WO2007047202A1 - Substituted heterocyclic compounds with cxcr3 antagonist activity - Google Patents

Substituted heterocyclic compounds with cxcr3 antagonist activity Download PDF

Info

Publication number
WO2007047202A1
WO2007047202A1 PCT/US2006/039404 US2006039404W WO2007047202A1 WO 2007047202 A1 WO2007047202 A1 WO 2007047202A1 US 2006039404 W US2006039404 W US 2006039404W WO 2007047202 A1 WO2007047202 A1 WO 2007047202A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl
compound according
nhr
heteroaryl
Prior art date
Application number
PCT/US2006/039404
Other languages
French (fr)
Inventor
Seong Heon Kim
Bandarpalle B. Shankar
Joseph A. Kozlowski
Stuart B. Rosenblum
Neng-Yang Shih
Original Assignee
Schering Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering Corporation filed Critical Schering Corporation
Priority to ES06816540T priority Critical patent/ES2382163T3/en
Priority to AT06816540T priority patent/ATE546445T1/en
Priority to EP06816540A priority patent/EP1937666B1/en
Priority to CA002625762A priority patent/CA2625762A1/en
Priority to JP2008535600A priority patent/JP2009511582A/en
Publication of WO2007047202A1 publication Critical patent/WO2007047202A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/08Antiseborrheics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/08Antibacterial agents for leprosy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/08Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • the present invention relates to substituted heterocyclic compounds with CXCR3 antagonist activity, pharmaceutical compositions containing one or more such antagonists, one or more such antagonists in combination with other compounds with chemokine activity, one or more such antagonists in combination with known immunosuppressive agents, (non-limiting example(s) include Methotrexate, interferon, cyclosporin, FK-506 and FTY720), methods of preparing such antagonists and methods of using such antagonists to modulate CXCR3 activity.
  • This invention also discloses methods of using such CXCR3 antagonists for the treatment (non-limiting examples include palliative, curative and prophylactic therapies) of diseases and conditions where CXCR3 has been implicated.
  • CXCR3 Diseases and conditions where CXCR3 has been implicated include but are not limited to inflammatory conditions (psoriasis and inflammatory bowel disease), autoimmune disease (multiple sclerosis, rheumatoid arthritis), fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, type I diabetes, viral meningitis and tuberculoid leprosy.
  • CXCR3 antagonist activity has also been indicated as a therapy for tumor growth suppression as well as graft rejection (allograft and zenograft rejections for example).
  • Chemokines constitute a family of cytokines that are produced in inflammation and regulate leukocyte recruitment (Baggiolini, M. et al., Adv. Immunol., 55: 97-179 (1994); Springer, T. A., Annual Rev. Physio., 57: 827-872 (1995); and Schall, T. J. and K. B. Bacon, Curr. Opin. Immunol, 6: 865-873 (1994)).
  • Chemokines are capable of selectively inducing chemotaxis of the formed elements of the blood (other than red blood cells), including leukocytes such as neutrophils, monocytes, macrophages, eosinophils, basophils, mast cells, and lymphocytes, such as T cells and B cells.
  • leukocytes such as neutrophils, monocytes, macrophages, eosinophils, basophils, mast cells, and lymphocytes, such as T cells and B cells.
  • other changes can be selectively induced by chemokines in responsive cells, including changes in cell shape, transient rises in the concentration of intracellular free calcium ions ([Ca 2+ ]j), granule exocytosis, integrin upregulation, formation of bioactive lipids (e. g., leukotrienes) and respiratory burst, associated with leukocyte activation.
  • the chemokines are early triggers of the inflammatory response, causing inflammatory mediator release, che
  • Chemokines are related in primary structure and share four conserved cysteines, which form disulfide bonds. Based upon this conserved cysteine motif, the family can be divided into distinct branches, including the C-X-C chemokines ( ⁇ -chemokines) in which the first two conserved cysteines are separated by an intervening residue (e. g., IL-8, IP-10, Mig, I-TAC, PF4, ENA-78, GCP-2, GRO ⁇ , GRO ⁇ , GRO ⁇ , NAP-2, NAP-4), and the C-C chemokines ( ⁇ -chemokines), in which the first two conserved cysteines are adjacent residues (e. g., MIP-1 ⁇ , MIP-1 ⁇ , RANTES, MCP-1 , MCP-2, MCP-3, I-309) (Baggiolini, M. and Dahinden, C. A.,
  • CXC-chemokines attract neutrophil leukocytes.
  • CXC-chemokines interleukin-8 (IL-8), GRO alpha (GRO ⁇ ), and neutrophil-activating peptide 2 (NAP-2) are potent chemoattractants and activators of neutrophils.
  • the CXC-chemokines designated Mig (monokine induced by gamma interferon) and IP-10 (interferon-gamma inducible 10 kDa protein) are particularly active in inducing chemotaxis of activated peripheral blood lymphocytes.
  • CC-chemokines are generally less selective and can attract a variety of leukocyte cell types, including monocytes, eosinophils, basophils, T lymphocytes and natural killer cells.
  • CC-chemokines such as human monocyte chemotactic proteins 1-3 (MCP-1 , MCP-2 and MCP-3), RANTES (Regulated on Activation, Normal T Expressed and Secreted), and the macrophage inflammatory proteins 1 ⁇ and 1 ⁇ (MIP-1 ⁇ and MIP-1 ⁇ ) have been characterized as chemoattractants and activators of monocytes or lymphocytes, but do not appear to be chemoattractants for neutrophils.
  • CXCR3 is a G-protein coupled receptor with seven transmembrane-spanning domains and has been shown to be restrictively expressed in activated T cells, preferentially human Th1 cells.
  • chemokine receptors transduce an intracellular signal through the associated G-protein resulting in a rapid increase in intracellular calcium concentration.
  • the CXCR3 receptor mediates Ca 2+ (calcium ion) mobilization and chemotaxis in response to IP-10 and Mig.
  • CXCR3 expressing cells show no significant response to the CXC-chemokines IL-8, GRO ⁇ , NAP-2, GCP-2 (granulocyte chemotactic protein-2), ENA78 (epithelial-derived neutrophil-activating peptide 78), PF4 (platelet factor 4), or the CC-chemokines MCP-1 , MCP-2, MCP-3, MCP-4, MIP-Ia, MIP-1 ⁇ , RANTES, I309, eotaxin or lymphotactin.
  • CXCR3, 1-TAC Interferon-inducible T cell Alpha Chemoattractant
  • OW a phenotype consistent with previous activation, although a proportion of CD20 + (B) cells and CD56 + (NK) cells also express this receptor.
  • the selective expression in activated T lymphocytes is of interest, because other receptors for chemokines which have been reported to attract lymphocytes (e. g., MCP-1 , MCP-2, MCP-3, MIP-1 ⁇ , MIP-1 ⁇ , RANTES) are also expressed by granulocytes, such as neutrophils, eosinophils, and basophils, as well as monocytes.
  • CXCR3 recognizes unusual CXC-chemokines, designated IP-10, Mig and I-TAC. Although these belong to the CXC-subfamily, in contrast to IL-8 and other CXC-chemokines which are potent chemoattractants for neutrophils, the primary targets of IP-10, Mig and I-TAC are lymphocytes, particularly effector cells such as activated or stimulated T lymphocytes and natural killer (NK) cells (Taub, D. D. et al., J Exp. Med., 177: 18090-1814 (1993); Taub, D. D. et al., J. Immunol., 155: 3877-3888 (1995); Cole, K. E. et al., J. Exp.
  • NK cells are large granular lymphocytes, which lack a specific T cell receptor for antigen recognition, but possess cytolytic activity against cells such as tumor cells and virally infected cells.
  • IP-10, Mig and I-TAC lack the ELR motif, an essential binding epitope in those CXC-chemokines that efficiently induce neutrophil chemotaxis (Clark-Lewis, I. et al., J. Biol. Chem. 266: 23128-23134 (1991); Hebert, C. A. et al., J. Biol. Chem., 266 : 18989-18994 (1991); and Clark-Lewis, 1.
  • IP-10 expression is induced in a variety of tissues in inflammatory conditions such as psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses and tuberculoid leprosy as well as tumors and in animal model studies, for example, experimental glomerulonephritis, and experimental allergic encephalomyelitis.
  • IP-10 has a potent in vivo antitumor effect that is T cell dependent, is reported to be an inhibitor of angiogenesis in vivo and can induce chemotaxis and degranulation of NK cells in vitro, suggesting a role as a mediator of NK cell recruitment and degranulation (in tumor cell destruction, for example)
  • a potent in vivo antitumor effect that is T cell dependent, is reported to be an inhibitor of angiogenesis in vivo and can induce chemotaxis and degranulation of NK cells in vitro, suggesting a role as a mediator of NK cell recruitment and degranulation (in tumor cell destruction, for example)
  • IP-10, Mig and I-TAC are also distinct from that of other CXC chemokines in that expression of each is induced by interferon-gamma (IFN ⁇ ), while the expression of IL-8 is down-regulated by IFN ⁇ (Luster, A. D. et al., Nature, 315 : 672-676 (1985); Farber, J. M., Proc. Natl. Acad. Sci. USA, 87 : 5238-5242 (1990); Farber, J. M., Biochem. Biophys. Res. Commun., 192 (1): 223-230 (1993), Liao, F. et al., J. Exp.
  • Chemokines are recognized as the long-sought mediators for the recruitment of lymphocytes. Several CC-chemokines were found to elicit lymphocyte chemotaxis (Loetscher, P.
  • CXCR3 IL-12 kinase-like kinase
  • T lymphocytes bearing a CXCR3 receptor as a result of activation can be recruited into inflammatory lesions, sites of infection and/or tumors by IP-10, Mig and/or I-TAC, which can be induced locally by interferon-gamma.
  • CXCR3 plays a role in the selective recruitment of lymphocytes, particularly effector cells such as activated or stimulated T lymphocytes.
  • CXCR3 represents a promising target for the development of novel therapeutics.
  • EP1048652A1 (published November 2, 2000), which refers to aromatic compounds having cyclic amino or salts thereof, which specifically inhibit FXa, exert a potent anticoagulant effect and thus are useful as medicinal compositions.
  • R is phenyl, or a 5- or 6- membered aromatic ring with 1 or more nitrogen atoms.
  • CXCR3 activity There is a need for compounds that are capable of modulating CXCR3 activity.
  • diseases and conditions associated with CXCR3 such as inflammatory conditions (psoriasis and inflammatory bowel disease), autoimmune disease (multiple sclerosis, rheumatoid arthritis) and graft rejection (allograft and zenograft rejections for example) as well as infectious diseases, cancers and tumors, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, type I diabetes, viral meningitis and tuberculoid leprosy.
  • the present invention discloses a compound having the general structure shown in Formula 1 :
  • L is O or S
  • Z is N or CR 4 ;
  • R 6 is selected from the group consisting of H, alkyl, arylalkyl, and alkylaryl;
  • X is selected from the group consisting of N, O, alkyl, cycloalkyl, heteroaryl, heterocyclyl, and heterocyclenyl;
  • the R 9 moieties can be the same or different, each being independently selected from the group consisting of
  • R 20 moieties are linked together to form a five or six membered aryl, cycloalkyl, heterocyclyl, heterocyclenyl, or heteroaryl ring wherein said five or six membered aryl, cycloalkyl, heterocyclyl, heterocyclenyl, or heteroaryl ring is fused to ring D and the fused ring is optionally substituted with 0-4 R 21 moieties; the R 21 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkenyl, alkylaryl, alkynyl, alk
  • Y is selected from the group consisting of -(CR 13 R 13 ),--,
  • Y is cycloalkyl, heterocyclenyl, or heterocyclyl wherein the cycloalkyl, heterocyclenyl, or heterocyclyl is fused with ring D; the R 13 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, cycloalkyl, heterocyclenyl, or heterocyclyl is fused with ring D; the R 13 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, cycl
  • G represents, in a non-limiting manner, moieties such as dihydroimidazole, imidazole, dihydrooxazole, oxazole, dihydrooxadiazole, oxadiazole, dihydrothiazole, thiazole, triazole, tetrazole and the like.
  • moieties may be optionally substituted on the ring carbon(s) with one or more R 9 groups as stated above, or on the ring nitrogen(s) with one or more R 8 groups as stated above.
  • a further feature of the invention is a pharmaceutical composition containing as active ingredient at least one compound of Formula 1 together with at least one pharmaceutically acceptable carrier or excipient.
  • the invention provides methods of preparing compounds of Formula 1 , as well as methods for treating diseases, for example, treatment (e. g., palliative therapy, curative therapy, prophylactic therapy) of certain diseases and conditions e. g., inflammatory diseases (e. g., psoriasis), autoimmune diseases (e. g., rheumatoid arthritis, multiple sclerosis), graft rejection (e. g., allograft rejection, xenograft rejection), infectious diseases and tumors.
  • treatment e. g., palliative therapy, curative therapy, prophylactic therapy
  • certain diseases and conditions e. g., inflammatory diseases (e. g., psoriasis), autoimmune diseases (e. g., rheumatoid arthritis, multiple sclerosis), graft rejection (e. g., allograft rejection, xenograft rejection), infectious diseases and tumors.
  • treatment e. g.,
  • the invention provides a method of treating a CXCR3 chemokine mediated disease in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
  • the invention provides methods of treating diseases, for example, treatment (e. g., palliative therapy, curative therapy, prophylactic therapy) of certain diseases and conditions such as inflammatory diseases (e. g., psoriasis), autoimmune diseases (e. g., rheumatoid arthritis, multiple sclerosis), graft rejection (e.
  • treatment e. g., palliative therapy, curative therapy, prophylactic therapy
  • certain diseases and conditions such as inflammatory diseases (e. g., psoriasis), autoimmune diseases (e. g., rheumatoid arthritis, multiple sclerosis), graft rejection (e.
  • the invention also provides a method of modulating (inhibiting or promoting) an inflammatory response in an individual in need of such therapy.
  • the method comprises administering a therapeutically effective amount of a compound (e. g., small organic molecule) which inhibits or promotes mammalian CXCR3 function in an individual in need thereof.
  • a method of inhibiting or blocking T-cell mediated chemotaxis in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of a compound of Formula 1 or a pharmaceutically acceptable salt, solvate or ester thereof .
  • Also disclosed is a method of treating inflammatory bowel disease in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
  • Also disclosed is a method of treating graft rejection in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
  • a method of treating multiple sclerosis in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of: (a) a therapeutically effective amount of at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: glatiramer acetate, glucocorticoids, methotrexate, azothioprine, mitoxantrone, and CB2-selective inhibitors.
  • the invention also provides a method of treating a disease selected from the group consisting of: inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection and psoriasis in a patient in need of such treatment such method comprising administering to the patient an effective amount of at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
  • the invention also provides a method of treating a disease selected from the group consisting of: inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, type I diabetes, viral meningitis, tuberculoid leprosy as well as tumors and cancers in a patient in need of such treatment, such method comprising administering to the patient an effective amount of (a) at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one medicament selected from the group consisting of: disease modifying antirheumatic drugs; nonsteroidal anti-inflammatory drugs; COX-2 selective inhibitors; COX-1 inhibitors; immunosuppressives; steroids; PDE IV inhibitors, anti-TNF- ⁇ compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, biological
  • the bond to the parent moiety is through the carbonyl carbon atom.
  • Preferred acyls contain a lower alkyl.
  • Non-limiting examples of suitable acyl groups include formyl, acetyl, propanoyl, 2-methylpropanoyl, butanoyl and cyclohexanoyl.
  • Alkenyl means an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain.
  • Preferred alkenyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 6 carbon atoms in the chain.
  • Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkenyl chain.
  • “Lower alkenyl” means about 2 to about 6 carbon atoms in the chain which may be straight or branched.
  • Non-limiting examples of suitable alkenyi groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl, n-pentenyl, octenyl and decenyl.
  • Alkyl means an aliphatic hydrocarbon group which may be straight or branched or a combination thereof, and comprising about 1 to about 20 carbon atoms in the chain. Preferred alkyl groups contain about 1 to about 12 carbon atoms in the chain. More preferred alkyl groups contain about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkyl chain. "Lower alkyl” means a group having about 1 to about 6 carbon atoms in the chain which may be straight or branched.
  • the alkyl group may be substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of alkyl, alkenyi, alkynyl, alkoxyl, aryl, aryloxy, cycloalkyl, cycloalkenyl, cyano, heteroaryl, heterocyclyl, amino, -NH(alkyl), -N(alkyl) 2 , -NH(cycloalkyl), -N(cycloalkyl) 2 , -NH(aryl), -N(aryl) 2 , -NH(heteroaryl), -N(heteroaryl) 2 , -NH(heterocyclyl), N(heterocyclyl) 2 , halo, hydroxy, carboxyl, carboxyalkyl (non-limiting example(s) include ester), alkoxycarbonyl, hydroxyalkyl, carbonyl (non-limiting example(s)
  • Non-limiting examples of suitable alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-pentyl, heptyl, nonyl, decyl, fluoromethyl, trifluoromethyl and cyclopropylmethyl.
  • Alkylheteroaryl means an alkyl-heteroaryl- group wherein the alkyl is as previously described and the bond to the parent moiety is through the heteroaryl group.
  • Alkylamino means an -NH 2 or -NH 3 + group in which one or more of the hydrogen atoms on the nitrogen is replaced by an alkyl group as defined above. The bond to the parent is through the nitrogen.
  • Alkylaryl means an alkyl-aryl- group in which the alkyl and aryl are as described herein. Preferred alkylaryls comprise a lower alkyl group. Non-limiting examples of suitable alkylaryl groups include o-tolyl, p-tolyl and xylyl. The bond to the parent moiety is through the aryl.
  • Alkylthio means an alkyl-S- group in which the alkyl group is as described herein.
  • suitable alkylthio groups include methylthio, ethylthio, i-propylthio and heptylthio.
  • the bond to the parent moiety is through the sulfur.
  • Alkylsulfonyl means an alkyl-S(O) 2 - group. Preferred groups are those in which the alkyl group is lower alkyl. The bond to the parent moiety is through the sulfonyl.
  • Alkylsulfinyl means an alkyl-S(O)- group. Preferred groups are those in which the alkyl group is lower alkyl. The bond to the parent moiety is through the sulfinyl.
  • Alkynyl means an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain. Preferred alkynyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 4 carbon atoms in the chain.
  • Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkynyl chain.
  • Lower alkynyl means about 2 to about 6 carbon atoms in the chain which may be straight or branched.
  • suitable alkynyl groups include ethynyl, propynyl, 2-butynyl, 3-methylbutynyl, n-pentynyl, and decynyl.
  • the alkynyl group may be substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of alkyl, alkoxyl, aryl, aryloxy, cycloalkyl, cycloalkenyl, cyano, heteroaryl, heterocyclyl, -NH(alkyl), -N(alkyl) 2 , -NH(cycloalkyl), -N(cycloalkyl) 2 , -NH(aryl), -N(aryl) 2 ,
  • Alkoxy means an alkyl-O- group in which the alkyl group is as previously described.
  • suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, heptoxy and methylhydroxy.
  • the bond to the parent moiety is through the ether oxygen.
  • suitable alkoxycarbonyl groups include methoxycarbonyl and ethoxycarbonyl. The bond to the parent moiety is through the carbonyl.
  • Aminoalkyl means an amine-alkyl- group in which alkyl is as previously defined. Preferred aminoalkyls contain lower alkyl. Non-limiting examples of suitable aminoalkyl groups include aminomethyl and 2-Dimethlylamino-2-ethyl. The bond to the parent moiety is through the alkyl.
  • the bond to the parent moiety is through the carbon.
  • “Aralkyl” or “arylalkyl” means an aryl-alkyl- group in which the aryl and alkyl are as previously described. Preferred aralkyls comprise a lower alkyl group attached to the aryl group.
  • suitable aralkyl groups include benzyl, 2-phenethyl and naphthalenylmethyl.
  • the bond to the parent moiety is through the alkyl.
  • alkenyl means an aryl-alkenyl- group in which the aryl and alkenyl are as previously described. Preferred aralkenyls contain a lower alkenyl group. Non-limiting examples of suitable aralkenyl groups include 2-phenethenyl and
  • alkenyl 2-naphthylethenyl.
  • the bond to the parent moiety is through the alkenyl.
  • Aralkylthio means an aralkyl-S- group in which the aralkyl group is as previously described. Non-limiting example of a suitable aralkylthio group is benzylthio.
  • the bond to the parent moiety is through the sulfur.
  • Alkoxy means an aralkyl-O- group in which the aralkyl group is as described above. The bond to the parent moiety is through the oxygen group.
  • suitable groups include benzoyl and 1- and 2-naphthoyl.
  • Aryl (sometimes abbreviated “Ar”) means an aromatic monocyclic or multicyclic ring system comprising about 6 to about 14 carbon atoms, preferably about 6 to about 10 carbon atoms.
  • the aryl group can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined herein.
  • suitable aryl groups include phenyl and naphthyl.
  • Aryloxy means an aryl-O- group in which the aryl group is as previously described. Non-limiting examples of suitable aryloxy groups include phenoxy and naphthoxy.
  • the bond to the parent moiety is through the ether oxygen.
  • Arylsulfonyl means an aryl-S(O)2- group. The bond to the parent moiety is through the sulfonyl.
  • Arylsulfinyl means an aryl-S(O)- group. The bond to the parent moiety is through the sulfinyl.
  • Arylthio means an aryl-S- group in which the aryl group is as previously described.
  • suitable arylthio groups include phenylthio and naphthylthio.
  • the bond to the parent moiety is through the sulfur.
  • Carbamates and urea substituents refer to groups with oxygens and nitrogens respectively adjacent an amide; representative carbamate and urea substituents include the following:
  • Cycloalkyl means a non-aromatic mono- or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 5 to about 10 carbon atoms. Preferred cycloalkyl rings contain about 5 to about 7 ring atoms.
  • the cycloalkyl can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined above.
  • suitable monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like.
  • suitable multicyclic cycloalkyls include 1-decaIin, norbomyl, adamantyl and the like.
  • Cycloalkenyl means a non-aromatic mono or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 5 to about 10 carbon atoms which contains at least one carbon-carbon double bond. Preferred cycloalkenyl rings contain about 5 to about 7 ring atoms.
  • the cycloalkenyl can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined above.
  • suitable monocyclic cycloalkenyls include cyclopentenyl, cyclohexenyl, cycloheptenyl, and the like.
  • Non-limiting example of a suitable multicyclic cycloalkenyl is norbomylenyl.
  • Halogen (or halo) means fluorine, chlorine, bromine, or iodine. Preferred are fluorine, chlorine and bromine.
  • Haloalkyl means an alkyl as defined above wherein one or more hydrogen atoms on the alkyl is replaced by a halo group defined above. Non-limiting examples include trifluoromethyl, 2,2,2-trifluoroethyl, 2-chloropropyl and alike.
  • Heteroaryl means an aromatic monocyclic or multicyclic ring system comprising about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the ring atoms is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. Preferred heteroaryls contain about 5 to about 6 ring atoms.
  • the "heteroaryl” can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein.
  • the prefix aza, oxa or thia before the heteroaryl root name means that at least a nitrogen, oxygen or sulfur atom respectively, is present as a ring atom.
  • the nitrogen or sulfur atom of the heteroaryl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide.
  • suitable heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1 ,2,4-thiadiazolyl, pyridazinyl, quinoxalinyl, phthalazinyl, imidazo[1 ,2-a]pyridinyl, imidazo[2,1-b]thiazolyi, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, imidazolyi, thiothi
  • Heterocyclenyl means a partially unsaturated monocyclic or partially unsaturated multicyclic ring system comprising about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the ring atoms is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination.
  • Preferred heterocyclenyls contain about 5 to about 6 ring atoms and 1- 3 double bonds.
  • the "heterocyclenyl” can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein.
  • the prefix aza, oxa or thia before the heterocyclenyl root name means that at least a nitrogen, oxygen or sulfur atom respectively, is present as a ring atom.
  • the nitrogen or sulfur atom of the heteroaryl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide.
  • suitable heterocyclenyls include dihydroimidazole, dihydrooxazole, dihydrooxadiazole, dihydrothiazole, and the like.
  • Heterocyclyl (or heterocycloalkyl) means a non-aromatic saturated monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination.
  • Preferred heterocyclyls contain about 5 to about 6 ring atoms.
  • the prefix aza, oxa or thia before the heterocyclyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom.
  • the heterocyclyl can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein.
  • the nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide.
  • Non-limiting examples of suitable monocyclic heterocyclyl rings include piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, oxazolidinyl, imidazolidinyl, thiomorpholinyl, thiazolidinyl, 1 ,3-dioxolanyl, 1 ,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.
  • ring systems comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur atom, alone or in combination, and which contains at least one carbon-carbon double bond or carbon-nitrogen double bond. There are no adjacent oxygen and/or sulfur atoms present in the ring system.
  • Non-limiting examples of suitable monocyclic aza heterocyclic (i.e., azaheterocyclyl) groups include 1 ,2,3,4- tetrahydropyridine, 1 ,2-dihydropyridyl, 1 ,4-dihydropyridyl, 1 ,2,3,6-tetrahydropyridine, 1 ,4,5,6-tetrahydropyrimidine, dihydro-2-pyrrolinyl, dihydro-3-pyrrolinyl, dihydro-2-imidazolinyl, dihydro-2-pyrazolinyl, dihydro-4,5-trizolyl and the like.
  • Non-limiting examples of suitable oxaheterocyclic (i.e., oxaheterocyclyl) groups include 3,4-dihydro-2H-pyran, dihydrofuranyl, fluorodihydrofuranyl, and the like.
  • Non-limiting example of a suitable multicyclic oxaheterocyclic group is 7-oxabicyclo[2.2.1]heptenyl.
  • suitable monocyclic thiaheterocyclic (i.e., thiaheterocyclyl) rings include dihydrothiophenyl, dihydrothiopyranyl, and the like.
  • Heteroaralkyl means a heteroaryl-alkyl- group in which the heteroaryl and alkyl are as previously described. Preferred heteroaralkyls contain a lower alkyl group. Non-limiting examples of suitable aralkyl groups include pyridylmethyl, 2-(furan-3-yl)ethyl and quinolin-(3-yl)methyl. The bond to the parent moiety is through the alkyl.
  • Heteroaralkenyl means an heteroaryl-alkenyl- group in which the heteroaryl and alkenyl are as previously described. Preferred heteroaralkenyls contain a lower alkenyl group. Non-limiting examples of suitable heteroaralkenyl groups include 2-(pyrid-3-yl)ethenyl and 2-(quinolin-3-yl)ethenyl. The bond to the parent moiety is through the alkenyl.
  • Ring system substituent means a substituent attached to an aromatic or non-aromatic ring system which, for example, replaces an available hydrogen on the ring system.
  • Ring system substituents may be the same or different, each being independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, alkoxyl, aryl, aroyl, aryloxy, cycloalkyl, cycloalkenyl, heteroaryl, heterocyclyl, alkylaryl, alkylheteroaryl, aralkyl, aralkenyl, aralkoxy, aralkoxycarbonyl, amino, -NH(alkyl), -N(alkyl) 2 , -NH(cycloalkyl), -N(cycloalkyl) 2 , -NH(aryl), -N(aryl) 2 , -NH(heteroaryl), -N(heteroaryl) 2 , -NH(heter
  • Spiroalkyl means an alkylene group wherein two carbon atoms of an alkyl group are attached to one carbon atom of a parent molecular group thereby forming a carbocyclic or heterocyclic ring of three to eleven atoms.
  • Representative structures include examples such as:
  • spiroalkyl groups of this invention can be optionally substituted by one or more ring system substituents, wherein "ring system substituent” is as defined herein.
  • Ring system substituent also means a cyclic ring of 3 to 7 ring atoms of which may contain 1 or 2 heteroatoms, attached to an aryl, heteroaryl, or heterocyclyl ring by simultaneously substituting two ring hydrogen atoms on said aryl, heteroaryl, heterocyclyl ring.
  • Non-limiting examples include:
  • moieties include, substituents, groups or rings
  • the phrases "one or more" and “at least one” mean that, there can be as many moieties as chemically permitted, and the determination of the maximum number of such moieties is well within the knowledge of those skilled in the art.
  • composition is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • the straight line as a bond generally indicates a mixture of, or either of, the possible isomers, non-limiting example(s) include, containing (R)- and (S)- stereochemistry.
  • the possible isomers include, containing (R)- and (S)- stereochemistry.
  • a dashed line ( ) represents an optional bond.
  • prodrugs and solvates of the compounds of the invention are also contemplated herein.
  • the term "prodrug”, as employed herein, denotes a compound that is a drug precursor which, upon administration to a subject, undergoes chemical conversion by metabolic or chemical processes to yield a compound of Formula 1 or a salt and/or solvate thereof.
  • a discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) Volume 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press, both of which are incorporated herein by reference thereto.
  • Methods for example, glucuronides and sulfates which can undergo reversible conversion to compounds of Formula 1 are contemplated in this application.
  • Effective amount or “therapeutically effective amount” is meant to describe an amount of compound or a composition of the present invention effective to antagonize CXCR3 and thus produce the desired therapeutic effect in a suitable patient.
  • “Mammal” means humans and other mammalian animals.
  • Patient includes both human and animals.
  • Solvate means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate” encompasses both solution-phase and isolatable solvates. Non-limiting examples of suitable solvates include ethanolates, methanolates, and the like. "Hydrate” is a solvate wherein the solvent molecule is H 2 O. In general, the solvated forms are equivalent to the unsolvated forms and are intended to be encompassed within the scope of this invention.
  • the compounds of Formula 1 form salts which are also within the scope of this invention.
  • Reference to a compound of Formula 1 herein is understood to include reference to salts thereof, unless otherwise indicated.
  • the term "salt(s)" denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases.
  • zwitterions inner salts may be formed and are included within the term "salt(s)" as used herein.
  • Salts of the compounds of the Formula 1 may be formed, for example, by reacting a compound of Formula 1 with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.
  • Acids (and bases) which are generally considered suitable for the formation of pharmaceutically useful salts from basic (or acidic) pharmaceutical compounds are discussed, for example, by S. Berge eif al, Journal of Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, International J.
  • Exemplary acid addition salts include acetates, adipates, alginates, ascorbates, aspartates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, digluconates, dodecylsulfates, ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides, hydrobromides, hydroiodides, 2-hydroxyethanesulfonates, lactates, maleates, methanesulfonates, methyl sulfates, 2-naphthalenesulfonates, nicotinates, nitrates, oxalates, pamoates, pectinates, persulfates, 3-
  • Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, aluminum salts, zinc salts, salts with organic bases (for example, organic amines) such as benzathines, diethylamine, dicyclohexylamines, hydrabamines (formed with N,N-bis(dehydroabietyl)ethylenediamine), N-methyl-D-glucamines, N-methyl-D-glucamides, t-butyl amines, piperazine, phenylcyclohexylamine, choline, tromethamine, and salts with amino acids such as arginine, lysine and the like.
  • organic bases for example, organic amines
  • organic bases for example, organic amines
  • Basic nitrogen-containing groups may be quartemized with agents such as lower alkyl halides (non-limiting example(s) include methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (non-limiting example(s) include dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (non-limiting example(s) include decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides), aralkyl halides (non-limiting example(s) include benzyl and phenethyl bromides), and others.
  • agents such as lower alkyl halides (non-limiting example(s) include methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (non-limiting example
  • esters of the present compounds include the following groups: (1 ) carboxylic acid esters obtained by esterification of the hydroxy groups, in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, acetyl, n- propyl, t-butyl, or n-butyl), alkoxyalkyl (for example, methoxymethyl), aralkyl (for example, benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (for example, phenyl optionally substituted with, for example, halogen, C 1-4 alkyl, or Ci -4 alkoxy or amino); (2) sulfonate esters, such as alkyl- or a
  • the phosphate esters may be further esterified by, for example, a C 1 -20 alcohol or reactive derivative thereof, or by a 2,3-di (C 6 - 24 )acyl glycerol.
  • Compounds of Formula 1 , and salts, solvates, esters and prodrugs thereof, may exist in their tautomeric form (for example, as an amide or imino ether). All such tautomeric forms are contemplated herein as part of the present invention.
  • All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds including those of the salts, solvates, esters and prodrugs of the compounds as well as the salts, solvates and esters of the prodrugs), such as those which may exist due to asymmetric carbons on various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this invention.
  • Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers.
  • the chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations.
  • the use of the terms “salt”, “solvate” “prodrug” and the like, is intended to equally apply to the salt, solvate, ester and prodrug of enantiomers, stereoisomers, rotamers, tautomers, racemates or prodrugs of the inventive compounds.
  • the present invention discloses compounds of Formula 1 , having CXCR3 antagonist activity, or a pharmaceutically acceptable derivative thereof, where the various definitions are given above.
  • L is O (i.e., oxygen).
  • G is R 2 R 1 X-C(R 14 )(R 15 )-.
  • G is selected from the group consisting of H, hydroxyl, alkylO-, Or R 2 R 1 N.
  • G is selected from the group consisting of:
  • is a single bond or double bond.
  • G is
  • R 3 is selected from the group consisting of H, alkyl, haloalkyl, hydroxyalkyl, halogen, -N(R 30 ) 2 , -OR 30 and -CF 3 .
  • R 3 is selected from the group consisting of H, -CH 3 , - CH 2 CH 3 , cyclopropyl, -F, -Cl, OCH 3 , OCF 3 and CF 3 . In another embodiment, R 3 is selected from the group consisting of H, -Cl and
  • the R 9 moieties can be the same or different, each being independently selected from the group consisting of H, -CF 3 , -CH 3 , -CH 2 CH 2 OH, -CH 2 CH 2 NH 2 , -NH 2 , -NHCH 3 , -N(H)CH 2 CH 3 , -N(H)CH(CH 3 ) 2 , -N(H)CH 2 CH 2 CH 3 , -N(H)CH 2 C(O)OCH 3 , and -N(H)CH 2 CH 2 OH.
  • R 9 moieties can be the same or different, each being independently selected from the group consisting of -NH 2 and -N(H)CH 2 CH 3 .
  • R 10 is selected from the group consisting of H, alkyl, aralkyl, hydroxyalkyl, and carbonyl. In another embodiment, R 10 is selected from the group consisting of -CH 3 , -CH 2 CH 3 and -CH 2 CH 2 CH 3 , and m is 0 - 2.
  • R 10 is -CH 2 CH 3 and m is 1.
  • R 11 is selected from the group consisting of H, alkyl, hydroxyalkyl and carbonyl.
  • R 11 is H or -CH 3 .
  • R 11 is H.
  • R 12 is H.
  • ring atoms of ring D are independently C or N and substituted by 0-4 R 20 moieties.
  • ring D is a 5 to 6 membered aryl, heteroaryl, heterocyclenyl, or heterocyclyl ring and substituted by 0-4 R 20 moieties.
  • ring D is a 5 to 6 membered aryl, or heteroaryl ring and substituted by 0-4 R 20 moieties.
  • said ring D aryl ring is phenyl and said ring D heteroaryl ring is pyrindinyl.
  • the R 20 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, alkynyl, alkoxy, alkylamino, alkylheteroaryl, alkylsulfinyl, alkoxycarbonyl, aminoalkyl, amidinyl, aralkyl, aralkoxy, aryl, aryloxy, cyano, cycloalkyl, cycloalkenyl, halogen, haloalkyl, heteroalkyl, heteroaryl, heterocyclyl, hydroxyalkyl, trifluromethyl, trifluoromethoxy, ⁇ (CH 2 ) q OR 31 ,
  • R 20 moieties can be the same or different, each being independently selected from the group consisting of H, halogen, and amino.
  • Y is selected from the group consisting of: -(CHR 13 ) r
  • n is 0-2. In another embodiment, n is 0.
  • q is 1 or 2. In another embodiment, r is 1 or 2.
  • R 3 is selected from the group consisting of H, -Cl and -CH 3 ;
  • R 9 is selected from the group consisting Of -NH 2 and -N(H)CH 2 CH 3 ;
  • R 10 is -CH 2 CH 3 ;
  • R 11 is H;
  • R 12 is H;
  • ring D is a a 5 to 6 membered aryl, or heteroaryl ring and substituted by 0-4 R 20 moieties;
  • R 20 moieties can be the same or different, each being independently selected from the group consisting of H, halogen, and amino;
  • the compound of Formula 1 is selected from the group consisting of the following:
  • the compound is selected from the group consisting of solvate or ester thereof.
  • a compound is selected from the following structures in Table 1 below (or pharmaceutically acceptable salts, solvates or esters thereof) which are shown along with their Ki ratings.
  • the Ki values are rated, "A” for Ki values less than about 25 nanomolar (nM), "B” for Ki values in the range of from about 25 to about 100 nM and "C” for Ki values greater than about 100 nM.
  • Compound Number 1 has a Ki of 1.9 nM, and therefore has a rating of "A”.
  • the compound according to Formula 1 is in purified form.
  • this invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof in combination with at least one pharmaceutically acceptable carrier.
  • the invention provides a pharmaceutical composition of Formula 1 , further comprising at least one additional agent, drug, medicament, antibody and/or inhibitor for treating a CXCR3 chemokine receptor mediated disease.
  • the therapeutic agents in the combination may be administered in any order such as, for example, sequentially, concurrently, together, simultaneously and the like.
  • the amounts of the various actives in such combination therapy may be different amounts (different dosage amounts) or same amounts (same dosage amounts).
  • a compound of Formula III and an additional therapeutic agent may be present in fixed amounts (dosage amounts) in a single dosage unit (e.g., a capsule, a tablet and the like).
  • a commercial example of such single dosage unit containing fixed amounts of two different active compounds is VYTORI N ® (available from Merck Schering-Plough Pharmaceuticals, Kenilworth, New Jersey).
  • the present invention discloses methods for preparing pharmaceutical compositions comprising the inventive heterocyclic substituted piperazine compounds of Formula 1 as an active ingredient.
  • the active ingredients will typically be administered in admixture with suitable carrier materials suitably selected with respect to the intended form of administration, i.e. oral tablets, capsules (either solid-filled, semi-solid filled or liquid filled), powders for constitution, oral gels, elixirs, dispersible granules, syrups, suspensions, and the like, and consistent with conventional pharmaceutical practices.
  • the active drug component may be combined with any oral non-toxic pharmaceutically acceptable inert carrier, such as lactose, starch, sucrose, cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, talc, mannitol, ethyl alcohol (liquid forms) and the like.
  • suitable binders, lubricants, disintegrating agents and coloring agents may also be incorporated in the mixture.
  • Powders and tablets may be comprised of from about 5 to about 95 percent inventive composition.
  • Suitable binders include starch, gelatin, natural sugars, corn sweeteners, natural and synthetic gums such as acacia, sodium alginate, carboxymethylceliulose, polyethylene glycol and waxes.
  • lubricants there may be mentioned for use in these dosage forms, boric acid, sodium benzoate, sodium acetate, sodium chloride, and the like.
  • Disintegrants include starch, methylcellulose, guar gum and the like. Sweetening and flavoring agents and preservatives may also be included where appropriate.
  • compositions of the present invention may be formulated in sustained release form to provide the rate controlled release of any one or more of the components or active ingredients to optimize the therapeutic effects, i.e. anti-inflammatory activity and the like.
  • Suitable dosage forms for sustained release include layered tablets containing layers of varying disintegration rates or controlled release polymeric matrices impregnated with the active components and shaped in tablet form or capsules containing such impregnated or encapsulated porous polymeric matrices.
  • Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injections or addition of sweeteners and pacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.
  • Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier such as inert compressed gas, e.g. nitrogen.
  • a pharmaceutically acceptable carrier such as inert compressed gas, e.g. nitrogen.
  • a low melting wax such as a mixture of fatty acid glycerides such as cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein by stirring or similar mixing. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.
  • solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration.
  • liquid forms include solutions, suspensions and emulsions.
  • the compounds of the invention may also be deliverable transdermally.
  • the transdermal compositions may take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.
  • the compound is administered orally.
  • the pharmaceutical preparation is in a unit dosage form.
  • the preparation is subdivided into suitably sized unit doses containing appropriate quantities of the active components, e.g., an effective amount to achieve the desired purpose.
  • the quantity of the inventive active composition in a unit dose of preparation may be generally varied or adjusted from about 1.0 milligram to about 1 ,000 milligrams, preferably from about 1.0 to about 950 milligrams, more preferably from about 1.0 to about 500 milligrams, and typically from about 1 to about 250 milligrams, according to the particular application.
  • the actual dosage employed may be varied depending upon the patient's age, sex, weight and severity of the condition being treated. Such techniques are well known to those skilled in the art.
  • the human oral dosage form containing the active ingredients can be administered 1 or 2 times per day. The amount and frequency of the administration will be regulated according to the judgment of the attending clinician.
  • a generally recommended daily dosage regimen for oral administration may range from about 1.0 milligram to about 1 ,000 milligrams per day, in single or divided doses.
  • Capsule - refers to a special container or enclosure made of methyl cellulose, polyvinyl alcohols, or denatured gelatins or starch for holding or containing compositions comprising the active ingredients.
  • Hard shell capsules are typically made of blends of relatively high gel strength bone and pork skin gelatins. The capsule itself may contain small amounts of dyes, opaquing agents, plasticizers and preservatives.
  • Tablet- refers to a compressed or molded solid dosage form containing the active ingredients with suitable diluents.
  • the tablet can be prepared by compression of mixtures or granulations obtained by wet granulation, dry granulation or by compaction.
  • Oral gels- refers to the active ingredients dispersed or solubilized in a hydrophillic semi-solid matrix.
  • Powders for constitution - refers to powder blends containing the active ingredients and suitable diluents which can be suspended in water or juices.
  • Diluent - refers to substances that usually make up the major portion of the composition or dosage form. Suitable diluents include sugars such as lactose, sucrose, mannitol and sorbitol; starches derived from wheat, corn, rice and potato; and celluloses such as microcrystalline cellulose.
  • the amount of diluent in the composition can range from about 10 to about 90% by weight of the total composition, preferably from about 25 to about 75%, more preferably from about 30 to about 60% by weight, even more preferably from about 12 to about 60%.
  • Disintegrants refers to materials added to the composition to help it break apart (disintegrate) and release the medicaments.
  • Suitable disintegrants include starches; "cold water soluble" modified starches such as sodium carboxymethyl starch; natural and synthetic gums such as locust bean, karaya, guar, tragacanth and agar; cellulose derivatives such as methylcellulose and sodium carboxymethylcellulose; microcrystalline celluloses and cross-linked microcrystalline celluloses such as sodium croscarmellose; alginates such as alginic acid and sodium alginate; clays such as bentonites; and effervescent mixtures.
  • the amount of disintegrant in the composition can range from about 2 to about 15% by weight of the composition, more preferably from about 4 to about 10% by weight.
  • Binders - refers to substances that bind or "glue” powders together and make them cohesive by forming granules, thus serving as the "adhesive" in the formulation. Binders add cohesive strength already available in the diluent or bulking agent.
  • Suitable binders include sugars such as sucrose; starches derived from wheat, corn rice and potato; natural gums such as acacia, gelatin and tragacanth; derivatives of seaweed such as alginic acid, sodium alginate and ammonium calcium alginate; cellulosic materials such as methylcellulose and sodium carboxymethylcellulose and hydroxypropylmethylcellulose; polyvinylpyrrolidone; and inorganics such as magnesium aluminum silicate.
  • the amount of binder in the composition can range from about 2 to about 20% by weight of the composition, more preferably from about 3 to about 10% by weight, even more preferably from about 3 to about 6% by weight.
  • Lubricant - refers to a substance added to the dosage form to enable the tablet, granules, etc. after it has been compressed, to release from the mold or die by reducing friction or wear.
  • Suitable lubricants include metallic stearates such as magnesium stearate, calcium stearate or potassium stearate; stearic acid; high melting point waxes; and water soluble lubricants such as sodium chloride, sodium benzoate, sodium acetate, sodium oleate, polyethylene glycols and d'l-leucine. Lubricants are usually added at the very last step before compression, since they must be present on the surfaces of the granules and in between them and the parts of the tablet press.
  • the amount of lubricant in the composition can range from about 0.2 to about 5% by weight of the composition, preferably from about 0.5 to about 2%, more preferably from about 0.3 to about 1.5% by weight.
  • Suitable glidents include silicon dioxide and talc.
  • the amount of glident in the composition can range from about 0.1 % to about 5% by weight of the total composition, preferably from about 0.5 to about 2% by weight.
  • Coloring agents - excipients that provide coloration to the composition or the dosage form.
  • excipients can include food grade dyes and food grade dyes adsorbed onto a suitable adsorbent such as clay or aluminum oxide.
  • the amount of the coloring agent can vary from about 0.1 to about 5% by weight of the composition, preferably from about 0.1 to about 1 %.
  • Bioavailability - refers to the rate and extent to which the active drug ingredient or therapeutic moiety is absorbed into the systemic circulation from an administered dosage form as compared to a standard or control.
  • Conventional methods for preparing tablets are known. Such methods include dry methods such as direct compression and compression of granulation produced by compaction, or wet methods or other special procedures.
  • Conventional methods for making other forms for administration such as, for example, capsules, suppositories and the like are also well known.
  • Another embodiment of the invention discloses the use of the pharmaceutical compositions disclosed above for treatment of diseases of a CXCR3 chemokine receptor mediated disease in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
  • the method is directed to administering to the patient
  • At least one compound of Formula 1 binds to a CXCR3 receptor.
  • the method can further comprise administering: (a) a therapeutically effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one medicament selected from the group consisting of: disease modifying antirheumatic drugs; nonsteroidal anti-inflammatory drugs; COX-2 selective inhibitors; COX-1 inhibitors; immunosuppressives (Non-limiting examples include methotrexate, cyclosporin, FK506); steroids; PDE IV inhibitors, anti-TNF- ⁇ compounds, TNF-alpha-convertase inhibitors, cytokine inhibitors, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, p38 inhibitors, biological response modifiers; anti-inflammatory agents and therapeutics.
  • the disease can be an inflammatory disease.
  • Another embodiment of this invention is directed to a method of inhibiting or blocking T-cell mediated chemotaxis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of at least one compound according to Formula 1 or a pharmaceutically acceptable salt, solvate or ester thereof.
  • Another embodiment of this invention is directed to a method of treating inflammatory bowel disease in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
  • Another embodiment of this invention is directed to a method of treating or preventing graft rejection in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
  • Another embodiment of this invention is directed to a method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: cyclosporine A, FK-506, FTY720, beta-lnterferon, rapamycin, mycophenolate, prednisolone, azathioprine, cyclophosphamide and an antilymphocyte globulin.
  • Another embodiment of this invention is directed to a method of treating multiple sclerosis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: beta-interferon, glatiramer acetate, glucocorticoids, methotrexate, azothioprine, mitoxantrone, VLA-4 inhibitors and/or CB2-selective inhibitors.
  • Another embodiment of this invention is directed to a method of treating multiple sclerosis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: methotrexate, cyclosporin, leflunimide, sulfasalazine, ⁇ -methasone, ⁇ -interferon, glatiramer acetate, prednisone, etonercept, and infliximab.
  • Another embodiment of this invention is directed to a method of treating rheumatoid arthritis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: COX-2 inhibitors, COX inhibitors, immunosuppressives, steroids, PDE IV inhibitors, anti-TNF- ⁇ compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, caspase (ICE) inhibitors and other classes of compounds indicated for the treatment of rheumatoid arthritis.
  • COX-2 inhibitors COX inhibitors
  • immunosuppressives steroids
  • PDE IV inhibitors anti-TNF- ⁇ compounds
  • MMP inhibitors glucocorticoids
  • chemokine inhibitors chemokine inhibitors
  • Another embodiment of this invention is directed to a method of treating psoriasis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: immunosuppressives, steroids, and anti-TNF- ⁇ compounds.
  • Another embodiment of this invention is directed to a method of treating a disease selected from the group consisting of: inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, tuberculoid leprosy, type I diabetes, viral meningitis and tumors in a patient in need of such treatment, such method comprising administering to the patient an effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
  • Another embodiment of this invention is directed to a method of treating a disease selected from the group consisting of inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, tuberculoid leprosy and cancer in a patient in need of such treatment, such method comprising administering to the patient an effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
  • Another embodiment of this invention is directed to a method of treating a disease selected from the group consisting of inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses and tuberculoid leprosy, type I diabetes, viral meningitis and cancer in a patient in need of such treatment, such method comprising administering to the patient an effective amount of (a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one medicament selected from the group consisting of: disease modifying antirheumatic drugs; nonsteroidal anti-inflammatory drugs; COX-2 selective inhibitors; COX-1 inhibitors; immunosuppressives; steroids; PDE IV inhibitors, anti-TNF- ⁇ compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors,
  • CB2-selective inhibitors include biological response modifiers; anti-inflammatory agents and therapeutics.
  • Another embodiment of the invention discloses a method of making the substituted pyrazine compounds, disclosed above.
  • LAH lithium aluminum hydride
  • NaBH(OAc) 3 sodium triacetoxyborohydride
  • P-TsOH p-toluenesulfonic acid
  • m-CPBA m-Chloroperbenzoic acid
  • R , G, L, Z, X, D, Y, m, n, p and q) are as defined above, are shown in scheme 1 ,
  • Pr , Pr and Pr are protecting groups exemplified below.
  • the starting material and reagents used in preparing compounds described are either available from commercial suppliers such as AIdrich Chemical Co. (Wisconsin, USA and Acros Organics Co. (New Jersey, USA) or were prepared by literature methods knowr to those skilled in the art.
  • a suitable protecting group for an carboxylic acid (Pr , when R , R
  • a suitable protecting group for an amine is methyl, benzyl, ethoxycarbonyl, t-butoxycarbonyl, benzyloxy carbonyl, phthaloyl, trifluoroacetyl, acetyl and alike.
  • Ail protecting groups can be appended to and removed by literature methods known to those skilled in the art.
  • synthesis of compounds of formula 1 may require the construction of an amide bond.
  • Methods include but are not limited to the use of a reactive carboxyl derivative (e.g. acid halide, or ester at elevated temperatures) or the use of an acid with coupling reagents (e.g. EDCI, DCC) in the presence of an amine at 0 0 C to 100 0 C.
  • Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, DMF and alike.
  • the reaction may be conducted under pressure or in a sealed vessel.
  • the synthesis of compounds of formula 1 may require the construction of an amine bond.
  • One such method is but not limited to the reaction of a primary or secondary amine with a reactive carbonyl (e.g. aldehyde or ketone) under reductive amination conditions.
  • Suitable reducing agents of the intermediate imine are NaBH 4 , NaBH(OAc) 3 and alike at 0 0 C to 100 0 C.
  • Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, DMF and alike.
  • the reaction can be performed in the presence of titanium tetraisopropoxide to facilitate the imine generation.
  • Another such method is but not limited to the reaction of a primary or secondary amine with a reactive alkylating agent such as an alkyl halide, benzyl halide, mesylate, tosylate and alike.
  • a reactive alkylating agent such as an alkyl halide, benzyl halide, mesylate, tosylate and alike.
  • Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, DMF and alike.
  • the reaction may be conducted under pressure or in a sealed vessel at 0 0 C to 100 0 C.
  • Suitable reducing agents include NaBH 4 , LAH, diborane and alike at -20 0 C to 100 0 C.
  • Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, DMF and alike.
  • Suitable oxidizing reagents include oxygen, hydrogen peroxide, m-CPBA and alike at -20 0 C to 100 0 C.
  • Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, water and alike.
  • the starting materials and the intermediates of a reaction may be isolated and purified if desired using conventional techniques, including but not limited to filtration, distillation, crystallization, chromatography and alike. Such materials can be characterized using conventional means, including physical constants and spectral data.
  • Step A Amination of 2-Halopyrazine A suitably protected 2-halopyrazine of formula I is reacted with a piperazine of formula Il to form a compound of general formula III.
  • a reaction is carried out in a solvent such as dioxane in the presence of a base such as potassium carbonate or cesium carbonate.
  • a suitably protected 2-halopyrazine of formula III is reacted with an alkyl nitrite in the presence of acid to form a compound of general formula IV.
  • the reaction is carried out in a solvent such as THF and water.
  • a suitably protected 2-pyrazinone of formula IV is reacted with a alkylating agent such as methyl iodide to form a N-alkylated product of general formula V.
  • a alkylating agent such as methyl iodide
  • the reaction is carried out in a solvent such as acetone in the presence of a base such as potassium carbonate or cesium carbonate.
  • the reaction is carried out in a solvent such as methanol or dioxane in a pressure vessel at 25 0 C to 100 0 C.
  • a polar solvent such as MeOH or EtOH at 25 0 C to 100 0 C.
  • Step E Deprotection of Amine Protecting Group
  • the product of step A is a protected piperazine of structure III
  • deprotection is required.
  • Pr2 is benzyl or substituted benzyl
  • deprotection can be effected by reaction under a pressure of hydrogen gas in the presence of a catalyst such as palladium.
  • Pr2 is ethoxycarbonyl deprotection can be effected by reaction with trimethylsilyl iodide.
  • Pr2 is t-butoxycarbonyl deprotection can be effected with a strong acid such as trifluoroacetic acid.
  • a piperazine of structure VII is reacted with a ketone of structure VIII in the presence of a reducing agent with or without titanium tetraisopropoxide to form a compound of structure VIV where R12 is hydrogen.
  • a reducing agent with or without titanium tetraisopropoxide to form a compound of structure VIV where R12 is hydrogen.
  • the ketone of step F is a protected piperazine of structure VIII
  • deprotection is required.
  • Pr3 is benzyl or substituted benzyl deprotection can be effected by reaction under a pressure of hydrogen gas in the presence of a catalyst such as palladium.
  • Pr3 is ethoxycarbonyl deprotection can be effected by reaction with trimethylsilyl iodide.
  • Pr3 is t-butoxycarbonyl deprotection can be effected with a strong acid such as trifluoroacetic acid.
  • aldehyde or ketone under the reductive amination condition described above.
  • Another methods include using alkylating agents such as alkyl halide, benzyl halide, mesylate, tosylate or alike. General conditions are described above.
  • Step I Suzuki Coupling
  • the reaction is carried out in a solvent such as DMF or THF in the presence of a bsae such as potassium carbonate or nodium carbonate at 25 0 C to 100 0 C.
  • Compounds of formula 1 can be prepared by the general methods outlined in schemes 1 , 2, and 3. Synthesis of the specifically exemplified compounds were prepared as described in detailed below.
  • the following EXAMPLES are being provided to further illustrate the present invention. They are for illustrative purposes only; the scope of the invention is not to be considered limited in any way thereby.
  • intermediate D3 (1.9 g, 78%).
  • a solution of intermediate D3 (518 mg, 0.99 mmol) in CH 2 CI 2 (18 mL) was treated with p-toluenesulfonyl chloride (207 mg, 1.09 mmol) and triethylamine (0.83 mL, 5.94 mmol) at 25 0 C.
  • the reaction mixture was stirred at 25 0 C for 48 hours.
  • the reaction mixture was added to aqueous solution of NaHCO 3 and the organic solution was extracted with CH 2 CI 2 .
  • methyl 2,6-dichloronicotinate (4.5 g, 22 mmol) was dissolved in NH 3 solution (250 ml_, 0.5 M in 1 ,4-dioxane; 0.125 mol).
  • the pressure vessels were sealed and heated at (85 ⁇ 5) 0 C for 9 days.
  • the two reaction mixtures were allowed to cool to 25 0 C, then combined and concentrated under reduced pressure to yield a white solid.
  • inventive compounds can readily be evaluated to determine activity at
  • the CXCR3 receptors by known methods, such as, for example, Development of Human CXCR3 (N-delta 4) Binding Assay. Cloning and expression of human CXCR3 (N-delta 4):
  • the DNA encoding human CXCR3 was cloned by PCR using human genomic DNA (Promega, Madison, Wl) as a template.
  • the PCR primers were designed based on the published sequence of human orphan receptor GPR9 (1 ) with incorporated restriction sites, a Kozak consensus sequence, CD8 leader and Flag tag.
  • the PCR product was subcloned into the mammalian expression vector pME18Sneo, a derivative of the SR-alpha expression vector (designated as pME18Sneo-hCXCR3 (N-delta 4).
  • IL-3-dependent mouse pro-B cells Ba/F3 were transfected by electroporation in 0.4 ml Dulbecco's PBS containing 4 X 10 6 cells with 20 ⁇ g of pME18Sneo-hCXCR3 (N-delta 4) plasmid DNA. Cells were pulsed at 400 Volts, 100 OHMs, 960 ⁇ Fd. The transfected cells were under selection with 1 mg/ml G418 (Life Technologies, Gaithersburg, MD). G418-resistant Ba/F3 clones were screened for CXCR3 expression by specific binding of [ 125 I] IP-10 (NEN Life Science Products, Boston, MA).
  • Ba/F3 cells expressing human CXCR3 were pelleted and resuspended in the lysis buffer containing 10 mM HEPES , pH 7.5 and Complete ® protease inhibitors (1 tablet per 100 ml) (Boehringer Mannheim, Indianapolis, IN) at a cell density of 20 x 10 6 cells per ml. After 5 minutes incubation on ice, cells were transferred to 4639 cell disruption bomb (Parr Instrument, Moline, IL) and applied with 1 ,500 psi of nitrogen for 30 minutes on ice. Large cellular debris was removed by centrifugation at 1 ,000 x g. Cell membrane in the supernatant was sedimented at 100,000 x g.
  • the membrane was resuspended in the lysis buffer supplemented with 10% sucrose and stored at -8O 0 C. Total protein concentration of the membrane was determined by BCA method from Pierce (Rockford, IL). Human CXCR3 (N-delta 4) scintillation proximity assay (SPA):
  • Ki values for the various example compounds of the present invention are given in the afore-mentioned Table 1. From these values, it would be apparent to the skilled artisan that the compounds of the invention have excellent utility CXCR3 antagonists.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Dermatology (AREA)
  • Rheumatology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Endocrinology (AREA)
  • Pain & Pain Management (AREA)
  • Obesity (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Emergency Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The present application discloses a compound, or enantiomers, stereoisomers, rotamers, tautomers, racemates or prodrug of said compound, or pharmaceutically acceptable salts, solvates or esters of said compound, or of said prodrug, said compound having the general structure shown in Formula (1) , or a pharmaceutically acceptable salt, solvate or ester thereof, wherein the various moieties are defined herein. Also disclosed is a method of treating chemokine mediated diseases, such as, palliative therapy, curative therapy, prophylactic therapy of certain diseases and conditions such as inflammatory diseases (non-limiting example(s) include, psoriasis), autoimmune diseases (non-limiting example(s) include, rheumatoid arthritis, multiple sclerosis), graft rejection (non-limiting example(s) include, allograft rejection, xenograft rejection), infectious diseases (e.g , tuberculoid leprosy), fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, type I diabetes, viral meningitis and tumors using a compound of Formula (1).

Description

SUBSTITUTED HETEROCYCLIC COMPOUNDS WITH CXCR3
ANTAGONIST ACTIVITY
Field of the Invention
The present invention relates to substituted heterocyclic compounds with CXCR3 antagonist activity, pharmaceutical compositions containing one or more such antagonists, one or more such antagonists in combination with other compounds with chemokine activity, one or more such antagonists in combination with known immunosuppressive agents, (non-limiting example(s) include Methotrexate, interferon, cyclosporin, FK-506 and FTY720), methods of preparing such antagonists and methods of using such antagonists to modulate CXCR3 activity. This invention also discloses methods of using such CXCR3 antagonists for the treatment (non-limiting examples include palliative, curative and prophylactic therapies) of diseases and conditions where CXCR3 has been implicated. Diseases and conditions where CXCR3 has been implicated include but are not limited to inflammatory conditions (psoriasis and inflammatory bowel disease), autoimmune disease (multiple sclerosis, rheumatoid arthritis), fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, type I diabetes, viral meningitis and tuberculoid leprosy. CXCR3 antagonist activity has also been indicated as a therapy for tumor growth suppression as well as graft rejection (allograft and zenograft rejections for example).
BACKGROUND OF THE INVENTION Chemokines constitute a family of cytokines that are produced in inflammation and regulate leukocyte recruitment (Baggiolini, M. et al., Adv. Immunol., 55: 97-179 (1994); Springer, T. A., Annual Rev. Physio., 57: 827-872 (1995); and Schall, T. J. and K. B. Bacon, Curr. Opin. Immunol, 6: 865-873 (1994)). Chemokines are capable of selectively inducing chemotaxis of the formed elements of the blood (other than red blood cells), including leukocytes such as neutrophils, monocytes, macrophages, eosinophils, basophils, mast cells, and lymphocytes, such as T cells and B cells. In addition to stimulating chemotaxis, other changes can be selectively induced by chemokines in responsive cells, including changes in cell shape, transient rises in the concentration of intracellular free calcium ions ([Ca2+]j), granule exocytosis, integrin upregulation, formation of bioactive lipids (e. g., leukotrienes) and respiratory burst, associated with leukocyte activation. Thus, the chemokines are early triggers of the inflammatory response, causing inflammatory mediator release, chemotaxis and extravasation to sites of infection or inflammation.
Chemokines are related in primary structure and share four conserved cysteines, which form disulfide bonds. Based upon this conserved cysteine motif, the family can be divided into distinct branches, including the C-X-C chemokines (α-chemokines) in which the first two conserved cysteines are separated by an intervening residue (e. g., IL-8, IP-10, Mig, I-TAC, PF4, ENA-78, GCP-2, GROα, GROβ, GROδ, NAP-2, NAP-4), and the C-C chemokines (β-chemokines), in which the first two conserved cysteines are adjacent residues (e. g., MIP-1α, MIP-1 β, RANTES, MCP-1 , MCP-2, MCP-3, I-309) (Baggiolini, M. and Dahinden, C. A.,
Immunology Today, 15 : 127-133 (1994)). Most CXC-chemokines attract neutrophil leukocytes. For example, the CXC-chemokines interleukin-8 (IL-8), GRO alpha (GROα), and neutrophil-activating peptide 2 (NAP-2) are potent chemoattractants and activators of neutrophils. The CXC-chemokines designated Mig (monokine induced by gamma interferon) and IP-10 (interferon-gamma inducible 10 kDa protein) are particularly active in inducing chemotaxis of activated peripheral blood lymphocytes.
CC-chemokines are generally less selective and can attract a variety of leukocyte cell types, including monocytes, eosinophils, basophils, T lymphocytes and natural killer cells. CC-chemokines such as human monocyte chemotactic proteins 1-3 (MCP-1 , MCP-2 and MCP-3), RANTES (Regulated on Activation, Normal T Expressed and Secreted), and the macrophage inflammatory proteins 1α and 1 β (MIP-1 α and MIP-1 β) have been characterized as chemoattractants and activators of monocytes or lymphocytes, but do not appear to be chemoattractants for neutrophils. A chemokine receptor that binds the CXC-chemokines IP-10 and Mig has been cloned, characterized (Loetscher, M. et al., J. Exp. Med., 184: 963-969 (1996)) and designated CXCR3. CXCR3 is a G-protein coupled receptor with seven transmembrane-spanning domains and has been shown to be restrictively expressed in activated T cells, preferentially human Th1 cells. On binding of the appropriate ligand, chemokine receptors transduce an intracellular signal through the associated G-protein resulting in a rapid increase in intracellular calcium concentration.
The CXCR3 receptor mediates Ca2+ (calcium ion) mobilization and chemotaxis in response to IP-10 and Mig. CXCR3 expressing cells show no significant response to the CXC-chemokines IL-8, GROα, NAP-2, GCP-2 (granulocyte chemotactic protein-2), ENA78 (epithelial-derived neutrophil-activating peptide 78), PF4 (platelet factor 4), or the CC-chemokines MCP-1 , MCP-2, MCP-3, MCP-4, MIP-Ia, MIP-1 β, RANTES, I309, eotaxin or lymphotactin. Moreover, a third ligand for CXCR3, 1-TAC (Interferon-inducible T cell Alpha Chemoattractant), has also been found to bind to the receptor with high affinity and mediate functional responses (Cole, K. E. et al., J. Exp. Med., 187: 2009-2021 (1998)). The restricted expression of human CXCR3 in activated T lymphocytes and the ligand selectivity of CXCR3 are noteworthy. The human receptor is highly expressed in IL-2 activated T lymphocytes, but was not detected in resting T lymphocytes, monocytes or granulocytes (Qin, S. et al., J. CHn. Invest., 101 : 746-754 (1998)). Additional studies of receptor distribution indicate that it is mostly CD3+ cells that express CXCR3, including cells which are CD95+, CD45RO+, and
CD45RA|OW, a phenotype consistent with previous activation, although a proportion of CD20+ (B) cells and CD56+ (NK) cells also express this receptor. The selective expression in activated T lymphocytes is of interest, because other receptors for chemokines which have been reported to attract lymphocytes (e. g., MCP-1 , MCP-2, MCP-3, MIP-1α, MIP-1 β, RANTES) are also expressed by granulocytes, such as neutrophils, eosinophils, and basophils, as well as monocytes. These results suggest that the CXCR3 receptor is involved in the selective recruitment of effector T cells.
CXCR3 recognizes unusual CXC-chemokines, designated IP-10, Mig and I-TAC. Although these belong to the CXC-subfamily, in contrast to IL-8 and other CXC-chemokines which are potent chemoattractants for neutrophils, the primary targets of IP-10, Mig and I-TAC are lymphocytes, particularly effector cells such as activated or stimulated T lymphocytes and natural killer (NK) cells (Taub, D. D. et al., J Exp. Med., 177: 18090-1814 (1993); Taub, D. D. et al., J. Immunol., 155: 3877-3888 (1995); Cole, K. E. et al., J. Exp. Med., 187: 2009-2021 (1998)). (NK cells are large granular lymphocytes, which lack a specific T cell receptor for antigen recognition, but possess cytolytic activity against cells such as tumor cells and virally infected cells.) Consistently, IP-10, Mig and I-TAC lack the ELR motif, an essential binding epitope in those CXC-chemokines that efficiently induce neutrophil chemotaxis (Clark-Lewis, I. et al., J. Biol. Chem. 266: 23128-23134 (1991); Hebert, C. A. et al., J. Biol. Chem., 266 : 18989-18994 (1991); and Clark-Lewis, 1. et al., Proc. Natl. Acad. ScL USA, 90 : 3574-3577 (1993)). In addition, both recombinant human Mig and recombinant human IP-10 have been reported to induce calcium flux in tumor infiltrating lymphocytes (TIL) (Liao, F. et al., J Exp. Med, 182: 1301-1314 (1995)). While IP-10 has been reported to induce chemotaxis of monocytes in vitro (Taub, D. D. et al., J. Exp. Med., 177: 1809-1814 (1993), the receptor responsible has not been identified), human Mig and I-TAC appear highly selective, and do not show such an effect (Liao, F. et al., J. Exp. Med., 182: 1301-1314 (1995); Cole, K. E. et al., J. Exp. Med., 187: 2009-2021 (1998)). IP-10 expression is induced in a variety of tissues in inflammatory conditions such as psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses and tuberculoid leprosy as well as tumors and in animal model studies, for example, experimental glomerulonephritis, and experimental allergic encephalomyelitis. IP-10 has a potent in vivo antitumor effect that is T cell dependent, is reported to be an inhibitor of angiogenesis in vivo and can induce chemotaxis and degranulation of NK cells in vitro, suggesting a role as a mediator of NK cell recruitment and degranulation (in tumor cell destruction, for example) (Luster, A. D. and P. Leder, J. Exp. Med., 178: 1057-1065 (1993); Luster, A. D. et al., J Exp. Med. 182: 219-231 (1995); Angiolillo, A. L. et al., J. Exp. Med., 182: 155-162 (1995); Taub, D. D. et al., J. Immunol., 155: 3877-3888 (1995)). The expression patterns of IP-10, Mig and I-TAC are also distinct from that of other CXC chemokines in that expression of each is induced by interferon-gamma (IFNδ), while the expression of IL-8 is down-regulated by IFNδ (Luster, A. D. et al., Nature, 315 : 672-676 (1985); Farber, J. M., Proc. Natl. Acad. Sci. USA, 87 : 5238-5242 (1990); Farber, J. M., Biochem. Biophys. Res. Commun., 192 (1): 223-230 (1993), Liao, F. et al., J. Exp. Med., 182: 1301-1314 (1995); Seitz, M. et al, J. CHn. Invest, 87 : 463-469 (1991 ); GaIy, A. H. M. and H. Spits, J. Immunol., 147: 3823-3830 (1991); Cole, K. E. et al., J. Exp. Med., 187 : 2009-2021 (1998)). Chemokines are recognized as the long-sought mediators for the recruitment of lymphocytes. Several CC-chemokines were found to elicit lymphocyte chemotaxis (Loetscher, P. et al., FASEB J., 8: 1055-1060 (1994)), however, they are also active on granulocytes and monocytes (Uguccioni, M. et al., Eur. J. Immunol., 25-: 64-68 (1995); Baggiolini, M. and C. A. Dahinden, Immunol. Today, 15 : 127-133 (1994)). The situation is different for IP-10, Mig and I-TAC, which are selective in their action on lymphocytes, including activated T lymphocytes and NK cells, and which bind CXCR3, a receptor which does not recognize numerous other chemokines and which displays a selective pattern of expression.
In view of these observations, it is reasonable to conclude that the formation of the characteristic infiltrates in inflammatory lesions, such as, for example, delayed-type hypersensitivity lesions, sites of viral infection and certain tumors is a process mediated via CXCR3 and regulated by CXCR3 expression. Lymphocytes, particularly T lymphocytes, bearing a CXCR3 receptor as a result of activation can be recruited into inflammatory lesions, sites of infection and/or tumors by IP-10, Mig and/or I-TAC, which can be induced locally by interferon-gamma. Thus, CXCR3 plays a role in the selective recruitment of lymphocytes, particularly effector cells such as activated or stimulated T lymphocytes. Accordingly, activated and effector T cells have been implicated in a number of disease states such as graft-rejection, inflammation, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and psoriasis. Thus, CXCR3 represents a promising target for the development of novel therapeutics.
Reference is made to EP1048652A1 (published November 2, 2000), which refers to aromatic compounds having cyclic amino or salts thereof, which specifically inhibit FXa, exert a potent anticoagulant effect and thus are useful as medicinal compositions.
Reference is made to PCT Publication No. WO 93/10091 (Applicant: Glaxo Group Limited, Published May 27, 1993) which discloses piperidine acetic acid derivatives as inhibitors of f ibrinogen-dependent blood platelet aggregation having the formula:
Figure imgf000007_0001
An illustrative compound of that series is:
Figure imgf000007_0002
Reference is also made to PCT Publication No. WO 99/20606 (Applicant: J. Uriach & CIA. S.A., Published April 29, 1999) which discloses piperazines as platelet aggregation inhibitors having the formula:
Figure imgf000007_0003
Reference is also made to US Patent Application No. US 2002/0018776 A1
(Applicant: Hancock, et al. Published February 14, 2002) which discloses methods of treating graft rejection.
Reference is also made to PCT Publication No. WO 03/098185 A2 (Applicant: Renovar, Inc., Published November 27, 2003) which discloses methods of diagnosing and predicting organ transplant rejection by detection of chemokines, for example, CXCR3 and CCL chemokines in urine.
Reference is also made to PCT Publication No. WO 03/082335 A1 (Applicant: Sumitomo Pharmaceuticals Co. Ltd., Published October 9, 2003) which discloses methods of screening a CXCR3 ligand and methods of diagnosing type 2 diabetes by detecting the expression dose of a CXCR3 ligand in a biological sample.
Reference is also made to PCT Publication No. WO 02/085861 (Applicant: Millennium Pharmaceuticals, Inc. Published October 31 , 2002) which discloses imidazolidine compounds and their use as CXCR3 antagonists having the formula:
Figure imgf000008_0001
An illustrative compound of that series is:
Figure imgf000008_0002
Reference is also made to PCT Publication No. WO 03/101970 (Applicant: Smithkline Beecham Corporation, Published December 11 , 2003) which discloses imidazolium compounds and their use as CXCR3 antagonists having the formula:
Figure imgf000008_0003
An illustrative example of that series is:
Figure imgf000009_0001
Reference is also made to US Patent Application No. US 2003/0055054 A1 (Applicant: Medina et al, Published March 20, 2003) and related patent US 6 794 379 B2 ((Applicant: Medina et al, Published September 21 , 2004) which discloses compounds with CXCR3 activity having the formula:
Figure imgf000009_0002
An illustrative compound of that series is:
Figure imgf000009_0003
Reference is also made to US Patent No. 6,124,319 (Applicant: MacCoss et al., issued September 6, 2000) which discloses compounds useful as chemokine receptor modulators having the formula:
Figure imgf000009_0004
Reference is also made to PCT Publication WO 03/070242 A1 (Applicant: CELLTECH R& D limited, Published August28, 2003) which discloses compounds useful as "chemokine receptor inhibitors for the treatment of inflammatory diseases" having the formula:
Figure imgf000010_0001
Reference is also made to PCT Publication WO 04/074287 A1 , WO 04/074273 A1 , WO 04/ 74278 (Applicant: AstraZeneca R & D Published February 19th 2004) which discloses pyridine derivatives, processes for their preparation and their use in the modulation of autoimmune disease having the formula:
Figure imgf000010_0002
where R is phenyl, or a 5- or 6- membered aromatic ring with 1 or more nitrogen atoms.
There is a need for compounds that are capable of modulating CXCR3 activity. For example, there is a need for new treatments and therapies for diseases and conditions associated with CXCR3 such as inflammatory conditions (psoriasis and inflammatory bowel disease), autoimmune disease (multiple sclerosis, rheumatoid arthritis) and graft rejection (allograft and zenograft rejections for example) as well as infectious diseases, cancers and tumors, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, type I diabetes, viral meningitis and tuberculoid leprosy.
There is a need for methods of treatment or prevention or amelioration of one or more symptoms of diseases and conditions associated with CXCR3. There is a need for methods for modulating CXCR3 activity using the compounds provided herein. SUMMARY OF THE INVENTION
In its many embodiments, the present invention discloses a compound having the general structure shown in Formula 1 :
Figure imgf000011_0001
Formula 1 or a pharmaceutically acceptable salt, solvate or ester thereof, wherein:
G is selected from the group consisting of H, hydroxyl, alkoxy, R2R1N-, R2R1X-C(R14XR15)- , and a 5-membered heteroaryl or heterocyclenyl ring containing at least one -C=N- moiety as part of said heteroaryl or heterocyclenyl ring, said heteroaryl or heterocyclenyl ring optionally additionally containing one or more moieties selected from the group consisting of N, N(→O), O, S, S(O) and S(O2) on the ring, which moieties can be the same or different, each being independently selected, further wherein said heteroaryl or heterocyclenyl ring can be either (i) unsubstituted, or (ii) optionally independently substituted on one or more ring carbon atoms with one or more R9 substituents, or on one or more ring nitrogen atoms with one or more R8 substituents, wherein said R8 and R9 substituents can be the same or different;
L is O or S;
Z is N or CR4;
R1 and R2 are independently absent or present, and if present each is independently selected from the group consisting of H, alkyl, alkoxy, alkenyl, carbonyl, cycloalkyl, cycloalkenyl, alkylaryl, arylalkyl, aryl, amino, alkylamino, amidinyl, carboxamido, cyano, hydroxyl, urea, -N≡CH, =NCN, -(CH2)qOH,
-(CH2)qOR31, -(CH2)qNH2, -(CH2)qNHR31, -(CH2)qN(R31)2, -(CH2)qC(=O)NHR3\ - (CH2)qSO2R31, -(CH2)C1NHSO2R31, -(CH2)qSO2NHR31, -C(=S)N(H)alkyl, -N(H)-S(O)2-alkyl, -N(H)C(=O)N(H)-alkyl, -S(O)2alkyl, -S(O)2N(H)alkyl, -S(O)2N(alkyl)2> -S(O)2aryl, -C(=S)N(H)cycloalkyl, -C(=O)N(H)NH2, -C(=O)alkyl, -heteroaryl, heterocyclyl, and heterocyclenyl; or alternatively when X is N, the N taken together with the R1 and R2 forms a heterocycyl, heteroaryl or -N=C(NH2)2; R3 and R4 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, aralkyl, -CN, CF3, haloalkyl, cycloalkyl, halogen, hydroxyalkyl, -N=CH-(R31), -C(=O)N(R30)2, -N(R30)2> -OR30, -SO2(R31), -N(R30)C(=O)N(R30)2 and -N(R30)C(=O)R31;
R6 is selected from the group consisting of H, alkyl, arylalkyl, and alkylaryl;
X is selected from the group consisting of N, O, alkyl, cycloalkyl, heteroaryl, heterocyclyl, and heterocyclenyl; the R8 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkenyl, alkylaryl, arylalkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, -(CH2)qOH, -(CH2)qOR31, -(CH2)qNH2, -(CH2)qNHR31, -(CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)qNSO2R31, and -(CH2)qSO2NHR31; the R9 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkenyl, alkylaryl, arylalkyl, alkoxy, amidinyl, aryl, cycloalkyl, cyano, heteroaryl, heterocyclyl, hydroxyl, -C(=O)N(R30)2, -C(=S)N(R30)2, -C(=O)alkyl, -(CH2)qOH, -(CH2)qOR31, -(CH2)qNH2, -(CH2)qNHR31, -(CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)qNSO2R31, -(CH2)qSO2NHR31, -N(R30)2) -N(R30)S(O2)R31, -N(R30) C(=O)N(R30)2, -OR30 -SO2(R31), -SO2N(R30)2, =O and =S; the R10 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, cycloalkyl, aryl, heteroaryl, heterocyclenyl, heterocyclyl, alkylaryl, arylalkyl, -CO2H, hydroxyalkyl, -C(=O)N(R30)2) -(CH2)qOH, -(CH2)qOR31 ,-OR30, halogen, =O, and -C(=O)R31; the R11 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, heterocyclenyl, alkylaryl, arylalkyl, carboxamide, CO2H, -(CH2)qOH, - (CH2)qOR31, -OR30, halogen, = O, and -C(=O)R31; R12 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, -CN, -C(=O)N(R30)2, -(CH2)qOH, -(CH2)qOR31 and -S(O2)R31; ring D is a five to nine membered cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclenyl or heterocyclyl ring having 0-4 heteroatoms independently selected from O, S or N, wherein ring D is unsubstituted or optionally substituted with 1-5 independently selected R20 moieties; the R20 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkenyl, alkylaryl, alkynyl, alkoxy, alkylamino, alkylthiocarboxy, alkylheteroaryl, alkylthio, alkylsulfinyl, alkylsulfonyl, alkoxycarbonyl, aminoalkyl, amidinyl, aralkyl, aralkenyl, aralkoxy, aralkoxycarbonyl, aralkylthio, aryl, aroyl, aryloxy, cyano, cycloalkyl, cycloalkenyl, formyl, guanidinyl, halogen, haloalkyl, heteroalkyl, heteroaryl, heterocyclyl, heterocyclenyl, hydroxyalkyl, hydroxamate, nitro, trifluoromethoxy, -(CH2)qOH, -(CH2)qOR31, -(CH2)qNH2, - (CH2)qNHR31,
-(CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)qNSO2R31, -(CH2)qSO2NHR31, -alkynylC(R31)2OR31, -C(=O)R30, -C(=O)N(R30)2> -C(=NR30)NHR30,
-C(=NOH)N(R30)2, -C(=NOR31)N(R30)2, -C(=O)OR30, -N(R30)2, -N(R30)C(=O)R31, -NHC(=O)N(R30)2, -N(R30)C(=O)OR31, -N(R30)C(=NCN)N(R30)2, -N(R30)C(=O)N(R30)SO2(R31), -N(R30)C(=O)N(R30)2, -N(R30)SO2(R31),
-N(R30)S(O)2N(R30)2, -OR30, -OC(=O)N(R30)2) -SR30, -SO2N(R30)2, -SO2(R31), -OSO2(R31), and -OSi(R30)3; or alternatively two R20 moieties are linked together to form a five or six membered aryl, cycloalkyl, heterocyclyl, heterocyclenyl, or heteroaryl ring wherein said five or six membered aryl, cycloalkyl, heterocyclyl, heterocyclenyl, or heteroaryl ring is fused to ring D and the fused ring is optionally substituted with 0-4 R21 moieties; the R21 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkenyl, alkylaryl, alkynyl, alkoxy, alkylamino, alkylthiocarboxy, alkylheteroaryl, alkylthio, alkylsulfinyl, alkylsulfonyl, alkoxycarbonyl, aminoalkyl, amidinyl, aralkyl, aralkenyl, aralkoxy, aralkoxycarbonyl, aralkylthio, aryl, aroyl, aryloxy, carboxamido, cyano, cycloalkyl, cycloalkenyl, formyl, guanidinyl, halogen, haloalkyl, heteroalkyl, heteroaryl, heterocyclyl, heterocyclenyl, hydroxyalkyl, hydroxamate, nitro, trifluoromethoxy, -(CH2)qOH, -(CH2)qOR31, - (CH2)qNH2, -(CH2)qNHR31, -(CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)qNSO2R31, -(CH2)qSO2NHR31, -alkynylC(R31)2OR31, -C(=O)R30, -C(=O)N(R30)2) -C(=NR30)NHR30, -C(=NOH)N(R30)2,
-C(=NOR31)N(R30)2, -C(=O)OR30, -N(R30)2> -N(R30)C(=O)R31, -NHC(=O)N(R30)2> -N(R30)C(=O)OR31, -N(R30)C(=NCN)N(R30)2, -N(R30)C(=O)N(R30)SO2(R31), -N(R30)C(=O)N(R30)2, -N(R30)SO2(R31), -N(R30)S(O)2N(R30)2, -OR30, -OC(=O)N(R30)2, -SR30, -SO2N(R30)2, -SO2(R31), -OSO2(R31), and -OSi(R30)3;
Y is selected from the group consisting of -(CR13R13),--,
-CHR13C(=O)-, -(CHR13)rO-, -(CHR13)rN(R30)-, -C(=O)-, -C(=NR30)-, -C(=N-OR30)-, -CH(C(=O)NHR30)-, CH-heteroaryl-, -C(R13R13)rC(R13)=C(R13)-, -(CHR13)rC(=O)- and -(CHR13)rN(H)C(=O)-; or alternatively Y is cycloalkyl, heterocyclenyl, or heterocyclyl wherein the cycloalkyl, heterocyclenyl, or heterocyclyl is fused with ring D; the R13 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, cycloalkyl, alkoxy, aryl, heteroaryl, heterocyclenyl, heterocyclyl, spiroalkyl, -CN, -CO2H, -C(=O)R30, -C(=O)N(R30)2, -(CHR30)qOH, -(CHR30)qOR31, -(CHR30)qNH2, -(CH R30)qNHR31, - (CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)qNSO2R31, -(CH2)qSO2NHR31, -NH2, -N(R30)2, -N(R30)C(=O)N(R30)2, -N(R30)SO2(R31), -OH, OR30 , -SO2N(R30)2, and -SO2(R31);
R14 and R15 are the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, heteroaryl, hydroxyl, -CN, alkoxy, alkylamino, -N(H)S(O )2alkyl and -N(H)C(=O)N(H)alkyl; or alternatively R14 and R15 taken together is =O, =S, =NH, =N(alkyl), =N(Oalkyl), =N(OH) or cycloalkyl; the R30 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, aryl, aralkyl, cycloalkyl, - (CH2)qOH, -(CH2)qOalkyl, -(CH2)qOalkylaryi, -(CH2)qOaryl, -(CH2)qOaralkyl, - (CH2)qOcycloalkyl, -(CH2)qNH2, -(CH2)qNHalkyl, -(CH2)qN(alkyl)2, -(CH2)qNHalkylaryl, -(CH2)qNHaryl, -(CH2)qNHaralkyl, -(CH2)qNHcycloalkyl, -(CH2)qC(=O)NHalkyl, - (CH2)qC(=O)N(alkyl)2, -(CH2)qC(=O)NHalkylaryl, -(CH2)qC(=O)NHaryl, - (CH2)qC(=O)NHaralkyl, -(CH2)qC(=O)NHcycloalkyl, -(CH2)qSO2alkyl, - (CH2)qS02alkylaryl, -(CH2)qS02aryl, -(CH2)qSO2aralkyl, -(CH2)qSO2cycloalkyl, - (CH2)qNS02alkyl, -(CH2)qNSO2alkylaryl, -(CH2)qNSO2aryl, -(CH2)qNS02aralkyl, - (CH2)qNSO2cycloalkyl, -(CH2)qSO2NHalkyl, -(CH2)qSO2NHalkylaryl, - (CH2)qSO2NHaryl, -(CH2)qSO2NHaralkyl, -(CH2)qSO2NHcycloalkyl, heterocyclenyl, heterocyclyl, and heteroaryl; the R31 moieties can be the same or different, each being independently selected from the group consisting of alkyl, alkylaryl, aryl, aralkyl, cycloalkyl, -(CH2)qOH, -(CH2)qOalkyl, -(CH2)qOalkylaryl, -(CH2)qOaryl, -(CH2)qOaralkyl, -(CH2)qOcycloalkyl, -(CH2)qNH2, -(CH2)qNHalkyl, -(CH2)qN(alkyl)2,
-(CH2)qNHalkylaryl, -(CH2)qNHaryi, -(CH2)qNHaralkyl, -(CH2)qNHcycloalkyl, -(CH2)qC(=O)NHalkyl, -(CH2)qC(=O)N(alkyl)2> -(CH2)qC(=O)NHalkylaryl, -(CH2)qC(=O)NHarylI -(CH2)qC(=O)NHaralkyl! -(CH2)qC(=O)NHcycloalkyl, -(CH2)qS02alkyl, -(CH2)qSO2alkylaryl, -(CH2)qS02aryl, -(CH2)qSO2aralkyl, -(CH2)qSO2cycloalkyl, -(CH2)qNS02alkyl, -(CH2)qNS02alkylaryl, -(CH2)qNS02aryl, - (CH2)qNSO2aralkyl, -(CH2)qNSO2cycloalkyl, -(CH2)qSO2NHalkyl, -(CH2)qSO2NHalkylaryl, -(CH2)qSO2NHaryl, -(CH2)qSO2NHaralkyl, -(CH2)qSO2NHcycloalkyl, heterocyclenyl, heterocyclyl, and hetroaryl; m is 0 to 4; n is 0 to 4; each q can be the same or different, each being independently selected from
1 to 5; and r is 1 to 4; with the proviso that there are no two adjacent double bonds in any ring, and that when a nitrogen is substituted by two alkyl groups, said two alkyl groups may be optionally joined to each other to form a ring.
Where G represents "a 5-membered heteroaryl or heterocyclenyl ring containing at least one -C=N- moiety" refers to G representing, in a non-limiting manner, moieties such as dihydroimidazole, imidazole, dihydrooxazole, oxazole, dihydrooxadiazole, oxadiazole, dihydrothiazole, thiazole, triazole, tetrazole and the like. These moieties may be optionally substituted on the ring carbon(s) with one or more R9 groups as stated above, or on the ring nitrogen(s) with one or more R8 groups as stated above.
A further feature of the invention is a pharmaceutical composition containing as active ingredient at least one compound of Formula 1 together with at least one pharmaceutically acceptable carrier or excipient.
The invention provides methods of preparing compounds of Formula 1 , as well as methods for treating diseases, for example, treatment (e. g., palliative therapy, curative therapy, prophylactic therapy) of certain diseases and conditions e. g., inflammatory diseases (e. g., psoriasis), autoimmune diseases (e. g., rheumatoid arthritis, multiple sclerosis), graft rejection (e. g., allograft rejection, xenograft rejection), infectious diseases and tumors. The invention provides a method of treating a CXCR3 chemokine mediated disease in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
The invention provides methods of treating diseases, for example, treatment (e. g., palliative therapy, curative therapy, prophylactic therapy) of certain diseases and conditions such as inflammatory diseases (e. g., psoriasis), autoimmune diseases (e. g., rheumatoid arthritis, multiple sclerosis), graft rejection (e. g., allograft rejection, xenograft rejection), infectious diseases as well as cancers and tumors, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, type I diabetes, viral meningitis and tuberculoid leprosy comprising administering: (a) a therapeutically effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one medicament selected from the group consisting of: disease modifying antirheumatic drugs; nonsteroidal anti-inflammatory drugs; COX-2 selective inhibitors; COX-1 inhibitors; immunosuppressives; steroids; PDE IV inhibitors, anti-TNF-α compounds, MMP inhibitors, glucocorticoids, other chemokine inhibitors such as CCR2 and CCR5, CB2-selective inhibitors, and other classes of compounds indicated for the treatment of rheumatoid arthritis.
The invention also provides a method of modulating (inhibiting or promoting) an inflammatory response in an individual in need of such therapy. The method comprises administering a therapeutically effective amount of a compound (e. g., small organic molecule) which inhibits or promotes mammalian CXCR3 function in an individual in need thereof. Also disclosed is a method of inhibiting or blocking T-cell mediated chemotaxis in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of a compound of Formula 1 or a pharmaceutically acceptable salt, solvate or ester thereof .
Also disclosed is a method of treating inflammatory bowel disease in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
Also disclosed is a method of treating graft rejection in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof. Also disclosed is a method of treating multiple sclerosis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: (a) a therapeutically effective amount of at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: glatiramer acetate, glucocorticoids, methotrexate, azothioprine, mitoxantrone, and CB2-selective inhibitors.
Also disclosed is a method of treating rheumatoid arthritis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: COX-2 inhibitors, COX-1 inhibitors, immunosuppressives, steroids, PDE IV inhibitors, anti-TNF-α compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, caspase (ICE) inhibitors and other classes of compounds indicated for the treatment of rheumatoid arthritis.
Also disclosed is a method of treating psoriasis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: a) at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: immunosuppressives, steroids, and anti-TNF-α compounds. The invention also provides a method of treating a disease selected from the group consisting of: inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection and psoriasis in a patient in need of such treatment such method comprising administering to the patient an effective amount of at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
The invention also provides a method of treating a disease selected from the group consisting of: inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, type I diabetes, viral meningitis, tuberculoid leprosy as well as tumors and cancers in a patient in need of such treatment, such method comprising administering to the patient an effective amount of (a) at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one medicament selected from the group consisting of: disease modifying antirheumatic drugs; nonsteroidal anti-inflammatory drugs; COX-2 selective inhibitors; COX-1 inhibitors; immunosuppressives; steroids; PDE IV inhibitors, anti-TNF-α compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, biological response modifiers; anti-inflammatory agents and therapeutics.
DETAILED DESCRIPTION OF THE INVENTION
The terms used herein have their ordinary meaning and the meaning of such terms is independent at each occurrence thereof. That notwithstanding and except where stated otherwise, the following definitions apply throughout the specification and claims. Chemical names, common names, and chemical structures may be used interchangeably to describe the same structure. These definitions apply regardless of whether a term is used by itself or in combination with other terms, unless otherwise indicated. Hence, the definition of "alkyl" applies to "alkyl" as well as the "alkyl" portions of "hydroxyalkyl," "haloalkyl," "alkoxy," etc. As used above, and throughout the specification, the following terms, unless otherwise indicated, shall be understood to have the following meanings:
"Acyl" means an H-C(=O)-, alkyl-C(=O)-, alkenyl-C(=O)-, alkynyl-C(=O)-, cycloalkyl-C(=O)-, cycloalkenyl-C(=O)-, or cycloalkynyl-C(=O)- group in which the various groups are as previously described. The bond to the parent moiety is through the carbonyl carbon atom. Preferred acyls contain a lower alkyl.
Non-limiting examples of suitable acyl groups include formyl, acetyl, propanoyl, 2-methylpropanoyl, butanoyl and cyclohexanoyl.
"Alkenyl" means an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain. Preferred alkenyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkenyl chain. "Lower alkenyl" means about 2 to about 6 carbon atoms in the chain which may be straight or branched. The alkenyl group may be substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxyl, aryl, aryloxy, cycloalkyl, cycloalkenyl, cyano, heteroaryl, heterocyclyl, amino, aminosulfonyl, halo, carboxyl, carboxyalkyl (non-limiting example(s) include ester), alkoxycarbonyl, hydroxyalkyl, carbonyl (non-limiting example(s) include ketone), -C(=O)heterocyclyl, formyl
(non-limiting example(s) include aldehyde), carboxamido (i.e amido, -C(=O)NH2), -C(=O)N(alkyl)2, -C(=O)NH(alkyl), -C(=O)N(cycIoalkyl)2, -C(=O)NH(cycIoalkyl), -NHC(=O)alkyl, urea (e.g -NH(C=O)NH2, -NH(C=O)NH(alkyl), -NH(C=O)NH(alkyl)2, -NH(C=O)NH(heteroaryl), -NH(C=O)NH(heterocyclyl)), guanidinyl, -NHC(=NCN)NH2, -NHC(=NCN)N(alkyl)2, carbamoyl (i.e -CO2NH2), NHC(=O)Oalkyl, -CO2N(alkyI)2, -NHC(=O))NH-S(O)2alkyl, -NHC(=O)N(alkyl)2-S(O)2alkyl, -NH-S(O)2alkyl, -NH-S(O)2heteroaryl,
-N(alkyl)-S(O)2alkyl, -NH-S(O)2aryl, -N(alkyl)-S(O)2aryl, -NH-S(O)2NH2, -NH-S(O)2NHalkyl, -NH-S(O)2N(alkyl)2, alkylthiocarboxy, -S(O)2alkyl , -S(O)2aryl, -OS(O)2alkyl, -OS(O)2aryl, sulfonyl urea (non-limiting example(s) include NHC(=S)NHalkyl). Non-limiting examples of suitable alkenyi groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl, n-pentenyl, octenyl and decenyl.
"Alkyl" means an aliphatic hydrocarbon group which may be straight or branched or a combination thereof, and comprising about 1 to about 20 carbon atoms in the chain. Preferred alkyl groups contain about 1 to about 12 carbon atoms in the chain. More preferred alkyl groups contain about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkyl chain. "Lower alkyl" means a group having about 1 to about 6 carbon atoms in the chain which may be straight or branched. The alkyl group may be substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of alkyl, alkenyi, alkynyl, alkoxyl, aryl, aryloxy, cycloalkyl, cycloalkenyl, cyano, heteroaryl, heterocyclyl, amino, -NH(alkyl), -N(alkyl)2, -NH(cycloalkyl), -N(cycloalkyl)2, -NH(aryl), -N(aryl)2, -NH(heteroaryl), -N(heteroaryl)2, -NH(heterocyclyl), N(heterocyclyl)2, halo, hydroxy, carboxyl, carboxyalkyl (non-limiting example(s) include ester), alkoxycarbonyl, hydroxyalkyl, carbonyl (non-limiting example(s) include ketone), -C(=O)heterocyclyl, formyl, carboxamido (i.e amido, -C(=O)NH2, -C(=O)N(alkyl)2, -C(=O)NH(alkyl), -C(=O)N(cycloalkyl)2, -C(=O)NH(cycloalkyl)), -NHC(=O)alkyl, amidinyl, hydrazidyl, hydroxamate, -NHC(=O)H, -NHC(=O)alkyl, urea {e.g -NH(C=O)NH2, -NH(C=O)NH(alkyl), -NH(C=O)NH(alkyl)2, -NH(C=O)NH(heteroaryl), -NH(C=O)NH(heterocyclyl)), guanidinyl, -NHC(=NCN)NH2, -NHC(=NCN)N(alkyl)2, carbamoyl (i.e -CO2NH2), -NHC(=O)Oalkyl, -CO2N(alkyl)2, -NHC(=O)NH-S(O)2alkyl, -NHC(=O)N(alkyl)-S(O)2alkyl, -NH-S(O)2alkyl, -NH-S(O)2heteroaryl, -N(alkyl)-S(O)2alkyl, -NH-S(O)2aryl, -N(alkyl)-S(O)2aryl, -NH-S(O)2NH2, -NH-S(O)2NHalkyl, -NH-S(O)2N(alkyl)2, thio, alkylthio, alkylthiocarboxy, -S(O)alkyl, -S(O)2alkyl , -S(O)2aryl, -OS(O)2alkyl, -OS(O)2aryl, sulfonyl urea (non-limiting example(s) include -NHC(=S)NHalkyl) and OSi(alkyl)3 . Non-limiting examples of suitable alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-pentyl, heptyl, nonyl, decyl, fluoromethyl, trifluoromethyl and cyclopropylmethyl.
"Alkylheteroaryl" means an alkyl-heteroaryl- group wherein the alkyl is as previously described and the bond to the parent moiety is through the heteroaryl group. "Alkylamino" means an -NH2 or -NH3+ group in which one or more of the hydrogen atoms on the nitrogen is replaced by an alkyl group as defined above. The bond to the parent is through the nitrogen.
"Alkylaryl" means an alkyl-aryl- group in which the alkyl and aryl are as described herein. Preferred alkylaryls comprise a lower alkyl group. Non-limiting examples of suitable alkylaryl groups include o-tolyl, p-tolyl and xylyl. The bond to the parent moiety is through the aryl.
"Alkylthio" means an alkyl-S- group in which the alkyl group is as described herein. Non-limiting examples of suitable alkylthio groups include methylthio, ethylthio, i-propylthio and heptylthio. The bond to the parent moiety is through the sulfur.
"Alkylthiocarboxy" means an alkyl-S-C(=O)O- group. Preferred groups are those in which the alkyl group is lower alkyl. The bond to the parent moiety is through the carboxy.
"Alkylsulfonyl" means an alkyl-S(O)2- group. Preferred groups are those in which the alkyl group is lower alkyl. The bond to the parent moiety is through the sulfonyl.
"Alkylsulfinyl" means an alkyl-S(O)- group. Preferred groups are those in which the alkyl group is lower alkyl. The bond to the parent moiety is through the sulfinyl. "Alkynyl" means an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain. Preferred alkynyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 4 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkynyl chain. "Lower alkynyl" means about 2 to about 6 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkynyl groups include ethynyl, propynyl, 2-butynyl, 3-methylbutynyl, n-pentynyl, and decynyl. The alkynyl group may be substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of alkyl, alkoxyl, aryl, aryloxy, cycloalkyl, cycloalkenyl, cyano, heteroaryl, heterocyclyl, -NH(alkyl), -N(alkyl)2, -NH(cycloalkyl), -N(cycloalkyl)2, -NH(aryl), -N(aryl)2,
-NH(heteroaryl), -N(heteroaryl)2, -NH(heterocyclyl), N(heterocyclyl)2, alkoxycarbonyl, hydroxyalkyi, carbonyl (non-limiting example(s) include ketone), -C(=O)heterocyclyl, carboxamido (i.e amido, -C(=O)NH2), -C(=O)N(alkyl)2, -C(=O)NH(alkyl), -C(=O)N(cycloalkyl)2, -C(=O)NH(cycloalkyl), alkylC(=O)NH-, -NHC(=O)alkyl, urea (e.g -NH(C=O)NH2), -NH(C=O)NH(alkyl), -NH(C=O)NH(alkyl)2,
-NH(C=O)NH(heteroaryl), -NH(C=O)NH(heterocyclyl), -S(O)2alkyl, and -S(O)2aryl.-
"Alkoxy" means an alkyl-O- group in which the alkyl group is as previously described. Non-limiting examples of suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, heptoxy and methylhydroxy. The bond to the parent moiety is through the ether oxygen.
"Alkoxycarbonyl" means an alkyl-O-C(=O)- group. Non-limiting examples of suitable alkoxycarbonyl groups include methoxycarbonyl and ethoxycarbonyl. The bond to the parent moiety is through the carbonyl.
"Aminoalkyl" means an amine-alkyl- group in which alkyl is as previously defined. Preferred aminoalkyls contain lower alkyl. Non-limiting examples of suitable aminoalkyl groups include aminomethyl and 2-Dimethlylamino-2-ethyl. The bond to the parent moiety is through the alkyl.
"Amidinyl" means -C(=NR)NHR group. The R groups are defined as H, alkyl, alkylaryl, heteroaryl, hydroxyl, alkoxy, amino, ester, -NHSO2alkyl, -NHSO2Aryl, -NHC(=O)NHalkyl, and -NHalkyl. The bond to the parent moiety is through the carbon. "Aralkyl" or "arylalkyl" means an aryl-alkyl- group in which the aryl and alkyl are as previously described. Preferred aralkyls comprise a lower alkyl group attached to the aryl group. Non-limiting examples of suitable aralkyl groups include benzyl, 2-phenethyl and naphthalenylmethyl. The bond to the parent moiety is through the alkyl.
"Aralkenyl" means an aryl-alkenyl- group in which the aryl and alkenyl are as previously described. Preferred aralkenyls contain a lower alkenyl group. Non-limiting examples of suitable aralkenyl groups include 2-phenethenyl and
2-naphthylethenyl. The bond to the parent moiety is through the alkenyl. "Aralkylthio" means an aralkyl-S- group in which the aralkyl group is as previously described. Non-limiting example of a suitable aralkylthio group is benzylthio. The bond to the parent moiety is through the sulfur.
"Aralkoxy" means an aralkyl-O- group in which the aralkyl group is as described above. The bond to the parent moiety is through the oxygen group. "Aralkoxycarbonyl" means an aralkyl-O-C(=O)- group. Non-limiting example of a suitable aralkoxycarbonyl group is benzyloxycarbonyl. The bond to the parent moiety is through the carbonyl.
"Aroyl" means an aryl-C(=O)- group in which the aryl group is as previously described. The bond to the parent moiety is through the carbonyl. Non-limiting examples of suitable groups include benzoyl and 1- and 2-naphthoyl.
"Aryl" (sometimes abbreviated "Ar") means an aromatic monocyclic or multicyclic ring system comprising about 6 to about 14 carbon atoms, preferably about 6 to about 10 carbon atoms. The aryl group can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined herein. Non-limiting examples of suitable aryl groups include phenyl and naphthyl.
"Aryloxy" means an aryl-O- group in which the aryl group is as previously described. Non-limiting examples of suitable aryloxy groups include phenoxy and naphthoxy. The bond to the parent moiety is through the ether oxygen. "Arylsulfonyl" means an aryl-S(O)2- group. The bond to the parent moiety is through the sulfonyl. "Arylsulfinyl" means an aryl-S(O)- group. The bond to the parent moiety is through the sulfinyl.
"Arylthio" means an aryl-S- group in which the aryl group is as previously described. Non-limiting examples of suitable arylthio groups include phenylthio and naphthylthio. The bond to the parent moiety is through the sulfur.
"Carboxyalkyl" means an alkyl-C(=O)O- group. The bond to the parent moiety is through the carboxy.
Carbamates and urea substituents refer to groups with oxygens and nitrogens respectively adjacent an amide; representative carbamate and urea substituents include the following:
Figure imgf000024_0001
"Cycloalkyl" means a non-aromatic mono- or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 5 to about 10 carbon atoms. Preferred cycloalkyl rings contain about 5 to about 7 ring atoms. The cycloalkyl can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined above. Non-limiting examples of suitable monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. Non-limiting examples of suitable multicyclic cycloalkyls include 1-decaIin, norbomyl, adamantyl and the like.
"Cycloalkenyl" means a non-aromatic mono or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 5 to about 10 carbon atoms which contains at least one carbon-carbon double bond. Preferred cycloalkenyl rings contain about 5 to about 7 ring atoms. The cycloalkenyl can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined above. Non-limiting examples of suitable monocyclic cycloalkenyls include cyclopentenyl, cyclohexenyl, cycloheptenyl, and the like. Non-limiting example of a suitable multicyclic cycloalkenyl is norbomylenyl. "Halogen" (or halo) means fluorine, chlorine, bromine, or iodine. Preferred are fluorine, chlorine and bromine.
"Haloalkyl" means an alkyl as defined above wherein one or more hydrogen atoms on the alkyl is replaced by a halo group defined above. Non-limiting examples include trifluoromethyl, 2,2,2-trifluoroethyl, 2-chloropropyl and alike.
"Heteroaryl" means an aromatic monocyclic or multicyclic ring system comprising about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the ring atoms is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. Preferred heteroaryls contain about 5 to about 6 ring atoms. The "heteroaryl" can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein. The prefix aza, oxa or thia before the heteroaryl root name means that at least a nitrogen, oxygen or sulfur atom respectively, is present as a ring atom. The nitrogen or sulfur atom of the heteroaryl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of suitable heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1 ,2,4-thiadiazolyl, pyridazinyl, quinoxalinyl, phthalazinyl, imidazo[1 ,2-a]pyridinyl, imidazo[2,1-b]thiazolyi, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, imidazolyi, thienopyridyl, quinazolinyl, thienopyrimidyl, pyrrolopyridyl, imidazopyridyl, isoquinolinyl, benzoazaindoiyl, 1 ,2,4-triazinyl, benzothiazolyl and the like.
"Heterocyclenyl" means a partially unsaturated monocyclic or partially unsaturated multicyclic ring system comprising about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the ring atoms is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. Preferred heterocyclenyls contain about 5 to about 6 ring atoms and 1- 3 double bonds. Preferred heterocyclenyls also contain at least one -C=N as part of the ring. The "heterocyclenyl" can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein. The prefix aza, oxa or thia before the heterocyclenyl root name means that at least a nitrogen, oxygen or sulfur atom respectively, is present as a ring atom. The nitrogen or sulfur atom of the heteroaryl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of suitable heterocyclenyls include dihydroimidazole, dihydrooxazole, dihydrooxadiazole, dihydrothiazole, and the like.
"Heterocyclyl" (or heterocycloalkyl) means a non-aromatic saturated monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. Preferred heterocyclyls contain about 5 to about 6 ring atoms. The prefix aza, oxa or thia before the heterocyclyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. The heterocyclyl can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein. The nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of suitable monocyclic heterocyclyl rings include piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, oxazolidinyl, imidazolidinyl, thiomorpholinyl, thiazolidinyl, 1 ,3-dioxolanyl, 1 ,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like. Also included are ring systems comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur atom, alone or in combination, and which contains at least one carbon-carbon double bond or carbon-nitrogen double bond. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Non-limiting examples of suitable monocyclic aza heterocyclic (i.e., azaheterocyclyl) groups include 1 ,2,3,4- tetrahydropyridine, 1 ,2-dihydropyridyl, 1 ,4-dihydropyridyl, 1 ,2,3,6-tetrahydropyridine, 1 ,4,5,6-tetrahydropyrimidine, dihydro-2-pyrrolinyl, dihydro-3-pyrrolinyl, dihydro-2-imidazolinyl, dihydro-2-pyrazolinyl, dihydro-4,5-trizolyl and the like. Non-limiting examples of suitable oxaheterocyclic (i.e., oxaheterocyclyl) groups include 3,4-dihydro-2H-pyran, dihydrofuranyl, fluorodihydrofuranyl, and the like. Non-limiting example of a suitable multicyclic oxaheterocyclic group is 7-oxabicyclo[2.2.1]heptenyl. Non-limiting examples of suitable monocyclic thiaheterocyclic (i.e., thiaheterocyclyl) rings include dihydrothiophenyl, dihydrothiopyranyl, and the like.
"Heteroaralkyl" means a heteroaryl-alkyl- group in which the heteroaryl and alkyl are as previously described. Preferred heteroaralkyls contain a lower alkyl group. Non-limiting examples of suitable aralkyl groups include pyridylmethyl, 2-(furan-3-yl)ethyl and quinolin-(3-yl)methyl. The bond to the parent moiety is through the alkyl.
"Heteroaralkenyl" means an heteroaryl-alkenyl- group in which the heteroaryl and alkenyl are as previously described. Preferred heteroaralkenyls contain a lower alkenyl group. Non-limiting examples of suitable heteroaralkenyl groups include 2-(pyrid-3-yl)ethenyl and 2-(quinolin-3-yl)ethenyl. The bond to the parent moiety is through the alkenyl.
"Hydroxyalkyl" means a HO-alkyl- group in which alkyl is as previously defined. Preferred hydroxyalkyls contain lower alkyl. Non-limiting examples of suitable hydroxyalkyl groups include hydroxymethyl and 2-hydroxyethyl. The bond to the parent moiety is through the alkyl. "Hydroxamate" means an alkyl-C(=O)NH-O- group. The bond to the parent moiety is through the oxygen group.
"Ring system substituent" means a substituent attached to an aromatic or non-aromatic ring system which, for example, replaces an available hydrogen on the ring system. Ring system substituents may be the same or different, each being independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, alkoxyl, aryl, aroyl, aryloxy, cycloalkyl, cycloalkenyl, heteroaryl, heterocyclyl, alkylaryl, alkylheteroaryl, aralkyl, aralkenyl, aralkoxy, aralkoxycarbonyl, amino, -NH(alkyl), -N(alkyl)2, -NH(cycloalkyl), -N(cycloalkyl)2, -NH(aryl), -N(aryl)2, -NH(heteroaryl), -N(heteroaryl)2, -NH(heterocyclyl), N(heterocyclyl)2, halo, hydroxy, carboxyl, carboxyalkyl (non-limiting example(s) include ester), cyano, alkoxycarbonyl, hydroxyalkyl, carbonyl (non-limiting example(s) include ketone), -C(=O)heterocyclyl, formyl (non-limiting example(s) include aldehyde), carboxamido (i.e amido, -C(=O)NH2), -C(=O)N(alkyl)2l -C(=O)NH(alkyl), -C(=O)N(cycloalkyl)2, -C(=O)NH(cycloalkyl), alkylC(=O)NH-, -amidino, hydrazido, hydroxamate, -NHC(=O)H, -NHC(=O)alkyl, urea (e.g -NH(C=O)NH2), -NH(C=O)NH(alkyl), -NH(C=O)NH(alkyl)2, -NH(C=O)NH(heteroaryl), -NH(C=O)NH(heterocyclyl), guanidinyl, -NHC(=NCN)NH2, -NHC(=NCN)N(alkyl)2 , carbamoyl (i.e -CO2NH2), -NHC(=O)Oalkyl, -CO2N(alkyl)2> -NHC(=O)NH-S(O)2alkyl, -NHC(=O)N(alkyl)2-S(O)2alkyl, -NH-S(O)2alkyl, -NH-S(O)2heteroaryl, -N(alkyl)-S(O)2alkyl, -NH-S(O)2aryl, -N(alkyl)-S(O)2aryl, -NH-S(O)2NH2, -NH-S(O)2NHalkyl, -NH-S(O)2N(alkyl)2,thio, alkylthiocarboxy, -S(O)2alkyl , -S(O)2aryl, -OS(O)2alkyl, -OS(O)2aryl, sulfonyl urea (non-limiting example(s) include -NHC(=S)NHalkyl) and OSi(alkyl)3.
"Spiroalkyl" means an alkylene group wherein two carbon atoms of an alkyl group are attached to one carbon atom of a parent molecular group thereby forming a carbocyclic or heterocyclic ring of three to eleven atoms. Representative structures include examples such as:
Figure imgf000028_0001
The spiroalkyl groups of this invention can be optionally substituted by one or more ring system substituents, wherein "ring system substituent" is as defined herein.
"Ring system substituent" also means a cyclic ring of 3 to 7 ring atoms of which may contain 1 or 2 heteroatoms, attached to an aryl, heteroaryl, or heterocyclyl ring by simultaneously substituting two ring hydrogen atoms on said aryl, heteroaryl, heterocyclyl ring. Non-limiting examples include:
Figure imgf000028_0002
and the like. The term "optionally substituted" means optional substitution with the specified groups, radicals or moieties, in available position or positions.
With reference to the number of moieties (non-limiting example(s) include, substituents, groups or rings) in a compound, unless otherwise defined, the phrases "one or more" and "at least one" mean that, there can be as many moieties as chemically permitted, and the determination of the maximum number of such moieties is well within the knowledge of those skilled in the art. Preferably, there are one to three substituents, or more preferably, one to two substituents, with at least one in the para position. As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
The straight line as a bond generally indicates a mixture of, or either of, the possible isomers, non-limiting example(s) include, containing (R)- and (S)- stereochemistry. For example,
means containing both and
Figure imgf000029_0003
Figure imgf000029_0002
Figure imgf000029_0001
A dashed line ( ) represents an optional bond.
Lines drawn into the ring systems, such as, for example:
Figure imgf000029_0004
indicate that the indicated line (bond) may be attached to any of the substitutable ring atoms, non limiting examples include carbon, nitrogen and sulfur ring atoms. As well known in the art, a bond drawn from a particular atom wherein no moiety is depicted at the terminal end of the bond indicates a methyl group bound through that bond to the atom, unless stated otherwise. For example: represents
Figure imgf000030_0002
Figure imgf000030_0001
It should also be noted that any heteroatom with unsatisfied valences in the text, schemes, examples, structural formulae, and any Tables herein is assumed to have the hydrogen atom or atoms to satisfy the valences. Prodrugs and solvates of the compounds of the invention are also contemplated herein. The term "prodrug", as employed herein, denotes a compound that is a drug precursor which, upon administration to a subject, undergoes chemical conversion by metabolic or chemical processes to yield a compound of Formula 1 or a salt and/or solvate thereof. A discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) Volume 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press, both of which are incorporated herein by reference thereto.
"Metabolic conjugates", for example, glucuronides and sulfates which can undergo reversible conversion to compounds of Formula 1 are contemplated in this application.
"Effective amount" or "therapeutically effective amount" is meant to describe an amount of compound or a composition of the present invention effective to antagonize CXCR3 and thus produce the desired therapeutic effect in a suitable patient.
"Mammal" means humans and other mammalian animals.
"Patient" includes both human and animals.
"Solvate" means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolatable solvates. Non-limiting examples of suitable solvates include ethanolates, methanolates, and the like. "Hydrate" is a solvate wherein the solvent molecule is H2O. In general, the solvated forms are equivalent to the unsolvated forms and are intended to be encompassed within the scope of this invention. The compounds of Formula 1 form salts which are also within the scope of this invention. Reference to a compound of Formula 1 herein is understood to include reference to salts thereof, unless otherwise indicated. The term "salt(s)", as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases. In addition, when a compound of Formula 1 contains both a basic moiety, such as, but not limited to a pyridine or imidazole, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitterions ("inner salts") may be formed and are included within the term "salt(s)" as used herein. Pharmaceutically acceptable (non-limiting example(s) include, non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful. Salts of the compounds of the Formula 1 may be formed, for example, by reacting a compound of Formula 1 with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization. Acids (and bases) which are generally considered suitable for the formation of pharmaceutically useful salts from basic (or acidic) pharmaceutical compounds are discussed, for example, by S. Berge eif al, Journal of Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, International J. of Pharmaceutics (1986) 33 201-217; Anderson et al, The Practice of Medicinal Chemistry (1996), Academic Press, New York; in The Orange Book (Food & Drug Administration, Washington, D. C. on their website); and P. Heinrich Stahl, Camille G. Wermuth (Eds.), Handbook of Pharmaceutical Salts: Properties, Selection, and Use, (2002) Int'l. Union of Pure and Applied Chemistry, pp. 330-331. These disclosures are incorporated herein by reference thereto.
Exemplary acid addition salts include acetates, adipates, alginates, ascorbates, aspartates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, digluconates, dodecylsulfates, ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides, hydrobromides, hydroiodides, 2-hydroxyethanesulfonates, lactates, maleates, methanesulfonates, methyl sulfates, 2-naphthalenesulfonates, nicotinates, nitrates, oxalates, pamoates, pectinates, persulfates, 3-phenylpropionates, phosphates, picrates, pivalates, propionates, salicylates, succinates, sulfates, sulfonates (such as those mentioned herein), tartarates, thiocyanates, toluenesulfonates (also known as tosylates,) undecanoates, and the like.
Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, aluminum salts, zinc salts, salts with organic bases (for example, organic amines) such as benzathines, diethylamine, dicyclohexylamines, hydrabamines (formed with N,N-bis(dehydroabietyl)ethylenediamine), N-methyl-D-glucamines, N-methyl-D-glucamides, t-butyl amines, piperazine, phenylcyclohexylamine, choline, tromethamine, and salts with amino acids such as arginine, lysine and the like. Basic nitrogen-containing groups may be quartemized with agents such as lower alkyl halides (non-limiting example(s) include methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (non-limiting example(s) include dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (non-limiting example(s) include decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides), aralkyl halides (non-limiting example(s) include benzyl and phenethyl bromides), and others.
All such acid salts and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention. Pharmaceutically acceptable esters of the present compounds include the following groups: (1 ) carboxylic acid esters obtained by esterification of the hydroxy groups, in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, acetyl, n- propyl, t-butyl, or n-butyl), alkoxyalkyl (for example, methoxymethyl), aralkyl (for example, benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (for example, phenyl optionally substituted with, for example, halogen, C1-4alkyl, or Ci-4alkoxy or amino); (2) sulfonate esters, such as alkyl- or aralkylsulfonyl (for example, methanesulfonyl); (3) amino acid esters (for example, L-valyl or L-isoleucyi); (4) phosphonate esters and (5) mono-, di- or triphosphate esters. The phosphate esters may be further esterified by, for example, a C1-20 alcohol or reactive derivative thereof, or by a 2,3-di (C6-24)acyl glycerol. Compounds of Formula 1 , and salts, solvates, esters and prodrugs thereof, may exist in their tautomeric form (for example, as an amide or imino ether). All such tautomeric forms are contemplated herein as part of the present invention.
All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds (including those of the salts, solvates, esters and prodrugs of the compounds as well as the salts, solvates and esters of the prodrugs), such as those which may exist due to asymmetric carbons on various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this invention. Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations. The use of the terms "salt", "solvate" "prodrug" and the like, is intended to equally apply to the salt, solvate, ester and prodrug of enantiomers, stereoisomers, rotamers, tautomers, racemates or prodrugs of the inventive compounds.
It should also be noted that throughout the specification and Claims appended hereto any formula, compound, moiety or chemical illustration with unsatisfied valences is assumed to have the hydrogen atom to satisfy the valences unless the context indicates a bond.
In one embodiment, the present invention discloses compounds of Formula 1 , having CXCR3 antagonist activity, or a pharmaceutically acceptable derivative thereof, where the various definitions are given above. In another embodiment, L is O (i.e., oxygen). In another embodiment, G is R2R1X-C(R14)(R15)-.
In another embodiment, wherein G is R2R1X-C(R14)(R15)-, X is N, and and R14 and R15 taken together is =0. In another embodiment, wherein G is R2R1X-C(R14)(R15)-, X is N, and R14 and R15 taken together is =0, R1 and R2 are both H; i.e., R2R1X-C(R14)(R15)- is H2N- (C=O)-.
In another embodiment, G is selected from the group consisting of H, hydroxyl, alkylO-, Or R2R1N.
In another embodiment, the G 5-membered heteroaryl or heterocyclenyl ring containing at least one -C=N- moiety as part of said heteroaryl or heterocyclenyl ring, is selected from the group consisting of dihydroimidazole, imidazole, dihydrooxazole, oxazole, dihydrooxadiazole, oxadiazole, triazole, and tetrazole.
In another embodiment, G is selected from the group consisting of:
Figure imgf000034_0001
wherein — is a single bond or double bond.
In another embodiment, G is
Figure imgf000034_0002
In another embodiment, R3 is selected from the group consisting of H, alkyl, haloalkyl, hydroxyalkyl, halogen, -N(R30)2, -OR30 and -CF3.
In another embodiment, R3 is selected from the group consisting of H, -CH3, - CH2CH3, cyclopropyl, -F, -Cl, OCH3, OCF3 and CF3. In another embodiment, R3 is selected from the group consisting of H, -Cl and
-CH3.
In another embodiment, R8 is selected from the group consisting of H, alkyl, alkenyl, arylalkyl, cycloalkyl, -(CH2)qOH, -(CH2)qOR31, -(CH2)qNH2, -(CH2)C1NHR31, -(CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)qNSO2R31, and -(CH2)qSO2NHR31.
In another embodiment, R9 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, cycloalkyl, -C(=O)N(H)R30, -C(=O)alkyl, -(CH2)qOH, -(CH2)qOR31, -(CH2)qNH2, -(CH2)qNHR31, -N(H)R30, -N(H)S(O2)R31, -N(H) C(=O)NH(R30), -OR30 -SO2(R31), and -SO2N(H)R30.
In another embodiment, the R9 moieties can be the same or different, each being independently selected from the group consisting of H, cyclopropyl, -CF3, -CH3, -CH2OH, -CH2CH2OH, -C(CH3)2OH, -CH2CH2OCH3, -C(=O)OCH2CH3, -CH2NH2, -CH2CH2NH2, -CH2CH2NHSO2CH3, -CH2CH2SO2CH3, -C(=O)NH2, -C(=O)N(H)CH2CH2OH, -CH2N(H)C(=O)CF3, -C(=O)N(H)-cyclopropyl,
-C(=O)N(H)CH2CF3, -NH2, -NHCH3, -N(CH3)2, -N(H)CH2CH3, -N(H)CH(CH3)2, -N(H)CH2CH2CH3, -N(H)CH2C(=O)OCH3, -N(H)CH2CH2OH, -N(H)CH2CH2NH2, -N(H)CH2CH2NHSO2CH3, -N(H)CH2CH2SO2CH3, -N(H)C(=O)N(H)CH2CH3, -N(H)CH2C(=O)NH2, -OCH3, =S and =0. In another embodiment, the R9 moieties can be the same or different, each being independently selected from the group consisting of H, -CF3, -CH3, -CH2CH2OH, -CH2CH2NH2, -NH2, -NHCH3, -N(H)CH2CH3, -N(H)CH(CH3)2, -N(H)CH2CH2CH3, -N(H)CH2C(O)OCH3, and -N(H)CH2CH2OH.
In another embodiment, the R9 moieties can be the same or different, each being independently selected from the group consisting of -NH2 and -N(H)CH2CH3.
In another embodiment, R10 is selected from the group consisting of H, alkyl, aralkyl, hydroxyalkyl, and carbonyl. In another embodiment, R10 is selected from the group consisting of -CH3, -CH2CH3 and -CH2CH2CH3, and m is 0 - 2.
In another embodiment, R10 is -CH2CH3 and m is 1.
In another embodiment, R11 is selected from the group consisting of H, alkyl, hydroxyalkyl and carbonyl.
In another embodiment, R11 is H or -CH3.
In another embodiment, R11 is H.
In another embodiment, R12 is selected from the group consisting of H, CN, - C(=O)N(R30)2 and alkyl. In another embodiment, R12 is selected from the group consisting of H, -CH3,
CN and -CH2CH3.
In another embodiment, R12 is H.
In another embodiment, the ring atoms of ring D are independently C or N and substituted by 0-4 R20 moieties. In another embodiment, ring D is a 5 to 6 membered aryl, heteroaryl, heterocyclenyl, or heterocyclyl ring and substituted by 0-4 R20 moieties.
In another embodiment, ring D is a 5 to 6 membered aryl, or heteroaryl ring and substituted by 0-4 R20 moieties.
In another embodiment, said ring D aryl ring is phenyl and said ring D heteroaryl ring is pyrindinyl.
In another embodiment, the R20 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, alkynyl, alkoxy, alkylamino, alkylheteroaryl, alkylsulfinyl, alkoxycarbonyl, aminoalkyl, amidinyl, aralkyl, aralkoxy, aryl, aryloxy, cyano, cycloalkyl, cycloalkenyl, halogen, haloalkyl, heteroalkyl, heteroaryl, heterocyclyl, hydroxyalkyl, trifluromethyl, trifluoromethoxy, ~(CH2)qOR31,
-(CH2)qNHR31, -(CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)qNSO2R31, -(CH2)qSO2NHR31, -alkynylC(R31)2OR31, -C(=O)R30, -C(=O)N(R30)2, -C(=O)OR30, -N(R30)2, -N(R30)C(=O)R31, -NHC(=O)N(R30)2, -N(R30)C(=O)OR31, -N(R30)C(=NCN)N(R30)2, -N(R30)C(=O)N(R30)2, -N(R30)SO2(R31), -N(R30)SO2N(R30)2, -OR30, -OC(=O)N(R30)2, -SR30, -SO2N(R30)2, -SO2(R31), -OSO2(R31), and -OSi(R30)3. In another embodiment, the R20 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, amino, halogen, CN, CH3, CF3, OCF3,
-(CH2)qOR31, -(CH2)qNHR31, -(CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)C1NSO2R31, -(CH2)qSO2NHR31, -alkynylC(R31)2OR3\ -C(=O)R30, -C(=O)OR30, -N(R30)2, -N(R30)C(=O)R31, -NHC(=O)N(R30)2) -N(R30)C(=O)OR31, -N(R30)C(=NCN)N(R30)2, -N(R30)C(=O)N(R30)2, -OR30, -OC(=O)N(R30)2, and -OSO2(R31).
In another embodiment, the R20 moieties can be the same or different, each being independently selected from the group consisting of H, halogen, and amino.
In another embodiment, Y is selected from the group consisting of: -(CHR13)r
-, -(CR13R13),- -, -C(=O)- and -CHR13C(=O)-.
In another embodiment, Y is selected from the group consisting of: -CH2-, - CH(CH3)-, -CH(CH2OH)-, -C(=O)- and -CH(CO2alkyl)-. In another embodiment, Y is selected from the group consisting of: -CH2-, and
-C(=O)-.
In another embodiment, m is 0-2. In another embodiment, m is 1. In another embodiment, n is 0-2. In another embodiment, n is 0.
In another embodiment, q is 1 or 2. In another embodiment, r is 1 or 2.
In another embodiment, G is selected independently from the group consisting of R2R1N-C(=O)~ and
Figure imgf000037_0001
R3 is selected from the group consisting of H, -Cl and -CH3;
R9 is selected from the group consisting Of -NH2 and -N(H)CH2CH3;
R10 is -CH2CH3; R11 is H;
R12 is H; ring D is a a 5 to 6 membered aryl, or heteroaryl ring and substituted by 0-4 R20 moieties;
R20 moieties can be the same or different, each being independently selected from the group consisting of H, halogen, and amino;
Y is selected from the group consisting of: -CHb-, and -C(=O)-; m is 1 ; and n is 0.
In another embodiment, the compound of Formula 1 is is selected from the group consisting of the following:
Figure imgf000038_0001
Figure imgf000039_0001
or a pharmaceutically acceptable salt, solvate or ester thereof.
In another embodiment, the compound is selected from the group consisting of
Figure imgf000040_0001
solvate or ester thereof.
In still another embodiment of the present invention, a compound is selected from the following structures in Table 1 below (or pharmaceutically acceptable salts, solvates or esters thereof) which are shown along with their Ki ratings. The Ki values are rated, "A" for Ki values less than about 25 nanomolar (nM), "B" for Ki values in the range of from about 25 to about 100 nM and "C" for Ki values greater than about 100 nM. For instance, Compound Number 1 has a Ki of 1.9 nM, and therefore has a rating of "A". Table 1
Figure imgf000041_0001
Figure imgf000042_0001
Examples of represenative compounds with specific Ki values are set forth in Table 2 below:
Figure imgf000043_0001
In yet another aspect, the compound according to Formula 1 is in purified form.
In another embodiment, this invention provides a pharmaceutical composition comprising at least one compound of Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof in combination with at least one pharmaceutically acceptable carrier.
In still another embodiment, the invention provides a pharmaceutical composition of Formula 1 , further comprising at least one additional agent, drug, medicament, antibody and/or inhibitor for treating a CXCR3 chemokine receptor mediated disease.
When administering a combination therapy to a patient in need of such administration, the therapeutic agents in the combination, or a pharmaceutical composition or compositions comprising the therapeutic agents, may be administered in any order such as, for example, sequentially, concurrently, together, simultaneously and the like. The amounts of the various actives in such combination therapy may be different amounts (different dosage amounts) or same amounts (same dosage amounts). Thus, for non-limiting illustration purposes, a compound of Formula III and an additional therapeutic agent may be present in fixed amounts (dosage amounts) in a single dosage unit (e.g., a capsule, a tablet and the like). A commercial example of such single dosage unit containing fixed amounts of two different active compounds is VYTORI N® (available from Merck Schering-Plough Pharmaceuticals, Kenilworth, New Jersey).
In yet another embodiment, the present invention discloses methods for preparing pharmaceutical compositions comprising the inventive heterocyclic substituted piperazine compounds of Formula 1 as an active ingredient. In the pharmaceutical compositions and methods of the present invention, the active ingredients will typically be administered in admixture with suitable carrier materials suitably selected with respect to the intended form of administration, i.e. oral tablets, capsules (either solid-filled, semi-solid filled or liquid filled), powders for constitution, oral gels, elixirs, dispersible granules, syrups, suspensions, and the like, and consistent with conventional pharmaceutical practices. For example, for oral administration in the form of tablets or capsules, the active drug component may be combined with any oral non-toxic pharmaceutically acceptable inert carrier, such as lactose, starch, sucrose, cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, talc, mannitol, ethyl alcohol (liquid forms) and the like. Moreover, when desired or needed, suitable binders, lubricants, disintegrating agents and coloring agents may also be incorporated in the mixture. Powders and tablets may be comprised of from about 5 to about 95 percent inventive composition. Suitable binders include starch, gelatin, natural sugars, corn sweeteners, natural and synthetic gums such as acacia, sodium alginate, carboxymethylceliulose, polyethylene glycol and waxes. Among the lubricants there may be mentioned for use in these dosage forms, boric acid, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrants include starch, methylcellulose, guar gum and the like. Sweetening and flavoring agents and preservatives may also be included where appropriate. Some of the terms noted above, namely disintegrants, diluents, lubricants, binders and the like, are discussed in more detail below.
Additionally, the compositions of the present invention may be formulated in sustained release form to provide the rate controlled release of any one or more of the components or active ingredients to optimize the therapeutic effects, i.e. anti-inflammatory activity and the like. Suitable dosage forms for sustained release include layered tablets containing layers of varying disintegration rates or controlled release polymeric matrices impregnated with the active components and shaped in tablet form or capsules containing such impregnated or encapsulated porous polymeric matrices.
Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injections or addition of sweeteners and pacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.
Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier such as inert compressed gas, e.g. nitrogen. For preparing suppositories, a low melting wax such as a mixture of fatty acid glycerides such as cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein by stirring or similar mixing. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.
Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.
The compounds of the invention may also be deliverable transdermally. The transdermal compositions may take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.
Preferably the compound is administered orally.
Preferably, the pharmaceutical preparation is in a unit dosage form. In such form, the preparation is subdivided into suitably sized unit doses containing appropriate quantities of the active components, e.g., an effective amount to achieve the desired purpose.
The quantity of the inventive active composition in a unit dose of preparation may be generally varied or adjusted from about 1.0 milligram to about 1 ,000 milligrams, preferably from about 1.0 to about 950 milligrams, more preferably from about 1.0 to about 500 milligrams, and typically from about 1 to about 250 milligrams, according to the particular application. The actual dosage employed may be varied depending upon the patient's age, sex, weight and severity of the condition being treated. Such techniques are well known to those skilled in the art. Generally, the human oral dosage form containing the active ingredients can be administered 1 or 2 times per day. The amount and frequency of the administration will be regulated according to the judgment of the attending clinician. A generally recommended daily dosage regimen for oral administration may range from about 1.0 milligram to about 1 ,000 milligrams per day, in single or divided doses.
Some useful terms are described below: Capsule - refers to a special container or enclosure made of methyl cellulose, polyvinyl alcohols, or denatured gelatins or starch for holding or containing compositions comprising the active ingredients. Hard shell capsules are typically made of blends of relatively high gel strength bone and pork skin gelatins. The capsule itself may contain small amounts of dyes, opaquing agents, plasticizers and preservatives.
Tablet- refers to a compressed or molded solid dosage form containing the active ingredients with suitable diluents. The tablet can be prepared by compression of mixtures or granulations obtained by wet granulation, dry granulation or by compaction.
Oral gels- refers to the active ingredients dispersed or solubilized in a hydrophillic semi-solid matrix.
Powders for constitution - refers to powder blends containing the active ingredients and suitable diluents which can be suspended in water or juices. Diluent - refers to substances that usually make up the major portion of the composition or dosage form. Suitable diluents include sugars such as lactose, sucrose, mannitol and sorbitol; starches derived from wheat, corn, rice and potato; and celluloses such as microcrystalline cellulose. The amount of diluent in the composition can range from about 10 to about 90% by weight of the total composition, preferably from about 25 to about 75%, more preferably from about 30 to about 60% by weight, even more preferably from about 12 to about 60%.
Disintegrants - refers to materials added to the composition to help it break apart (disintegrate) and release the medicaments. Suitable disintegrants include starches; "cold water soluble" modified starches such as sodium carboxymethyl starch; natural and synthetic gums such as locust bean, karaya, guar, tragacanth and agar; cellulose derivatives such as methylcellulose and sodium carboxymethylcellulose; microcrystalline celluloses and cross-linked microcrystalline celluloses such as sodium croscarmellose; alginates such as alginic acid and sodium alginate; clays such as bentonites; and effervescent mixtures. The amount of disintegrant in the composition can range from about 2 to about 15% by weight of the composition, more preferably from about 4 to about 10% by weight. Binders - refers to substances that bind or "glue" powders together and make them cohesive by forming granules, thus serving as the "adhesive" in the formulation. Binders add cohesive strength already available in the diluent or bulking agent. Suitable binders include sugars such as sucrose; starches derived from wheat, corn rice and potato; natural gums such as acacia, gelatin and tragacanth; derivatives of seaweed such as alginic acid, sodium alginate and ammonium calcium alginate; cellulosic materials such as methylcellulose and sodium carboxymethylcellulose and hydroxypropylmethylcellulose; polyvinylpyrrolidone; and inorganics such as magnesium aluminum silicate. The amount of binder in the composition can range from about 2 to about 20% by weight of the composition, more preferably from about 3 to about 10% by weight, even more preferably from about 3 to about 6% by weight.
Lubricant - refers to a substance added to the dosage form to enable the tablet, granules, etc. after it has been compressed, to release from the mold or die by reducing friction or wear. Suitable lubricants include metallic stearates such as magnesium stearate, calcium stearate or potassium stearate; stearic acid; high melting point waxes; and water soluble lubricants such as sodium chloride, sodium benzoate, sodium acetate, sodium oleate, polyethylene glycols and d'l-leucine. Lubricants are usually added at the very last step before compression, since they must be present on the surfaces of the granules and in between them and the parts of the tablet press. The amount of lubricant in the composition can range from about 0.2 to about 5% by weight of the composition, preferably from about 0.5 to about 2%, more preferably from about 0.3 to about 1.5% by weight.
Glidents - materials that prevent caking and improve the flow characteristics of granulations, so that flow is smooth and uniform. Suitable glidents include silicon dioxide and talc. The amount of glident in the composition can range from about 0.1 % to about 5% by weight of the total composition, preferably from about 0.5 to about 2% by weight.
Coloring agents - excipients that provide coloration to the composition or the dosage form. Such excipients can include food grade dyes and food grade dyes adsorbed onto a suitable adsorbent such as clay or aluminum oxide. The amount of the coloring agent can vary from about 0.1 to about 5% by weight of the composition, preferably from about 0.1 to about 1 %.
Bioavailability - refers to the rate and extent to which the active drug ingredient or therapeutic moiety is absorbed into the systemic circulation from an administered dosage form as compared to a standard or control. Conventional methods for preparing tablets are known. Such methods include dry methods such as direct compression and compression of granulation produced by compaction, or wet methods or other special procedures. Conventional methods for making other forms for administration such as, for example, capsules, suppositories and the like are also well known.
It will be apparent to those skilled in the art that many modifications, variations and alterations to the present disclosure, both to materials and methods, may be practiced. Such modifications, variations and alterations are intended to be within the spirit and scope of the present invention. As stated earlier, the invention includes tautomers, enantiomers and other stereoisomers of the compounds also. Thus, as one skilled in the art knows, certain imidazole compounds may exist in tautomeric forms. Such variations are contemplated to be within the scope of the invention. Certain compounds of the present invention may exist in multiple crystalline forms or amorphous forms. All physical forms of the current invention are contemplated.
Compounds of this invention which contain unnatural proportions of atomic isotopes (i.e. "radiolabeled compounds" ) whether their use is therapeutic, diagnostic or as a research reagent are contemplated under this invention.
Another embodiment of the invention discloses the use of the pharmaceutical compositions disclosed above for treatment of diseases of a CXCR3 chemokine receptor mediated disease in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof. In another embodiment, the method is directed to administering to the patient
(a) an effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one additional agent, drug, medicament, antibody and/or inhibitor for treating a CXCR3 chemokine receptor mediated disease, in combination with a pharmaceutically acceptable carrier.
In another embodiment, at least one compound of Formula 1 binds to a CXCR3 receptor.
The method can further comprise administering: (a) a therapeutically effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one medicament selected from the group consisting of: disease modifying antirheumatic drugs; nonsteroidal anti-inflammatory drugs; COX-2 selective inhibitors; COX-1 inhibitors; immunosuppressives (Non-limiting examples include methotrexate, cyclosporin, FK506); steroids; PDE IV inhibitors, anti-TNF-α compounds, TNF-alpha-convertase inhibitors, cytokine inhibitors, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, p38 inhibitors, biological response modifiers; anti-inflammatory agents and therapeutics. The disease can be an inflammatory disease.
Another embodiment of this invention is directed to a method of inhibiting or blocking T-cell mediated chemotaxis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of at least one compound according to Formula 1 or a pharmaceutically acceptable salt, solvate or ester thereof.
Another embodiment of this invention is directed to a method of treating inflammatory bowel disease in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
Another embodiment of this invention is directed to a method of treating or preventing graft rejection in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof. Another embodiment of this invention is directed to a method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: cyclosporine A, FK-506, FTY720, beta-lnterferon, rapamycin, mycophenolate, prednisolone, azathioprine, cyclophosphamide and an antilymphocyte globulin.
Another embodiment of this invention is directed to a method of treating multiple sclerosis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: beta-interferon, glatiramer acetate, glucocorticoids, methotrexate, azothioprine, mitoxantrone, VLA-4 inhibitors and/or CB2-selective inhibitors.
Another embodiment of this invention is directed to a method of treating multiple sclerosis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: methotrexate, cyclosporin, leflunimide, sulfasalazine, β-methasone, β-interferon, glatiramer acetate, prednisone, etonercept, and infliximab.
Another embodiment of this invention is directed to a method of treating rheumatoid arthritis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: COX-2 inhibitors, COX inhibitors, immunosuppressives, steroids, PDE IV inhibitors, anti-TNF-α compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, caspase (ICE) inhibitors and other classes of compounds indicated for the treatment of rheumatoid arthritis. Another embodiment of this invention is directed to a method of treating psoriasis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: immunosuppressives, steroids, and anti-TNF-α compounds. Another embodiment of this invention is directed to a method of treating a disease selected from the group consisting of: inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, tuberculoid leprosy, type I diabetes, viral meningitis and tumors in a patient in need of such treatment, such method comprising administering to the patient an effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof. Another embodiment of this invention is directed to a method of treating a disease selected from the group consisting of inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, tuberculoid leprosy and cancer in a patient in need of such treatment, such method comprising administering to the patient an effective amount of at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
Another embodiment of this invention is directed to a method of treating a disease selected from the group consisting of inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses and tuberculoid leprosy, type I diabetes, viral meningitis and cancer in a patient in need of such treatment, such method comprising administering to the patient an effective amount of (a) at least one compound according to Formula 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one medicament selected from the group consisting of: disease modifying antirheumatic drugs; nonsteroidal anti-inflammatory drugs; COX-2 selective inhibitors; COX-1 inhibitors; immunosuppressives; steroids; PDE IV inhibitors, anti-TNF-α compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors,
CB2-selective inhibitors, biological response modifiers; anti-inflammatory agents and therapeutics.
Another embodiment of the invention discloses a method of making the substituted pyrazine compounds, disclosed above.
Unless otherwise stated, the following abbreviations have the stated meanings in the Examples below:
DBU= 1 ,8-diazabicyclo[5.4.0]undec-7-ene
DBN= 1 ,5-diazabicyclo[4.3.0]non-5-ene DMF= N,N-dimethylformamide
Et2O= diethyl ether
EDCI= I -(3-dimethylaminopropyl)-3-ethylcarbodiimide
HOBT= 1-hydroxybenzotriazole
DCC= dicyclohexylcarbodiimide Dibal-H= diisobutylaluminum hydride
LAH= lithium aluminum hydride
NaBH(OAc)3= sodium triacetoxyborohydride
NaBH4= sodium borohydride
NaBH3CN= sodium cyanoborohydride LDA= lithium diisopropylamide
P-TsOH= p-toluenesulfonic acid m-CPBA= m-Chloroperbenzoic acid
TMAD= N,N,N',N'-tetramethylazodicarboxamide
CSA= camphorsulfonic acid NaHMDS= sodium hexamethyl disilylazide
THF= tetrahydrofuran
HRMS= High Resolution Mass Spectrometry
HPLC= High Performance Liquid Chromatography
LRMS= Low Resolution Mass Spectrometry nM= nanomolar
Ki= Dissociation Constant for substrate/receptor complex pA2= -logEC50, as defined by J. Hey, Eur. J. Pharmacol., (1995), Vol.
294, 329-335.
Ci/mmol= Curie/mmol ( a measure of specific activity) Tr= Triphenylmethyl TRIS= Tris (hydroxymethyl)aminomethane
GENERAL SYNTHESIS
Compounds of the present invention can be prepared by a number of ways evident to one skilled in the art. Preferred methods include, but are not limited to, the general synthetic procedures described herein. One skilled in the art will recognize that one route will be optimal depending on the choice of appendage substituents.
Additionally, one skilled in the art will recognize that in some cases the order of steps has to be controlled to avoid functional group incompatibilities. One skilled in the art will recognize that a more convergent route (i.e. non-linear or preassembly of certain portions of the molecule) is a more efficient method of assembly of the target compounds. Methods for the preparation of compounds of general formula 1 where variables (R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R30, 31
R , G, L, Z, X, D, Y, m, n, p and q) are as defined above, are shown in scheme 1 ,
1 2 3
2, and 3. Pr , Pr and Pr are protecting groups exemplified below.
Scheme 1. Method A.
Step B
Figure imgf000055_0001
Figure imgf000055_0002
Scheme 2. Method B.
Step E1
Figure imgf000055_0004
Figure imgf000055_0003
Figure imgf000055_0005
Scheme 3. Method C.
Figure imgf000056_0001
The starting material and reagents used in preparing compounds described are either available from commercial suppliers such as AIdrich Chemical Co. (Wisconsin, USA and Acros Organics Co. (New Jersey, USA) or were prepared by literature methods knowr to those skilled in the art.
The preparation of arylpiperazine compounds related to intermediate III has been reported in WO-03037862 (Nippon Shinyaku).
One skilled in the art will recognize that the synthesis of compounds of formula 1 may require the need for the protection of certain functional groups (i.e. derivatization for the purpose of chemical compatibility with a particular reaction
14 15 condition). A suitable protecting group for an carboxylic acid (Pr , when R , R
=0) is the methyl, ethyl , isopropyl, or benzyl ester and alike. A suitable protecting group for an amine (Pr2, Pr3) is methyl, benzyl, ethoxycarbonyl, t-butoxycarbonyl, benzyloxy carbonyl, phthaloyl, trifluoroacetyl, acetyl and alike. Ail protecting groups can be appended to and removed by literature methods known to those skilled in the art.
One skilled in the art will recognize that the synthesis of compounds of formula 1 may require the construction of an amide bond. Methods include but are not limited to the use of a reactive carboxyl derivative (e.g. acid halide, or ester at elevated temperatures) or the use of an acid with coupling reagents (e.g. EDCI, DCC) in the presence of an amine at 0 0C to 100 0C. Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, DMF and alike. The reaction may be conducted under pressure or in a sealed vessel. One skilled in the art will recognize that the synthesis of compounds of formula 1 may require the construction of an amine bond. One such method is but not limited to the reaction of a primary or secondary amine with a reactive carbonyl (e.g. aldehyde or ketone) under reductive amination conditions. Suitable reducing agents of the intermediate imine are NaBH4, NaBH(OAc)3 and alike at 0 0C to 100 0C. Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, DMF and alike. Optionally, the reaction can be performed in the presence of titanium tetraisopropoxide to facilitate the imine generation. Another such method is but not limited to the reaction of a primary or secondary amine with a reactive alkylating agent such as an alkyl halide, benzyl halide, mesylate, tosylate and alike. Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, DMF and alike. The reaction may be conducted under pressure or in a sealed vessel at 0 0C to 100 0C.
One skilled in the art will recognize that the synthesis of compounds of formula 1 may require the reduction of a reducible functional group. Suitable reducing agents include NaBH4, LAH, diborane and alike at -20 0C to 100 0C. Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, DMF and alike.
One skilled in the art will recognize that the synthesis of compounds of formula 1 may require the oxidation of a functional group. Suitable oxidizing reagents include oxygen, hydrogen peroxide, m-CPBA and alike at -20 0C to 100 0C. Suitable solvents for the reaction are halogenated hydrocarbons, ethereal solvents, water and alike. The starting materials and the intermediates of a reaction may be isolated and purified if desired using conventional techniques, including but not limited to filtration, distillation, crystallization, chromatography and alike. Such materials can be characterized using conventional means, including physical constants and spectral data.
General Description of Methods
Step A. Amination of 2-Halopyrazine A suitably protected 2-halopyrazine of formula I is reacted with a piperazine of formula Il to form a compound of general formula III. Preferably the reaction is carried out in a solvent such as dioxane in the presence of a base such as potassium carbonate or cesium carbonate.
Step A'. Protection on Piperazine amine
Optionally, if the 2-halopyrazine of formula I is reacted with unprotected piperazine Il (where Pr2 = H), the product of formula III needs to be protected with a suitable amine protecting group described above.
Step B. Sandmyer Type Reaction
A suitably protected 2-halopyrazine of formula III is reacted with an alkyl nitrite in the presence of acid to form a compound of general formula IV. Preferably the reaction is carried out in a solvent such as THF and water.
Alternatively, a fully assembled 6-aminopyrazine of formula XXI is reacted under the same reaction condition described above to provide a compound of general formula
XVI
Step C. N-Alkylation of 2-Pyrazinone
A suitably protected 2-pyrazinone of formula IV is reacted with a alkylating agent such as methyl iodide to form a N-alkylated product of general formula V. Preferably the reaction is carried out in a solvent such as acetone in the presence of a base such as potassium carbonate or cesium carbonate. Step D. Amidation of an Ester
A suitably protected alkyl ester of formula V (when R14, R15 = O) is reacted with an amine to afford an amide of general formula Vl. Preferably the reaction is carried out in a solvent such as methanol or dioxane in a pressure vessel at 25 0C to 100 0C.
Step D'. Hydrazide Formation
A suitably protected alkyl ester of formula XIII (when R14, R15 = O) is reacted with a hydrazide (substituted or non-substituted) to afford a hydrazide of general formula XIV. Preferably the reaction is carried out in a polar solvent such as MeOH or EtOH at 25 0C to 100 0C.
Step E. Deprotection of Amine Protecting Group Optionally, if the product of step A is a protected piperazine of structure III, deprotection is required. When Pr2 is benzyl or substituted benzyl, deprotection can be effected by reaction under a pressure of hydrogen gas in the presence of a catalyst such as palladium. When Pr2 is ethoxycarbonyl deprotection can be effected by reaction with trimethylsilyl iodide. When Pr2 is t-butoxycarbonyl deprotection can be effected with a strong acid such as trifluoroacetic acid.
Step F. Reductive Amination
A piperazine of structure VII is reacted with a ketone of structure VIII in the presence of a reducing agent with or without titanium tetraisopropoxide to form a compound of structure VIV where R12 is hydrogen. General conditions for the reductive amination reaction are described above.
Step G. Deprotection of Amine Protecting Group
Optionally, if the ketone of step F is a protected piperazine of structure VIII, deprotection is required. When Pr3 is benzyl or substituted benzyl deprotection can be effected by reaction under a pressure of hydrogen gas in the presence of a catalyst such as palladium. When Pr3 is ethoxycarbonyl deprotection can be effected by reaction with trimethylsilyl iodide. When Pr3 is t-butoxycarbonyl deprotection can be effected with a strong acid such as trifluoroacetic acid.
Step H. Amide formation when Y = C=O A compound of structure X is reacted with a reactive carboxyl derivatives
(acid halide or ester) or the corresponding acids in general conditions described above.
Step H. Amine formation when Y = CR1 R2 A compound of structure X is reacted with a reactive carbonyl derivatives
(aldehyde or ketone) under the reductive amination condition described above. Another methods include using alkylating agents such as alkyl halide, benzyl halide, mesylate, tosylate or alike. General conditions are described above.
Step H'.
Optionally, functional group manipulation of a compound of structure Xl or XVI may be done to provide additional related compounds of structure Xl or XVI.
Step I. Suzuki Coupling A suitably protected ester of formula XIII where R14= R15 = O and R3 = Cl is reacted with an alkylboronic aicd in the presence of an appropriate palladium catalyst and ligands under the typical Suzuki coupling condition. Preferably, the reaction is carried out in a solvent such as DMF or THF in the presence of a bsae such as potassium carbonate or nodium carbonate at 25 0C to 100 0C.
Step J. Formation of Heterocycle moiety
A suitably protected hydrazide of formula XIV where R14= R15 = O and Pr3 is a amine protecting group described above, is reacted with an acylating reagent to provide a heterocycle in the presence of a dehydrating agent such as p- toluenesulfonyl chloride. Typically the reaction is carried out in a solvent such as THF or acetonitrile at 25 0C to 100 0C. Compounds of formula 1 , can be prepared by the general methods outlined in schemes 1 , 2, and 3. Synthesis of the specifically exemplified compounds were prepared as described in detailed below. The following EXAMPLES are being provided to further illustrate the present invention. They are for illustrative purposes only; the scope of the invention is not to be considered limited in any way thereby.
EXAMPLES
Example 1 , Step A, Method A
Figure imgf000061_0001
A round bottomed flask was charged with methyl 6-amino 2,3-dichloro pyrazine 5-carboxylate (Aldrich, 25 g, 112.6 mmol), 2-S-ethyl piperazine (prepared as per Williams et al J. Med. Chem 1996, 39, 1345, 83% active, 15.7 g, 112.7 mmol), cesium carbonate (100 g, 300 mmol) and 1 ,4 dioxane (400 ml_). The flask was equipped with a reflux condenser and heated to 80 0C. After 12 hours the reaction was cooled, diluted with CH2CI2 (~ 200 ml_), and filtered through celite. The filtrate was washed once with water and then concentrated to an oil. The crude product was purified by silica gel column chromatography (3% to 10% MeOH in CH2CI2) to afford compound A3 (30.8 g, 91 %). MS : M+H = 300
Example 2, Step A', Method A
Figure imgf000062_0001
A solution of A3 (19 g, 63 mmol) and triethylamine (26 ml_, 189 mmol) in CH2CI2 (300 ml_) was treated with trifluoroacetic anhydride (13 ml_, 94 mmol) at 0 0C. The reaction mixture was stirred for 16 hours at 0 0C to 25 °C. The reaction mixture was treated with aqueous NaHCO3 solution and stirred for additional 10 hours at 25 0C. The organic layers were exctracted with CH2CI2 and the combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The crude product A4 (24.9 g, 100%) was pure enough to use in the next step without further purification. MS : M+H = 396
Example 3, Step B, Method A
Figure imgf000062_0002
A cold suspension of A4 (3.09 g, 7.8 mmol) in THF (78 ml_) was treated with
50% aqueous H2SO4 solution (5 ml_) and t-butyl nitrite (5 ml_). The reaction mixture was stirred for 1 hour at 0 0C. The reaction mixture was added to a mixture of
CH2CI2 and aqueous NaHCO3 solution. The mixture was stirred for 0.5 hours and the organic layers were extracted with CH2CI2. The combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The crude product of formula B1 (3 g, 95%) was used for the next step without further purification. MS : M+H = 395
Example 4, Step C, Method A
Figure imgf000063_0001
A mixture of B1 (3 g, 7.8 mmol), cesium carbonate (5 g, 15.3 mmol), and methyl iodide (1.2 mL, 19.2 mmol) in acetone (180 ml_) was stirred at 70 0C for 20 hours. The mixture was concentrated and the residue was dissolved in CH2CI2. The organic solution was washed with water and brine solution, dried (Na2SO4), and concentrated in vacuo to afford the crude product of formula C1 (3.2 g, 100%). MS : M+H = 411.
Example 5, Step D, Method A
Figure imgf000063_0002
A solution of C1 (238 mg, 0.58 mmol) in CH2CI2 (3 mL) was treated with 7 N
NH3 in MeOH (1 mL) at 25 0C. The reaction mixture was stirred for 4.5 hours at the temperature and then concentrated in vacuo. The residue was dissolved in 7N NH3 in MeOH (5 mL) and the solution was stirred for 17 hours. The reaction mixture was concentrated in vacuo and the residue was purified by silica gel column chromatography (1.5% 7N NH3-MeOH in CH2CI2) to afford a compound of formula E1 (140 mg, 81%). MS : M+H = 299. Example 6, Step F, Method A
Figure imgf000064_0001
A solution of E1 (138 mg, 0.46 mmol) and N-Boc-4-piperidone (137 mg, 0.69 mmol) in 1 ,2-dichloroethane (4 ml_) was treated with NaBH(OAc)3 (292 mg, 1.38 mmol) at 25 0C. The reaction mixture was stirred at 60 0C for 16 hours. To the mixture was added additional NaBH(OAc)3 (60 mg, 0.28 mmol) and the reaction mixture was continued to stir at 60 0C for 3 hours. The reaction mixture was cooled and added to aqueous NaHCO3 solution. The organic layers were extracted with EtOAc and the combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The residue was purified by silica gel column chromatography (2.5% MeOH in CH2CI2) to afford F1 (105 mg, 47%). MS : M+H = 483.
Example 7, Step G, Method A
Figure imgf000064_0002
A solution of F1 (92 mg, 0.19 mmol) in CH2CI2 (2 ml_) was treated with trifluoroacetic acid (0.2 ml_) at 0 °C. The reaction mixture was stirred for 3 hours at 0 0C to 25 0C. The reaction mixture was concentrated in vacuo and the residue was purified by silica gel column chromatography (2.5% to 10% 7N NH3-MeOH in CH2CI2) to afford G1 (35 mg, 48%). MS : M+H = 383. Example 8, Step H, Method A
Figure imgf000065_0001
A solution of G1 (35 mg, 0.091 mmol) in DMF (1 ml_) was treated with lithium 2-amino-6-chloronicotinate (19.6 mg, 0.11 mmol, preparation : see below), 1-[3- (dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDCI, 35 mg, 0.18 mmol), and 1-hydroxybenzotriazole (HOBt, 37 mg, 0.27 mmol) at 25 0C. The reaction mixture was stirred for 24 hours at the temperature and added to aqueous NaHCO3 solution. The mixture was stirred for 2 hours and the organic layers were extracted with EtOAc. The combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The residue was purified by silica gel column chromatography (1.5% 7N NH3-MeOH in CH2CI2) to afford H1 (26 mg, 55%). MS : M+H = 520.
Example 9, Step E', Method B
Figure imgf000065_0002
A solution of C1 (1.03 g, 2.5 mmol) in MeOH (70 ml_) and water (20 mL) was treated with NaBH4 (226 mg, 5.95 mmol, added as 4 portions for 23 hours) at 25 0C. The reaction mixture was stirred for 24 hours at 25 0C and quenched by addition of aqueous saturated NaHCO3 solution (20 mL). The mixture was stirred for 1 hour at 25 0C and the organic solvent was evaporated off. The aqueous solution was extracted with EtOAc and the combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The residue was purified by silica gel column chromatography (3% to 5% MeOH in CH2CI2) to afford E2 (496 mg,
63%).
MS : M+H = 315.
Example 10, Step I', Method B
Figure imgf000066_0001
A mixture of F2 (161 mg, 0.32 mmol), methyl boronic acid (30 mg, 0.49 mmol), [1 ,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(ll), complex with dichloromethane (1 :1) (52 mg, 0.064 mmol), and potassium carbonate (89 mg, 0.64 mmol) in DMF (2 ml_) was degassed and stirred at 70 0C for 20 hours. The reaction mixture was cooled and added to aqueous solution of NaHCO3. The organic layers were extracted with EtOAc and the combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The residue was purified by preparative TLC (10% MeOH in CH2CI2) to afford 11 (115 mg, 75%). MS : M+H = 478.
Example 11 , Step D', Method B
Figure imgf000066_0002
A compound of structure of 11 (107 mg, 0.22 mmol) in EtOH (4 ml_) was treated with hydrazine (70 μl_, 2.2 mmol) and the reaction mixture was stirred at 60
0C for 16 h. The reaction mixture was concentrated in vacuo and the residue was purified by silica gel column chromatography (2.5% to 5% MeOH in CH2CI2) to afford
D1 (64.2 mg, 60%). MS : M+H = 478.
Example 12, Step J, Method B
Figure imgf000067_0001
A solution of compound D1 (65 mg, 0.135 mmol) in CH2CI2 (2 ml_) was treated with ethyl isocyanate (13 μl_, 0.163 mmol) at 0 0C. The reaction mixture was stirred at 25 0C for 1 hour. The reaction mixture was treated with triethylamine (94 μL, 0.675 mmol) and p-toluenesulfonyl chloride (31 mg, 0.162 mmol) at 25 0C and the mixture was stirred for 20 hours. The reaction mixture was added to aqueous solution of NaHCO3 and the organic solution was extracted with CH2CI2. The combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The residue was purified by preparative TLC (10% MeOH in CH2CI2) to afford J1 (26 mg, 36%). MS : M+H = 531.
Example 13, Step H", Method B
Figure imgf000067_0002
A solution of compound J1 (26 mg, 0.049 mmol) in CH2CI2 (1 ml_) was treated with trifluoroacetic acid (0.1 mL) at 25 0C. The reaction mixture was stirred at the temperature for 1 hour. The reaction mixture was concentrated in vacuo and the residual material was dissolved in DMF (0.6 mL). The solution was treated with triethylamine (20 mL, 0.14 mmol) and the mixture was stirred for 0.25 hours before addition of lithium 2-amino-6-chloronicotinate (10.5 mg, 0.06 mmol, preparation : see below), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDCI1 19 mg, 0.1 mmol), and 1-hydroxybenzotriazole (HOBt, 20 mg, 0.15 mmol) at 25 0C. The reaction mixture was stirred for 7 hours at 25 0C. The mixture was added to an aqueous NaHCO3 solution and the organic layers were extracted with EtOAc. The combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The residue was purified by preparative TLC (5% MeOH in CH2CI2) to afford H2 (16.5 mg, 59%). MS : M+H = 437
Example 14, Step J', Method C
Figure imgf000068_0001
A solution of compound D2 (2.26 g, 4.68 mmol) in CH2CI2 (20 ml_) was treated with acetic anhydride (0.58 mL, 6.08 mmol) and triethylamine (1.3 ml_, 9.36 mmol) at 0 0C. The reaction mixture was stirred at 25 0C for 4 hours. The reaction mixture was added to aqueous solution of NaHCO3 and the organic solution was extracted with CH2CI2. The combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The residue was purified by silica gel column chromatography (3% to 10% MeOH in CH2CI2) to afford intermediate D3 (1.9 g, 78%). A solution of intermediate D3 (518 mg, 0.99 mmol) in CH2CI2 (18 mL) was treated with p-toluenesulfonyl chloride (207 mg, 1.09 mmol) and triethylamine (0.83 mL, 5.94 mmol) at 25 0C. The reaction mixture was stirred at 25 0C for 48 hours. The reaction mixture was added to aqueous solution of NaHCO3 and the organic solution was extracted with CH2CI2. The combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The residue was purified by silica gel column chromatography (2.5% 7N NH3-MeOH in CH2CI2) to afford compound J2 (415 mg, 83%). MS : M+H = 507 Example 15, Step G', Method C
Figure imgf000069_0001
A solution of compound J2 (462 mg, 0.91 mmol) in CH2Cb (10 ml_) was treated with trifluoroacetic acid (1 mL) at 25 0C. The reaction mixture was stirred at the temperature for 3 hours. The reaction mixture was concentrated in vacuo and the residual material was redissolved in CH2CI2 (6 mL). The solution was treated with 7N NH3 in MeOH (~1 mL) and the mixture was stirred for 0.5 hours at 0 0C. The mixture was concentrated in vacuo and the residue was purified by silica gel column chromatography (3% to 10% MeOH in CH2CI2) to afford G2 (325 mg, 88%). MS : M+H = 407
Example 16, Step H'", Method C
Figure imgf000069_0002
A solution of compound G2 (429 mg, 1.05 mmol) in CH2CI2 (18 mL) and THF (4.5 mL) was treated with triethylamine (0.29 mL, 2.1 mmol) and 4-chlorobenzoyl chloride (0.16 mL, 1.26 mmol) at 0 0C. The reaction mixture was stirred at the temperature for 1.5 hours. The reaction mixture was added to an aqueous solution of NaHCO3 and the organic solution was extracted with CH2CI2. The combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The residue was purified by silica gel column chromatography (1.5% to 5% MeOH in CH2CI2) to afford compound H3 (565 mg, 99%). MS : M+H = 545 Example 17, Step B', Method C
Figure imgf000070_0001
A cold solution of H3 (hydrochloride salt, 23 mg, 0.039 mmol) in THF (0.5 ml_) and water (0.1 ml_) was treated with 50% aqueous HBF4 solution (8 μl_) and t-butyl nitrite (8 μl_). The reaction mixture was stirred for 16 hour at 25 0C. The reaction mixture was added to a mixture of CH2CI2 and aqueous NaHCθ3-NaOH (5%) solution. The mixture was stirred for 0.5 hours and the organic layers were extracted with CH2CI2. The combined organic solution was washed with brine solution, dried (Na2SO4), and concentrated in vacuo. The residue was purified by preparative TLC (5% MeOH in CH2CI2) to afford B2 (4.3 mg, 19%). MS : M+H = 546
Lithium 2-amino-6-chloronicotinate
Figure imgf000070_0002
A solution of 2,6-dichloronicotinic acid (20.2 g, 0.105 mol) in MeOH (500 ml_) was cooled to 0 0C and neat thionyl chloride (38 mL, 63 g, 0.525 mol) was added over -0.5 hours. The reaction mixture was stirred at 0 0C for 1 hour. The cooling bath was removed, the reaction temperature was allowed to warm to 25 0C, and the reaction was allowed to stir for an additional 2 days at 25 °C. The solvent was removed under reduced pressure to give an off-white residue. The residue was dissolved in Et2O (-500 mL) and the resulting solution was washed successively with saturated aqueous NaHCO3 solution (~300 mL), water (-300 mL), and brine solution (-300 ml_). The organic layer was separated, dried over anhydrous MgSO4, and filtered. Removal of the solvent under reduced pressure yielded methyl 2,6- dichloronicotinate (21.0 g, 97%) as a white solid.
Performed in duplicate on identical scales in two pressure vessels, methyl 2,6-dichloronicotinate (4.5 g, 22 mmol) was dissolved in NH3 solution (250 ml_, 0.5 M in 1 ,4-dioxane; 0.125 mol). The pressure vessels were sealed and heated at (85 ± 5) 0C for 9 days. The two reaction mixtures were allowed to cool to 25 0C, then combined and concentrated under reduced pressure to yield a white solid. Dissolution of the solid in 1 :1 acetone-MeOH (~500 mL), followed by adsorption onto silica gel (25 g) and then purification by flash column chromatography (25:10:1 hexane-CH2CI2-Et.2θ), gave 6.08 g (75%) of methyl 2-amino-6-chloronicotinate.
A solution of LiOH«H2O (1.38 g, 33 mmol) in water (33 mL) was added in one portion to a suspension of methyl 2-amino-6-chloronicotinate (6.08 g, 27 mmol) in MeOH (110 mL). The reaction mixture was stirred at 70 0C for 24 hours, and gradually became homogeneous. The solvents were removed under reduced pressure, and after the resulting white solid was dried under vacuum (<1 mmHg) to constant weight, 5.51 g (95%) of lithium 2-amino-6-chloronicotinate was obtained.
Biological Examples: The inventive compounds can readily be evaluated to determine activity at
The CXCR3 receptors by known methods, such as, for example, Development of Human CXCR3 (N-delta 4) Binding Assay. Cloning and expression of human CXCR3 (N-delta 4):
The DNA encoding human CXCR3 was cloned by PCR using human genomic DNA (Promega, Madison, Wl) as a template. The PCR primers were designed based on the published sequence of human orphan receptor GPR9 (1 ) with incorporated restriction sites, a Kozak consensus sequence, CD8 leader and Flag tag. The PCR product was subcloned into the mammalian expression vector pME18Sneo, a derivative of the SR-alpha expression vector (designated as pME18Sneo-hCXCR3 (N-delta 4).
IL-3-dependent mouse pro-B cells Ba/F3 were transfected by electroporation in 0.4 ml Dulbecco's PBS containing 4 X 106 cells with 20 μg of pME18Sneo-hCXCR3 (N-delta 4) plasmid DNA. Cells were pulsed at 400 Volts, 100 OHMs, 960 μFd. The transfected cells were under selection with 1 mg/ml G418 (Life Technologies, Gaithersburg, MD). G418-resistant Ba/F3 clones were screened for CXCR3 expression by specific binding of [125I] IP-10 (NEN Life Science Products, Boston, MA).
Preparation of Ba/F3-hCXCR3 (N-delta 4) membranes:
Ba/F3 cells expressing human CXCR3 (N-delta 4) were pelleted and resuspended in the lysis buffer containing 10 mM HEPES , pH 7.5 and Complete® protease inhibitors (1 tablet per 100 ml) (Boehringer Mannheim, Indianapolis, IN) at a cell density of 20 x 106 cells per ml. After 5 minutes incubation on ice, cells were transferred to 4639 cell disruption bomb (Parr Instrument, Moline, IL) and applied with 1 ,500 psi of nitrogen for 30 minutes on ice. Large cellular debris was removed by centrifugation at 1 ,000 x g. Cell membrane in the supernatant was sedimented at 100,000 x g. The membrane was resuspended in the lysis buffer supplemented with 10% sucrose and stored at -8O0C. Total protein concentration of the membrane was determined by BCA method from Pierce (Rockford, IL). Human CXCR3 (N-delta 4) scintillation proximity assay (SPA):
For each assay point, 2 μg of membrane was preincubated for 1 hr with 300 μg wheat germ agglutinin (WGA) coated SPA beads (Amersham, Arlington Heights, IL) in the binding buffer (50 mM HEPES, 1 mM CaCI2, 5 mM MgCI2, 125 mM NaCI, 0.002% NaN3, 1.0% BSA) at room temperature. The beads were spun down, washed once, resuspended in the binding buffer and transferred to a 96-well lsoplate (Wallac, Gaithersburg, MD). 25 pM of [125I] IP-10 with tested compounds in a series of titration were added to start the reaction. After 3 hr reaction at room temperature, the amount of [125I] IP-10 bound to the SPA beads was determined with a Wallac 1450 Microbeta counter.
The Ki values for the various example compounds of the present invention are given in the afore-mentioned Table 1. From these values, it would be apparent to the skilled artisan that the compounds of the invention have excellent utility CXCR3 antagonists.
While the present invention has been describe in conjunction with the specific embodiments set forth above, many alternatives, modifications and variations thereof will be apparent to those of ordinary skill in the art. All such alternatives, medications and variations are intended to fall within the spirit and scope of the present invention.

Claims

CLAIMSWhat is claimed is:
1. A compound having the general structure shown in Formula 1 :
Figure imgf000074_0001
Formula 1 or a pharmaceutically acceptable salt, solvate or ester thereof, wherein:
G is selected from the group consisting of H, hydroxyl, alkoxy, R2R1N-, R2R1X-C(R14XR15)- , and a 5-membered heteroaryl or heterocyclenyl ring containing at least one -C=N- moiety as part of said heteroaryl or heterocyclenyl ring, said heteroaryl or heterocyclenyl ring optionally additionally containing one or more moieties selected from the group consisting of N, N(→O), O, S, S(O) and S(Oa) on the ring, which moieties can be the same or different, each being independently selected, further wherein said heteroaryl or heterocyclenyl ring can be either (i) unsubstituted, or (ii) optionally independently substituted on one or more ring carbon atoms with one or more R9 substituents, or on one or more ring nitrogen atoms with one or more R8 substituents, wherein said R8 and R9 substituents can be the same or different;
L is O or S;
Z is N or CR4;
R1 and R2 are independently absent or present, and if present each is independently selected from the group consisting of H, alkyl, alkoxy, alkenyl, carbonyl, cycloalkyl, cycloalkenyl, alkylaryl, arylalkyl, aryl, amino, alkylamino, amidinyl, carboxamido, cyano, hydroxyl, urea, -N≡CH, =NCN, -(CH2)qOH,
-(CH2)qOR31, -(CH2)qNH2, -(CH2)qNHR31, -(CH2)qN(R31)2, -(CH2)qC(=O)NHR31, - (CH2)qSO2R31, -(CH2)qNHSO2R31, -(CH2)qSO2NHR31, -C(=S)N(H)alkyl, -N(H)-S(O)2-alkyl, -N(H)C(=O)N(H)-alkyl, -S(O)2alkyl, -S(O)2N(H)alkyl, -S(O)2N(alkyl)2, -S(O)2aryl, -C(=S)N(H)cycloalkyl, -C(=O)N(H)NH2, -C(=O)alkyl, -heteroaryl, heterocyclyl, and heterocyclenyl; or alternatively when X is N, the N taken together with the R1 and R2 forms a heterocycyl, heteroaryl or -N=C(NH2)2; R3 and R4 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, aralkyl, -CN, CF3, haloalkyl, cycloalkyl, halogen, hydroxyalkyl, -N=CH-(R31), -C(=O)N(R30)2, -N(R30)2, -OR30, -SO2(R31), -N(R30)C(=O)N(R30)2 and -N(R30)C(=O)R31;
R6 is selected from the group consisting of H, alkyl, arylalkyl, and alkylaryl;
X is selected from the group consisting of N, O, alkyl, cycloalkyl, heteroaryl, heterocyclyl, and heterocyclenyl; the R8 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkenyl, alkylaryl, arylalkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, -(CH2)qOH, -(CH2)qOR31, -(CH2)qNH2, -(CH2)qNHR31, -(CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)qNSO2R3\ and -(CH2)qSO2NHR31; the R9 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkenyl, alkylaryl, arylalkyl, alkoxy, amidinyl, aryl, cycloalkyl, cyano, heteroaryl, heterocyclyl, hydroxyl, -C(=O)N(R30)2, -C(=S)N(R30)2, -C(=O)alkyl, -(CH2)qOH, -(CH2)qOR31, -(CH2)qNH2, -(CH2)qNHR31, - (CH2)qC(=O)NHR31 , -(CH2)qSO2R31 , -(CH2)qNSO2R31 ,
-(CH2)qSO2NHR31, -N(R30)2, -N(R30)S(O2)R31, -N(R30) C(=O)N(R30)2, -OR30 -SO2(R31), -SO2N(R30)2> =O and =S; the R10 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, cycloalkyl, aryl, heteroaryl, heterocyclenyl, heterocyclyl, alkylaryl, arylalkyl, -CO2H, hydroxyalkyl, -C(=O)N(R30)2, -(CH2)qOH, -(CH2)qOR31 ,-OR30, halogen, =O, and -C(=O)R31; the R11 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, heterocyclenyl, alkylaryl, arylalkyl, carboxamide, CO2H, -(CH2)qOH, - (CH2)qOR31, -OR30, halogen, = O, and -C(=O)R31; R12 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, -CN, -C(=O)N(R30)2, -(CH2)qOH( -(CH2)qOR31 and -S(O2)R31; ring D is a five to nine membered cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclenyl or heterocyclyl ring having 0-4 heteroatoms independently selected from O, S or N, wherein ring D is unsubstituted or optionally substituted with 1-5 independently selected R20 moieties; the R20 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkenyl, alkylaryl, alkynyl, alkoxy, alkylamino, alkylthiocarboxy, alkylheteroaryl, alkylthio, alkylsulfinyl, alkylsulfonyl, alkoxycarbonyl, aminoalkyl, amidinyl, aralkyl, aralkenyl, aralkoxy, aralkoxycarbonyl, aralkylthio, aryl, aroyl, aryloxy, cyano, cycloalkyl, cycloalkenyl, formyl, guanidinyl, halogen, haloalkyl, heteroalkyl, heteroaryl, heterocyclyl, heterocyclenyl, hydroxyalkyl, hydroxamate, nitro, trifluoromethoxy, -(CH2)qOH, -(CH2)qOR31, -(CH2)qNH2, - (CH2)qNHR31, -(CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)qNSO2R31, - (CH2)C1SO2NHR31, -alkynylC(R31)2OR31, -C(=O)R30,
-C(=O)N(R30)2, -C(=NR30)NHR30, -C(=NOH)N(R30)2, -C(=NOR31)N(R30)2, -C(=O)OR30, -N(R30)2, -N(R30)C(=O)R31, -NHC(=O)N(R30)2, -N(R30)C(=O)OR31, -N(R30)C(=NCN)N(R30)2) -N(R30)C(=O)N(R30)SO2(R31), -N(R30)C(=O)N(R30)2, -N(R30)SO2(R31), -N(R30)S(O)2N(R30)2, -OR30, -OC(=O)N(R30)2, -SR30, -SO2N(R30)2, -SO2(R31), -OSO2(R31), and -OSi(R30)3; or alternatively two R20 moieties are linked together to form a five or six membered aryl, cycloalkyl, heterocyclyl, heterocyclenyl, or heteroaryl ring wherein said five or six membered aryl, cycloalkyl, heterocyclyl, heterocyclenyl, or heteroaryl ring is fused to ring D and the fused ring is optionally substituted with 0-4 R21 moieties; the R21 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkenyl, alkylaryl, alkynyl, alkoxy, alkylamino, alkylthiocarboxy, alkylheteroaryl, alkylthio, alkylsulfinyl, alkylsulfonyl, alkoxycarbonyl, aminoalkyl, amidinyl, aralkyl, aralkenyl, aralkoxy, aralkoxycarbonyl, aralkylthio, aryl, aroyl, aryloxy, carboxamido, cyano, cycloalkyl, cycloalkenyl, formyl, guanidinyl, halogen, haloalkyl, heteroalkyl, heteroaryl, heterocyclyl, heterocyclenyl, hydroxyalkyl, hydroxamate, nitro, trifluoromethoxy, -(CH2)qOH, -(CH2)qOR31, - (CH2)qNH2, -(CH2)qNHR31, -(CH2)qC(=O)NHR31,
-(CH2)qSO2R31, -(CH2)qNSO2R31, -(CH2)qSO2NHR31, -alkynylC(R31)2OR31, -C(=O)R30, -C(=O)N(R30)2, -C(=NR30)NHR30, -C(=NOH)N(R30)2> -C(=NOR31)N(R30)2, -C(=O)OR30, -N(R30)2, -N(R30)C(=O)R31, -NHC(=O)N(R30)2, -N(R30)C(=O)OR31, -N(R30)C(=NCN)N(R30)2, -N(R30)C(=O)N(R30)SO2(R31)) -N(R30)C(=O)N(R30)2, -N(R30)SO2(R31), -N(R30)S(O)2N(R30)2, -OR30, -OC(=O)N(R30)2) -SR30, -SO2N(R30)2, -SO2(R31), -OSO2(R31), and -OSi(R30)3; Y is selected from the group consisting of -(CR13R13),--, -CHR13C(=O)-, -(CHR13)rO-, -(CHR13)r N(R30)-, -C(=O)-, -C(=NR30)-, -C(=N-OR30)-, -CH(C(=O)NHR30)-, CH-heteroaryl-, -C(R13R13)rC(R13)=C(R13)-, -(CHR13)rC(=O)- and -(CHR13)rN(H)C(=O)-; or alternatively Y is cycloalkyl, heterocyclenyl, or heterocyclyl wherein the cycloalkyl, heterocyclenyl, or heterocyclyl is fused with ring D; the R13 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, cycloalkyl, alkoxy, aryl, heteroaryl, heterocyclenyl, heterocyclyl, spiroalkyl, -CN, -CO2H, -C(=O)R30, -C(=O)N(R30)2, -(CHR30)qOH, -(CHR30)qOR31, -(CHR30)qNH2, -(CH R30)qNHR31, - (CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)qNSO2R31, -(CH2)qSO2NHR31, -NH2, -N(R30)2> -N(R30)C(=O)N(R30)2, -N(R30)SO2(R31), -OH, OR30 , -SO2N(R30)2, and -SO2(R31);
R14 and R15 are the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, heteroaryl, hydroxyl, -CN, alkoxy, alkylamino, -N(H)S(O)2alkyl and -N(H)C(=O)N(H)alkyl; or alternatively R14 and R15 taken together is =O, =S, =NH, =N(aikyl), =N(Oaikyl), =N(OH) or cycloalkyl; the R30 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, aryl, aralkyl, cycloalkyl, - (CH2)qOH, -(CH2)qOalkyl, -(CH2)qOalkylaryl, -(CH2)qOaryl, -(CH2)qOaralkyl, - (CH2)qOcycloalkyl, -(CH2)qNH2, -(CH2)qNHalkyl, -(CH2)qN(alkyl)2, -(CH2)qNHalkylaryl, -(CH2)qNHaryl, -(CH2)qNHaralkyl, -(CH2)qNHcycloalkyl, -(CH2)qC(=O)NHalkyI, - (CH2)qC(=O)N(alkyl)2, -(CH2)qC(=O)NHalkylaryl, -(CH2)qC(=O)NHaryl, - (CH2)qC(=O)NHaralkyl, -(CH2)qC(=O)NHcycloalkyl, -(CH2)qSO2alkyl, - (CH2)qSO2alkyIaryl, -(CH2)qSO2aryl, -(CH2)qSO2aralkyl, -(CH2)qSO2cycloalkyl, - (CH2)qNS02alkyl, -(CH2)qNSO2alkylaryl, -(CH2)qNSO2aryl, -(CH2)qNSO2aralkyl, - (CH2)qNSO2cycloalkyl, -(CH2)qSO2NHalkyl, -(CH2)qSO2NHalkylaryl, - (CH2)qSO2NHaryl, -(CH2)qSO2NHaralkyl, -(CH2)qSO2NHcycloalkyl, heterocycienyl, heterocyclyl, and heteroaryl; the R31 moieties can be the same or different, each being independently selected from the group consisting of alkyl, alkylaryl, aryl, aralkyl, cycloalkyl, -(CH2)qOH, -(CH2)qOalkyl, -(CH2)qOalkylaryl, -(CH2)qOaryl, -(CH2)qOaralkyl, -(CH2)qOcycloalkyl, -(CH2)qNH2, -(CH2)qNHalkyl, -(CH2)qN(alkyl)2, -(CH2)qNHalkylaryl, -(CH2)qNHaryl, -(CH2)qNHaralkyl, -(CH2)qNHcycloalkyl, -(CH2)qC(=O)NHalkyl, -(CH2)qC(=O)N(alkyl)2, -(CH2)qC(=O)NHalkylaryl, -(CH2)qC(=O)NHaryl, -(CH2)qC(=O)NHaralkyl, -(CH2)qC(=O)NHcycloalkyl, -(CH2)qS02alkyl, -(CH2)qSO2alkylaryl, -(CH2)qSO2aryl, -(CH2)qS02aralkyl, -(CH2)qSO2cycloalkyl, -(CH2)qNS02alkyl, -(CH2)qNSO2alkylaryl, -(CH2)qNS02aryl, - (CH2)qNSO2aralkyl, -(CH2)qNSO2cycloalkyl, -(CH2)qSO2NHalkyl, -(CH2)qSO2NHalkylaryl, -(CH2)qSO2NHaryl, -(CH2)qSO2NHaralkyl, -(CH2)qSO2NHcycloalkyl, heterocycienyl, heterocyclyl, and hetroaryl; m is 0 to 4; n is 0 to 4; each q can be the same or different, each being independently selected from 1 to 5; and r is 1 to 4; with the proviso that there are no two adjacent double bonds in any ring, and that when a nitrogen is substituted by two alkyl groups, said two alkyl groups may be optionally joined to each other to form a ring.
2. The compound according to Claim 1 , wherein L is O.
3. The compound according to Claim 1 or 2, wherein G is R2R1X- C(R14XR15)-.
4. The compound according to Claim 3, wherein X is N, and R14 and R15 taken together is =O.
5. The compound according to Claim 4, wherein R1 and R2 are both H.
6. The compound according to Claim 1 or 2, wherein G is selected from the group consisting of H, hydroxyl, alkylO-, or R2R1N.
7. The compound according to Claim 1 or 2, wherein the G 5-membered heteroaryl or heterocyclenyl ring containing at least one -C=N- moiety as part of said heteroaryl or heterocyclenyl ring, is selected from the group consisting of dihydroimidazole, imidazole, dihydrooxazole, oxazole, dihydrooxadiazole, oxadiazole, triazole, and tetrazole.
8. The compound according to Claim 7, wherein G is selected from the group consisting of:
Figure imgf000079_0001
" /IT-O R /-J-.o " >In-N R8
Figure imgf000079_0003
Figure imgf000079_0004
Figure imgf000079_0005
R9V n" /!~s--° Λ " WI RR9 " >I af -R R8,
Figure imgf000079_0002
Figure imgf000079_0006
wherein ^-" is a single bond or double bond.
9. The compound according to claim 8, wherein G is
Figure imgf000079_0007
10. The compound according to Claim 1 or 2, wherein R3 is selected from the group consisting of H, alkyl, haloalkyl, hydroxyalkyl, halogen, -N(R30)2, -OR30 and -CF3.
11. The compound according to Claim 1 or 2, wherein R3 is selected from the group consisting of H, -CH3, -CH2CH3, cyclopropyl, -F, -Cl, OCH3, OCF3 and CF3.
12. The compound according to Claim 11 , wherein R3 is selected from the group consisting of H, -Cl and -CH3.
13. The compound according to Claim 1 or 2, wherein R8 is selected from the group consisting of H, alkyl, alkenyl, arylalkyl, cycloalkyl, -(CH2)qOH, -(CH2)qOR31, -(CH2)qNH2, -(CH2)qNHR31, -(CH2)qC(=O)NHR31, -(CH2)qSO2R31, -(CH2)C1NSO2R31, and -(CH2)qSO2NHR31.
14. The compound according to Claim 1 or 2, wherein the R9 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, cycloalkyl, -C(=O)N(H)R30, -C(=O)alkyl, -(CH2)qOH, - (CH2)qOR31, -(CH2)C1NH2, -(CH2)qNHR31, -N(H)R30, -N(H)S(O2)R31, -N(H) C(=O)NH(R30), -OR30 -SO2(R31), and -SO2N(H)R30.
15. The compound according to Claim 1 or 2, wherein the R9 moieties can be the same or different, each being independently selected from the group consisting of H, cyclopropyl, -CF3, -CH3, -CH2OH, -CH2CH2OH, -C(CH3)2OH, -CH2CH2OCH3, -C(=O)OCH2CH3, -CH2NH2, -CH2CH2NH2, -CH2CH2NHSO2CH3, -CH2CH2SO2CH3, -C(=O)NH2, -C(=O)N(H)CH2CH2OH, -CH2N(H)C(=O)CF3, -C(=O)N(H)-cyclopropyl, -C(=O)N(H)CH2CF3, -NH2, -NHCH3, -N(CH3)2, -N(H)CH2CH3, -N(H)CH(CHs)2, -N(H)CH2CH2CH3, -N(H)CH2C(=O)OCH3, -N(H)CH2CH2OH,
-N(H)CH2CH2NH2, -N(H)CH2CH2NHSO2CH3, -N(H)CH2CH2SO2CH3, -N(H)C(=O)N(H)CH2CH3, -N(H)CH2C(=O)NH2> -OCH3, , =S and =0.
16. The compound according to Claim 15, wherein the R9 moieties can be the same or different, each being independently selected from the group consisting of H, -CF3, -CH3, -CH2CH2OH, -CH2CH2NH2, -NH2, -NHCH3, -N(H)CH2CH3, -N(H)CH(CHs)2, -N(H)CH2CH2CH3, -N(H)CH2C(=O)OCH3, and -N(H)CH2CH2OH.
17. The compound according to Claim 16, wherein the R9 moiety is selected from the group consisting Of -NH2 and -N(H)CH2CH3.
18. The compound according to Claim 1 or 2, wherein R10 is selected from the group consisting of H, alkyl, aralkyl, hydroxyalkyl, and carbonyl.
19. The compound according to Claim 18, wherein R10 is alkyl, said alkyl being selected from the group consisting of -CH3, -CH2CH3 and -CH2CH2CH3, and m is 0 - 2.
20. The compound according to claim 19, wherein R10 is -CH2CH3 and m is 1.
~21. The compound according to Claim 1 or 2, wherein R11 is selected from the group consisting of H, alkyl, hydroxyalkyl and carbonyl.
22. The compound according to Claim 21 , wherein R11 is H or -CH3.
23. The compound according to Claim 22, wherein R11 is H.
24. The compound according to Claim 1 or 2, wherein R12 is selected from the group consisting of H, CN, -C(=O)N(R30)2 and alkyl.
25. The compound according to Claim 24, wherein R12 is selected from the group consisting of H, -CH3, CN and -CH2CH3.
26. The compound according to Claim 25, wherein R12 is H.
27. The compound according to Claim 1 or 2, wherein the ring atoms of ring D are independently C or N and substituted by 0-4 R20 moieties.
28. The compound according to Claim 1 or 2, wherein ring D is a 5 to 6 membered aryl, heteroaryl, heterocyclenyl, or heterocyclyl ring and substituted by 0-
4 R20 moieties.
29. The compound according to Claim 28, wherein said ring D is a 5 to 6 membered aryl, or heteroaryl ring and substituted by 0-4 R20 moieties.
30. The compound according to Claim 29, wherein said aryl ring is phenyl and said heteroaryl ring is pyrindinyl.
31. The compound according to Claim 1 or 2, wherein the R20 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, alkylaryl, alkynyl, alkoxy, alkylamino, alkylheteroaryl, alkylsulfinyl, alkoxycarbonyl, aminoalkyl, amidinyl, aralkyl, aralkoxy, aryl, aryloxy, cyano, cycloalkyl, cycloalkenyl, halogen, haloalkyl, heteroalkyl, heteroaryl, heterocyclyl, hydroxyalkyl, trifluromethyl, trifluoromethoxy, -(CH2)qOR31, - (CH2)qNHR31, -(CH2)qC(=O)NHR3\ -(CH2)qSO2R31, -(CH2)qNSO2R31, -
(CH2)qSO2NHR31, -alkynylC(R31)2OR31, -C(=O)R30, -C(=O)N(R30)2, -C(=O)OR30, -N(R30)2, -N(R30)C(=O)R31, -NHC(=O)N(R30)2) -N(R30)C(=O)OR31, -N(R30)C(=NCN)N(R30)2, -N(R30)C(=O)N(R30)2, -N(R30)SO2(R31), -N(R30)SO2N(R30)2, -OR30, -OC(=O)N(R30)2) -SR30, -SO2N(R30)2, -SO2(R31), -OSO2(R31), and -OSi(R3V
32. The compound according to Claim 1 or 2, wherein the R20 moieties can be the same or different, each being independently selected from the group consisting of H, alkyl, amino, halogen, CN, CH3, CF3, OCF3,
-(CH2)qOR31, -(CH2)qNHR31, -(CH2)qC(=O)NHR31 ) -(CH2)qSO2R31, -(CH2)qNSO2R31, -(CH2)qSO2NHR31, -alkynylC(R31)2OR31, -C(=O)R30, -C(=O)OR30, -N(R30)2, -N(R30)C(=O)R31, -NHC(=O)N(R30)2, -N(R30)C(=O)OR31, -N(R30)C(=NCN)N(R30)2, -N(R30)C(=O)N(R30)2, -OR30, -OC(=O)N(R30)2, and -OSO2(R31).
33. The compound according to Claim 32, wherein the R20 moieties can be the same or different, each being independently selected from the group consisting of H, halogen, and amino.
34. The compound according to Claim 1 or 2, wherein Y is selected from the group consisting of: -(CHR1V, -(CR13R1V, -C(=O)- and -CHR13C(=O)-.
35. The compound according to Claim 1 or 2, wherein Y is selected from the group consisting of: -CH2-, - CH(CH3)-, -CH(CH2OH)-, -C(=O)- and - CH(CO2alkyl)-.
36. The compound according to claim 35, wherein Y is selected from the group consisting of: -CH2-, and -C(=O)-.
37. The compound according to Claim 1 or 2, wherein m is 0-2.
38. The compound according to Claim 37, wherein m is 1.
39. The compound according to Claim 1 or 2, wherein n is 0-2.
40. The compound according to Claim 1 or 2, wherein n is 0.
41. The compound according to Claim 1 or 2, wherein q is 1 or 2.
42. The compound according to Claim 1 or 2, wherein r is 1 or 2.
43. The compound according to Claim 1 or 2, wherein G is selected independently from the group consisting of R2R1N-C(=O)- and
Figure imgf000082_0001
R3 is selected from the group consisting of H, -Cl and -CH3;
R9 is selected from the group consisting Of -NH2 and -N(H)CH2CH3;
R10 is -CH2CH3;
R11 is H;
R12 is H; ring D is a a 5 to 6 membered aryl, or heteroaryl ring and substituted by 0-4 R20 moieties;
R20 moieties can be the same or different, each being independently selected from the group consisting of H, halogen, and amino;
Y is selected from the group consisting of: -CH2-, and -C(=O)-; m is 1 ; and n is 0.
44. A compound according to Claim 1 , wherein the compound is selected from the group consisting of the following:
Figure imgf000083_0001
Figure imgf000084_0001
acceptable salt, solvate or ester thereof.
45. A compound according to Claim 44, wherein the compound is selected from the group consisting of
Figure imgf000085_0001
or a pharmaceutically acceptable salt, solvate or ester thereof.
46. A compound according to Claim 1 in purified form.
47. A pharmaceutical composition comprising at least one compound of Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof, in combination with at least one pharmaceutically acceptable carrier.
48. The pharmaceutical composition of claim 47, further comprising at least one additional agent, drug, medicament, antibody and/or inhibitor for treating a CXCR3 chemokine receptor mediated disease.
49. A method of treating a CXCR3 chemokine receptor mediated disease in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
50. A method according to Claim 49, comprising administering to the patient (a) an effective amount of at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one additional agent, drug, medicament, antibody and/or inhibitor for treating a CXCR3 chemokine receptor mediated disease, in combination with a pharmaceutically acceptable carrier.
51. The method according to Claim 49, wherein the compound binds to a CXCR3 receptor.
52. The method according to Claim 49, comprising administering: (a) a therapeutically effective amount of at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one medicament selected from the group consisting of: disease modifying antirheumatic drugs; nonsteroidal anti-inflammatory drugs; COX-2 selective inhibitors; COX-1 inhibitors; immunosuppressives; steroids; PDE IV inhibitors, anti-TNF-α compounds, TNF-alpha-convertase inhibitors, cytokine inhibitors, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, p38 inhibitors, biological response modifiers; anti-inflammatory agents and therapeutics.
53. The method according to Claim 49, wherein the disease is an inflammatory disease.
54. A method of inhibiting or blocking T-cell mediated chemotaxis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of at least one compound according to Claim 1 or a pharmaceutically acceptable salt, solvate or ester thereof.
55. A method of treating inflammatory bowel disease in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
56. A method of treating or preventing graft rejection in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
57. The method according to Claim 56, the method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: cyclosporine A, FK-506, FTY720, beta-interferon, rapamycin, mycophenolate, prednisolone, azathioprene, cyclophosphamide and an antilymphocyte globulin.
58. A method of treating multiple sclerosis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: beta-interferon, glatiramer acetate, glucocorticoids, methotrexate, azothioprine, mitoxantrone, VLA-4 inhibitors and CB2-selective inhibitors.
59. A method of treating multiple sclerosis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: a) at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: methotrexate, cyclosporin, leflunimide, sulfasalazine, β-methasone, β-interferon, glatiramer acetate, prednisone,etonercept, and infliximab.
60. A method of treating rheumatoid arthritis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: COX-2 inhibitors, COX-1 inhibitors, immunosuppressives, steroids, PDE IV inhibitors, anti-TNF-α compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, caspase (ICE) inhibitors and other classes of compounds indicated for the treatment of rheumatoid arthritis.
61. A method of treating psoriasis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: a) at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: immunosuppressives, steroids, and anti-TNF-α compounds.
62. A method of treating a disease selected from the group consisting of: inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, tuberculoid leprosy and cancer in a patient in need of such treatment, such method comprising administering to the patient an effective amount of at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof.
63. A method of treating a disease selected from the group consisting of: inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses and tuberculoid leprosy, type I diabetes, viral meningitis and cancer in a patient in need of such treatment, such method comprising administering to the patient an effective amount of (a) at least one compound according to Claim 1 , or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one medicament selected from the group consisting of: disease modifying antirheumatic drugs; nonsteroidal anitinflammatory drugs; COX-2 selective inhibitors; COX-1 inhibitors; immunosuppressives; steroids; PDE IV inhibitors, anti-TNF-α compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, biological response modifiers; anti-inflammatory agents and therapeutics.
PCT/US2006/039404 2005-10-11 2006-10-10 Substituted heterocyclic compounds with cxcr3 antagonist activity WO2007047202A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES06816540T ES2382163T3 (en) 2005-10-11 2006-10-10 Heterocyclic compounds substituted with CXCR3 antagonist activity
AT06816540T ATE546445T1 (en) 2005-10-11 2006-10-10 SUBSTITUTED HETEROCYCLIC COMPOUNDS WITH CXCR3 ANTAGONISTIC EFFECT
EP06816540A EP1937666B1 (en) 2005-10-11 2006-10-10 Substituted heterocyclic compounds with cxcr3 antagonist activity
CA002625762A CA2625762A1 (en) 2005-10-11 2006-10-10 Substituted heterocyclic compounds with cxcr3 antagonist activity
JP2008535600A JP2009511582A (en) 2005-10-11 2006-10-10 Substituted heterocyclic compounds having CXCR3 antagonist activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72548305P 2005-10-11 2005-10-11
US60/725,483 2005-10-11

Publications (1)

Publication Number Publication Date
WO2007047202A1 true WO2007047202A1 (en) 2007-04-26

Family

ID=37807921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/039404 WO2007047202A1 (en) 2005-10-11 2006-10-10 Substituted heterocyclic compounds with cxcr3 antagonist activity

Country Status (8)

Country Link
US (1) US7781437B2 (en)
EP (1) EP1937666B1 (en)
JP (1) JP2009511582A (en)
CN (1) CN101341147A (en)
AT (1) ATE546445T1 (en)
CA (1) CA2625762A1 (en)
ES (1) ES2382163T3 (en)
WO (1) WO2007047202A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530975A (en) * 2007-06-21 2010-09-16 モメンタ ファーマシューティカルズ インコーポレイテッド Copolymer assay
WO2012000904A1 (en) 2010-06-28 2012-01-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Pharmaceutical composition for use in the treatment of glaucoma
GB2455539B (en) * 2007-12-12 2012-01-18 Cambridge Entpr Ltd Anti-inflammatory compositions and combinations
US8389279B2 (en) 2004-09-02 2013-03-05 Cambridge Enterprise Limited α-aminocyclolactam ligands for G-protein coupled receptors, and methods of using same
WO2013060865A1 (en) 2011-10-28 2013-05-02 Galderma Research & Development New leukocyte infiltrate markers for rosacea and uses thereof
US9266876B2 (en) 2012-02-02 2016-02-23 Actelion Pharmaceuticals Ltd. 4-(benzoimidazol-2-yl)-thiazole compounds and related aza derivatives
US9951063B2 (en) 2014-03-24 2018-04-24 Idorsia Pharmaceuticals Ltd 8-(piperazin-1-yl)-1,2,3,4-tetrahydro-isoquinoline derivatives
US10047080B2 (en) 2015-01-15 2018-08-14 Idorsia Pharmaceuticals Ltd. (R)-2-methyl-piperazine derivatives as CXCR3 receptor modulators
US10053457B2 (en) 2015-01-15 2018-08-21 Idorsia Pharmaceuticals Ltd. Hydroxyalkyl-piperazine derivatives as CXCR3 receptor modulators
US10259807B2 (en) 2013-07-22 2019-04-16 Idorsia Pharmaceuticals Ltd. 1-(piperazin-1-yl)-2-([1,2,4]triazol-1-yl)-ethanone derivatives

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007010068A (en) * 2005-02-16 2007-10-10 Schering Corp Piperazine-piperidines with cxcr3 antagonist activity.
US7868006B2 (en) * 2005-02-16 2011-01-11 Schering Corporation Heterocyclic substituted piperazines with CXCR3 antagonist activity
US7776862B2 (en) * 2005-02-16 2010-08-17 Schering Corporation Pyridyl and phenyl substituted piperazine-piperidines with CXCR3 antagonist activity
CN101146793A (en) * 2005-02-16 2008-03-19 先灵公司 Novel heterocyclic substituted pyridine or phenyl compounds with CXCR3 antagonist activity
PE20061164A1 (en) * 2005-02-16 2006-10-27 Schering Corp PIPERAZIN-PIPERIDINES SUBSTITUTED WITH PYRAZINYL WITH ANTAGONIST ACTIVITY OF CXCR3
US7879838B2 (en) * 2005-02-16 2011-02-01 Schering Corporation Heteroaryl substituted pyrazinyl-piperazine-piperidines with CXCR3 antagonist activity
WO2007109238A1 (en) * 2006-03-21 2007-09-27 Schering Corporation Heterocyclic substituted pyridine compounds with cxcr3 antagonist activity
WO2008008453A1 (en) * 2006-07-14 2008-01-17 Schering Corporation Heterocyclic substituted piperazine compounds with cxcr3 antagonist activity
CA2678577A1 (en) * 2007-02-26 2008-09-04 Vitae Pharmaceuticals, Inc. Cyclic urea and carbamate inhibitors of 11.beta.-hydroxysteroid dehydrogenase 1
AR067673A1 (en) * 2007-07-26 2009-10-21 Vitae Pharmaceuticals Inc DERIVATIVES OF 1,3 OXAZINAN - 2 - ONA AS CYCLE INHIBITORS OF THE 11 BETA -HYDROXIESTEROID DEHYDROGENASE 1. PHARMACEUTICAL COMPOSITIONS.
EP2185154A2 (en) * 2007-08-03 2010-05-19 Schering Corporation Method of treating cxcr3 mediated diseases using heterocyclic substituted piperazines
AR069207A1 (en) * 2007-11-07 2010-01-06 Vitae Pharmaceuticals Inc CYCLIC UREAS AS INHIBITORS OF THE 11 BETA - HIDROXI-ESTEROIDE DESHIDROGENASA 1
US8440658B2 (en) 2007-12-11 2013-05-14 Vitae Pharmaceuticals, Inc. Cyclic urea inhibitors of 11β-hydroxysteroid dehydrogenase 1
JP2011506445A (en) * 2007-12-13 2011-03-03 アムジエン・インコーポレーテツド γ-secretase modulator
TW200934490A (en) * 2008-01-07 2009-08-16 Vitae Pharmaceuticals Inc Lactam inhibitors of 11 &abgr;-hydroxysteroid dehydrogenase 1
WO2009094169A1 (en) * 2008-01-24 2009-07-30 Vitae Pharmaceuticals, Inc. Cyclic carbazate and semicarbazide inhibitors of 11beta-hydroxysteroid dehydrogenase 1
JP5734666B2 (en) * 2008-02-11 2015-06-17 ヴァイティー ファーマシューティカルズ,インコーポレイテッド 1,3-oxaazepan-2-one and 1,3-diazepan-2-one inhibitors of 11β-hydroxysteroid dehydrogenase 1
JP5730021B2 (en) * 2008-02-15 2015-06-03 ヴァイティー ファーマシューティカルズ,インコーポレイテッド Cycloalkyllactam derivatives as inhibitors of 11β-hydroxysteroid dehydrogenase 1
PE20091576A1 (en) 2008-02-19 2009-11-05 Sanofi Aventis DERIVATIVES OF 3- (AMIDO OR SULFAMIDE) -4- (SUBSTITUTED 4-AZINYL) BENZAMIDE AS INHIBITORS OF THE CxCR3 CHEMOKINE RECEPTOR
CA2718264A1 (en) * 2008-03-18 2009-09-24 Vitae Pharmaceuticals, Inc. Inhibitors of 11beta-hydroxysteroid dehydrogenase type 1
EP2291373B1 (en) * 2008-05-01 2013-09-11 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8569292B2 (en) 2008-05-01 2013-10-29 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1
CA2723034A1 (en) 2008-05-01 2009-11-05 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
ES2421537T3 (en) 2008-05-01 2013-09-03 Vitae Pharmaceuticals Inc Cyclic 11beta-hydroxysteroid dehydrogenase 1 inhibitors
US20110118262A1 (en) * 2008-07-08 2011-05-19 Boehringer Ingelheim International Gmbh Pyrrolidinyl and Piperidinyl Compounds Useful as NHE-1 Inhibitiors
US8846668B2 (en) 2008-07-25 2014-09-30 Vitae Pharmaceuticals, Inc. Inhibitors of 11beta-hydroxysteroid dehydrogenase 1
WO2010127237A2 (en) * 2009-04-30 2010-11-04 Boehringer Ingelheim International Gmbh Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
PL2324018T3 (en) 2008-07-25 2014-02-28 Boehringer Ingelheim Int Cyclic inhibitors of 11 beta-hydroxysteroid dehydrogenase 1
CA2744946A1 (en) 2009-02-04 2010-08-12 Boehringer Ingelheim International Gmbh Cyclic inhibitors of 11.beta.-hydroxysteroid dehydrogenase 1
TW201039034A (en) * 2009-04-27 2010-11-01 Chunghwa Picture Tubes Ltd Pixel structure and the method of forming the same
US8680093B2 (en) 2009-04-30 2014-03-25 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8927539B2 (en) 2009-06-11 2015-01-06 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1 based on the 1,3-oxazinan-2-one structure
JP5749263B2 (en) 2009-07-01 2015-07-15 ヴァイティー ファーマシューティカルズ,インコーポレイテッド Cyclic inhibitor of 11β-hydroxysteroid dehydrogenase 1
US8933072B2 (en) 2010-06-16 2015-01-13 Vitae Pharmaceuticals, Inc. Substituted 5-,6- and 7-membered heterocycles, medicaments containing such compounds, and their use
JP5813106B2 (en) 2010-06-25 2015-11-17 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Azaspirohexanone as an inhibitor of 11-β-HSD1 for the treatment of metabolic disorders
AU2011325286B2 (en) 2010-11-02 2015-04-16 Boehringer Ingelheim International Gmbh Pharmaceutical combinations for the treatment of metabolic disorders
US8809372B2 (en) 2011-09-30 2014-08-19 Asana Biosciences, Llc Pyridine derivatives
US9199975B2 (en) 2011-09-30 2015-12-01 Asana Biosciences, Llc Biaryl imidazole derivatives for regulating CYP17
AU2014209141B2 (en) 2013-01-24 2018-05-10 Palvella Therapeutics, Inc. Compositions for transdermal delivery of mTOR inhibitors
CN103289038B (en) * 2013-06-14 2014-10-01 四川大学 Star-like oxazolidine latent curing agent and preparation method as well as use thereof
TWI773657B (en) 2015-12-18 2022-08-11 美商亞德利克斯公司 Substituted 4-phenyl pyridine compounds as non-systemic tgr5 agonists
AU2018205253B2 (en) 2017-01-06 2022-01-13 Palvella Therapeutics, Inc. Anhydrous compositions of mTOR inhibitors and methods of use
US11000513B2 (en) 2018-07-02 2021-05-11 Palvella Therapeutics, Inc. Anhydrous compositions of mTOR inhibitors and methods of use

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391865B1 (en) * 1999-05-04 2002-05-21 Schering Corporation Piperazine derivatives useful as CCR5 antagonists
WO2004029041A1 (en) * 2002-09-24 2004-04-08 Astrazeneca Ab Novel piperidine derivatives for use in the treatment of chemokine mediated disease states
WO2004085423A1 (en) * 2003-03-25 2004-10-07 Astrazeneca Ab Piperidine derivatives for the treatment of chemokine or h1 mediated disease state
WO2004099144A1 (en) * 2003-05-09 2004-11-18 Astrazeneca Ab Chemical compounds
WO2006088920A1 (en) * 2005-02-16 2006-08-24 Schering Corporation Amine-linked pyridyl and phenyl substituted piperazine-piperidines with cxcr3 antagonist activity
WO2006088837A2 (en) * 2005-02-16 2006-08-24 Schering Corporation Heterocyclic substituted piperazines with cxcr3 antagonist activity
WO2006088921A2 (en) * 2005-02-16 2006-08-24 Schering Corporation Pyrazinyl substituted piperazine-piperidines with cxcr3 antagonist activity
WO2006091428A2 (en) * 2005-02-16 2006-08-31 Schering Corporation Heteroaryl substituted pyrazinyl-piperazine-piperidines with cxcr3 antagonist activity

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101146793A (en) * 2005-02-16 2008-03-19 先灵公司 Novel heterocyclic substituted pyridine or phenyl compounds with CXCR3 antagonist activity
MX2007010068A (en) * 2005-02-16 2007-10-10 Schering Corp Piperazine-piperidines with cxcr3 antagonist activity.
US7776862B2 (en) * 2005-02-16 2010-08-17 Schering Corporation Pyridyl and phenyl substituted piperazine-piperidines with CXCR3 antagonist activity
WO2007109238A1 (en) * 2006-03-21 2007-09-27 Schering Corporation Heterocyclic substituted pyridine compounds with cxcr3 antagonist activity
WO2008008453A1 (en) * 2006-07-14 2008-01-17 Schering Corporation Heterocyclic substituted piperazine compounds with cxcr3 antagonist activity
CA2673231A1 (en) 2006-12-22 2008-07-03 Schering Corporation Heterocyclic compounds with cxcr3 antagonist activity

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391865B1 (en) * 1999-05-04 2002-05-21 Schering Corporation Piperazine derivatives useful as CCR5 antagonists
WO2004029041A1 (en) * 2002-09-24 2004-04-08 Astrazeneca Ab Novel piperidine derivatives for use in the treatment of chemokine mediated disease states
WO2004085423A1 (en) * 2003-03-25 2004-10-07 Astrazeneca Ab Piperidine derivatives for the treatment of chemokine or h1 mediated disease state
WO2004099144A1 (en) * 2003-05-09 2004-11-18 Astrazeneca Ab Chemical compounds
WO2006088920A1 (en) * 2005-02-16 2006-08-24 Schering Corporation Amine-linked pyridyl and phenyl substituted piperazine-piperidines with cxcr3 antagonist activity
WO2006088837A2 (en) * 2005-02-16 2006-08-24 Schering Corporation Heterocyclic substituted piperazines with cxcr3 antagonist activity
WO2006088921A2 (en) * 2005-02-16 2006-08-24 Schering Corporation Pyrazinyl substituted piperazine-piperidines with cxcr3 antagonist activity
WO2006091428A2 (en) * 2005-02-16 2006-08-31 Schering Corporation Heteroaryl substituted pyrazinyl-piperazine-piperidines with cxcr3 antagonist activity

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389279B2 (en) 2004-09-02 2013-03-05 Cambridge Enterprise Limited α-aminocyclolactam ligands for G-protein coupled receptors, and methods of using same
JP2010530975A (en) * 2007-06-21 2010-09-16 モメンタ ファーマシューティカルズ インコーポレイテッド Copolymer assay
US8753833B2 (en) 2007-06-21 2014-06-17 Momenta Pharmaceuticals, Inc. Copolymer assay
GB2455539B (en) * 2007-12-12 2012-01-18 Cambridge Entpr Ltd Anti-inflammatory compositions and combinations
WO2012000904A1 (en) 2010-06-28 2012-01-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Pharmaceutical composition for use in the treatment of glaucoma
WO2013060865A1 (en) 2011-10-28 2013-05-02 Galderma Research & Development New leukocyte infiltrate markers for rosacea and uses thereof
US9266876B2 (en) 2012-02-02 2016-02-23 Actelion Pharmaceuticals Ltd. 4-(benzoimidazol-2-yl)-thiazole compounds and related aza derivatives
US10259807B2 (en) 2013-07-22 2019-04-16 Idorsia Pharmaceuticals Ltd. 1-(piperazin-1-yl)-2-([1,2,4]triazol-1-yl)-ethanone derivatives
US9951063B2 (en) 2014-03-24 2018-04-24 Idorsia Pharmaceuticals Ltd 8-(piperazin-1-yl)-1,2,3,4-tetrahydro-isoquinoline derivatives
US10047080B2 (en) 2015-01-15 2018-08-14 Idorsia Pharmaceuticals Ltd. (R)-2-methyl-piperazine derivatives as CXCR3 receptor modulators
US10053457B2 (en) 2015-01-15 2018-08-21 Idorsia Pharmaceuticals Ltd. Hydroxyalkyl-piperazine derivatives as CXCR3 receptor modulators

Also Published As

Publication number Publication date
JP2009511582A (en) 2009-03-19
EP1937666B1 (en) 2012-02-22
CN101341147A (en) 2009-01-07
US20070082913A1 (en) 2007-04-12
ES2382163T3 (en) 2012-06-05
CA2625762A1 (en) 2007-04-26
US7781437B2 (en) 2010-08-24
ATE546445T1 (en) 2012-03-15
EP1937666A1 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
EP1937666B1 (en) Substituted heterocyclic compounds with cxcr3 antagonist activity
EP1858895B1 (en) Piperazine-piperidines with cxcr3 antagonist activity
EP1853587B1 (en) Novel heterocyclic substituted pyridine or phenyl compounds with cxcr3 antagonist activity
EP1848710B1 (en) Heterocyclic substituted piperazines with cxcr3 antagonist activity
EP1858888B1 (en) Heteroaryl substituted pyrazinyl-piperazine-piperidines with cxcr3 antagonist activity
EP1856098B1 (en) Pyrazinyl substituted piperazine-piperidines with cxcr3 antagonist activity
EP1996577B1 (en) Heterocyclic substituted pyridine compounds with cxcr3 antagonist activity
EP1853583B1 (en) Amine-linked pyridyl and phenyl substituted piperazine-piperidines with cxcr3 antagonist activity
US7902199B2 (en) Heterocyclic substituted piperazine compounds with CXCR3 antagonist activity
US20120157466A1 (en) Heterocyclic compounds with cxcr3 antagonist activity
EP1856097A2 (en) Pyridyl and phenyl substituted piperazine-piperidines with cxcr3 antagonist activity
MX2008004814A (en) Substituted heterocyclic compounds with cxcr3 antagonist activity

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046813.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006816540

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008535600

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2625762

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/004814

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE