WO2007052569A1 - Expander and heat pump using the same - Google Patents

Expander and heat pump using the same Download PDF

Info

Publication number
WO2007052569A1
WO2007052569A1 PCT/JP2006/321561 JP2006321561W WO2007052569A1 WO 2007052569 A1 WO2007052569 A1 WO 2007052569A1 JP 2006321561 W JP2006321561 W JP 2006321561W WO 2007052569 A1 WO2007052569 A1 WO 2007052569A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
expander
working fluid
cylinder
movable member
Prior art date
Application number
PCT/JP2006/321561
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Hasegawa
Masaru Matsui
Atsuo Okaichi
Tomoichiro Tamura
Takeshi Ogata
Keizo Matsui
Tetsuya Matsuyama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/092,008 priority Critical patent/US20090282845A1/en
Priority to EP06822522A priority patent/EP1953337A4/en
Priority to JP2007542705A priority patent/JP4065316B2/en
Publication of WO2007052569A1 publication Critical patent/WO2007052569A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/006Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle
    • F01C11/008Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F01C1/3562Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3564Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01C13/04Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/10Control of, monitoring of, or safety arrangements for, machines or engines characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F01C20/16Control of, monitoring of, or safety arrangements for, machines or engines characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • F04C23/006Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle having complementary function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to an expander applied to a refrigeration cycle apparatus (heat pump), and further to a heat pump using this expander.
  • FIG. 20 shows a refrigeration cycle using a conventional expander-integrated compressor.
  • a compressor gas cooler (radiator) 2 an expander 3 and an evaporator 4 constitute a main circuit 8 of working fluid (coolant).
  • Compressor 1, expander 3, and rotary motor 6 Is connected to the shaft 7 to form an expander-integrated compressor.
  • the refrigerant circuit includes a sub circuit 9 together with the main circuit 8.
  • the sub circuit 9 branches from the main circuit 8 on the outlet side of the gas cooler 2, and joins the main circuit 8 on the inlet side of the evaporator 4. .
  • the working fluid passing through the main circuit 8 is expanded in the expander 3, and the working fluid passing through the sub circuit 9 is expanded by the expansion valve 5.
  • the working fluid is compressed from a low temperature and a low pressure to a high temperature and a high pressure in the compressor 1 and then cooled to a low temperature and a high pressure in the gas cooler 2. Then, after expanding to low temperature and low pressure (gas-liquid two phase) in the expander 3 or the expansion valve 5, it is heated by the evaporator 4 and returned to low temperature and low pressure (gas phase).
  • the expander 3 collects the expansion energy of the working fluid and converts it into rotational energy of the shaft 7. This rotational energy is used as part of the work for driving the compressor 1, and as a result, the power of the rotary motor 6 can be reduced.
  • FIG. 21 shows a Mollier diagram of the refrigeration cycle.
  • the compression process in the compressor 1 corresponds to AB
  • the heat release process in the gas cooler 2 corresponds to BC
  • the expansion process in the expander 3 corresponds to CD
  • the evaporation process in the evaporator 4 corresponds to DA.
  • the density ratio of the working fluid at point A on the inlet side of compressor 1 and point C on the inlet side of expander 3 is constant at (VesZVcs), so the density of working fluid at point A is / 0.
  • the density p at point C is (VcsZVes).
  • the refrigeration cycle has a coefficient of performance ( Since there is an optimum high pressure that maximizes (COP) (for example, Japanese Laid-Open Patent Publication No. 2002-81766), efficient operation cannot be performed unless temperature and pressure are freely controlled.
  • COP high pressure that maximizes
  • the restriction that the ratio of the density on the inlet side of the compressor 1 and the density on the inlet side of the expander 3 is constant is that the mass flow rate in the compressor 1 and the mass flow rate in the expander 3 are equal. This is because the volume flow rate ratio is constant.
  • This restriction can be avoided by opening the expansion valve 5 and allowing a part of the working fluid flowing through the refrigerant circuit to flow through the sub circuit 9 (Japanese Patent Laid-Open No. 2001-116371).
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an expander that can efficiently recover the expansion energy of a working fluid. Another object of the present invention is to provide a heat pump including the expander.
  • N rotary expansion mechanisms (n is an integer of 2 or more), a first suction hole for sucking working fluid into the suction side space of the first expansion mechanism, and kth (k from 1 to n-1) A communication hole that connects the discharge side space of the expansion mechanism and the suction side space of the (k + 1) th expansion mechanism to form one space,
  • a connection position of the first expansion mechanism with the suction side space is variable, and a second suction hole for sucking the working fluid into the suction side space;
  • An expander is provided.
  • the present invention also relates to an expander-integrated type, comprising an expander unit comprising the expander according to the present invention and a compressor unit integrally connected to the expander unit via the shaft. Provide a compressor.
  • the present invention provides a heat pump comprising the expander or the expander-integrated fluid machine according to the present invention.
  • the working fluid suction process force shifts to the working fluid expansion process by changing the connection position between the suction side space of the first expansion mechanism and the second suction hole.
  • the timing can be adjusted to control the ratio of the length of time the inflation process takes place to the length of time the inhalation process takes place. For this reason, according to the present invention, it is possible to change the above (VesZV cs). For example, in a refrigeration cycle using an expander-integrated compressor, it is possible to avoid the restriction of a constant density ratio. Therefore, it is possible to efficiently recover the expansion energy of the working fluid by introducing the entire amount of the working fluid into the expander without providing the auxiliary circuit for the working fluid.
  • the rotation speed of the expander can be controlled while maintaining the amount of working fluid flowing into the expander. For this reason, the rotational speed of the generator connected to the expander is made close to the rated rotational speed, and it becomes easy to maintain high power generation efficiency by the generator.
  • FIG. 1 is a longitudinal sectional view of an expander-integrated compressor according to a first embodiment of the present invention.
  • FIG. 2A D1-D1 cross section of the expander section of the expander-integrated compressor of Fig. 1
  • FIG. 2B D2-D2 cross section of the expander section of the expander-integrated compressor of Fig. 1
  • FIG. 3A is a partial cutaway perspective view of a fixed portion of an upper end plate of the expander portion of the expander-integrated compressor of FIG.
  • 3B is a perspective view of the movable part of the upper end plate of the expander part of the expander-integrated compressor of FIG.
  • FIG. 3C is a partially cut perspective view of the upper end plate in which the fixed part and the movable part are integrated.
  • FIG. 4A Partial enlarged view of the D1-D1 cross section of the expander section of the expander-integrated compressor of Fig. 1
  • FIG. 4B Partial enlarged view of the D1-D1 cross section of the expander part of the expander-integrated compressor of FIG.
  • FIG. 5A Operation principle diagram of the first cylinder of the expander unit of the expander-integrated compressor of FIG. 1 B
  • FIG. 6A Operation principle diagram of the second cylinder of the expander unit of the expander-integrated compressor of FIG. 6A] A diagram showing the relationship between the rotation angle of the shaft and each stroke of the working chamber in the expander section of the expander-integrated compressor of FIG.
  • FIG. 8 PV diagram showing the relationship between pressure and working chamber volume in the expander section of the expander-integrated compressor in Fig. 1
  • FIG. 12A D3-D3 cross section of expander in Fig. 11
  • FIG. 15 Configuration diagram of a modified pressure regulator
  • FIG. 16B Block diagram of an example in which a pressure sensor is provided in the pressure regulator of FIG. 16A
  • FIG. 1 is a longitudinal sectional view showing the configuration of the expander-integrated compressor according to the first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view taken along the line D1-D1 of the expander portion of the expander-integrated compressor of FIG. Cross-sectional view
  • Fig. 2B is a cross-sectional view of the expander section in the D2-D2 cross section
  • Fig. 3A is a partial cut-away perspective view of the fixed portion of the upper end plate of the expander section
  • Fig. 3B is the upper end
  • FIG. 3C is a partially cutaway perspective view showing a state in which the fixed portion and the movable portion of the upper end plate are integrated together.
  • the expander-integrated compressor 100 in the present embodiment includes a hermetic container 11, a scroll-type compressor unit 20 disposed on the upper side of the hermetic container 11, and a two-stage rotary type disposed on the lower side thereof.
  • the rotary motor 12 including the rotor 12a and the stator 12b disposed between the compressor unit 20 and the expander unit 40, the compressor unit 20, the expander unit 40, and the rotary electric motor.
  • the shaft 13 may be formed by connecting a plurality of parts on one axis.
  • the scroll compressor unit 20 includes a fixed scroll 21, an orbiting scroll 22, an old ring 23, a bearing member 24, a muffler 25, a suction pipe 26, and a discharge pipe 27.
  • the orbiting scroll 22 fitted to the eccentric shaft 13a of the shaft 13 and constrained to rotate by the Oldham ring 23 has a spiral wrap 22a meshing with the lap 21a of the fixed scroll 21, while the shaft
  • the crescent-shaped working chamber 28 formed between the wraps 21a and 2 2a is swung along with the rotation of 13 and the volume is reduced while moving from the outside to the inside. Compress working fluid.
  • the compressed working fluid passes through the discharge hole 21b provided in the center of the fixed scroll 21, the inner space 25a of the muffler 25, and the flow path 29 passing through the fixed scroll 21 and the bearing member 24 in this order. It is discharged into the internal space 11a of the sealed container 11.
  • the working fluid discharged to the inner space 11a is discharged from the discharge pipe 27 to the refrigeration cycle after the mixed lubricating oil is separated by gravity or centrifugal force while staying in the inner space 11a. .
  • the two-stage rotary expander unit 40 includes a first cylinder 41, a second cylinder 42 that is thicker than the first cylinder 41, and an intermediate plate 43 that partitions the cylinders 41 and 42. .
  • the first cylinder 41 and the second cylinder 42 are arranged concentrically with each other.
  • the expander unit 40 further includes a Fitted to the eccentric part 13b of the shaft 13 and held in a reciprocating manner in the first piston 44 that rotates eccentrically in the first cylinder 41 and the vane groove of the first cylinder 41, one end is
  • the first vane 46 that contacts the first piston 44, the first spring 48 that contacts the other end of the first vane 46, and urges the first vane 46 toward the first piston 44, and the second cylinder 42 are
  • the second piston 45 that engages with the eccentric portion 13c of the shaft 13 and moves eccentrically in the second cylinder 42 is reciprocally held in the vane groove of the second cylinder 42.
  • a second vane 47 whose portion is in contact with the second piston 45, and a second spring 49 which is in contact with the other end of the second vane 47 and biases the second vane 47 toward the second piston 45.
  • the first cylinder 41, the shaft 13, the first piston 44, and the first vane 46 constitute a first (first stage) expansion mechanism.
  • the second cylinder 42, the shaft 13, the second piston 45, and the second vane 47 constitute a second (second stage) expansion mechanism.
  • the pistons 44 and 45 and the vanes 46 and 47 may be integrated (a so-called swing piston).
  • the expander unit 40 further includes an upper end plate 73 and a lower end plate 51 arranged so as to sandwich the first and second cylinders 41 and 42 and the intermediate plate 43.
  • the upper end plate 73 and the middle plate 43 also hold the first cylinder 41 with vertical force
  • the middle plate 43 and the lower end plate 51 hold the second cylinder 42 with vertical force. Due to the holding by the upper end plate 73, the middle plate 43 and the lower end plate 51, there is a working chamber whose volume changes in accordance with the rotation of the pistons 44 and 45 in the first cylinder 41 and the second cylinder 42. It is formed.
  • the upper end plate 73 and the lower end plate 51 are closing members that close the cylinders 41 and 42, and also function as bearing members that rotatably hold the shaft 13 together with the bearing member 24 of the compressor unit 20.
  • the expander unit 40 also includes a muffler 52, a suction pipe 53, and a discharge pipe 54.
  • a suction side working chamber 55a (first suction side space) and a first piston 44 and a first vane 46
  • the discharge side working chamber 55b (first discharge side space) is partitioned by the second piston 45 and the second vane 47 inside the second cylinder 42, and the suction side working chamber 56a (second suction side space) ) And discharge-side working chamber 56b (second discharge-side space) are formed.
  • the total volume of the two working chambers 56a, 56b in the second cylinder 42 is equal to the two working chambers 55a, 55 in the first cylinder 41. It is larger than the total volume of b.
  • the upper end plate 73 includes a fixed portion 71 and a movable portion 72.
  • the fixed portion 71 has a through hole 71f for fitting the movable portion 72 together.
  • the through hole 71f has a cylindrical concave surface 71a, a cylindrical concave surface 71b having the same central axis 70 as the cylindrical concave surface 71a, and an inner diameter smaller than the cylindrical concave surface 71a, and a stepped surface 71c connecting the cylindrical concave surfaces 71a and 71b.
  • the central axis 70 coincides with the central axis of the shaft 13.
  • the first cylinder 41 is provided with an inflow path 41a and a first suction hole 41b as a flow path communicating with the inflow path 71e. 1 It communicates with the suction side working chamber 55a in the cylinder 41.
  • the movable portion 72 of the upper end plate 73 has a through hole 72a for rotatably holding the shaft 13, and is formed on the cylindrical concave surface 71a of the fixed portion 71 as an outer peripheral surface.
  • the cylindrical convex surface 72c of the movable portion 72 of the upper end plate 73 is provided with a gear 72e that goes around the cylindrical convex surface 72c in the circumferential direction.
  • the movable part 72 further includes a channel groove 72d that circulates along the circumferential direction on the cylindrical convex surface 72b, and a second suction hole 72f connected to the channel groove 72d. As shown in FIGS. 1 and 2A, the second suction hole 72f extends in the axial direction from the flow path groove 72d toward the working chamber 55a of the first cylinder 41, and operates on the suction side in the first cylinder 41.
  • Room 5 5a [Communicate!
  • the fixed portion 71 and the movable portion 72 are integrated by the movable portion 71 being rotatably fitted in the through hole 71f of the fixed portion 71.
  • Stepped surface 71c of fixed part 71 and movable part 72 The stepped surfaces 72g abut against each other to prevent the movable portion 72 from coming out above the fixed portion 71.
  • the lower end surface of the fixed portion 71 and the lower end surface of the movable portion 72 constitute the same plane, and this plane constitutes a partition above the first cylinder 41.
  • the second suction hole 72f rotates and moves around the central axis 70 while maintaining a constant distance from the central axis 70 of the shaft 13.
  • the rotation of the movable portion 72 causes a relative change in the position of the second suction hole 72 in the working chamber 55a on the suction side of the first cylinder 41. That is, while the connection position between the first suction hole 41b and the working chamber 55a on the suction side of the first cylinder 41 is fixed, the connection position between the second suction hole 72f and the working chamber 55a is variable.
  • the change in the connection position of the second suction hole 72f makes it possible to avoid the restriction of the constant density ratio in the compressor with an expander integrated type.
  • the second suction hole 72f defines the end face of the first cylinder 41 included in the first fluid mechanism into which the working fluid flows first. It may be provided on the end plate 73 as a closing member to be closed. This is because the movable second suction hole 72f can be configured with a simple configuration. Further, since the cylinder 41 side of the upper end plate 73 is a flat surface, it is easy to increase the processing accuracy even if the end plate 73 is composed of a plurality of parts.
  • At least a part of the end plate 73 may be the movable part 72 that can rotate around the shaft 13 and the movable part 72 may be provided with the second suction hole 72f. Preferred V ,. This is because it is easy to ensure a large movement range of the second suction hole 72f.
  • the fixed portion 71 has an annular shape, and an inflow path 71d (first first) for supplying the working fluid from the outside of the expander portion 40 to the second suction hole 72f provided in the movable portion 72.
  • An inflow path) and an inflow path 71e (second inflow path) that branches from the inflow path 71d and supplies the working fluid to the first suction hole 41b are provided inside.
  • the movable portion 72 is rotatably joined to such a fixed portion 71.
  • a gear 75 that meshes with the gear 72e of the rotating portion 72, a rotary motor 76 (electric actuator) that drives the gear 75, and a force plate are installed on the fixed portion 71 of the upper end plate 73.
  • the movable portion 72 is driven by the rotary motor 76 via the gears 72e and 75.
  • the expander unit 40 may further include drive mechanisms 75 and 76 that rotate the movable unit 72.
  • the drive mechanisms 75 and 76 are connected to a controller (not shown) that is provided outside the hermetic container 11 and controls the rotation angle of the movable part 72, and receives a control signal from the controller to move the movable part 72. To control the connection position to the working chamber 55a.
  • a stepping motor or servo motor is used as the rotary motor 76, the position of the second suction hole 72f can be controlled with high accuracy. Further, a detector (for example, an encoder) for detecting the rotation angle of the movable part 72 may be provided.
  • a driving means for the movable portion 72 a means other than the rotary motor 76, for example, an actuator that uses a pressure difference of fluid may be used.
  • the working fluid that has flowed into the expander section 40 from the suction pipe 53 is divided into two paths from the inflow path 71d of the fixing section 71 of the upper end plate 73, and flows into the working chamber 55a.
  • the first path is a path that passes through the inflow path 71d in the fixed portion 71, the branch inflow path 71e, the inflow path 41a in the first cylinder 41, and the first suction hole 41b.
  • the second path is a path that passes through the inflow path 71d in the fixed part 71, the flow path groove 72d of the movable part 72, and the second suction hole 72f.
  • connection position between the first suction hole 4 lb in which the connection position to the working chamber 55a is fixed from the intake pipe 53 to the first working chamber 55a and the working chamber 55a is variable.
  • the working fluid is supplied via a second suction hole 72f. It is not necessary to place flow control mechanisms such as openable / closable solenoid valves and differential pressure valves in these two paths.
  • the working fluid sucked into the first cylinder 41 passes through the second cylinder 42, discharge holes 51a provided in the lower end plate 51, the inner space 52a of the muffler 52, the first and second cylinders 41, , 42 are discharged from the discharge pipe 54 to the refrigeration cycle via the flow path 57 penetrating in this order.
  • the discharge hole 51a may be provided in the second cylinder 42.
  • a discharge valve 74 is installed in the discharge hole 51 a provided in the lower end plate 51.
  • the discharge valve 74 is also configured with, for example, a metal thin plate force, and is disposed so as to close the discharge hole 51a with the internal space 52a side force of the muffler 52.
  • the discharge valve 74 is connected to the upstream side (second cylinder This is a differential pressure valve that opens when the pressure in the discharge chamber 42b on the discharge side of the compressor 42 becomes higher than the pressure on the downstream side (on the inner space 52a side of the muffler 52).
  • the discharge valve 74 has a function of preventing overexpansion of the working fluid in the expander unit 40.
  • FIGS. 4A, 4B, and 4C show the positions of the first suction hole 41b and the second suction hole 72f.
  • the position of the second suction hole 72f is indicated by an angle ⁇ with respect to the position of the first vane 46 around the shaft 13, and is 20 ° (Fig. 4A), 90 ° (Fig. 4B), 180 ° (Fig. Each is adjusted to 4C). More precisely, the angle ⁇ is the rotation direction of the shaft 13 about the central axis 70 (shown in the figure) on the first straight line 80 connecting the contact point between the first vane 46 and the first piston 44 and the central axis 70 of the shaft 13.
  • the first suction hole 41b is fixed at a position of 20 °.
  • the discharge hole 51a is fixed at a position of 340 ° in the same notation in the second cylinder 42.
  • the position of the second suction hole 72f can be arbitrarily set between 0 ° force and 360 °.
  • FIG. 5A shows an operation principle diagram of the first cylinder 41 when the angle ⁇ of the second suction hole 72f is 90 °
  • FIG. 5 ⁇ shows an operation principle diagram of the second cylinder 42 corresponding to the above.
  • the rotational angle ⁇ of the shaft 13 is 0 ° when the contact force between the first cylinder 41 and the first piston 44 is at the so-called top dead center located at the first vane 46, and the rotational direction of the shaft 13 Clockwise is displayed as positive.
  • This swelling In the tensioning unit 40, ⁇ 450 °, and the contact between the first cylinder 41 and the first piston 44 passes through the second suction hole 72f, and the communication between the working chamber 55b and the second suction hole 72f is cut off. At that time, the working fluid inhalation process is complete.
  • FIG. 6A shows the relationship between the rotation angle ⁇ of the shaft 13 and the transition point of each process from suction to discharge when the angle ⁇ of the second suction hole 72f is 20 °, 90 °, and 180 °. Show about.
  • the rotation angle ⁇ of the shaft 13 at which the suction process ends is the angle at which the contact point between the first cylinder 41 and the first piston 44 passes the second suction hole 72f for the second time. It becomes.
  • FIG. 6B shows the relationship between the rotation angle ⁇ of the shaft 13 and the working chamber volume.
  • the working fluid is a force that moves in the order of the working chamber 55a, the working chamber 55b, the working chamber 56a, and the working chamber 56b.
  • the suction volume Ves ⁇ which is the volume of the working chamber at the end of the suction process when the angle ⁇ of the second suction hole 72f is 20 °, 90 °, 180 °
  • the discharge process start time Indicates the discharge volume Ved, which is the volume of the working chamber.
  • the suction volume Ves ⁇ increases with increasing ⁇ , but the discharge volume Ved is constant regardless of ⁇ .
  • the movable second suction hole 72f is provided in addition to the fixed first suction hole 41b provided in the conventional two-stage rotary expander unit 40.
  • the suction volume Ves ⁇ which is the volume at the end of the suction process of the working chambers 55a, 55b, 56a, 56b, was made variable.
  • the density ratio (Vcs / Ves ⁇ ) of the working fluid on the inlet side of the compressor unit 20 and the expander unit 40 can be controlled.
  • the second suction hole 72f is formed in the movable part 72 that can rotate around the axis of the shaft 13, and the angle ⁇ can be adjusted to 0 ° force to 360 °. Because of the wide control range, it is easy to improve the efficiency of the refrigeration cycle.
  • Figure 8 shows the relationship between the working chamber volume and pressure (PV diagram).
  • the subscript ⁇ of the symbol in the figure is the angle ⁇ of the second suction hole 72f.
  • Point P ⁇ represents the start of the expansion process
  • point S ⁇ represents the end of the expansion process
  • point T represents the start of the discharge process.
  • the inflection point Q ⁇ due to phase change is shown during the expansion process.
  • the pressure S ⁇ increases.
  • the range of the angle ⁇ of the second suction hole 72f is controlled in the range of 20 ° force and 180 °
  • the pressure S at the end of the expansion process when the maximum angle 180 ° is selected is the low pressure of the refrigeration cycle. To be lower than side pressure Ped
  • overexpansion occurs at least when the angle ⁇ is set to 180 ° or less. Arise. Overexpansion is a phenomenon in which the pressure ⁇ becomes lower than the low-pressure side pressure Ped of the refrigeration cycle. When overexpansion occurs, an overexpansion loss occurs because the working fluid is pushed out from the discharge hole 51a into the inner space 52a of the muffler 52, which has a higher pressure than the inside of the working chamber 56b. The magnitude of the overexpansion loss can be shown by the area of the triangle S ⁇ ⁇ ⁇ ⁇ ⁇ in Fig. 8.
  • the discharge valve 74 is provided in the discharge hole 51a, if overexpansion C ⁇ D ⁇ occurs in the working chamber 56b, recompression is performed in the discharge process. In the discharging process, the volume of the working chamber 56b decreases as the shaft 13 rotates. If the discharge valve 74 is arranged in the discharge hole 51a, the discharge fluid does not open until the pressure in the working chamber 56b, which has decreased due to overexpansion, becomes equal to the low-pressure side pressure Pd of the refrigeration cycle. Recompressed in 5b. Thus, if the discharge valve 74 is arranged, an overexpansion loss can be prevented.
  • the movable portion 72 of the upper end plate 73 provided with the second suction hole 72f be rotatable about the shaft 13 in the same direction as the rotation direction of the shaft 13. This is because the movable part 72 can be rotated with a small amount of power by the frictional force between the shaft 13 and the movable part 72. According to this, it becomes easy to reduce the size of the rotary motor 76 and store it in the sealed container 11.
  • the suction volume Ves ⁇ of the expander unit 40 is variable, the expander unit 40 is not used! / And the compressor unit 20 has a normal structure used in the refrigeration cycle. Since the compressor unit 20 can use the normal structure as it is, the development cost can be reduced.
  • the expander unit 40 rotates in the same rotation as the compressor unit 20 while controlling the circulation amount of the working fluid in the refrigeration cycle by the rotation speed of the compressor unit 20.
  • the suction volume Ves ⁇ can be adjusted according to the operating conditions while rotating by a number. Therefore The role of the compressor unit 20 and the expander unit 40 in the control of the refrigeration cycle can be shared, and the control algorithm of the refrigeration cycle using the expander-integrated compressor can be facilitated.
  • the type of working fluid used in the expander-integrated compressor of the present embodiment is not limited, but carbon dioxide is suitable. This is because the effect of power recovery by the expander becomes more prominent. For this reason, when the working fluid is carbon dioxide, the effect of increasing the efficiency by avoiding a constant density ratio becomes remarkable.
  • the second suction hole 72f movable with the first suction hole 41b is provided, but the number of movable suction holes may be two or more.
  • the suction volume Ves ⁇ is determined by the suction hole arranged at the side position.
  • the expander unit 40 has two stages, but even when there are three or more stages, the same effect as described above can be obtained by providing the second suction hole that can move with respect to the first stage cylinder. Can be obtained.
  • FIG. 9A shows a configuration of a power recovery type heat pump using the expander-integrated compressor of the present embodiment.
  • the heat pump shown in FIG. 9A includes an expander-integrated compressor 100, a gas cooler (heat radiator) 2, an evaporator 4, and a pipe body 88 (refrigerant pipe) that connects them together.
  • the subcircuit 9 connected in parallel to the expander 3 is indispensable.
  • such a subcircuit is essential. Is not necessary.
  • a sub-circuit may be provided for other purposes, for example, for stably starting and stopping the heat pump.
  • the expander unit 40 of the present embodiment may be used alone, that is, as an expander separated from the compressor.
  • Fig. 9B shows the configuration of a power recovery heat pump using a separate expander.
  • This apparatus includes a compressor 81, a gas cooler (heat radiator) 82, an expander 83, and an evaporator 84. Further, the compressor 81, the gas cooler 82, the expander 83, and the evaporator 84 are connected in this order and the working fluid is supplied. Equipped with a circulating pipe 88 (refrigerant pipe)!
  • the expander 83 includes the expander unit 40 described with reference to FIG. In this heat pump, the expansion energy of the working fluid obtained by the expander 83 is converted into electric energy by the generator 86 and used as part of the input of the rotary motor 85 that rotates the compressor 81.
  • FIG. 10 shows an efficiency curve of a general generator 86. Since the generator 86 is designed to have the highest power generation efficiency at a predetermined rated speed Nr, the speed is determined from the rated speed. The further away, the lower the power generation efficiency. For this reason, it is desirable that the rotational speed of the generator 86 be as close to the rated rotational speed Nr as possible. However, in the refrigeration cycle, the circulating volume and density of the working fluid change, so it is difficult to operate the expander with a constant suction volume Ves only near the rated speed Nr. If the expander unit 40 of the first embodiment is used as the expander 83, the rotation speed can be controlled to be close to the rated rotation speed Nr by adjusting the suction volume Ves ⁇ .
  • the position of the second suction hole for changing the suction volume of the expander can also be changed by an actuator that uses the pressure difference of the fluid.
  • An actuator that utilizes the pressure difference between fluids is highly reliable in harsh environments such as high temperature and pressure. Further, there is an advantage that the working fluid to be expanded by the expander can be used as it is for the power source of the above-mentioned actuator.
  • a suction volume variable type expander including such an actuator will be described.
  • the same reference numerals are used for the same parts as those described in the first embodiment.
  • FIG. 11 is a longitudinal sectional view of the expander in the second embodiment.
  • the expander 303 is a rotary expander.
  • the expander 303 includes a sealed container 11, a generator 86 disposed in the sealed container 11, and an expander unit 400 connected to the generator 86.
  • the expander unit 400 includes a port member 412b (movable member), a housing 413 that houses the port member 412b, and an actuator 406.
  • the port member 412b closes the cylinder 41 (first cylinder) of the first expansion mechanism, and can rotate independently of the shaft 13 with the shaft 13 as a rotation center.
  • the port member 412b is provided with a second suction hole 412c for a follower.
  • the actuator 406 is a fluid pressure actuator using a pressure difference between fluids as a power source, and applies a rotational force having a magnitude based on the differential pressure between the high pressure fluid and the low pressure fluid to the port member 412b.
  • the rotation angle of the port member 412b around the central axis O is switched, the position of the second suction hole 412c changes.
  • the expander unit 400 the timing of transition from the suction process of the working fluid to the expansion process changes, and the time for the expansion process to the length of time for the suction process to be performed is changed.
  • the length ratio changes.
  • a working fluid to be expanded by the expander 303 can be used as the high-pressure fluid and low-pressure fluid that are the power source of the actuator 406. In this way, it is not necessary to separately prepare a fluid for operating the actuator 406. In addition, a strict seal structure that prevents mixing of different fluids is not required.
  • the mechanism for using the working fluid as a power source for the actuator 406 will be clarified by the following description.
  • the actuator 406, the port member 412b, and the cylinder 41 (first cylinder) of the first expansion mechanism are arranged in this order and concentrically. They are arranged side by side.
  • Such an arrangement is advantageous for the small expander 303 because it is possible to suppress the size expansion due to the provision of the actuator 406 and the port member 412b as much as possible.
  • the generator 86 includes a stator 86b fixed to the side wall of the hermetic container 11, and a rotor 86a disposed inside the stator 86b.
  • a shaft 13 is fixed to the center of the rotor 86a. The shaft 13 extends downward from the rotor 13a and is shared by the expander unit 400.
  • An oil reservoir 405 for storing lubricating oil is formed at the bottom of the sealed container 11.
  • the lower end portion of the shaft 13 is disposed in the oil sump 405.
  • An oil pump (not shown) is formed at the lower end portion of the shaft 13, and an oil supply passage (not shown) is formed in the shaft 13 and in the Z or outer peripheral portion.
  • the lubricating oil in the oil sump 405 is pumped up by the oil pump and supplied to each sliding portion of the expander unit 400 through the oil supply passage.
  • the port member 412b has a substantially disk shape with a hole through which the shaft 13 penetrates at the center, and is disposed inside the housing 413 whose outer shape substantially coincides with the first cylinder 41.
  • the housing 413 restricts the displacement of the port member 412b in the radial direction in which the inner diameter of the housing 413 and the outer diameter of the port member 412b are substantially equal. However, the port member 412b can smoothly rotate inside the housing 413.
  • a second suction hole 412c is formed in the port member 412b so as to penetrate vertically in the axial direction at a position not overlapping with the piston 430 of the actuator 406. As the port member 412b rotates, the second suction hole 412c moves in the rotation direction of the shaft 13.
  • FIG. 12A is a cross-sectional view of the expander D3-D3 shown in FIG.
  • the actuator 406 includes a port member driving eccentric portion 412a, a port member driving piston 430, a port member driving cylinder 432, a port member driving vane 433, a port member driving spring 434, A suction pipe 53 and a control pressure pipe 435 are provided.
  • the shaft 13 is located at the center of the port member driving cylinder 432.
  • the eccentric portion 412a is eccentric with respect to the shaft 13, and is disposed inside the cylinder 432.
  • the upper side of the cylinder 432 is closed by an upper end plate 424 (see FIG. 11).
  • the piston 430 is fitted into the eccentric portion 412a so as to form a pressure chamber 431 (431a, 431b) between the piston 430 and the cylinder 432.
  • the eccentric portion 412a and the piston 430 rotate in the cylinder 432 (specifically, eccentrically swing) while maintaining an eccentric state with respect to the central axis O of the shaft 13.
  • a through hole through which the shaft 13 passes is formed in the eccentric portion 412a.
  • the eccentric part 412a and the shaft 13 are not joined and can rotate independently of each other.
  • the vane 433 is held in a vane groove provided in the cylinder 432 so as to be able to reciprocate so that the tip thereof is in contact with the piston 430.
  • Spring 434 biases vane 433 toward piston 430.
  • the pressure chambers 431a and 431b formed inside the cylinder 432 are separated by vanes 433. It is separated into two spaces, a pressure chamber 431a and a second pressure chamber 431b. Further, the cylinder 4 32 is provided with a high pressure side inflow hole 450 and a low pressure side inflow hole 451. The high-pressure side inflow hole 450 and the low-pressure side inflow hole 451 are separated from each other by a predetermined angle in the circumferential direction, and penetrate the inside and outside of the cylinder 432, respectively.
  • a suction pipe 53 is connected to the first pressure chamber 431a through a high-pressure side inflow hole 450. The suction pipe 53 supplies the high-pressure working fluid before expansion to the first pressure chamber 43 la.
  • a control pressure pipe 435 is connected to the second pressure chamber 431b through a low pressure side inflow hole 451.
  • the control pressure pipe 435 supplies the second pressure chamber 431b with a working fluid having a lower pressure than the working fluid supplied to the first pressure chamber 431a side.
  • the differential pressure between the first pressure chamber 431a and the second pressure chamber 43 lb gives a rotational force to the piston 430.
  • the piston 430 that receives the rotation force from the differential pressure of the working fluid rotates the eccentric portion 412a and the port member 412b.
  • the cylinder 432 is supplied with working fluid from the suction pipe 53 through the upper end plate 424, through the cylinder 432, the housing 413, and the first cylinder 41 to the working chamber 55a of the first cylinder 41.
  • a suction passage 437 for inhalation is formed.
  • the expander unit 400 in the expander 303 of the present embodiment is connected to the first suction hole 41b formed in the first cylinder 41, and sends the working fluid (refrigerant) to the first cylinder 41.
  • a high-pressure side inlet hole 450 as a branch path branched from the suction path 437.
  • the high-pressure chamber 43 la of the actuator 406 is connected to the high-pressure side inflow hole 450, and the high-pressure working fluid supplied to the actuator 406 through the high-pressure side inflow hole 450 is used as a high-pressure fluid for driving the actuator 406.
  • the actuator 406 and the port member 412b are arranged adjacent to each other so that one end of the second suction hole 412c provided in the port member 412b is connected to the high pressure chamber 431a of the actuator 406.
  • the working fluid force supplied to the actuator 406 as fluid is supplied to the working chamber 55a (see FIG. 2A) in the first cylinder 41 through the second suction hole 412c provided in the port member 412b.
  • the working fluid used in the expander 303 is the power source of the actuator 406. By doing so, it is not necessary to supply energy such as external power, which is advantageous in improving the recovery efficiency of the expansion energy of the working fluid.
  • a first strobe 436a and a second stover 436b having a convex shape directed toward the central axis O of the shaft 13 are provided at a predetermined angle in the circumferential direction.
  • These Stono 436a and 436b are piston 430 force working fluid pressure difference (when the working fluid (refrigerant) is carbon dioxide, during rated operation, the high pressure side is about lOMPa and the low pressure side is about 3-5MPa. )
  • the port member 412b is allowed to rotate only within a predetermined angle range (for example, about 180 °).
  • the rotation center of the piston 430 of the actuator 406 may coincide with the rotation center of the shaft 13.
  • a space for forming the second suction hole 412c penetrating the port member 412b up and down can be secured, and the expander It is also advantageous for downsizing.
  • FIG. 12B is a D4-D4 cross-sectional view of the expander 303 shown in FIG.
  • a rotation spring 439 biasing means
  • the rotary spring 439 is preferably incorporated in the port member 412b.
  • the rotation spring 439 is interposed in the port member 412b and the housing 413 (or the cylinder 432), and always urges the port member 412b, the eccentric portion 412a, and the piston 430 in a predetermined rotation direction. As shown in FIG.
  • the urging direction of the rotary spring 439 is determined according to the volume of the first pressure chamber 431a.
  • the decreasing direction that is, the direction of the second suction hole 412c is set to approach the first suction hole 41b (see FIG. 2A).
  • the position of the port member 412b can be continuously changed within the movable range defined by the Stotto 436a and 436b. Further, it is possible to rotate the port member 412b in both forward and reverse directions under the relationship that the working fluid supplied to the first pressure chamber 431a is high pressure and the working fluid supplied to the second pressure chamber 431b is low pressure. .
  • the magnitude of the rotational force applied to the piston 430 changes according to the position occupied by the piston 430 in the cylinder 432.
  • Forward (or reverse) rotational force applied to the eccentric part 412a and the piston 430 by the differential pressure between the high-pressure working fluid supplied to the first pressure chamber 43 la and the low-pressure working fluid supplied to the second pressure chamber 431b Then, the repulsive force of the rotation spring 439, that is, the reverse direction (or forward direction) rotational force applied to the port member 412b is balanced, so that the port member 412b is positioned at a predetermined rotational angle.
  • the port member 412b can be freely displaced by adjusting the differential pressure between the working fluid supplied to the first pressure chamber 431a of the actuator 406 and the working fluid supplied to the second pressure chamber 431b. Control becomes possible. That is, the second suction hole 412c can be adjusted to an optimal position according to the operating condition of the expander 303.
  • the high-pressure working fluid flows from the suction pipe 53 through the suction passage 437 and flows into the working chamber 55a (see FIG. 2A) from the first suction hole 41b provided in the first cylinder 41.
  • the high-pressure working fluid flows into the first pressure chamber 431a inside the cylinder 432 via the high-pressure side inlet hole 450 branched from the suction pipe 53, and the second suction provided in the port member 412b. It flows into the working chamber 55a through the inlet 412c.
  • the port member 412b rotates, the position of the second suction hole 412c changes, so the suction volume of the working fluid to the first cylinder 41 changes.
  • the port member driving eccentric portion 412a and the port member 412b are connected or integrally connected in the vertical direction parallel to the center axis O.
  • the port member 412b has a substantially disc shape, and closes the first cylinder 41 on one main surface, and the port member driving eccentricity on the other main surface side.
  • the port member drive cylinder 432 is closed by connecting (or integrally) with the portion 412a.
  • the part located farther from the first cylinder 41 is the port member drive eccentric part 412a.
  • the portion located on the near side is a port member 412b.
  • the power transmission mechanism from the actuator 406 to the port member 412b can be omitted, which contributes to suppression of the increase in the number of parts and simplification of the structure, and in turn, a highly reliable expander 303 can be provided. It becomes like this.
  • the port member drive eccentric part 412a itself can also serve as the port member drive piston 430.
  • the port member 412b is integrated with the port member drive piston 430. Can be configured as a part.
  • the positional relationship between the first suction hole 41b and the second suction hole 412c is as described with reference to FIGS. 4A, 4B, and 4C.
  • a heat pump 300 shown in FIG. 13 includes a compressor 81, a gas cooler 82, the expander 303 described in FIG. 11, an evaporator 84, and a pressure regulator 500A.
  • the pressure regulator 500A adjusts the differential pressure between the high-pressure fluid and the low-pressure fluid that should be supplied to the actuator 406 of the expander 303.
  • the operation of the actuator 406 can be controlled also by the external force of the expander 303.
  • the pressure regulator 500A is installed outside the expander 303 !, but can also be installed inside the expander 303.
  • the pressure regulator 500A includes a first pressure pipe 501 having one end connected to the suction pipe 53 of the expander 303, a second pressure pipe 502 having one end connected to the control pressure pipe 435 of the expander 303, and an expansion A third pressure pipe 503 having one end connected to the discharge pipe 54 of the machine 303 and a hollow housing 513 to which the other ends of the pressure pipes 501, 502, 503 are connected. That is, the outlet pipe of the radiator 302 is branched into the first pressure pipe 501 and the suction pipe 53 of the expander 303. In addition, the discharge pipe 54 of the expander 303 and the third pressure pipe 503 merge to form the inlet pipe of the evaporator 304.
  • the interior of the housing 513 is divided into three pressure adjustment chambers, a first pressure adjustment chamber 504, a second pressure adjustment chamber 505, and a third pressure adjustment chamber 506.
  • a first pressure pipe 501 is connected to the first pressure adjustment chamber 504.
  • a second pressure pipe 502 is connected to the second pressure adjustment chamber 505.
  • a third pressure pipe 503 is connected to the third pressure adjustment chamber 506.
  • An elastic body 507 (spring) is disposed in the third pressure adjustment chamber 506. Between the second pressure adjustment chamber 505 and the third pressure adjustment chamber 506, there is disposed a piston 508 that partitions both pressure adjustment chambers and has one end connected to the elastic body 507. The piston 508 can move back and forth between the second pressure adjustment chamber 505 and the third pressure adjustment chamber 506. The piston 508 is formed with a fine channel 514 that allows the second pressure adjustment chamber 505 and the third pressure adjustment chamber 506 to communicate with each other. Between the first pressure adjustment chamber 504 and the second pressure adjustment chamber 505, a valve 509 for adjusting the amount of the working fluid flowing between the two pressure adjustment chambers is provided. One end of a connecting shaft 512 is connected to the valve 509. The other end of the connecting shaft 512 is connected to the iron core 511. A coil 510 is arranged around the iron core 511. The iron core 511 and the coil 510 constitute a plunger type solenoid.
  • the first pressure adjustment chamber 504 is equal to the pressure on the high pressure side of the refrigerant circuit
  • the third pressure adjustment chamber 506 is equal to the pressure on the low pressure side of the refrigerant circuit.
  • the pressure in the second pressure adjustment chamber 505 controlled by the pressure regulator 500A is supplied to the control pressure pipe 435 of the expander 303 and used to change the suction volume of the expander unit 400.
  • the connecting shaft 512 includes an elastic restoring force of the elastic body 507, a pressure due to a pressure difference between the second pressure adjusting chamber 505 and the third pressure adjusting chamber 506, and a coil 510. And the driving force given by the current flowing through it.
  • the connecting shaft 512 stops at a position where these forces are balanced. By changing the current flowing through the coil 510, the pressure in the second pressure regulating chamber 505 can be controlled.
  • the pressure regulator 500A obtains a part of the high-pressure working fluid to be sent to the first suction hole 41b of the expander unit 400, and decompresses the obtained working fluid to obtain the actuator 406. This produces a low-pressure working fluid that supplies the second pressure chamber 431b. Then, the pressure of the second pressure chamber 431b formed in the port member driving cylinder 432 is controlled by adjusting the degree of pressure reduction of the working fluid, and the port member 412b around the central axis O is controlled. And the position of the second suction hole 412c provided in the port member 412b. In this way, the position of the second suction hole 412c can be controlled easily and accurately.
  • the heat pump 300 has one end connected to the main pipe (suction pipe 53) for sending the working fluid to the first suction hole 4 lb of the expander unit 400, and the other end connected to the pressure regulator 500A.
  • One end is connected to the first pressure pipe 501 that supplies a part of the high-pressure working fluid to be connected to the first pressure adjustment chamber 504 of the pressure regulator 500A and the second pressure adjustment chamber 505 of the pressure regulator 500A.
  • the other end is connected to the actuator 406 (specifically, the control pressure pipe 435), and the working fluid reduced in pressure by the pressure regulator 500A is supplied to the low pressure chamber 431b (see FIG. 14) of the actuator 406. 2 pressure pipes 502.
  • the port member driving piston 430 and the port member driving eccentric portion 412a rotate in a direction in which the volume of the second pressure chamber 431b decreases.
  • the second suction hole 412c arrives at the position shown in FIG. 4C.
  • the suction time of the expander 303 is lengthened and the suction volume is increased according to the principle described in FIGS. 5A and 5B.
  • the port member driving piston 430 and the port member driving eccentric portion 4 12a rotate in a direction in which the volume of the second pressure chamber 431b increases.
  • the second suction hole 412c arrives at the position shown in FIG. 4A.
  • the suction time of the expander 303 is shortened and the suction volume is reduced.
  • a pressure regulator configured as shown in FIG. First, as shown in FIG. 14, a minute passage 440 that bypasses the control pressure pipe 435 and the suction pipe 53 is provided in the actuator 406 ′. As shown in FIG.
  • the pressure regulator 500B includes a housing 515, a coil 510, an iron core 511, a connecting shaft 512, a piston 516, and an elastic body 507 (spring).
  • the interior of the housing 515 is partitioned into two pressure adjustment chambers 520 and 521. Between both pressure adjusting chambers 520 and 521, a valve 509 for adjusting the amount of working fluid flowing between the two adjusting chambers is disposed.
  • the coil 510 and the iron core 511 constitute a plunger type solenoid.
  • the elastic body 507 biases the valve 509 through the piston 516 in the opening direction.
  • the iron core 511 biases the valve 509 in the closing direction via the connecting shaft 512. That is, the opening degree of the valve 509 can be controlled by controlling the current flowing through the coil 510.
  • the pressure in the pressure adjusting chamber 521 to which the control pressure pipe 435 is connected can be changed.
  • the pressure regulator 500C shown in FIG. 16A has a housing 560 that is partitioned into three pressure regulation chambers, a first pressure regulation chamber 561, a second pressure regulation chamber 562, and a third pressure regulation chamber 563. It is equipped with. Connected to the first pressure adjusting chamber 561 is a first pressure pipe 501 through which the working fluid before expansion flows. Connected to the second pressure adjustment chamber 562 is a second pressure pipe 502 that communicates with the second pressure adjustment chamber 562 and the second pressure chamber 431b (see FIG. 12A) of the actuator 406 in the expander 303. Yes. A third pressure pipe 503 through which the expanded working fluid flows is connected to the third pressure adjustment chamber 563.
  • a first valve 580 is disposed between the first pressure adjustment chamber 561 and the second pressure adjustment chamber 562.
  • the opening and closing of the first valve 580 can be controlled by driving a plunger-type solenoid constituted by the coil 570, the iron core 573, the elastic body 584 (spring), and the connecting shaft 576.
  • a second valve 581 is disposed between the second pressure adjustment chamber 562 and the third pressure adjustment chamber 563.
  • valve 281 Is controlled by a plunger-type solenoid constituted by a coil 571, an iron core 574, an elastic body 585 (spring) and a connecting shaft 577.
  • the working fluid can be sent from the second pressure adjustment chamber 562 to the third pressure adjustment chamber 563.
  • a control pressure between the pressure of the working fluid before expansion and the pressure of the working fluid after expansion is created, It becomes possible to maintain the inside of the second pressure regulating chamber 562, and thus the inside of the second pressure chamber 431b of the actuator 406, at the generated control pressure.
  • the first valve 580 is closed and the second valve 581 is opened, while when the pressure is lower than the desired pressure, the first valve 580 is turned on. Open and close second valve 581.
  • the pressure regulator 500C includes a pressure sensor 590 that detects the pressure in the second pressure adjustment chamber 562, and a detection result of the pressure sensor 590.
  • a controller 591 that controls opening and closing of the valves 580 and 581 may be provided.
  • the pressure sensor 590 may be disposed in the second pressure chamber 431b of the actuator 406 in the expander 303.
  • the controller 591 acquires the sensor signal from the pressure sensor 590, and calculates the difference between the target pressure value and the current pressure value. When the calculated difference is not within the predetermined allowable range, the opening and closing of the first valve 580 and the second valve 581 are controlled so that the difference becomes small.
  • the solenoid on the first valve 580 side is driven for a certain period of time, and a certain amount of high-pressure working fluid is transferred to the first pressure regulating chamber 561. To flow into the second pressure regulating chamber 562. Conversely, if the current pressure value is larger than the target pressure value, the solenoid on the second valve 581 side is driven for a certain period of time to change from the second pressure adjustment chamber 562 to the third pressure adjustment chamber 563. Move working fluid
  • the pressure in the second pressure adjustment chamber 562 can be quickly and accurately adjusted to a desired pressure. Since there is no need to constantly flow current through the solenoids (coils 570, 571) that open and close the first valve 580 and the second valve 581, the power consumption of the pressure regulator 500 C can be suppressed, and the expansion energy of the working fluid can be reduced. It is advantageous for improving the collection efficiency.
  • a program that periodically monitors the input from the pressure sensor 590 is installed in the controller 591, the pressure changes due to unavoidable leakage of the working fluid. Even if movement occurs, the pressure in the second pressure regulating chamber 562 can be automatically restored to a desired pressure.
  • FIG. 17 is a longitudinal sectional view of such an expander-integrated compressor.
  • the expander-integrated compressor 700 is disposed in the hermetic container 11, the scroll-type compressor unit 20 disposed on the upper side of the hermetic container 11, and the lower side in the hermetic container 11.
  • the rotary motor 12 disposed between the compressor unit 20 and the expander unit 400, and the compressor unit 20, the expander unit 400, and the rotary motor 12 1 and 3 shafts.
  • the rotary motor 12 rotates the shaft 13 to operate the compressor unit 20.
  • the rotational force applied to the shaft 13 when the working fluid (refrigerant) expands in the expander unit 400 is used as auxiliary power for the compressor unit 20.
  • the High energy recovery efficiency can be expected because the expansion energy of the working fluid is directly transmitted to the compressor unit 20 without being converted into electric energy.
  • the expander unit 400 includes the port member 412b provided with the second suction hole 412c for changing the suction volume, and the rotational displacement of the port member 412b.
  • Actuator 406. The structures and functions of the port member 412b and the actuator 406 are as described in the second embodiment.
  • the actuator 406 is driven by the pressure difference between the working fluid given by the control pressure pipe 435 and the working fluid given by the suction pipe 53, and the port member 412b
  • the position of (the rotation angle around the central axis O) can be changed.
  • the suction volume of the expander unit 400 can be freely controlled.
  • the heat pump using the expander-integrated compressor 700 the flow rate of the working fluid flowing through the expander section 400 without providing a bypass circuit. As a result, it is possible to realize a highly efficient heat pump system.
  • the actuator incorporated in the expander of the second embodiment can be suitably used for the expander or the expander-integrated compressor, but can be configured as a rotary actuator for another use.
  • FIG. 18 is a longitudinal sectional view of a rotary actuator that can be applied to the fourth embodiment.
  • FIG. 19 is a cross-sectional view taken along the line D5-D5 in FIG.
  • the rotary actuator 800 includes a cylinder 806, a shaft 801 that penetrates the inside and outside of the cylinder 806, a piston 807 that rotates eccentrically in the cylinder 806 and rotates the shaft 801, and a cylinder 806.
  • a vane 812 that partitions a pressure chamber 808 formed between the piston 807 into a first pressure chamber 808a and a second pressure chamber 808b is provided.
  • the shaft 801 has an eccentric portion 802 that bulges radially outward at an intermediate portion thereof, and has one end that penetrates the upper end plate 803 and the other end that penetrates the lower end plate 804. ing.
  • a closing member 805 is disposed below the lower end plate 804.
  • Upper end plate 803 and Z or closure member 805 may include bearings for shaft 801.
  • the eccentric portion 802 of the shaft 801 is disposed inside the cylinder 806 and is fitted with a ring-shaped piston 807.
  • the rotary actuator 800 includes a vane 812, a spring 809, a suction pipe 810, and a control pressure pipe 811.
  • the vane 812 is reciprocally held in a vane groove provided in the cylinder 806 so that the tip is in contact with the piston 807.
  • the spring 809 biases the vane 81 2 toward the piston 807.
  • a first inflow hole 820 connected to the first pressure chamber 808a and a second inflow hole 821 connected to the second pressure chamber 808b are formed in the upper end plate 803 that covers the upper side of the cylinder 806.
  • a suction pipe 810 is connected to the first pressure chamber 808a via a first inflow hole 820.
  • a control pressure pipe 811 is connected to the second pressure chamber 808b via a second inflow hole 821.
  • a force is applied to the piston 807 due to a pressure difference between the first fluid flowing into the first pressure chamber 808a and the second fluid flowing into the second pressure chamber 808b, and the eccentric portion 802 and eventually the shaft 801 rotate.
  • the circumferential direction A first stagger 813a and a second stagger 813b are formed at a predetermined angle apart from each other. These stoppers 813a and 813b limit the rotation range when the piston 807 rotates due to the pressure difference of the working fluid.
  • an elastic body that gives a repulsive force to the rotation of the shaft 801 is not provided, but an elastic body (rotary spring 439: see FIG. 12B) as described in the second embodiment is provided. You may do it. By doing so, it is possible to control the rotation angle of the shaft 801 by adjusting the differential pressure between the first fluid flowing into the first pressure chamber 808a and the second fluid flowing into the second pressure chamber 808b. It becomes.
  • the first fluid and the second fluid may be the same type of fluid or different types of fluid.
  • a fluid for example, oil in a hydraulic circuit, refrigerant in a refrigerant circuit, or air in a pneumatic circuit can be used.
  • the expander of the present invention provides an efficient means of recovering the expansion energy of the working fluid in the refrigeration cycle, and in particular, the high efficiency of the heat pump using the expander-integrated compressor. It has a great utility value as a means to realize a kite.

Abstract

A expander having n number of rotary fluid mechanisms (n is an integer number equal to or greater than 2), a first suction hole (41b) for sucking operation fluid into a suction side space (55a) of a first fluid mechanism (41), a communication hole (43a) for connecting a discharge side space (55b) of a k-th fluid mechanism (k is an integer number from 1 to n-1) and a (k + 1)-th suction side space (56a) to form one space, and a discharge hole (51a) for discharging the operation fluid from the discharge side space of an n-th fluid mechanism. The position at which the first fluid mechanism (41) is connected to the suction side space (55a) is changeable, and the expander further has a second suction hole (72f) for sucking the operation fluid into the suction side space (55a).

Description

膨張機およびこれを用いたヒートポンプ  Expander and heat pump using the same
技術分野  Technical field
[0001] 本発明は、冷凍サイクル装置 (ヒートポンプ)に適用される膨張機、さらにこの膨張 機を用いたヒートポンプに関するものである。  The present invention relates to an expander applied to a refrigeration cycle apparatus (heat pump), and further to a heat pump using this expander.
背景技術  Background art
[0002] 作動流体 (冷媒)の膨張エネルギーを膨張機で回収し、その回収されたエネルギー を圧縮機の仕事の一部として利用する動力回収式の冷凍サイクルが提案されている 。そのような冷凍サイクルとして、例えば、膨張機と圧縮機とをシャフトで連結した流体 機械 (以下、「膨張機一体型圧縮機」という)を用いた冷凍サイクルが知られている。 ( 特開 2001— 116371号公報)。  There has been proposed a power recovery type refrigeration cycle in which expansion energy of a working fluid (refrigerant) is recovered by an expander and the recovered energy is used as part of the work of the compressor. As such a refrigeration cycle, for example, a refrigeration cycle using a fluid machine in which an expander and a compressor are connected by a shaft (hereinafter referred to as an “expander-integrated compressor”) is known. (Japanese Patent Laid-Open No. 2001-116371).
[0003] 以下、膨張機一体型圧縮機を用いた冷凍サイクルについて説明する。  [0003] Hereinafter, a refrigeration cycle using an expander-integrated compressor will be described.
[0004] 図 20に従来の膨張機一体型圧縮機を用いた冷凍サイクルを示す。この冷凍サイク ルでは、圧縮機 ガスクーラ (放熱器) 2、膨張機 3および蒸発器 4から作動流体 (冷 媒)の主回路 8が構成されており、圧縮機 1と膨張機 3と回転電動機 6とは、シャフト 7 によって連結されて膨張機一体型圧縮機となっている。冷媒回路は、主回路 8ととも に副回路 9を備えており、副回路 9は、ガスクーラ 2の出口側で主回路 8と分岐し、蒸 発器 4の入口側で主回路 8と合流する。主回路 8を通過する作動流体は膨張機 3に おいて膨張し、副回路 9を通過する作動流体は膨張弁 5により膨張する。  FIG. 20 shows a refrigeration cycle using a conventional expander-integrated compressor. In this refrigeration cycle, a compressor gas cooler (radiator) 2, an expander 3 and an evaporator 4 constitute a main circuit 8 of working fluid (coolant). Compressor 1, expander 3, and rotary motor 6 Is connected to the shaft 7 to form an expander-integrated compressor. The refrigerant circuit includes a sub circuit 9 together with the main circuit 8. The sub circuit 9 branches from the main circuit 8 on the outlet side of the gas cooler 2, and joins the main circuit 8 on the inlet side of the evaporator 4. . The working fluid passing through the main circuit 8 is expanded in the expander 3, and the working fluid passing through the sub circuit 9 is expanded by the expansion valve 5.
[0005] 作動流体は、圧縮機 1において低温低圧から高温高圧へと圧縮された後、ガスクー ラ 2において低温高圧へと冷却される。そして、膨張機 3または膨張弁 5において低 温低圧 (気液二相)へと膨張した後、蒸発器 4で加熱されて低温低圧 (気相)に戻る。 膨張機 3は、作動流体の膨張エネルギーを回収してシャフト 7の回転エネルギーに変 換する。この回転エネルギーは圧縮機 1を駆動する仕事の一部として利用され、その 結果、回転電動機 6の動力を低減することができる。  The working fluid is compressed from a low temperature and a low pressure to a high temperature and a high pressure in the compressor 1 and then cooled to a low temperature and a high pressure in the gas cooler 2. Then, after expanding to low temperature and low pressure (gas-liquid two phase) in the expander 3 or the expansion valve 5, it is heated by the evaporator 4 and returned to low temperature and low pressure (gas phase). The expander 3 collects the expansion energy of the working fluid and converts it into rotational energy of the shaft 7. This rotational energy is used as part of the work for driving the compressor 1, and as a result, the power of the rotary motor 6 can be reduced.
[0006] ここで、膨張弁 5を全閉とし、副回路 9の作動流体の質量流量をゼロとした場合の冷 凍サイクルの動作を説明する。 [0007] 圧縮機 1の吸入容積を Vcs、膨張機 3の吸入容積を Vesとし、シャフト 7の回転数を Nとすると、圧縮機 1の入口側での作動流体の体積流量と膨張機 3の入口側での作 動流体の体積流量とは、それぞれ、(Vcs X N)、(Ves X N)となる。副回路 9の作動 流体の質量流量がゼロであるため、圧縮機 1での質量流量と膨張機 3での質量流量 とは等しくなる。この質量流量を Gとすると、圧縮機 1の入口側での作動流体の密度と 膨張機 3の入口側での作動流体の密度は、それぞれの体積流量と質量流量の比か ら、 {GZ(Vcs X N) }、 {GZ(Ves X N) }となる。これらの式より、圧縮機 1の入口側 での作動流体の密度と膨張機 3の入口側の作動流体の密度の比は、 {G/ (Ves X N) }Z{GZ (Ves X N) }、すなわち、(VesZVcs)となって一定となる。 [0006] Here, the operation of the refrigeration cycle when the expansion valve 5 is fully closed and the mass flow rate of the working fluid in the sub circuit 9 is zero will be described. [0007] When the suction volume of the compressor 1 is Vcs, the suction volume of the expander 3 is Ves, and the rotational speed of the shaft 7 is N, the volume flow rate of the working fluid at the inlet side of the compressor 1 and the expansion machine 3 The volumetric flow rate of the working fluid at the inlet side is (Vcs XN) and (Ves XN), respectively. Since the mass flow rate of the sub-circuit 9 is zero, the mass flow rate in the compressor 1 and the mass flow rate in the expander 3 are equal. When this mass flow rate is G, the density of the working fluid on the inlet side of the compressor 1 and the density of the working fluid on the inlet side of the expander 3 are expressed as (GZ ( Vcs XN)}, {GZ (Ves XN)}. From these equations, the ratio of the working fluid density on the inlet side of the compressor 1 and the working fluid density on the inlet side of the expander 3 is {G / (Ves XN)} Z {GZ (Ves XN)}, That is, (VesZVcs) is constant.
[0008] 図 21に冷凍サイクルのモリエル線図を示す。図中、圧縮機 1における圧縮過程は AB、ガスクーラ 2における放熱過程は BC、膨張機 3における膨張過程は CD、蒸発 機 4における蒸発過程は DAに相当する。圧縮機 1の入口側の点 Aと、膨張機 3の入 口側の点 Cにおける作動流体の密度比は、(VesZVcs)で一定となるので、点 Aで の作動流体の密度を /0 とすると、点 Cでの密度 p は (VcsZVes) となる。点 Aの  FIG. 21 shows a Mollier diagram of the refrigeration cycle. In the figure, the compression process in the compressor 1 corresponds to AB, the heat release process in the gas cooler 2 corresponds to BC, the expansion process in the expander 3 corresponds to CD, and the evaporation process in the evaporator 4 corresponds to DA. The density ratio of the working fluid at point A on the inlet side of compressor 1 and point C on the inlet side of expander 3 is constant at (VesZVcs), so the density of working fluid at point A is / 0. Then the density p at point C is (VcsZVes). Point A
0 c 0  0 c 0
密度が一定であると仮定すると、点 Cの圧力を増加させる場合には、 = (Vcs/V es) の線上で点 Cから点 C'の方向へと変化することになる。すなわち、点 Cを等温 Assuming that the density is constant, increasing the pressure at point C will change from point C to point C 'on the line = (Vcs / V es). That is, point C is isothermal
0 0
線 (T=T )に沿って圧力だけ増加させた点 C"に変化させることは不可能となり、冷 凍サイクルの自由な制御が阻害される。冷凍サイクルには、ある熱源温度において 成績係数 (COP)が最大となる最適高圧が存在 (例えば、特開 2002— 81766号公 報)するため、温度と圧力の自由な制御ができないと、効率の良い運転ができなくな る。  It becomes impossible to change to the point C "which is increased by the pressure along the line (T = T), and the free control of the refrigeration cycle is impeded. The refrigeration cycle has a coefficient of performance ( Since there is an optimum high pressure that maximizes (COP) (for example, Japanese Laid-Open Patent Publication No. 2002-81766), efficient operation cannot be performed unless temperature and pressure are freely controlled.
[0009] 圧縮機 1の入口側の密度と膨張機 3の入口側の密度の比が一定となる制約は、圧 縮機 1での質量流量と膨張機 3での質量流量が等しぐかつ、体積流量の比が一定 であることに起因している。この制約は、膨張弁 5を開けて冷媒回路を流れる作動流 体の一部を副回路 9に流すことにより回避することができる(特開 2001— 116371号 公報)。  The restriction that the ratio of the density on the inlet side of the compressor 1 and the density on the inlet side of the expander 3 is constant is that the mass flow rate in the compressor 1 and the mass flow rate in the expander 3 are equal. This is because the volume flow rate ratio is constant. This restriction can be avoided by opening the expansion valve 5 and allowing a part of the working fluid flowing through the refrigerant circuit to flow through the sub circuit 9 (Japanese Patent Laid-Open No. 2001-116371).
[0010] 従来の膨張機一体型圧縮機を用いた動力回収式のヒートポンプでは、圧縮機と膨 張機が同じ回転数であることによって生じる密度比一定の制約を回避するためには、 作動流体を、膨張機を設けた主回路とともに、膨張弁を設けた副回路に流さざるを得 ない。しかし、これでは、副回路を通過する作動流体の膨張エネルギーを回収できな い。 [0010] In a power recovery type heat pump using a conventional expander-integrated compressor, in order to avoid the restriction of a constant density ratio caused by the same rotation speed of the compressor and the expander, The working fluid must flow to the sub circuit provided with the expansion valve together with the main circuit provided with the expander. However, this cannot recover the expansion energy of the working fluid that passes through the subcircuit.
[0011] 作動流体の膨張エネルギーを効率よく回収できな!/、と 、う課題は、膨張機一体型 圧縮機を用いる場合に顕著となるが、圧縮機とシャフトで連結されていない分離型の 膨張機を用いる場合にも発生する。分離型の膨張機を用いる場合、作動流体の膨張 エネルギーは、膨張機に接続された発電機により回収される。発電機の発電効率は 定格回転数カゝら離れるほど低下するため、発電機は定格回転数の近傍で運転する ことが望ましい。しかし、冷凍サイクルでは、作動流体の循環量や密度が運転条件に 応じて変化するため、発電機を定格回転数の近傍のみで運転することは困難である 。このため、分離型の膨張機においても、作動流体の膨張エネルギーを効率よく回 収することは容易ではない。  [0011] Although the expansion energy of the working fluid cannot be efficiently recovered! /, The problem becomes prominent when an expander-integrated compressor is used, but the separation type is not connected to the compressor by a shaft. It also occurs when using an expander. When a separate type expander is used, the expansion energy of the working fluid is recovered by a generator connected to the expander. Since the power generation efficiency of the generator decreases as the distance from the rated speed increases, it is desirable to operate the generator near the rated speed. However, in the refrigeration cycle, it is difficult to operate the generator only in the vicinity of the rated speed because the circulation amount and density of the working fluid change according to the operating conditions. For this reason, it is not easy to efficiently collect the expansion energy of the working fluid even in the separation type expander.
発明の開示  Disclosure of the invention
[0012] 本発明は、上記の事情に鑑みてなされたものであり、作動流体の膨張エネルギー を効率よく回収することが可能な膨張機を提供することを目的とする。本発明は、さら に、その膨張機を含むヒートポンプを提供することを目的とする。  [0012] The present invention has been made in view of the above circumstances, and an object thereof is to provide an expander that can efficiently recover the expansion energy of a working fluid. Another object of the present invention is to provide a heat pump including the expander.
[0013] すなわち、本発明は、  [0013] That is, the present invention provides
シリンダと、  A cylinder,
偏心部を有するシャフトと、  A shaft having an eccentric part;
前記偏心部に嵌合し、前記シリンダの内側で偏心回転するピストンと、 前記シリンダと前記ピストンとの間の空間を、吸入側空間と吐出側空間とに仕切るた めの仕切り部材と、を有するロータリ式の膨張機構を n個 (nは 2以上の整数)と、 1番目の膨張機構の吸入側空間に作動流体を吸入する第 1吸入孔と、 k番目(kは 1から n— 1までの整数)の膨張機構の吐出側空間と (k+ 1)番目の膨張 機構の吸入側空間とを結び一つの空間を形成する連通孔と、  A piston that fits into the eccentric part and rotates eccentrically inside the cylinder; and a partition member for partitioning a space between the cylinder and the piston into a suction side space and a discharge side space. N rotary expansion mechanisms (n is an integer of 2 or more), a first suction hole for sucking working fluid into the suction side space of the first expansion mechanism, and kth (k from 1 to n-1) A communication hole that connects the discharge side space of the expansion mechanism and the suction side space of the (k + 1) th expansion mechanism to form one space,
n番目の膨張機構の吐出側空間から作動流体を吐出する吐出孔と、  a discharge hole for discharging the working fluid from the discharge side space of the n-th expansion mechanism;
前記 1番目の膨張機構の吸入側空間との接続位置が可変であり、当該吸入側空間 へと作動流体を吸入する第 2吸入孔と、 を備えた、膨張機を提供する。 A connection position of the first expansion mechanism with the suction side space is variable, and a second suction hole for sucking the working fluid into the suction side space; An expander is provided.
[0014] また、本発明は、本発明による膨張機からなる膨張機部と、前記シャフトを介して前 記膨張機部に一体に連結されている圧縮機部とを備えた、膨張機一体型圧縮機を 提供する。  [0014] The present invention also relates to an expander-integrated type, comprising an expander unit comprising the expander according to the present invention and a compressor unit integrally connected to the expander unit via the shaft. Provide a compressor.
[0015] さらに、本発明は、本発明による前記膨張機または前記膨張機一体型流体機械を 備えたヒートポンプを提供する。  Furthermore, the present invention provides a heat pump comprising the expander or the expander-integrated fluid machine according to the present invention.
[0016] 本発明の膨張機では、 1番目の膨張機構の吸入側空間と第 2吸入孔との接続位置 を変更することにより、作動流体の吸入過程力 当該作動流体の膨張過程に移行す るタイミングを調整し、吸入過程が行われる時間の長さに対する膨張過程が行われる 時間の長さの比を制御することができる。このため、本発明によれば、上記 (VesZV cs)を変更することが可能となり、例えば、膨張機一体型圧縮機を用いた冷凍サイク ルにおいて、密度比一定の制約を回避することができる。従って、作動流体の副回 路を設けずに作動流体の全量を膨張機に流入させて、作動流体の膨張エネルギー を効率よく回収することができる。  In the expander of the present invention, the working fluid suction process force shifts to the working fluid expansion process by changing the connection position between the suction side space of the first expansion mechanism and the second suction hole. The timing can be adjusted to control the ratio of the length of time the inflation process takes place to the length of time the inhalation process takes place. For this reason, according to the present invention, it is possible to change the above (VesZV cs). For example, in a refrigeration cycle using an expander-integrated compressor, it is possible to avoid the restriction of a constant density ratio. Therefore, it is possible to efficiently recover the expansion energy of the working fluid by introducing the entire amount of the working fluid into the expander without providing the auxiliary circuit for the working fluid.
[0017] 本発明の膨張機を分離型の膨張機として用いると、膨張機に流入する作動流体の 量を維持しながら膨張機の回転数を制御できる。このため、膨張機に接続された発 電機の回転数を定格回転数の近傍とし、発電機による発電効率を高く維持すること が容易となる。  When the expander of the present invention is used as a separate type expander, the rotation speed of the expander can be controlled while maintaining the amount of working fluid flowing into the expander. For this reason, the rotational speed of the generator connected to the expander is made close to the rated rotational speed, and it becomes easy to maintain high power generation efficiency by the generator.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明の第 1の実施形態における膨張機一体型圧縮機の縦断面図 FIG. 1 is a longitudinal sectional view of an expander-integrated compressor according to a first embodiment of the present invention.
[図 2A]図 1の膨張機一体型圧縮機の膨張機部の D 1— D 1断面図  [Fig. 2A] D1-D1 cross section of the expander section of the expander-integrated compressor of Fig. 1
[図 2B]図 1の膨張機一体型圧縮機の膨張機部の D2— D2断面図  [Fig. 2B] D2-D2 cross section of the expander section of the expander-integrated compressor of Fig. 1
[図 3A]図 1の膨張機一体型圧縮機の膨張機部の上側端板の固定部の部分切り取り 斜視図  FIG. 3A is a partial cutaway perspective view of a fixed portion of an upper end plate of the expander portion of the expander-integrated compressor of FIG.
[図 3B]図 1の膨張機一体型圧縮機の膨張機部の上側端板の可動部の斜視図  3B is a perspective view of the movable part of the upper end plate of the expander part of the expander-integrated compressor of FIG.
[図 3C]固定部と可動部とを一体ィ匕した上側端板の部分切り取り斜視図  FIG. 3C is a partially cut perspective view of the upper end plate in which the fixed part and the movable part are integrated.
[図 4A]図 1の膨張機一体型圧縮機の膨張機部の D 1— D 1断面の部分拡大図  [Fig. 4A] Partial enlarged view of the D1-D1 cross section of the expander section of the expander-integrated compressor of Fig. 1
[図 4B]図 1の膨張機一体型圧縮機の膨張機部の D1— D1断面の部分拡大図 圆 4C]図 1の膨張機一体型圧縮機の膨張機部の D 1— D 1断面の部分拡大図 [FIG. 4B] Partial enlarged view of the D1-D1 cross section of the expander part of the expander-integrated compressor of FIG. [4C] D1—D1 cross-sectional enlarged view of the expander section of the expander-integrated compressor in FIG.
[図 5A]図 1の膨張機一体型圧縮機の膨張機部の第 1シリンダの動作原理図 圆 5B]図 1の膨張機一体型圧縮機の膨張機部の第 2シリンダの動作原理図 圆 6A]図 1の膨張機一体型圧縮機の膨張機部におけるシャフトの回転角と作動室の 各行程との関係を示す図  [FIG. 5A] Operation principle diagram of the first cylinder of the expander unit of the expander-integrated compressor of FIG. 1 B 5B] Operation principle diagram of the second cylinder of the expander unit of the expander-integrated compressor of FIG. 6A] A diagram showing the relationship between the rotation angle of the shaft and each stroke of the working chamber in the expander section of the expander-integrated compressor of FIG.
圆 6B]図 1の膨張機一体型圧縮機の膨張機部におけるシャフトの回転角と作動室容 積との関係を示す図 [6B] Diagram showing the relationship between the rotation angle of the shaft and the working chamber volume in the expander section of the expander-integrated compressor in FIG.
圆 7]図 1の膨張機一体型圧縮機を用いた冷凍サイクルのモリエル線図 圆 7] Mollier diagram of the refrigeration cycle using the expander-integrated compressor in Figure 1
[図 8]図 1の膨張機一体型圧縮機の膨張機部における圧力と作動室容積との関係を 示す PV線図  [Fig. 8] PV diagram showing the relationship between pressure and working chamber volume in the expander section of the expander-integrated compressor in Fig. 1
圆 9A]膨張機一体型圧縮機を用いたヒートポンプの構成図 [9A] Heat pump configuration diagram using an expander-integrated compressor
圆 9B]分離型の膨張機を用いたヒートポンプの構成図 [9B] Heat pump configuration diagram using a separate expander
[図 10]発電機の効率と発電機の回転数との関係を例示するグラフ  [Figure 10] Graph illustrating the relationship between generator efficiency and generator speed
圆 11]本発明の第 2の実施形態における膨張機の縦断面図 [11] Longitudinal sectional view of the expander according to the second embodiment of the present invention
[図 12A]図 11の膨張機の D3— D3断面図  [Fig. 12A] D3-D3 cross section of expander in Fig. 11
[図 12B]図 11の膨張機の D4— D4断面図  [Fig. 12B] D4-D4 cross section of expander in Fig. 11
圆 13]図 11の膨張機と圧力調整器を備えたヒートポンプの構成図 圆 13] Configuration diagram of heat pump with expander and pressure regulator of Fig. 11
[図 14]ァクチユエータの変形例の横断面図  [Fig.14] Cross-sectional view of a modification of the actuator
[図 15]圧力調整器の変形例の構成図  [Fig. 15] Configuration diagram of a modified pressure regulator
[図 16A]圧力調整器の別の変形例の構成図  [Fig. 16A] Configuration of another modification of the pressure regulator
[図 16B]図 16Aの圧力調整器に圧力センサを設ける例のブロック図  [FIG. 16B] Block diagram of an example in which a pressure sensor is provided in the pressure regulator of FIG. 16A
圆 17]本発明の第 3の実施形態における膨張機一体型圧縮機の縦断面図 圆 17] Longitudinal sectional view of the expander-integrated compressor according to the third embodiment of the present invention
[図 18]回転ァクチユエータの断面図  [Fig.18] Cross section of rotary actuator
[図 19]図 18の回転ァクチユエータの D5— D5断面図  [Fig.19] D5—D5 cross section of rotary actuator in Fig.18
圆 20]従来の膨張機一体型圧縮機を用いたヒートポンプの構成図 圆 20] Heat pump configuration diagram using a conventional expander-integrated compressor
圆 21]従来の膨張機一体型圧縮機を用いたヒートポンプにおけるモリエル線図 発明を実施するための最良の形態 21] Mollier diagram in a heat pump using a conventional expander-integrated compressor BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について、図面を参照しながら説明する。 [0020] (第 1の実施形態) Hereinafter, embodiments of the present invention will be described with reference to the drawings. [0020] (First embodiment)
図 1は、本発明の第 1の実施形態の膨張機一体型圧縮機の構成を示す縦断面図、 図 2Aは、図 1の膨張機一体型圧縮機の膨張機部の D1— D1断面における横断面 図、図 2Bは、同膨張機部の D2— D2断面における横断面図、図 3Aは、同膨張機部 の上側端板の固定部の部分切り取り斜視図、図 3Bは、同上側端板の可動部の斜視 図、図 3Cは、同上側端板の固定部と可動部とを一体ィ匕した状態を示す部分切り取り 斜視図である。  FIG. 1 is a longitudinal sectional view showing the configuration of the expander-integrated compressor according to the first embodiment of the present invention. FIG. 2A is a cross-sectional view taken along the line D1-D1 of the expander portion of the expander-integrated compressor of FIG. Cross-sectional view, Fig. 2B is a cross-sectional view of the expander section in the D2-D2 cross section, Fig. 3A is a partial cut-away perspective view of the fixed portion of the upper end plate of the expander section, and Fig. 3B is the upper end FIG. 3C is a partially cutaway perspective view showing a state in which the fixed portion and the movable portion of the upper end plate are integrated together.
[0021] 本実施形態における膨張機一体型圧縮機 100は、密閉容器 11と、その内部の上 側に配置されたスクロール式の圧縮機部 20と、その下側に配置された 2段ロータリ式 の膨張機部 40と、圧縮機部 20と膨張機部 40との間に配置された回転子 12aおよび 固定子 12bを備えた回転電動機 12と、圧縮機部 20、膨張機部 40および回転電動 機 12を連結するシャフト 13と、を備えている。シャフト 13は、複数の部分を一軸に連 結したものであってもよ 、。  [0021] The expander-integrated compressor 100 in the present embodiment includes a hermetic container 11, a scroll-type compressor unit 20 disposed on the upper side of the hermetic container 11, and a two-stage rotary type disposed on the lower side thereof. , The rotary motor 12 including the rotor 12a and the stator 12b disposed between the compressor unit 20 and the expander unit 40, the compressor unit 20, the expander unit 40, and the rotary electric motor. And a shaft 13 for connecting the machine 12. The shaft 13 may be formed by connecting a plurality of parts on one axis.
[0022] スクロール式の圧縮機部 20は、固定スクロール 21と、旋回スクロール 22と、オルダ ムリング 23と、軸受部材 24と、マフラー 25と、吸入管 26と、吐出管 27とを備えている 。シャフト 13の偏心軸 13aに嵌合され、かつ、オルダムリング 23により自転運動を拘 束された旋回スクロール 22は、渦巻き形状のラップ 22aが、固定スクロール 21のラッ プ 21aと嚙み合いながら、シャフト 13の回転に伴って旋回運動を行い、ラップ 21a, 2 2aの間に形成される三日月形状の作動室 28が外側から内側に移動しながら容積を 縮小することにより、吸入管 26から吸入された作動流体を圧縮する。圧縮された作動 流体は、固定スクロール 21の中央部に設けた吐出孔 21b、マフラー 25の内側空間 2 5a、ならびに固定スクロール 21および軸受部材 24を貫通する流路 29をこの順に経 由して、密閉容器 11の内部空間 11aへと吐出される。内側空間 11aに吐出された作 動流体は、内部空間 11aに滞留する間に、混入した潤滑用のオイルを重力や遠心力 などにより分離された後、吐出管 27から冷凍サイクルへと吐出される。  The scroll compressor unit 20 includes a fixed scroll 21, an orbiting scroll 22, an old ring 23, a bearing member 24, a muffler 25, a suction pipe 26, and a discharge pipe 27. The orbiting scroll 22 fitted to the eccentric shaft 13a of the shaft 13 and constrained to rotate by the Oldham ring 23 has a spiral wrap 22a meshing with the lap 21a of the fixed scroll 21, while the shaft The crescent-shaped working chamber 28 formed between the wraps 21a and 2 2a is swung along with the rotation of 13 and the volume is reduced while moving from the outside to the inside. Compress working fluid. The compressed working fluid passes through the discharge hole 21b provided in the center of the fixed scroll 21, the inner space 25a of the muffler 25, and the flow path 29 passing through the fixed scroll 21 and the bearing member 24 in this order. It is discharged into the internal space 11a of the sealed container 11. The working fluid discharged to the inner space 11a is discharged from the discharge pipe 27 to the refrigeration cycle after the mixed lubricating oil is separated by gravity or centrifugal force while staying in the inner space 11a. .
[0023] 2段ロータリ式の膨張機部 40は、第 1シリンダ 41と、第 1シリンダ 41よりも厚みのある 第 2シリンダ 42と、これらシリンダ 41, 42を仕切る中板 43とを備えている。第 1シリン ダ 41と第 2シリンダ 42とは、互いに同心状の配置である。膨張機部 40は、さらに、シ ャフト 13の偏心部 13bと嵌合し、第 1シリンダ 41の中で偏心回転運動する第 1ピストン 44と、第 1シリンダ 41のべーン溝に往復動自在に保持され、一方の端部が第 1ピスト ン 44に接する第 1ベーン 46と、第 1ベーン 46の他方の端部に接し、第 1ベーン 46を 第 1ピストン 44へと付勢する第 1ばね 48と、第 2シリンダ 42は、シャフト 13の偏心部 1 3cと嵌合し、第 2シリンダ 42の中で偏心回転運動する第 2ピストン 45と、第 2シリンダ 42のべーン溝に往復動自在に保持され、一方の端部が第 2ピストン 45に接する第 2 ベーン 47と、第 2ベーン 47の他方の端部に接し、第 2ベーン 47を第 2ピストン 45へと 付勢する第 2ばね 49と、を備えている。 [0023] The two-stage rotary expander unit 40 includes a first cylinder 41, a second cylinder 42 that is thicker than the first cylinder 41, and an intermediate plate 43 that partitions the cylinders 41 and 42. . The first cylinder 41 and the second cylinder 42 are arranged concentrically with each other. The expander unit 40 further includes a Fitted to the eccentric part 13b of the shaft 13 and held in a reciprocating manner in the first piston 44 that rotates eccentrically in the first cylinder 41 and the vane groove of the first cylinder 41, one end is The first vane 46 that contacts the first piston 44, the first spring 48 that contacts the other end of the first vane 46, and urges the first vane 46 toward the first piston 44, and the second cylinder 42 are The second piston 45 that engages with the eccentric portion 13c of the shaft 13 and moves eccentrically in the second cylinder 42 is reciprocally held in the vane groove of the second cylinder 42. A second vane 47 whose portion is in contact with the second piston 45, and a second spring 49 which is in contact with the other end of the second vane 47 and biases the second vane 47 toward the second piston 45. .
[0024] 第 1シリンダ 41、シャフト 13、第 1ピストン 44および第 1ベーン 46により、第 1番目(1 段目)の膨張機構が構成される。同様に、第 2シリンダ 42、シャフト 13、第 2ピストン 4 5および第 2ベーン 47により、第 2番目(2段目)の膨張機構が構成される。なお、ビス トン 44, 45とべーン 46, 47とは、一体化されていてもよい(いわゆるスイングピストン) [0024] The first cylinder 41, the shaft 13, the first piston 44, and the first vane 46 constitute a first (first stage) expansion mechanism. Similarly, the second cylinder 42, the shaft 13, the second piston 45, and the second vane 47 constitute a second (second stage) expansion mechanism. The pistons 44 and 45 and the vanes 46 and 47 may be integrated (a so-called swing piston).
[0025] 膨張機部 40は、さらに、第 1および第 2シリンダ 41, 42ならびに中板 43を狭持する ように配置された上側端板 73および下側端板 51を備えている。上側端板 73および 中板 43は第 1シリンダ 41を上下力も狭持し、中板 43および下側端板 51は第 2シリン ダ 42を上下力ゝら狭持する。上側端板 73、中板 43および下側端板 51による狭持によ り、第 1シリンダ 41および第 2シリンダ 42内には、ピストン 44, 45の回転に応じて容積 が変化する作動室が形成される。上側端板 73および下側端板 51は、各シリンダ 41 , 42を閉塞する閉塞部材であるとともに、圧縮機部 20の軸受部材 24とともにシャフト 13を回転自在に保持する軸受部材としても機能する。膨張機部 40も、圧縮機部 20 と同様、マフラー 52と、吸入管 53と、吐出管 54とを備えている。 The expander unit 40 further includes an upper end plate 73 and a lower end plate 51 arranged so as to sandwich the first and second cylinders 41 and 42 and the intermediate plate 43. The upper end plate 73 and the middle plate 43 also hold the first cylinder 41 with vertical force, and the middle plate 43 and the lower end plate 51 hold the second cylinder 42 with vertical force. Due to the holding by the upper end plate 73, the middle plate 43 and the lower end plate 51, there is a working chamber whose volume changes in accordance with the rotation of the pistons 44 and 45 in the first cylinder 41 and the second cylinder 42. It is formed. The upper end plate 73 and the lower end plate 51 are closing members that close the cylinders 41 and 42, and also function as bearing members that rotatably hold the shaft 13 together with the bearing member 24 of the compressor unit 20. Similarly to the compressor unit 20, the expander unit 40 also includes a muffler 52, a suction pipe 53, and a discharge pipe 54.
[0026] 図 2A,図 2Bに示すように、第 1シリンダ 41の内側には、第 1ピストン 44および第 1 ベーン 46により区画された、吸入側の作動室 55a (第 1吸入側空間)および吐出側の 作動室 55b (第 1吐出側空間)が、第 2シリンダ 42の内側には、第 2ピストン 45および 第 2ベーン 47により区画された、吸入側の作動室 56a (第 2吸入側空間)および吐出 側の作動室 56b (第 2吐出側空間)がそれぞれ形成される。第 2シリンダ 42における 2 つの作動室 56a, 56bの合計容積は、第 1シリンダ 41における 2つの作動室 55a, 55 bの合計容積よりも大きい。第 1シリンダ 41の吐出側の作動室 55bと、第 2シリンダ 42 の吸入側の作動室 56aとは、中板 43に設けられた連通孔 43aにより連通しており、一 つの作動室 (膨張室)として機能する。高圧の作動流体は、作動室 55aに流入した後 、作動室 55bと作動室 56aから形成される作動室においてシャフト 13を回転させなが ら膨張して低圧になる。 [0026] As shown in FIGS. 2A and 2B, inside the first cylinder 41, a suction side working chamber 55a (first suction side space) and a first piston 44 and a first vane 46, and The discharge side working chamber 55b (first discharge side space) is partitioned by the second piston 45 and the second vane 47 inside the second cylinder 42, and the suction side working chamber 56a (second suction side space) ) And discharge-side working chamber 56b (second discharge-side space) are formed. The total volume of the two working chambers 56a, 56b in the second cylinder 42 is equal to the two working chambers 55a, 55 in the first cylinder 41. It is larger than the total volume of b. The discharge-side working chamber 55b of the first cylinder 41 and the suction-side working chamber 56a of the second cylinder 42 communicate with each other through a communication hole 43a provided in the intermediate plate 43. ). After the high-pressure working fluid flows into the working chamber 55a, it expands to a low pressure while rotating the shaft 13 in the working chamber formed by the working chamber 55b and the working chamber 56a.
[0027] 図 1に示すように、上側端板 73は、固定部 71と可動部 72とを備えている。図 3Aに 示すように、固定部 71は、可動部 72を嵌め合わせるための貫通孔 71fを有する。貫 通孔 71fは、円筒凹面 71aと、円筒凹面 71aと同じ中心軸 70を有し、円筒凹面 71aよ りも小さな内径を有する円筒凹面 71bと、これら円筒凹面 71a, 71bを接続する段差 面 71cとによって囲まれている。なお、流体機械 (膨張機一体型圧縮機 100)を組み 立てると、中心軸 70はシャフト 13の中心軸に一致する。  As shown in FIG. 1, the upper end plate 73 includes a fixed portion 71 and a movable portion 72. As shown in FIG. 3A, the fixed portion 71 has a through hole 71f for fitting the movable portion 72 together. The through hole 71f has a cylindrical concave surface 71a, a cylindrical concave surface 71b having the same central axis 70 as the cylindrical concave surface 71a, and an inner diameter smaller than the cylindrical concave surface 71a, and a stepped surface 71c connecting the cylindrical concave surfaces 71a and 71b. And surrounded by When the fluid machine (expander-integrated compressor 100) is assembled, the central axis 70 coincides with the central axis of the shaft 13.
[0028] 固定部 71の内部には、吸入管 53からの作動流体を作動室 55aに導く流入路として 、流入路 71d (第 1流入路)と、流入路 71dからの分岐路である流入路 71e (第 2流入 路)とが設けられている。図 1および図 2Aに示すように、流入路 71eに連通する流路 として、第 1シリンダ 41には、流入路 41aおよび第 1吸入孔 41bが設けられており、第 1吸入孔 41bは、第 1シリンダ 41内の吸入側の作動室 55aに連通している。  [0028] Inside the fixed portion 71 are an inflow path 71d (first inflow path) and an inflow path that is a branch path from the inflow path 71d as an inflow path that leads the working fluid from the suction pipe 53 to the working chamber 55a. 71e (second inflow channel). As shown in FIGS. 1 and 2A, the first cylinder 41 is provided with an inflow path 41a and a first suction hole 41b as a flow path communicating with the inflow path 71e. 1 It communicates with the suction side working chamber 55a in the cylinder 41.
[0029] 図 3Bに示すように、上側端板 73の可動部 72は、シャフト 13を回転自在に保持す るための貫通孔 72aを有し、外周面として、固定部 71の円筒凹面 71aに当接する円 筒凸面 72bと、固定部 71の円筒凹面 71bに当接する円筒凸面 72cと、これら円筒凸 面 72b, 72cの間において固定部 71の段差面 71cに当接する段差面 72gと、を備え ている。上側端板 73の可動部 72の円筒凸面 72cには、この円筒凸面 72cを周方向 に周回する歯車 72eが設けられている。可動部 72は、円筒凸面 72b上を周方向に沿 つて周回する流路溝 72dと、流路溝 72dに接続された第 2吸入孔 72fとをさらに備え ている。図 1および図 2Aに示すように、第 2吸入孔 72fは、流路溝 72dから第 1シリン ダ 41の作動室 55aに向力つて軸方向に延び、第 1シリンダ 41内の吸入側の作動室 5 5a【こ連通して!/ヽる。  [0029] As shown in FIG. 3B, the movable portion 72 of the upper end plate 73 has a through hole 72a for rotatably holding the shaft 13, and is formed on the cylindrical concave surface 71a of the fixed portion 71 as an outer peripheral surface. A cylindrical convex surface 72b that contacts, a cylindrical convex surface 72c that contacts the cylindrical concave surface 71b of the fixed portion 71, and a step surface 72g that contacts the step surface 71c of the fixed portion 71 between the cylindrical convex surfaces 72b and 72c. ing. The cylindrical convex surface 72c of the movable portion 72 of the upper end plate 73 is provided with a gear 72e that goes around the cylindrical convex surface 72c in the circumferential direction. The movable part 72 further includes a channel groove 72d that circulates along the circumferential direction on the cylindrical convex surface 72b, and a second suction hole 72f connected to the channel groove 72d. As shown in FIGS. 1 and 2A, the second suction hole 72f extends in the axial direction from the flow path groove 72d toward the working chamber 55a of the first cylinder 41, and operates on the suction side in the first cylinder 41. Room 5 5a [Communicate!
[0030] 図 3Cに示すように、固定部 71と可動部 72とは、固定部 71の貫通孔 71fに可動部 7 1が回転自在に嵌め込まれて一体化される。固定部 71の段差面 71cと可動部 72の 段差面 72gとは、互いに当接して、可動部 72が固定部 71より上側に抜け出るのを防 止する。固定部 71の下端面と可動部 72の下端面とは、同一平面を構成し、この平面 が第 1シリンダ 41の上方の隔壁を構成する。 As shown in FIG. 3C, the fixed portion 71 and the movable portion 72 are integrated by the movable portion 71 being rotatably fitted in the through hole 71f of the fixed portion 71. Stepped surface 71c of fixed part 71 and movable part 72 The stepped surfaces 72g abut against each other to prevent the movable portion 72 from coming out above the fixed portion 71. The lower end surface of the fixed portion 71 and the lower end surface of the movable portion 72 constitute the same plane, and this plane constitutes a partition above the first cylinder 41.
[0031] 可動部 72を回転させると、第 2吸入孔 72fは、シャフト 13の中心軸 70との間の距離 を一定に保持しながら、中心軸 70を回転中心として回転移動する。可動部 72の回 転は、第 1シリンダ 41の吸入側の作動室 55aにおける第 2吸入孔 72の位置の相対的 変化をもたらす。すなわち、第 1吸入孔 41bと第 1シリンダ 41の吸入側の作動室 55a との接続位置が固定されているのに対し、第 2吸入孔 72fと作動室 55aとの接続位置 は可変である。後述するように、第 2吸入孔 72fの接続位置の変更が、膨張機一体型 圧縮機における密度比一定の制約の回避を可能とする。  [0031] When the movable portion 72 is rotated, the second suction hole 72f rotates and moves around the central axis 70 while maintaining a constant distance from the central axis 70 of the shaft 13. The rotation of the movable portion 72 causes a relative change in the position of the second suction hole 72 in the working chamber 55a on the suction side of the first cylinder 41. That is, while the connection position between the first suction hole 41b and the working chamber 55a on the suction side of the first cylinder 41 is fixed, the connection position between the second suction hole 72f and the working chamber 55a is variable. As will be described later, the change in the connection position of the second suction hole 72f makes it possible to avoid the restriction of the constant density ratio in the compressor with an expander integrated type.
[0032] 図 3A,図 3B,図 3Cを参照して説明したように、第 2吸入孔 72fは、作動流体が最 初に流入する 1番目の流体機構に含まれる第 1シリンダ 41の端面を閉塞する閉塞部 材としての端板 73に設けるとよい。簡単な構成で移動可能な第 2吸入孔 72fを構成 できるためである。また、上側端板 73のシリンダ 41側は平面であるため、端板 73を 複数の部品で構成しても加工精度を高めることは容易である。  [0032] As described with reference to FIG. 3A, FIG. 3B, and FIG. 3C, the second suction hole 72f defines the end face of the first cylinder 41 included in the first fluid mechanism into which the working fluid flows first. It may be provided on the end plate 73 as a closing member to be closed. This is because the movable second suction hole 72f can be configured with a simple configuration. Further, since the cylinder 41 side of the upper end plate 73 is a flat surface, it is easy to increase the processing accuracy even if the end plate 73 is composed of a plurality of parts.
[0033] また、上記で説明したように、端板 73の少なくとも一部を、シャフト 13を回転中心と する回転が可能な可動部 72とし、可動部 72に第 2吸入孔 72fを設けることが好まし V、。第 2吸入孔 72fの移動範囲を大きく確保することが容易になるためである。  [0033] Further, as described above, at least a part of the end plate 73 may be the movable part 72 that can rotate around the shaft 13 and the movable part 72 may be provided with the second suction hole 72f. Preferred V ,. This is because it is easy to ensure a large movement range of the second suction hole 72f.
[0034] また、本実施形態においては、可動部 72がシャフト 13を支持する円筒状の軸受面  In this embodiment, the cylindrical bearing surface on which the movable portion 72 supports the shaft 13
(貫通孔 72aの内周面)を含んでいる。したがって、シャフト 13を支持するための軸受 を別途設ける必要がなぐこれにより、部品点数増を抑制することができる。  (The inner peripheral surface of the through hole 72a). Therefore, it is not necessary to separately provide a bearing for supporting the shaft 13, thereby suppressing an increase in the number of parts.
[0035] また、固定部 71は、環状の形態を有し、膨張機部 40の外部から可動部 72に設けら れた第 2吸入孔 72fへと作動流体を供給する流入路 71d (第 1流入路)と、流入路 71 dから分岐し、第 1吸入孔 41bに作動流体を供給する流入路 71e (第 2流入路)とが内 部に設けられている。このような固定部 71に可動部 72が回転可能に合体する。 2つ の流入路 71d, 71eを固定部 71の内部に設けることにより、第 2吸入孔 72fへ作動流 体を導く配管が不要となるので、密閉容器 11の内部の省スペース化に有利である。 また、固定部 71の内部に流入路 71d, 71eを設けるので、作動流体の漏れの問題が 生じにくい。 The fixed portion 71 has an annular shape, and an inflow path 71d (first first) for supplying the working fluid from the outside of the expander portion 40 to the second suction hole 72f provided in the movable portion 72. An inflow path) and an inflow path 71e (second inflow path) that branches from the inflow path 71d and supplies the working fluid to the first suction hole 41b are provided inside. The movable portion 72 is rotatably joined to such a fixed portion 71. By providing the two inflow passages 71d and 71e inside the fixed portion 71, piping for guiding the working fluid to the second suction hole 72f becomes unnecessary, which is advantageous for space saving inside the sealed container 11. . In addition, since the inflow passages 71d and 71e are provided inside the fixed portion 71, there is a problem of leakage of the working fluid. Hard to occur.
[0036] 図 1に戻って説明を続ける。上側端板 73の固定部 71には、回転部 72の歯車 72eと 嚙み合う歯車 75と、歯車 75を駆動する回転電動機 76 (電動ァクチユエータ)と力さら に設置されている。歯車 72e, 75を介して、可動部 72は回転電動機 76により駆動さ れる。このように、膨張機部 40は、可動部 72を回転させる駆動機構 75, 76をさらに 備えていてもよい。駆動機構 75, 76は、密閉容器 11の外部に設けられた、可動部 7 2の回転角度を制御する制御器(図示省略)に接続され、この制御器からの制御信号 を受けて可動部 72を回転させ、作動室 55aへの接続位置を制御する。回転電動機 7 6としてステッピングモータやサーボモータを用いると、第 2吸入孔 72fの位置を高精 度に制御することが可能となる。また、可動部 72の回転角度を検出する検出器 (例え ばエンコーダ)を設けてもよい。なお、可動部 72の駆動手段として、回転電動機 76以 外の手段、例えば流体の圧力差を利用するァクチユエータを用いても構わない。  [0036] Returning to FIG. On the fixed portion 71 of the upper end plate 73, a gear 75 that meshes with the gear 72e of the rotating portion 72, a rotary motor 76 (electric actuator) that drives the gear 75, and a force plate are installed. The movable portion 72 is driven by the rotary motor 76 via the gears 72e and 75. As described above, the expander unit 40 may further include drive mechanisms 75 and 76 that rotate the movable unit 72. The drive mechanisms 75 and 76 are connected to a controller (not shown) that is provided outside the hermetic container 11 and controls the rotation angle of the movable part 72, and receives a control signal from the controller to move the movable part 72. To control the connection position to the working chamber 55a. If a stepping motor or servo motor is used as the rotary motor 76, the position of the second suction hole 72f can be controlled with high accuracy. Further, a detector (for example, an encoder) for detecting the rotation angle of the movable part 72 may be provided. As a driving means for the movable portion 72, a means other than the rotary motor 76, for example, an actuator that uses a pressure difference of fluid may be used.
[0037] 吸入管 53から膨張機部 40に流入した作動流体は、上側端板 73の固定部 71の流 入路 71dから二つの経路に分かれて作動室 55aに流入する。第 1経路は、固定部 71 内の流入路 71d、分岐流入路 71e、第 1シリンダ 41内の流入路 41a、第 1吸入孔 41b を経由する経路である。第 2経路は、固定部 71内の流入路 71d、可動部 72の流路 溝 72d、第 2吸入孔 72fを経由する経路である。このように、膨張機部 40では、吸気 管 53から最初の作動室 55aに、作動室 55aとの接続位置が固定された第 1吸入孔 4 lbと、作動室 55aとの接続位置が可変である第 2吸入孔 72fとを経由して、作動流体 を供給する。これら 2つの経路には、開閉可能な電磁弁や差圧弁などの流量制御機 構を配置する必要はない。  [0037] The working fluid that has flowed into the expander section 40 from the suction pipe 53 is divided into two paths from the inflow path 71d of the fixing section 71 of the upper end plate 73, and flows into the working chamber 55a. The first path is a path that passes through the inflow path 71d in the fixed portion 71, the branch inflow path 71e, the inflow path 41a in the first cylinder 41, and the first suction hole 41b. The second path is a path that passes through the inflow path 71d in the fixed part 71, the flow path groove 72d of the movable part 72, and the second suction hole 72f. As described above, in the expander unit 40, the connection position between the first suction hole 4 lb in which the connection position to the working chamber 55a is fixed from the intake pipe 53 to the first working chamber 55a and the working chamber 55a is variable. The working fluid is supplied via a second suction hole 72f. It is not necessary to place flow control mechanisms such as openable / closable solenoid valves and differential pressure valves in these two paths.
[0038] 第 1シリンダ 41に吸入された作動流体は、第 2シリンダ 42を経由し、下側端板 51に 設けられた吐出孔 51a、マフラー 52の内部空間 52a、第 1および第 2シリンダ 41, 42 を貫通する流路 57、をこの順に経由して吐出管 54から冷凍サイクルへと吐出される 。なお、吐出孔 51aは、第 2シリンダ 42に設けられていてもよい。  [0038] The working fluid sucked into the first cylinder 41 passes through the second cylinder 42, discharge holes 51a provided in the lower end plate 51, the inner space 52a of the muffler 52, the first and second cylinders 41, , 42 are discharged from the discharge pipe 54 to the refrigeration cycle via the flow path 57 penetrating in this order. The discharge hole 51a may be provided in the second cylinder 42.
[0039] 図 2Bに示すように、下側端板 51に設けられた吐出孔 51aには、吐出弁 74が設置 されている。吐出弁 74は、例えば金属の薄板力も構成され、吐出孔 51aをマフラー 5 2の内部空間 52a側力も塞ぐように配置されている。吐出弁 74は、上流側(第 2シリン ダ 42の吐出側の作動室 56b側)の圧力が下流側(マフラー 52の内部空間 52a側)の 圧力より高くなると開く差圧弁である。吐出弁 74は、膨張機部 40における作動流体 の過膨張を防止する機能を有する。 As shown in FIG. 2B, a discharge valve 74 is installed in the discharge hole 51 a provided in the lower end plate 51. The discharge valve 74 is also configured with, for example, a metal thin plate force, and is disposed so as to close the discharge hole 51a with the internal space 52a side force of the muffler 52. The discharge valve 74 is connected to the upstream side (second cylinder This is a differential pressure valve that opens when the pressure in the discharge chamber 42b on the discharge side of the compressor 42 becomes higher than the pressure on the downstream side (on the inner space 52a side of the muffler 52). The discharge valve 74 has a function of preventing overexpansion of the working fluid in the expander unit 40.
[0040] 図 4A,図 4B,図 4Cに、第 1吸入孔 41bおよび第 2吸入孔 72fの位置を示す。第 2 吸入孔 72fの位置は、シャフト 13を中心とした第 1ベーン 46の位置を基準とする角度 φにより表示して、 20° (図 4A)、90° (図 4B)、 180° (図 4C)にそれぞれ調整さ れている。角度 φは、正確には、第 1ベーン 46と第 1ピストン 44との接点とシャフト 13 の中心軸 70とを結ぶ第 1直線 80を、中心軸 70を中心として、シャフト 13の回転方向 (図示した例では時計回り)について、第 2吸入孔 72fとシャフト 13の中心軸 70とを結 ぶ第 2直線 90にまで回転させるときの角度である。この表記方法に従うと、図示した 例では、第 1吸入孔 41bは 20° の位置に固定されている。また、吐出孔 51aは、第 2 シリンダ 42における同様の表記において、 340° の位置に固定されている。これに 対し、第 2吸入孔 72fの位置は、 0° 力 360° の間で任意に設定できる。  4A, 4B, and 4C show the positions of the first suction hole 41b and the second suction hole 72f. The position of the second suction hole 72f is indicated by an angle φ with respect to the position of the first vane 46 around the shaft 13, and is 20 ° (Fig. 4A), 90 ° (Fig. 4B), 180 ° (Fig. Each is adjusted to 4C). More precisely, the angle φ is the rotation direction of the shaft 13 about the central axis 70 (shown in the figure) on the first straight line 80 connecting the contact point between the first vane 46 and the first piston 44 and the central axis 70 of the shaft 13. (Clockwise in this example) is an angle when rotating to the second straight line 90 connecting the second suction hole 72f and the central axis 70 of the shaft 13. According to this notation, in the illustrated example, the first suction hole 41b is fixed at a position of 20 °. Further, the discharge hole 51a is fixed at a position of 340 ° in the same notation in the second cylinder 42. On the other hand, the position of the second suction hole 72f can be arbitrarily set between 0 ° force and 360 °.
[0041] 図 5Aに、第 2吸入孔 72fの角度 φが 90° の場合の第 1シリンダ 41の動作原理図を 、図 5Βに、上記に対応する第 2シリンダ 42の動作原理図をそれぞれ示す。ここでは、 シャフト 13の回転角 Θを、第 1シリンダ 41と第 1ピストン 44との接点力 第 1ベーン 46 に位置するいわゆる上死点にあるときを 0° とし、シャフト 13の回転方向である時計 回りを正として表示する。  FIG. 5A shows an operation principle diagram of the first cylinder 41 when the angle φ of the second suction hole 72f is 90 °, and FIG. 5 図 shows an operation principle diagram of the second cylinder 42 corresponding to the above. . Here, the rotational angle Θ of the shaft 13 is 0 ° when the contact force between the first cylinder 41 and the first piston 44 is at the so-called top dead center located at the first vane 46, and the rotational direction of the shaft 13 Clockwise is displayed as positive.
[0042] Θ =0° 以降に生成する作動室 55aに、 Θ = 20° 以降において第 1吸入孔 41bか ら作動流体が流入する。 0 = 90° 以降は、第 1吸入孔 41bおよび第 2吸入孔 72fか ら作動室 55aに作動流体が流入する。 0 = 360° を過ぎると、作動室 55aは作動室 55bに変化し、かつ、連通孔 43aを介して第 2シリンダ 42の作動室 56aと連通する。さ らにシャフト 13が回転すると、 0 = 380° (図示せず)において、第 1シリンダ 41と第 1ピストン 44との接点が第 1吸入孔 41bを通過し、作動室 55bと第 1吸入孔 41bとの連 通が断たれる。従来の 2段ロータリ式の膨張機部では、この時点で作動流体の吸入 過程が終了する。  [0042] The working fluid flows into the working chamber 55a generated after Θ = 0 ° from the first suction hole 41b after Θ = 20 °. After 0 = 90 °, the working fluid flows into the working chamber 55a from the first suction hole 41b and the second suction hole 72f. After passing through 0 = 360 °, the working chamber 55a changes to the working chamber 55b and communicates with the working chamber 56a of the second cylinder 42 through the communication hole 43a. When the shaft 13 further rotates, at 0 = 380 ° (not shown), the contact between the first cylinder 41 and the first piston 44 passes through the first suction hole 41b, and the working chamber 55b and the first suction hole Communication with 41b is lost. In the conventional two-stage rotary expander, the suction process of the working fluid is completed at this point.
[0043] これに対し、本実施形態の膨張機部 40には、第 2吸入孔 72fが設けられているため 、 Θ = 380° に至っても、第 2吸入孔 72fからの作動流体の流入が継続する。この膨 張機部 40では、 Θ =450° になり、第 1シリンダ 41と第 1ピストン 44との接点が第 2吸 入孔 72fを通過して作動室 55bと第 2吸入孔 72fとの連通が断たれた時点で、作動流 体の吸入過程が終了する。 [0043] On the other hand, since the second suction hole 72f is provided in the expander unit 40 of the present embodiment, the working fluid does not flow from the second suction hole 72f even when Θ = 380 °. continue. This swelling In the tensioning unit 40, Θ = 450 °, and the contact between the first cylinder 41 and the first piston 44 passes through the second suction hole 72f, and the communication between the working chamber 55b and the second suction hole 72f is cut off. At that time, the working fluid inhalation process is complete.
[0044] 吸入過程が終了すると、作業流体の膨張過程が開始される。シャフト 13がさらに回 転すると、作動室 55bの容積は減少する力 第 1シリンダ 41よりも第 2シリンダ 42のほ うが軸方向に高く容積が大きいために、作動室 56aの容積はそれ以上の割合で増加 する。その結果、シャフト 13の回転に伴い、作動室 55bと作動室 56aの容積の和は 増大し、作業流体は膨張する。 0 = 700° (図示せず)に至ると、第 2シリンダ 42と第 2ピストン 45の接点が吐出孔 5 laを通過し、作動室 56aが吐出孔 5 laと連通する。こ の時点で、膨張過程は終了する。  [0044] When the suction process is completed, the working fluid expansion process is started. When the shaft 13 further rotates, the volume of the working chamber 55b decreases.The second cylinder 42 is higher in the axial direction than the first cylinder 41, and the volume is larger. Increases at a rate. As a result, as the shaft 13 rotates, the sum of the volumes of the working chamber 55b and the working chamber 56a increases, and the working fluid expands. When reaching 0 = 700 ° (not shown), the contact between the second cylinder 42 and the second piston 45 passes through the discharge hole 5 la, and the working chamber 56 a communicates with the discharge hole 5 la. At this point, the expansion process ends.
[0045] 膨張過程が終了すると、作業流体の吐出過程が開始される。 0 = 720° において 、作動室 55bは消滅、作動室 56aは作動室 56bに変化し、さらに、シャフト 13が回転 するにつれて、作動室 56bの容積が減少し、作動流体が吐出孔 51aから吐き出され る。 0 = 1080° で作動室 56bは消滅し、吐出過程が終了する。  [0045] When the expansion process is completed, the discharge process of the working fluid is started. At 0 = 720 °, the working chamber 55b disappears, the working chamber 56a changes to the working chamber 56b, and as the shaft 13 rotates, the volume of the working chamber 56b decreases and the working fluid is discharged from the discharge hole 51a. The At 0 = 1080 °, the working chamber 56b disappears and the discharge process ends.
[0046] 図 6Aに、シャフト 13の回転角 Θと、吸入から吐出に至る各過程の移行時点との関 係を、第 2吸入孔 72fの角度 φが 20° , 90° , 180° の場合について示す。上記説 明から明らかなように、吸入過程が終了するシャフト 13の回転角 Θは、第 1シリンダ 4 1と第 1ピストン 44との接点が 2回目に第 2吸入孔 72fを通過する際の角度となる。こ の角度は、 Θ = (360+ φ )と表すことができる。従って、第 2吸入孔 72fの角度 φが 大きくなるにつれて、吸入過程力 膨張過程へと移行するタイミングが遅くなり、吸入 過程が長くなつて膨張過程が短くなる。すなわち、吸入過程が行われる時間の長さに 対する膨張過程が行われる時間の長さの比が小さくなる。  [0046] FIG. 6A shows the relationship between the rotation angle Θ of the shaft 13 and the transition point of each process from suction to discharge when the angle φ of the second suction hole 72f is 20 °, 90 °, and 180 °. Show about. As is apparent from the above description, the rotation angle Θ of the shaft 13 at which the suction process ends is the angle at which the contact point between the first cylinder 41 and the first piston 44 passes the second suction hole 72f for the second time. It becomes. This angle can be expressed as Θ = (360 + φ). Therefore, as the angle φ of the second suction hole 72f increases, the timing of shifting to the suction process force expansion process is delayed, and the expansion process becomes shorter as the suction process becomes longer. That is, the ratio of the length of time during which the expansion process is performed to the length of time during which the inhalation process is performed becomes small.
[0047] 図 6Bに、シャフト 13の回転角 Θと作動室容積との関係を示す。作動流体は、作動 室 55a、作動室 55b、作動室 56a、作動室 56bの順に移動する力 その過程で作動 室の容積は正弦波曲線状に変化する。図中の縦軸に、第 2吸入孔 72fの角度 φが 2 0° , 90° , 180° の場合の吸入過程終了時の作動室の容積である吸入容積 Ves φと、吐出過程開始時の作動室の容積である吐出容積 Vedを示す。 φの増加ととも に吸入容積 Ves φは増加するが、 φによらず吐出容積 Vedは一定である。 [0048] 以上のように、本実施形態では、従来の 2段ロータリ式の膨張機部 40に設けられて いた固定された第 1吸入孔 41bに加え、移動可能な第 2吸入孔 72fを設けることによ り、作動室 55a, 55b, 56a, 56bの吸入過程終了時の容積である吸入容積 Ves φを 可変とした。これにより、圧縮機部 20と膨張機部 40の入口側の作動流体の密度比( Vcs/Ves φ )を制御することが可能となる。 FIG. 6B shows the relationship between the rotation angle Θ of the shaft 13 and the working chamber volume. The working fluid is a force that moves in the order of the working chamber 55a, the working chamber 55b, the working chamber 56a, and the working chamber 56b. On the vertical axis in the figure, the suction volume Ves φ, which is the volume of the working chamber at the end of the suction process when the angle φ of the second suction hole 72f is 20 °, 90 °, 180 °, and the discharge process start time Indicates the discharge volume Ved, which is the volume of the working chamber. The suction volume Ves φ increases with increasing φ, but the discharge volume Ved is constant regardless of φ. [0048] As described above, in this embodiment, in addition to the fixed first suction hole 41b provided in the conventional two-stage rotary expander unit 40, the movable second suction hole 72f is provided. As a result, the suction volume Ves φ, which is the volume at the end of the suction process of the working chambers 55a, 55b, 56a, 56b, was made variable. As a result, the density ratio (Vcs / Ves φ) of the working fluid on the inlet side of the compressor unit 20 and the expander unit 40 can be controlled.
[0049] 図 7に、本実施形態の膨張機一体型圧縮機を用いた冷凍サイクルのモリエル線図 を例示する。密度比を変化させることができるため、 2段ロータリ式の膨張機部 40の 入口側の状態に相当する点 Cを、等温線(図示した例では T= 35°C)に沿って圧力 だけを変化させ、点 または点 C〃 に移動させることが可能となる。こうして、 2段ロー タリ式の膨張機部 40の入口側の温度と圧力が自由に制御できるようになり、従来の 膨張機一体型圧縮機を用いた冷凍サイクルでは不可能であった、効率の良い冷凍 サイクルの運転が可能となる。  [0049] FIG. 7 illustrates a Mollier diagram of a refrigeration cycle using the expander-integrated compressor of the present embodiment. Since the density ratio can be changed, the point C corresponding to the state of the inlet side of the two-stage rotary expander section 40 is changed to the pressure along the isotherm (T = 35 ° C in the example shown). It can be changed and moved to point or point C〃. In this way, the temperature and pressure on the inlet side of the two-stage rotary type expander section 40 can be freely controlled, which is not possible with a conventional refrigeration cycle using an expander-integrated compressor. A good refrigeration cycle can be operated.
[0050] 特に、本実施形態のように、シャフト 13の軸を中心に回転が可能である可動部 72 に第 2吸入孔 72fを形成し、角度 φを 0° 力も 360° まで調整可能とすると、制御の 幅が大きいため、冷凍サイクルの効率を図りやすい。  [0050] In particular, as in the present embodiment, the second suction hole 72f is formed in the movable part 72 that can rotate around the axis of the shaft 13, and the angle φ can be adjusted to 0 ° force to 360 °. Because of the wide control range, it is easy to improve the efficiency of the refrigeration cycle.
[0051] 次に、吐出孔 51aに吐出弁 74を設けたことによる効果について説明する。図 8に作 動室の容積と圧力の関係(PV線図)を示す。図中の記号の添え字 φは第 2吸入孔 7 2fの角度 φである。点 P φは膨張過程の開始、点 S φは膨張過程の終了、点 Tは吐 出過程の開始を表す。なお、二酸ィヒ炭素を作動流体とする冷凍サイクルを想定して いるため、膨張過程の途中で相変化に起因する曲点 Q φが示されている。  [0051] Next, the effect of providing the discharge valve 74 in the discharge hole 51a will be described. Figure 8 shows the relationship between the working chamber volume and pressure (PV diagram). The subscript φ of the symbol in the figure is the angle φ of the second suction hole 72f. Point P φ represents the start of the expansion process, point S φ represents the end of the expansion process, and point T represents the start of the discharge process. In addition, since a refrigeration cycle using carbon dioxide acid as the working fluid is assumed, the inflection point Q φ due to phase change is shown during the expansion process.
[0052] 吐出容積 Vedが一定であるため、第 2吸入孔 72fの移動に伴って吸入容積 Ves φ が大きくなるにつれて、膨張過程の前後における容積比(=VedZVes φ )が小さく なり、膨張過程終了時の圧力 S φが高くなる。このため、例えば、第 2吸入孔 72fの角 度 φの範囲を 20° 力も 180° の範囲で制御する場合、最大角度 180° を選択した 場合の膨張過程終了時の圧力 S が冷凍サイクルの低圧側圧力 Pedより低くなるよう  [0052] Since the discharge volume Ved is constant, the volume ratio (= VedZVes φ) before and after the expansion process decreases as the suction volume Ves φ increases as the second suction hole 72f moves, and the expansion process ends. When the pressure S φ increases. For this reason, for example, when the range of the angle φ of the second suction hole 72f is controlled in the range of 20 ° force and 180 °, the pressure S at the end of the expansion process when the maximum angle 180 ° is selected is the low pressure of the refrigeration cycle. To be lower than side pressure Ped
180  180
に設定し、不足膨張が生じないように設計することが望ましい。不足膨張が生じると、 作動流体の圧力差によるエネルギーの一部が回収できなくなるためである。  It is desirable to design so that underexpansion does not occur. This is because when the underexpansion occurs, a part of the energy due to the pressure difference of the working fluid cannot be recovered.
[0053] このように設計すると、少なくとも角度 φを 180° 以下に設定した場合に、過膨張が 生じる。過膨張とは、圧力 Ρ φが冷凍サイクルの低圧側圧力 Pedよりも低くなる現 象である。過膨張が発生すると、吐出過程において、吐出孔 51aから、作動室 56b内 よりも圧力が高いマフラー 52の内部空間 52aに作動流体を押出すために、過膨張損 失が発生する。過膨張損失の大きさは、図 8における三角形 S φ Τの面積により 示すことができる。 [0053] With this design, overexpansion occurs at least when the angle φ is set to 180 ° or less. Arise. Overexpansion is a phenomenon in which the pressure Ρφ becomes lower than the low-pressure side pressure Ped of the refrigeration cycle. When overexpansion occurs, an overexpansion loss occurs because the working fluid is pushed out from the discharge hole 51a into the inner space 52a of the muffler 52, which has a higher pressure than the inside of the working chamber 56b. The magnitude of the overexpansion loss can be shown by the area of the triangle S φ に お け る in Fig. 8.
[0054] しかし、吐出孔 51aに吐出弁 74を設けておくと、作動室 56bで過膨張 C φ D φが生 じた場合は、吐出過程において再圧縮が行われる。吐出過程において、作動室 56b は、シャフト 13の回転とともに容積が小さくなる。吐出孔 51aに吐出弁 74を配置して おくと、過膨張により低下した作動室 56bの圧力が冷凍サイクルの低圧側圧力 Pdに 等しくなるまで吐出弁 74が開力ないため、作動流体が作動室 5bで再圧縮される。こ うして、吐出弁 74を配置しておけば、過膨張損失を防ぐことができる。  However, if the discharge valve 74 is provided in the discharge hole 51a, if overexpansion CφDφ occurs in the working chamber 56b, recompression is performed in the discharge process. In the discharging process, the volume of the working chamber 56b decreases as the shaft 13 rotates. If the discharge valve 74 is arranged in the discharge hole 51a, the discharge fluid does not open until the pressure in the working chamber 56b, which has decreased due to overexpansion, becomes equal to the low-pressure side pressure Pd of the refrigeration cycle. Recompressed in 5b. Thus, if the discharge valve 74 is arranged, an overexpansion loss can be prevented.
[0055] 以下、本実施形態の膨張機一体型圧縮機のその他の特徴を説明する。 Hereinafter, other features of the expander-integrated compressor of the present embodiment will be described.
[0056] 本実施形態では、第 2吸入孔 72fを設けた上側端板 73の可動部 72を、シャフト 13 を中心として、シャフト 13の回転方向と同じ方向に回転可能とするとよい。シャフト 13 と可動部 72との間の摩擦力により、小さい動力で可動部 72を回転させることができる ためである。これによれば、回転電動機 76を小型化し、密閉容器 11の内部に収納す ることが容易となる。 In the present embodiment, it is preferable that the movable portion 72 of the upper end plate 73 provided with the second suction hole 72f be rotatable about the shaft 13 in the same direction as the rotation direction of the shaft 13. This is because the movable part 72 can be rotated with a small amount of power by the frictional force between the shaft 13 and the movable part 72. According to this, it becomes easy to reduce the size of the rotary motor 76 and store it in the sealed container 11.
[0057] 本実施形態では、可動部 72が 360° 回転すれば元の位置に戻ってくる。このため 、常に同じ方向にだけ可動部 72を回転駆動すればよぐ回転電動機 76の制御が簡 単である。シャフト 13と可動部 72との間の摩擦力が回転駆動の妨げになることもない  In the present embodiment, when the movable part 72 rotates 360 °, it returns to the original position. For this reason, it is easy to control the rotary electric motor 76 that only needs to rotate the movable part 72 in the same direction at all times. The frictional force between the shaft 13 and the movable part 72 does not interfere with the rotational drive.
[0058] 本実施形態では、膨張機部 40の吸入容積 Ves φを可変としたことにより、膨張機を 用いな!/、冷凍サイクルに用いる通常の構造を有する圧縮機部 20とした。圧縮機部 2 0については、通常の構造をそのまま用いることができるため、開発コストを削減でき る。 [0058] In this embodiment, since the suction volume Ves φ of the expander unit 40 is variable, the expander unit 40 is not used! / And the compressor unit 20 has a normal structure used in the refrigeration cycle. Since the compressor unit 20 can use the normal structure as it is, the development cost can be reduced.
[0059] 本実施形態の膨張機一体型圧縮機を用いると、冷凍サイクルの作動流体の循環量 を圧縮機部 20の回転数で制御しつつ、膨張機部 40は圧縮機部 20と同一回転数で 回転させながら、運転条件に応じて吸入容積 Ves φを調整することができる。従って 、圧縮機部 20と膨張機部 40の冷凍サイクルの制御上の役割分担が可能であり、膨 張機一体型圧縮機を用いた冷凍サイクルの制御アルゴリズムも容易になる。 [0059] When the expander-integrated compressor of the present embodiment is used, the expander unit 40 rotates in the same rotation as the compressor unit 20 while controlling the circulation amount of the working fluid in the refrigeration cycle by the rotation speed of the compressor unit 20. The suction volume Ves φ can be adjusted according to the operating conditions while rotating by a number. Therefore The role of the compressor unit 20 and the expander unit 40 in the control of the refrigeration cycle can be shared, and the control algorithm of the refrigeration cycle using the expander-integrated compressor can be facilitated.
[0060] 本実施形態の膨張機一体型圧縮機に用いる作動流体の種類に制限はないが、二 酸化炭素が適している。膨張機による動力回収の効果がより顕著となるためである。 このため、作動流体を二酸化炭素とすると、密度比一定を回避することによる高効率 化の効果も顕著になる。  [0060] The type of working fluid used in the expander-integrated compressor of the present embodiment is not limited, but carbon dioxide is suitable. This is because the effect of power recovery by the expander becomes more prominent. For this reason, when the working fluid is carbon dioxide, the effect of increasing the efficiency by avoiding a constant density ratio becomes remarkable.
[0061] なお、本実施形態では、第 1吸入孔 41bとともに移動可能な第 2吸入孔 72fを設け たが、移動可能な吸入孔の数は 2以上あってもよぐこの場合は、最も下流側の位置 に配置される吸入孔により、吸入容積 Ves φが定まる。また、本実施形態では、膨張 機部 40を 2段としたが、 3段以上の場合でも、 1段目のシリンダに対して移動可能な 第 2吸入孔を設けることにより、上記と同様の効果を得ることができる。  [0061] In the present embodiment, the second suction hole 72f movable with the first suction hole 41b is provided, but the number of movable suction holes may be two or more. The suction volume Ves φ is determined by the suction hole arranged at the side position. Further, in this embodiment, the expander unit 40 has two stages, but even when there are three or more stages, the same effect as described above can be obtained by providing the second suction hole that can move with respect to the first stage cylinder. Can be obtained.
[0062] 次に、図 9Aに、本実施形態の膨張機一体型圧縮機を用いた動力回収式のヒート ポンプの構成を示す。図 9Aに示すヒートポンプは、膨張機一体型圧縮機 100、ガス クーラ (放熱器) 2、蒸発器 4およびそれらを互 ヽに接続する管体 88 (冷媒管)を含む 。図 20に示す従来例においては、膨張機 3に並列接続された副回路 9が不可欠であ つたが、本実施形態の膨張機一体型圧縮機を用いたヒートポンプでは、そうした副回 路が本質的には不要である。ただし、他の目的、例えば、ヒートポンプの起動および 停止を安定して行う目的で、副回路を設けてもよい。  Next, FIG. 9A shows a configuration of a power recovery type heat pump using the expander-integrated compressor of the present embodiment. The heat pump shown in FIG. 9A includes an expander-integrated compressor 100, a gas cooler (heat radiator) 2, an evaporator 4, and a pipe body 88 (refrigerant pipe) that connects them together. In the conventional example shown in FIG. 20, the subcircuit 9 connected in parallel to the expander 3 is indispensable. However, in the heat pump using the expander-integrated compressor of this embodiment, such a subcircuit is essential. Is not necessary. However, a sub-circuit may be provided for other purposes, for example, for stably starting and stopping the heat pump.
[0063] さらに、本実施形態の膨張機部 40は、単体で用いても、すなわち、圧縮機と分離し た膨張機として用いてもよい。図 9Bに、分離型の膨張機を用いた動力回収式のヒー トポンプの構成を示す。この装置は、圧縮機 81、ガスクーラ (放熱器) 82、膨張機 83 および蒸発器 84を備え、さらに圧縮機 81、ガスクーラ 82、膨張機 83および蒸発器 8 4をこの順に接続するとともに作動流体が循環する管体 88 (冷媒管)を備えて!/、る。 膨張機 83は、図 1等で説明した膨張機部 40を含む。このヒートポンプでは、膨張機 8 3で得た作動流体の膨張エネルギーは発電機 86により電気エネルギーに変換され、 圧縮機 81を回転させる回転電動機 85の入力の一部に用 、られる。  [0063] Furthermore, the expander unit 40 of the present embodiment may be used alone, that is, as an expander separated from the compressor. Fig. 9B shows the configuration of a power recovery heat pump using a separate expander. This apparatus includes a compressor 81, a gas cooler (heat radiator) 82, an expander 83, and an evaporator 84. Further, the compressor 81, the gas cooler 82, the expander 83, and the evaporator 84 are connected in this order and the working fluid is supplied. Equipped with a circulating pipe 88 (refrigerant pipe)! The expander 83 includes the expander unit 40 described with reference to FIG. In this heat pump, the expansion energy of the working fluid obtained by the expander 83 is converted into electric energy by the generator 86 and used as part of the input of the rotary motor 85 that rotates the compressor 81.
[0064] 図 10に、一般的な発電機 86の効率曲線を示す。発電機 86は、所定の定格回転数 Nrで発電効率が最も高くなるように設計されているため、回転数が定格回転数から 離れるほど発電効率が低下する。このため、発電機 86の回転数は、できるだけ定格 回転数 Nrの近傍とすることが望ましい。しかし、冷凍サイクルでは、作動流体の循環 量や密度が変化するため、吸入容積 Vesが一定の膨張機では定格回転数 Nrの近 傍だけで運転することが困難である。第 1の実施形態の膨張機部 40を膨張機 83とし て用いれば、吸入容積 Ves φの調整により回転数を定格回転数 Nrの近傍に制御す ることが可能となる。 FIG. 10 shows an efficiency curve of a general generator 86. Since the generator 86 is designed to have the highest power generation efficiency at a predetermined rated speed Nr, the speed is determined from the rated speed. The further away, the lower the power generation efficiency. For this reason, it is desirable that the rotational speed of the generator 86 be as close to the rated rotational speed Nr as possible. However, in the refrigeration cycle, the circulating volume and density of the working fluid change, so it is difficult to operate the expander with a constant suction volume Ves only near the rated speed Nr. If the expander unit 40 of the first embodiment is used as the expander 83, the rotation speed can be controlled to be close to the rated rotation speed Nr by adjusting the suction volume Ves φ.
[0065] (第 2の実施形態) [0065] (Second Embodiment)
先の実施形態でも触れたように、膨張機の吸入容積を変化させるための第 2吸入 孔の位置は、流体の圧力差を利用するァクチユエータによっても変化させることがで きる。流体の圧力差を利用するァクチユエータによれば、高温高圧下といった過酷な 環境下での信頼性が高い。また、膨張機で膨張させるべき作動流体を、上記ァクチ ユエータの動力源にそのまま利用できるという利点がある。本実施形態では、そのよう なァクチユエータを含む吸入容積可変型の膨張機について説明する。なお、本実施 形態において、第 1実施形態で説明したものと同一部品には、同一符号を使用する  As mentioned in the previous embodiment, the position of the second suction hole for changing the suction volume of the expander can also be changed by an actuator that uses the pressure difference of the fluid. An actuator that utilizes the pressure difference between fluids is highly reliable in harsh environments such as high temperature and pressure. Further, there is an advantage that the working fluid to be expanded by the expander can be used as it is for the power source of the above-mentioned actuator. In the present embodiment, a suction volume variable type expander including such an actuator will be described. In the present embodiment, the same reference numerals are used for the same parts as those described in the first embodiment.
[0066] 図 11は、第 2実施形態における膨張機の縦断面図である。図 11に示すように、膨 張機 303はロータリ式膨張機である。膨張機 303は、密閉容器 11、密閉容器 11内に 配置された発電機 86および、発電機 86に接続された膨張機部 400を備えている。 膨張機部 400は、ポート部材 412b (可動部材)、ポート部材 412bを収容するハウジ ング 413およびァクチユエータ 406を含む。 FIG. 11 is a longitudinal sectional view of the expander in the second embodiment. As shown in FIG. 11, the expander 303 is a rotary expander. The expander 303 includes a sealed container 11, a generator 86 disposed in the sealed container 11, and an expander unit 400 connected to the generator 86. The expander unit 400 includes a port member 412b (movable member), a housing 413 that houses the port member 412b, and an actuator 406.
[0067] ポート部材 412bは、 1番目の膨張機構のシリンダ 41 (第 1シリンダ)を閉塞し、シャ フト 13を回転中心としてシャフト 13とは独立して回転可能である。ポート部材 412bに は、追力卩の第 2吸入孔 412cが設けられている。ァクチユエータ 406は、動力源として 流体の圧力差を利用した流体圧ァクチユエータであり、高圧流体と低圧流体との差 圧に基づく大きさの回転力をポート部材 412bに与える。中心軸線 O周りにおけるポ 一ト部材 412bの回転角度を切り替えると、第 2吸入孔 412cの位置が変化する。これ により、膨張機部 400において、作動流体の吸入過程カゝら膨張過程に移行するタイミ ングが変化し、吸入過程が行われる時間の長さに対する膨張過程が行われる時間の 長さの比が変化する。 [0067] The port member 412b closes the cylinder 41 (first cylinder) of the first expansion mechanism, and can rotate independently of the shaft 13 with the shaft 13 as a rotation center. The port member 412b is provided with a second suction hole 412c for a follower. The actuator 406 is a fluid pressure actuator using a pressure difference between fluids as a power source, and applies a rotational force having a magnitude based on the differential pressure between the high pressure fluid and the low pressure fluid to the port member 412b. When the rotation angle of the port member 412b around the central axis O is switched, the position of the second suction hole 412c changes. As a result, in the expander unit 400, the timing of transition from the suction process of the working fluid to the expansion process changes, and the time for the expansion process to the length of time for the suction process to be performed is changed. The length ratio changes.
[0068] ァクチユエータ 406の動力源である高圧流体および低圧流体として、当該膨張機 3 03で膨張させるべき作動流体を用いることができる。このようにすれば、ァクチユエ一 タ 406を動作させるための流体を別途準備する必要がなくなる。また、異種の流体同 士の混合を防ぐ厳重なシール構造が不要である。ァクチユエータ 406の動力源として 作動流体を用いるための機構は、以下の説明によって明らかにされる。  [0068] As the high-pressure fluid and low-pressure fluid that are the power source of the actuator 406, a working fluid to be expanded by the expander 303 can be used. In this way, it is not necessary to separately prepare a fluid for operating the actuator 406. In addition, a strict seal structure that prevents mixing of different fluids is not required. The mechanism for using the working fluid as a power source for the actuator 406 will be clarified by the following description.
[0069] 本実施形態においては、シャフト 13の中心軸線 Oと平行な方向において、ァクチュ エータ 406、ポート部材 412bおよび 1番目の膨張機構のシリンダ 41 (第 1シリンダ)が 、この順番かつ同心状に並んで配置されている。このような配置とすれば、ァクチユエ ータ 406およびポート部材 412bを新たに設けることによる寸法拡大を極力抑制する ことが可能であるため、小型の膨張機 303に好都合である。  In the present embodiment, in the direction parallel to the central axis O of the shaft 13, the actuator 406, the port member 412b, and the cylinder 41 (first cylinder) of the first expansion mechanism are arranged in this order and concentrically. They are arranged side by side. Such an arrangement is advantageous for the small expander 303 because it is possible to suppress the size expansion due to the provision of the actuator 406 and the port member 412b as much as possible.
[0070] 以下、膨張機 303の各部分について個別に説明する。  [0070] Hereinafter, each part of the expander 303 will be described individually.
発電機 86は、密閉容器 11の側壁に固定された固定子 86bと、固定子 86bの内側 に配置された回転子 86aとを備えている。回転子 86aの中心部には、シャフト 13が固 定されている。シャフト 13は、回転子 13aから下方に向力つて延び、膨張機部 400に 共用されている。  The generator 86 includes a stator 86b fixed to the side wall of the hermetic container 11, and a rotor 86a disposed inside the stator 86b. A shaft 13 is fixed to the center of the rotor 86a. The shaft 13 extends downward from the rotor 13a and is shared by the expander unit 400.
[0071] 密閉容器 11の底部には、潤滑油を貯留する油溜まり 405が形成されている。シャフ ト 13の下端部は、この油溜まり 405内に配置されている。シャフト 13の下端部には図 示しない油ポンプが形成され、シャフト 13の内部および Zまたは外周部には、図示し ない給油通路が形成されている。シャフト 13が回転すると、油溜まり 405の潤滑油は 上記油ポンプによって汲み上げられ、上記給油通路を通じて膨張機部 400の各摺動 部に供給される。  [0071] An oil reservoir 405 for storing lubricating oil is formed at the bottom of the sealed container 11. The lower end portion of the shaft 13 is disposed in the oil sump 405. An oil pump (not shown) is formed at the lower end portion of the shaft 13, and an oil supply passage (not shown) is formed in the shaft 13 and in the Z or outer peripheral portion. When the shaft 13 rotates, the lubricating oil in the oil sump 405 is pumped up by the oil pump and supplied to each sliding portion of the expander unit 400 through the oil supply passage.
[0072] 膨張機部 400の基本構造および作動流体を膨張させる仕組みは、第 1実施形態で 説明した通りであるから、ここでは省略する。なお、軸受部材としての上側端板 424と 第 1シリンダ 41との間に、第 2吸入孔 412cの位置を変化させるためのァクチユエータ 406およびポート部材 412bが配置されている点、および第 1シリンダ 41の端面がポ 一ト部材 412bによって閉塞されている点については、本実施形態と第 1実施形態と で相違する。 [0073] 以下、ポート部材 412bおよびァクチユエータ 406について詳しく説明する。ポート 部材 412bは、中心部にシャフト 13を貫通させる孔が形成された略円板状をなし、外 形が第 1シリンダ 41と略一致するハウジング 413の内部に配置されている。ハウジン グ 413の内径と、ポート部材 412bの外径とは略等しぐ径方向へのポート部材 412b の変位はハウジング 413によって規制される。ただし、ポート部材 412bは、ハウジン グ 413の内部をスムーズに回転できるようになつている。ポート部材 412bには、ァク チユエータ 406のピストン 430と重なり合わない位置において、軸方向の上下に貫通 するように第 2吸入孔 412cが形成されている。ポート部材 412bが回転することにより 、第 2吸入孔 412cがシャフト 13の回転方向に移動する。 [0072] Since the basic structure of the expander unit 400 and the mechanism for expanding the working fluid are as described in the first embodiment, they are omitted here. Note that an actuator 406 and a port member 412b for changing the position of the second suction hole 412c are disposed between the upper end plate 424 as a bearing member and the first cylinder 41, and the first cylinder 41. This embodiment is different from the first embodiment in that the end face is closed by the port member 412b. Hereinafter, the port member 412b and the actuator 406 will be described in detail. The port member 412b has a substantially disk shape with a hole through which the shaft 13 penetrates at the center, and is disposed inside the housing 413 whose outer shape substantially coincides with the first cylinder 41. The housing 413 restricts the displacement of the port member 412b in the radial direction in which the inner diameter of the housing 413 and the outer diameter of the port member 412b are substantially equal. However, the port member 412b can smoothly rotate inside the housing 413. A second suction hole 412c is formed in the port member 412b so as to penetrate vertically in the axial direction at a position not overlapping with the piston 430 of the actuator 406. As the port member 412b rotates, the second suction hole 412c moves in the rotation direction of the shaft 13.
[0074] 図 12Aは、図 11に示す膨張機の D3— D3断面図である。図 12Aに示すように、ァ クチユエータ 406は、ポート部材駆動用偏心部 412a、ポート部材駆動用ピストン 430 、ポート部材駆動用シリンダ 432、ポート部材駆動用べーン 433、ポート部材駆動用 ばね 434、吸入管 53および制御圧管 435を備えている。ポート部材駆動用シリンダ 4 32の中心部にシャフト 13が位置している。  [0074] FIG. 12A is a cross-sectional view of the expander D3-D3 shown in FIG. As shown in FIG. 12A, the actuator 406 includes a port member driving eccentric portion 412a, a port member driving piston 430, a port member driving cylinder 432, a port member driving vane 433, a port member driving spring 434, A suction pipe 53 and a control pressure pipe 435 are provided. The shaft 13 is located at the center of the port member driving cylinder 432.
[0075] 以下の説明において、ァクチユエータ 406の各部品に関し、簡略の目的で「ポート 部材駆動用」の文言を省略する。  In the following description, the term “port member driving” is omitted for the sake of brevity regarding each part of the actuator 406.
[0076] 図 12Aに示すように、偏心部 412aは、シャフト 13に対して偏心しており、シリンダ 4 32の内部に配置されている。シリンダ 432の上側は上側端板 424 (図 11参照)により 閉塞されている。ピストン 430は、シリンダ 432との間に圧力室 431 (431a, 431b)を 形成するように、偏心部 412aに嵌め合わされている。偏心部 412aおよびピストン 43 0は、シャフト 13の中心軸線 Oに対して偏心した状態を保ちながら、シリンダ 432内を 回転 (詳細には偏心揺動)する。偏心部 412aにはシャフト 13が貫通する貫通孔が形 成されている。偏心部 412aとシャフト 13とは接合されておらず、互いに独立して回転 できる。  As shown in FIG. 12A, the eccentric portion 412a is eccentric with respect to the shaft 13, and is disposed inside the cylinder 432. The upper side of the cylinder 432 is closed by an upper end plate 424 (see FIG. 11). The piston 430 is fitted into the eccentric portion 412a so as to form a pressure chamber 431 (431a, 431b) between the piston 430 and the cylinder 432. The eccentric portion 412a and the piston 430 rotate in the cylinder 432 (specifically, eccentrically swing) while maintaining an eccentric state with respect to the central axis O of the shaft 13. A through hole through which the shaft 13 passes is formed in the eccentric portion 412a. The eccentric part 412a and the shaft 13 are not joined and can rotate independently of each other.
[0077] ベーン 433は、先端がピストン 430に接するように、シリンダ 432に設けられたベー ン溝に往復動自在に保持されている。ばね 434は、ベーン 433をピストン 430に向け て付勢している。  The vane 433 is held in a vane groove provided in the cylinder 432 so as to be able to reciprocate so that the tip thereof is in contact with the piston 430. Spring 434 biases vane 433 toward piston 430.
[0078] シリンダ 432の内部に形成された圧力室 431a, 431bは、ベーン 433によって、第 1圧力室 431aと第 2圧力室 431bとの二つの空間に分離されている。また、シリンダ 4 32には、高圧側流入孔 450と低圧側流入孔 451とが設けられている。これら高圧側 流入孔 450と低圧側流入孔 451とは、周方向に所定角度離れており、それぞれ、シリ ンダ 432の内外を貫いている。第 1圧力室 431aには、高圧側流入孔 450を介して吸 入管 53が接続されている。吸入管 53は、膨張前の高圧の作動流体を第 1圧力室 43 laに供給する。第 2圧力室 431bには、低圧側流入孔 451を介して制御圧管 435が 接続されている。制御圧管 435は、第 1圧力室 431a側に供給される作動流体よりも 低い圧力の作動流体を第 2圧力室 431bに供給する。第 1圧力室 431aと第 2圧力室 43 lbとの差圧は、ピストン 430に回転力を与える。作動流体の差圧から回転カを受 けたピストン 430は、偏心部 412aおよびポート部材 412bを回転させる。 [0078] The pressure chambers 431a and 431b formed inside the cylinder 432 are separated by vanes 433. It is separated into two spaces, a pressure chamber 431a and a second pressure chamber 431b. Further, the cylinder 4 32 is provided with a high pressure side inflow hole 450 and a low pressure side inflow hole 451. The high-pressure side inflow hole 450 and the low-pressure side inflow hole 451 are separated from each other by a predetermined angle in the circumferential direction, and penetrate the inside and outside of the cylinder 432, respectively. A suction pipe 53 is connected to the first pressure chamber 431a through a high-pressure side inflow hole 450. The suction pipe 53 supplies the high-pressure working fluid before expansion to the first pressure chamber 43 la. A control pressure pipe 435 is connected to the second pressure chamber 431b through a low pressure side inflow hole 451. The control pressure pipe 435 supplies the second pressure chamber 431b with a working fluid having a lower pressure than the working fluid supplied to the first pressure chamber 431a side. The differential pressure between the first pressure chamber 431a and the second pressure chamber 43 lb gives a rotational force to the piston 430. The piston 430 that receives the rotation force from the differential pressure of the working fluid rotates the eccentric portion 412a and the port member 412b.
[0079] また、シリンダ 432には、吸入管 53から上側端板 424を通り、シリンダ 432、ハウジ ング 413、第 1シリンダ 41を経由して通り第 1シリンダ 41の作動室 55aへと作動流体 を吸入させるための吸入通路 437が形成されている。  [0079] The cylinder 432 is supplied with working fluid from the suction pipe 53 through the upper end plate 424, through the cylinder 432, the housing 413, and the first cylinder 41 to the working chamber 55a of the first cylinder 41. A suction passage 437 for inhalation is formed.
[0080] すなわち、本実施形態の膨張機 303における膨張機部 400は、第 1シリンダ 41に 形成された第 1吸入孔 41bに接続し、その第 1シリンダ 41に作動流体 (冷媒)を送る ための吸入経路 437と、その吸入経路 437から分岐した分岐経路としての高圧側流 入孔 450とを含む。ァクチユエータ 406の高圧室 43 laと高圧側流入孔 450とが接続 され、高圧側流入孔 450を通じてァクチユエータ 406に供給される高圧の作動流体 力 ァクチユエータ 406を駆動するための高圧流体として利用されている。さらに、ポ 一ト部材 412bに設けられた第 2吸入孔 412cの一端がァクチユエータ 406の高圧室 431aに接続するように、ァクチユエータ 406とポート部材 412bとが上下に隣接して 配置されており、高圧流体としてァクチユエータ 406に供給された作動流体力 ポー ト部材 412bに設けられた第 2吸入孔 412cを通じて第 1シリンダ 41における作動室 5 5a (図 2A参照)に供給される。  That is, the expander unit 400 in the expander 303 of the present embodiment is connected to the first suction hole 41b formed in the first cylinder 41, and sends the working fluid (refrigerant) to the first cylinder 41. And a high-pressure side inlet hole 450 as a branch path branched from the suction path 437. The high-pressure chamber 43 la of the actuator 406 is connected to the high-pressure side inflow hole 450, and the high-pressure working fluid supplied to the actuator 406 through the high-pressure side inflow hole 450 is used as a high-pressure fluid for driving the actuator 406. Further, the actuator 406 and the port member 412b are arranged adjacent to each other so that one end of the second suction hole 412c provided in the port member 412b is connected to the high pressure chamber 431a of the actuator 406. The working fluid force supplied to the actuator 406 as fluid is supplied to the working chamber 55a (see FIG. 2A) in the first cylinder 41 through the second suction hole 412c provided in the port member 412b.
[0081] このようにすれば、ァクチユエータ 406を動作させるための流体を別途準備する必 要がなくなる。異種の流体同士の混合を防ぐ厳重なシール構造が不要であるとともに 、異種の流体同士が混ざることによって冷凍サイクルの特性が変化するといつた不具 合も生じない。また、膨張機 303で使用する作動流体をァクチユエータ 406の動力源 とすることにより、外部力 電力等のエネルギーを供給せずに済むため、作動流体の 膨張エネルギーの回収効率向上に有利である。 In this way, it is not necessary to separately prepare a fluid for operating the actuator 406. A strict seal structure that prevents mixing of different types of fluids is not necessary, and there is no inconvenience when the characteristics of the refrigeration cycle change due to mixing of different types of fluids. Also, the working fluid used in the expander 303 is the power source of the actuator 406. By doing so, it is not necessary to supply energy such as external power, which is advantageous in improving the recovery efficiency of the expansion energy of the working fluid.
[0082] また、シリンダ 432の内周面上には、シャフト 13の中心軸線 Oに向力つて凸形状を 有する第 1ストツバ 436aと第 2ストツバ 436bとが、周方向に所定角度離れて設けられ ている。これらストッノ 436a, 436bは、ピストン 430力 作動流体の圧力差(作動流 体 (冷媒)が二酸化炭素の場合、定格運転時には、高圧側は約 lOMPa超、低圧側 は約 3〜5MPaの圧力となる)により回転するときの可動範囲(中心軸線 O周りの回転 角)を制限する。これにより、ポート部材 412bは、所定角度 (例えば約 180° )の範囲 内での回転運動だけが許容されるようになる。  [0082] Further, on the inner peripheral surface of the cylinder 432, a first strobe 436a and a second stover 436b having a convex shape directed toward the central axis O of the shaft 13 are provided at a predetermined angle in the circumferential direction. ing. These Stono 436a and 436b are piston 430 force working fluid pressure difference (when the working fluid (refrigerant) is carbon dioxide, during rated operation, the high pressure side is about lOMPa and the low pressure side is about 3-5MPa. ) To limit the movable range (rotation angle around central axis O) when rotating. As a result, the port member 412b is allowed to rotate only within a predetermined angle range (for example, about 180 °).
[0083] なお、ァクチユエータ 406のピストン 430の回転中心は、シャフト 13の回転中心と一 致していてもよい。ただし、本実施形態のようにピストン 430が偏心回転する構造を採 用すれば、ポート部材 412bを上下に貫通する第 2吸入孔 412cの形成スペースを余 裕で確保することができ、膨張機の小型化にも有利である。  Note that the rotation center of the piston 430 of the actuator 406 may coincide with the rotation center of the shaft 13. However, if a structure in which the piston 430 rotates eccentrically as in the present embodiment, a space for forming the second suction hole 412c penetrating the port member 412b up and down can be secured, and the expander It is also advantageous for downsizing.
[0084] 図 12Bは、図 1に示す膨張機 303の D4— D4断面図である。図 12Bに示すように、 ポート部材 412bには、回転ばね 439 (付勢手段)が取り付けられている。回転ばね 4 39は、ポート部材 412bに内蔵されていると好ましい。回転ばね 439は、ポート部材 4 12bと、ハウジング 413 (またはシリンダ 432)とに介在しており、ポート部材 412b、偏 心部 412aおよびピストン 430を常時所定の回転方向に付勢する。図 12Aに示すよう に、本実施形態では、第 1圧力室 431aを高圧側、第 2圧力室 431bを低圧側とする ため、回転ばね 439の付勢方向を、第 1圧力室 431aの容積が減少する方向、すな わち、第 2吸入孔 412cの位置が第 1吸入孔 41b (図 2A参照)に近づく方向に設定し ている。このような回転ばね 439の働きにより、ストッノ 436a, 436bによって定められ る可動範囲内において、ポート部材 412bの位置を連続的に変化させることができる ようになる。また、第 1圧力室 431aに供給する作動流体が高圧、第 2圧力室 431bに 供給する作動流体が低圧という関係のもとで、ポート部材 412bを正逆両方向に回転 させることが可會となる。  FIG. 12B is a D4-D4 cross-sectional view of the expander 303 shown in FIG. As shown in FIG. 12B, a rotation spring 439 (biasing means) is attached to the port member 412b. The rotary spring 439 is preferably incorporated in the port member 412b. The rotation spring 439 is interposed in the port member 412b and the housing 413 (or the cylinder 432), and always urges the port member 412b, the eccentric portion 412a, and the piston 430 in a predetermined rotation direction. As shown in FIG. 12A, in the present embodiment, since the first pressure chamber 431a is on the high pressure side and the second pressure chamber 431b is on the low pressure side, the urging direction of the rotary spring 439 is determined according to the volume of the first pressure chamber 431a. The decreasing direction, that is, the direction of the second suction hole 412c is set to approach the first suction hole 41b (see FIG. 2A). By such a function of the rotary spring 439, the position of the port member 412b can be continuously changed within the movable range defined by the Stotto 436a and 436b. Further, it is possible to rotate the port member 412b in both forward and reverse directions under the relationship that the working fluid supplied to the first pressure chamber 431a is high pressure and the working fluid supplied to the second pressure chamber 431b is low pressure. .
[0085] もちろん、回転ばね 439を設けない場合であっても、第 1圧力室 431aに供給する 作動流体の圧力と、第 2圧力室 431bに供給する作動流体の圧力との大小関係を逆 転させれば、ポート部材 412bを正逆両方向に回転させることができる。ストッパ 436a , 436bを設けることにより、ポート部材 412bの回転範囲を制限することもできる。ただ し、そのような構成においては、膨張機 303で使用する作動流体をァクチユエータ 40 6の動力源に利用することが難しくなるし、構造の複雑化を招く。したがって、本実施 形態のようにするのが好ま 、。 [0085] Of course, even when the rotary spring 439 is not provided, the magnitude relationship between the pressure of the working fluid supplied to the first pressure chamber 431a and the pressure of the working fluid supplied to the second pressure chamber 431b is reversed. By rotating, the port member 412b can be rotated in both forward and reverse directions. By providing the stoppers 436a and 436b, the rotation range of the port member 412b can be limited. However, in such a configuration, it becomes difficult to use the working fluid used in the expander 303 as a power source for the actuator 406, resulting in a complicated structure. Therefore, it is preferable to use this embodiment.
[0086] さらに、上記のような回転ばね 439によれば、シリンダ 432内でピストン 430が占有 する位置に応じて、ピストン 430に与える回転力の大きさが変化する。第 1圧力室 43 laに供給する高圧の作動流体と、第 2圧力室 431bに供給する低圧の作動流体との 差圧が偏心部 412aおよびピストン 430に与える正方向(または逆方向)の回転力と、 回転ばね 439による反発力、すなわち、ポート部材 412bに与えられる逆方向(また は正方向)の回転力とが均衡することにより、所定の回転角上にポート部材 412bが 位置決めされる。このようにすれば、ァクチユエータ 406の第 1圧力室 431aに供給す る作動流体と、第 2圧力室 431bに供給する作動流体との差圧を調整することにより、 ポート部材 412bを自在に変位させる制御が可能になる。つまり、膨張機 303の運転 状況に応じて最適な位置に第 2吸入孔 412cを合わせることが可能になる。  Furthermore, according to the rotary spring 439 as described above, the magnitude of the rotational force applied to the piston 430 changes according to the position occupied by the piston 430 in the cylinder 432. Forward (or reverse) rotational force applied to the eccentric part 412a and the piston 430 by the differential pressure between the high-pressure working fluid supplied to the first pressure chamber 43 la and the low-pressure working fluid supplied to the second pressure chamber 431b Then, the repulsive force of the rotation spring 439, that is, the reverse direction (or forward direction) rotational force applied to the port member 412b is balanced, so that the port member 412b is positioned at a predetermined rotational angle. In this way, the port member 412b can be freely displaced by adjusting the differential pressure between the working fluid supplied to the first pressure chamber 431a of the actuator 406 and the working fluid supplied to the second pressure chamber 431b. Control becomes possible. That is, the second suction hole 412c can be adjusted to an optimal position according to the operating condition of the expander 303.
[0087] 上述したように、高圧の作動流体は吸入管 53から吸入通路 437を通り、第 1シリン ダ 41に設けた第 1吸入孔 41bから作動室 55a (図 2A参照)に流入する。その経路と は別に、高圧の作業流体は、吸入管 53から分岐した高圧側流入孔 450を経由して シリンダ 432内部の第 1圧力室 431aに流入し、ポート部材 412bに設けられた第 2吸 入孔 412cを経由して作動室 55aに流入する。ポート部材 412bが回転することにより 、第 2吸入孔 412cの位置が変化するため、第 1シリンダ 41への作動流体の吸入容積 が変化する。  As described above, the high-pressure working fluid flows from the suction pipe 53 through the suction passage 437 and flows into the working chamber 55a (see FIG. 2A) from the first suction hole 41b provided in the first cylinder 41. Separately from this path, the high-pressure working fluid flows into the first pressure chamber 431a inside the cylinder 432 via the high-pressure side inlet hole 450 branched from the suction pipe 53, and the second suction provided in the port member 412b. It flows into the working chamber 55a through the inlet 412c. As the port member 412b rotates, the position of the second suction hole 412c changes, so the suction volume of the working fluid to the first cylinder 41 changes.
[0088] また、本実施形態では、ポート部材駆動用偏心部 412aとポート部材 412bとが、中 心軸線 Oに平行な上下方向で連結または一体ィ匕されている。図 11および図 12Bに 示すように、ポート部材 412bは、略円板状の形態を有し、一方の主面で第 1シリンダ 41を閉塞するとともに、他方の主面側でポート部材駆動用偏心部 412aと連結 (また は一体ィ匕して)してポート部材駆動用シリンダ 432を閉塞している。第 1シリンダ 41か ら遠い側に位置する部分がポート部材駆動用偏心部 412aであり、第 1シリンダ 41に 近い側に位置する部分がポート部材 412bとなっている。このようにすれば、ァクチュ エータ 406からポート部材 412bへの動力伝達機構を省略でき、部位品点数増の抑 制および構造の単純ィ匕に資するとともに、ひいては信頼性の高い膨張機 303を提供 できるようになる。なお、ポート部材駆動用偏心部 412a自体にポート部材駆動用ビス トン 430の役割を兼務させることができるので、その場合には、ポート部材 412bはポ 一ト部材駆動用ピストン 430と一体化された部品として構成することができる。 In this embodiment, the port member driving eccentric portion 412a and the port member 412b are connected or integrally connected in the vertical direction parallel to the center axis O. As shown in FIGS. 11 and 12B, the port member 412b has a substantially disc shape, and closes the first cylinder 41 on one main surface, and the port member driving eccentricity on the other main surface side. The port member drive cylinder 432 is closed by connecting (or integrally) with the portion 412a. The part located farther from the first cylinder 41 is the port member drive eccentric part 412a. The portion located on the near side is a port member 412b. In this way, the power transmission mechanism from the actuator 406 to the port member 412b can be omitted, which contributes to suppression of the increase in the number of parts and simplification of the structure, and in turn, a highly reliable expander 303 can be provided. It becomes like this. The port member drive eccentric part 412a itself can also serve as the port member drive piston 430. In this case, the port member 412b is integrated with the port member drive piston 430. Can be configured as a part.
[0089] 第 1吸入孔 41bと第 2吸入孔 412cとの位置関係については、図 4A,図 4B,図 4C で説明した通りである。 The positional relationship between the first suction hole 41b and the second suction hole 412c is as described with reference to FIGS. 4A, 4B, and 4C.
[0090] また、第 1シリンダ 41および第 2シリンダ 42の動作原理については、図 5A,図 5Bで 説明した通りである。  [0090] The operating principles of the first cylinder 41 and the second cylinder 42 are as described in Figs. 5A and 5B.
[0091] また、シャフト 13の回転角 Θと、吸入から吐出に至る各過程の移行時点との関係に ついては、図 6 Aで説明した通りである。  [0091] The relationship between the rotation angle Θ of the shaft 13 and the transition point of each process from suction to discharge is as described in FIG. 6A.
[0092] また、シャフト 13の回転角 Θと作動室容積との関係については、図 6Bで説明した 通りである。 [0092] The relationship between the rotation angle Θ of the shaft 13 and the working chamber volume is as described with reference to FIG. 6B.
[0093] 次に、ァクチユエータ 406の制御圧管 435に供給する作動流体の圧力を制御する ための圧力調整器について説明する。図 13に示すヒートポンプ 300は、圧縮機 81と 、ガスクーラ 82と、図 11で説明した膨張機 303と、蒸発器 84と、圧力調整器 500Aと を備えている。圧力調整器 500Aは、膨張機 303のァクチユエータ 406に供給するべ き高圧流体と低圧流体との差圧を調整する。このような圧力調整器 500Aを設けるこ とにより、ァクチユエータ 406の動作を膨張機 303の外部力も制御することが可能とな る。なお、図 13の例においては、圧力調整器 500Aを膨張機 303の外部に設置する ようにして!/、るが、膨張機 303の内部に設置することも可能である。  Next, a pressure regulator for controlling the pressure of the working fluid supplied to the control pressure pipe 435 of the actuator 406 will be described. A heat pump 300 shown in FIG. 13 includes a compressor 81, a gas cooler 82, the expander 303 described in FIG. 11, an evaporator 84, and a pressure regulator 500A. The pressure regulator 500A adjusts the differential pressure between the high-pressure fluid and the low-pressure fluid that should be supplied to the actuator 406 of the expander 303. By providing such a pressure regulator 500A, the operation of the actuator 406 can be controlled also by the external force of the expander 303. In the example of FIG. 13, the pressure regulator 500A is installed outside the expander 303 !, but can also be installed inside the expander 303.
[0094] 圧力調整器 500Aは、膨張機 303の吸入管 53に一端が接続される第 1圧力管 501 と、膨張機 303の制御圧管 435に一端が接続される第 2圧力管 502と、膨張機 303 の吐出管 54に一端が接続される第 3圧力管 503と、それら圧力管 501, 502, 503 の他端が接続される中空のハウジング 513とを備えている。つまり、放熱器 302の出 口配管が、第 1圧力管 501と膨張機 303の吸入管 53とに分岐している。また、膨張 機 303の吐出管 54と第 3圧力管 503とが合流して蒸発器 304の入口配管になってい る。ハウジング 513の内部は、第 1圧力調整室 504と、第 2圧力調整室 505と、第 3圧 力調整室 506との 3つの圧力調整室に区画されている。第 1圧力調整室 504には、 第 1圧力管 501が接続されている。第 2圧力調整室 505には、第 2圧力管 502が接 続されている。第 3圧力調整室 506には、第 3圧力管 503が接続されている。 [0094] The pressure regulator 500A includes a first pressure pipe 501 having one end connected to the suction pipe 53 of the expander 303, a second pressure pipe 502 having one end connected to the control pressure pipe 435 of the expander 303, and an expansion A third pressure pipe 503 having one end connected to the discharge pipe 54 of the machine 303 and a hollow housing 513 to which the other ends of the pressure pipes 501, 502, 503 are connected. That is, the outlet pipe of the radiator 302 is branched into the first pressure pipe 501 and the suction pipe 53 of the expander 303. In addition, the discharge pipe 54 of the expander 303 and the third pressure pipe 503 merge to form the inlet pipe of the evaporator 304. The The interior of the housing 513 is divided into three pressure adjustment chambers, a first pressure adjustment chamber 504, a second pressure adjustment chamber 505, and a third pressure adjustment chamber 506. A first pressure pipe 501 is connected to the first pressure adjustment chamber 504. A second pressure pipe 502 is connected to the second pressure adjustment chamber 505. A third pressure pipe 503 is connected to the third pressure adjustment chamber 506.
[0095] 第 3圧力調整室 506には弾性体 507 (ばね)が配置されている。第 2圧力調整室 50 5と第 3圧力調整室 506との間には、両圧力調整室を仕切るとともに、一端が弾性体 507に接続されたピストン 508が配置されている。ピストン 508は、第 2圧力調整室 50 5と第 3圧力調整室 506との間で進退可能となっている。ピストン 508には、第 2圧力 調整室 505と第 3圧力調整室 506とを連通する微細流路 514が形成されている。第 1 圧力調整室 504と第 2圧力調整室 505との間には、両圧力調整室間を流れる作動流 体の量を調整する弁 509が設けられている。弁 509には連結軸 512の一端が接続さ れている。連結軸 512の他端は、鉄芯 511に接続されている。鉄芯 511の周りにはコ ィル 510が配置されている。鉄芯 511とコイル 510は、プランジャ型ソレノイドを構成し ている。 [0095] An elastic body 507 (spring) is disposed in the third pressure adjustment chamber 506. Between the second pressure adjustment chamber 505 and the third pressure adjustment chamber 506, there is disposed a piston 508 that partitions both pressure adjustment chambers and has one end connected to the elastic body 507. The piston 508 can move back and forth between the second pressure adjustment chamber 505 and the third pressure adjustment chamber 506. The piston 508 is formed with a fine channel 514 that allows the second pressure adjustment chamber 505 and the third pressure adjustment chamber 506 to communicate with each other. Between the first pressure adjustment chamber 504 and the second pressure adjustment chamber 505, a valve 509 for adjusting the amount of the working fluid flowing between the two pressure adjustment chambers is provided. One end of a connecting shaft 512 is connected to the valve 509. The other end of the connecting shaft 512 is connected to the iron core 511. A coil 510 is arranged around the iron core 511. The iron core 511 and the coil 510 constitute a plunger type solenoid.
[0096] 圧力調整器 500Aにおいて、第 1圧力調整室 504は、冷媒回路の高圧側の圧力に 等しぐ第 3圧力調整室 506は、冷媒回路の低圧側の圧力に等しい。また、圧力調整 器 500Aにより制御される第 2圧力調整室 505の圧力は、膨張機 303の制御圧管 43 5に供給され、膨張機部 400の吸入容積を変更することに使用される。  In the pressure regulator 500A, the first pressure adjustment chamber 504 is equal to the pressure on the high pressure side of the refrigerant circuit, and the third pressure adjustment chamber 506 is equal to the pressure on the low pressure side of the refrigerant circuit. Further, the pressure in the second pressure adjustment chamber 505 controlled by the pressure regulator 500A is supplied to the control pressure pipe 435 of the expander 303 and used to change the suction volume of the expander unit 400.
[0097] 図 13のような構成において、連結軸 512には、弾性体 507の弾性復帰力と、第 2圧 力調整室 505と第 3圧力調整室 506との圧力差による圧力と、コイル 510に流す電流 により与えられる駆動力とが加わる。これらの力が釣り合うような位置に連結軸 512が 静止する。コイル 510に流す電流を変化させることにより、第 2圧力調整室 505の圧 力を制御することができる。  In the configuration as shown in FIG. 13, the connecting shaft 512 includes an elastic restoring force of the elastic body 507, a pressure due to a pressure difference between the second pressure adjusting chamber 505 and the third pressure adjusting chamber 506, and a coil 510. And the driving force given by the current flowing through it. The connecting shaft 512 stops at a position where these forces are balanced. By changing the current flowing through the coil 510, the pressure in the second pressure regulating chamber 505 can be controlled.
[0098] すなわち、圧力調整器 500Aは、膨張機部 400の第 1吸入孔 41bに送られるべき高 圧の作動流体の一部を取得し、取得した作動流体を減圧することによってァクチユエ ータ 406の第 2圧力室 431bに供給する低圧の作動流体を作り出す。そして、作動流 体の減圧の度合いを調整することによって、ポート部材駆動用シリンダ 432内に形成 された第 2圧力室 431bの圧力を制御し、中心軸線 O周りにおけるポート部材 412b およびポート部材 412bに設けられた第 2吸入孔 412cの位置を制御する。このように すれば、第 2吸入孔 412cの位置の制御を容易かつ正確に行える。 That is, the pressure regulator 500A obtains a part of the high-pressure working fluid to be sent to the first suction hole 41b of the expander unit 400, and decompresses the obtained working fluid to obtain the actuator 406. This produces a low-pressure working fluid that supplies the second pressure chamber 431b. Then, the pressure of the second pressure chamber 431b formed in the port member driving cylinder 432 is controlled by adjusting the degree of pressure reduction of the working fluid, and the port member 412b around the central axis O is controlled. And the position of the second suction hole 412c provided in the port member 412b. In this way, the position of the second suction hole 412c can be controlled easily and accurately.
[0099] このように、ヒートポンプ 300は、膨張機部 400の第 1吸入孔 4 lbに作動流体を送る ための主配管(吸入管 53)に一端が接続され、他端が圧力調整器 500Aに接続され 、膨張させるべき高圧の作動流体の一部を圧力調整器 500Aの第 1圧力調整室 504 に供給する第 1圧力管 501と、圧力調整器 500Aの第 2圧力調整室 505に一端が接 続され、他端がァクチユエータ 406 (詳しくは制御圧管 435)に接続され、圧力調整器 500Aで減圧されて低圧となった作動流体をァクチユエータ 406の低圧室 431b (図 1 4参照)に供給する第 2圧力管 502と、を備えている。  [0099] In this manner, the heat pump 300 has one end connected to the main pipe (suction pipe 53) for sending the working fluid to the first suction hole 4 lb of the expander unit 400, and the other end connected to the pressure regulator 500A. One end is connected to the first pressure pipe 501 that supplies a part of the high-pressure working fluid to be connected to the first pressure adjustment chamber 504 of the pressure regulator 500A and the second pressure adjustment chamber 505 of the pressure regulator 500A. The other end is connected to the actuator 406 (specifically, the control pressure pipe 435), and the working fluid reduced in pressure by the pressure regulator 500A is supplied to the low pressure chamber 431b (see FIG. 14) of the actuator 406. 2 pressure pipes 502.
[0100] 圧力調整器 500の作用について説明する。例えば、膨張機 303 (膨張機部 400) の吸入容積を増カロさせたい場合、コイル 510に流れる電流を増加させる。すると、鉄 芯 511に働く弾性体 507方向の力が増大し、弾性体 507を縮めるとともに弁 509が 第 1圧力調整室 504と第 2圧力調整室 505との通路を狭める。それにより、第 2圧力 調整室 505の圧力が低下して第 3圧力調整室 506の圧力に近づく。これに伴い、制 御圧管 435内の圧力と吸入管 53内の圧力との差圧が増大する。ポート部材駆動用 ピストン 430およびポート部材駆動用偏心部 412aは、第 2圧力室 431bの容積が減 少する方向に回転する。第 2吸入孔 412cは、例えば、図 4Cの位置に到来する。この 結果、図 5A,図 5Bにおいて説明した原理に従い膨張機 303の吸入時間が長くなり 吸入容積が増大する。  [0100] The operation of the pressure regulator 500 will be described. For example, when it is desired to increase the suction volume of the expander 303 (expander unit 400), the current flowing through the coil 510 is increased. Then, the force in the direction of the elastic body 507 acting on the iron core 511 increases, the elastic body 507 is contracted, and the valve 509 narrows the passage between the first pressure adjustment chamber 504 and the second pressure adjustment chamber 505. As a result, the pressure in the second pressure adjustment chamber 505 decreases and approaches the pressure in the third pressure adjustment chamber 506. Along with this, the pressure difference between the pressure in the control pressure pipe 435 and the pressure in the suction pipe 53 increases. The port member driving piston 430 and the port member driving eccentric portion 412a rotate in a direction in which the volume of the second pressure chamber 431b decreases. For example, the second suction hole 412c arrives at the position shown in FIG. 4C. As a result, the suction time of the expander 303 is lengthened and the suction volume is increased according to the principle described in FIGS. 5A and 5B.
[0101] 逆に、膨張機 303 (膨張機部 400)の吸入容積を低減させたい場合、コイル 510に 流れる電流を減少させる。すると、鉄芯 511に働く弾性体 507方向の力が減少し、弹 性体 507の長さが伸びるとともに弁 509が第 1圧力調整室 504と第 2圧力調整室 505 との通路を広げる。それにより、第 2圧力調整室 505の圧力が増大して第 1圧力調整 室 504の圧力に近づく。これに伴い、制御圧管 435内の圧力と吸入管 53内の圧力と の差圧が減少する。ポート部材駆動用ピストン 430およびポート部材駆動用偏心部 4 12aは、第 2圧力室 431bの容積が増大する方向に回転する。第 2吸入孔 412cは、 例えば、図 4Aの位置に到来する。この結果、図 5A,図 5Bにおいて説明した原理に 従い膨張機 303の吸入時間が短くなり吸入容積が減少する。 [0102] また、図 15に示すような構成の圧力調整器を採用することも可能である。まず、図 1 4に示すごとぐァクチユエータ 406'において、制御圧管 435と吸入管 53とをバイパ スする微細な通路 440を設けておく。図 15に示すごとぐ圧力調整器 500Bは、ハウ ジング 515、コイル 510、鉄芯 511、連結軸 512、ピストン 516および弾性体 507 (ば ね)を備える。ハウジング 515の内部は、 2つの圧力調整室 520, 521に仕切られて いる。両圧力調整室 520, 521の間には、両調整室間を流れる作動流体の量を調整 する弁 509が配置されている。コイル 510および鉄芯 511は、プランジャ型ソレノイド を構成する。弾性体 507は、ピストン 516を介して弁 509を開放する方向に付勢する 。他方、コイル 510に電流を流すと、鉄芯 511は連結軸 512を介して弁 509を閉鎖す る方向に付勢する。すなわち、コイル 510に流す電流を制御することにより、弁 509の 開度を制御することができる。弁 509の開度に応じて、制御圧管 435が接続する圧力 調整室 521の圧力を変化させることができる。 [0101] Conversely, when it is desired to reduce the suction volume of the expander 303 (expander unit 400), the current flowing through the coil 510 is decreased. Then, the force in the direction of the elastic body 507 acting on the iron core 511 decreases, the length of the elastic body 507 increases, and the valve 509 widens the passage between the first pressure adjustment chamber 504 and the second pressure adjustment chamber 505. As a result, the pressure in the second pressure adjustment chamber 505 increases and approaches the pressure in the first pressure adjustment chamber 504. As a result, the pressure difference between the pressure in the control pressure pipe 435 and the pressure in the suction pipe 53 decreases. The port member driving piston 430 and the port member driving eccentric portion 4 12a rotate in a direction in which the volume of the second pressure chamber 431b increases. For example, the second suction hole 412c arrives at the position shown in FIG. 4A. As a result, in accordance with the principle explained in FIGS. 5A and 5B, the suction time of the expander 303 is shortened and the suction volume is reduced. [0102] It is also possible to employ a pressure regulator configured as shown in FIG. First, as shown in FIG. 14, a minute passage 440 that bypasses the control pressure pipe 435 and the suction pipe 53 is provided in the actuator 406 ′. As shown in FIG. 15, the pressure regulator 500B includes a housing 515, a coil 510, an iron core 511, a connecting shaft 512, a piston 516, and an elastic body 507 (spring). The interior of the housing 515 is partitioned into two pressure adjustment chambers 520 and 521. Between both pressure adjusting chambers 520 and 521, a valve 509 for adjusting the amount of working fluid flowing between the two adjusting chambers is disposed. The coil 510 and the iron core 511 constitute a plunger type solenoid. The elastic body 507 biases the valve 509 through the piston 516 in the opening direction. On the other hand, when an electric current is passed through the coil 510, the iron core 511 biases the valve 509 in the closing direction via the connecting shaft 512. That is, the opening degree of the valve 509 can be controlled by controlling the current flowing through the coil 510. Depending on the opening degree of the valve 509, the pressure in the pressure adjusting chamber 521 to which the control pressure pipe 435 is connected can be changed.
[0103] なお、図 13および図 15の例では、作動流体を常時少しずつ流して制御圧力を保 つ必要があるので、どうしても膨張エネルギーの回収効率は落ちる。そこで、図 16A に示すような構成で制御圧力を作るようにすれば、膨張エネルギーの回収効率を 、 つそう高めることが可能である。  In the examples of FIGS. 13 and 15, since it is necessary to constantly flow the working fluid little by little to maintain the control pressure, the recovery efficiency of the expansion energy is inevitably lowered. Therefore, if the control pressure is generated with the configuration shown in FIG. 16A, the recovery efficiency of the expansion energy can be further increased.
[0104] 図 16Aに示す圧力調整器 500Cは、内部が第 1圧力調整室 561と、第 2圧力調整 室 562と、第 3圧力調整室 563との 3つの圧力調整室に仕切られたハウジング 560を 備えている。第 1圧力調整室 561には、膨張前の作動流体が流通する第 1圧力管 50 1が接続されている。第 2圧力調整室 562には、この第 2圧力調整室 562と、膨張機 3 03におけるァクチユエータ 406の第 2圧力室 431b (図 12A参照)とを連通する第 2圧 力管 502が接続されている。第 3圧力調整室 563には、膨張後の作動流体が流通す る第 3圧力管 503が接続されている。第 1圧力調整室 561と第 2圧力調整室 562との 間には第 1弁 580が配置されている。第 1弁 580は、コイル 570、鉄芯 573、弾性体 5 84 (ばね)および連結軸 576によって構成されたプランジャ型ソレノイドを駆動するこ とによって開閉を制御できる。第 1弁 580を開放することにより、高圧の作動流体を第 2圧力調整室 562に送り込むことができる。他方、第 2圧力調整室 562と第 3圧力調 整室 563との間には第 2弁 581が配置されている。第 1弁 580と同様に、第 2弁 581 は、コイル 571、鉄芯 574、弾性体 585 (ばね)および連結軸 577によって構成された プランジャ型ソレノイドによって開閉を制御できる。第 2弁 581を開放することにより、 第 2圧力調整室 562から第 3圧力調整室 563に作動流体を送り込むことができる。す なわち、 2つ (複数)の弁 580, 581の開閉を制御することによって、膨張前の作動流 体が持つ圧力と、膨張後の作動流体が持つ圧力との間の制御圧力を作り出し、第 2 圧力調整室 562内、ひいてはァクチユエータ 406の第 2圧力室 431b内をその作り出 した制御圧力に保持することが可能となる。第 2圧力調整室 562の圧力が所望の圧 力よりも高い場合には第 1弁 580を閉じて第 2弁 581を開く一方、所望の圧力よりも低 V、場合には第 1弁 580を開 、て第 2弁 581を閉じる。 [0104] The pressure regulator 500C shown in FIG. 16A has a housing 560 that is partitioned into three pressure regulation chambers, a first pressure regulation chamber 561, a second pressure regulation chamber 562, and a third pressure regulation chamber 563. It is equipped with. Connected to the first pressure adjusting chamber 561 is a first pressure pipe 501 through which the working fluid before expansion flows. Connected to the second pressure adjustment chamber 562 is a second pressure pipe 502 that communicates with the second pressure adjustment chamber 562 and the second pressure chamber 431b (see FIG. 12A) of the actuator 406 in the expander 303. Yes. A third pressure pipe 503 through which the expanded working fluid flows is connected to the third pressure adjustment chamber 563. A first valve 580 is disposed between the first pressure adjustment chamber 561 and the second pressure adjustment chamber 562. The opening and closing of the first valve 580 can be controlled by driving a plunger-type solenoid constituted by the coil 570, the iron core 573, the elastic body 584 (spring), and the connecting shaft 576. By opening the first valve 580, a high-pressure working fluid can be fed into the second pressure regulating chamber 562. On the other hand, a second valve 581 is disposed between the second pressure adjustment chamber 562 and the third pressure adjustment chamber 563. As with valve 1 580, valve 281 Is controlled by a plunger-type solenoid constituted by a coil 571, an iron core 574, an elastic body 585 (spring) and a connecting shaft 577. By opening the second valve 581, the working fluid can be sent from the second pressure adjustment chamber 562 to the third pressure adjustment chamber 563. In other words, by controlling the opening and closing of the two (multiple) valves 580 and 581, a control pressure between the pressure of the working fluid before expansion and the pressure of the working fluid after expansion is created, It becomes possible to maintain the inside of the second pressure regulating chamber 562, and thus the inside of the second pressure chamber 431b of the actuator 406, at the generated control pressure. When the pressure in the second pressure regulating chamber 562 is higher than the desired pressure, the first valve 580 is closed and the second valve 581 is opened, while when the pressure is lower than the desired pressure, the first valve 580 is turned on. Open and close second valve 581.
[0105] また、図 16Bのブロック図に示すように、圧力調整器 500Cは、第 2圧力調整室 562 内の圧力を検出する圧力センサ 590と、その圧力センサ 590の検出結果に基づ 、て 弁 580, 581の開閉を制御するコントローラ 591を備えていてもよい。圧力センサ 590 については、膨張機 303におけるァクチユエータ 406の第 2圧力室 431b内に配置す るようにしてもよい。コントローラ 591は、圧力センサ 590からのセンサ信号を取得し、 目標とする圧力値と現在の圧力値との差分を算出する。算出した差分が予め定めた 許容範囲内に無い場合には、その差分が小さくなるように第 1弁 580および第 2弁 58 1の開閉を制御する。具体的には、現在の圧力値が目標とする圧力値よりも小さい場 合には、第 1弁 580側のソレノイドを一定時間駆動して、一定量の高圧作動流体が第 1圧力調整室 561から第 2圧力調整室 562に流れ込むようにする。逆に、現在の圧 力値が目標とする圧力値よりも大きい場合には、第 2弁 581側のソレノイドを一定時 間駆動して、第 2圧力調整室 562から第 3圧力調整室 563に作動流体を移動させる In addition, as shown in the block diagram of FIG. 16B, the pressure regulator 500C includes a pressure sensor 590 that detects the pressure in the second pressure adjustment chamber 562, and a detection result of the pressure sensor 590. A controller 591 that controls opening and closing of the valves 580 and 581 may be provided. The pressure sensor 590 may be disposed in the second pressure chamber 431b of the actuator 406 in the expander 303. The controller 591 acquires the sensor signal from the pressure sensor 590, and calculates the difference between the target pressure value and the current pressure value. When the calculated difference is not within the predetermined allowable range, the opening and closing of the first valve 580 and the second valve 581 are controlled so that the difference becomes small. Specifically, when the current pressure value is smaller than the target pressure value, the solenoid on the first valve 580 side is driven for a certain period of time, and a certain amount of high-pressure working fluid is transferred to the first pressure regulating chamber 561. To flow into the second pressure regulating chamber 562. Conversely, if the current pressure value is larger than the target pressure value, the solenoid on the second valve 581 side is driven for a certain period of time to change from the second pressure adjustment chamber 562 to the third pressure adjustment chamber 563. Move working fluid
[0106] このような処理を繰り返し行うことにより、第 2圧力調整室 562の圧力を迅速かつ正 確に所望の圧力に調整することが可能となる。第 1弁 580および第 2弁 581を開閉す るソレノイド (コイル 570, 571)に常時電流を流す必要が無いため、圧力調整器 500 Cの電力消費を抑制することでき、作動流体の膨張エネルギーの回収効率向上に有 利である。また、圧力センサ 590からの入力を定期的に監視するようなプログラムをコ ントローラ 591に組み込んでおけば、作動流体の不可避的な漏れ等によって圧力変 動が生じたとしても、第 2圧力調整室 562内の圧力を所望の圧力に自動的に回復さ せることが可能となる。 By repeatedly performing such processing, the pressure in the second pressure adjustment chamber 562 can be quickly and accurately adjusted to a desired pressure. Since there is no need to constantly flow current through the solenoids (coils 570, 571) that open and close the first valve 580 and the second valve 581, the power consumption of the pressure regulator 500 C can be suppressed, and the expansion energy of the working fluid can be reduced. It is advantageous for improving the collection efficiency. In addition, if a program that periodically monitors the input from the pressure sensor 590 is installed in the controller 591, the pressure changes due to unavoidable leakage of the working fluid. Even if movement occurs, the pressure in the second pressure regulating chamber 562 can be automatically restored to a desired pressure.
[0107] (第 3の実施形態)  [0107] (Third embodiment)
第 2実施形態に示す膨張機の特徴は、第 1実施形態で説明したように、膨張機部と 圧縮機部とがシャフトを介して一体化されている膨張機一体型圧縮機に好適に採用 することができる。図 17は、そのような膨張機一体型圧縮機の縦断面図である。  As described in the first embodiment, the features of the expander shown in the second embodiment are preferably used for an expander-integrated compressor in which the expander unit and the compressor unit are integrated via a shaft. can do. FIG. 17 is a longitudinal sectional view of such an expander-integrated compressor.
[0108] 膨張機一体型圧縮機 700は、密閉容器 11と、密閉容器 11の内部の上側に配置さ れたスクロール式の圧縮機部 20と、密閉容器 11の内部の下側に配置された 2段ロー タリ式の膨張機部 400と、圧縮機部 20と膨張機部 400との間に配置された回転電動 機 12と、それら圧縮機部 20、膨張機部 400および回転電動機 12に共用のシャフト 1 3と、を備えている。回転電動機 12がシャフト 13を回転駆動することにより、圧縮機部 20が作動する。この膨張機一体型圧縮機 700においては、作動流体 (冷媒)が膨張 機部 400で膨張する際にシャフト 13に与える回転力を、圧縮機部 20の補助動力とし て利用するようになって 、る。作動流体の膨張エネルギーを 、つたん電気工ネルギ 一に変換することなぐ圧縮機部 20に直接伝達するので、高いエネルギー回収効率 を見込める。  [0108] The expander-integrated compressor 700 is disposed in the hermetic container 11, the scroll-type compressor unit 20 disposed on the upper side of the hermetic container 11, and the lower side in the hermetic container 11. Common to the two-stage rotary expander unit 400, the rotary motor 12 disposed between the compressor unit 20 and the expander unit 400, and the compressor unit 20, the expander unit 400, and the rotary motor 12 1 and 3 shafts. The rotary motor 12 rotates the shaft 13 to operate the compressor unit 20. In the expander-integrated compressor 700, the rotational force applied to the shaft 13 when the working fluid (refrigerant) expands in the expander unit 400 is used as auxiliary power for the compressor unit 20. The High energy recovery efficiency can be expected because the expansion energy of the working fluid is directly transmitted to the compressor unit 20 without being converted into electric energy.
[0109] 第 2実施形態で説明したように、膨張機部 400は、吸入容積を変更するための第 2 吸入孔 412cが設けられたポート部材 412bと、ポート部材 412bを回転変位させるた めのァクチユエータ 406とを備えている。ポート部材 412bおよびァクチユエータ 406 の構造および機能については、第 2実施形態で説明した通りである。  [0109] As described in the second embodiment, the expander unit 400 includes the port member 412b provided with the second suction hole 412c for changing the suction volume, and the rotational displacement of the port member 412b. Actuator 406. The structures and functions of the port member 412b and the actuator 406 are as described in the second embodiment.
[0110] また、圧縮機部 20および膨張機部 400の基本構造や動作原理についても、第 1実 施形態で説明した通りである。  [0110] Further, the basic structure and operation principle of the compressor unit 20 and the expander unit 400 are also as described in the first embodiment.
[0111] 図 17の膨張機一体型圧縮機 700によれば、制御圧管 435により与えられる作動流 体と、吸入管 53により与えられる作動流体との圧力差によってァクチユエータ 406を 駆動し、ポート部材 412bの位置(中心軸線 O周りの回転角)を変更することができる 。ポート部材 412bの位置を制御することにより、膨張機部 400の吸入容積を自由に 制御することが可能となる。このような膨張機一体型圧縮機 700を使用したヒートボン プによれば、バイパス回路を設けることなぐ膨張機部 400を流れる作動流体の流量 を自由に制御することが可能となり、ひいては高効率のヒートポンプシステムを実現で さるようになる。 [0111] According to the expander-integrated compressor 700 of Fig. 17, the actuator 406 is driven by the pressure difference between the working fluid given by the control pressure pipe 435 and the working fluid given by the suction pipe 53, and the port member 412b The position of (the rotation angle around the central axis O) can be changed. By controlling the position of the port member 412b, the suction volume of the expander unit 400 can be freely controlled. According to the heat pump using the expander-integrated compressor 700, the flow rate of the working fluid flowing through the expander section 400 without providing a bypass circuit. As a result, it is possible to realize a highly efficient heat pump system.
[0112] (第 4の実施形態)  [0112] (Fourth embodiment)
第 2実施形態の膨張機に組み込んだァクチユエータは、膨張機または膨張機一体 型圧縮機に好適に採用できるものであるが、別の用途の回転ァクチユエータとして構 成することができる。  The actuator incorporated in the expander of the second embodiment can be suitably used for the expander or the expander-integrated compressor, but can be configured as a rotary actuator for another use.
[0113] 図 18は、第 4の実施形態に力かる回転ァクチユエ一タの縦断面図である。図 19は、 図 18の D5— D5断面図である。図 18および図 19に示すごとぐ回転ァクチユエータ 800は、シリンダ 806と、シリンダ 806の内外を貫くシャフト 801と、シリンダ 806内を偏 心揺動してシャフト 801を回転させるピストン 807と、シリンダ 806とピストン 807との間 に形成された圧力室 808を第 1圧力室 808aと第 2圧力室 808bとに仕切るベーン 81 2と、を備えている。  [0113] FIG. 18 is a longitudinal sectional view of a rotary actuator that can be applied to the fourth embodiment. FIG. 19 is a cross-sectional view taken along the line D5-D5 in FIG. As shown in FIGS. 18 and 19, the rotary actuator 800 includes a cylinder 806, a shaft 801 that penetrates the inside and outside of the cylinder 806, a piston 807 that rotates eccentrically in the cylinder 806 and rotates the shaft 801, and a cylinder 806. A vane 812 that partitions a pressure chamber 808 formed between the piston 807 into a first pressure chamber 808a and a second pressure chamber 808b is provided.
[0114] シャフト 801は、その中間部で半径方向外向きに膨出する偏心部 802を有するとと もに、一端部が上側端板 803を貫き、他端部が下側端板 804を貫いている。下側端 板 804の下部には閉塞部材 805が配置されている。上側端板 803および Zまたは閉 塞部材 805は、シャフト 801のための軸受を含むものであってもよい。シャフト 801の 偏心部 802は、シリンダ 806の内部に配置されているとともに、リング状のピストン 80 7が嵌め合わされている。  [0114] The shaft 801 has an eccentric portion 802 that bulges radially outward at an intermediate portion thereof, and has one end that penetrates the upper end plate 803 and the other end that penetrates the lower end plate 804. ing. A closing member 805 is disposed below the lower end plate 804. Upper end plate 803 and Z or closure member 805 may include bearings for shaft 801. The eccentric portion 802 of the shaft 801 is disposed inside the cylinder 806 and is fitted with a ring-shaped piston 807.
[0115] また、回転ァクチユエータ 800は、ベーン 812と、ばね 809と、吸入管 810と、制御 圧管 811とを備えている。ベーン 812は、先端がピストン 807に接するように、シリンダ 806に設けられたベーン溝に往復動自在に保持されている。ばね 809は、ベーン 81 2をピストン 807に向けて付勢している。シリンダ 806の上方を塞ぐ上側端板 803には 、第 1圧力室 808aにつながる第 1流入孔 820と、第 2圧力室 808bにつながる第 2流 入孔 821とが形成されている。第 1圧力室 808aには、第 1流入孔 820を介して吸入 管 810が接続されている。第 2圧力室 808bには、第 2流入孔 821を介して制御圧管 811が接続されている。第 1圧力室 808aに流入させる第 1の流体と、第 2圧力室 808 bに流入させる第 2の流体との圧力差によりピストン 807に力が加わり、偏心部 802、 ひいてはシャフト 801全体が回転する。また、シリンダ 806の内周面上には、周方向 に所定角度離れて第 1ストツバ 813aと、第 2ストツバ 813bとが形成されている。これら のストッパ 813a, 813bは、ピストン 807が、作業流体の圧力差により回転するときの 回転範囲を制限する。 [0115] The rotary actuator 800 includes a vane 812, a spring 809, a suction pipe 810, and a control pressure pipe 811. The vane 812 is reciprocally held in a vane groove provided in the cylinder 806 so that the tip is in contact with the piston 807. The spring 809 biases the vane 81 2 toward the piston 807. A first inflow hole 820 connected to the first pressure chamber 808a and a second inflow hole 821 connected to the second pressure chamber 808b are formed in the upper end plate 803 that covers the upper side of the cylinder 806. A suction pipe 810 is connected to the first pressure chamber 808a via a first inflow hole 820. A control pressure pipe 811 is connected to the second pressure chamber 808b via a second inflow hole 821. A force is applied to the piston 807 due to a pressure difference between the first fluid flowing into the first pressure chamber 808a and the second fluid flowing into the second pressure chamber 808b, and the eccentric portion 802 and eventually the shaft 801 rotate. . In addition, on the inner peripheral surface of the cylinder 806, the circumferential direction A first stagger 813a and a second stagger 813b are formed at a predetermined angle apart from each other. These stoppers 813a and 813b limit the rotation range when the piston 807 rotates due to the pressure difference of the working fluid.
[0116] なお、本実施形態では、シャフト 801の回転に反発力を与える弾性体を設けていな いが、第 2実施形態で説明したような弾性体(回転ばね 439 :図 12B参照)を設けるよ うにしてもよい。そのようにすれば、第 1圧力室 808aに流入させる第 1の流体と、第 2 圧力室 808bに流入させる第 2の流体との差圧調整によって、シャフト 801の回転角 を制御することが可能となる。なお、第 1の流体と第 2の流体とは、同種の流体であつ てもよいし、異種の流体であってもよい。そのような流体として、例えば、油圧回路の オイル、冷媒回路の冷媒または空気圧回路の空気を利用することが可能である。 産業上の利用可能性  [0116] In this embodiment, an elastic body that gives a repulsive force to the rotation of the shaft 801 is not provided, but an elastic body (rotary spring 439: see FIG. 12B) as described in the second embodiment is provided. You may do it. By doing so, it is possible to control the rotation angle of the shaft 801 by adjusting the differential pressure between the first fluid flowing into the first pressure chamber 808a and the second fluid flowing into the second pressure chamber 808b. It becomes. Note that the first fluid and the second fluid may be the same type of fluid or different types of fluid. As such a fluid, for example, oil in a hydraulic circuit, refrigerant in a refrigerant circuit, or air in a pneumatic circuit can be used. Industrial applicability
[0117] 以上説明したとおり、本発明の膨張機は、冷凍サイクルにおける作動流体の膨張ェ ネルギーを回収する効率の良い手段を提供し、特に膨張機一体型圧縮機を用いるヒ ートポンプの高効率ィ匕を実現するものとして、多大な利用価値を有する。 [0117] As described above, the expander of the present invention provides an efficient means of recovering the expansion energy of the working fluid in the refrigeration cycle, and in particular, the high efficiency of the heat pump using the expander-integrated compressor. It has a great utility value as a means to realize a kite.

Claims

請求の範囲 The scope of the claims
[1] シリンダと、  [1] a cylinder;
偏心部を有するシャフトと、  A shaft having an eccentric part;
前記偏心部に嵌合し、前記シリンダの内側で偏心回転するピストンと、 前記シリンダと前記ピストンとの間の空間を、吸入側空間と吐出側空間とに仕切るた めの仕切り部材と、を有するロータリ式の膨張機構を n個 (nは 2以上の整数)と、 1番目の膨張機構の吸入側空間に作動流体を吸入する第 1吸入孔と、 k番目(kは 1から n— 1までの整数)の膨張機構の吐出側空間と (k+ 1)番目の膨張 機構の吸入側空間とを結び一つの空間を形成する連通孔と、  A piston that fits into the eccentric part and rotates eccentrically inside the cylinder; and a partition member for partitioning a space between the cylinder and the piston into a suction side space and a discharge side space. N rotary expansion mechanisms (n is an integer of 2 or more), a first suction hole for sucking working fluid into the suction side space of the first expansion mechanism, and kth (k from 1 to n-1) A communication hole that connects the discharge side space of the expansion mechanism and the suction side space of the (k + 1) th expansion mechanism to form one space,
n番目の膨張機構の吐出側空間から作動流体を吐出する吐出孔と、  a discharge hole for discharging the working fluid from the discharge side space of the n-th expansion mechanism;
前記 1番目の膨張機構の吸入側空間との接続位置が可変であり、当該吸入側空間 へと作動流体を吸入する第 2吸入孔と、  A connection position of the first expansion mechanism with the suction side space is variable, and a second suction hole for sucking the working fluid into the suction side space;
を備えた、膨張機。  With an expander.
[2] 前記 k番目の膨張機構の前記シリンダと前記 (k+ 1)番目の膨張機構の前記シリン ダとの間に配置され、両者を仕切る中板をさらに備え、  [2] It further includes an intermediate plate that is disposed between the cylinder of the k-th expansion mechanism and the cylinder of the (k + 1) -th expansion mechanism, and partitions both of them.
前記 1番目の膨張機構の前記シリンダに前記第 1吸入孔が設けられ、前記中板に 前記連通孔が設けられ、前記 n番目の膨張機構の前記シリンダおよび Zまたはその シリンダを閉塞する閉塞部材に前記吐出孔が設けられている、請求項 1に記載の膨 張機。  The cylinder of the first expansion mechanism is provided with the first suction hole, the intermediate plate is provided with the communication hole, and the cylinder and Z of the nth expansion mechanism or a closing member for closing the cylinder 2. The expander according to claim 1, wherein the discharge hole is provided.
[3] 前記 1番目の膨張機構の前記シリンダの端面を閉塞する閉塞部材をさらに備え、 前記閉塞部材に前記第 2吸入孔が設けられている、請求項 1に記載の膨張機。  [3] The expander according to claim 1, further comprising a closing member that closes an end face of the cylinder of the first expansion mechanism, wherein the closing member is provided with the second suction hole.
[4] 前記閉塞部材が、前記シャフトを回転中心とする回転が可能な可動部を含み、 前記可動部に前記第 2吸入孔が設けられている、請求項 3に記載の膨張機。  4. The expander according to claim 3, wherein the closing member includes a movable part capable of rotating about the shaft as a rotation center, and the second suction hole is provided in the movable part.
[5] 前記可動部が、前記シャフトを支持する円筒状の軸受面を含む、請求項 4に記載 の膨張機。  5. The expander according to claim 4, wherein the movable part includes a cylindrical bearing surface that supports the shaft.
[6] 前記可動部を回転させる駆動機構をさらに備えた、請求項 4に記載の膨張機。  6. The expander according to claim 4, further comprising a drive mechanism that rotates the movable part.
[7] 前記駆動機構が電動ァクチユエータを含む、請求項 6に記載の膨張機。  7. The expander according to claim 6, wherein the drive mechanism includes an electric actuator.
[8] 当該膨張機の外部力 前記可動部に設けられた前記第 2吸入孔へと作動流体を 供給する第 1流入路と、前記第 1流入路から分岐し、前記第 1吸入孔に作動流体を 供給する第 2流入路とが内部に設けられ、前記可動部が回転可能に合体する環状 の固定部を、前記閉塞部材がさらに含む、請求項 4に記載の膨張機。 [8] External force of the expander The working fluid is supplied to the second suction hole provided in the movable part. A first inflow passage to be supplied and a second inflow passage that branches from the first inflow passage and supplies the working fluid to the first suction hole are provided inside, and an annular shape in which the movable portion is rotatably combined. The expander according to claim 4, wherein the closing member further includes a fixing portion.
[9] 請求項 1に記載の膨張機からなる膨張機部と、前記シャフトを介して前記膨張機部 に一体に連結されて ヽる圧縮機部とを備えた、膨張機一体型圧縮機。 [9] An expander-integrated compressor, comprising: an expander unit comprising the expander according to claim 1; and a compressor unit that is integrally connected to the expander unit via the shaft.
[10] 請求項 1に記載の膨張機を備えたヒートポンプ。 [10] A heat pump comprising the expander according to claim 1.
[11] 請求項 9に記載の膨張機一体型圧縮機を備えたヒートポンプ。 [11] A heat pump comprising the expander-integrated compressor according to claim 9.
[12] 前記 1番目の膨張機構の前記シリンダを閉塞し、前記シャフトを回転中心として前 記シャフトとは独立して回転可能である可動部材と、 [12] A movable member that closes the cylinder of the first expansion mechanism and is rotatable independently of the shaft with the shaft as a rotation center;
高圧流体と低圧流体との差圧に基づく大きさの回転力を前記可動部材に与えるァ クチユエータと、をさらに備え、  An actuator that provides the movable member with a rotational force having a magnitude based on a differential pressure between the high-pressure fluid and the low-pressure fluid;
前記可動部材に前記第 2吸入孔が設けられて 、る、請求項 1に記載の膨張機。  The expander according to claim 1, wherein the second suction hole is provided in the movable member.
[13] 前記高圧流体および前記低圧流体として作動流体が用いられる、請求項 12に記 載の膨張機。 13. The expander according to claim 12, wherein a working fluid is used as the high-pressure fluid and the low-pressure fluid.
[14] 前記シャフトの中心軸線と平行な方向において、前記ァクチユエータ、前記可動部 材および前記 1番目の膨張機構力 この順番で配置されている、請求項 12に記載の 膨張機。  14. The expander according to claim 12, wherein the actuator, the movable member, and the first expansion mechanism force are arranged in this order in a direction parallel to the central axis of the shaft.
[15] 前記第 1吸入孔に接続し、前記 1番目の膨張機構の前記シリンダに作動流体を送 るための吸入経路と、  [15] A suction path connected to the first suction hole and for sending a working fluid to the cylinder of the first expansion mechanism;
前記吸入経路から分岐した分岐経路と、をさらに備え、  A branch path branched from the inhalation path,
前記ァクチユエータの高圧室と前記分岐経路とが接続され、前記分岐経路を通じ て前記ァクチユエータに供給される高圧の作動流体が前記高圧流体として利用され さらに、前記第 2吸入孔の一端が前記ァクチユエータの前記高圧室に接続するよう に、前記ァクチユエータと前記可動部材とが隣接して配置され、  The high-pressure chamber of the actuator is connected to the branch path, and a high-pressure working fluid supplied to the actuator through the branch path is used as the high-pressure fluid. Further, one end of the second suction hole is connected to the branch of the actuator. The actuator and the movable member are arranged adjacent to each other so as to be connected to the high pressure chamber,
前記高圧流体として前記ァクチユエータに供給された作動流体が、前記可動部材 に設けられた前記第 2吸入孔を通じて前記 1番目の流体機構の前記吸入側空間に 供給される、請求項 12に記載の膨張機。 13. The expansion according to claim 12, wherein the working fluid supplied to the actuator as the high-pressure fluid is supplied to the suction side space of the first fluid mechanism through the second suction hole provided in the movable member. Machine.
[16] 前記ァクチユエータは、 [16] The actuator is
可動部材駆動用シリンダと、  A movable member driving cylinder;
前記可動部材駆動用シリンダとの間に圧力室を形成するとともに、前記可動部材 駆動用シリンダ内を偏心揺動することにより前記可動部材を回転させる可動部材駆 動用ピストンと、  A movable member driving piston for rotating the movable member by forming a pressure chamber between the movable member driving cylinder and eccentrically oscillating in the movable member driving cylinder;
前記圧力室を、前記高圧流体を流入させる高圧室と、前記低圧流体を流入させる 低圧室とに仕切る可動部材駆動用仕切り部材と、  A movable member driving partition member that divides the pressure chamber into a high pressure chamber into which the high pressure fluid flows and a low pressure chamber into which the low pressure fluid flows;
を含む、請求項 12に記載の膨張機。  The expander of claim 12, comprising:
[17] 前記可動部材は略円板状の形態を有し、一方の主面で前記 1番目の膨張機構の 前記シリンダを閉塞するとともに、他方の主面で前記可動部材駆動用ピストンまたは その可動部材駆動用ピストンの内側に配置された偏心部と連結もしくは一体ィ匕して 前記可動部材駆動用シリンダを閉塞している、請求項 16に記載の膨張機。  [17] The movable member has a substantially disc shape, and the main surface of the first expansion mechanism is closed on one main surface, and the movable member driving piston or the movable member is movable on the other main surface. 17. The expander according to claim 16, wherein the movable member driving cylinder is closed by being connected to or integrally formed with an eccentric portion arranged inside the member driving piston.
[18] 前記可動部材駆動用シリンダの内周面上に設けられ、前記シャフトの中心軸線に 向かって凸形状を有するとともに、前記可動部材駆動用シリンダ内における前記可 動部材駆動用ピストンの可動範囲を制限するストツバをさらに備えた、請求項 16に記 載の膨張機。  [18] The movable member driving piston is provided on an inner peripheral surface of the movable member driving cylinder, has a convex shape toward the central axis of the shaft, and a movable range of the movable member driving piston in the movable member driving cylinder. The expander according to claim 16, further comprising a stagger that restricts the pressure.
[19] 前記可動部材を所定の回転方向に付勢する付勢手段をさらに備えた、請求項 16 に記載の膨張機。  19. The expander according to claim 16, further comprising a biasing unit that biases the movable member in a predetermined rotation direction.
[20] 前記付勢手段は、前記シャフトの中心軸線周りにおいて前記可動部材が占有する 位置に応じて、その可動部材に与える回転力の大きさが変化するように構成されたも のであり、  [20] The biasing means is configured such that the magnitude of the rotational force applied to the movable member changes according to the position occupied by the movable member around the central axis of the shaft.
前記高圧流体と前記低圧流体との差圧が前記可動部材駆動用ピストンに与える正 方向の回転力と、前記付勢手段が前記可動部材に与える逆方向の回転力とを均衡 させることにより、前記シャフトの中心軸線周りにおける前記可動部材の位置が制御 される、請求項 19に記載の膨張機。  By balancing the forward rotational force applied to the movable member driving piston by the differential pressure between the high pressure fluid and the low pressure fluid and the reverse rotational force applied to the movable member by the biasing means, 20. The expander according to claim 19, wherein the position of the movable member around the central axis of the shaft is controlled.
[21] 請求項 12に記載の膨張機力もなる膨張機部と、前記シャフトを介して前記膨張機 部に一体に連結されている圧縮機部とを備えた、膨張機一体型圧縮機。  [21] An expander-integrated compressor comprising the expander portion having expander force according to claim 12, and a compressor portion integrally connected to the expander portion via the shaft.
[22] 請求項 12に記載の膨張機を備えたヒートポンプ。 [22] A heat pump comprising the expander according to claim 12.
[23] 前記ァクチユエータに供給する前記高圧流体と前記低圧流体との差圧を調整する 圧力調整器をさらに備えた、請求項 22に記載のヒートポンプ。 23. The heat pump according to claim 22, further comprising a pressure regulator that adjusts a differential pressure between the high-pressure fluid and the low-pressure fluid supplied to the actuator.
[24] 前記圧力調整器は、前記第 1吸入孔に送られるべき作動流体の一部を取得し、取 得した作動流体を減圧することによって前記低圧流体を作り出すとともに、減圧の度 合 、を調整することによって、前記シャフトの中心軸線周りにおける前記第 2吸入孔 の位置を制御する、請求項 23に記載のヒートポンプ。  [24] The pressure regulator obtains a part of the working fluid to be sent to the first suction hole, and creates the low-pressure fluid by depressurizing the obtained working fluid. 24. The heat pump according to claim 23, wherein the position of the second suction hole around the central axis of the shaft is controlled by adjusting.
[25] 前記第 1吸入孔に作動流体を送るための主配管に一端が接続され、他端が前記圧 力調整器に接続され、膨張させるべき高圧の作動流体の一部を前記圧力調整器の 第 1室に供給する第 1圧力管と、前記圧力調整器の第 2室に一端が接続され、他端 が前記ァクチユエータに接続され、前記圧力調整器で減圧されて低圧となった作動 流体を前記ァクチユエータの低圧室に供給する第 2圧力管と、をさらに備えた、請求 項 23に記載のヒートポンプ。  [25] One end is connected to the main pipe for sending the working fluid to the first suction hole, the other end is connected to the pressure regulator, and a part of the high-pressure working fluid to be expanded is supplied to the pressure regulator. One end of the first pressure pipe supplied to the first chamber and the second chamber of the pressure regulator are connected to one end, the other end is connected to the actuator, and the working fluid is reduced in pressure by the pressure regulator. The heat pump according to claim 23, further comprising: a second pressure pipe that supplies the pressure to the low pressure chamber of the actuator.
PCT/JP2006/321561 2005-10-31 2006-10-27 Expander and heat pump using the same WO2007052569A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/092,008 US20090282845A1 (en) 2005-10-31 2006-10-27 Expander and heat pump using the expander
EP06822522A EP1953337A4 (en) 2005-10-31 2006-10-27 Expander and heat pump using the same
JP2007542705A JP4065316B2 (en) 2005-10-31 2006-10-27 Expander and heat pump using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-317690 2005-10-31
JP2005-317688 2005-10-31
JP2005317690 2005-10-31
JP2005317688 2005-10-31

Publications (1)

Publication Number Publication Date
WO2007052569A1 true WO2007052569A1 (en) 2007-05-10

Family

ID=38005722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321561 WO2007052569A1 (en) 2005-10-31 2006-10-27 Expander and heat pump using the same

Country Status (4)

Country Link
US (1) US20090282845A1 (en)
EP (1) EP1953337A4 (en)
JP (1) JP4065316B2 (en)
WO (1) WO2007052569A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286150A (en) * 2007-05-21 2008-11-27 Panasonic Corp Expander
JP2010163935A (en) * 2009-01-14 2010-07-29 Daikin Ind Ltd Expander

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2020483B1 (en) * 2006-05-17 2012-01-04 Panasonic Corporation Expander-compressor unit
EP2128384B1 (en) * 2007-01-15 2011-12-14 Panasonic Corporation Expander-integrated compressor
CN101868597B (en) * 2007-11-21 2012-05-30 松下电器产业株式会社 Compressor integral with expander
WO2009066413A1 (en) * 2007-11-21 2009-05-28 Panasonic Corporation Compressor integral with expander
JP4422209B2 (en) * 2007-11-21 2010-02-24 パナソニック株式会社 Expander integrated compressor
US8408024B2 (en) * 2008-05-23 2013-04-02 Panasonic Corporation Fluid machine and refrigeration cycle apparatus
DE102013218430A1 (en) * 2013-09-13 2015-03-19 Mahle International Gmbh Scroll compressor
CN103953544B (en) * 2014-04-10 2016-01-27 珠海格力节能环保制冷技术研究中心有限公司 Compressor and air conditioner
DE102018118100A1 (en) * 2018-07-26 2020-01-30 Ebm-Papst St. Georgen Gmbh & Co. Kg Pump with absolute rotation angle detection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566601A (en) * 1978-11-15 1980-05-20 Yoshiro Hosoyama Rotary engine
JPS58133401A (en) * 1982-02-01 1983-08-09 Matsushita Electric Ind Co Ltd Displacement type rotary vane expanding machine
JPS61118973U (en) * 1985-01-10 1986-07-26
JP2001116371A (en) 1999-10-20 2001-04-27 Daikin Ind Ltd Air conditioner
JP2002081766A (en) 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2005256667A (en) * 2004-03-10 2005-09-22 Daikin Ind Ltd Rotary expander

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1351695A (en) * 1970-09-22 1974-05-01 Generalvacuum Spa Sliding vane fluid-operated motor or engine
JPS62129593A (en) * 1985-11-28 1987-06-11 Diesel Kiki Co Ltd Vane type compressor
DE3709711C2 (en) * 1986-03-28 1997-03-27 Seiko Seiki Kk compressor
DE3825481A1 (en) * 1988-07-27 1990-02-01 Pierburg Gmbh ROTARY PISTON MACHINE
EP0388243B1 (en) * 1989-03-17 1994-06-22 Tomoegawa Paper Co. Ltd. Block copolymer and method of producing the same
US5910100A (en) * 1996-11-20 1999-06-08 Hooper; Frank C. Waste heat utilization
JP2002080693A (en) * 2000-06-28 2002-03-19 Nippon Kayaku Co Ltd Epoxy resin composition and its cured product
TWI306867B (en) * 2002-11-28 2009-03-01 Nippon Kayaku Kk Flame-retardant epoxy resin and its cured product
JP2004190559A (en) * 2002-12-11 2004-07-08 Daikin Ind Ltd Displacement expander and fluid machine
JP2004197640A (en) * 2002-12-18 2004-07-15 Daikin Ind Ltd Positive displacement expander and fluid machinery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566601A (en) * 1978-11-15 1980-05-20 Yoshiro Hosoyama Rotary engine
JPS58133401A (en) * 1982-02-01 1983-08-09 Matsushita Electric Ind Co Ltd Displacement type rotary vane expanding machine
JPS61118973U (en) * 1985-01-10 1986-07-26
JP2001116371A (en) 1999-10-20 2001-04-27 Daikin Ind Ltd Air conditioner
JP2002081766A (en) 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2005256667A (en) * 2004-03-10 2005-09-22 Daikin Ind Ltd Rotary expander

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286150A (en) * 2007-05-21 2008-11-27 Panasonic Corp Expander
JP2010163935A (en) * 2009-01-14 2010-07-29 Daikin Ind Ltd Expander

Also Published As

Publication number Publication date
EP1953337A8 (en) 2008-10-15
EP1953337A4 (en) 2011-03-30
US20090282845A1 (en) 2009-11-19
JPWO2007052569A1 (en) 2009-04-30
EP1953337A1 (en) 2008-08-06
JP4065316B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4065316B2 (en) Expander and heat pump using the same
EP1953338B1 (en) Expander and heat pump using the expander
JP5040907B2 (en) Refrigeration equipment
US8074471B2 (en) Refrigeration cycle apparatus and fluid machine used for the same
EP1653085B1 (en) Multi-stage rotary compressor with variable capacity
EP2072753B1 (en) Rotary expander
JP2005320927A (en) Rotary compressor
JP4382151B2 (en) Two-stage rotary expander, expander-integrated compressor, and refrigeration cycle apparatus
JP2011102579A (en) Scroll compressor
JP4166996B2 (en) Capacity control drive mechanism of turbo refrigerator
JP4924092B2 (en) Refrigeration cycle equipment
JP2008106668A (en) Expander, expander-integrated compressor and refrigeration cycle device using same
JP5296065B2 (en) Refrigeration cycle equipment
JP2012093017A (en) Refrigerating cycle device
JP4682795B2 (en) Expander-integrated compressor and refrigeration cycle apparatus
JP5234168B2 (en) Refrigeration equipment
JP2012117477A (en) Screw compressor
JP2004324595A (en) Positive displacement fluid machine
KR101194608B1 (en) Modulation type rotary compressor
JP2007009756A (en) Rotary type expansion machine and fluid machine
JP2005048654A (en) Compressor
JP4888222B2 (en) Fluid machine and refrigeration cycle apparatus including the same
WO2013084618A1 (en) Scroll expansion mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007542705

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006822522

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12092008

Country of ref document: US