WO2007048329A1 - Moteur pas a pas dont les enroulements comprennent une bobine d'extremite - Google Patents

Moteur pas a pas dont les enroulements comprennent une bobine d'extremite Download PDF

Info

Publication number
WO2007048329A1
WO2007048329A1 PCT/CN2006/002815 CN2006002815W WO2007048329A1 WO 2007048329 A1 WO2007048329 A1 WO 2007048329A1 CN 2006002815 W CN2006002815 W CN 2006002815W WO 2007048329 A1 WO2007048329 A1 WO 2007048329A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
stepping motor
coils
permanent magnet
magnet rotor
Prior art date
Application number
PCT/CN2006/002815
Other languages
English (en)
French (fr)
Inventor
Chungchiang Lee
Original Assignee
Chungchiang Lee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chungchiang Lee filed Critical Chungchiang Lee
Publication of WO2007048329A1 publication Critical patent/WO2007048329A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/12Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets
    • H02K37/14Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • Stepper motor with coils at both ends
  • the present invention relates to a stepping motor; and more particularly to a stepping motor having a coil assembly having coils at both ends.
  • Stepper motors are widely accepted for use in many fields because they can be precisely controlled.
  • the coil assembly of the outer stator 1 has a plurality of "W"-shaped cores 11, 12 in the center of the "W" cores 11, 12.
  • the coils 111 and 121 are sleeved on the columns 111 and 121.
  • the central column 111 is close to the permanent magnet rotor 2 to form, for example, an N magnetic pole, and the magnetic lines of force are passed through the core 11 of silicon steel.
  • the shoes 112, 113 form opposite S poles facing the end of the rotor 2, thereby attracting or repelling the corresponding magnetic poles on the rotor 2, driving the rotor 2 to pivot.
  • the angle between the "W" cores 11, 12 needs to be shifted from the magnetic pole of the permanent magnet rotor 2, that is, when the core 11 is facing the magnetic pole of one of the rotors, the other core 12 is Not facing any of the poles of the rotor, but facing the buffer between the poles.
  • such a stator in order to achieve high mechanical strength of the outer stator structure, such a stator preferably has a closed structure.
  • the stator volume also needs to be gradually reduced, and even the overall outer diameter is reduced to about 1 cm.
  • the central column 111 of the "W" core and the left and right magnetic shoes 112, 113 The spacing is only 2 to 4 mm, and the bobbin wound with hundreds of turns of wire needs to be placed over the central column 111 in such a small space. This process must be carefully assembled by skilled labor, which not only hinders the manufacturing process. Fully automated, so that the manufacturing speed is slowed down and the efficiency is not easy to improve.
  • the stepping motor shown in US Pat. No. 6,900,574 the inner rotor 3 has six staggered magnetic poles; the outer stator has two coil sets 41, 42, each of which has a two-section
  • the stator yokes 411, 412, 421, 422 and the coils 410, 420 are disposed on the central portion of the stator yoke, and the coils 410, 420 are respectively wound on a corresponding rubber frame 413, 423.
  • L g is the air gap length
  • a g is the air gap cross-sectional area
  • U a , U b , U e are the perimeters of the A, B, and C sections respectively
  • a, b, and c are respectively A, B, and C parts length.
  • the left and right magnetic shoes of FIG. 2 and the two stator magnetic poles of the structure of FIG. 3 cannot avoid a large amount of magnetic leakage.
  • the upper yoke 4U and the lower yoke 412 of the structure of FIG. 3 have different lengths, and the upper and lower stators are further The magnetic force of the magnetic pole is uneven.
  • the effective magnetic flux at the air gap can be greatly improved without increasing the energy consumption, and the holding torque can be increased without changing the driving energy.
  • the number of turns of the coil can be reduced, or the amount of current of the energizing coil can be reduced (ie, the diameter of the coil can be reduced), thereby reducing the volume of the stepping motor.
  • Another object of the present invention is to provide a stepping motor having a coil at both ends of a coil assembly which can reduce the volume of a coil group, and achieve miniaturization effect.
  • Still another object of the present invention is to provide a stepping motor in which a coil only needs to be wound around a coil assembly at the end of an open yoke, which makes assembly simple and easier to automate.
  • the coil assembly of the present invention has a stepping motor with coils at both ends, comprising: a permanent magnet rotor for rotating along a pivot, having a plurality of radial axes disposed on the surface of the permanent magnet rotor along the pivot axis, and adjacent ones being magnetically opposite
  • the magnetic pole has the same spacing between the magnetic poles;
  • the stator has a plurality of coil sets, each coil set includes an iron core, and two end coils respectively disposed at the ends of the iron core facing the permanent magnet rotor, and the two end coils
  • the directions of the magnetic lines of force that are set such that they are enabled are connected in the same direction, and the spacing between the ends of the cores corresponds to the spacing between the odd poles of the permanent magnet rotor.
  • the end portions of the two yokes of each coil group are respectively provided with one end coils, so that the magnetic generating coil is adjacent to the active area, and the effective magnetic flux and magnetic energy utilization efficiency are obviously improved; on the contrary, only the same as the conventional technology is maintained.
  • the magnetic flux can reduce the energy consumption and reduce the volume of the coil to miniaturize the stepping motor.
  • the yoke adopts an open structure, which makes it easy to assemble the coil after miniaturization, ensuring automatic operation; Proper board layout will make this stepper motor easy to use.
  • FIG. 1 is a top plan view of a preferred embodiment of a stepping motor of the US Pat. No. 5,880,551;
  • FIG. 2 is a schematic view showing a magnetic line distribution of the stepping motor embodiment of FIG.
  • Figure 3 is a top plan view of the stepping motor of U.S. Patent No. 6,900,574 to illustrate the path of the magnetic line circuit when the coil is activated;
  • FIG. 4 and FIG. 5 are schematic views showing the magnetic source being disposed at different positions of the yoke in the coil assembly.
  • FIG. 6 is a top plan view of the stepping motor according to the first preferred embodiment of the present invention, illustrating the stator, each coil assembly and the rotor. Relationship; '
  • Figure 7 is a perspective view showing the coupling relationship between the stepping motor and the circuit board of Figure 6 of the present invention, illustrating an embodiment of an electronic device incorporating the stepping motor of the present invention
  • Figure 8 is a top plan view of a second preferred embodiment of the present invention.
  • the coil assembly disclosed in the present invention has a stepping motor with coils at both ends, and mainly includes a ⁇ -polar permanent magnet rotor 6 and an outer stator 5.
  • the permanent magnet rotor 6 is a 12-pole rotor, and the magnetic poles of the S and S poles are radially disposed on the outer side of the permanent magnet rotor 6 along a pivot, so in the drawing and the following calculation process, Each magnetic pole accounts for about 30. (360 ° / ⁇ ).
  • the stator 5 of the present embodiment is provided with two sets of coil sets 51 and 52.
  • Each of the coil sets 51 and 52 includes a core 53 , 54 and two respectively disposed on the ends of the cores 53 and 54 facing the permanent magnet rotor.
  • the end coils 55, 56, 57, 58 are from the ends 531 of the cores 53, 54.
  • the opposite ends of the iron core 53 respectively induce opposite magnetic poles, and not only the pitch of the two end portions 531, 532 of the iron core 53 is set to correspond to the odd magnetic pole pitch of the permanent magnet rotor 6,
  • an angle of about 90 ° (3 x 30 °) is taken as an example; in addition, the end coils 55, 56 are arranged in series so that the direction of the magnetic lines of force is enhanced in the same direction when enabled.
  • the permanent magnet rotor 6 and the stator 5 are disposed on a circuit board 7.
  • the circuit board 7 includes a substrate and conductive wiring formed on the substrate, wherein the conductive wiring has two separate states.
  • a connecting section 70 on the conductive wiring in this embodiment, and the coils 55, 56 at both ends respectively have two wire ends 551, 552, 561, 562, and the wire ends 552, 561 Soldering at both ends of the connecting section 70 respectively, the end coils 55, 56 are electrically connected in series.
  • the main features of the present invention are not limited to the inner rotor motor, and can be easily converted to the outer rotor motor. Therefore, as shown in Fig. 8, the permanent magnet rotor is disposed outside the stator.
  • the annular body that is, the two sets of coil sets 51', 52' of the stator are disposed in the annular outer permanent magnet rotor 6', and are end portions 53 ⁇ , 532, 54 ⁇ of the cores 53, 55.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Description

线圈组具两端线圈的步进马达 技术领域
本发明是关于一种步进马达;特别是一种线圈组具有两端线圈的步进马达。 背景技术
步进马达由于可被精密控制, 在许多领域中已被广泛接纳应用。 如图 1所 示美国第 5,880,551号专利的内转子步进马达,其外定子 1的线圈组具有复数呈 「W」 型的铁芯 11、 12, 在 「W」 型铁芯 11、 12的中央柱 111、 121上套设线 圈 110、 120, 当致能线圈 110时, 中央柱 111接近永磁式转子 2端会形成例如 一 N磁极, 磁力线并经由硅钢材质的铁芯 11, 在左右两磁靴 112、 113面向转 子 2端形成相反的 S极, 从而吸引或排斥转子 2上的对应磁极, 驱动转子 2绕 枢轴旋转。 而各 「W」型铁芯 11、 12设置的夹角, 则需与永磁式转子 2的磁极 错开, 亦即, 当铁芯 11正对转子之一磁极时, 另一铁芯 12则并未正对转子的 任一磁极, 而是面向磁极间的缓冲区。
且如图 2所示, 由于中央柱 111与磁靴 112、 113的间距恰与转子的磁极间 距对应, 因此理想的磁力线途径是如粗虚线所标示, 由中央柱 111至转子磁极 后, 直接行经相邻磁极而返回磁靴 112、 113形成回路, 其磁阻较小; 然而, 以 下将证明, 由于在两侧磁靴 112、 113处并无线圈缠绕, 磁力线并非完全如预期 的粗虚线方式分布, 而会由中央柱 111处发散, 并经空气等而返回中央柱 111 的另一端, 产生例如细虚线所示的逸失, 使得两侧磁靴 112、 113面向转子磁极 处的有效磁通量, 因与中央柱 111缠绕有线圈 110的位置有相当距离而显著减 弱, 使能量的运用效率被大打折扣。
另方面,为谋求外定子结构的高机械强度,此种定子最好具有封闭式结构。 但是, 随着步进马达日趋微型化, 定子体积亦需逐步减小, 甚至整体外径缩减 至约 1公分的大小, 此时「W」型铁芯的中央柱 111与左右磁靴 112、 113的间 距仅有 2至 · 4公厘, 缠绕有数百匝导线的线轴则需在如此狭小的空间中穿套于 中央柱 111上, 此过程必须由熟练的人工细心组装作业, 不仅妨碍制造过程全 面自动化, 更让制造速度因而减缓、 效率不易提升。 此外,如图 3美国第 6,900,574号专利所示的步进马达,其内转子 3具有六 个交错磁极; 外定子则具有两线圈组 41、 42, 各线圈组 41、 42分别由一两截 式定子磁轭 411、 412、 421、 422及套置于定子磁轭中央部分的线圈 410、 420 所组成, 线圈 410、 420则分别缠绕于一对应胶架 413、 423上。
然而, 依照磁路设计的经验公式, 一般如图 4所示结构, 其磁漏系数 j H-(Lg/Ag){[1.7Uaxa/(a+Lg)]+[1.4b(Ub/c)1/2+0.67Uc]}
其中, Lg为气隙长度; Ag为气隙截面积; Ua、 Ub、 Ue分别为 A、 B、 C部 分截面周长; a、 b、 c分别为 A、 B、 C部分长度。
若取 A、 B、 C部分及气隙的截面均为 l/2 cmxl/2 cm, A部分及气隙长度 均为 l cm, B、 C部分的长度均为 3 cm, 故代入上式, 得磁漏系数
f=l+{(1.7x4x l/2)+[1.4x3(4/3)1/2+0.67x4]}=l+10.93
=11.93
相对地, 如图 5结构的磁漏系数则为
Figure imgf000004_0001
LlUax {[0.67a/(0.67a+Lg)] + (Lg/2a)}
代入上列条件后
f=l+4.4(2/5+l/2)=l+3.96=4.96
换言之, 若取两种结构的最大磁通量为 100%, 则在图 4结构中, 气隙处 的磁通量仅为 8.38%; 相对地, 图 5结构的气隙处有效磁通量仍有最大磁通量 的 20.14%。
由以上推导可知, 图 2的左右磁靴及图 3结构的两定子磁极均无法避免大 量的磁漏, 尤其图 3结构的上磁轭 4U与下磁轭 412长度不一, 更使上下两定 子磁极的磁力产生不均匀现象。
亦即, 若能将产生磁力的结构拉近至邻近定子磁极, 不仅可在不增加消耗 能量状态下, 大幅提升气隙处的有效磁通, 在不改变驱动能量条件下, 增大保 持转矩, 提升磁能运用效率; 反之, 若选择仅需相同的有效磁通量, 则可选择 减少线圈匝数, 或降低致能线圈的电流量 (即可缩减线圈直径), 并从而达成减 小步进马达体积的功效。 发明内容
因此, 本发明之一目的, 在于提供一种可提升作用区有效磁通的线圈组具 两端线圈的步进马达。
本发明的另一目的, 在于提供一种可减小线圈组体积的线圈组具两端线圈 的步进马达, 达成微型化功效。
本发明的再一目的, 在于提供一种线圈仅需套设于开放式磁轭端部的线圈 组具两端线圈的步进马达, 使组装简便, 更易于自动化作业。
本发明的又一目的, 在于提供一种组装有线圈组具两端线圈的步进马达的 电子装置, 使得该步进马达的设置与使用更为便捷。
本发明的线圈组具两端线圈的步进马达, 包含: 一供沿一枢轴旋转的永磁 转子, 具有复数沿该枢轴径向设于永磁转子表面、 且相邻者磁性相反的磁极, 各磁极之间的间距相等; 一定子, 具有复数线圈组, 各线圈组分别包括一铁芯, 及二分别设置于各铁芯朝向永磁转子二端部的端线圈, 且二端线圈是被设置成 使其被致能的磁力线方向同向串接, 及各铁芯的二端部之间的间距是对应于永 磁转子的奇数磁极之间的间距。
藉由每一线圈组的二磁轭端部分别设置有一端部线圈, 让产生磁力的线圈 邻近于作用区, 明显提升有效磁通及磁能运用效率; 相反地, 若仅维持与习用 技术相等的磁通, 则可减小耗用能量, 并縮减线圈体积而使步进马达微型化; 加以, 磁轭采用开放式结构, 使微型化后组装线圈仍然非常方便, 确保可自动 化作业; 尤其搭配适当的电路板布局, 将使此种步进马达易于采用。 附图说明
图 1是美国第 5,880,551号专利的步进马达一较佳实施例俯视示意图; 图 2是图 1步进马达实施例的磁力线分布示意图;
图 3是美国第 6,900,574号专利的步进马达俯视示意图,以说明其线圈被致 能时, 磁力线回路的途径;
图 4及图 5是线圈组中, 磁力源被设置在磁轭的不同位置的示意图; 图 6是本发明第一较佳实施例的步进马达俯视示意图, 说明定子、 各线圈 组与转子的关系; '
图 7是本发明图 6的步进马达与电路板的结合关系立体示意图, 说明装设 有本发明步进马达的电子装置实施例; 及 图 8是本发明第二较佳实施例的俯视示意图。
附图中主要组件符号说明:
1、 5、 5,...定子 2、 3、 6、 6,...永磁转子
7...电路板 70...连接段
111、 121...中央柱 110、 120、 410、 420...线
112、 113...磁靴 411、 412、 421、 422· · .磁轭
413、 423.·..胶架 A、 B、 C...部分
11、 12、 53、 54、 53,、 54,...铁芯
41、 42、 51、 52、 51,、 52' ...线圈组
55、 56、 57、 58、 55,、 56,、 57,、 58,...端线圈
531、 532、 541、 542、 53 Γ、 532,、 54Γ、 542' . ..端部
551、 552、 561、 562.. , .导线端 具体实施方式
有关本发明的技术内容、 特点与功效, 配合下列参考图式所示较佳实施例 及其详细说明, 将可清楚的呈现。 此外在各实施例中, 相同的组件将以相似的 标号标不
如图 6所示, 为本发明揭露的线圈组具有两端线圈的步进马达, 主要包含 ― Ν极永磁转子 6及一外定子 5。在本实施例中,永磁转子 6是选择一 12极转 子, 其 ^、 S磁极两两间隔地沿一枢轴放射状设置于面向永磁转子 6外侧, 因 此在图式及下列计算过程中, 每一磁极约占 30。 (360 ° /Ν)。
本实施例的定子 5则设置有两组线圈组 51、 52, 各线圈组 51、 52分别包 括一铁芯 53、 54,及二分别设置于各铁芯 53、 54朝向永磁转子二端部 531、 532、 541、 542的端线圈 55、 56、 57、 58。 即永磁转子被设置于各线圈组之间。 尤其 如前所述, 由于线圈与铁芯端部的距离严重影响作用区的有效磁通, 因此本实 施例中, 是将端线圈 55、 56、 57、 58自铁芯 53、 54端部 531、 532、 541、 542 套入, 并分别与端部 531、 532、 541、 542齐平, 使得端线圈尽量接近作用区, 以有效提高运作的效率。更由于端线圈 55、 56、 57、 58的套接位置接近铁芯两 端, 且铁芯 53、 54是先分别被套接端线圈 55、 56、 57、 58后, 才组装至马达 或电路板上, 即使铁芯 53、 54体积甚小, 仍无碍于¾线圈的组装, 使得马达的 进一步微型化更容易; 且制造流程非常便捷, 完全符合机械自动化需求。
为使线圈组 51被致能时, 铁芯 53两端分别感应出相反磁极, 不仅铁芯 53 的二端部 531、 532的间距被设置成恰对应于永磁转子 6的奇数磁极间距,在本 实施例中是以约 90 ° (3x30 ° )夹角为例; 此外, 端线圈 55、 56是被串接设置, 使其被致能时磁力线方向同向增强。 在此实施例释如图 7所示, 是将永磁转子 6与定子 5设置于一电路板 7上, 电路板 7含有一基板及形成于该基板上的导 电布线, 其中导电布线具有二分别对应于二线圈组的连接段, 在本实施例中的 导电布线上的一连接段 70, 而两端线圈 55、 56分别具有两导线端 551、 552、 561、 562, 而导线端 552、 561分别焊接于连接段 70的两端, 使端线圈 55、 56 彼此电性串接。
当然, 如熟于此技术者所能轻易理解, 本发明的主要特征并非局限于内转 子马达, 亦可轻易转换至外转子马达, 故如图 8所示, 永磁转子是设置于定子 外侧的环状体, 即定子的两组线圈组 51 '、 52'是被设置于环状的外永磁转子 6' 中, 并以铁芯 53,、 54,的端部 53 Γ、 532,、 54Γ、 542,分别面向外永磁转子 6, 的内侧, 而端线圈 55'、 56'、 57'、 58'即分别套接于各铁芯 53,、 54,的端部, 并 且尽量接近于永磁转子部分。
惟以上所述者, 仅为本发明的较佳实施例而已。 当不能以此限定本发明实 施例的范围, 即大凡依本发明申请专利范围及发明说明书内容所作的简单的等 效变化与修饰, 皆应仍属本发明专利涵盖的范围内。

Claims

权 利 要 求
1. 一种线圈组具两端线圈的步进马达, 包含:
一供沿一枢轴旋转的永磁转子, 具有复数沿枢轴径向设于永磁转子表面、 且相邻者磁性相反的磁极, 各磁极之间的间距相等; 其特征在于:
包含一定子, 具有复数线圈组, 各线圈组分别包括一铁芯, 及二分别设置 于各铁芯朝向永磁转子二端部的端线圈, 且二端线圈是被设置成使其被致能 的磁力线方向同向串接, 及各铁芯的二端部之间的间距是对应于永磁转子的 奇数磁极之间的间距。
2. 根据权利要求 1所述的线圈组具两端线圈的步进马达, 其特征在于: 所 述的各端线圈是分别套设于各对应铁芯的二端部, 并与各对应端部齐平。
3. 根据权利要求 1所述的线圈组具有两端线圈的步进马达, 其特征在于: 所述的永磁转子是被设置于各线圈组之间。
4. 根据权利要求 1所述的线圈组具两端线圈的步进马达, 其特征在于: 所 述的永磁转子是设置于定子外侧的环状体。
5. 一种组装有线圈组具两端线圈的步进马达的电子装置, 包含:
一线圈组具两端线圈的步进马达, 且各端线圈分别具有二导线端; .及 一电路板, 含有一基板, 及形成于该基板上的导电布线, 其中导电布线具 有二分别对应于二线圈组的连接段, 各连接段是分别导电连接各对应线圈组中 二端线圈之一导线端, 使该二端线圈彼此电性串接。
PCT/CN2006/002815 2005-10-27 2006-10-23 Moteur pas a pas dont les enroulements comprennent une bobine d'extremite WO2007048329A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2005100307491A CN1956301A (zh) 2005-10-27 2005-10-27 线圈组具两端线圈的步进马达
CN200510030749.1 2005-10-27

Publications (1)

Publication Number Publication Date
WO2007048329A1 true WO2007048329A1 (fr) 2007-05-03

Family

ID=37967408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002815 WO2007048329A1 (fr) 2005-10-27 2006-10-23 Moteur pas a pas dont les enroulements comprennent une bobine d'extremite

Country Status (2)

Country Link
CN (1) CN1956301A (zh)
WO (1) WO2007048329A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2495545A (en) * 2011-10-14 2013-04-17 Dyson Technology Ltd Stator for an Electrical Machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103149A (ja) * 1987-10-14 1989-04-20 Matsushita Electric Ind Co Ltd ステッピングモータ
US5289064A (en) * 1991-10-18 1994-02-22 Japan Servo Co., Ltd. Three-phase permanent magnet stepping motor
CN1452805A (zh) * 2000-08-03 2003-10-29 Fdk株式会社 步进电机
CN2826814Y (zh) * 2005-09-09 2006-10-11 晋裕工业股份有限公司 内定子具有复数线圈组的步进电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103149A (ja) * 1987-10-14 1989-04-20 Matsushita Electric Ind Co Ltd ステッピングモータ
US5289064A (en) * 1991-10-18 1994-02-22 Japan Servo Co., Ltd. Three-phase permanent magnet stepping motor
CN1452805A (zh) * 2000-08-03 2003-10-29 Fdk株式会社 步进电机
CN2826814Y (zh) * 2005-09-09 2006-10-11 晋裕工业股份有限公司 内定子具有复数线圈组的步进电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2495545A (en) * 2011-10-14 2013-04-17 Dyson Technology Ltd Stator for an Electrical Machine
GB2495545B (en) * 2011-10-14 2014-11-05 Dyson Technology Ltd Stator for an electrical machine

Also Published As

Publication number Publication date
CN1956301A (zh) 2007-05-02

Similar Documents

Publication Publication Date Title
US7944112B2 (en) Method of making integrated stator, brushless direct-current motor of radial core type double rotor structure using the integrated stator, and method of making the same
US20120306297A1 (en) Switched reluctance motor
CN102882332A (zh) 一种横向开关磁阻电机
JP2004088992A (ja) ボイスコイル型リニアアクチュエータ及びこのアクチュエータを用いた装置、並びにこのアクチュエータの製造方法
WO2006047401A3 (en) Rotor-stator structure for electrodynamic machines
WO2021000074A1 (zh) 一种振动马达
JP5056920B2 (ja) コアレス電気機械装置
CN109149800A (zh) 一种9n/10n极分段转子开关磁阻电机
JP2014121102A (ja) コアレス電気機械装置、コアレス電気機械装置の製造方法、移動体、及びロボット
WO2007048329A1 (fr) Moteur pas a pas dont les enroulements comprennent une bobine d'extremite
JP2004032861A (ja) ステッピングモータ
WO2016078691A1 (en) Air-gap winding
TWI273758B (en) Stepper motor with two terminal coils in coil set and electric device with the stepper motor
JP2007515914A (ja) 永久磁石発電機
JP2022517881A (ja) フェンス式ステータを有するアウターディスク型モーター
CN112968539A (zh) 一种48槽三相集中绕组式永磁电机
JP2020191777A (ja) トランスデューサ並びにこれを用いたアクチュエータ及びエネルギハーベスタ
KR101289188B1 (ko) 스위치드 릴럭턴스 모터
WO2015002453A1 (ko) 분할 코어형 스테이터를 갖는 모터 및 그의 제조 방법
CN218040947U (zh) 用于轴向磁通电机的定子以及轴向磁通电机
CN110474452A (zh) 一种盘式铁芯以及盘式电机
KR20120134526A (ko) 스위치드 릴럭턴스 모터
JP2002034229A (ja) コアレスリニアモータ
JP5454150B2 (ja) θZアクチュエータ
TWI288520B (en) Step motor whose inner stator has plural coil sets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06805024

Country of ref document: EP

Kind code of ref document: A1