用した構 成である。  In this embodiment, a light-emitting element having a structure which is different from the structures described in Embodiments 2 to 4 will be described. The structure described in this embodiment is a structure in which the composite material of the present invention is applied as a charge generation layer of a light-emitting element having a structure in which a plurality of light-emitting units are stacked.
【0122】  [0122]
本実施の形態では、 複数の発光ユニットを積層した構成の発光素子 (以下、 積層 型素子という) について説明する。 うまり、 第 1の電極と第 2の電極との間に、 複 数の発光ユニットを有する発光素子である。 図 1 1に 2つの発光ユニットを積層し た積層型素子を示す。 【0 1 2 3】 In this embodiment, a light-emitting element having a structure in which a plurality of light-emitting units are stacked (hereinafter referred to as a stacked element) will be described. In other words, the light-emitting element has a plurality of light-emitting units between the first electrode and the second electrode. Figure 11 shows a stacked element in which two light emitting units are stacked. [0 1 2 3]
図 1 1において、 第 1の電極 5 0 1と第 2の電極 5 0 2との間には、 第 1の発光 ュニット 5 1 1と第 2の発光ュニッ卜 5 1 2が積層されている。 第 1の発光ュニッ ト 5 1 1と第 2の発光ュニット 5 1 2との間には、 電荷発生層 5 1 3が形成されて いる。  In FIG. 11, a first light emitting unit 51 1 1 and a second light emitting unit 51 2 are stacked between a first electrode 5 01 and a second electrode 5 02. A charge generation layer 5 13 is formed between the first light emitting unit 5 1 1 and the second light emitting unit 5 1 2.
【0 1 2 4】  [0 1 2 4]
第 1の電極 5 0 1と第 2の電極 5 0 2は、 種々の材料を用いることができる。  Various materials can be used for the first electrode 5 0 1 and the second electrode 5 0 2.
【0 1 2 5】  [0 1 2 5]
第 1の発光ュニット 5 1 1および第 2の発光ュニット 5 1 2は、 それぞれ種々の 構成を用いることができる。  The first light-emitting unit 5 111 and the second light-emitting unit 51 12 can each have various configurations.
【0 1 2 6】  [0 1 2 6]
電荷発生層 5 1 3には、 実施の形態 1で示した有機化合物と金属酸化物の複合体 が含まれている。 有機化合物と金属酸化物の複合体は、 キャリア注入性、 キャリア 輸送性に優れているため、 低電圧駆動、 低電流駆動を実現することができる。  The charge generation layer 5 1 3 contains the composite of the organic compound and metal oxide described in Embodiment 1. Since a composite of an organic compound and a metal oxide is excellent in carrier injecting property and carrier transporting property, low voltage driving and low current driving can be realized.
【0 1 2 7】  [0 1 2 7]
なお、 電荷発生層 5 1 3は、 有機化合物と金属酸化物の複合.体と他の材料とを組 み合わせて形成してもよい。 例えば、 実施の形態 3で示したように、 有機化合物と 金属酸化物の複合体を含む層と、 電子供与性物質の中から選ばれた一の化合物と電 子輸送性の高い化合物とを含む層とを組み合わせて形成してもよい。 また、 有機化 合物と金属酸化物の複合体を含む層と、 透明導電膜とを組み合わせて形成してもよ い。  Note that the charge generation layer 5 13 may be formed by combining a composite of an organic compound and a metal oxide with another material. For example, as shown in Embodiment Mode 3, a layer including a composite of an organic compound and a metal oxide, one compound selected from electron donating substances, and a compound having a high electron transporting property are included. You may form combining a layer. Alternatively, a layer including a composite of an organic compound and a metal oxide may be combined with a transparent conductive film.
【0 1 2 8】  [0 1 2 8]
本実施の形態では、 2つの発光ュ: iッ卜を有する発光素子について説明したが、 同様に、 3つ以上の発光ユニットを積層した発光素子についても、 実施の形 1で示 した有機化合物と金属酸化物の複合体を適用することが可能である。 例えば、 3つ の発光ユニットを積層した発光素子は、 第 1の発光ユニット、 第 1の電荷発生層、 第 2の発光ユニット、 第 2の電荷発生層、 第 3の発光ユニット、 の順に積層される が、 有機化合物と金属酸化物の複合体は、 いずれか一つの電荷発生層のみに含まれ ていてもよいし、 全ての電荷発生層に含まれていてもよい。 In this embodiment mode, a light-emitting element having two light-emitting units has been described. Similarly, a light-emitting element in which three or more light-emitting units are stacked has the same structure as that of the organic compound described in Embodiment Mode 1. Metal oxide composites can be applied. For example, three The light emitting element in which the light emitting units are stacked is stacked in the order of the first light emitting unit, the first charge generating layer, the second light emitting unit, the second charge generating layer, and the third light emitting unit. The composite of the compound and the metal oxide may be contained in any one of the charge generation layers, or may be contained in all the charge generation layers.
【0129】  [0129]
なお、 本実施の形態は、 他の実施の形態と適宜組み合わせることが可能である。  Note that this embodiment can be combined with any of the other embodiments as appropriate.
【0130】  [0130]
(実施の形態 6)  (Embodiment 6)
本実施の形態では、 発光素子の光学設計について説明する。  In this embodiment mode, an optical design of a light-emitting element will be described.
【0131】  [0131]
実施の形態 2〜実施の形態 5に示した発光素子において、 各発光色を発する発光 素子ごとに、 少なくとも第 1の電極及び第 2の電極を除く各層のいずれか一つの膜 厚を異ならせることにより、 発光色毎の光の取り出し効率を高めることができる。  In the light-emitting elements described in any of Embodiments 2 to 5, the thickness of at least one of the layers excluding the first electrode and the second electrode is different for each light-emitting element that emits each emission color. Thus, the light extraction efficiency for each emission color can be increased.
【0132】  [0132]
例えば、 図 10に示すように、 赤系色 (R)、 緑系色 (G)、 青系色 (B) を発光 する発光素子は、 反射電極である第 1の電極 1 101、 及び透光性を有する第 2の 電極 1 102を共有しており、 それぞれ第 1の層 1 1 1 1 R、 1 1 11 G、 1 1 1 1 B、 第 2の層 1 1 12 R、 1 1 12G、 1 1 12 B、 第 3の層 1 1 13 R、 1 1 13G、 1 1 13 B、 第 4の層 1 1 14R、 1 1 14G、 1 1 14Bを有する。 そ して、 第 1の層 1 1 1 1 R、 1 1 1 1 G、 1 1 1 1 Bを発光色毎に異ならせる。  For example, as shown in FIG. 10, a light-emitting element that emits red color (R), green color (G), and blue color (B) includes a first electrode 1101, which is a reflective electrode, and a light-transmitting element. Second electrode 1102 having the same properties, and the first layer 1 1 1 1 R, 1 1 11 G, 1 1 1 1 B, the second layer 1 1 12 R, 1 1 12G, 1 1 12 B, third layer 1 1 13 R, 1 1 13 G, 1 1 13 B, fourth layer 1 1 14 R, 1 1 14 G, 1 1 14 B Then, the first layer 1 1 1 1 R, 1 1 1 1 G, and 1 1 1 1 B are made different for each emission color.
【0133】  [0133]
なお、 図 10に示す発光素子において、 第 2の電極 1 102の電位よりも第 1の 電極 1 101の電位が高くなるように電圧を印加すると、 第 1の層 1 1 1 1から第 2の層 1 1 12へ正孔が注入される。 第 3の層 1 1 13および第 4の層 1 1 14の 界面近傍にて電子の授受が行われ、 電子と正孔が発生し、 第 3の層 1 1 13は電子 を第 2の層 1 1 1 2に輸送すると同時に、 第 4の層 1 1 14は正孔を第 2の電極 1 1 02に輸送する。 正孔と、 電子とが、 第 2の層 1 1 12において再結合し、 発光 物質を励起状態にする。 そして、 励起状態の発光物質は、 基底状態に戻るときに発 光する。 Note that in the light-emitting element shown in FIG. 10, when a voltage is applied so that the potential of the first electrode 1101 is higher than the potential of the second electrode 1102, the first layer 1 1 1 1 to the second electrode Holes are injected into layers 1 1 12. Electrons are exchanged near the interface between the third layer 1 1 13 and the fourth layer 1 1 14 to generate electrons and holes, and the third layer 1 1 13 Is transported to the second layer 1 1 1 2, while the fourth layer 1 1 14 transports holes to the second electrode 1 1 02. Holes and electrons recombine in the second layer 1 1 12 to bring the luminescent material into an excited state. The excited luminescent material emits light when returning to the ground state.
【0 1 34】  [0 1 34]
図 1 0に示すように、 第 1の層 1 1 1 1 R、 1 1 1 1 G、 1 1 1 1 Bを発光色毎 に異ならせることにより、 直接第 2の電極を介して認識する場合と、 第 1の電極で 反射して第 2の電極を介して認識する場合とで光路が異なることによる、 光の取り 出し効率の低下を防止することができる。  As shown in Fig. 10, when the first layer 1 1 1 1 R, 1 1 1 1 G, 1 1 1 1 B is differentiated for each luminescent color and directly recognized through the second electrode It is possible to prevent the light extraction efficiency from being lowered due to the difference in the optical path between the case where the light is reflected by the first electrode and recognized through the second electrode.
【01 35】  [01 35]
具体的には、 第 1の電極に光が入射した場合、 反射光には位相の反転が生じ、 こ れによって生じる光の干渉効果が生じる。 その結果、 発光領域と反射電極との光学 距離、 つまり屈折率 X距離が、 発光波長の (2m— 1) Z4倍 (mは任意の正の整 数)、 即ち、 m= l 4、 3/4, 5/4 - · ·倍の時には、 発光の外部取り出し効 率が高くなる。 一方、 m/2倍 (mは任意の正の整数) 即ち、 m= lZ2、 1、 3 /2 · · ·倍の時には発光の外部取り出し効率が低くなつてしまう。  Specifically, when light is incident on the first electrode, a phase inversion occurs in the reflected light, resulting in a light interference effect. As a result, the optical distance between the light emitting region and the reflecting electrode, that is, the refractive index X distance is (2m-1) Z4 times the emission wavelength (m is an arbitrary positive integer), that is, m = l 4, 3 / 4, 5/4-· When doubled, the external extraction efficiency of light emission increases. On the other hand, m / 2 times (m is an arbitrary positive integer) That is, when m = lZ2, 1, 3/2 ··· times, the external extraction efficiency of light emission becomes low.
【01 36】  [01 36]
したがって、 本発明の発光素子において、 発光領域と反射電極との光学距離、 つ まり屈折率 X距離が、 発光波長の (2m— 1) Z4倍 (mは任意の正の整数) とな るように、 第 1の層から第 4の層のいずれかの膜厚を各発光素子で異ならせる。  Therefore, in the light emitting device of the present invention, the optical distance between the light emitting region and the reflective electrode, that is, the refractive index X distance is (2m−1) Z4 times the emission wavelength (m is an arbitrary positive integer). Further, the thickness of any one of the first layer to the fourth layer is made different for each light emitting element.
【01 37】  [01 37]
特に、 第 1の層から第 4の層において、 電子と正孔が再結合する層から反射電極 との間の層の膜厚を異ならせるとよ ( が、 電子と正孔が再結合する層から透光性を 有する電極との間の膜厚を異ならせてもよい。 さらに両者の膜厚を異ならせても構 わない。 その結果、 発光を効率よく外部に取り出すことができる。 【0 1 3 8】 In particular, in the first to fourth layers, the thickness of the layer between the layer where the electrons and holes are recombined and the reflective electrode may be different (the layer where the electrons and holes are recombined). Therefore, the thickness of the light-transmitting electrode may be different from that of the light-transmitting electrode, and the thickness of both of the electrodes may be different. [0 1 3 8]
第 1の層から第 4の層のいずれかの膜厚を異ならせるためには、 層を厚膜化する 必要がある。 本発明の発光素子は、 厚膜化する層に、 実施の形態 1で示した有機化 合物と金属酸化物の複合体を含む層を用いることを特徴とする。  In order to change the thickness of any of the first to fourth layers, it is necessary to increase the thickness of the layers. The light-emitting element of the present invention is characterized in that a layer including the composite of the organic compound and the metal oxide described in Embodiment 1 is used for the layer to be thickened.
【0 1 3 9】  [0 1 3 9]
一般に、 発光素子の層を膜厚化すると、 駆動電圧が増加してしまうため、 好まし くなかった。 しかし、 厚膜化する層に、 実施の形態 1で示した有機化合物と金属酸 化物の複合体を用いると、 駆動電圧を低くでき、 厚膜化することによる駆動電圧の 上昇を抑制することができる。  In general, when the thickness of the light emitting element layer is increased, the driving voltage increases, which is not preferable. However, when the composite of the organic compound and metal oxide described in Embodiment 1 is used for the layer to be thickened, the driving voltage can be lowered and the increase in driving voltage due to the thickening can be suppressed. it can.
【0 1 4 0】  [0 1 4 0]
なお、 図 1 0では、 赤系色 (R) の発光素子の発光領域と反射電極との光学距離 が発光波長の 1 4倍、 緑系色 (G) の発光素子の発光領域と反射電極との光学距 離が発光波長の 3 Z 4倍、 青系色 (B) の発光素子の発光領域と反射電極との光学 距離が発光波長の 5 Z 4倍のものを示した。 なお、 本発明はこの値に限られず、 適 宜 mの値を設定することが可能である。また、図 1 0に示すように、発光波長の(2 m— 1 ) / 4倍の mの値は各発光素子で異なっていてもよい。 .  In FIG. 10, the optical distance between the light emitting region of the red light emitting element (R) and the reflective electrode is 14 times the emission wavelength, and the light emitting region of the green light emitting element (G) and the reflective electrode The optical distance was 3 Z 4 times the emission wavelength, and the optical distance between the light emitting region of the blue light emitting element (B) and the reflective electrode was 5 Z 4 times the emission wavelength. Note that the present invention is not limited to this value, and the value of m can be set appropriately. Further, as shown in FIG. 10, the value of m which is (2 m−1) / 4 times the emission wavelength may be different for each light emitting element. .
. 【0 1 4 1】  [0 1 4 1]
また、 第 1の層から第 4の層のいずれかを厚膜化することにより、 第 1の電極と 第 2の電極とがショートすることを防止でき、 歩留まりを高めることもでき、 非常 に好ましい。  In addition, by increasing the thickness of any of the first to fourth layers, it is possible to prevent the first electrode and the second electrode from being short-circuited and to increase the yield, which is very preferable. .
【0 1 4 2】  [0 1 4 2]
このように本発明の発光素子は、 少なくとも第 1の層から第 4の層の膜厚を、 各 発光色で異ならせることができる。 ごのとき、 電子と正孔が再結合する層から反射 電極との間となる層の膜厚を、 各発光色で異ならせることが好ましい。 さらに厚膜 化する必要のある層には、 実施の形態 1で示した有機化合物と金属酸化物の複合体 を含む層とすると、 駆動電圧が高くならず好ましい。 As described above, in the light-emitting element of the present invention, the film thickness of at least the first layer to the fourth layer can be made different for each emission color. At this time, it is preferable that the thickness of the layer between the layer where the electrons and holes are recombined and the reflective electrode be different for each emission color. For the layer that needs to be thicker, the composite of the organic compound and metal oxide shown in Embodiment Mode 1 It is preferable to use a layer containing, because the driving voltage is not increased.
【0143】  [0143]
なお、 本実施の形態では、 実施の形態 4に示した構成の発光素子を用いて説明し たが、 他の実施の形態と適宜組み合わせることも可能である。  Note that although this embodiment mode has been described using the light-emitting element having the structure described in Embodiment Mode 4, it can be combined with any other embodiment mode as appropriate.
【0144】  [0144]
(実施の形態 7)  (Embodiment 7)
本実施の形態では、 本発明の発光素子を有する発光装置について説明する。  In this embodiment mode, a light-emitting device having the light-emitting element of the present invention will be described.
【0145】  [0145]
本実施の形態では、 画素部に本発明の発光素子を有する発光装置について図 7を 用いて説明する。 なお、 図 7 (A) は、 発光装置を示す上面図、 図 7 (B) は図 7 (A) を A— A' および B— B' で切断した断面図である。 点線で示された 601 は駆動回路部 (ソース側駆動回路)、 602は画素部、 603は駆動回路部 (ゲート 側駆動回路) である。 また、 604は封止基板、 605はシール材であり、 シール 材 605で囲まれた内側は、 空間 607になっている。  In this embodiment mode, a light-emitting device having the light-emitting element of the present invention in a pixel portion will be described with reference to FIG. 7A is a top view illustrating the light-emitting device, and FIG. 7B is a cross-sectional view taken along lines A—A ′ and B—B ′ in FIG. 7A. Reference numeral 601 indicated by a dotted line denotes a drive circuit portion (source side drive circuit), 602 denotes a pixel portion, and 603 denotes a drive circuit portion (gate side drive circuit). Reference numeral 604 denotes a sealing substrate, reference numeral 605 denotes a sealing material, and an inner side surrounded by the sealing material 605 is a space 607.
【0146】  [0146]
なお、 引き回し配線 608はソース側駆動回路 601及びゲー卜側駆動回路 60 3に入力される信号を伝送するための配線であり、 外部入力端子となる FPC (フ レキシブルプリントサーキット) 609からビデオ信号、 クロック信号、 スタート 信号、 リセット信号等を受け取る。なお、ここでは FPCしか図示されていないが、 この F PCにはプリント配線基盤 (PWB) が取り付けられていても良い。 本明細 書における発光装置には、 発光装置本体だけでなく、 それに FPCもしくは PWB が取り付けられた状態をも含むものとする。  Note that the routing wiring 608 is a wiring for transmitting a signal input to the source side driving circuit 601 and the gate side driving circuit 603, and from the FPC (flexible printed circuit) 609 serving as an external input terminal, Receives clock signal, start signal, reset signal, etc. Although only the FPC is shown here, a printed wiring board (PWB) may be attached to the FPC. The light-emitting device in this specification includes not only the light-emitting device body but also a state in which an FPC or PWB is attached thereto.
【0147】  [0147]
次に、 断面構造について図 7 (B) を用いて説明する。 素子基板 610上には駆 動回路部及び画素部が形成されているが、 ここでは、 駆動回路部であるソース側駆 動回路 601と、 画素部 602中の一つの画素が示されている。 Next, the cross-sectional structure is described with reference to FIG. A drive circuit portion and a pixel portion are formed on the element substrate 610. Here, the source side driver, which is a drive circuit portion, is formed. A moving circuit 601 and one pixel in the pixel portion 602 are shown.
【0148】  [0148]
なお、 ソース側駆動回路 601は nチャネル型 TFT623と pチャネル型 TF T 624とを組み合わせた CMOS回路が形成される。 また、 駆動回路を形成する TFTは、 種々の CMOS回路、 PMOS回路もしくは NMOS回路で形成しても 良い。 また、 本実施の形態では、 基板上に駆動回路を形成したドライバ一一体型を 示すが、 必ずしもその必要はなく、 駆動回路を基板上ではなく外部に形成すること もできる。  Note that the source side driver circuit 601 is a CMOS circuit in which an n-channel TFT 623 and a p-channel TFT 624 are combined. The TFT forming the driving circuit may be formed of various CMOS circuits, PMOS circuits, or NMOS circuits. In this embodiment mode, a driver integrated type in which a driver circuit is formed over a substrate is shown. However, this is not always necessary, and the driver circuit can be formed outside the substrate.
【0149】  [0149]
また、 画素部 602はスイッチング用 TFT61 1と、 電流制御用 TFT612 とそのドレインに電気的に接続された第 1の電極 613とを含む複数の画素により 形成される。 なお、 第 1の電極 613の端部を覆って絶縁物 614が形成されてい る。 ここでは、 ポジ型の感光性アクリル樹脂膜を用いることにより形成する。  The pixel portion 602 is formed by a plurality of pixels including a switching TFT 611, a current control TFT 612, and a first electrode 613 electrically connected to the drain thereof. Note that an insulator 614 is formed so as to cover an end portion of the first electrode 613. Here, it is formed by using a positive type photosensitive acrylic resin film.
【0150】  [0150]
また、 被覆性を良好なものとするため、 絶縁物 614の上端部または下端部に曲 率を有する曲面が形成されるようにする。 例えば、 絶縁物 614の材料としてポジ 型の感光性アクリルを用いた場合、 絶縁物 614の上端部のみに曲率半径 (0. 2 / m〜3 wm) を有する曲面を持たせることが好ましい。 また、 絶縁物 614とし て、 光の照射によってエツチャントに不溶解性となるネガ型、 或いは光の照射によ つてエツチャントに溶解性となるポジ型のいずれも使用することができる。  In order to improve the covering property, a curved surface having a curvature is formed at the upper end portion or the lower end portion of the insulator 614. For example, in the case where positive photosensitive acrylic is used as the material of the insulator 614, it is preferable that only the upper end portion of the insulator 614 has a curved surface having a curvature radius (0.2 / m to 3 wm). As the insulator 614, either a negative type that becomes insoluble in an etchant by light irradiation or a positive type that becomes soluble in an etchant by light irradiation can be used.
【0151】  [0151]
第 1の電極 613上には、 発光物質を含む層 616、 および第 2の電極 617が それぞれ形成されている。 ここで、 陽極として機能する第 1の電極 613に用いる 材料としては、 さまざまな金属、 合金、 電気伝導性化合物、 およびこれらの混合物 金属、 化合物、 合金を用いることができる。 第 1の電極を陽極として用いる場合に は、 その中でも、 仕事関数の大きい (仕事関数 4. O eV以上) などで形成されて いることが好ましい。 例えば、 珪素を含有した酸化インジウム一酸化スズ、 酸化ィ ンジゥム一酸化亜鉛、 窒化チタン膜、 クロム膜、 タングステン膜、 Zn膜、 P t膜 などの単層膜の他、 窒化チタンとアルミニウムを主成分とする膜との積層、 窒化チ タン膜とアルミニウムを主成分とする膜と窒化チタン膜との 3層構造等を用いるこ とができる。 なお、 積層構造とすると、 配線としての抵抗も低く、 良好なォーミツ クコンタク卜がとれ、 さらに陽極として機能させることができる。 A layer 616 containing a light-emitting substance and a second electrode 617 are formed over the first electrode 613, respectively. Here, as a material used for the first electrode 613 functioning as an anode, various metals, alloys, electrically conductive compounds, and mixtures thereof, metals, compounds, and alloys can be used. When using the first electrode as the anode Among them, it is preferable that the material is formed with a large work function (work function 4. O eV or more). For example, indium tin oxide containing silicon, zinc oxide zinc oxide, titanium nitride film, chromium film, tungsten film, Zn film, Pt film, etc., as well as titanium nitride and aluminum as main components A three-layer structure of a titanium nitride film, a titanium nitride film, a film containing aluminum as a main component, and a titanium nitride film can be used. Note that, when a laminated structure is used, resistance as a wiring is low, a good ohmic contact can be obtained, and a function as an anode can be obtained.
【0152】  [0152]
また、 発光物質を含む層 616は、 蒸着マスクを用いた蒸着法、 インクジェット 法、 スピンコート法等の種々の方法によって形成される。 発光物質を含む層 616 は、実施の形態 1で示した有機化合物と金属酸化物の複合体を含む層を有している。 また、 発光物質を含む層 616を構成する他の材料としては、 低分子系材料、 中分 子材料 (オリゴマー、 デンドリマーを含む)、 または高分子系材料であっても良い。 また、 発光物質を含む層に用いる材料としては、 有機化合物だけでなく、 無機化合 物を用いてもよい。  The layer 616 containing a light-emitting substance is formed by various methods such as an evaporation method using an evaporation mask, an ink-jet method, and a spin coating method. The layer 616 containing a light-emitting substance has a layer containing a composite of an organic compound and a metal oxide described in Embodiment 1. Further, another material constituting the light-emitting substance-containing layer 616 may be a low molecular weight material, a molecular weight material (including an oligomer or a dendrimer), or a high molecular weight material. In addition, as a material used for the layer containing a light-emitting substance, not only an organic compound but also an inorganic compound may be used.
【0153】  [0153]
さらに、 発光物質を含む層 616上に形成され、 陰極として機能する第 2の電極 617に用いる材料としては、仕事関数の小さい(仕事関数 3. 8 e V以下)金属、 合金、 電気伝導性化合物、 およびこれらの混合物などを用いることができる。 この ような陰極材料の具体例としては、 元素周期表の 1族または 2族に属する元素、 す なわちリチウム (L i ) やセシウム (C s) 等のアルカリ金属、 およびマグネシゥ ム (Mg)、 カルシウム (Ca)、 ストロンチウム (S r) 等のアルカリ土類金属、 およびこれらを含む合金 (Mg : Ag、 A 1 : L i) 等が挙げられる。 なお、 発光 物質を含む層 616で生じた光が第 2の電極 617を透過させる場合には、 第 2の 電極 617として、 膜厚を薄くした金属薄膜と、 透明導電膜 (酸化インジウム—酸 化スズ(I TO)、 珪素若しくは酸化珪素を含有した酸化インジウム一酸化スズ、 酸 化インジウム一酸化亜鉛(I ζο)、酸化タングステン及び酸化亜鉛を含有した酸化 インジウム (IWZO) 等) との積層を用いることも可能である。 Further, a material used for the second electrode 617 formed on the layer 616 containing a light-emitting substance and functioning as a cathode includes a metal, an alloy, an electrically conductive compound having a low work function (work function of 3.8 eV or less). , And mixtures thereof can be used. Specific examples of such cathode materials include elements belonging to Group 1 or Group 2 of the Periodic Table of Elements, that is, alkali metals such as lithium (L i) and cesium (C s), and magnesium (Mg), Examples thereof include alkaline earth metals such as calcium (Ca) and strontium (Sr), and alloys containing these (Mg: Ag, A1: Li). Note that in the case where light generated in the layer 616 containing a light-emitting substance passes through the second electrode 617, the second electrode 617 includes a thin metal film, a transparent conductive film (indium oxide-acid Stacking with tin oxide (ITO), indium tin oxide containing silicon or silicon oxide, zinc oxide indium oxide (I ζο), indium oxide containing tungsten oxide and zinc oxide (IWZO), etc.) It is also possible to use it.
【0154】  [0154]
さらにシール材 605で封止基板 604を素子基板 610と貼り合わせることに より、 素子基板 610、 封止基板 604、 およびシール材 605で囲まれた空間 6 07に発光素子 618が備えられた構造になっている。 なお、 空間 607には、 充 填材が充填されており、 不活性気体 (窒素やアルゴン等) が充填される場合の他、 シール材 605で充填される場合もある。  Further, the sealing substrate 604 is bonded to the element substrate 610 with the sealing material 605, whereby the light emitting element 618 is provided in the space 607 surrounded by the element substrate 610, the sealing substrate 604, and the sealing material 605. It has become. Note that the space 607 is filled with a filler, and may be filled with a sealant 605 in addition to being filled with an inert gas (such as nitrogen or argon).
【0155】  [0155]
なお、 シール材 605にはエポキシ系榭脂を用いるのが好ましい。 また、 これら の材料はできるだけ水分や酸素を透過しない材料であることが望ましい。 また、 封 止基板 604に用いる材料としてガラス基板や石英基板の他、 FRP (F i be r g l a s s -Re i n f o r c e d P l a s t i c s)、 PVF (ポリビニルフ口 ライド)、 マイラ一、 ポリエステルまたはアクリル等からなるプラスチック基板を用 いることができる。  Note that an epoxy resin is preferably used for the sealing material 605. In addition, it is desirable that these materials are materials that do not transmit moisture and oxygen as much as possible. In addition to glass substrates and quartz substrates, the plastic substrate made of FRP (Fiberglass-Reinforced Plastics), PVF (Polyvinyl fluoride), Mylar, polyester or acrylic is used as the material for the sealing substrate 604. Can be used.
【0156】  [0156]
以上のようにして、 本発明の発光素子を有する発光装置を得ることができる。  As described above, a light-emitting device having the light-emitting element of the present invention can be obtained.
【0157】  [0157]
本発明の発光装置は、 実施の形態 1で示した有機化合物と金属酸化物の複合体を 含む層を有する。 有機化合物と金属酸化物の複合体を含む層は、 キャリアが内在的 に発生していることにより導電性が高く、 そのため発光素子の低電圧駆動を実現す ることができる。 よって、 発光装置の消費電力を低減することができる。  The light-emitting device of the present invention includes a layer including the composite of the organic compound and metal oxide described in Embodiment 1. A layer including a composite of an organic compound and a metal oxide has high conductivity due to the intrinsic generation of carriers. Therefore, low-voltage driving of the light-emitting element can be realized. Thus, power consumption of the light-emitting device can be reduced.
【0158】  [0158]
また、 本発明の発光装置に用いる有機化合物と金属酸化物の複合体を含む層は厚 く形成しても駆動電圧や消費電力の上昇が伴わないため、 有機化合物と金属酸化物 の複合体を含む層の膜厚を調整することによってマイクロキヤビティ効果や干渉効 果を利用した光学設計を行うことができる。 よって、 色純度が良く、 見る角度に依 存する色の変化などが小さい表示品質の良い発光装置を作製することが出来るよう になる。 In addition, the layer containing the composite of the organic compound and the metal oxide used in the light-emitting device of the present invention is thick. Optical design using the micro-cavity effect and interference effect by adjusting the film thickness of the layer containing the composite of organic compound and metal oxide. It can be performed. Therefore, a light-emitting device with good display quality with high color purity and small change in color depending on the viewing angle can be manufactured.
【0 1 5 9】  [0 1 5 9]
また、 有機化合物と金属酸化物の複合体を含む層を厚膜化することにより、 微小 な異物や衝撃等によるショートを防止することができるため、 信頼性の高い発光装 置を得ることができる。  In addition, by increasing the thickness of a layer containing a composite of an organic compound and a metal oxide, a short circuit due to minute foreign matter or impact can be prevented, so that a highly reliable light-emitting device can be obtained. .
【0 1 6 0】  [0 1 6 0]
以上のように、 本実施の形態では、 トランジスタによって発光素子の駆動を制御 するアクティブ型の発光装置について説明したが、 この他、 トランジスタ等の駆動 用の素子を特に設けずに発光素子を駆動させるパッシブ型の発光装置であってもよ レ^ 図 8には本発明を適用して作製したパッシブ型の発光装置の斜視図を示す。 図 8において、 基板 9 5 1上には、 電極 9 5 2と電極 9 5 6との間には発光物質を含 む層 9 5 5が設けられている。 電極 9 5 2の端部は絶縁層 9 5 3で覆われている。 そして、 絶緣層 9 5 3上には隔壁層 9 5 4が設けられている。 隔壁層 9 5 4の側壁 は、 基板面に近くなるに伴って、 一方の側壁と他方の側壁との間隔が狭くなつてい くような傾斜を有する。つまり、隔壁層 9 5 4の短辺方向の断面は、台形状であり、 底辺 (絶縁層 9 5 3の面方向と同様の方向を向き、 絶縁層 9 5 3と接する辺) の方 が上辺 (絶縁層 9 5 3の面方向と同様の方向を向き、 絶縁層 9 5 3と接しない辺) よりも短い。 このように、 隔壁層 9 5 4を設けることで、 静電気等に起因した発光 素子の不良を防ぐことが出来る。 また、 パッシブ型の発光装置においても、 低駆動 電圧で動作する本発明の発光素子を含むことによって、 低消費電力で駆動させるこ とができる。 【0161】 As described above, in this embodiment, an active light-emitting device that controls driving of a light-emitting element with a transistor has been described. In addition to this, a light-emitting element is driven without particularly providing a driving element such as a transistor. FIG. 8 is a perspective view of a passive light emitting device manufactured by applying the present invention. In FIG. 8, on a substrate 9 51, a layer 9 5 5 containing a light emitting substance is provided between an electrode 9 5 2 and an electrode 9 5 6. The end of the electrode 9 52 is covered with an insulating layer 9 53. A partition wall layer 9 5 4 is provided on the insulating layer 9 5 3. The side wall of the partition wall layer 95 4 has an inclination such that the distance between one side wall and the other side wall becomes narrower as it approaches the substrate surface. In other words, the cross section in the short side direction of the partition wall layer 954 is trapezoidal, and the bottom side (the side facing the insulating layer 953 in the same direction as the surface direction of the insulating layer 953) is the upper side. (The side facing the same direction as the surface of the insulating layer 953, and the side not contacting the insulating layer 953) is shorter. In this manner, by providing the partition layer 954, it is possible to prevent a light emitting element from being defective due to static electricity or the like. A passive light emitting device can also be driven with low power consumption by including the light emitting element of the present invention that operates at a low driving voltage. [0161]
(実施の形態 8)  (Embodiment 8)
本実施の形態では、 実施の形態 7に示す発光装置をその一部に含む本発明の電子 機器について説明する。 本発明の電子機器は、 実施の形態 1に示した有機化合物と 金属酸化物の複合体を含む層を含み、 低消費電力の表示部を有する。 また、 実施の 形態 1で示した有機化合物と金属酸化物の複合体を含む層を厚膜化することにより、 微小な異物や外部からの衝撃等によるショートが抑制された信頼性の高い表示部を 有する電子機器を提供することも可能である。  In this embodiment, electronic devices of the present invention including the light-emitting device described in Embodiment 7 as part thereof will be described. An electronic device of the present invention includes a layer including the composite of the organic compound and metal oxide described in Embodiment 1, and includes a display portion with low power consumption. In addition, by increasing the thickness of the layer containing the composite of the organic compound and metal oxide described in Embodiment 1, a highly reliable display portion in which short-circuiting due to minute foreign matters or external impacts is suppressed is suppressed. It is also possible to provide electronic devices having
【0162】  [0162]
本発明の発光装置を用いて作製された電子機器として、 ビデオカメラ、 デジタル カメラ、 ゴーグル型ディスプレイ、 ナビゲーシヨンシステム、 音響再生装置 (カー オーディオ、 オーディオコンポ等)、 コンピュータ、 ゲーム機器、 携帯情報端末 (モ バイルコンピュー夕、 携帯電話、 携帯型ゲーム機または電子書籍等)、 記録媒体を備 えた画像再生装置(具体的には D i g i t a l Ve r s a t i l e D i s c (D VD) 等の記録 ί某体を再生し、 その画像を表示しうる表示装置を備えた装置) など が挙げられる。 これらの電子機器の具体例を図 9に示す。  As an electronic device manufactured using the light emitting device of the present invention, a video camera, a digital camera, a goggle type display, a navigation system, a sound reproduction device (car audio, audio component, etc.), a computer, a game device, a portable information terminal ( Play back recorded media such as mobile computers, mobile phones, portable game machines or electronic books, and image playback devices equipped with recording media (specifically, Digital Versatile Disc (D VD)). And a device equipped with a display device capable of displaying the image). Specific examples of these electronic devices are shown in FIG.
図 9 (Α) は本発明に係るテレビ装置であり、 筐体 9101、 支持台 9102、 表示部 9103、 スピーカ一部 9104、 ビデオ入力端子 9105等を含む。 この テレビ装置において、 表示部 9103は、 実施の形態 2〜 6で説明したものと同様 の発光素子をマトリクス状に配列して構成されている。 当該発光素子は、 発光効率 が高く、 駆動電圧が低いという特徴を有している。 また、 微小な異物や外部からの 衝撃等によるショートを防止することも可能である。 その発光素子で構成される表 示部 9103も同様の特徴を有するため、 このテレビ装置は画質の劣化がなく、 低 消費電力化が図られている。 このような特徴により、 テレビ装置において、 劣化補 償機能や電源回路を大幅に削減、 若しくは縮小することができるので、 筐体 910 1や支持台 9 1 0 2の小型軽量化を図ることが可能である。 本発明に係るテレビ装 置は、 低消費電力、 高画質及び小型軽量化が図られているので、 それにより住環境 に適合した製品を提供することができる。 FIG. 9B illustrates a television device according to the present invention, which includes a housing 9101, a support base 9102, a display portion 9103, a speaker portion 9104, a video input terminal 9105, and the like. In this television set, display portion 9103 is formed by arranging light-emitting elements similar to those described in Embodiments 2 to 6 in a matrix. The light-emitting element is characterized by high luminous efficiency and low driving voltage. It is also possible to prevent short-circuiting due to minute foreign matter or external impacts. Since the display portion 9103 including the light-emitting elements has similar features, this television set has no deterioration in image quality and has low power consumption. With such a feature, the deterioration compensation function and the power supply circuit can be greatly reduced or reduced in the television device. 1 and support base 9 1 0 2 can be reduced in size and weight. Since the television set according to the present invention has low power consumption, high image quality, and small size and light weight, it can provide a product suitable for the living environment.
【0 1 6 3】  [0 1 6 3]
図 9 ( B ) は本発明に係るコンピュータであり、 本体 9 2 0 1、 筐体 9 2 0 2、 表示部 9 2 0 3、 キーボード 9 2 0 4、 外部接続ポート 9 2 0 5、 ポインティング マウス 9 2 0 6等を含む。 このコンピュータにおいて、 表示部 9 2 0 3は、 実施の 形態 2〜 6で説明したものと同様の発光素子をマトリクス状に配列して構成されて いる。当該発光素子は、発光効率が高く、駆動電圧が低いという特徴を有している。 また、微小な異物や外部からの衝撃等によるショートを防止することも可能である。 その発光素子で構成される表示部 9 2 0 3も同様の特徴を有するため、 このコンビ ユー夕は画質の劣化がなく、低消費電力化が図られている。このような特徴により、 コンピュータにおいて、 劣化補償機能や電源回路を大幅に削減、 若しくは縮小する ことができるので、 本体 9 2 0 1や筐体 9 2 0 2の小型軽量化を図ることが可能で ある。 本発明に係るコンピュータは、 低消費電力、 高画質及び小型軽量化が図られ ているので、 環境に適合した製品を提供することができる。 また、 持ち運ぶことも 可能となり、 持ち運ぶときの外部からの衝撃にも強い表示部を有しているコンビュ 一夕を提供することができる。  FIG. 9 (B) shows a computer according to the present invention, including a main body 9 2 0 1, a housing 9 2 0 2, a display portion 9 2 0 3, a keyboard 9 2 0 4, an external connection port 9 2 0 5, and a pointing mouse Including 9 2 0 6 etc. In this computer, the display portion 9203 is formed by arranging light-emitting elements similar to those described in Embodiments 2 to 6 in a matrix. The light-emitting element has a feature of high luminous efficiency and low driving voltage. It is also possible to prevent a short circuit due to a minute foreign matter or an external impact. Since the display portion 9203 formed using the light-emitting elements has similar characteristics, image quality is not deteriorated in this combination and power consumption is reduced. With these features, deterioration compensation functions and power supply circuits can be greatly reduced or reduced in computers, so the main unit 9 2 0 1 and the housing 9 2 0 2 can be reduced in size and weight. is there. Since the computer according to the present invention achieves low power consumption, high image quality, and a small size and light weight, a product suitable for the environment can be provided. In addition, it is possible to carry around, and it is possible to provide a combu evening that has a display portion that is resistant to external shocks when carrying around.
【0 1 6 4】  [0 1 6 4]
図 9 ( C ) は本発明に係る携帯電話であり、 本体 9 4 0 1、 筐体 9 4 0 2、 表示 部 9 4 0 3、 音声入力部 9 4 0 4、 音声出力部 9 4 0 5、 操作キー 9 4 0 6、 外部 接続ポート 9 4 0 7、 アンテナ 9 4 0 8等を含む。 この携帯電話において、 表示部 9 4 0 3は、 実施の形態 2〜 6で説明したものと同様の発光素子をマトリクス状に 配列して構成されている。 当該発光素子は、 発光効率が高く、 駆動電圧が低いとい う特徴を有している。 また、 微小な異物や外部からの衝撃等によるショートを防止 することも可能である。 その発光素子で構成される表示部 9 4 0 3も同様の特徴を 有するため、 この携帯電話は画質の劣化がなく、 低消費電力化が図られている。 こ のような特徴により、 携帯電話において、 劣化補償機能や電源回路を大幅に削減、 若しくは縮小することができるので、 本体 9 4 0 1や筐体 9 4 0 2の小型軽量化を 図ることが可能である。 本発明に係る携帯電話は、 低消費電力、 高画質及び小型軽 量化が図られているので、 携帯に適した製品を提供することができる。 また、 携帯 したときの衝撃にも強い表示部を有している製品を提供することができる。 FIG. 9 (C) shows a mobile phone according to the present invention. Main body 9 4 0 1, housing 9 4 0 2, display 9 4 0 3, audio input 9 4 0 4, audio output 9 4 0 5 , Including operation keys 9 4 0 6, external connection ports 9 4 0 7, antennas 9 4 0 8, etc. In this cellular phone, display portion 943 is configured by arranging light-emitting elements similar to those described in Embodiments 2 to 6 in a matrix. The light-emitting element has a feature of high luminous efficiency and low driving voltage. In addition, short-circuit due to minute foreign matter or external impact is prevented. It is also possible to do. Since the display portion 943 composed of the light-emitting elements has similar characteristics, this mobile phone has no deterioration in image quality and has low power consumption. Because of these features, deterioration compensation functions and power supply circuits can be greatly reduced or reduced in mobile phones, so the main body 9 4 0 1 and the housing 9 4 0 2 can be made smaller and lighter. Is possible. Since the mobile phone according to the present invention has low power consumption, high image quality, and small size and light weight, a product suitable for carrying can be provided. In addition, a product having a display portion that is resistant to impact when being carried can be provided.
【0 1 6 5】  [0 1 6 5]
図 9 (D) は本発明の係るカメラであり、 本体 9 5 0 1、 表示部 9 5 0 2、 筐体 9 5 0 3、 外部接続ポート 9 5 0 4、 リモコン受信部 9 5 0 5、 受像部 9 5 0 6、 バッテリー 9 5 0 7、 音声入力部 9 5 0 8、 操作キー 9 5 0 9、 接眼部 9 5 1 0等 を含む。 このカメラにおいて、 表示部 9 5 0 2は、 実施の形態 2〜6で説明したも のと同様の発光素子をマトリクス状に配列して構成されている。 当該発光素子は、 発光効率が高く、 駆動電圧が低く、 微小な異物や外部からの衝撃等によるショート を防止することができるという特徴を有している。 その発光素子で構成される表示 部 9 5 0 2も同様の特徴を有するため、 このカメラは画質の劣化がなく、'低消費電 力化が図られている。 このような特徴により、 カメラにおいて、 劣化補償機能ゃ電 源回路を大幅に削減、 若しくは縮小することができるので、 本体 9 5 0 1の小型軽 量化を図ることが可能である。 本発明に係るカメラは、 低消費電力、 高画質及び小 型軽量化が図られているので、 携帯に適した製品を提供することができる。 また、 携帯したときの衝撃にも強い表示部を有している製品を提供することができる。  FIG. 9 (D) shows a camera according to the present invention, including a main body 9 5 0 1, a display unit 9 5 0 2, a housing 9 5 0 3, an external connection port 9 5 0 4, a remote control receiving unit 9 5 0 5, Image receiving unit 9 5 0 6, battery 9 5 0 7, audio input unit 9 5 0 8, operation keys 9 5 0 9, eyepiece 9 5 10, etc. In this camera, the display unit 952 is configured by arranging light-emitting elements similar to those described in Embodiments 2 to 6 in a matrix. The light-emitting element has characteristics such as high luminous efficiency, low driving voltage, and prevention of short-circuit due to minute foreign matter or external impact. Since the display portion 9520 composed of the light-emitting elements has the same characteristics, this camera has no deterioration in image quality, and 'low power consumption' is achieved. With such a feature, the deterioration compensation function can greatly reduce or reduce the power supply circuit in the camera, so that the main body 9 5 0 1 can be reduced in size and weight. In the camera according to the present invention, low power consumption, high image quality, and reduction in size and weight are achieved; therefore, a product suitable for carrying can be provided. In addition, a product having a display portion that is resistant to impact when carried can be provided.
【0 1 6 6】  [0 1 6 6]
以上の様に、 本発明の発光装置の適用範囲は極めて広く、 この発光装置をあらゆ る分野の電子機器に適用することが可能である。 本発明の発光装置を用いることに より、 低消費電力で、 信頼性の高い表示部を有する電子機器を提供することが可能 となる。 As described above, the applicable range of the light-emitting device of the present invention is so wide that the light-emitting device can be applied to electronic devices in various fields. By using the light-emitting device of the present invention, it is possible to provide an electronic device having a display portion with low power consumption and high reliability. It becomes.
【実施例 1】  [Example 1]
【0167】  [0167]
本発明の発光素子に用いる有機化合物と金属酸化物の複合体は、 厚膜化しても駆 動電圧の上昇を抑制することができる。 図 16に有機化合物と金属酸化物の複合体 を用いた発光素子の構造を示す。  The composite of the organic compound and the metal oxide used for the light-emitting element of the present invention can suppress an increase in driving voltage even when the film thickness is increased. Figure 16 shows the structure of a light-emitting element using a composite of an organic compound and a metal oxide.
【0168】  [0168]
まず、 ガラス基板 2101上に、 酸化珪素を含む酸化インジウム—酸化スズをス パッタリング法にて成膜し、 第 1の電極 2 102を形成した。 なお、 その膜厚は 1 10 nmとし、 電極面積は 2mmx 2mmとした。  First, indium oxide-tin oxide containing silicon oxide was formed over a glass substrate 2101 by a sputtering method, whereby the first electrode 2102 was formed. The film thickness was 1 10 nm and the electrode area was 2 mm x 2 mm.
【0169】  [0169]
次に、 第 1の電極が形成された面が下方となるように、 第 1の電極が形成された 基板を真空蒸着装置内に設けられた基板ホルダーに固定した。 その後真空装置内を 排気し、 10—4P a程度まで減圧した後、 第 1の電極 2102上に、 NPBと酸化 モリブデン (V I) とを共蒸着することにより、 有機化合物と金属酸化物の複合体 を含む層 2103を形成した。 有機化合物と金属酸化物の複合体を含む層の膜厚は 60 nm, 90 nm, 120 nm, 150 nmと変化させた。 有機化合物と金属酸 化物の複合体を含む層に含まれる NPBと酸化モリブデン (V I) の比率は、 体積 比で酸化モリブデン(V I)が 10%となるように調節した。なお、共蒸着法とは、 —つの処理室内で複数の蒸発源から同時に蒸着を行う蒸着法である。 Next, the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward. Then evacuating the vacuum apparatus was evacuated to about 10- 4 P a, on the first electrode 2102 by co-evaporation of NPB and molybdenum oxide (VI), a composite of an organic compound and a metal oxide A layer 2103 containing a body was formed. The film thickness of the layer containing the complex of organic compound and metal oxide was changed to 60 nm, 90 nm, 120 nm, and 150 nm. The ratio of NPB and molybdenum oxide (VI) contained in the layer containing the composite of organic compound and metal oxide was adjusted so that molybdenum oxide (VI) was 10% by volume. The co-evaporation method is an evaporation method in which evaporation is simultaneously performed from a plurality of evaporation sources in one processing chamber.
【0170】  [0170]
次に、 抵抗加熱を用いた蒸着法により、 NPBを 10 nmの膜厚となるように成 膜し、 正孔輸送層 2104を形成した。  Next, NPB was formed to a thickness of 10 nm by a vapor deposition method using resistance heating, whereby a hole transport layer 2104 was formed.
【0171】  [0171]
さらに、 A 1 qとクマリン 6とを共蒸着することにより、 正孔輸送層 2104上 に 40 nmの膜厚の発光層 2 1 05を形成した。 ここで、 A 1 Qとクマリン 6との 重量比は、 1 : 0. 0 1 (==A 1 Q :クマリン 6) となるように調節した。 これに よって、 クマリン 6は A 1 Qから成る層中に分散した状態となる。 Furthermore, by co-evaporating A 1 q and coumarin 6, A light emitting layer 2 105 having a thickness of 40 nm was formed. Here, the weight ratio between A 1 Q and coumarin 6 was adjusted to be 1: 0.0. 0 1 (== A 1 Q: coumarin 6). As a result, Coumarin 6 is dispersed in the layer composed of A 1 Q.
【0172】  [0172]
その後抵抗加熱による蒸着法を用いて、 発光層 2 105上に A 1 Qを 30 nmの 膜厚となるように成膜し、 電子輸送層 2106を形成した。  Thereafter, A 1 Q was deposited on the light-emitting layer 2 105 to have a thickness of 30 nm by using a resistance heating vapor deposition method to form an electron transport layer 2106.
【0173】  [0173]
さらに、 電子輸送層 2106上に、 抵抗加熱による蒸着法によりフッ化カルシゥ ムを 1 nmの膜厚となるように成膜し、 電子注入層 2107を形成した。  Further, an electron injection layer 2107 was formed on the electron transport layer 2106 by a vapor deposition method using resistance heating so as to have a thickness of 1 nm.
【0174】  [0174]
最後に、 抵抗加熱による蒸着法を用い、 電子注入層 2107上にアルミニウムを 200 nmの膜厚となるように成膜することにより、第 2の電極 2108を形成し、 本発明の発光素子を作製した。  Finally, a second electrode 2108 is formed by depositing aluminum to a thickness of 200 nm on the electron injection layer 2107 using a resistance heating vapor deposition method, and the light-emitting element of the present invention is manufactured. did.
【0175】  [0175]
図 17に本発明の発光素子の電圧一電流密度特性を示す。 また、 図 25に本発明 の発光素子の電流密度一輝度特性を示す。 有機化合物と金属酸化物の複合体と発光 層を直接接合させると、 酸化モリブデンがクェンチヤ一となり発光効率が減少して しまう。 そのため有機化合物と金属酸化物の複合体を含む層と発光層の間に NPB を導入した。 図 17および図 25に示すように、 本発明の発光素子において、 有機 化合物と金属酸化物の複合体を含む層の膜厚を変化させても駆動電圧と電流効率が ほぼ変わらなかった。具体的には、 1000 c dZm2における駆動電圧が、有機化 合物と金属酸化物の複合体を含む層が 50 nmの時は 5. 5 Vであるが、 150η mにおいても 5. 5 Vであった。 これは、 有機化合物と金属酸化物の複合体を含む 層の抵抗率が他の有機層に比べて非常に小さいためである。 この特徴が素子の厚膜 化を可能にし、 素子のショートを防止できる。 また干渉等を利用した光学設計をす る際にも適した膜厚を得ることが容易である。 FIG. 17 shows voltage-current density characteristics of the light-emitting element of the present invention. FIG. 25 shows current density-luminance characteristics of the light-emitting element of the present invention. When a composite of an organic compound and a metal oxide and a light emitting layer are directly joined, molybdenum oxide becomes a quencher and the light emission efficiency decreases. Therefore, NPB was introduced between the layer containing the complex of organic compound and metal oxide and the light emitting layer. As shown in FIGS. 17 and 25, in the light emitting device of the present invention, the driving voltage and the current efficiency were not substantially changed even when the thickness of the layer containing the composite of the organic compound and the metal oxide was changed. Specifically, the driving voltage at 1000 c dZm 2 is 5.5 V when the layer containing the composite of the organic compound and the metal oxide is 50 nm, but 5.5 V even at 150 ηm. Met. This is because the resistivity of a layer containing a composite of an organic compound and a metal oxide is very small compared to other organic layers. This feature makes it possible to increase the thickness of the device and prevent short-circuiting of the device. Also, optical design using interference etc. It is easy to obtain a film thickness that is suitable for processing.
【実施例 2】  [Example 2]
【0176】  [0176]
本発明の発光素子について図 18を用いて説明する。  A light-emitting element of the present invention will be described with reference to FIG.
【0177】  [0177]
まず、 ガラス基板 2201上に、 酸化珪素を含む酸化インジウム—酸化スズをス パッ夕リング法にて成膜し、 第 1の電極 2202を形成した。 なお、 その膜厚は 1 10nmとし、 電極面積は 2mmX2mmとした。  First, indium oxide-tin oxide containing silicon oxide was formed over a glass substrate 2201 by a sputtering method, whereby a first electrode 2202 was formed. The film thickness was 110 nm and the electrode area was 2 mm x 2 mm.
【0178】  [0178]
次に、 第 1の電極が形成された面が下方となるように、 第 1の電極が形成された 基板を真空蒸着装置内に設けられた基板ホルダーに固定した。 その後真空装置内を 排気し、 10_4P a程度まで減圧した後、 第 1の電極 2202上に、 4, 4' —ビ ス [N—フエニル— N— (スピロフルオレン— 2—ィル)] ビフエ二ル (略称: BS PB) と酸化モリブデン (V I) とルブレンとを共蒸着することにより、 有機化合 物と金属酸化物の複合体を含む層 2203を形成した。 有機化合物と金属酸化物の 複合体を含む層の膜厚は 12 Onmとした。 有機化合物と金属酸化物の複合体を含 む層に含まれる BSPB、 酸化モリブデン (V I)、 ルブレンの比率は、 重量比で B SPB :酸化モリブデン:ルブレン =2 : 0. 75 : 0. 04となるように調節し た。 なお、 共蒸着法とは、 一つの処理室内で複数の蒸発源から同時に蒸着を行う蒸 着法である。 Next, the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward. Then evacuating the vacuum apparatus, pressure was reduced to about 10_ 4 P a, on the first electrode 2202, 4, 4 '- bi scan [N- phenyl - N- (spiro-fluorene - 2-I le) A layer 2203 containing a composite of an organic compound and a metal oxide was formed by co-evaporation of biphenyl (abbreviation: BS PB), molybdenum oxide (VI), and rubrene. The thickness of the layer containing the composite of organic compound and metal oxide was 12 Onm. The ratio of BSPB, molybdenum oxide (VI), and rubrene contained in the layer containing the composite of organic compound and metal oxide is BSPB: molybdenum oxide: rubrene = 2: 0. 75: 0.04 It was adjusted so that The co-evaporation method is a vapor deposition method in which vapor deposition is performed simultaneously from a plurality of evaporation sources in one processing chamber.
【0179】  [0179]
次に、 抵抗加熱を用いた蒸着法により、 NPBを 10 nmの膜厚となるように成 膜し、 正孔輸送層 2204を形成しだ。  Next, NPB was formed to a thickness of 10 nm by vapor deposition using resistance heating to form a hole transport layer 2204.
【0180】  [0180]
さらに、 A 1 qとクマリン 6とを共蒸着することにより、 正孔輸送層 2204上 に 37. 5 nmの膜厚の発光層 2205を形成した。 ここで、 A 1 Qとクマリン 6 との重量比は、 1 : 0. 01 (=A 1 Q : クマリン 6) となるように調節した。 こ れによって、 クマリン 6は A 1 Qから成る層中に分散した状態となる。 Furthermore, A 1 q and coumarin 6 are co-evaporated to form a hole transport layer 2204 A light emitting layer 2205 having a thickness of 37.5 nm was formed. Here, the weight ratio between A 1 Q and coumarin 6 was adjusted to be 1: 0.01 (= A 1 Q: coumarin 6). As a result, Coumarin 6 is dispersed in the layer composed of A 1 Q.
【0181】  [0181]
その後抵抗加熱による蒸着法を用いて、 発光層 2205上に A 1 Qを 37. 5 n mの膜厚となるように成膜し、 電子輸送層 2206を形成した。  Thereafter, A 1 Q was deposited on the light emitting layer 2205 to have a thickness of 37.5 nm by using a resistance heating vapor deposition method, whereby an electron transport layer 2206 was formed.
【0182】  [0182]
さらに、 電子輸送層 2206上に、 抵抗加熱による蒸着法によりフッ化カルシゥ ムを 1 nmの膜厚となるように成膜し、 電子注入層 2207を形成した。  Further, an electron injection layer 2207 was formed on the electron transport layer 2206 by a vapor deposition method using resistance heating so as to have a thickness of 1 nm.
【0183】  [0183]
最後に、 抵抗加熱による蒸着法を用い、 電子注入層 2207上にアルミニウムを 200 nmの膜厚となるように成膜することにより、第 2の電極 2208を形成し、 本発明の発光素子 1を作製した。  Finally, a second electrode 2208 is formed by depositing aluminum on the electron injection layer 2207 so as to have a film thickness of 200 nm by using a resistance heating vapor deposition method. Produced.
【0184】  [0184]
(比較例 1 )  (Comparative Example 1)
まず、 ガラス基板上に、 酸化珪素を含む酸化インジウム—酸化スズをスパッタリ ング法にて成膜し、 第 1の電極を形成した。 なお、 その膜厚は 1 1 O nmとし、 電 極面積は 2mmX 2mmとした。  First, indium oxide-tin oxide containing silicon oxide was formed over a glass substrate by a sputtering method to form a first electrode. The film thickness was 1 1 O nm, and the electrode area was 2 mm x 2 mm.
【0185】  [0185]
次に、 第 1の電極が形成された面が下方となるように、 第 1の電極が形成された 基板を真空蒸着装置内に設けられた基板ホルダーに固定した。 その後第 1の電極上 に、 抵抗加熱を用いた蒸着法により、 BSPBを 5 O nmの膜厚となるように成膜 した。  Next, the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward. After that, BSPB was deposited on the first electrode to a thickness of 5 O nm by vapor deposition using resistance heating.
【0186】  [0186]
その後、 抵抗加熱を用いた蒸着法により、 BSPB上に、 NPBを10 nmの膜 厚で形成した。 Then, a 10 nm NPB film is formed on BSPB by vapor deposition using resistance heating. Formed with thickness.
【0187】  [0187]
さらに、 A 1 qとクマリン 6とを共蒸着することにより、 ?8上に37. 5 n mの膜厚の発光層を形成した。 ここで、 A 1 qとクマリン 6との重量比は、 1 : 0. 01 ( = A 1 Q : クマリン 6) となるように調節した。 これによつて、 クマリン 6 は A 1 Qから成る層中に分散した状態となる。  Furthermore, by co-evaporating A 1 q and coumarin 6, A light emitting layer having a thickness of 37.5 nm was formed on 8. Here, the weight ratio between A 1 q and coumarin 6 was adjusted to be 1: 0.01 (= A 1 Q: coumarin 6). As a result, Coumarin 6 is dispersed in the layer composed of A 1 Q.
【0188】  [0188]
その後抵抗加熱による蒸着法を用いて、 発光層上に A 1 Qを 37. 5nmの膜厚 となるように成膜し、 電子輸送層を形成した。  Subsequently, A 1 Q was deposited on the light-emitting layer to a thickness of 37.5 nm using a resistance heating vapor deposition method to form an electron transport layer.
【0189】  [0189]
さらに、 電子輸送層上に、 抵抗加熱による蒸着法によりフッ化カルシウムを 1 n mの膜厚となるように成膜し、 電子注入層を形成した。  Furthermore, an electron injection layer was formed by depositing calcium fluoride to a thickness of 1 nm on the electron transport layer by vapor deposition using resistance heating.
【0190】  [0190]
最後に、 抵抗加熱による蒸着法を用い、 電子注入層上にアルミニウムを 200 n mの膜厚となるように成膜することにより、 第 2の電極を形成することで、 比較発 光素子 1を作製した。  Finally, by using a resistance heating vapor deposition method, aluminum is deposited on the electron injection layer to a thickness of 200 nm, thereby forming a second electrode, thereby producing comparative light emitting element 1. did.
【0191】  [0191]
発光素子 1および比較発光素子 1の電圧一輝度特性を図 19に示す。 比較発光素 子 1は、 発光素子の駆動電圧が非常に高くなつてしまい実用的ではないが、 有機化 合物と金属酸化物の複合体を含む層を用いた本発明の発光素子 1は、 駆動電圧が低 減されていることがわかる。 つまり、 BSPBを酸化モリブデンと混合させ、 有機 化合物と金属酸化物の複合体とすることで低電圧化している。  FIG. 19 shows voltage-luminance characteristics of the light-emitting element 1 and the comparative light-emitting element 1. The comparative light-emitting element 1 is not practical because the driving voltage of the light-emitting element becomes very high, but the light-emitting element 1 of the present invention using a layer containing a composite of an organic compound and a metal oxide is It can be seen that the drive voltage has been reduced. In other words, the voltage is lowered by mixing BSPB with molybdenum oxide to form a composite of an organic compound and a metal oxide.
【0192】  [0192]
また、 図 20に発光素子 1および比較発光素子 1の初期輝度 3000 c dZm2 における定電流駆動試験の結果を示す。 発光素子 1は、 比較発光素子 1に比べ、 長 寿命であり、 信頼性が向上していることがわかる。 FIG. 20 shows the results of a constant current driving test of the light-emitting element 1 and the comparative light-emitting element 1 at an initial luminance of 3000 cdZm 2 . Light-emitting element 1 is longer than comparative light-emitting element 1. It can be seen that the service life is improved and the reliability is improved.
【0193】  [0193]
以上の結果から、 有機化合物と金属酸化物の複合体を発光素子に用いることによ り、 駆動電圧を低減できることがわかった。 また、 信頼性が向上することがわかつ た。  From the above results, it was found that the driving voltage can be reduced by using a composite of an organic compound and a metal oxide for a light emitting element. It was also found that reliability was improved.
【0194】  [0194]
すなわち、 酸化モリブデンと混合し、 有機化合物と金属酸化物の複合体にするこ とで、 多種の陽極が使えるようになるだけではなく、 有機化合物の選択の幅も広が る。 例えば、 BSPBの様にガラス転移点 (Tg) が高いが導電性が低い材料も発 光素子に使用することができるようになり、耐熱性の高い素子も作製が可能になる。 【実施例 3】  In other words, mixing with molybdenum oxide to form a composite of an organic compound and a metal oxide not only makes it possible to use a variety of anodes, but also widens the choice of organic compounds. For example, a material having a high glass transition point (Tg) but low conductivity, such as BSPB, can be used for a light emitting element, and an element having high heat resistance can be manufactured. [Example 3]
【0195】  [0195]
本発明の発光素子について図 18を用いて説明する。  A light-emitting element of the present invention will be described with reference to FIG.
【0196】  [0196]
まず、 ガラス基板 2201上に、 酸化珪素を含む酸化インジウム—酸化スズをス パッ夕リング法にて成膜し、 第 1の電極 2202を形成した。 なお、 その膜厚は 1 10 nmとし、 電極面積は 2mmx 2mmとした。  First, indium oxide-tin oxide containing silicon oxide was formed over a glass substrate 2201 by a sputtering method, whereby a first electrode 2202 was formed. The film thickness was 1 10 nm and the electrode area was 2 mm x 2 mm.
【0197】  [0197]
次に、 第 1の電極が形成された面が下方となるように、 第 1の電極が形成された 基板を真空蒸着装置内に設けられた基板ホルダーに固定した。 その後真空装置内を 排気し、 10— 4P a程度まで減圧した後、 第 1の電極 2202上に、 t— BuDN Aと酸化モリブデン (V I) とを共蒸着することにより、 有機化合物と金属酸化物 の複合体を含む層 2203を形成しだ。 有機化合物と金属酸化物の複合体を含む層 の膜厚は 12 Onmとした。 有機化合物と金属酸化物の複合体を含む層に含まれる t— BuDNAと酸化モリブデン (V I) の比率は、 重量比で t— B u D N A:酸 化モリブデン =1 : 0. 5となるように調節した。 なお、 共蒸着法とは、 一つの処 理室内で複数の蒸発源から同時に蒸着を行う蒸着法である。 Next, the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward. Then evacuating the vacuum apparatus was evacuated to about 10- 4 P a, on the first electrode 2202 by co-evaporation of t- BuDN A and molybdenum oxide (VI), an organic compound and metal oxide A layer 2203 containing a composite of objects is formed. The film thickness of the layer containing the complex of organic compound and metal oxide was 12 Onm. The ratio of t-BuDNA to molybdenum oxide (VI) contained in the layer containing the complex of organic compound and metal oxide is t-Bu DNA: acid by weight ratio. Molybdenum fluoride was adjusted to be 1: 0.5. The co-evaporation method is an evaporation method in which evaporation is performed simultaneously from a plurality of evaporation sources in one processing chamber.
【0198】  [0198]
次に、 抵抗加熱を用いた蒸着法により、 NPBを 10 nmの膜厚となるように成 膜し、 正孔輸送層 2204を形成した。  Next, NPB was formed to a thickness of 10 nm by a vapor deposition method using resistance heating, whereby a hole transport layer 2204 was formed.
【0199】  [0199]
さらに、 A 1 qとクマリン 6とを共蒸着することにより、 正孔輸送層 2 2 04上 に 37. 5 nmの膜厚の発光層 2205を形成した。 ここで、 A I qとクマリン 6 との重量比は、 1 : 0. 0 1 ( = A 1 Q : クマリン 6) となるように調節した。 こ れによって、 クマリン 6は A 1 Qから成る層中に分散した状態となる。  Further, A 1 q and coumarin 6 were co-evaporated to form a light emitting layer 2205 having a thickness of 37.5 nm on the hole transport layer 2 204. Here, the weight ratio between A I q and coumarin 6 was adjusted to be 1: 0. 0 1 (= A 1 Q: coumarin 6). As a result, Coumarin 6 is dispersed in the layer composed of A 1 Q.
【0200】  [0200]
その後抵抗加熱による蒸着法を用いて、 発光層 2 2 0 5上に A 1 Qを 3 7. 5 n mの膜厚となるように成膜し、 電子輸送層 2206を形成した。  Thereafter, A 1 Q was deposited on the light emitting layer 2 205 to a thickness of 37.5 nm by using a resistance heating vapor deposition method to form an electron transport layer 2206.
【0201】  [0201]
さらに、 電子輸送層 2206上に、 抵抗加熱による蒸着法によりフッ化カルシゥ ムを 1 nmの膜厚となるように成膜し、 電子注入層 2207を形成した。 ·  Further, an electron injection layer 2207 was formed on the electron transport layer 2206 by a vapor deposition method using resistance heating so as to have a thickness of 1 nm. ·
【0202】  [0202]
最後に、 抵抗加熱による蒸着法を用い、 電子注入層 2207上にアルミニウムを 200 nmの膜厚となるように成膜することにより、第 2の電極 2208を形成し、 本発明の発光素子 2を作製した。  Finally, a second electrode 2208 is formed by depositing aluminum on the electron injection layer 2207 so as to have a film thickness of 200 nm using a resistance heating vapor deposition method, and the light-emitting element 2 of the present invention is formed. Produced.
【0203】  [0203]
(比較例 2 )  (Comparative Example 2)
まず、 ガラス基板上に、 酸化珪素を含む酸化インジウム一酸化スズをスパッタリ ング法にて成膜し、 第 1の電極を形成した。 なお、 その膜厚は 1 l Onmとし、 電 極面積は 2 mmx 2 mmとした。 【0204】 First, indium tin oxide containing silicon oxide was formed over a glass substrate by a sputtering method to form a first electrode. The film thickness was 1 l Onm, and the electrode area was 2 mm x 2 mm. [0204]
次に、 第 1の電極が形成された面が下方となるように、 第 1の電極が形成された 基板を真空蒸着装置内に設けられた基板ホルダーに固定した。 その後第 1の電極上 に、 抵抗加熱を用いた蒸着法により、 t一 BuDNAを 50 nmの膜厚となるよう に成膜した。  Next, the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward. Thereafter, t-BuDNA was deposited on the first electrode to a thickness of 50 nm by vapor deposition using resistance heating.
【0205】  [0205]
その後、 抵抗加熱を用いた蒸着法により、 t— BuDNA上に、 NPBを 10 η mの膜厚で形成した。 Then, by an evaporation method using resistance heating, t-on BuDNA, NPB was deposited to a film thickness of 10 eta m.
【0206】  [0206]
さらに、 A 1 qとクマリン 6とを共蒸着することにより、 NPB上に 37. 5 n mの膜厚の発光層を形成した。 ここで、 A 1 qとクマリン 6との重量比は、 1 : 0. 01 (二 A l Q :クマリン 6) となるように調節した。 これによつて、 クマリン 6 は A 1 Qから成る層中に分散した状態となる。  In addition, A 1 q and coumarin 6 were co-evaporated to form a 37.5 nm light-emitting layer on NPB. Here, the weight ratio between A 1 q and coumarin 6 was adjusted to be 1: 0.01 (2 Al Q: coumarin 6). As a result, Coumarin 6 is dispersed in the layer composed of A 1 Q.
【0207】  [0207]
その後抵抗加熱による蒸着法を用いて、 発光層上に A 1 qを 37. 5 nmの膜厚 となるように成膜し、 電子輸送層を形成した。  Then, using an evaporation method using resistance heating, A 1 q was deposited on the light emitting layer to a thickness of 37.5 nm to form an electron transport layer.
【0208】  [0208]
さらに、 電子輸送層上に、 抵抗加熱による蒸着法によりフッ化カルシウムを 1 n mの膜厚となるように成膜し、 電子注入層を形成した。  Furthermore, an electron injection layer was formed by depositing calcium fluoride to a thickness of 1 nm on the electron transport layer by vapor deposition using resistance heating.
【0209】  [0209]
最後に、 抵抗加熱による蒸着法を用い、 電子注入層上にアルミニウムを 200 n mの膜厚となるように成膜することにより、 第 2の電極を形成することで、 比較発 光素子 2を作製した。 '  Finally, using a vapor deposition method using resistance heating, a comparative light-emitting element 2 was fabricated by forming a second electrode by depositing aluminum on the electron injection layer to a thickness of 200 nm. did. '
【0210】  [0210]
発光素子 2および比較発光素子 2の電圧一輝度特性を図 21に示す。 比較発光素 子 2は、 発光素子の駆動電圧が非常に高くなつてしまい実用的ではないが、 有機化 合物と金属酸化物の複合体を含む層を用いた本発明の発光素子 2は、 駆動電圧が低 減されていることがわかる。つまり、 t— BuDN Aを酸化モリブデンと混合させ、 有機化合物と金属酸化物の複合体とすることで低電圧化している。 FIG. 21 shows voltage-luminance characteristics of the light-emitting element 2 and the comparative light-emitting element 2. Comparative luminescent element The element 2 is not practical because the driving voltage of the light emitting element becomes very high, but the driving voltage of the light emitting element 2 of the present invention using a layer containing a composite of an organic compound and a metal oxide is low. It can be seen that it has been reduced. In other words, t-BuDN A is mixed with molybdenum oxide to form a composite of an organic compound and a metal oxide, thereby reducing the voltage.
【021 1】  [021 1]
また、 図 22に発光素子 2および比較発光素子 2の初期輝度 3000 c dZm2 における定電流駆動試験の結果を示す。 発光素子 2は、 比較発光素子 2に比べ、 長 寿命であり、 信頼性が向上していることがわかる。 In addition, FIG. 22 shows the results of a constant current driving test of the light-emitting element 2 and the comparative light-emitting element 2 at an initial luminance of 3000 cdZm 2 . It can be seen that the light-emitting element 2 has a longer life than the comparative light-emitting element 2 and has improved reliability.
【0212】  [0212]
以上の結果から、 有機化合物と金属酸化物の複合体を発光素子に用いることによ り、 駆動電圧を低減できることがわかった。 また、 信頼性が向上することがわかつ た。  From the above results, it was found that the driving voltage can be reduced by using a composite of an organic compound and a metal oxide for a light emitting element. It was also found that reliability was improved.
【0213】  [0213]
すなわち、 酸化モリブデンと混合し、 有機化合物と金属酸化物の複合体にするこ とで、 多種の陽極が使えるようになるだけではなく、 有機化合物の選択の幅も広が る。 例えば、 t一 BuDNAの様にガラス転移点 (Tg) が高いが導電性が低い材 料も発光素子に使用することができるようになり、 耐熱性の高い素子も作製が可能 になる。  In other words, mixing with molybdenum oxide to form a composite of an organic compound and a metal oxide not only makes it possible to use a variety of anodes, but also widens the choice of organic compounds. For example, a material with a high glass transition point (Tg) but low conductivity, such as t-BuDNA, can be used for a light emitting device, and a device with high heat resistance can be manufactured.
【実施例 4】  [Example 4]
【0214】  [0214]
本実施例では、 本発明の発光素子について、 図 18を用いて説明する。  In this example, a light-emitting element of the present invention will be described with reference to FIG.
【0215】  [0215]
まず、 ガラス基板 2201上に、 酸化珪素を含む酸化インジウム—酸化スズをス パッタリング法にて成膜し、 第 1の電極 2202を形成した。 なお、 その膜厚は 1 10 nmとし、 電極面積は 2mmX 2mmとした。 【0216】 First, indium oxide-tin oxide containing silicon oxide was formed over a glass substrate 2201 by a sputtering method, so that a first electrode 2202 was formed. The film thickness was 110 nm, and the electrode area was 2 mm x 2 mm. [0216]
次に、 第 1の電極が形成された面が下方となるように、 第 1の電極が形成された 基板を真空蒸着装置内に設けられた基板ホルダーに固定した。 その後真空装置内を 排気し、 10— 4 P a程度まで減圧した後、 第 1の電極 2202上に、 NPBと酸化 モリブデン (V I) とルブレンとを共蒸着することにより、 有機化合物と金属酸化 物の複合体を含む層 2203を形成した。 有機化合物と金属酸化物の複合体を含む 層の膜厚は 12 Onmとした。 有機化合物と金属酸化物の複合体を含む層に含まれ る NPB、 酸化モリブデン (V I)、 ルブレンの比率は、 重量比で NPB:酸化モリ ブデン:ルブレン = 1 : 0. 25 : 0. 02となるように調節した。 なお、 共蒸着 法とは、 一つの処理室内で複数の蒸発源から同時に蒸着を行う蒸着法である。 Next, the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward. Then evacuating the vacuum apparatus was evacuated to about 10- 4 P a, on the first electrode 2202 by co-evaporation of rubrene and NPB and molybdenum oxide (VI), organic compound and metal oxide A layer 2203 containing the composite of was formed. The thickness of the layer containing the composite of the organic compound and the metal oxide was 12 Onm. The weight ratio of NPB, molybdenum oxide (VI), and rubrene contained in the layer containing the composite of organic compound and metal oxide is NPB: molybdenum oxide: rubrene = 1: 0. 25: 0.02. It adjusted so that it might become. The co-evaporation method is an evaporation method in which evaporation is performed simultaneously from a plurality of evaporation sources in one processing chamber.
【0217】  [0217]
次に、 抵抗加熱を用いた蒸着法により、 NPBを 10 nmの膜厚となるように成 膜し、 正孔輸送層 2204を形成した。  Next, NPB was formed to a thickness of 10 nm by a vapor deposition method using resistance heating, whereby a hole transport layer 2204 was formed.
【0218】  [0218]
さらに、 A l qとクマリン 6とを共蒸着することにより、 正孔輸送層 2204上 に 37. 5 nmの膜厚の発光層 2205を形成した。 ここで、 . A 1 Qとクマリン 6 との重量比は、 1 : 0. 01 ( = A 1 Q : クマリン 6) となるように調節した。 こ れによって、 クマリン 6は A 1 Qから成る層中に分散した状態となる。  Further, a light emitting layer 2205 having a thickness of 37.5 nm was formed on the hole transport layer 2204 by co-evaporation of Al q and coumarin 6. Here, the weight ratio between A 1 Q and coumarin 6 was adjusted to be 1: 0.01 (= A 1 Q: coumarin 6). As a result, Coumarin 6 is dispersed in the layer composed of A 1 Q.
【0219】  [0219]
その後抵抗加熱による蒸着法を用いて、 発光層 2205上に A 1 Qを 37. 5 n mの膜厚となるように成膜し、 電子輸送層 2206を形成した。  Thereafter, A 1 Q was deposited on the light emitting layer 2205 to have a thickness of 37.5 nm by using a resistance heating vapor deposition method, whereby an electron transport layer 2206 was formed.
【0220】  [0220]
さらに、 電子輸送層 2206上に、'抵抗加熱による蒸着法によりフッ化カルシゥ ムを 1 nmの膜厚となるように成膜し、 電子注入層 2207を形成した。  Further, on the electron transport layer 2206, a film of calcium fluoride having a thickness of 1 nm was formed by a vapor deposition method using resistance heating to form an electron injection layer 2207.
【022 1】 最後に、 抵抗加熱による蒸着法を用い、 電子注入層 2207上にアルミニウムを 200 nmの膜厚となるように成膜することにより、第 2の電極 2208を形成し、 本発明の発光素子 3を作製した。 [022 1] Finally, a second electrode 2208 is formed by depositing aluminum to a thickness of 200 nm on the electron injection layer 2207 using a resistance heating vapor deposition method, and the light-emitting element 3 of the present invention is formed. Produced.
【0222】  [0222]
(比較例 3 )  (Comparative Example 3)
まず、 ガラス基板上に、 酸化珪素を含む酸化インジウム—酸化スズをスパッタリ ング法にて成膜し、 第 1の電極を形成した。 なお、 その膜厚は 1 1 Onmとし、 電 極面積は 2mmX 2mmとした。  First, indium oxide-tin oxide containing silicon oxide was formed over a glass substrate by a sputtering method to form a first electrode. The film thickness was 1 1 Onm, and the electrode area was 2 mm x 2 mm.
【0223】  [0223]
次に、 第 1の電極が形成された面が下方となるように、 第 1の電極が形成された 基板を真空蒸着装置内に設けられた基板ホルダーに固定した。 その後第 1の電極上 に、 抵抗加熱を用いた蒸着法により、 銅フタロシアニン (略称: CuP c) を 20 nmの膜厚となるように成膜した。  Next, the substrate on which the first electrode was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode was formed was downward. Thereafter, copper phthalocyanine (abbreviation: CuPc) was deposited on the first electrode to a thickness of 20 nm by a vapor deposition method using resistance heating.
【0224】  [0224]
その後、 抵抗加熱を用いた蒸着法により、 CuPc上に、 NPBを 40 nmの膜 厚で形成した。  After that, NPB was formed with a film thickness of 40 nm on CuPc by vapor deposition using resistance heating.
【0225】  [0225]
さらに、 A 1 qとクマリン 6とを共蒸着することにより、 NPB上に37. 5 n mの膜厚の発光層を形成した。 ここで、 A 1 Qとクマリン 6との重量比は、 1 : 0. 01 ( = A 1 Q : クマリン 6) となるように調節した。 これによつて、 クマリン 6 は A 1 qから成る層中に分散した状態となる。  Further, A 1 q and coumarin 6 were co-evaporated to form a light emitting layer having a thickness of 37.5 nm on NPB. Here, the weight ratio between A 1 Q and coumarin 6 was adjusted to be 1: 0.01 (= A 1 Q: coumarin 6). As a result, Coumarin 6 is dispersed in the layer composed of A 1 q.
【0226】  [0226]
その後抵抗加熱による蒸着法を用いて、 発光層上に A l qを 37. 5 nmの膜厚 となるように成膜し、 電子輸送層を形成した。  After that, using an evaporation method by resistance heating, Alq was deposited on the light emitting layer so as to have a film thickness of 37.5 nm to form an electron transport layer.
【0227】 さらに、 電子輸送層上に、 抵抗加熱による蒸着法によりフッ化カルシウムを 1 n mの膜厚となるように成膜し、 電子注入層を形成した。 [0227] Furthermore, an electron injection layer was formed by depositing calcium fluoride to a thickness of 1 nm on the electron transport layer by vapor deposition using resistance heating.
【0 2 2 8】  [0 2 2 8]
最後に、 抵抗加熱による蒸着法を用い、 電子注入層上にアルミニウムを 2 0 O n mの膜厚となるように成膜することにより、 第 2の電極を形成することで、 比較発 光素子 3を作製した。  Finally, by using a resistance heating vapor deposition method, a second electrode is formed by depositing aluminum on the electron injection layer so as to have a thickness of 20 O nm. Was made.
【0 2 2 9】  [0 2 2 9]
発光素子 3および比較発光素子 3の電圧一輝度特性を図 2 3に示す。 有機化合物 と金属酸化物の複合体を含む層を用いた発光素子 3は、 比較発光素子 3に比べ、 駆 動電圧が低い。  The voltage-luminance characteristics of the light-emitting element 3 and the comparative light-emitting element 3 are shown in FIG. The light-emitting element 3 using a layer containing a composite of an organic compound and a metal oxide has a driving voltage lower than that of the comparative light-emitting element 3.
【0 2 3 0】  [0 2 3 0]
以上の結果から、 有機化合物と金属酸化物の複合体を発光素子に用いることによ り、 駆動電圧を低減できることがわかった。  From the above results, it was found that the driving voltage can be reduced by using a composite of an organic compound and a metal oxide for a light emitting element.
【実施例 5】  [Example 5]
【0 2 3 1】  [0 2 3 1]
本実施例では、 有機化合物と金属酸化物の複合体を用いた発光装置について説明 する。  In this example, a light-emitting device using a composite of an organic compound and a metal oxide will be described.
【0 2 3 2】  [0 2 3 2]
表 1に本実施例で作製したァクティブマトリクスディスプレイの基本仕様を、 表 2にその素子構造を示す。 なお本実施例で用いているディスプレイは R G B塗り分 けによるカラ一表示が可能なものであるが、 塗り分け時の影響による点欠陥の発生 を排除するため、 全面緑単色にて蒸着を行っている。 表 2には、 有機化合物と金属 酸化物の複合体の代わりに銅フタロシアニン (C u P c ) を用いた比較ディスプレ ィの構造も記載した。  Table 1 shows the basic specifications of the active matrix display fabricated in this example, and Table 2 shows the element structure. The display used in this example is capable of color display by RGB color separation, but in order to eliminate the occurrence of point defects due to the effect of color separation, vapor deposition is performed on the entire surface in a single green color. Yes. Table 2 also shows the structure of a comparative display using copper phthalocyanine (CuPc) instead of a complex of organic compound and metal oxide.
【0 2 3 3】 【表 1】 [0 2 3 3] 【table 1】
温度 &劣化補正機能内蔵  Built-in temperature & deterioration correction function
【0 2 3 4】  [0 2 3 4]
【表 2】  [Table 2]
【0 2 3 5】 [0 2 3 5]
N P Bと酸化モリブデンとを用いた有機化合物と金属酸化物の複合体を含む層の 膜厚を変化させた場合の輝度及び電流効率を図 2 6に示す。 有機化合物と金属酸化 物の複合体を含む層の膜厚により、 光取り出し効率が影響を受けるため、 パネルの 輝度は周期的に変化する。 しかし、 有機化合物と金属酸化物の複合体を含む層の膜 厚を 3 0 n mから 1 5 0 n mと厚くした程度では、 輝度の低下は 1割程度に抑える ことができる。 Figure 26 shows the luminance and current efficiency when the thickness of the layer containing a composite of an organic compound and metal oxide using NPB and molybdenum oxide is changed. The light extraction efficiency is affected by the thickness of the layer containing the complex of organic compound and metal oxide. The brightness changes periodically. However, when the thickness of the layer containing the composite of the organic compound and metal oxide is increased from 30 nm to 150 nm, the reduction in luminance can be suppressed to about 10%.
【0 2 3 6】  [0 2 3 6]
図 2 7に増加型点欠陥の有機化合物と金属酸化物の複合体を含む層の膜厚依存性 を示す。 なお、 測定に用いたパネルは、 室温で 1時間駆動させた後、 温度サイクル 動作を行った。 有機化合物と金属酸化物の複合体を含む層の膜厚が 4 0 n mの場合 は、 温度サイクル動作を 6 0時間行った後に 1パネルあたり 2 0コ近い点欠陥の増 加が見られた。 しかし、 有機化合物と金属酸化物の複合体を含む層の膜厚を 7 5 n m以上に厚くすることで、 同じ温度サイクル動作を行った後でも、 点欠陥が約 2個 以下にまで低減された。 図 2 7の測定に用いたパネルの表示領域は 3 6 mm x 4 8 mmであり、 開口率は 3 9 %である。 よって、 表示面積 3 6 m x 4 8 mm x 0 . 3 9 = 6 7 3 . 9 2 mm2あたり点欠陥の増加数を 2個以下 (1 0 0 0 mm2あたり 3 個以下) に低減することができた。 よって、 増加型暗点抑制効果が十分に発揮され ると共に、 光取りだし効率が比較的良好な有機化合物と金属酸化物の複合体を含む 層の膜厚: 1 5 0 n mをこの後の環境動作試験における有機化合物と金属酸化物の 複合体を含む層の標準条件として採用することとした。 Figure 27 shows the film thickness dependence of the layer containing a complex of organic compounds and metal oxides with increased point defects. The panel used for the measurement was driven at room temperature for 1 hour and then temperature cycled. When the film thickness of the layer containing the composite of organic compound and metal oxide was 40 nm, an increase of nearly 20 point defects per panel was observed after 60 hours of temperature cycling. However, by increasing the film thickness of the layer containing the composite of organic compound and metal oxide to 75 nm or more, the number of point defects was reduced to about 2 or less even after the same temperature cycle operation. . The display area of the panel used for the measurement in Fig. 27 is 36 mm x 48 mm, and the aperture ratio is 39%. Therefore, increase the number of point defects per display area 3 6 mx 4 8 mm x 0.39 = 6 7 3.9 2 mm 2 to 2 or less (3 or less per 100 mm 2 ). I was able to. Therefore, the increased dark spot suppression effect is fully demonstrated and the light extraction efficiency is relatively good. The film thickness of the layer containing a complex of organic compound and metal oxide is 1550 nm. The standard condition for the layer containing the composite of organic compound and metal oxide in the test was adopted.
【0 2 3 7】  [0 2 3 7]
図 2 8に各種環境動作試験における増加型点欠陥数を示す。 各動作試験の条件を 表 3に示す。  Figure 28 shows the number of increased point defects in various environmental operation tests. Table 3 shows the conditions for each operation test.
【0 2 3 8】  [0 2 3 8]
【表 3】  [Table 3]
環境動作試験 条件 '  Environmental operation test conditions ''
高温動作 8 5 で 6 6 0時間  High temperature operation 8 5 to 6 60 hours
低温動作 4 0 で6 6 0時間 85でで 4時間、 一 40 で 4時間 (1サイクル 8時間) 温度サイクル動作 Low temperature operation 4 0 to 6 60 hours 4 hours at 85, 4 hours at 40 (1 cycle 8 hours) Temperature cycle operation
を繰り返し 660時間  Repeat for 660 hours
【0239】  [0239]
有機化合物と金属酸化物の複合体を含む層による厚膜化を行わない場合、 低温動 作や温度サイクル動作では、 試験開始から 60時間後で数十〜数百個の増加型喑点 が発生している。 本パネルでは、 表 1の仕様の画素部に加え、 一定電流が流れるモ 二ター素子を有している。 画素部における発光素子の駆動電圧は、 モニター素子の 電圧を反映させたものとなっており、 温度や経時変化に対して輝度が一定となるよ うに補正されている (H i r o y u k i M i y ak e e t a 1., S I D' 05 D i g e s t o f Te c hn i c a l P ap e r s, Vo l . X XXV I, p 240 - 243参照)。よって、高温動作時よりも低温動作時の方が、 陰極—陽極間に高電圧が印加されるため、 欠陥を促進したと考えられる。 さらに、 温度サイクル時は、 温度変化によって微小パーティクルに対する発光物質を含む層 のカバレッジの弱い部分に応力が集中することなどが原因で、 陰極一陽極間ショー 卜が促進されると考えられる。 しかし、 有機化合物と金属酸化物の複合体を含む層 により発光物質を含む層の厚膜化を行ったディスプレイの場合は、 これらの過酷な 環境動作試験においても増加型暗点は 1パネルあたり 2個程度以下と大幅に低減さ れる。 本実施例で使用しているパネルは画素数が 240 XRGBX 320 = 230 400である QVGAパネルである。 よって、 230400画素に対して増加型喑 点は 2個以下 (0. 087 %以下) とすることができる。  Without thickening with a layer containing a complex of organic compound and metal oxide, tens to hundreds of increased saddle points occur 60 hours after the start of the test in low temperature operation or temperature cycle operation is doing. This panel has a monitor element through which a constant current flows, in addition to the pixel part specified in Table 1. The drive voltage of the light-emitting element in the pixel unit reflects the voltage of the monitor element, and it is corrected so that the brightness is constant over time and changes over time (Hiroyuki Miyak eeta 1 ., SID '05 Digestof Technological Papers, Vol. X XXVI, p 240-243). Therefore, it is thought that defects were promoted during high-temperature operation than during high-temperature operation because a higher voltage was applied between the cathode and anode. Furthermore, during the temperature cycle, the stress between the cathode and the anode is thought to be promoted due to the stress concentration in the weak coverage of the layer containing the luminescent material with respect to the minute particles due to the temperature change. However, in the case of a display in which a layer containing a light emitting material is thickened by a layer containing a composite of an organic compound and a metal oxide, the increased dark spot is 2 per panel even in these severe environmental operation tests. It is greatly reduced to less than about one. The panel used in this embodiment is a QVGA panel with 240 XRGBX 320 = 230 400 pixels. Therefore, the number of incremental points for 230400 pixels can be 2 or less (0.087% or less).
【0240】  [0240]
図 29に点欠陥要因である代表的な微小パーティクル部分の断面 TEM写真を示 す。 Cu P cのように薄い正孔注入層を用いた場合には、 良好なカバレッジを得る ことは困難であることが分かる。 発光素子の薄膜の膜厚は、 非常に小さいため、 良 好なカバレッジを得ることができないと、 簡単に電極間のショートに結びつく。 特 に (a), (b) の様な球状のパーティクルが存在する場合、 パーティクル下側が逆 テーパー形状となるため、 有機化合物と金属酸化物の複合体を用い厚膜化すること により、 比較的良好なカバレッジを得ることができる。 Figure 29 shows a cross-sectional TEM photograph of a typical fine particle part that is the cause of point defects. It can be seen that it is difficult to obtain good coverage when a thin hole injection layer such as Cu Pc is used. Since the film thickness of the light-emitting element is very small, if good coverage cannot be obtained, it can easily lead to a short circuit between the electrodes. Special When spherical particles such as (a) and (b) are present, the lower side of the particle has an inversely tapered shape, so it is relatively good by increasing the film thickness using a composite of organic compound and metal oxide. Coverage can be obtained.
【0241】  [0241]
つまり、 高い導電性を示す有機化合物と金属酸化物の複合体を含む層を用いてァ クティブマトリクスディスプレイを作製したところ、 特性を大きく損なうことなく 発光物質を含む層の厚膜化が可能であることが確認できた。 また、 有機化合物と金 属酸化物の複合体を含む層を厚膜化することにより、 微小パーティクル起因の点欠 陥の抑制に効果があった。 特に温度サイクル動作ストレスの様な過酷な環境下で発 生しやすい増加型の点欠陥に対し、 大幅な抑制効果を示すことが分かった。  In other words, when an active matrix display is manufactured using a layer containing a composite of an organic compound and a metal oxide exhibiting high conductivity, the layer containing a light-emitting substance can be made thick without greatly degrading the characteristics. I was able to confirm. In addition, increasing the thickness of the layer containing a composite of an organic compound and a metal oxide was effective in suppressing point defects caused by fine particles. In particular, it has been found that it exhibits a significant suppression effect against the increasing type of point defects that are likely to occur in harsh environments such as temperature cycle operation stress.
【実施例 6】  [Example 6]
【0242】  [0242]
有機化合物と金属酸化物の複合体を含む層を用いて 6. 5_ i n c h、 WQVG A ァクティブマトリクスパネルを作製した。 有機化合物と金属酸化物の複合体を 含む層、 有機層の膜厚を調整することによって NTSC比 83%を得ることができ た。 またこのパネルは電極間のショートによる暗点が非常に少なかった。 · 【実施例 7】  A 6.5_in c h, WQVG A active matrix panel was fabricated using a layer containing a composite of an organic compound and a metal oxide. An NTSC ratio of 83% could be obtained by adjusting the thickness of the organic layer and the layer containing the composite of organic compound and metal oxide. In addition, this panel had very few dark spots due to a short circuit between the electrodes. · [Example 7]
【0243】  [0243]
以下では、 構造式 (1) で表される N, N' —ビス (スピロ— 9, 9 ' —ビフル オレン—2—ィル) — N, N, —ジフエニルベンジジン (略称: BSPB) の合成 方法について説明する。  Below, synthesis of N, N '—bis (spiro-9, 9' —bifluorene-2-yl) represented by the structural formula (1) — N, N, —diphenylbenzidine (abbreviation: BSPB) A method will be described.
【0244】  [0244]
【化 1】 [Chemical 1]
【0245】  [0245]
[ステップ 1]  [step 1]
まず、 2—プロモースピロ _ 9, 9 'ービフルオレンの合成法について説明する。 2—プロモースピロ一 9, 9 ' —ビフルオレンの合成スキーム (j— 1) を以下に 示す。  First, the synthesis method of 2-promospiro_9,9'-bifluorene is explained. 2-Promospiro 9, 9 '— Bifluorene synthesis scheme (j– 1) is shown below.
【0246】  [0246]
【化 2】 [Chemical 2]
【0247】 [0247]
10 OmLの三口フラスコに、 マグネシウム 1. 26 g (0. 052mo 1 ) を 入れ、 系内を真空下にし、 30分加熱撹拌し、 活性化した。 室温にさましてから系 内を窒素気流下にし、 ジェチルエーテル 5 mL、 ジブロモェタン数滴を加え、 ジェ チルエーテル 15 mL中に溶かした 2—ブロモビフエニル 1 1. 65 g (0. 05 0 m o 1 )をゆつくり滴下し、滴下終了後 3時間還流してダリニヤ一ル試薬とした。 20 OmL三口フラスコに 2—ブロモフルォレノ >1 1.7 g(0.045mo l)、 ジェチルエーテル 4 OmLを入れた。 この反応溶液に合成したグリニャール試薬を ゆっくり滴下し、 滴下終了後 2時間還流し、 さらに室温で約 12時間撹拌した。 反 応終了後、 反応溶液を飽和塩化アンモニア水溶液で 2回洗浄し、 水層を酢酸ェチル で 2回抽出し、 有機層とあわせて飽和食塩水で洗浄した。 硫酸マグネシウムにより 乾燥後、 吸引濾過、 濃縮し、 固体状の 9— (2—ビフエ二リル) 一 2—プロモー 9 一フルォレノールを 18. 76 g、 収率 90 %で得た。  Magnesium (1.26 g, 0.052 mo 1) was placed in a 10 OmL three-necked flask, and the system was evacuated and heated and stirred for 30 minutes to activate. After cooling to room temperature, place the system under a nitrogen stream, add 5 mL of jetyl ether and a few drops of dibromoethane, and add 2-bromobiphenyl 1 1.65 g (0. 05 0 mo 1) dissolved in 15 mL of jet ether. After dripping slowly, the solution was refluxed for 3 hours after the completion of the dripping to obtain a darinier reagent. 2-Bromofluoreno> 1 1.7 g (0.045 mol) and jetyl ether 4 OmL were placed in a 20 OmL three-necked flask. The synthesized Grignard reagent was slowly added dropwise to the reaction solution, refluxed for 2 hours after completion of the addition, and further stirred at room temperature for about 12 hours. After completion of the reaction, the reaction solution was washed twice with a saturated aqueous solution of ammonium chloride, the aqueous layer was extracted twice with ethyl acetate, and the organic layer was washed with saturated brine. After drying with magnesium sulfate, suction filtration and concentration were carried out to obtain 18.76 g of solid 9- (2-biphenylyl) 1-2-promo 9 monofluorenol in a yield of 90%.
【0248】  [0248]
次に、 20 OmLの三口フラスコに、 合成した 9一 (2—ビフエ二リル) —2— ブロモ— 9—フルォレノールを 18. 76 g (0. 045mo 1 ), 氷酢酸を 100 mL入れ、 濃塩酸数滴を加え 2時間還流した。 反応終了後、 吸引濾過により析出物 を回収し、 飽和炭酸水素ナトリウム水溶液および水で濾過洗净した。 得られた褐色 固体をエタノールで再結晶したところ淡褐色粉末状固体を 10.24§、収率57% で得た。 プロトン核磁気共鳴法 — NMR) によって、 この淡褐色粉末状固体が 2—ブロモースピロ一 9, 9 ' ービフルオレンであることを確認した。 Next, in a 3OmL flask of 20 OmL, the synthesized 9-one (2-biphenylyl) —2— Bromo-9-fluorenol (18.76 g, 0.045 mo 1) and glacial acetic acid (100 mL) were added, and a few drops of concentrated hydrochloric acid were added, followed by refluxing for 2 hours. After completion of the reaction, the precipitate was collected by suction filtration, and washed with a saturated aqueous sodium hydrogen carbonate solution and water. The resulting brown solid 10.24 § a pale brown powdered solid was recrystallized with ethanol to obtain 57% yield. Proton nuclear magnetic resonance (NMR) confirmed that this light brown powdery solid was 2-bromo-spiro 9,9'-bifluorene.
【0249】  [0249]
この化合物の1 H— NMRを次に示す。 — NMR (300MHz, CDC 13) (5 = 7. 86— 7. 79 (m, 3H), 7. 70 (d, 1 H, J = 8. 4Hz), 7. 47 - 7. 50 (m, 1 H), 7. 41— 7. 34 (m, 3H), 7. 12 ( t , 3 H, J - 7. 7Hz), 6. 85 (d, 1 H, J = 2. 1 Hz), 6. 74— 6. 7 0 (m, 3H)。 The 1 H-NMR of this compound is shown below. — NMR (300MHz, CDC 1 3 ) (5 = 7. 86— 7. 79 (m, 3H), 7.70 (d, 1 H, J = 8.4 Hz), 7. 47-7. 50 (m , 1 H), 7. 41—7.34 (m, 3H), 7.12 (t, 3 H, J-7.7 Hz), 6. 85 (d, 1 H, J = 2.1 Hz) 6.74—6.70 (m, 3H).
【0250】  [0250]
[ステップ 2]  [Step 2]
次に、 N, N, -ビス (スピロ一 9, 9, 一ビフルオレン一 2—ィル) 一N, N' —ジフエ二ルペンジジン (略称: BSPB) の合成法について説明する。 BSPB の合成スキーム (j一 2) を以下に示す。  Next, a method for synthesizing N, N, -bis (spiro 9,9, 1 bifluorene 1 2-yl) 1 N, N '-diphenyl pendidine (abbreviation: BSPB) is described. The synthesis scheme of BSPB (j-12) is shown below.
【0251】  [0251]
【化 3】 [Chemical 3]
【0252】  [0252]
10 OmLの三口フラスコに、 Ν,Ν'—ジフエニルベンジジンを 1.00 g 0. 003 Omo 1 )、 ステップ 1で合成した 2—ブロモースピロ—9, 9 ' —ビフルォ レンを 2. 49 g (0. 0062mo 1 )、 ビス (ジベンジリデンアセトン) ノ\°ラジ ゥム(0)を 17 Omg (0. 3 Ommo 1 )、 t e r t—ブトキシナトリウムを 1. 08 g (0. 01 lmo 1 ) 入れ、 系内を窒素気流下にした後、 脱水トルエン 20 mLと、 トリ ( t e r t—ブチル) ホスフィンの 10 w t %へキサン溶液 0. 6m Lを加え、 8 O :で 6時間攪拌した。 反応終了後、 反応溶液を室温まで冷ましてか ら水を加え、 析出した固体を吸引ろ過により回収し、 ジクロロメタンで洗浄した。 得られた白色固体をアルミナカラムクロマトグラフィー (クロ口ホルム) により精 製し、 ジクロロメタンで再結晶したところ、 白色粉末状固体を 2. 66 g、 収率 9 3 %で得た。 In a 10-OmL three-necked flask, 1.00, 0'-diphenylbenzidine was 1.00 g 0. 003 Omo 1), and 2-bromo-spiro-9,9'-bifluorene synthesized in step 1 was 2.49 g (0. 1), bis (dibenzylideneacetone) nodium (0) 17 Omg (0.3 Ommo 1), tert-butoxy sodium 1.08 g (0. 01 lmo 1) After under nitrogen flow, 20 mL of dehydrated toluene and 10 wt% hexane solution of tri (tert-butyl) phosphine 0.6 m L was added, and the mixture was stirred at 8 O: for 6 hours. After completion of the reaction, the reaction solution was cooled to room temperature, water was added, and the precipitated solid was collected by suction filtration and washed with dichloromethane. The resulting white solid was purified by alumina column chromatography (Kuroguchi Form) and recrystallized from dichloromethane to obtain 2.66 g of a white powdery solid in a yield of 93%.
【0253】  [0253]
得られた白色粉末状固体をプロトン核磁気共鳴法( H— NMR)によって分析し たところ、 次のような結果が得られ、 構造式 (1) で表される N, N' 一ビス (ス ピロ一 9, 9, —ビフルオレン— 2—ィル) — N, N' —ジフエニルベンジジン (略 称: BSPB) であることが確認できた。 また、 — NMRのチャートを図 33に 示す。 iH— NMR (300MHz, DMSO— d6) 6 = 7. 93— 7. 89 (m, 8H), 7. 39 - 7. 33 (m, 1 OH), 7. 19— 7. 14 (m, 8H), 7. 09 - 6. 96 (m, 6H), 6. 89— 6. 84 (m, 8H), 6. 69 (d, 4 H, J = 7. 5Hz), 6. 54 (d, 2H, J = 7. 8Hz), 6. 25 (d, 2 H, J = 2. 4Hz)„ When the obtained white powdered solid was analyzed by proton nuclear magnetic resonance (H-NMR), the following results were obtained, and N, N ′ bis (s) represented by the structural formula (1) was obtained. It was confirmed that the substance was N, N'-diphenylbenzidine (abbreviation: BSPB). The NMR chart is shown in Fig. 33. iH— NMR (300 MHz, DMSO— d 6 ) 6 = 7. 93— 7. 89 (m, 8H), 7. 39-7. 33 (m, 1 OH), 7. 19— 7. 14 (m, 8H), 7.09-6.96 (m, 6H), 6.89— 6.84 (m, 8H), 6.69 (d, 4H, J = 7.5Hz), 6.54 (d , 2H, J = 7.8Hz), 6.25 (d, 2H, J = 2.4Hz)
【0254】  [0254]
なお、 得られた化合物 4. 74gを 14P a、 350 :の条件で 24時間昇華精 製したところ、 3. 49 gを回収でき、 回収率は 74%であった。  When 4.74 g of the obtained compound was purified by sublimation for 24 hours under the conditions of 14 Pa, 350: 3.49 g could be recovered and the recovery rate was 74%.
【0255】  [0255]
また、 得られた化合物のガラス転移温度、 結晶化温度、 融点について、 示差走査 熱量分析装置 (DSC : D i f f e r e n c i A l S c ann i ng CA l o r i me t r y、 パーキンエルマ一製、 型番: Py r i s 1 DSC) を用いて調 ベた。 ここで DSCによる測定は、 次のような手順で行った。 先ず、 40 /分の 昇温速度で 450°Cまで試料 (得られた化合物) を加熱した後、 40 分の昇温 速度で試料を冷却して試料をガラス状態にした。 そして、 ガラス状態になった試料 を、 1 O tZ分の昇温速度で加熱し、 図 3 4に示すような測定結果を得た。 図 3 4 において、 横軸は温度 ( )、 縦軸は熱流 (上向が吸熱) (mW) を表す。 測定結果 から、 得られた化合物のガラス転移温度は 1 7 2 °C、 結晶化温度は 2 6 8 t:である ことが分かった。 また、 3 1 2でにおける接線と、 3 2 :〜 3 2 8 における接 線との交点から、 融点は 3 2 3で〜 3 2 4でであることが分かった。 すなわち、 本 実施例のように合成した B S P Bは、 ガラス転移温度が 1 5 0 °C以上、 好ましくは 1 6 O t:〜 3 0 0 の範囲を満たし、 融点が 1 8 0 :〜 4 0 0 °Cの範囲にあること がわかる。 In addition, regarding the glass transition temperature, crystallization temperature, and melting point of the obtained compound, a differential scanning calorimetric analyzer (DSC: Differenci Al Sc n i n CA n ri cal me try, manufactured by Perkin Elmer, model number: Py ris 1 DSC). The DSC measurement was performed according to the following procedure. First, the sample (the obtained compound) was heated to 450 ° C. at a temperature increase rate of 40 / min, and then the sample was cooled to a glass state at a temperature increase rate of 40 minutes. And the sample in the glass state Was heated at a rate of temperature increase of 1 O tZ, and the measurement results shown in Fig. 34 were obtained. In Fig. 34, the horizontal axis represents temperature () and the vertical axis represents heat flow (upward is endothermic) (mW). From the measurement results, it was found that the obtained compound had a glass transition temperature of 1 72 ° C. and a crystallization temperature of 2 68 t :. Also, from the intersection of the tangent at 3 1 2 and the tangent at 3 2: ~ 3 2 8, it was found that the melting point was 3 2 3 and ~ 3 2 4. That is, the BSPB synthesized as in this example has a glass transition temperature of 1550 ° C. or higher, preferably 1 6 Ot: up to 30 0 0, and a melting point of 1 80 0 up to 4 0 0 It can be seen that it is in the range of ° C.
【0 2 5 6】  [0 2 5 6]
このように、 得られた化合物は、 1 7 2 という高いガラス転移温度を示し、 良 好な耐熱性を有するものである。 また、 図 3 4において、 得られた化合物の結晶化 を表すピークはブロードなものであり、 得られた化合物は結晶化し難い物質である ことがわかった。  Thus, the obtained compound has a high glass transition temperature of 1 7 2 and has good heat resistance. Further, in FIG. 34, the peak representing crystallization of the obtained compound is broad, and it was found that the obtained compound is a substance that is difficult to crystallize.
【産業上の利用可能性】  [Industrial applicability]
【0 2 5 7】  [0 2 5 7]
以上のように、 本発明にかかる有機化合物と金属酸化物の複合体は消費電力の低 減と欠陥の発生の抑制を同時に実現するために有用であり、 発光素子およびそれを 用いた発光装置や電子機器に用いるのに適している。  As described above, the composite of an organic compound and a metal oxide according to the present invention is useful for simultaneously reducing power consumption and suppressing the occurrence of defects. A light emitting element and a light emitting device using the light emitting element Suitable for use in electronic equipment.

Claims

請求の範囲 The scope of the claims
【請求項 1】 [Claim 1]
有機化合物と金属酸化物の複合体を有し、 前記有機化合物中の原子の P軌道から前 記金属酸化物の金属原子の d軌道に電荷が移動していることを特徴とする発光素子。 A light-emitting element comprising a composite of an organic compound and a metal oxide, wherein charge is transferred from a P orbit of an atom in the organic compound to a d orbit of a metal atom of the metal oxide.
【請求項 2】 [Claim 2]
請求項 1において、 前記金属原子は、 遷移金属であることを特徴とする発光素子。 The light-emitting element according to claim 1, wherein the metal atom is a transition metal.
【請求項 3】 [Claim 3]
請求項 1において、前記金属原子は、モリブデンであることを特徴とする発光素子。 2. The light-emitting element according to claim 1, wherein the metal atom is molybdenum.
【請求項 4】 [Claim 4]
請求項 1において、 前記有機化合物は、 芳香族ァミン化合物であることを特徴とす る発光素子。 2. The light-emitting element according to claim 1, wherein the organic compound is an aromatic amine compound.
【請求項 5】  [Claim 5]
請求項 4において、 前記芳香族ァミン化合物の窒素原子の!)軌道から、 電荷が移動 していることを特徴とする発光素子。 5. The light-emitting element according to claim 4, wherein electric charges are transferred from the!) Orbit of the nitrogen atom of the aromatic amine compound.
【請求項 6】  [Claim 6]
請求項 1において、 前記有機化合物は、 芳香族炭化水素であることを特徴とする発 光素子。 2. The light emitting element according to claim 1, wherein the organic compound is an aromatic hydrocarbon.
【請求項 7】  [Claim 7]
請求項 1に記載の発光素子を有する発光装置。 A light-emitting device comprising the light-emitting element according to claim 1.
【請求項 8】  [Claim 8]
有機化合物と金属酸化物を用いた複合体を有する画素を複数有し、 It has a plurality of pixels having a composite using an organic compound and a metal oxide,
6 6 0時間駆動した後の画素欠陥の增加数が、 総画素数の 0 . 0 8 7 %以下である ことを特徵とする発光装置。 A light emitting device characterized in that the increased number of pixel defects after driving for 60 hours is 0.087% or less of the total number of pixels.
【請求項 9】 有機化合物と金属酸化物を用いた複合体を有する画素を複数有し、 8 5 で 6 6 0時間駆動した後の画素欠陥の増加数が、 総画素数の 0 . 0 8 7 %以 下であることを特徴とする発光装置。 [Claim 9] Having multiple pixels with composites using organic compounds and metal oxides, the number of pixel defects after driving for 85 hours at 60 hours is less than 0.087% of the total number of pixels. There is a light emitting device.
【請求項 1 0】  [Claim 1 0]
有機化合物と金属酸化物を用いた複合体を有する画素を複数有し、 Having a plurality of pixels having a composite using an organic compound and a metal oxide,
— 4 0 °Cで 6 6 0時間駆動した後の画素欠陥の増加数が、 総画素数の 0 . 0 8 7 % 以下であることを特徴とする発光装置。  — A light emitting device characterized in that the number of increased pixel defects after driving for 60 hours at 40 ° C. is 0.087% or less of the total number of pixels.
【請求項 1 1】  [Claim 1 1]
有機化合物と金属酸化物を用いた複合体を有する画素を複数有し、 Having a plurality of pixels having a composite using an organic compound and a metal oxide,
8 5でで 4時間駆動、 _ 4 0 で 4時間駆動を繰り返し、 6 6 0時間駆動した後の 画素欠陥の増加数が、 総画素数の 0 . 0 8 7 %以下であることを特徴とする発光装 置。 It is characterized by the fact that the number of pixel defects after driving for 8 hours at 85 and for 4 hours at _40 and driving for 60 hours is 0.087% or less of the total number of pixels. Light emitting device to be used.
【請求項 1 2】  [Claim 1 2]
有機化合物と金属酸化物を用いた複合体を有する画素を有し、 It has a pixel having a complex using an organic compound and a metal oxide,
8 5でで 4時間駆動、 _ 4 0 で 4時間駆動を繰り返し、 6 0時間駆動した後の画 素欠陥の増加数が、表示面積 1 0 0 0 mm2あたり 3個以下であることを特徴とする 発光装置。 8 5 4 hours driving, _ 4 0 Repeat 4 hours driving, characterized in that the increase in the number of picture element defects after driving 6 0 hour, the display area 1 is 0 0 0 mm 2 3 per below A light emitting device.
【請求項 1 3】  [Claim 1 3]
有機化合物と金属酸化物を用いた複合体を含む層を有し、 A layer including a composite using an organic compound and a metal oxide;
各画素の発光色に応じて、 前記有機化合物と前記金属酸化物を用いた複合体を含む 層の膜厚が異なることを特徵とする発光装置。 A light-emitting device characterized in that the film thickness of a layer including the composite using the organic compound and the metal oxide differs depending on the emission color of each pixel.
【請求項 1 4】  [Claim 1 4]
請求項 8乃至請求項 1 3のいずれか」項に記載の発光装置を有する電子機器。 An electronic apparatus comprising the light emitting device according to any one of claims 8 to 13.
PCT/JP2006/324142 2005-11-30 2006-11-28 Light emitting element, light emitting device and electronic device WO2007064009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-346705 2005-11-30
JP2005346705 2005-11-30

Publications (1)

Publication Number Publication Date
WO2007064009A1 true WO2007064009A1 (en) 2007-06-07

Family

ID=38092339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324142 WO2007064009A1 (en) 2005-11-30 2006-11-28 Light emitting element, light emitting device and electronic device

Country Status (1)

Country Link
WO (1) WO2007064009A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901877A (en) * 2009-05-29 2010-12-01 株式会社半导体能源研究所 Light-emitting component, light-emitting device, electronic equipment and lighting device
WO2010137477A1 (en) * 2009-05-29 2010-12-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323277A (en) * 1999-05-12 2000-11-24 Pioneer Electronic Corp Organic electroluminescent multi-color display and its manufacture
JP2001244079A (en) * 2000-02-29 2001-09-07 Junji Kido Organic electroluminescent element, organic electroluminescent element group and method for controlling its emission spectrum
WO2005031798A2 (en) * 2003-09-26 2005-04-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
WO2006033472A1 (en) * 2004-09-24 2006-03-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323277A (en) * 1999-05-12 2000-11-24 Pioneer Electronic Corp Organic electroluminescent multi-color display and its manufacture
JP2001244079A (en) * 2000-02-29 2001-09-07 Junji Kido Organic electroluminescent element, organic electroluminescent element group and method for controlling its emission spectrum
WO2005031798A2 (en) * 2003-09-26 2005-04-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
WO2006033472A1 (en) * 2004-09-24 2006-03-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901877A (en) * 2009-05-29 2010-12-01 株式会社半导体能源研究所 Light-emitting component, light-emitting device, electronic equipment and lighting device
WO2010137477A1 (en) * 2009-05-29 2010-12-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US8389979B2 (en) 2009-05-29 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US8502202B2 (en) 2009-05-29 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9343689B2 (en) 2009-05-29 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10050221B2 (en) 2009-05-29 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10910579B2 (en) 2009-05-29 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11889711B2 (en) 2009-05-29 2024-01-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Similar Documents

Publication Publication Date Title
JP6935468B2 (en) Light emitting elements, light emitting modules, lighting devices, and electronic devices
JP4313308B2 (en) Organic metal complex, organic EL element, and organic EL display
KR101694487B1 (en) Quinoxaline derivative compound, pyridopyrazine derivative compound and organic electroluminescent devices using the sames
JP4786917B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
KR101732969B1 (en) Phosphine oxide derivative compound and organic electroluminescent device using the same
JP2016131259A (en) Material for light emission element, light emission element, light emission device and electronic equipment
JP5243684B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
KR20140050045A (en) Biscarbazole derivative and organic electroluminescence element using same
US20090206742A1 (en) Organic light-emitting element
KR20150026055A (en) Pyrene compound and organic light emitting diode device comprising the same
US20090206743A1 (en) Organic electroluminescence element
KR101720079B1 (en) Quinoxaline derivative compound and organic electroluminescent device using the same
KR20160095667A (en) Pentaphenylbenzene derivative compound and organic electroluminescent device using the same
US20060147750A1 (en) Organic electroluminescence device and display apparatus
JP4880450B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
KR101472295B1 (en) Multicyclic aromatic compound and organic light emitting device including the same
JP5078329B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
KR101694496B1 (en) Dibenzothiophene derivative compound and organic electroluminescent device using the same
US20090160327A1 (en) Organic electroluminescence element
Liao et al. Aggregation-induced emission tetraphenylethene type derivatives for blue tandem organic light-emitting diodes
JP4954623B2 (en) Light emitting device
KR101950255B1 (en) Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
JP4802671B2 (en) Organic EL device with low molecular organic thin film
JP2010222288A (en) Carbazole derivative and light-emitting device using carbazole derivative, light-emitting apparatus, electronic equipment and lighting device
KR101415730B1 (en) Aromatic compound derivatives and organic electroluminescent device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833912

Country of ref document: EP

Kind code of ref document: A1