WO2007043573A1 - 位相差フィルムの製造方法、位相差フィルムおよびその用途 - Google Patents

位相差フィルムの製造方法、位相差フィルムおよびその用途 Download PDF

Info

Publication number
WO2007043573A1
WO2007043573A1 PCT/JP2006/320306 JP2006320306W WO2007043573A1 WO 2007043573 A1 WO2007043573 A1 WO 2007043573A1 JP 2006320306 W JP2006320306 W JP 2006320306W WO 2007043573 A1 WO2007043573 A1 WO 2007043573A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
group
retardation
retardation film
phase difference
Prior art date
Application number
PCT/JP2006/320306
Other languages
English (en)
French (fr)
Inventor
Tomohiro Mitsuboshi
Masayuki Sekiguchi
Takuhiro Ushino
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2007043573A1 publication Critical patent/WO2007043573A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0031Refractive
    • B29K2995/0032Birefringent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a method for producing a retardation film comprising a norbornene-based resin and having an optical axis in the lateral direction, a retardation film obtained thereby, a polarizing plate comprising the retardation film and a polarizer, and the like.
  • the present invention relates to a liquid crystal display device used.
  • the present invention also relates to a film roll of a retardation film having an optical axis in the width direction, and a method for producing a polarizing plate using the same.
  • a liquid crystal display is a film or sheet having many different functions such as liquid crystal, liquid crystal alignment film, transparent electrode, polarizing film, retardation film, light collecting sheet, diffusion film, light guide plate, and light reflecting sheet. It is composed of Since there are many types of films and sheets, the assembly process is complicated, and there is a restriction on cost reduction. As the number of layers increases, the light transmission decreases and the image becomes darker. There was a strong demand to reduce the number of sheets used because of the problem of yield reduction.
  • polarizing plates for liquid crystal displays in order to maintain the durability and mechanical properties of the polarizer on both sides of a polarizer in which iodine or a dye is adhered to a polybulal alcohol (PVA) film.
  • PVA polybulal alcohol
  • a protective film having a triacetyl cellulose (TAC) force is laminated, and a retardation film is bonded to a protective film on one side via an adhesive layer.
  • TAC triacetyl cellulose
  • Protective films are required to have low birefringence, heat resistance, low moisture absorption, high mechanical strength, surface smoothness, adhesion to adhesives and adhesives, etc.
  • TAC film produced by the casting method with excellent properties and surface smoothness is used, but as the use in severe environments such as high temperature and high humidity such as in a car increases, the moisture resistance and gas barrier properties become higher. Properties such as heat resistance, dimensional stability and adhesion have been demanded.
  • the retardation film is required to have uniform birefringence over the entire surface, and the optical characteristics do not change even under severe conditions such as high temperature and high humidity. are those, stretching the normal polycarbonate (PC) force also film, force photoelastic coefficient film comprising oriented is used had a size of about 9 X 10- 12 cm 2 Zdyne Therefore, there are problems such as excessive birefringence, non-uniformity, and changes in birefringence due to slight stress generated during assembly and environmental changes. PC film also has a problem that it has a low surface hardness and is easily damaged during film production and device assembly. In addition, TAC film and PC film have a good adhesiveness.
  • a liquid crystal display in which the protective layer of the polarizing film and the retardation film, which are the above materials, are bonded via an adhesive is used for high temperature and high humidity.
  • the performance of the liquid crystal display is likely to deteriorate due to moisture entering between the protective layer of the polarizing film and the retardation film, or peeling off the films.
  • the polarizing plate used in the liquid crystal display has a function required for each of the constituent layers of the film only due to a problem attributable to the characteristics of the material itself used. For this reason, it has been difficult to reduce the number of films despite the strong demand for thinner and lighter LCDs.
  • the applicant of the present application is a polarizing film that is a film made of a thermoplastic norbornene-based resin that also has a function of a phase difference film, which is at least one of the protective films constituting the polarizing plate.
  • a board is proposed (see Patent Document 1). According to this technology, the retardation film and the protective film are integrated together, thereby reducing the reduction in reliability due to the bonding process and bonding, and reducing the number of films used to reduce the thickness and weight. Achieved.
  • the retardation film is obtained by developing and orienting a formed film to develop a retardation, and longitudinal stretching, transverse stretching, biaxial stretching to such an extent that a retardation can be exhibited, and the like. It is known that it can be manufactured.
  • a film made of norbornene-based resin has a large degree of stretching necessary to sufficiently develop a phase difference. Therefore, a film stretched in the transverse direction has a fixed length in the longitudinal direction.
  • the refractive index of the thickness and width must be significantly different, and it was difficult to obtain a retardation film with a NZ coefficient value of about 1 as described below.
  • the absorption axis of the PVA film used as a polarizer and the optical axis of the retardation film used for viewing angle compensation are in a direct relationship. Because the absorption axis of PVA film is in the longitudinal direction of the film roll (the roll longitudinal direction), the NZ coefficient is about the same as that obtained by conventional longitudinal uniaxial stretching with the optical axis in the film longitudinal direction near 1.
  • each film is cut into a single sheet, and the films are individually laminated so that the absorption axis and the optical axis are perpendicular to each other.
  • a retardation film having an optical axis in the transverse direction As a retardation film having an optical axis in the transverse direction, a polysulfone film produced by stretching treatment by a transverse uniaxial stretching method is known. However, a retardation film obtained by this method is Since the film is stretched in the transverse direction and shrunk only in the thickness direction with no change in the longitudinal direction, the NZ coefficient does not become close to 1, and in addition, from the size of the photoelastic constant of polysulfone-based resin, There was a problem that the angular characteristics were not sufficient.
  • Reference Document 2 describes a method of thermally shrinking the longitudinal direction of a film after lateral uniaxial stretching as a method for improving the viewing angle characteristics of a polysulfone-based retardation film obtained by lateral uniaxial stretching.
  • the norbornene-based resin film has a high stretch ratio required to develop the desired phase difference, so it is more difficult to uniformly perform high-level heat shrinkage in the vertical direction corresponding to the stretch ratio. There was a problem, and this method could not be applied.
  • Patent Document 1 JP-A-8-43812
  • Patent Document 2 JP-A-6-51116
  • the present invention provides a method for producing a solbornene-based phase difference film having an optical axis in a horizontal direction, excellent viewing angle characteristics, and less in-plane retardation variation, and
  • An object is to provide a retardation film and a film roll obtained by the production method.
  • Another object of the present invention is to provide a polarizing plate comprising the retardation film and a polarizer, and a liquid crystal display device using these.
  • the present invention uses the retardation film or film roll according to the present invention and has excellent transparency, excellent dimensional stability even under high-temperature and high-humidity environments, and simple high-performance polarizing plates. It is an object of the present invention to provide a method for manufacturing efficiently by a simple method.
  • the method for producing a retardation film of the present invention comprises a norbornene-based resin film, The film is stretched in the range of 1.5 to 5 times in the width direction of the film roll and contracted in the film longitudinal direction to obtain a retardation film having an optical axis in the width direction of the film roll.
  • a norbornene-based resin film is stretched using a simultaneous biaxial stretching machine, and the film is stretched in the width direction of the film roll using a tenter. While stretching, it is preferable to make the film scraping speed after stretching 15% or more slower than the film discharging speed from the roll before stretching.
  • the retardation film is preferably a 1Z4 ⁇ plate.
  • Re ( ⁇ ) ⁇ ⁇ (where ⁇ represents a wavelength of transmitted light of the film, and Re () represents a retardation at wavelength ⁇ of the retardation film.
  • the variation force of the value represented by.) In the entire range of wavelengths from 400 to 700 nm, it is preferably within ⁇ 20% of the average value.
  • the retardation film has an NZ coefficient force of 0.990-1.20 represented by the following formula.
  • NZ (nx nz) / (nx ny)
  • nx is the refractive index in the X-axis direction of the retardation plate
  • ny is the refractive index in the Y-axis direction of the retardation plate
  • nz is the refractive index in the Z-axis direction of the retardation plate.
  • the retardation film has a reverse wavelength dispersion in the visible light region.
  • the ratio Re (400) / Re (the phase difference Re (550) at a retardation film force wavelength of 550 nm and the retardation Re (400) at a wavelength of 400 nm. 550) Force i. 0 to 0.1, the difference between the reciprocal difference Re (550) at the wavelength of 550 nm and the reciprocal scale 6 (700) at the wavelength of 7 OOnm: ⁇ 1 ⁇ 6 (700) It is preferably in the range of (550) ⁇ 1.5 to 1.0.
  • the retardation film production method of the present invention is a film obtained by forming a norbornene-based resin having a structural unit (I) represented by the following formula (I): It is preferable. [0025] [Chemical 1]
  • n are each independently an integer of 0 to 2
  • X is a group represented by the formula: —CH ⁇ CH 2 or a group represented by the formula: CH 2 CH—
  • R 5 and R 9 each independently have a linking group containing a hydrogen atom; a halogen atom; an oxygen atom, a nitrogen atom, a thio atom, or a key atom !, may! /, Substituted or unsubstituted A group group consisting of a hydrocarbon group having 1 to 30 carbon atoms; and a polar group;
  • s, t, and u are each independently an integer of 0-3.
  • the retardation film of the present invention is obtained by the method for producing a retardation film of the present invention.
  • the polarizing plate of the present invention is characterized in that the retardation film obtained by the production method of the present invention is pasted on at least one side of a polarizer.
  • the film roll of the present invention comprises a norbornene-based resin, and the NZ coefficient is 0.90 to
  • a roll of retardation film of 20 characterized by having an optical axis in the width direction of the film roll and reverse wavelength dispersion.
  • the method for producing a polarizing plate of the present invention is characterized in that the longitudinal direction of the film roll is aligned with the longitudinal direction of a polarizer having an absorption axis in the longitudinal direction, and the both are continuously pasted. .
  • the polarizing plate of the present invention is obtained by such a manufacturing method of the polarizing plate of the present invention. It is a feature.
  • the liquid crystal display device of the present invention is characterized by using the retardation film of the present invention or the polarizing plate of the present invention.
  • norbornene has excellent transparency, low gas permeability, excellent dimensional stability, an optical axis in the horizontal direction, excellent viewing angle characteristics, and small in-plane retardation variation. It is possible to provide a method for producing a phase difference film made of a resin-based resin.
  • a roll-like retardation film having an optical axis in the film plane in the film width direction and an NZ coefficient of about 1 can be obtained, and the retardation film is in the visible light region.
  • a retardation film manufacturing method and a retardation film capable of manufacturing a retardation film that has reverse wavelength dispersion and is preferable for the entire visible light region and that imparts a retardation to transmitted light can be provided. .
  • the retardation film according to the present invention by using the retardation film according to the present invention, a simple method for producing a high-performance polarizing plate having excellent transparency and excellent dimensional stability even in a high-temperature and high-humidity environment.
  • the manufacturing method of a polarizing plate which can be manufactured with high manufacturing efficiency can be provided, and further, a liquid crystal display device using the retardation film or polarizing plate can be provided.
  • a norbornene-based resin film is stretched in the range of 1.5 to 5 times in the width direction of the film roll, and contracted in the film longitudinal direction.
  • a retardation film having an optical axis in the width direction of the film roll is produced.
  • the norbornene-based resin film before stretching used in the present invention can be obtained by forming a thermoplastic norbornene-based resin film.
  • the film roll according to the present invention is made of norbornene-based resin.
  • a resin having a norbornene skeleton obtained by ring-opening (co) polymerizing a monomer containing a compound having a norbornene skeleton and hydrogenating it as necessary The resin obtained by addition (co) polymerization of monomers containing Can be used.
  • a resin obtained by ring-opening (co) polymerizing a monomer containing a compound having a norbornene skeleton and hydrogenating as necessary is preferably used.
  • the norbornene-based resin according to the present invention is obtained from a monomer containing a compound having a norbornene skeleton.
  • the compound having a norbornene skeleton is not particularly limited, and examples thereof include a compound represented by the following formula (lm).
  • m and ⁇ eight 4 are 0, 1 or 2, - eight 4 each independently represent a hydrogen atom; coupling comprising oxygen, nitrogen, Iou or Kei containing a halogen atom Or a substituted or unsubstituted hydrocarbon group having 1 to 30, preferably 1 to 10 carbon atoms; or a polar group.
  • at least one of ⁇ to A 4 is a polar group, and at least one of the other ⁇ to A 4 is a hydrocarbon group having 1 to carbon atoms: LO.
  • examples of the polar group include a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, a carbo-oxy group, an alkoxy carbo- group, an aryloxy carbo ol group, and a cyano group.
  • examples of the alkoxy group include a methoxy group and an ethoxy group
  • examples of the carbonyloxy group include an alkylcarboxoxy group such as an acetooxy group and a propio-loxy group, and a benzoyloxy group.
  • arylcarbonyl groups such as a methoxy group
  • examples of aryloxycarbonyl groups include, for example, phenoxycarbon groups, naphthyloxycarbon groups, fluoro-carboxycarbonyl groups, biphenyl-oxycarbonyl groups, and the like.
  • Examples of the triorganosiloxy group include trimethylsiloxy group and triethylsiloxy group; examples of the triorganosilyl group include trimethylsilyl group and triethylsilyl group; examples of the amino group include the first group.
  • Examples of the alkoxysilyl group include a trimethoxysilyl group and a triethoxysilyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom and a bromine atom.
  • an alkyl group such as a methyl group, an ethyl group or a propyl group
  • a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group
  • alkenyl groups such as propenyl group.
  • the substituted or unsubstituted hydrocarbon group may be directly bonded to the ring structure, or may be bonded via a linkage.
  • the linking group for example, a divalent hydrocarbon group having 1 to 10 carbon atoms (for example, one (CH 3) (wherein m is an integer of 1 to 10)
  • an alkylene group Represented by an alkylene group); a linking group containing oxygen, nitrogen, iodo or silicon (for example, a carbo group (—CO—), an oxy group (—O (CO) —), a sulfone group (— SO-)
  • linking group containing a plurality of them may be used.
  • cyclic olefin-type compound represented by the formula (lm) include, for example, bisulfate [2. 2. 1] hepto-2en, tetracyclo [4. 4. 0. I 2 ' 5 1 7 . ] Dodecane force one 3 E down, to Kisashikuro [6. 6. 1. I 3 '6 . I 10' 13. O 2 '7.
  • the polar group in the compound represented by the formula (lm) is preferably a group represented by the following formula (a). That is, in the compound represented by the formula (lm), it is preferable that at least one of ⁇ to A 4 is a group represented by the following formula (a) U.
  • p is 0 or an integer of 1 to 5
  • a ′ is a hydrocarbon group having 1 to 15 carbon atoms o
  • n is usually 0 or a force which is an integer of 1 to 5, preferably 0 or 1
  • a ' is usually a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 carbon atom. Desirably an alkyl group of ⁇ 3.
  • the norbornene compound having such carboxylic acid ester groups in particular 8-methyl-8-methoxycarbonyl - Rutetorashikuro [4. 4. 0. I 2 '5 1 "°.
  • the hydrocarbon group represented by A ′ is, for example, an alkyl group such as a methyl group, an ethyl group, or a propyl group, an aryl group such as a phenyl group, Examples thereof include aralkyl groups such as benzyl group, preferably methyl group, ethyl group, and phenyl group, particularly preferably methyl group, p is an integer of 0 or more, and particularly preferably 0. is there.
  • the heat resistance of the resulting copolymer is increased. It is preferable in order to balance water absorption (wet).
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 2, and particularly preferably 1.
  • a 2 , A 3 and A 4 may be bonded to each other and have a hetero atom.
  • the monocyclic or polycyclic ring formed may be an aromatic ring or a non-aromatic ring.
  • examples in which AA 2 , A 3 and A 4 are bonded to each other to form a ring structure are partially shown below.
  • formula (2m) ⁇ 5 ⁇ ⁇ each independently represent a hydrogen atom, a halogen atom, an oxygen, nitrogen, Iou young properly can also be substituted or unsubstituted have a linking group containing a Kei containing A hydrocarbon group having 1 to 10 carbon atoms; or a polar group.
  • the force S that can be cited is not limited to these examples.
  • tricyclo [4.3.0.I 2 ' 5 ] deca-3,7-gen is particularly preferably used.
  • preferred examples of the compound having a norbornene skeleton used as a monomer include compounds represented by the following formula (Im).
  • n are each independently an integer of 0 to 2
  • Each R 9 is independently a hydrogen atom; a halogen atom; a substituted or unsubstituted carbon atom having 1 to 30 carbon atoms, which may have a linking group containing an oxygen atom, a nitrogen atom, a nitrogen atom or a silicon atom.
  • s, t, and u are each independently an integer of 0-3.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms include alkyl groups such as a methyl group, an ethyl group, and a propyl group; cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group; Examples include alkenyl groups such as aryl groups; alkylidene groups such as ethylidene groups and propylidene groups; aromatic groups such as phenyl groups, naphthyl groups and anthracenyl groups.
  • These hydrocarbon groups which may be substituted include, for example, halogen atoms such as fluorine, chlorine and bromine, phenolsulfol groups and cyano groups.
  • the substituted or unsubstituted hydrocarbon group may be directly bonded to the ring structure, or may be bonded via a linkage.
  • the linking group include a divalent hydrocarbon group having 1 to: LO carbon atoms (for example, (CH 3) —, q is an integer from 1 to LO).
  • a linking group containing an oxygen atom, a nitrogen atom, a thio atom or a key atom for example, a carbo group (CO), a carbo oxy group (COO), a sulfo group (one) SO-), sulfoleester group (one SO-0-), ether bond (0
  • Examples of the polar group include a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, a carbonyloxy group, an alkoxycarbo group, an aryloxycarboro group, a cyano group, an amide group, an imide group, and a triorgano
  • Examples include a siloxy group, a triorganosilyl group, an amino group, an acyl group, an alkoxysilyl group, a sulfonyl group, and a carboxyl group.
  • examples of the alkoxy group include a methoxy group and an ethoxy group
  • examples of the carbo-oxy group include an alkyl group such as an acetoxy group and a propionyloxy group, a carbonyloxy group, and a benzoyloxy group.
  • examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group
  • examples of the aryloxycarbonyl group include a phenoxy group carbonyl group and a naphthyloxycarbonyl group.
  • triorganosiloxy group include trimethylsiloxy group, triethylsiloxy group, etc .
  • examples of the amino group include such as a primary Amino group, alkoxysilyl The group e.g. trimethoxysilyl group, and a triethoxy silyl group.
  • R 8 and R 9 in the formula (Im) are each an independent atom or group.
  • the norbornene-based compound (Im) imparts “negative birefringence” to the (co) polymer.
  • the birefringence can be made as desired.
  • positive or negative birefringence is determined by the refractive index changing force generated when the film is uniaxially stretched, and the refractive index in the stretching direction is greater than the refractive index in the direction perpendicular to the stretching direction. “Positive birefringence” as the property of increasing, conversely the stretching direction The property of decreasing the refractive index is defined as “negative birefringence”.
  • the wavelength dependence of birefringence can be increased by introducing a functional group having a large polarization (for example, an ester group, an alkoxy group, etc.).
  • a functional group having a large polarization for example, an ester group, an alkoxy group, etc.
  • norbornene monomer (Im) for example, norbornene dimethanol obtained by reducing 5 norbornene 2,3 dicarboxylic acid anhydride, which is a Diels-Alder reaction product of maleic anhydride and cyclopentagen, is used.
  • Examples include spiro compounds synthesized by modifying with an appropriate leaving group (tosyl group, halogen atom, etc.) and then reacting with a fluorene derivative.
  • More specific examples of the norbornene monomer (Im) preferably used in the present invention include the following compounds.
  • norbornene monomers (Im) may be used singly or in combination of two or more for the production of norbornene resin according to the present invention.
  • a monomer containing one or more of the norbornene-based compounds as described above is polymerized or copolymerized.
  • copolymerizable compounds in addition to the norbornene-based compounds exemplified above, other copolymerizable compounds (copolymerizable compounds) can be used as part of the monomer.
  • co-polymerizable compounds include cyclic olefins such as cyclobutene, cyclopentene, cyclooctene and cyclododecene; non-conjugated cyclic such as 1,4-cyclooctagen, dicyclopentadiene and cyclododecatriene.
  • the norbornene-based compound Z copolymerizable compound is preferably in the range of 100ZO to 50Z50, more preferably in the range of 0 to 60 to 40 by weight ratio! /.
  • the norbornene-based resin according to the present invention can be obtained by ring-opening (co) polymerizing the above-described monomers, or adding (co) polymerizing monomers, and hydrogenating as necessary.
  • a monomer ring-opening (co) polymer containing a compound having a norbornene skeleton and a hydrogenated product thereof are not particularly limited.
  • m 0, 1 or 2
  • At least one of polar groups to A 4, and at least one other ⁇ to A 4 is a hydrocarbon group having 1 to 10 carbon atoms.
  • the structural unit represented by the formula (1) induces the norbornene-based compound force represented by the formula (lm) by ring-opening (co) polymerization and hydrogenation as necessary. .
  • a ring-opening (co) polymer of a monomer containing a compound having a norbornene skeleton and a hydrogenated product thereof a cyclic olefin-based polymer having a structural unit represented by the following formula (2) can be used as a ring-opening (co) polymer of a monomer containing a compound having a norbornene skeleton and a hydrogenated product thereof. Coalescence is mentioned.
  • 2 5 to ⁇ ⁇ are each independently a hydrogen atom; a halogen atom; a substituted or unsubstituted carbon atom which may have a linking group containing oxygen, nitrogen, io or ka Represents a hydrocarbon group of the number 1 to 10; or a polar group.
  • the structural unit represented by the above formula (2) is represented by the above formula (2m ′), which is a ring-opening (co) polymerization of the norbornene-based compound represented by the above formula (2m) and hydrogenating as necessary.
  • the norbornene-based compound can be obtained by ring-opening (co) polymerization and hydrogenation.
  • a ring-opening (co) polymer of a monomer containing a compound having a norbornene skeleton and a hydrogenated product thereof are structural units represented by the following formula (I): It is also preferred that it is a norbornene-based ring-opening (co) polymer having I).
  • n are each independently an integer of 0 to 2
  • X is a group represented by the formula: —CH ⁇ CH 2 or a group represented by the formula: CH 2 CH—
  • R 5 and R 9 each independently have a linking group containing a hydrogen atom; a halogen atom; an oxygen atom, a nitrogen atom, a thio atom, or a key atom !, may! /, Substituted or unsubstituted A group group consisting of a hydrocarbon group having 1 to 30 carbon atoms; and a polar group;
  • s, t, and u are each independently an integer of 0-3.
  • the structural unit represented by the above formula (I) can be obtained by subjecting the norbornene compound represented by the above formula (Im) to ring-opening (co) polymerization and hydrogenation as necessary.
  • the norbornene-based resin according to the present invention has the structural unit (I) represented by the formula (I), the structural unit (I) represented by the general formula (I) In the unit, it is usually desirable to contain 2 mol% or more, preferably 5 mol% or more.
  • a norbornene-based ring-opening (co) polymer having such a structural unit (I) is preferred because it has both heat resistance and toughness, and a monomer that leads to the structural unit can be synthesized relatively easily. .
  • Norbornene-based rosin having such a structural unit (I) is added in black mouth form solution. It is desirable that the intrinsic viscosity [] measured with a Bbrobehde viscometer is usually 0.2 to 5.0, preferably 0.3 to 4.0, and more preferably 0.35 to 3.0. . Moreover, in the molecular weight measurement by gel permeation chromatography (GPC, tetrahydrofuran solvent, polystyrene conversion), the number average molecular weight (Mn) force is usually 1000 to 500,000, preferably 2000 to 300,000, more preferably 5000 to 300,000. The weight average molecular weight (Mw) is usually 5,000 to 200,000, preferably 10,000 to 1,000,000, and more preferably 10,000 to 500,000.
  • GPC gel permeation chromatography
  • the intrinsic viscosity [ ⁇ ?] Is less than 0.2, the number average molecular weight (Mn) is less than 1000, or the weight average molecular weight (Mw) is less than 500,000, a norbornene-based ring-opening (co) polymer force can be obtained. This is not preferable because the strength of the steel may be significantly reduced.
  • the melt viscosity of the coalesced or its hydrogenated product is not preferable because the solution viscosity becomes too high and it may be difficult to obtain a film having the desired properties.
  • the norbornene-based resin having the structural unit (I) represented by the above formula (I) has excellent transparency, heat resistance and low water absorption, and is reversed when a retardation film is produced. Since it has wavelength dispersion, it can be particularly preferably used in the present invention.
  • the norbornene-based resin having the structural unit (I) represented by the above formula (I) preferably contains 2% by weight or more of the structural unit (I).
  • the proportion of structural units (I) in all structural units is smaller than 2Z98, the birefringence has a unique wavelength dependency (birefringence increases as the wavelength increases), and low birefringence cannot be obtained.
  • the ring-opening (co) polymerization reaction of the monomer can be performed in the presence of a metathesis catalyst.
  • the ring-opening polymerization catalyst used in the present invention includes Olefin Metathesis and Metathesis.
  • a catalyst described in Polymerization (K.J.IVIN, J.C.MOL, Academic Press 1997) is preferably used.
  • Examples of such a catalyst include (a) at least one selected from the compounds of W, Mo, Re and V, Ti, and (b) Li, Na, K :, Mg, Ca , Zn, Cd, Hg, B, Al, Si, Sn, Pb, etc., and at least one of these elements has carbon bond!
  • Examples include a metathesis polymerization catalyst that has a combination force with at least one selected from those having an elemental bond. This catalyst may be added with an additive (c) described later in order to enhance the activity of the catalyst.
  • Other catalysts include (d) a metathesis catalyst such as a group 4-8 transition metal-carbene complex or a metallacyclobutane complex that does not use a promoter.
  • W, Mo, Re, V, and Ti compounds suitable as the component (a) include WC1, MoCl, ReOCl, VOC1, TiCl and the like described in JP-A-1-240517.
  • component (c) as an additive include the ability to suitably use alcohols, aldehydes, ketones, amines, and the like, as disclosed in JP-A-1-240517. Compounds can be used.
  • the amount of the metathesis catalyst used is the above component (a) and all monomers (norbornene monomers (Im), (Ilm) and other copolymerizable monomers.
  • the molar ratio of “(a) component: all monomers” 1S is usually in the range of 1: 500 to 1: 500,000, preferably 1: 1000 to 1: 100,000.
  • the ratio of the component (a) to the component (b) is in the range of 1: 1 to 1:50, preferably 1: 2 to 1:30 in terms of the metal atomic ratio of “(a): (1))”. Is desirable.
  • the ratio of the component (a) to the component (c) is “(c): (a)” in a molar ratio of 0.005: 1 to It is desirable that the ratio is 15: 1, preferably 0.05: 1 to 7: 1. Further, the amount of the catalyst (d) used is the molar ratio of the component (d) to the total monomer "(d) component: total monomer" 1S, usually in the range of 1:50 to 1: 50,000, preferably Is preferably in the range of 1: 100 to 1: 100 00.
  • the molecular weight of the ring-opening (co) polymer can be adjusted depending on the polymerization temperature, the type of catalyst, and the type of solvent, but in the present invention, it can be adjusted by allowing a molecular weight regulator to coexist in the reaction system.
  • suitable molecular weight regulators include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene and 1-decene.
  • Examples include ⁇ -olefins and styrene. Among these, 1-butene and 1-hexene are particularly preferable.
  • These molecular weight regulators can be used alone or in admixture of two or more.
  • the molecular weight regulator is used in an amount of 0.001 to 0.6 mol, preferably 0.02 to 0.5, per 1 mol of all monomers subjected to the ring-opening (co) polymerization reaction. Preferably it is a mole.
  • the solvent used in the ring-opening (co) polymerization reaction that is, the solvent for dissolving the norbornene monomer, the metathesis catalyst, and the molecular weight regulator include pentane, hexane, heptane, octane, nonane, decane and the like.
  • Alkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; chlorobutane, bromohexane, methylene chloride, dichloroethane, Halogenated alkanes such as hexamethylenedib mouthamide, black mouth benzene, black mouth form, and tetrachloroethylene; compounds such as allyl; saturation such as ethyl acetate, n -butyl acetate, iso-butyl acetate, methyl propionate, and dimethoxyethane Carvone Esters; dibutyl ether, tetrahydrofuran, there may be mentioned ethers such as dimethyl Tokishetan They may be used singly or in combination. Of
  • solvent total monomer (weight ratio)
  • solvent total monomer (weight ratio)
  • a norbornene-based resin that is a norbornene-based ring-opening (co) polymer may be produced only by the ring-opening (co) polymerization described above, but the ring-opening obtained by the ring-opening (co) polymerization may be used. It is preferable to further hydrogenate the (co) polymer.
  • the ring-opening (co) polymer of the present invention can be used as it is, but from the viewpoint of heat stability, the above olefinic unsaturated group is hydrogenated and X is represented by -CH 2 -CH 2-.
  • the hydrogenated product is converted to a group to be converted.
  • the hydrogenated product in the present invention is a product obtained by hydrogenating the above olefinic unsaturated group, and the side chain aromatic ring based on the norbornene monomer is not substantially hydrogenated. Is.
  • the ratio of hydrogenation is 90 mol% or more, preferably 95% or more, more preferably, of the total of X in the structural unit represented by the above formula (1), (2) or (I). It should be 97% or more.
  • the higher the rate of hydrogenation the more stable (co) polymers are preferred, and coloration and deterioration due to heat are suppressed.
  • the hydrogenation reaction is carried out under the condition that, when there is an aromatic ring of a side chain based on the monomer norbornene compound, this is not substantially hydrogenated. For this reason, it is usually carried out by adding a hydrogenation catalyst to a ring-opening (co) polymer solution, and allowing hydrogen to act at atmospheric pressure to 30 MPa, preferably 2 to 20 MPa, more preferably 3 to 18 MPa. Is desirable.
  • the hydrogenation catalyst those used in the usual hydrogenation reaction of olefinic compounds can be used. Any known heterogeneous catalyst and homogeneous catalyst can be used as the hydrogenation catalyst.
  • the heterogeneous catalyst include a solid catalyst in which a noble metal catalyst material such as noradium, platinum, nickel, rhodium, or ruthenium is supported on a carrier such as carbon, silica, alumina, or titanium.
  • homogeneous catalysts include nickel naphthenate Z-triethylaluminum, bis (acetylethylacetonato) nickel ( ⁇ ) Z-triethylaluminum, cobalt oxalate Zn-butyllithium, titanocene dichloride Z jetylaluminum mono List chloride, rhodium acetate, chlorotris (triphenylenophosphine) rhodium, dichlorotris (triphenylphosphine) ruthenium, chlorohydrocarbon-tritris (triphenylphosphine) ruthenium, dichlorocarbo-trithris (triphenylphosphine) ruthenium, etc.
  • the form of the catalyst may be powder or granular. Also, this hydrogenation reaction catalyst can be used alone or in combination of two or more. [0180] These hydrogenation catalysts have a force that needs to be adjusted in order to prevent the side chain aromatic ring based on the monomer from being substantially hydrogenated.
  • polymer hydrogenation catalyst (weight ratio) "is, 1: 1 X 10- 6 ⁇ 1 : 2 to become the desired arbitrary to use a ratio.
  • the norbornene resin according to the present invention may be an addition (co) polymer of a monomer containing the above-described norbornene compound.
  • a method for obtaining the attached polymer (co) polymer any of the known methods can be employed, and the addition (co) polymerization of the monomer using an addition polymerization catalyst can be obtained from this method. Can do.
  • titanium compounds, zirco are usually used as an addition polymerization catalyst for obtaining an attached polymer (co) polymer.
  • At least one selected from the group and an organoaluminum compound as a promoter are used.
  • titanium tetrachloride, trisalt salt, titanium, etc. are used as the titanium compound, and bis (cyclopentagel) zirconium chloride, bis (cyclopentagel) zirconium as the zirconium compound.
  • Dichloride etc. can be mentioned.
  • R is a hydrocarbon group
  • X is a halogen atom
  • Examples of the electron donor include oxygen-containing electron donors such as alcohols, phenols, ketones, aldehydes, carboxylic acids, esters of organic acids or inorganic acids, ethers, acid amides, acid anhydrides, alkoxysilanes, Examples thereof include nitrogen-containing electron donors such as ammonia, ammine, nitrile, and isocyanate.
  • oxygen-containing electron donors such as alcohols, phenols, ketones, aldehydes, carboxylic acids, esters of organic acids or inorganic acids, ethers, acid amides, acid anhydrides, alkoxysilanes
  • nitrogen-containing electron donors such as ammonia, ammine, nitrile, and isocyanate.
  • organoaluminum compound as the cocatalyst at least one kind selected from those having at least one aluminum carbon bond and having an aluminum monohydrogen bond is used.
  • (A1 / V) is 2 or more, preferably 2-50, particularly preferably 3-20.
  • the solvent for the polymerization reaction used in the addition polymerization the same solvent as that used in the ring-opening polymerization reaction can be used.
  • the molecular weight of the resulting saturated polymer is usually adjusted using hydrogen.
  • the intrinsic viscosity [7?] Obtained by measuring a norbornene-based rosin-form solution with a Ubbelohde viscometer is usually 0.2 to 5.0, preferably It is desired to be 0.3 to 4.0, more preferably 0.35 to 3.0.
  • the number average molecular weight (Mn) measured by gel permeation chromatography (GPC, tetrahydrofuran solvent, polystyrene conversion) is usually 1,000 to 500,000, preferably 2000 to 300,000, more preferably
  • the weight average molecular weight (Mw) is usually 5000 to 2 million, preferably 10,000 to 1 million, and more preferably 10,000 to 500,000.
  • the intrinsic viscosity [7?] Is less than 0.2, Mn is less than 1000 or Mw is less than 5000, the strength of the molded product using the obtained ring-opening (co) polymer is remarkably reduced. There is.
  • the intrinsic viscosity [r?] Is 5.0 or more, Mn is 500,000 or more, or Mw is 2 million or more, the melt viscosity or solution viscosity of the norbornene-based resin becomes too high, making it difficult to form a film. There is a case.
  • the norbornene-based resin according to the present invention has excellent transparency, heat resistance, and low water absorption.
  • the norbornene-based resin having the structural unit (I) described above has a unique birefringence. It has wavelength dependency.
  • a retardation film having a reverse wavelength dispersion in which the retardation Re becomes larger as the transmitted wavelength becomes larger can be easily produced.
  • the norbornene-based resin according to the present invention can be used with various additives as desired.
  • additives include 2,6 di-tert-butyl-4-methylphenol, 2,2-methylenebis (4-ethyl-6-tert-butylphenol), 2,5-di-tert-butylhydroquinone, pentaerythrityl tetrakis [.
  • antioxidants such as tris (4-methoxy-1,3,5-diphenyl) phosphite, tris (noyulferyl) phosphite, tris (2,4 di-t-butylphenol) phosphite
  • phosphoric acid inhibitors such as tris (4-methoxy-1,3,5-diphenyl) phosphite, tris (noyulferyl) phosphite, tris (2,4 di-t-butylphenol) phosphite
  • these antioxidants can improve the acidity stability of the norbornene-based resin.
  • An ultraviolet absorber such as [(2H benzotriazole 2-yl) phenol]] can also be mentioned, and the light resistance of the norbornene-based resin of the present invention can be improved by adding these. It is also possible to add additives such as lubricants for the purpose of improving processability.
  • a film comprising the above-described norbornene-based resin is used.
  • a method for producing a film of norbornene-based resin include a method of forming norbornene-based resin by a melt molding method such as a melt extrusion method or a solution casting method (solvent casting method).
  • the solvent casting method includes, for example, dissolving or dispersing norbornene-based resin in a solvent to obtain a liquid with an appropriate concentration, pouring or applying the solution onto an appropriate carrier, drying the carrier, and then carrying the carrier. Force peeling method.
  • the concentration of the resin is generally 0.1 to 90% by weight, preferably 1 to 50% by weight, more preferably 10 to 35%. Weight%.
  • concentration of the resin is less than the above, it becomes difficult to ensure the thickness of the film.
  • problems such as good surface smoothness of the film occur due to foaming associated with solvent evaporation.
  • a concentration exceeding the above is not preferable because the solution viscosity becomes too high and the thickness and surface of the optical film obtained are difficult to be uniform.
  • the viscosity of the above solution at room temperature is usually 1 to 1,000, OOO (mPa's), preferably 10 to: LOO, OOO (mPa's), more preferably 100 to 100, OOO (mPa's ), Special [preferably Is 1, 000, 000, OOO (mPa's).
  • Solvents used here include aromatic solvents such as benzene, toluene, xylene, cellosolve solvents such as methyl cetosolve, ethenorecerosoreb, 1-methoxy 2-propanol, diacetone alcohol, acetone , Cyclohexanone, methyl ethyl ketone, 4 methyl-2-pentanone, cyclohexanone, ethyl cyclohexanone, ketone solvents such as 1,2-dimethyl cyclohexane, ester solvents such as methyl lactate and ethyl lactate, 2 , 2, 3, 3-tetrafluoro-1-halogen-containing solvents such as propanol, methylene chloride, and chloroform, ether solvents such as tetrahydrofuran and dioxane, alcohol solvents such as 1-pentanol and 1-butanol be able to.
  • aromatic solvents such as benzene
  • the SP value (solubility parameter) is usually 10 to 30 (MPa 1/2 ), preferably 10 to 25 (MPa 1/2 ), more preferably 15 to 25 (MPa 1). / 2 ), particularly preferably using a solvent in the range of 15 to 20 (MPa 1 2 ), a film having good surface uniformity and optical properties can be obtained.
  • these solvents may be used alone or in combination of two or more.
  • the SP value as a mixture can be obtained from the weight ratio.
  • the weight fraction of each solvent is W1, W2, or
  • the SP value of the mixed solvent with SP values of SP1 and S P2 is the following formula:
  • the temperature when the norbornene-based resin is dissolved in a solvent may be room temperature or high. A uniform solution can be obtained by thorough stirring. In addition, when coloring as needed, dyes and pigment colorants can be appropriately added to the solution.
  • a leveling agent may be added to improve the surface smoothness of the film.
  • Any general leveling agent can be used.
  • fluorine-based surfactants, special acrylic resin leveling agents, and silicone leveling agents can be used.
  • the above solution is used as a die.
  • a coater Apply onto a metal drum, steel belt, polyester film such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or a belt made of polytetrafluoroethylene, and then apply the solvent.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the thickness and surface smoothness may be controlled by repeating the coating.
  • a surface-treated film may be used.
  • a commonly used hydrophilic treatment method for example, a method in which an acrylic resin or sulfonate group-containing resin is laminated by coating or lamination, or a corona discharge treatment or the like is used to treat the film surface. Examples thereof include a method for improving hydrophilicity.
  • the drying (solvent removal) step of the solvent casting method is not particularly limited and can be carried out by a generally used method, for example, a method of passing through a drying furnace through a number of rollers. If bubbles are generated in the process due to evaporation of the solvent, the characteristics of the film will be significantly reduced.To avoid this, the drying process is divided into two or more stages, and the temperature in each process is increased. Prefer to control ,.
  • the amount of residual solvent in the film is usually 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less, and particularly preferably 0.5% by weight or less.
  • the amount of the residual solvent is more than 10% by weight, the dimensional change with time becomes large when the film is actually used, which is not preferable.
  • the residual solvent lowers Tg, and heat resistance is also unfavorable.
  • the amount of the residual solvent is usually 10 to 0.1% by weight, preferably 5 to 0.1% by weight, and more preferably 1 in order to stably and evenly express the phase difference during stretching orientation. May be ⁇ 0.1% by weight. By leaving a trace amount of the solvent, stretching may be facilitated or the phase difference may be easily controlled.
  • the thickness of the norbornene-based resin film used in the present invention is usually 1 to 500 ⁇ m, preferably The thickness is preferably 1 to 300 ⁇ m, more preferably 1 to 200 ⁇ m, and most preferably 1 to 150 m (100 to 150,000 nm). When the thickness is less than 1 m, handling becomes practically difficult. On the other hand, when the length is 500 m or more, when the film is wound into a roll, the so-called “winding” may be difficult to handle in post-processing.
  • the thickness distribution of the film of the present invention is usually within ⁇ 20% of the average value, preferably
  • the thickness variation per 1 cm is usually 10% or less, preferably 5% or less, more preferably 1% or less, and particularly preferably 0.5% or less.
  • the norbornene-based resin film described above is stretched in the range of 1.5 to 5 times, preferably 1.5 to 3 times in the width direction of the film roll, and contracted in the film longitudinal direction, A retardation film is produced.
  • the polymer chain of norbornene-based resin as a film material is oriented in the width direction (lateral direction) of the film roll, has an optical axis in the width direction of the film roll, and has a phase difference in transmitted light.
  • any stretching method can be used as long as the film can be stretched in the width direction (lateral direction) of the film roll and contracted in the longitudinal direction (longitudinal direction) of the film roll.
  • a simultaneous biaxial stretching machine Stretching using a simultaneous biaxial stretcher is 15% or more higher than the film discharge speed from the roll before stretching, while stretching the film in the transverse direction with a tenter and stretching the roll of the film after stretching. This can be done by slowing it down to the desired shrinkage rate.
  • the moving speed of the tenter is gradually decreased, while controlling so as to finally reach a winding speed at which a desired shrinkage rate is obtained.
  • longitudinal shrinkage can be achieved while stretching in the transverse direction.
  • the take-off speed of the stretched film is determined by the desired shrinkage in the machine direction.
  • the stretching speed of the film in the transverse direction is usually 1 to 5,000% Z, preferably 50 to It is 1,000% Z minutes, more preferably 100 to 1,000% Z minutes, and particularly preferably 100 to 500% Z minutes.
  • the drawing temperature is not particularly limited, but is usually Tg ⁇ 30 ° C, preferably Tg ⁇ 15, based on the glass transition temperature Tg of the norbornene-based resin used in the present invention. ° C, more preferably Ding 8 - 5 in Aru range at ⁇ Ding 8 + 15. Within the above range, it is possible to suppress the occurrence of uneven phase difference, and it is preferable because the control of the refractive index ellipsoid becomes easy.
  • the draw ratio in the transverse direction is 1.5 to 5 times, preferably about 1.5 to 3 times. Since norbornene-based resin requires a relatively high degree of stretching for the development of the phase difference, the desired phase difference may not be obtained at a draw ratio of 1.5 times or less.
  • the stretched film may be cooled as it is, but it is kept in a temperature atmosphere of Tg—20 ° C to Tg for at least 10 seconds, preferably 30 seconds to 60 minutes, more preferably 1 minute to 60 minutes. It is preferable to hold and heat set. Thereby, a stable retardation film can be obtained with little change over time in the retardation of transmitted light.
  • the viewing angle characteristics of the retardation film can be controlled by controlling the stretching ratio in the transverse direction and the shrinkage ratio in the longitudinal direction.
  • the stretching ratio of the film in the transverse direction depends on the type, thickness, temperature condition and stretching speed of the resin constituting the film, but is usually 1.5 to 5 times, preferably 1.7 to It is desirable to be about 3 times.
  • the shrinkage in the machine direction of the film is 15% or more, preferably 15 to 70%, more preferably 20 to 50%, and particularly preferably 25 to 40%, although it depends on the stretching ratio in the transverse direction. . If this contraction rate is satisfied, the viewing angle characteristics are excellent as compared with a retardation film obtained by conventional transverse uniaxial stretching.
  • the stretching ratio in the transverse direction is (STD)
  • (1ZSTD) 1/2 that is, the shrinkage is (100—100 X (lZSTD) 1/2 )%
  • the refractive index ny in the Y-axis direction (longitudinal direction) and the refractive index nz in the Z-axis direction (thickness direction) when the transverse direction as the stretching direction is taken as the X-axis are the same, and It is particularly preferable because it has a viewing angle characteristic of 1 and is most excellent.
  • the definition of the NZ coefficient is expressed by the following equation (1).
  • NZ, 3 ⁇ 4 ⁇ (Nx-Nz) / (Nx-Ny) ⁇
  • Nx is the maximum refractive index in the film plane (corresponding to the optical axis), Ny is the refractive index perpendicular to Nx in the film plane, and Nz is the refractive index in the film thickness direction]
  • the value of the NZ coefficient is from 0.90 to L20, preferably from 0.95 to L10, particularly preferably from 1.00 to 1.05. By controlling the NZ coefficient within this range, the viewing angle characteristics when used in a liquid crystal display can be obtained satisfactorily.
  • the shrinkage ratio in the longitudinal direction of the film is within ⁇ 30%, preferably within ⁇ 20%, more preferably within ⁇ 10% of (100-100 X (lZSTD) 1/2 )%. More preferably, it is within ⁇ 5%.
  • the dimensional shrinkage ratio due to heating of the retardation film according to the present invention is usually 10% or less, preferably 5% or less, more preferably 3% or less, when heating at 80 ° C for 500 hours. Particularly preferably, it is 1% or less.
  • the heat setting conditions By appropriately selecting the heat setting conditions, the dimensional shrinkage can be within the above range.
  • the film stretched as described above has a force that causes the molecules to be oriented by stretching and to give a retardation to transmitted light.
  • the retardation (letter decision, Re) of the film is determined by the stretching ratio, the stretching temperature. Alternatively, it can be controlled by the thickness of the film. For example, if the thickness of the film before stretching is the same, the absolute value of the transmitted light phase difference tends to increase as the stretch ratio of the film increases. Therefore, by changing the stretch ratio, the desired retardation can be obtained. A retardation film that gives transmitted light to can be obtained. On the other hand, when the draw ratio is the same, the absolute value of the retardation of transmitted light tends to increase as the thickness of the film before stretching increases, so it is desirable to change the thickness of the film before stretching.
  • a retardation film that gives the transmitted retardation to transmitted light can be obtained.
  • the absolute value of the phase difference of transmitted light tends to increase as the drawing temperature decreases, so the phase difference that gives the desired phase difference to the transmitted light by changing the drawing temperature. Get the film It can be done.
  • Nx is the refractive index in the direction of the maximum refractive index (X axis) in the film plane
  • Ny is the refractive index in the direction perpendicular to Nx (Y axis) in the film plane.
  • the thickness of the retardation film obtained by stretching as described above is preferably 0.1 to 300 m, more preferably 0.5 to 200 ⁇ m, and particularly preferably 1 to 150 ⁇ m. Most preferably, 1 to: LOO ⁇ m. Reducing the thickness can greatly meet the demands for miniaturization and thinning required for products in fields where retardation films are used.
  • the thickness of the retardation film can be controlled by appropriately selecting the thickness of the film before stretching or by appropriately selecting the stretching ratio. For example, the thickness of the retardation film can be reduced by thinning the film before stretching or by increasing the stretching ratio.
  • the retardation value of the retardation film that is, the retardation value given to the transmitted light is determined by the effect required for the retardation film, and may vary depending on the wavelength of the transmitted light.
  • the wavelength of transmitted light is a value at 550 nm, usually 1 to: L000 nm, preferably 10 to 500 nm, more preferably 100 to 200 nm, particularly preferably 120 to 150 nm, and most preferably Is 1Z4 ⁇ .
  • the term “1 ⁇ 4” refers to a retardation film that expresses a phase difference of approximately 1Z4 with respect to a transmitted light wavelength of 550 nm, that is, a retardation film that expresses a phase difference of 138 ⁇ 10 nm, preferably 138 ⁇ 5 nm. It is practically difficult to control the retardation value below 1 nm, and a retardation film having a retardation value exceeding lOOOnm ensures the uniformity of the retardation described later, which is difficult to manufacture. It may be difficult to do.
  • the phase difference of the light transmitted through the retardation film is preferably highly uniform in the plane.
  • the variation at a wavelength of 550 nm is usually ⁇ 20% or less, preferably 10% or less. More preferably, it is ⁇ 1% or less. If the dispersion of the phase difference exceeds ⁇ 20%, color unevenness may occur when used in a liquid crystal display element or the like, resulting in poor display performance.
  • the retardation film according to the present invention preferably has reverse wavelength dispersion in the visible light region.
  • phase difference 1 ⁇ (400) at the wavelength 40011111, the phase difference Re (550) at the wavelength 550 nm, the phase difference 1 ⁇ (700) at the wavelength 70011111 and the phase difference Re (400) ⁇ Re (550) ⁇ Re (700) is shown.
  • Re (400) / Re (550) force between phase difference Re (550) at wavelength 550 nm and phase difference Re (400) at wavelength 400 nm Si. 0 to 0.5 Preferably between 0.8 and 0.6, more preferably between 0.75 and 0.65, and the difference between the potential difference Re (550) and the phase difference Re (700) at a wavelength of 700 nm.
  • the phase difference at is Re ()
  • the value of Re ( ⁇ ) Z ⁇ can be made almost constant in the entire wavelength region of 400 to 700 nm. If this Re () Z value is controlled to within ⁇ 20%, preferably within ⁇ 10% in the entire wavelength region of 400 to 700 nm, for example, the phase difference is 1Z4 ⁇ in all the wavelength regions.
  • a broadband retardation film can be obtained.
  • such a retardation film having reverse wavelength dispersion can be easily obtained by selecting a norbornene-based resin as a raw material.
  • a norbornene-based resin suitable for producing a retardation film having reverse wavelength dispersion a norbornene-based resin having the structural unit (I) represented by the above formula (I) is particularly preferable.
  • the other norbornene-based polymer that gives reverse wavelength dispersion to the retardation film which is not limited to this, a resin composition having two or more norbornene-based polymers, and a norbornene-based polymer. And other polymer compositions that also have polymer strength.
  • the polarizer used in the method for producing a polarizing plate of the present invention and constituting the polarizing plate according to the present invention can be formed by adsorbing and orienting iodine or a dichroic dye on a polymer film.
  • the polarizer constituting the polarizing plate of the present invention is preferably made of a polybulal alcohol (PVA) film.
  • the polarizer having PVA film strength is not particularly limited as long as it has a function as a polarizer.
  • PVA'iodine polarizing film obtained by uniaxial stretching in an acid bath
  • PVA film obtained by diffusing and adsorbing a direct dye on a PVA film and then uniaxially stretching
  • PVA PVA Polyvinylene Polarizing Film with Polyvinylene Structure by Adsorbing Iodine on the Film PVA 'Metal Polarizing Film with Metals such as Gold, Silver, Mercury and Iron Adsorbed on PVA Film
  • near-ultraviolet polarizing film dichroic dye on the surface and Z or inside of PVA film consisting of modified PVA containing cationic group in the molecule Examples thereof include a polarizing film.
  • the method for producing a polarizer having PVA film strength is not particularly limited, for example, a method of adsorbing iodine ions after stretching a PVA film; a PVA film having a dichroic dye Method of stretching after dyeing by: Method of stretching PVA film and then dyeing with dichroic dye; Method of printing and stretching dichroic dye on PVA film; After stretching PVA film, two colors And a method of printing a functional dye. More specifically, iodine is dissolved in potassium potassium solution to prepare higher-order iodine ions, this iodine is adsorbed on a PVA film and stretched, and then bathed in 1 to 4% boric acid aqueous solution.
  • a method for producing a polarizing film by dipping at a temperature of 30-40 ° C, or a PVA film treated with boric acid in the same way and stretched about 3-7 times in a uniaxial direction, and 0.05-5% dichroic dye examples include a method of producing a polarizing film by immersing the dye in an aqueous solution at a bath temperature of 30 to 40 ° C. to adsorb the dye, drying at 80 to 100 ° C. and heat setting.
  • the polarizer used in the present invention preferably has an absorption axis in the longitudinal direction.
  • a polarizer having an absorption axis in the longitudinal direction can be produced by stretching a polymer film by longitudinal uniaxial stretching.
  • the retardation film obtained by the above-described method and the polarizer are adhered using a pressure-sensitive adhesive or an adhesive.
  • adhesives or adhesives include aqueous adhesives in which PVA is dissolved in water, adhesives having polar groups or adhesives having polar groups (hereinafter, these are collectively referred to as ⁇ polar group-containing adhesives '' Is also preferably used.
  • Polar groups possessed by the polar group-containing adhesive include halogen atoms and halogen atoms. Containing groups, carboxyl groups, carboxylic groups, hydroxyl groups, ester groups such as alkyl ester groups and aromatic ester groups, amino groups, amide groups, cyano groups, ether groups, acyl groups, silyl ether groups, and thioether groups. Can be mentioned. Among these, a carboxyl group, a carbonyl group, a hydroxyl group, and an ester group are preferable.
  • the polar group-containing adhesive is preferably an aqueous pressure-sensitive adhesive or an aqueous adhesive. Examples of suitable polar group-containing adhesives used for adhering a specific resin film include an aqueous dispersion of an acrylate ester polymer.
  • the acrylic ester polymer constituting the polar group-containing adhesive can be obtained by polymerizing a monomer composition containing an acrylic ester and a polar group-containing monomer. It can.
  • the acrylate ester include ethyl acrylate, propyl acrylate, cyclohexyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate.
  • polar groups of the polar group-containing monomer include halogen atoms and halogen atom-containing groups, carboxyl groups, carbonyl groups, hydroxyl groups, ester groups such as alkyl ester groups and aromatic ester groups, amino groups, and amide groups.
  • the polar group-containing monomer include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, acrylic acid, and methacrylic acid.
  • the ratio of the acrylate ester used for the synthesis of the acrylate ester polymer and the polar group-containing monomer is 0% for the polar group-containing monomer with respect to 100 parts by weight of the acrylate ester polymer. The amount is preferably about 5 to 15 parts by weight.
  • a gen-based monomer such as dibutene benzene
  • An acrylic ester polymer obtained by polymerizing a composition containing an acrylate ester, a polar group-containing monomer, and a gen-based monomer can form a high-strength adhesive layer.
  • the amount of the gen-based monomer used is preferably 0 to 10 parts by weight with respect to 100 parts by weight of the acrylate polymer. If the amount of gen monomer used exceeds 10 parts by weight, Will harden the adhesive layer.
  • Examples of a polymerization method for obtaining an acrylate polymer include an emulsion polymerization method, a suspension polymerization method, and a solution polymerization method.
  • a non-polar solvent such as toluene or xylene
  • the molecular weight of the acrylate polymer constituting the polar group-containing adhesive is that the polystyrene-equivalent number average molecular weight (Mn) measured by GPC analysis is 5,000 to 500,000.
  • Force S preferably 10,000 to 200,000
  • weight average molecular weight (Mw) force 15,000 to 1,000,000 force S preferably, more preferably 20,000 to 500
  • MwZMn is preferably 1.2 to 5, and more preferably 1.4 to 3.6.
  • a crosslinking agent such as isocyanate and butylated melamine, an ultraviolet absorber and the like can be added.
  • the addition of the crosslinking agent to the polar group-containing adhesive is usually performed immediately before the polar group-containing adhesive is applied.
  • the polarizing plate comprises a retardation film obtained from a norbornene-based resin film cover on one side and Z or the other side of a polarizer that has power, such as a PVA-type film, and a polar group-containing adhesive. It is possible to manufacture by sticking together, heating and pressure-bonding, and bonding (compositing) the polarizer and the retardation film.
  • the retardation film is stuck on at least one surface of the polarizer so that the absorption axis of the polarizer and the optical axis of the retardation film are perpendicular to each other.
  • the retardation film obtained by the production method of the present invention has an optical axis in the transverse direction and is usually obtained as a film roll, and therefore is a so-called polarizer film roll having an absorption axis in the longitudinal direction.
  • the polarizing plate can be produced by aligning the longitudinal direction of the retardation film and the longitudinal direction of the polarizer having the absorption axis in the longitudinal direction and sticking both together.
  • a retardation film having an optical axis in the longitudinal direction was cut in accordance with the width of the polarizer.
  • the polarizing plates that are individually bonded can be continuously manufactured with the direction of the retardation film perpendicular to the absorption axis of the polarizer, and the manufacturing efficiency can be significantly improved.
  • the retardation film to be used is preferably used, the value of the NZ coefficient is as described above, usually 0.90-1.20, preferably ⁇ . It is 0. 95-1.10, and specially, 1.00-1.05.
  • the ⁇ coefficient By controlling the ⁇ coefficient within this range, the viewing angle characteristics when used in a liquid crystal display can be obtained satisfactorily.
  • the retardation film has reverse wavelength dispersibility and shows a larger retardation as a longer wavelength in the visible light region, it is suitable in a wide wavelength region.
  • a polarizing plate that gives a transmitted phase difference to the transmitted light can be obtained.
  • the polarizing plate obtained by the present invention is excellent in transparency, excellent in dimensional stability even in a high-temperature and high-humidity environment, and is thin and lightweight, and has high performance.
  • the sample was immersed in water at 23 ° C for 1 week, and the change in weight before and after immersion was measured.
  • HGM-2DP type haze meter
  • the luminance, viewing angle, and contrast ratio of the liquid crystal panel were measured in a dark room.
  • the sample was dissolved in methylene chloride, and the resulting solution was analyzed using gas chromatography (GC-7A, Shimadzu Corporation).
  • reaction Al hydrogenated polymer
  • a 1000 ml flask equipped with a dropping funnel was charged with 50.0 g (0.3242 mol) of 5 norbornene 2endo-3endo dimethanol, and the inside of the system was purged with nitrogen.
  • 225 ml (2. 7876 mol) of pyridine was added thereto, and the mixture was dissolved by stirring well with a stirrer.
  • 136.0 g (0.7133 mol) of p-toluenesulfuryl chloride previously dissolved in 180 ml of dehydrated THF (tetrahydrofuran) was kept at 0 ° C. or lower with an ice-cooled bath, and the mixture was not sufficiently stirred. Gradually dropped.
  • the above resin A1 is dissolved in toluene to a concentration of 30% (solution viscosity at room temperature is 30,000 mPa-s), and pentaerythrityl tetrakis [3- (3, 5- t-butyl 4-hydroxyphenyl) propionate] is added to 0.1 parts by weight with respect to 100 parts by weight of the polymer, and a metal fiber sintered filter made by Nippon Pole with a pore size of 5 ⁇ m is used. Filtration was performed while controlling the flow rate of the solution so that the pressure was within 0.4 MPa.
  • a PET film (100 / zm thick) with a surface treated with an acrylic acid-based INV EX lab coater installed in a Class 1000 clean room and hydrophilized with an acrylic acid (easy-to-adhesive) surface treatment.
  • the film was coated on Toray Industries, Ltd. Lumirror U94) so that the film thickness after drying was 100 m, followed by primary drying at 50 ° C and then secondary drying at 90 ° C.
  • the resin film peeled from the PET film was designated as (al-1).
  • the film obtained had a residual solvent content of 0.5% and a total light transmittance of 93%.
  • a 100 m thick resin film (B-1) was obtained in the same manner as in Production Example 1, except that resin B was used instead of resin A.
  • the residual solvent content of the obtained film was 0.5%, and the total light transmittance was 93%.
  • a 130-m thick resin film (C-1) was prepared in the same manner as in Production Example 1 except that the resin A was used in place of the resin A and was coated so that the thickness after drying was 130 m. Got.
  • the obtained solvent had a residual solvent amount of 0.5% and a total light transmittance of 93%.
  • the resin film A 1 (thickness 100 ⁇ , width direction 350 mm) obtained in Production Example 1 is 2.0 times in the width direction (TD).
  • the film was shrunk in the longitudinal direction (MD) by stretching the film scraping speed after stretching by 30% slower than the film discharging speed from the roll before stretching to obtain a retardation film.
  • the processing temperature during stretching was 185 ° C.
  • This retardation film was a 4 ⁇ plate with the optical axis in the width direction, and achieved optical characteristics with a coefficient of 1.05 and good appearance.
  • represents the wavelength of the transmitted light of the film
  • Re (l) represents the phase difference at the wavelength ⁇ ) of the retardation film.
  • the average value was ⁇ 4%.
  • Example 2 A retardation film was prepared in the same manner as in Example 1 except that the film used was the resin film B-1 obtained in Production Example 2 and the processing temperature during stretching was 150 ° C. The results are shown in Table 1.
  • This retardation film is a 4 ⁇ plate with an optical axis in the width direction, and has an optical coefficient of 1.00 t and an excellent appearance.
  • the dispersion of the value represented by Re ( ⁇ ) Z ⁇ of the retardation film was ⁇ 5% with respect to the average value in the entire range of wavelengths from 400 to 700 nm.
  • a retardation film was prepared in the same manner as in Example 1 except that the film used was changed to the resin film C 1 obtained in Production Example 3 and the processing temperature during stretching was changed to 189 ° C.
  • the results are shown in Table 1.
  • This retardation film was a 4 ⁇ plate with an optical axis in the width direction, and achieved optical characteristics with a coefficient of curvature of 1.00 and a good appearance.
  • the dispersion force of the value represented by Re () ⁇ ⁇ of the retardation film was within ⁇ 10% of the average value in the entire range of wavelengths from 400 to 700 nm.
  • the ratio of the phase difference Re (550) to the phase difference Re (700) at a wavelength of 700 nm, Re (700) ZRe (550) is 1.15. .
  • the film to be used is the resin film C-1 obtained in Production Example 3, and the film take-off speed after stretching is set to 3.0 times in the width direction (TD), and the film is removed from the roll before stretching.
  • a retardation film was prepared in the same manner as in Example 1 except that the film was shrunk in the longitudinal direction (MD) by making it 30% slower than the speed, and the processing temperature during stretching was 194 ° C. The results are shown in Table 1.
  • This retardation film was a 4 ⁇ plate with an optical axis in the width direction, and achieved an optical characteristic with a coefficient of 1.04 and a good appearance.
  • the value of Re (X) / X (where ⁇ represents the wavelength of the transmitted light of the film and Re (l) represents the phase difference at the wavelength ⁇ ) of the retardation film.
  • the variation power of the sample was within ⁇ 15% of the average value in the entire range of wavelengths from 400 to 700 nm.
  • Re (400) ZRe (550) is 0.67
  • Re (700) ZRe (550) is 1.08
  • the film to be used is the resin film C-1 obtained in Production Example 3, and the film take-off speed after stretching is set to 2.0 times in the width direction (TD), and the film is discharged from the roll before stretching.
  • a retardation film was prepared in the same manner as in Example 1 except that the film was shrunk in the longitudinal direction (MD) by making it 15% slower than the speed, and the processing temperature during stretching was 184 ° C. The results are shown in Table 1.
  • This retardation film was a 4 ⁇ plate with an optical axis in the width direction, and achieved optical characteristics with a coefficient of 1.20 and a good appearance. Further, the value of Re (X) / X (where ⁇ represents the wavelength of light transmitted through the film and Re (l) represents the phase difference at wavelength ⁇ ) of the retardation film.
  • the variation power of the sample was within ⁇ 10% of the average value in the entire range of wavelengths from 400 to 700 nm.
  • Re (400) ZRe (550) was 0.67
  • Re (700) ZRe (550) was 1.15, and it was found that it had reverse wavelength dispersion in the visible light region.
  • the film to be used is the resin film C-1 obtained in Production Example 3, and the film removal speed after stretching is set to 1.5% in the width direction (TD) while the film removal speed from the roll before stretching is adjusted.
  • a retardation film was prepared in the same manner as in Example 1 except that the film was shrunk in the longitudinal direction (MD) by making it 15% slower than the exit speed and the heating temperature during stretching was 181 ° C. The results are shown in Table 1. This retardation film was a 4 ⁇ plate with an optical axis in the width direction, and achieved an optical characteristic with a coefficient of 1.15 and a good appearance.
  • the dispersion of the value represented by Re (X) / X (where ⁇ represents the wavelength of the transmitted light of the film and Re (l) represents the phase difference at the wavelength ⁇ ) of the retardation film.
  • the force wavelength was within ⁇ 10% of the average value in the entire range of 400 to 700 nm.
  • Re (400) ZRe (550) was 0.66
  • Re (700) ZRe (550) was 1.15, and it was found that it had reverse wavelength dispersion in the visible light region.
  • reaction vessel was charged with 250 parts of distilled water, and the reaction vessel was charged with 90 parts of butyl acrylate, 8 parts of 2-hydroxyethyl methacrylate, 2 parts of dibutenebenzene, and potassium oleate. 1 part was added and dispersed by stirring with a stirring blade made of Teflon (registered trademark).
  • the acrylic ester polymer constituting the water-based pressure-sensitive adhesive obtained in this manner was used for the number average molecular weight (Mn) and weight average molecular weight (Mn) in terms of polystyrene by GPC method (solvent: tetrahydrofuran) ( Mw) was measured, Mn was 69, 000, Mw was 135,000, and the logarithmic viscosity measured in 30 ° C. Kuroguchi Form was 1.2 dlZg.
  • a film made of polybulualcohol (hereinafter also referred to as “PVA”) is dyed in a 30 ° C. aqueous solution having an iodine concentration of 0.03 wt% and a potassium iodide concentration of 0.5 wt%. After pre-stretching at a stretch ratio of 3 times, it was further stretched in a 55 ° C crosslinking bath of an aqueous solution having a boric acid concentration of 5% by weight and a potassium iodide concentration of 8% by weight, and further stretched at a stretch ratio of 2 times. And dried to obtain a polarizer.
  • PVA polybulualcohol
  • the retardation film obtained in Example 3 is rolled on one side of the polarizer so that the absorption axis of the polarizing plate and the optical axis existing in the width direction of the retardation film are perpendicular to each other.
  • the film is aligned, and both are attached to each other continuously using the above water-based adhesive, and a film made of triacetyl cellulose (hereinafter also referred to as “TAC”) is applied to the other surface of the PVA-based adhesive.
  • TAC triacetyl cellulose
  • the retardation film according to the present invention can be suitably used for polarizing plates and liquid crystal displays in various display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明の位相差フィルムの製造方法は、ノルボルネン系樹脂製フィルムを、フィルムロールの幅方向に1.5~5倍の範囲で延伸するとともに、フィルム長手方向に収縮させ、光軸がフィルムロールの幅方向にある位相差フィルムを得ることを特徴としている。  本発明によれば、透明性、寸法安定性、視野角特性に優れ、ガス透過性が低く、光軸が横方向にあり、面内の位相差のバラツキが少ないノルボルネン系樹脂製の位相差フィルムを製造する方法を提供することができる。また、本発明によれば、高性能の偏光板を簡便な方法で製造効率よく製造できる、偏光板の製造方法を提供することができる。

Description

明 細 書
位相差フィルムの製造方法、位相差フィルムおよびその用途
技術分野
[0001] 本発明は、ノルボルネン系榭脂からなり横方向に光軸を有する位相差フィルムの製 造方法、これにより得られる位相差フィルム、該位相差フィルムと偏光子からなる偏光 板、これらを用いてなる液晶表示装置に関する。また、本発明は、幅方向に光軸を有 する位相差フィルムのフィルムロール、これを用いた偏光板の製造方法に関する。 背景技術
[0002] 液晶ディスプレイは、液晶、液晶配向膜、透明電極、偏光フィルム、位相差フィルム 、集光シート、拡散フィルム、導光板、光反射シートなど多くのそれぞれの異なった機 能を有するフィルムやシートから構成されている。このフィルム、シート種が多いため、 組立工程が複雑であり、低コスト化に制約が生じており、また積層枚数が増えるにし たがい、光透過性が低下し画像が暗くなり、また各工程での歩留まり低下の問題が 発生するなどの理由から、使用枚数を減らしたい要望が強力つた。
[0003] 従来、液晶ディスプレイ用の偏光板としては、ポリビュルアルコール (PVA)系のフィ ルムにヨウ素や染料を付着させた偏光子の両側に、偏光子の耐久性や機械特性を 保っためにトリァセチルセルロース (TAC)力もなる保護フィルムが積層され、片側の 保護フィルムに接着剤層を介して位相差フィルムが接着されたものが知られている。 保護フィルムには、低複屈折性、耐熱性、低吸湿性、高機械強度、表面平滑性、粘 着剤や接着剤との密着性などの性能が要求されており、このうち、低複屈折性と表面 平滑性に優れて 、るキャスティング法で製造された TACフィルムが使用されて 、るが 、車内など高温高湿の厳しい環境下での使用が増えるにつれて、より高い防湿性、 ガスバリヤ一性、耐熱性、寸法安定性、密着性などの性状が求められてきていた。
[0004] また位相差フィルムは、鮮明な色彩と精細な画像を得るために、複屈折が全面に均 一であり、高温や高湿度なる厳しい環境下においても光学特性が変化しないことが 求められるものであり、通常ポリカーボネート(PC)力もなるフィルムを延伸、配向させ てなるフィルムが用いられている力 光弾性係数が約 9 X 10— 12 cm2 Zdyneと大きいた め、複屈折が大きくなりすぎること、不均一となること、組立時や環境変化に基づいて 生じた僅かな応力で複屈折が変化することなどの問題があった。また PCフィルムは、 表面硬度が小さ!/、ために、フィルム製造時やデバイス組立時に傷がつきやす ヽと ヽ う問題もあった。さらに TACフィルムや PCフィルムは接着性が必ずしも良好でなぐし たがって上記素材カゝらなる偏光フィルムの保護層と位相差フィルムが接着剤を介して 接着されてなる液晶ディスプレイを高温高湿などの厳しい環境下で使用すると偏光フ イルムの保護層と位相差フィルムとの間に水分が浸入したり、またフィルム同士が剥 れたりすることにより液晶ディスプレイの性能が劣化しやすいという問題があった。
[0005] このように、液晶ディスプレイに使用される偏光板は、用いられる素材そのものの特 性に帰因する問題点があるのみでなぐ構成する各層のフィルムそれぞれが要求さ れる機能を与えているため、液晶ディスプレイの薄型化、軽量ィ匕のニーズが強いにも かかわらずフィルム数を減らすことは困難であった。
[0006] このような問題を解決するものとして、本願出願人は、偏光板を構成する保護フィル ムの少なくとも一方力 位相差フィルムの機能をも有する熱可塑性ノルボルネン系榭 脂からなるフィルムである偏光板を提案して 、る(特許文献 1参照)。この技術によれ ば、位相差フィルムと保護フィルムとを一体ィ匕することで、接着工程および接着に起 因する信頼性の低下を減少させるとともに、用いるフィルム枚数の低減による薄型化 、軽量化が達成される。
[0007] ところで位相差フィルムは、成形したフィルムを延伸配向させることにより、位相差を 発現させて得られるものであり、縦延伸、横延伸、位相差を発現できる程度のニ軸延 伸などにより製造できることが知られて 、る。ノルボルネン系榭脂からなるフィルムで は、充分に位相差を発現させるために必要な延伸の程度が大きいため、横延伸した フィルムでは縦方向の長さが固定されていることに伴って厚さ方向の縮みが大きぐ 厚さと幅の屈折率が著しく異なるものにならざるを得ず、後述する NZ係数の値が 1付 近の位相差フィルムを得ることが困難であった。そのために、 NZ係数が 1付近の位相 差フィルムを液晶ディスプレイに視野角補償フィルムとして使用する場合には、実用 的には縦一軸延伸で得られたフィルム長手方向(MD方向)に光軸を有するフィルム を使用するより仕方が無力つた。 [0008] 垂直配向型 (VA方式)の液晶ディスプレイにお 、て、偏光子となる PVA系フィルム の吸収軸と、視野角補償のために使用する位相差フィルムの光軸とは、直行関係に ある必要があり、 PVA系フィルムの吸収軸はフィルムロールの縦方向(ロール長手方 向)にあるため、 NZ係数が 1付近のフィルム長手方向に光軸を有する従来の縦一軸 延伸で得た位相差フィルムを用いる場合、各フィルムを枚葉状態に切断して吸収軸 と光軸とを直行させる向きとして、個々に張り合わせて製造されている。
[0009] このような状況において、 NZ係数が 1付近の位相差フィルムの光軸が横方向にあ れば、偏光子となる PVA系フィルムと位相差フィルムとの接着を、ロールのまま連続 的に行うことができるため、ノルボルネン系榭脂から得られ、適切な位相差を示し、し カゝも NZ係数が 1付近で横方向に光軸を有する位相差フィルムの出現が望まれて!/、 る。
[0010] 横方向に光軸を有する位相差フィルムとしては、横一軸延伸法で延伸処理して製 造するポリサルフォン系フィルムが知られて 、るが、この方法で得られる位相差フィル ムは、横方向に延伸し、縦方向に変化はなぐ厚み方向にのみ収縮したフィルムであ るため、 NZ係数が 1付近とはならず、加えてポリサルフォン系榭脂の光弾性定数の 大きさから、視野角特性が充分ではな 、という問題があった。
[0011] 引用文献 2には、横一軸延伸で得たポリサルフォン系位相差フィルムの視野角特性 を向上させる方法として、横一軸延伸後にフィルムの縦方向を熱収縮させる方法が 記載されている。し力しながら、熱収縮の特性は榭脂によって異なるため、この技術 をポリサルフォン系以外の位相差フィルムの製造に利用して、全面で位相差が均一 なフィルムを得るのは困難である上、ノルボルネン系榭脂製フィルムにおいては、所 望の位相差を発現させるために必要な延伸倍率が高 、ことから、それに見合う縦方 向の高度な熱収縮を全面で均一に行うことはさらに困難であるという問題があり、この ような方法の適用はできなかった。
[0012] また、一般的に位相差フィルムは、延伸配向により、透過光に位相差(=複屈折 X 光路長)を与える機能が付与されているが、透過光の波長が長波長になるにつれて 透過光の位相差(=複屈折 X光路長)の絶対値は小さくなる傾向を有するため、液 晶ディスプレイで使用される可視光領域全域 (400〜700nm)において、たとえば lZ 4波長などの特定の位相差を透過光に与えることは非常に困難であった。
[0013] しカゝしながら現在では、反射型や半透過型の液晶ディスプレイや、光ディスク用ピッ クアップなどの用途においては、実際に、可視光領域全域 (400〜700nm)などの広 範な波長領域にぉ 、て、 1Z4波長の位相差を与える位相差フィルムが必要とされて いる。
[0014] このような位相差を、従来の位相差フィルムで達成するには、フィルムを積層化させ る必要があった力 フィルムを積層した位相差フィルムでは、フィルムの貼り合わせ、 切り出し、接着など、製造工程が複雑であるとともに、得られる位相差フィルムの厚み を低減することが困難であるという問題や、液晶ディスプレイに使用したときに観察方 向によってフィルムの見かけ上の貼合角度が変化してしま 、視野角特性が低下して しまうという問題がある。
[0015] このためさらに、単層で広範な波長領域において所望の位相差を有する位相差フ イルムを製造する方法、該位相差フィルムを有する高品質な偏光板を簡便に製造す る方法の出現が望まれて 、る。
特許文献 1 :特開平 8—43812号公報
特許文献 2:特開平 6— 51116号公報
発明の開示
発明が解決しょうとする課題
[0016] 本発明は、光軸が横方向にあり、視野角特性に優れ、面内の位相差のバラツキが 少な ゾルボルネン系榭脂製の位相差フィルムを製造する方法を提供すること、なら びに該製造方法により得られた位相差フィルム、フィルムロールを提供することを課 題としている。また、本発明は、該位相差フィルムと偏光子からなる偏光板、これらを 用いてなる液晶表示装置を提供することを課題としている。また、本発明は、本発明 に係る位相差フィルムあるいはフィルムロールを用いて、透明性に優れ、高温高湿環 境下にお 1、ても寸法安定性に優れ、高性能の偏光板を簡便な方法で製造効率よく 製造する方法を提供することを課題として 、る。
課題を解決するための手段
[0017] 本発明の位相差フィルムの製造方法は、ノルボルネン系榭脂製フィルムを、フィル ムロールの幅方向に 1. 5〜5倍の範囲で延伸するとともに、フィルム長手方向に収縮 させ、光軸がフィルムロールの幅方向にある位相差フィルムを得ることを特徴として ヽ る。
[0018] このような本発明の位相差フィルムの製造方法においては、ノルボルネン系榭脂製 フィルムの延伸を、同時二軸延伸機を用いて行い、テンターを用いてフィルムをフィ ルムロールの幅方向に延伸しつつ、延伸後のフィルム卷取り速度を、延伸前のロー ルからのフィルム排出速度よりも 15%以上遅くすることが好ましい。
[0019] 本発明の位相差フィルムの製造方法では、位相差フィルムが 1Z4 λ板であること が好ましい。
[0020] 本発明の位相差フィルムの製造方法では、位相差フィルムの、 Re ( λ ) Ζ λ (ここで 、 λは当該フィルムの透過光の波長を表し、 Re ( )は波長 λにおける位相差を表す 。)で表される値のバラツキ力 波長 400〜700nmのすベての範囲において、その 平均値に対して ± 20%の範囲内にあることが好ましい。
[0021] 本発明の位相差フィルムの製造方法では、位相差フィルムの、下記式で表される N Z係数力 0. 90-1. 20の範囲内にあることが好ましい。
[0022] NZ = (nx nz) / (nx ny)
(式中、 nxは位相差板の X軸方向の屈折率、 nyは位相差板の Y軸方向の屈折率、 n zは位相差板の Z軸方向の屈折率を示す。 )
本発明の位相差フィルムの製造方法では、位相差フィルムが可視光領域にお!、て 逆波長分散性を有することが好まし 、。
[0023] 本発明の位相差フィルムの製造方法では、位相差フィルム力 波長 550nmにおけ る位相差 Re (550)と、波長 400nmにおける位相差 Re (400)との比 Re (400) /Re (550)力 i . 0〜0. 1の範囲にあり、波長 550nmにおける位ネ目差 Re (550)と、波長 7 OOnmにおける位ネ目差尺6 (700)との_1:匕1^6 (700)
Figure imgf000006_0001
(550)カ^ 1. 5〜1. 0の範囲 にあることが好ましい。
[0024] 本発明の位相差フィルムの製造方法では、ノルボルネン系榭脂製フィルム力 下記 式 (I)で表される構造単位 (I)を有するノルボルネン系榭脂を製膜してなるフィルムで あることが好ましい。 [0025] [化 1]
Figure imgf000007_0001
[0026] (式 (I)中、 mおよび nは、それぞれ独立に 0〜2の整数であり、
Xは、式:—CH=CH で表される基、または、式: CH CH—で表される基であり、
2 2
Figure imgf000007_0002
R5、 R9は、それぞれ独立に、水素原子;ハロ ゲン原子;酸素原子、窒素原子、ィォゥ原子もしくはケィ素原子を含む連結基を有し て!、てもよ!/、置換もしくは非置換の炭素原子数 1〜30の炭化水素基;および極性基 よりなる群力 選ばれる原子もしくは基を表し、
s、 t、 uは、それぞれ独立に 0〜3の整数である。 ) o
[0027] 本発明の位相差フィルムは、前記本発明の位相差フィルムの製造方法により得ら れたことを特徴としている。
[0028] 本発明の偏光板は、前記本発明の製造方法で得た位相差フィルムを、偏光子の少 なくとも片面に貼付してなることを特徴としている。
[0029] 本発明のフィルムロールは、ノルボルネン系榭脂からなり、前記 NZ係数が 0. 90〜
1. 20である位相差フィルムのロールであって、フィルムロールの幅方向に光軸を有 し、逆波長分散性を有することを特徴としている。
[0030] 本発明の偏光板の製造方法は、前記フィルムロールの長手方向と、縦方向に吸収 軸を有する偏光子の長手方向とを揃え、両者を連続的に貼付することを特徴としてい る。本発明の偏光板は、このような本発明の偏光板の製造方法により得られたことを 特徴としている。
[0031] 本発明の液晶表示装置は、前記本発明の位相差フィルムまたは前記本発明の偏 光板を用いてなることを特徴として 、る。
発明の効果
[0032] 本発明によれば、透明性に優れ、ガス透過性が低ぐ寸法安定性に優れ、光軸が 横方向にあり、視野角特性に優れ、面内の位相差のバラツキが少ないノルボルネン 系榭脂製の位相差フィルムを製造する方法を提供することができる。特に、本発明に おいては、フィルム面内の光軸がフィルム幅方向にあって NZ係数が 1付近のロール 状の位相差フィルムを得ることができ、更に、位相差フィルムが可視光領域において 逆波長分散性を有し、可視光領域の全てにぉ ヽて好ま ヽ位相差を透過光に与え る位相差フィルムを製造できる、位相差フィルムの製造方法ならびに位相差フィルム を提供することができる。
[0033] また、本発明によれば、本発明に係る位相差フィルムを用いることによって、透明性 に優れ、高温高湿環境下においても寸法安定性に優れ、高性能の偏光板を簡便な 方法で製造効率よく製造できる、偏光板の製造方法を提供することができ、さらに、 該位相差フィルムまたは偏光板を用いた液晶表示装置を提供することができる。 発明を実施するための最良の形態
[0034] 以下、本発明について具体的に説明する。
[0035] 本発明に係る位相差フィルムの製造方法では、ノルボルネン系榭脂製フィルムを、 フィルムロールの幅方向に 1. 5〜5倍の範囲で延伸するとともに、フィルム長手方向 に収縮させて、光軸がフィルムロールの幅方向にある位相差フィルムを製造する。
[0036] 本発明で用いる延伸前のノルボルネン系榭脂製フィルムは、熱可塑性ノルボルネ ン系榭脂を製膜することにより得ることができる。また、本発明に係るフィルムロールは 、ノルボルネン系榭脂からなる。
<ノルボルネン系榭脂 >
本発明に係るノルボルネン系榭脂としては、ノルボルネン骨格を有する化合物を含 む単量体を開環(共)重合し、必要に応じて水素添加して得られる榭脂、ノルボルネ ン骨格を有する化合物を含む単量体を付加 (共)重合して得られる榭脂を!ゝずれも 用いることができる。本発明では、このうち、ノルボルネン骨格を有する化合物を含む 単量体を開環(共)重合し、必要に応じて水素添加して得られる榭脂が好ましく用い られる。
,単量体
本発明に係るノルボルネン系榭脂は、ノルボルネン骨格を有する化合物を含む単 量体から得られる。
[0037] ノルボルネン骨格を有する化合物としては、特に限定されるものではないが、たとえ ば、下記式(lm)で表される化合物が挙げられる。
[0038] [化 2]
Figure imgf000009_0001
… (l m)
[0039] 式(lm)中、 mおよび 〜八4は、 mは 0、 1または 2であり、 〜八4はそれぞれ独立 に水素原子;ハロゲン原子;酸素、窒素、ィォゥ若しくはケィ素を含む連結基を有して V、てもよ 、置換又は非置換の炭素原子数 1〜30、好ましくは 1〜10の炭化水素基; または極性基を表す。好ましくは、 ^〜A4の少なくとも 1つが極性基であり、かつその 他の ^〜A4の少なくとも 1つが炭素原子数 1〜: LOの炭化水素基である。
[0040] 式(lm)において、極性基としては、たとえば、水酸基、炭素原子数 1〜10のアルコ キシ基、カルボ-ルォキシ基、アルコキシカルボ-ル基、ァリーロキシカルボ-ル基、 シァノ基、アミド基、イミド基、トリオルガノシロキシ基、トリオルガノシリル基、アミノ基、 ァシル基、アルコキシシリル基、スルホ-ル基、およびカルボキシル基などが挙げら れる。さらに具体的には、上記アルコキシ基としては、例えばメトキシ基、エトキシ基な どが挙げられ;カルボニルォキシ基としては、例えばァセトキシ基、プロピオ-ルォキ シ基などのアルキルカルボ-ルォキシ基、およびベンゾィルォキシ基などのァリール カルボ-ルォキシ基が挙げられ;アルコキシカルボ-ル基としては、例えばメトキシカ ルボニル基、エトキシカルボ-ル基などが挙げられ;ァリーロキシカルボ-ル基として は、例えばフエノキシカルボ-ル基、ナフチルォキシカルボ-ル基、フルォレ -ルォ キシカルボ-ル基、ビフエ-リルォキシカルボ-ル基などが挙げられ;トリオルガノシロ キシ基としては例えばトリメチルシロキシ基、トリェチルシロキシ基などが挙げられ;トリ オルガノシリル基としてはトリメチルシリル基、トリェチルシリル基などが挙げられ;アミ ノ基としては第 1級ァミノ基が挙げられ、アルコキシシリル基としては、例えばトリメトキ シシリル基、トリエトキシシリル基などが挙げられる。
[0041] ハロゲン原子としては、フッ素原子、塩素原子および臭素原子が挙げられる。
[0042] 炭素原子数 1〜: LOの炭化水素基としては、例えば、メチル基、ェチル基、プロピル 基などのアルキル基;シクロペンチル基、シクロへキシル基などのシクロアルキル基; ビュル基、ァリル基、プロぺニル基などのァルケ-ル基などが挙げられる。
[0043] また、置換または非置換の炭化水素基は直接環構造に結合して 、てもよ 、し、ある いは連結基 (linkage)を介して結合していてもよい。連結基としては、例えば炭素原子 数 1〜10の 2価の炭化水素基(例えば、一(CH ) (式中、 mは 1〜10の整数)で
2 m
表されるアルキレン基);酸素、窒素、ィォゥまたはケィ素を含む連結基 (例えば、カル ボ-ル基 (—CO— )、ォキシカルボ-ル基 (—O (CO)―)、スルホン基 (—SO―)、ェ
2 一テル結合 (一 O— )、チォエーテル結合 (一 S―)、イミノ基 (― NH―)、アミド結合 (一 NHCO- , ― CONH―)、シロキサン結合 (― OSi(R ) - (式中、 Rはメチル、ェチル
2
などのアルキル基))などが挙げられ、これらの複数を含む連結基であってもよい。
[0044] 式(lm)で表される環状ォレフィン系化合物としては、具体的には、例えば、ビシク 口 [2. 2. 1]ヘプトー 2 ェン、テトラシクロ [4. 4. 0. I2'5. 17。]ドデ力一 3 ェン、へ キサシクロ [6. 6. 1. I3'6. I10'13. O2'7. 09'"]ヘプトー 4 ェン 5 ェチル一ビシクロ [2 . 2. 1]ヘプトー 2 ェン、 5—メチル一ビシクロ [2. 2. 1]ヘプトー 2 ェン、 5—メチ ルー 5—メトキシカルボ二ルービシクロ [2. 2. 1]ヘプトー 2 ェン、 5—メチル 5— フエノキシカルボ-ルービシクロ [2. 2. 1]ヘプトー 2 ェン、 5—メチル 6—メトキシ カルボ-ルービシクロ [2. 2. 1]ヘプトー 2 ェン、 5—メチル 6 フエノキシカルボ 二ルービシクロ [2. 2. 1]ヘプトー 2 ェン、 8—メチルー 8—メトキシカルボニルテトラ シクロ [4. 4. 0. I2'5 . 17'ω]— 3 ドデセン、 8—メチル 8 エトキシカルボ-ルテト ラシクロ [4. 4. 0. I2'5 . 17'1()]— 3 ドデセン、 8—メチル 8— n—プロポキシカルボ 二ルーテトラシクロ [4. 4. 0. I2'5. l7'10]ドデ力一 3 ェン、 8—メチル 8—イソプロボ キシカルボ-ルーテトラシクロ [4. 4. 0. I2'5. 1"°]ドデ力一 3 ェン、 8—メチル 8 —n—ブトキシカルボ-ルーテトラシクロ [4. 4. 0. I2'5. l7'10]ドデ力一 3 ェン、 8—メ チル一 8 フエノキシカルボ-ルーテトラシクロ [4. 4. 0. I2'5. 1"°]ドデ力一 3 ェン 等を挙げることができる力 S、これらの例示に限定されるものではない。
[0045] 本発明では、前記式(lm)で表される化合物における極性基が、下記式 (a)で表さ れる基であることが好ましい。すなわち、前記式(lm)で表される化合物は、 ^〜A4 の少なくとも一つが、下記式 (a)で表される基であることが好ま U、。
[0046] (CH ) COOA' · ·· (&)
2 p
(式(a)中、 pは 0または 1〜5の整数であり、 A'は炭素数 1〜15の炭化水素基である o )
上記式 (a)において、 nの値が小さいものほど、また、 A'が炭素数の小さいほど、得 られる共重合体のガラス転移温度が高くなり耐熱性が向上するので好ましい。すなわ ち、 nは通常 0または 1〜5の整数である力 好ましくは 0または 1であり、また、 A'は通 常炭素数 1〜15の炭化水素基であるが、好ましくは炭素数 1〜3のアルキル基である のが望まし 、。このようなカルボン酸エステル基を有するノルボルネン系化合物として 、特に 8-メチル -8-メトキシカルボ-ルテトラシクロ〔4. 4. 0. I2'5. 1"°〕— 3 ドデセ ンが、その製造方法が容易な点で好ましい。なお、前記 A'で表される炭化水素基と しては、例えばメチル基、ェチル基、プロピル基等のアルキル基、フエ-ル基等のァリ ール基、ベンジル基等のァラルキル基があげられ、好ましくは、メチル基、ェチル基、 フ ニル基であり、特に好ましくは、メチル基である。 pは 0以上の整数であり、特に好 ましくは 0である。
[0047] さらに、上記式 (lm)において、上記式 (a)で表される極性基が結合した炭素原子に さらにアルキル基が結合している場合には、得られる共重合体の耐熱性と吸水 (湿) 性のバランスを図る上で好ましい。当該アルキル基の炭素数は 1〜5であることが好ま しぐさらに好ましくは 1〜2、特に好ましくは 1である。
[0048] 上記式(lm)中、 、 A2、 A3、 A4が、互いに結合してヘテロ原子を有してもよい単 環または多環の基を形成する場合、形成される単環または多環は、芳香環でもよい し、非芳香環でもよい。式(lm)中、 A A2、 A3、 A4が、互いに結合して環構造を形 成した場合の例を以下に部分的に示す。
[0049] [化 3]
Figure imgf000012_0001
[0052] 式(2m)中、 Α5〜Αωは各々独立に水素原子;ハロゲン原子;酸素、窒素、ィォゥ若 しくはケィ素を含む連結基を有していてもよい置換又は非置換の炭素原子数 1〜10 の炭化水素基;または極性基を表す。
[0053] 上記式(2m)において、ハロゲン原子、炭化水素基および極性基は、式(lm)に関 して述べたものと同様である。
[0054] このような式(2m)で表される環状ォレフィン系化合物としては、具体的には、たとえ ば、
トリシクロ [4. 3. 0. I2'5]デカー 3—ェン、
7—メチル一トリシクロ [4. 3. 0. I2'5]デカ一 3—ェン、
8—メチル一トリシクロ [4. 3. 0. I2'5]デカ一 3—ェン、 7 ェチル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7—イソプロピル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7 シクロへキシル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7 フエ-ル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7, 7 ジメチル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7, 8 ジメチル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7—メチル 8 ェチル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7—メトキシカルボ-ル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
8—メトキシカルボ-ル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7 フエノキシカルボ-ル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7—メチル 7—メトキシカルボ-ル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
8—メチル 8—メトキシカルボ-ル一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7 フルォロ一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
8 フルォロ一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7 クロロートリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
8 クロロートリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7, 7 ジフルォロ一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7, 8 ジフルォロ一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン、
7, 8 ジクロロ一トリシクロ [4. 3. 0. I2'5]デカ一 3 ェン
等を挙げることができる力 S、これらの例示に限定されるものではない。
[0055] また、ノルボルネン骨格を有する化合物としては、上記式(2m)で表される化合物 に代えて、下記式(2m' )で表される化合物を用い、(共)重合した後に必要に応じて 五員環を水素添加してもよ ヽ。
[0056] [化 5]
Figure imgf000014_0001
[0057] このような環状ォレフィン系単量体(2m' )としては、具体的には、たとえば、
トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン(DCP)、
7—メチル一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
8—メチル一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
9—メチル一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
7, 8 ジメチル一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
7 ェチル一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
7 シクロへキシル一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
7 フエ-ル一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
7— (4 ビフエ-ル)一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン
7—メトキシカルボ-ル一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
7 フエノキシカルボ-ル一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
7—メチル 7—メトキシカルボ-ル一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
7 フルォロ一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
7, 8 ジフルォロ一トリシクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェン、
7 クロロートリシクロ [4. 3. 0. I2'5]デカー 3, 7 ジェン
などが挙げられるが、これらの例示に限定されるものではない。これらのうちでは、トリ シクロ [4. 3. 0. I2'5]デカ一 3, 7 ジェンが特に好ましく用いられる。
[0058] さらに本発明では、単量体として用いられるノルボルネン骨格を有する化合物とし て、下記式 (Im)で表される化合物が好ましく挙げられる。
[0059] [化 6]
Figure imgf000015_0001
… (I m)
[0060] (式(Im)中、 mおよび nは、それぞれ独立に 0〜2の整数であり、
Figure imgf000015_0002
R9は、それぞれ独立に、水素原子;ハロゲン原子; 酸素原子、窒素原子、ィォゥ原子もしくはケィ素原子を含む連結基を有していてもよ い置換もしくは非置換の炭素原子数 1〜30の炭化水素基;および極性基よりなる群 力 選ばれる原子もしくは基を表し、
s、 t、 uは、それぞれ独立に 0〜3の整数である。 )
ここで、ハロゲン原子としては、フッ素原子、塩素原子および臭素原子が挙げられる
[0061] 炭素原子数 1〜30の炭化水素基としては、たとえば、メチル基、ェチル基、プロピ ル基等のアルキル基;シクロペンチル基、シクロへキシル基等のシクロアルキル基;ビ -ル基、ァリル基等のァルケ-ル基;ェチリデン基、プロピリデン基等のアルキリデン 基;フエニル基、ナフチル基、アントラセニル基等の芳香族基等が挙げられる。これら の炭化水素基は置換されていてもよぐ置換基としてはたとえばフッ素、塩素、臭素 等のハロゲン原子、フエ-ルスルホ-ル基、シァノ基等が挙げられる。
[0062] また、上記の置換または非置換の炭化水素基は、直接環構造に結合して 、てもよ いし、あるいは連結基 (linkage)を介して結合していてもよい。連結基としては、たとえ ば炭素原子数 1〜: LOの 2価の炭化水素基 (たとえば、 (CH )―、 qは 1〜: LOの整数
2 q
で表わされるアルキレン基);酸素原子、窒素原子、ィォゥ原子またはケィ素原子を含 む連結基(たとえば、カルボ-ル基( CO )、カルボ-ルォキシ基( COO )、ス ルホ -ル基(一 SO—)、スルホ-ルエステル基(一 SO— 0—)、エーテル結合( 0
2 2
一)、チォエーテル結合 (一 S—)、イミノ基 (一 NH—)、アミド結合 (一 NHCO—)、シロ キサン結合(一Si(R )0- (ここで、 Rはメチル、ェチル等のアルキル基));あるいはこ
2
れらの 2種以上が組み合わさって連なったものが挙げられる。
[0063] 極性基としては、たとえば水酸基、炭素原子数 1〜10のアルコキシ基、カルボニル ォキシ基、アルコキシカルボ-ル基、ァリーロキシカルボ-ル基、シァノ基、アミド基、 イミド基、トリオルガノシロキシ基、トリオルガノシリル基、アミノ基、ァシル基、アルコキ シシリル基、スルホニル基、およびカルボキシル基などが挙げられる。さらに具体的に は、上記アルコキシ基としては、たとえばメトキシ基、エトキシ基等が挙げられ;カルボ -ルォキシ基としては、たとえばァセトキシ基、プロピオニルォキシ基等のアルキル力 ルボニルォキシ基、及びベンゾィルォキシ基等のァリールカルボ-ルォキシ基が挙 げられ;アルコキシカルボ-ル基としては、たとえばメトキシカルボ-ル基、エトキシカ ルポニル基等が挙げられ;ァリーロキシカルボニル基としては、たとえばフエノキシ力 ルボニル基、ナフチルォキシカルボ-ル基、フルォレ -ルォキシカルボ-ル基、ビフ ェ-リルォキシカルボ-ル基等が挙げられ;トリオルガノシロキシ基としてはたとえばト リメチルシロキシ基、トリェチルシロキシ基等が挙げられ;トリオルガノシリル基としては トリメチルシリル基、トリェチルシリル基等が挙げられ;アミノ基としては第 1級ァミノ基 等が挙げられ、アルコキシシリル基としてはたとえばトリメトキシシリル基、トリエトキシ シリル基等が挙げられる。
[0064] なお、式 (Im)中の 4個の R8および R9は、それぞれ独立した原子もしくは基である。
[0065] 上記のノルボルネン系化合物 (Im)にお ヽてスピロ芳香族構造とシクロ環構造が連 結する部位の立体異性体としては、 exo体と endo体が存在する力 これらの組成は特 に限定
されるものではなぐ所望の特性に応じて適宜選択すれば良い。特に、開環 (共)重 合及び水素添カ卩によりノルボルネン系榭脂を製造する場合、ノルボルネン系化合物( Im)は「負の複屈折性」を (共)重合体に与えるので、「正の複屈折性」を (共)重合体 に与えるその他のノルボルネン系単量体と適宜共重合させる事により、複屈折を適 宜所望のものとすることもできる。なお、ここでいぅ複屈折性の正'負とは、フィルムを 一軸延伸した際に発生する屈折率変化力 求められ、延伸方向の屈折率が延伸方 向に対して垂直方向の屈折率より大きくなる性質を「正の複屈折性」、逆に延伸方向 の屈折率が小さくなる性質を「負の複屈折性」と定義する。
[0066] また、芳香環上の置換基に関しては、大きな分極を有する官能基 (例えばエステル 基、アルコキシ基等)を導入すると、複屈折の波長依存性を大きくすることができる。
[0067] 上記ノルボルネン系単量体(Im)としては、たとえば、無水マレイン酸とシクロペンタ ジェンの Diels-Alder反応物である 5 ノルボルネン 2, 3 ジカルボン酸無水物を 還元させて得られるノルボルネンジメタノールを適切な脱離基(トシル基、ハロゲン原 子等)で修飾した後、フルオレン誘導体ァ-オンと反応させて合成されるスピロ化合 物等が挙げられる。本発明で好ましく用いられるノルボルネン系単量体 (Im)としては 、より具体的には、以下の化合物を例示することができる。
[0068] ノノレボノレネン系単量体 (Im)の具体例
• m = n = 0で表されるノルボルネン系単量体(Im)の例
[0069] [化 7]
Figure imgf000017_0001
[0072] (2)スピロ [2, 7 ジフルオロフルオレン一 9, 8'—トリシクロ [4.3.0.12 5] [3]デセン] [0073] [化 9]
Figure imgf000018_0001
[0074] (3)スピロ [2, 7—ジクロロフルオレン一 9, 8'—トリシクロ [4.3.0.12 5] [3]デセン] [0075] [化 10]
Figure imgf000018_0002
[0076] (4)スピロ [2,7—ジブロモフルオレン一9, 8'—トリシクロ [4.3.0.12 5] [3]デセン] [0077] [化 11]
Figure imgf000018_0003
[0078] (5)スピロ [2—メトキシフルオレン一 9, 8'—トリシクロ [4.3.0.12·5] [3]デセン]、
[0079] [化 12]
Figure imgf000019_0001
[0080] (6)スピロ [2—エトキシフルオレン一 9, 8'—トリシクロ [4.3.0.12·5] [3]デセン] [0081] [化 13]
Figure imgf000019_0002
[0082] (7)スピロ [2- フエノキシフルオレンー9, 8'—トリシクロ [4.3.0.125][3]デセン] [0083] [化 14]
Figure imgf000019_0003
[0084] (8)スピロ [2J—ジメトキシフルオレン一 9, 8'—トリシクロ [4.3.0.1 ][3]デセン]
[0085] [化 15]
Figure imgf000020_0001
[0086] (9)スピロ [2, 7 ジエトキシフルオレン- -9, 8' トリシクロ [4.3.0.12'5] [3]デセン] [0087] [化 16]
Figure imgf000020_0002
[0090] (11)スピロ [3, 6 ジメトキシフノレオレン 9, 8' トリシクロ [4.3.0.12·5] [3]デセン]、 [0091] [化 18]
Figure imgf000021_0001
[0092] (12)スピロ [9,10—ジヒドロアントラセン一 9, 8'—トリシクロ [4.3.0.12·5] [3]デセン] [0093] [化 19]
Figure imgf000021_0002
[0094] (I3)スピロ [フルオレン— 9, 8'— [2]メチルトリシクロ [4.3.0.12 5] [3]デセン]
[0095] [化 20]
Figure imgf000021_0003
[0096] (14)スピロ [フルオレン一9, 8'— [10]メチルトリシクロ [4.3.0.12 5] [3]デセン]
<m= 1、 n=0で表わされるノルボルネン誘導体の例 >
[0097] [化 21]
Figure imgf000022_0001
[0098] (15)スピロ [フルオレンー9, 11' ペンタシクロ [6.5.1.13·6.02'7.0913][4]ペンタデセン]
[0099] [化 22]
Figure imgf000022_0002
[0100] (16)スピロ [2, 7 ジフルオロフルオレン一 9, 11' ペンタシクロ [6.5.1.13·6.027.0913][
4]ペンタデセン]、
[0101] [化 23]
Figure imgf000022_0003
[0102] (17)スピロ [2, 7 ジクロロフ/レオレン 9, 11' ペンタシクロ [6.5.1.13·6 .02 7.09 13] [4] ペンタデセン]、
[0103] [化 24]
Figure imgf000023_0001
[0104] (18)スピロ [2,7 ジブロモフルオレン一 9, 11,一ペンタシクロ [6.5.1.13·6 .02'7.09 13][4] ペンタデセン]、
[0105] [化 25]
Figure imgf000023_0002
[0106] (19)スピロ [2—メトキシフノレオレン 9, 11' ンタシクロ [6.5.1.13·6.02·7.09 13] [4]ペン タデセン]、
[0107] [化 26]
Figure imgf000024_0001
[0108] (20)スピロ [2—エトキシフルオレン一 9, 11'—ペンタシクロ [6.5.1.13·6.02·7.0913][4]ペン タデセン]、
[0109] [化 27]
Figure imgf000024_0002
[0110] (21)スピロ [2—フエノキシフルオレン一 9, 11'—ペンタシクロ [6.5.1.13·6.027.0913][4] ペンタデセン]、
[0111] [化 28]
Figure imgf000025_0001
[0112] (22)スピロ [2,7- ジメトキシフルオレン一 9, 1 —ペンタシクロ [6.5.1.13·6 .02'7.09 13] [4] ペンタデセン]、
[0113] [化 29]
Figure imgf000025_0002
[0114] (23)スピロ [2,7—ジェトキシフルオレン一 9, 11'—ペンタシクロ [6.5.1.13·6 .02'7.09'13] [4
]ペンタデセン]、
[0115] [化 30]
Figure imgf000026_0001
[0116] (24)スピロ [2, 7 ジフエノキシフノレオレン 9, 11' ペンタシクロ [6.5.1.1 .0 .0 ]
[4]ペンタデセン]、
[0117] [化 31]
Figure imgf000026_0002
[0118] (25)スピロ [3, 6 ジメトキシフルオレン一 9, 11' ペンタシクロ [6.5.1. Γ6.02 0913][4] ペンタデセン]、
[0119] [化 32]
Figure imgf000027_0001
[0120] (26)スピロ [9,10—ジヒドロアントラセン一 9, 11'—ペンタシクロ [6.5.1.13·6.027.0913][4] ペンタデセン]。
•m= 1、 n= 1で表されるノルボルネン系単量体(Im)の例
[0121] [化 33]
Figure imgf000027_0002
[0122] (27)スピロ [フルオレン一 9, 13'—へキサシクロ [7.7.0.136.11()16.027.01115] [4]ォクタデ セン]
[0123] [化 34]
Figure imgf000028_0001
[0126] (29)スピロ [2,7—ジクロロフルオレン一 9, 13'—へキサシクロ [? 。.^6 116.。2.7.。1115]
[4]ォクタデセン]、
[0127] [化 36]
Figure imgf000029_0001
[0128] (30)スピロ [2, 7—ジブロモフルオレン一 9, 13'—へキサシクロ [?.?.。 36 116.。27.。1115
] [4]ォクタデセン]、
[0129] [化 37]
Figure imgf000029_0002
[0130] (31)スピロ [2—メトキシフルオレン一 9, 13' へキサシクロ [7.7.0.13'6.11( 6.02'7.01L15] [
4]ォクタデセン]、
[0131] [化 38]
Figure imgf000030_0001
[0134] (33)スピロ [2—フエノキシフルオレン一 9, 13'—へキサシクロ [7.7.0.13 6.11() 16.02 7.0
] [4]ォクタデセン]、
[0135] [化 40]
Figure imgf000031_0001
[0138] (35)スピロ [2, 7—ジェトキシフルオレン一 9, 13'—へキサシクロ [7.7.0.13 6.11() 16.02 7.0
·15] [4]ォクタデセン]、
[0139] [化 42]
Figure imgf000032_0001
2.7
[0140] (36)スピロ [2, 7—ジフエノキシフルオレン一 9, 13'—へキサシクロ [7.7.0.136.l1( b.0:
011·15] [4]ォクタデセン]、
[0141] [化 43]
Figure imgf000032_0002
[0142] (37)スピロ [3, 6—ジメトキシフルオレン一 9, 13 、キサシクロ ηο.ι^ι10·16^2·7^1
15] [4]ォクタデセン]、
[0143] [化 44]
Figure imgf000033_0001
[0144] (38)スピロ [9, 10—ジヒロドロアントラセン一 9, 13'—へキサシクロ [7.7.0.13 6.1 .02 7.0
1L15] [4]ォクタデセン]。
•m=0、 n= 1で表されるノルボルネン系単量体(Im)の例
[0145] [化 45]
Figure imgf000033_0002
[0146] (39)スピロ [フルオレン一 9, 10'—テトラシクロ [7.4.0.08 12.12·5] [3]テトラデセン]、 [0147] [化 46]
Figure imgf000034_0001
[0148] (40)スピロ [フルオレン一 9, 10'— [7]メチルテトラシクロ [7.4.0.08 12.12·5] [3]テトラデセ ン]。
[0149] また、式 (Im)で表される化合物にさらに置換基が付加された、例えば次のような化 合物もまた、単量体として好適に用いることができる。
[0150] [化 47]
Figure imgf000034_0002
[0151] (41)スピロ [フルオレン一 9, 10'— [1]メチルテトラシクロ [7.4.0.08 12.12·5] [3]テトラデセ ン]。
[0152] 本発明に係るノルボルネン系榭脂の製造には、これらのノルボルネン系単量体(Im )を 1種単独で用いてもよぐまた、 2種以上組み合わせて用いてもよい。
[0153] 本発明では、特にノルボルネン系開環 (共)重合体を製造する場合、このようなノル ボルネン系化合物(Im)のうち、前記一般式(Im)において m=0、 n=0、 u=0であ るもの含む単量体を用いるのが好ま 、。このような単量体は比較的容易に合成でき 、単量体の入手が容易であるとともに、得られる開環(共)重合体およびその水素添 加物が、耐熱性と強靭性を兼ね備えるため好ま ヽ。
[0154] 本発明に係るノルボルネン系榭脂の製造では、上述したようなノルボルネン系化合 物の 1種以上を含む単量体を重合あるいは共重合する。
[0155] 本発明にお 、ては、上記で例示したノルボルネン系化合物とともに、共重合可能な その他の化合物(共重合性化合物)を単量体の一部として用いることができる。共重 合性化合物としては、具体的には、たとえば、シクロブテン、シクロペンテン、シクロォ クテン、シクロドデセン等の環状ォレフィン; 1,4-シクロォクタジェン、ジシクロペンタジ ェン、シクロドデカトリェン等の非共役環状ポリェン;ポリブタジエン、ポリイソプレン、 ポリイソプレン、スチレン ブタジエン、エチレン 非共役ジェン重合体などの二重結 合を有する低重合物;などが挙げられる。単量体中において、ノルボルネン系化合物 Z共重合性化合物は、好ましくは重量比で 100ZO〜50Z50、より好ましくは ΙΟΟΖ 0〜60Ζ40の範囲であるのが望まし!/、。
,単量体の重合
本発明に係るノルボルネン系榭脂は、上述した単量体を開環 (共)重合するか、単 量体を付加(共)重合し、必要に応じて水素添加して得ることができる。 ノルボルネン骨格を有する化合物を含む単量体の開環(共)重合体ならびにその 水素添加物としては、特に限定されるものではないが、たとえば、下記式(1)で表さ れる構造単位(1)を有する環状ォレフィン系重合体が挙げられる。
[0156] [化 48]
Figure imgf000035_0001
式(1)中、 mは 0、 1または 2であり、 Xは独立に式: CH = CH で表される基また は式: CH CH—で表される基であり、 ^〜A4はそれぞれ独立に水素原子;ノヽロ ゲン原子;酸素、窒素、ィォゥ若しくはケィ素を含む連結基を有していてもよい置換又 は非置換の炭素原子数 1〜10の炭化水素基;または極性基を表す。好ましくは、 A1
〜A4の少なくとも 1つが極性基であり、かつその他の ^〜A4の少なくとも 1つが炭素 原子数 1〜10の炭化水素基である。
[0158] 前記式(1)で表される構造単位は、開環(共)重合および必要に応じて水素添加す ることにより、前記式(lm)で表されるノルボルネン系化合物力も誘導される。
[0159] またたとえば、ノルボルネン骨格を有する化合物を含む単量体の開環(共)重合体 ならびにその水素添加物としては、下記式(2)で表される構造単位を有する環状ォ レフイン系重合体が挙げられる。
[0160] [化 49]
Figure imgf000036_0001
[0161] (式(2)中、 Xは独立に式: CH = CH で表される基又は式: CH CH一で表さ
2 2 れる基であり、 Α5〜Αωは各々独立に水素原子;ハロゲン原子;酸素、窒素、ィォゥ若 しくはケィ素を含む連結基を有していてもよい置換又は非置換の炭素原子数 1〜10 の炭化水素基;または極性基を表す。)、
上記式(2)で表される構造単位は、上記式(2m)で表されるノルボルネン系化合物 を開環(共)重合し、必要に応じて水素添加する力 上記式(2m' )で表されるノルボ ルネン系化合物を開環(共)重合して水素添加することにより得ることができる。
[0162] また、本発明にお 、ては、ノルボルネン骨格を有する化合物を含む単量体の開環( 共)重合体ならびにその水素添加物が、下記式 (I)で表される構造単位 (I)を有する ノルボルネン系開環(共)重合体であることも好まし 、。
[0163] [化 50]
Figure imgf000037_0001
[0164] (式 (I)中、 mおよび nは、それぞれ独立に 0〜2の整数であり、
Xは、式:—CH=CH で表される基、または、式: CH CH—で表される基であり、
2 2
Figure imgf000037_0002
R5、 R9は、それぞれ独立に、水素原子;ハロ ゲン原子;酸素原子、窒素原子、ィォゥ原子もしくはケィ素原子を含む連結基を有し て!、てもよ!/、置換もしくは非置換の炭素原子数 1〜30の炭化水素基;および極性基 よりなる群力 選ばれる原子もしくは基を表し、
s、 t、 uは、それぞれ独立に 0〜3の整数である。 )
上記式 (I)で表される構造単位は、上記式 (Im)で表されるノルボルネン系化合物 を開環(共)重合し、必要に応じて水素添加することにより得ることができる。
[0165] 本発明に係るノルボルネン系榭脂が、上記式 (I)で表される構造単位 (I)を有する 場合、上記一般式 (I)で表される構造単位 (I)を、全構造単位中、通常 2モル%以上 、好ましくは 5モル%以上含有するのが望ましい。
[0166] このようなノルボルネン系榭脂は、構造単位 (I) 1S 前記一般式 (I)にお 、て、 m= 0、 n=0、 u=0であることが好ましい。このような構造単位(I)を有するノルボルネン 系開環 (共)重合体は、耐熱性と強靭性とを兼ね備え、しかも、該構造単位を導く単 量体が比較的容易に合成できるため好ま 、。
[0167] またこのような構造単位 (I)を有するノルボルネン系榭脂は、クロ口ホルム溶液中、ゥ ッべローデ型粘度計で測定される固有粘度 [ ]が、通常 0. 2〜5. 0、好ましくは 0. 3 〜4. 0、さらに好ましくは 0. 35-3. 0であることが望ましい。また、ゲルパーミエーシ ヨンクロマトグラフィー(GPC、テトラヒドロフラン溶媒、ポリスチレン換算)による分子量 測定において、数平均分子量(Mn)力 通常 1000〜50万、好ましくは 2000〜30 万、さらに好ましくは 5000〜30万であり、重量平均分子量(Mw)が、通常 5000〜2 00万、好ましくは 1万〜 100万、さらに好ましくは 1万〜 50万である。固有粘度 [ τ? ]が 0. 2未満、数平均分子量(Mn)が 1000未満、あるいは重量平均分子量(Mw)が 50 00未満であると、ノルボルネン系開環(共)重合体力 得られる成形物の強度が著し く低下する場合があるため好ましくない。一方、固有粘度 [ r? ]が 5. 0以上、数平均分 子量 (Mn)が 50万以上あるいは重量平均分子量 (Mw)が 200万以上であると、ノル ボルネン系開環(共)重合体またはその水素添加物の溶融粘度ある!、は溶液粘度が 高くなりすぎて、所望の性状のフィルムを得ることが困難になる場合があるため好まし くない。
[0168] 上記式 (I)で表される構造単位 (I)を有するノルボルネン系榭脂は、優れた透明性 、耐熱性および低吸水性を有し、かつ、位相差フィルムを製造した時に逆波長分散 性を有するため、本発明にお 、て特に好ましく用いることができる。
上記式 (I)で表される構造単位 (I)を有するノルボルネン系榭脂は、構造単位 (I)を 2 重量%以上含むことが好ましい。全構造単位中の構造単位 (I)の割合が 2Z98よりも 小さい場合、複屈折の特異な波長依存性 (長波長になるに従い複屈折が大きくなる) ゃ低複屈折性が得られな 、場合がある。 単量体の開環(共)重合反応は、メタセシス触媒の存在下に行うことができる。
[0169] 本発明に用いられる開環重合用の触媒としては、 Olefin Metathesis and Metathesis
Polymerization(K.J.IVIN,J.C.MOL, Academic Press 1997)に記載されている触媒が 好ましく用いられる。
[0170] このような触媒としては、たとえば、(a)W、 Mo、 Reおよび V、 Tiの化合物から選ば れた少なくとち 1種と、(b) Li、 Na、 K:、 Mg、 Ca、 Zn、 Cd、 Hg、 B、 Al、 Si、 Sn、 Pbな どの化合物であって、少なくとも 1つの当該元素 炭素結合ある!ヽは当該元素 水 素結合を有するもの力も選ばれた少なくとも 1種との組合せ力 なるメタセシス重合触 媒が挙げられる。この触媒は、触媒の活性を高めるために、後述の添加剤(c)が添加 されたものであってもよい。また、その他の触媒として (d)助触媒を用いない周期表第 4族〜 8族遷移金属-カルベン錯体ゃメタラシクロブタン錯体などカゝらなるメタセシス 触媒が挙げられる。
[0171] 上記(a)成分として適当な W、 Mo、 Reおよび V、 Tiの化合物の代表例としては、 WC1、 MoCl、 ReOCl、 VOC1、 TiClなど特開平 1— 240517号公報に記載の化
6 5 3 3 4
合物を挙げることができる。
[0172] 上記(b)成分としては、 n—C H Li、 (C H ) Al、 (C H ) A1C1、 (C H ) A1C1 、
4 9 2 5 3 2 5 2 2 5 1.5 1.5
(C H )A1C1、メチルアルモキサン、 LiHなど特開平 1— 240517号公報に記載の化
2 5 2
合物を挙げることができる。
[0173] 添加剤である(c)成分の代表例としては、アルコール類、アルデヒド類、ケトン類、ァ ミン類などが好適に用いることができる力 さらに特開平 1— 240517号公報に示され る化合物を使用することができる。
[0174] 上記触媒(d)の代表例としては、 W(=N-2,6-C H iPr )(=CH tBu)(0 tBu)、 Mo (=N-
6 3 2 2
2,6- C H iPr ) (=CH tBu)(0 tBu)、 Ru (=CHCH=CPh ) (PPh ) CI、 Ru (=CHPh) (PC
6 3 2 2 2 3 2 2 6
H ) CIなどが挙げられる。
11 2 2
[0175] メタセシス触媒の使用量としては、上記(a)成分と、全単量体 (ノルボルネン系単量 体 (Im)、(Ilm)および他の共重合可能な単量体。以下、同じ)とのモル比で「(a)成 分:全単量体」 1S 通常 1: 500〜1: 500000となる範囲、好ましくは 1: 1000〜1: 10 0000となる範囲であるのが望ましい。(a)成分と (b)成分との割合は、金属原子比で 「(a): (1))」が1 : 1〜1 : 50、好ましくは 1 : 2〜1: 30の範囲であるのが望ましい。また、 このメタセシス触媒に上記 (c)添加剤を添加する場合、 (a)成分と(c)成分との割合 は、モル比で「(c): (a)」が 0. 005 : 1〜15 : 1、好ましくは 0. 05 : 1〜7: 1の範囲であ るのが望ましい。また、触媒 (d)の使用量は、(d)成分と全単量体とのモル比で「(d) 成分:全単量体」 1S 通常 1: 50〜1: 50000となる範囲、好ましくは 1: 100〜1: 100 00となる範囲であるのが望ましい。
分子量調節剤 開環 (共)重合体の分子量の調節は重合温度、触媒の種類、溶媒の種類によって も行うことができるが、本発明においては、分子量調節剤を反応系に共存させること により調節することが好ましい。ここに、好適な分子量調節剤としては、たとえば、ェチ レン、プロピレン、 1—ブテン、 1—ペンテン、 1—へキセン、 1—ヘプテン、 1—ォクテ ン、 1—ノネン、 1—デセンなどの α—ォレフィン類およびスチレンを挙げることができ 、これらのうち、 1—ブテン、 1—へキセンが特に好ましい。これらの分子量調節剤は、 単独であるいは 2種以上を混合して用いることができる。分子量調節剤の使用量とし ては、開環(共)重合反応に供される全単量体 1モルに対して 0. 001-0. 6モル、好 ましくは 0. 02-0. 5モルであるのが望ましい。 開環(共)重合反応において用いられる溶媒、すなわち、ノルボルネン系単量体、メ タセシス触媒および分子量調節剤を溶解する溶媒としては、たとえば、ペンタン、へ キサン、ヘプタン、オクタン、ノナン、デカンなどのアルカン類;シクロへキサン、シクロ ヘプタン、シクロオクタン、デカリン、ノルボルナンなどのシクロアルカン類;ベンゼン、 トルエン、キシレン、ェチルベンゼン、クメンなどの芳香族炭化水素;クロロブタン、ブ ロムへキサン、塩化メチレン、ジクロロエタン、へキサメチレンジブ口ミド、クロ口べンゼ ン、クロ口ホルム、テトラクロロエチレンなどのハロゲン化アルカン;ァリールなどの化合 物;酢酸ェチル、酢酸 n—ブチル、酢酸 iso—ブチル、プロピオン酸メチル、ジメトキシ ェタンなどの飽和カルボン酸エステル類;ジブチルエーテル、テトラヒドロフラン、ジメ トキシェタンなどのエーテル類を挙げることができ、これらは単独であるいは混合して 用いることができる。本発明では、これらのうち、芳香族炭化水素が好ましい。
溶媒の使用量としては、「溶媒:全単量体 (重量比)」が、通常 1 : 1〜10 : 1となる量と され、好ましくは 1: 1〜5: 1となる量であるのが望ましい。
水素添加
本発明では、上記の開環(共)重合のみにより、ノルボルネン系開環(共)重合体で あるノルボルネン系榭脂を製造してもよ ヽが、開環 (共)重合で得た開環 (共)重合体 をさらに水素添加することが好ましい。開環(共)重合のみでは、得られる本発明のノ ルボルネン系開環 (共)重合体は、上述の式(1)、(2)または (I)で表される構造単位 中の Xが、いずれも、式: CH=CH で表されるォレフィン性不飽和基の状態である 。係る本発明の開環 (共)重合体は、そのまま使用することもできるが、耐熱安定性の 観点から、上記のォレフィン性不飽和基が水素添加されて前記 Xが- CH -CH -で表
2 2 される基に転換された水素添加物であることが好ましい。ただし、本発明でいう水素 添加物とは、上記のォレフィン性不飽和基が水素添加されたものであり、ノルボルネ ン系単量体に基づく側鎖の芳香環は実質的に水素添加されていないものである。
[0177] なお、水素添加する割合としては、上記式(1)、 (2)または (I)で表される構造単位 における Xの合計の 90モル%以上、好ましくは 95%以上、さらに好ましくは 97%以 上であるのが望ましい。水素添加する割合が高いほど、安定な(共)重合体となり、熱 による着色や劣化が抑制されるため好まし 、。
[0178] 本発明の製造方法では、水素添加反応は、単量体であるノルボルネン系化合物に 基づく側鎖の芳香環がある場合、これが実質的に水素添加されない条件で行われる のが望ましい。このため通常は、開環(共)重合体の溶液に水素添加触媒を添加し、 これに常圧〜 30MPa、好ましくは 2〜20MPa、更に好ましくは 3〜18MPaで水素を作 用させることによって行うのが望ましい。
[0179] 水素添加触媒としては、通常のォレフィン性ィ匕合物の水素添加反応に用いられるも のを使用することができる。この水素添加触媒としては、公知の不均一系触媒および 均一系触媒をいずれも用いることができる。不均一系触媒としては、ノ ラジウム、白金 、ニッケル、ロジウム、ルテニウムなどの貴金属触媒物質を、カーボン、シリカ、アルミ ナ、チタ-ァなどの担体に担持させた固体触媒を挙げることができる。また、均一系 触媒としては、ナフテン酸ニッケル Zトリェチルアルミニウム、ビス(ァセチルァセトナト )ニッケル (Π) Zトリェチルアルミニウム、オタテン酸コバルト Zn—ブチルリチウム、チ タノセンジクロリド Zジェチルアルミニウムモノクロリド、酢酸ロジウム、クロロトリス(トリフ ェニノレホスフィン)ロジウム、ジクロロトリス(トリフエニルホスフィン)ルテニウム、クロロヒ ドロカルボ-ルトリス(トリフエ-ルホスフィン)ルテニウム、ジクロロカルボ-ルトリス(トリ フエニルホスフィン)ルテニウムなどを挙げることができる。触媒の形態は粉末でも粒 状でもよい。また、この水素添加反応触媒は、 1種単独でも 2種以上を組み合わせて ち使用することがでさる。 [0180] これらの水素添加触媒は、単量体に基づく側鎖の芳香環が実質的に水素添加され ないようにするために、その添加量を調整する必要がある力 通常は、「開環(共)重 合体:水素添加触媒 (重量比)」が、 1: 1 X 10— 6〜1: 2となる割合で使用するのが望ま しい。
ィ寸カ D (共)重 本
本発明に係るノルボルネン系榭脂は、上述したノルボルネン系化合物を含有する 単量体の付加(共)重合体であってもよ、。付カ卩(共)重合体を得るための方法として は、公知の方法をいずれも採用することができ、付加重合触媒を用いて単量体を付 加(共)重合すること〖こより得ることができる。
[0181] 付カ卩(共)重合体を得るための付加重合触媒としては、通常、チタン化合物、ジルコ
-ゥム化合物およびバナジウム化合物力 選ばれた少なくとも一種と、助触媒として の有機アルミニウム化合物とが用いられる。
[0182] ここで、チタンィ匕合物としては、四塩化チタン、三塩ィ匕チタンなどを、またジルコユウ ム化合物としてはビス(シクロペンタジェ -ル)ジルコニウムクロリド、ビス(シクロペンタ ジェ -ル)ジルコニウムジクロリドなどを挙げることができる。
[0183] さらに、バナジウム化合物としては、一般式
VO (OR) X、または V (OR) X
a b c d
(ただし、 Rは炭化水素基、 Xはハロゲン原子であって、 0≤a≤3、 0≤b≤3, 2≤ (a
+b)≤3、 0≤c≤4, 0≤d≤4, 3≤ (c + d)≤4である。)
で表されるバナジウム化合物、あるいはこれらの電子供与付加物が用いられる。
[0184] 上記電子供与体としては、アルコール、フエノール類、ケトン、アルデヒド、カルボン 酸、有機酸または無機酸のエステル、エーテル、酸アミド、酸無水物、アルコキシシラ ンなどの含酸素電子供与体、アンモニア、ァミン、二トリル、イソシアナ一トなどの含窒 素電子供与体などが挙げられる。
[0185] さらに、助触媒としての有機アルミニウム化合物としては、少なくとも 1つのアルミ-ゥ ム 炭素結合ある ヽはアルミニウム一水素結合を有するもの力 選ばれた少なくとも 一種が用いられる。
[0186] 上記において、例えばバナジウム化合物を用いる場合におけるバナジウム化合物 と有機アルミニウム化合物の比率は、バナジウム原子に対するアルミニウム原子の比
(A1/V)が 2以上であり、好ましくは 2〜50、特に好ましくは 3〜20の範囲である。
[0187] 付加重合に使用される重合反応用溶媒は、開環重合反応に用いられる溶媒と同じ ものを使用することができる。また、得られる飽和重合体の分子量の調節は、通常、 水素を用いて行われる。
ノルボルネン系榭脂
本発明にお 、ては、ノルボルネン系榭脂のクロ口ホルム溶液をゥッべローデ型粘度 計で測定して得られる固有粘度 [ 7? ]を、通常 0. 2〜5. 0、好ましくは 0. 3〜4. 0、さ らに好ましくは 0. 35-3. 0とするのが望ましい。また、ゲルパーミエーシヨンクロマト グラフィー (GPC、テトラヒドロフラン溶媒、ポリスチレン換算)による分子量の測定によ る、数平均分子量(Mn)を、通常 1000〜50万、好ましくは 2000〜30万、さらに好ま しくは 5000〜30万とし、重量平均分子量(Mw)を、通常 5000〜200万、好ましくは 1万〜 100万、さらに好ましくは 1万〜 50万とするのが望ましい。ここで、固有粘度 [ 7? ]が 0. 2未満、 Mnが 1000未満あるいは Mwが 5000未満であると、得られた開環(共 )重合体を用いた成形物の強度が著しく低下する場合がある。一方、固有粘度 [ r? ]が 5. 0以上、 Mnが 50万以上あるいは Mwが 200万以上であると、ノルボルネン系榭脂 の溶融粘度あるいは溶液粘度が高くなりすぎて、フィルムの成形が困難になる場合 がある。
[0188] 本発明に係るノルボルネン系榭脂は、優れた透明性、耐熱性および低吸水性を有 し、特に、上述した構造単位 (I)を有するノルボルネン系榭脂は、特異な複屈折の波 長依存性を有する。このようなノルボルネン系榭脂を用いると、可視光領域において 、透過する波長が大きくなるほど位相差 Reが大きくなる、逆波長分散性を有する位 相差フィルムを容易に製造することができる。
[0189] 本発明に係るノルボルネン系榭脂は、所望により、各種添加剤を添加して使用する ことができる。添加剤としては、たとえば、 2, 6 ジ tーブチルー 4 メチルフエノー ル、 2, 2—メチレンビス(4ーェチルー 6 t—ブチルフエノール)、 2, 5 ジ—tーブ チルヒドロキノン、ペンタエリスリチルテトラキス [. 3- (3, 5—ジ一 t—ブチル 4—ヒド キシフエ-ル)プロピオレート、 4, 4ーチォビス一(6— t—ブチルー 3—メチルフエノー ル)、 1, 1'—ビス(4 ヒドロキシフエ-ル)シクロへキサン、ォクタデシルー 3— (3, 5 ージー t ブチル 4 ヒドロキシフエ-ル)プロピオレートなどのフエノール系、ヒドロ キノン系酸化防止剤、または例えばトリス (4—メトキシ一 3, 5—ジフエニル)フォスファ イト、トリス(ノユルフェ-ル)フォスファイト、トリス(2, 4 ジ— t—ブチルフエ-ル)フォ スフアイトなどのリン系酸ィ匕防止剤を挙げることができ、これらの酸化防止剤の 1種ま たは 2種以上を添加することにより、ノルボルネン系榭脂の酸ィ匕安定性を向上するこ とができる。また、たとえば、 2, 4ージヒドロキシベンゾフエノン、 2 ヒドロキシー4ーメ トキシベンゾフエノン、 2, 2, —メチレンビス [4— (1, 1, 3, 3—テトラメチノレブチノレ)一 6— [ (2H ベンゾトリアゾール 2—ィル)フエノール]]などの紫外線吸収剤を挙げる こともでき、これらを添加することによって、本発明のノルボルネン系榭脂の耐光性を 向上することができる。また、加工性を向上させる目的で滑剤などの添加剤を添加す ることちでさる。
<ノルボルネン系榭脂製フィルム >
本発明の位相差フィルムの製造方法では、上述したノルボルネン系榭脂からなるフ イルムを用いる。ノルボルネン系榭脂カもフィルムを製造する方法としては、ノルボル ネン系榭脂を溶融押し出し法などの溶融成形法、あるいは溶液流延法 (溶剤キャスト 法)などにより成形する方法が挙げられる。
[0190] 溶剤キャスト法としては、たとえば、ノルボルネン系榭脂を溶媒に溶解または分散さ せて適度の濃度の液にし、適当なキヤリヤー上に注ぐ力または塗布し、これを乾燥し た後、キヤリヤー力 剥離させる方法が挙げられる。
[0191] ノルボルネン系榭脂を溶媒に溶解または分散させる際には、該榭脂の濃度を、通 常は 0. 1〜90重量%、好ましくは 1〜50重量%、さらに好ましくは 10〜 35重量%に する。該榭脂の濃度を上記未満にすると、フィルムの厚みを確保することが困難にな る。また、溶媒蒸発に伴う発泡等によりフィルムの表面平滑性が得に《なるなどの問 題が生じる。一方、上記を超えた濃度にすると溶液粘度が高くなりすぎて得られる光 学用フィルムの厚みや表面が均一になりにくくなるために好ましくない。
また、室温での上記溶液の粘度は、通常は 1〜1, 000, OOO (mPa's)、好ましくは 1 0〜: LOO, OOO (mPa's)、さら【こ好ましく ίま 100〜100, OOO (mPa's)、特【こ好ましく は 1, 000〜10, OOO (mPa's)である。
[0192] ここで使用する溶媒としては、ベンゼン、トルエン、キシレンなどの芳香族系溶媒、メ チルセ口ソルブ、ェチノレセロソノレブ、 1ーメトキシ 2—プロパノールなどのセロソルブ 系溶媒、ジアセトンアルコール、アセトン、シクロへキサノン、メチルェチルケトン、 4 メチルー 2—ペンタノン、シクロへキサノン、ェチルシクロへキサノン、 1, 2—ジメチル シクロへキサン等のケトン系溶媒、乳酸メチル、乳酸ェチルなどのエステル系溶媒、 2 , 2, 3, 3—テトラフルオロー 1 プロパノール、塩化メチレン、クロ口ホルムなどのハロ ゲン含有溶媒、テトラヒドロフラン、ジォキサンなどのエーテル系溶媒、 1—ペンタノ一 ル、 1ーブタノール等のアルコール系溶媒を挙げることができる。
[0193] また、上記以外でも、 SP値 (溶解度パラメーター)が通常 10〜30 (MPa1/2)、好まし くは 10〜25 (MPa1/2)、さらに好ましくは 15〜25 (MPa1/2)、特に好ましくは 15〜20 ( MPa1 2)の範囲の溶媒を使用すれば、表面均一性と光学特性の良好なフィルムを得 ることがでさる。
[0194] 上記溶媒は単独であるいは 2種以上併用して使用することができる。溶媒を 2種以 上併用する場合には、混合物としての SP値は、その重量比から求めることができ、例 えば二種の混合物の場合は、各溶媒の重量分率を Wl, W2、また、 SP値を SP1, S P2とする混合溶媒の SP値は下記式:
SPfg=Wl - SPl +W2- SP2
により計算した値として求めることができる。
[0195] 榭脂溶液の調整にぉ ヽて,ノルボルネン系榭脂を溶媒で溶解する場合の温度は, 室温でも高温でもよい。十分に攪拌することにより均一な溶液が得られる。なお、必 要に応じて着色する場合には、溶液に染料、顔料の着色剤を適宜添加することもで きる。
[0196] また、フィルムの表面平滑性を向上させるためにレべリング剤を添カ卩してもよい。一 般的なレべリング剤であればいずれも使用できる力 たとえば、フッ素系ノ-オン界面 活性剤、特殊アクリル榭脂系レべリング剤、シリコーン系レべリング剤などが使用でき る。
[0197] 本発明のフィルムを溶剤キャスト法により製造する方法としては、上記溶液をダイス ゃコーターを使用して金属ドラム、スチールベルト、ポリエチレンテレフタレート(PET )やポリエチレンナフタレート(PEN)等のポリエステルフィルム、ポリテトラフルォロェ チレン製ベルトなどの基材の上に塗布し、その後溶剤を乾燥'除去して基材よりフィ ルムを剥離する方法が一般に挙げられる。また、スプレー、ハケ、ロールスピンコート 、デイツビングなどの手段を用いて,榭脂溶液を基材に塗布し、その後溶剤を乾燥' 除去して基材よりフィルムを剥離することにより製造することもできる。なお、塗布の繰 り返しにより厚みや表面平滑性等を制御してもよ 、。
[0198] また、基材としてポリエステルフィルムを使用する場合には、表面処理されたフィル ムを使用してもよい。表面処理の方法としては、一般的に行われている親水化処理 方法、例えばアクリル系榭脂ゃスルホン酸塩基含有榭脂をコーティングやラミネート により積層する方法、あるいは、コロナ放電処理等によりフィルム表面の親水性を向 上させる方法等が挙げられる。
[0199] 上記溶剤キャスト法の乾燥 (溶剤除去)工程については、特に制限はなく一般的に 用いられる方法、例えば多数のローラーを介して乾燥炉中を通過させる方法等で実 施できるが、乾燥工程において溶媒の蒸発に伴い気泡が発生すると、フィルムの特 性を著しく低下させるので、これを避けるために、乾燥工程を 2段以上の複数工程と し、各工程での温度ある 、は風量を制御することが好ま 、。
[0200] また、フィルム中の残留溶媒量は、通常は 10重量%以下、好ましくは 5重量%以下 、さらに好ましくは 1重量%以下、特に好ましくは 0. 5重量%以下である。ここで、残 留溶媒量が 10重量%より多いと、実際に該フィルムを使用したときに経時による寸法 変化が大きくなり好ましくない。また、残留溶媒により Tgが低くなり、耐熱性も低下す ることから好ましくない。
[0201] なお、後述する延伸工程を好適に行うためには、上記残留溶媒量を上記範囲内で 適宜調節する必要がある場合がある。具体的には、延伸配向時の位相差を安定して 均一に発現させるために、残留溶媒量を通常は 10〜0. 1重量%、好ましくは 5〜0. 1重量%、さらに好ましくは 1〜0. 1重量%にすることがある。溶媒を微量残留させる ことで、延伸加工が容易になる、あるいは位相差の制御が容易になる場合がある。
[0202] 本発明で用いるノルボルネン系榭脂製フィルムの厚さは、通常は 1〜500 μ m、好 ましくは 1〜300 μ m、さらに好ましくは 1〜200 μ m、最も好ましくは 1〜150 m (10 00〜150000nm)である。 1 m未満の厚みの場合には、実質的にハンドリングが困 難となる。一方、 500 m以上の場合には、フィルムをロール状に巻き取った際にい わゆる「巻きぐせ」がつ 、てしま 、後加工等における取扱 、が困難になる場合がある
[0203] 本発明のフィルムの厚み分布は、通常は平均値に対して ± 20%以内、好ましくは
± 10%以内、さらに好ましくは ± 5%以内、特に好ましくは ± 1%以内である。また、 1 cmあたりの厚みの変動は、通常は 10%以下、好ましくは 5%以下、さらに好ましくは 1%以下、特に好ましくは 0. 5%以下であることが望ましい。このように厚み制御を実 施することにより、延伸配向した際の位相差ムラを防ぐことができる。
<位相差フィルムの製造方法 >
本発明では、上述したノルボルネン系榭脂製フィルムを、フィルムロールの幅方向 に 1. 5〜5倍、好ましくは 1. 5〜3倍の範囲で延伸するとともに、フィルム長手方向に 収縮させて、位相差フィルムを製造する。この位相差フィルムでは、フィルム材料のノ ルボルネン系榭脂の高分子鎖がフィルムロールの幅方向(横方向)に配向して、フィ ルムロールの幅方向に光軸を有し、透過光に位相差を与える。
[0204] 本発明では、フィルムの延伸は、フィルムをフィルムロールの幅方向(横方向)に延 伸し、フィルム長手方向(縦方向)に収縮させることのできる延伸法であれば、いずれ も採用することができるが、同時二軸延伸機を用いて行うのが好ましい。同時ニ軸延 伸機を用いての延伸は、フィルムを横方向にテンターで延伸しつつ、延伸後のフィル ムのロール卷取り速度を、延伸前のロールからのフィルム排出速度よりも 15%以上所 望の収縮率にあわせて遅くすることにより行うことができる。好ましくは、延伸前のフィ ルムロール付近から、延伸後のフィルムを巻き取るロールにかけて、テンターの移動 速度が徐々に遅くなり、最終的に所望の収縮率となる卷取り速度になるように制御し ながら延伸を行うことにより、横方向への延伸を行いながら縦方向の収縮を達成する ことができる。ここで、延伸後のフィルムの卷取り速度は、縦方向の所望の収縮率によ り決定される。
[0205] フィルムの横方向への延伸速度は、通常 1〜5, 000%Z分であり、好ましくは 50〜 1, 000%Z分であり、さらに好ましくは 100〜1, 000%Z分であり、特に好ましくは 1 00〜500%Z分である。
[0206] 延伸加工温度は、特に限定されるものではな 、が、本発明に使用されるノルボルネ ン系榭脂のガラス転移温度 Tgを基準として、通常 Tg± 30°C、好ましくは Tg± 15°C 、さらに好ましくは丁8— 5で〜丁8+ 15での範囲でぁる。前記範囲内とすると、位相差 ムラの発生を抑えることが可能となり、また、屈折率楕円体の制御が容易になるため 好ましい。
[0207] 延伸倍率は、横方向への延伸倍率が 1. 5〜5倍、好ましくは 1. 5〜3倍程度である のが望ましい。ノルボルネン系榭脂は、位相差の発現に比較的高度の延伸を必要と するため、延伸倍率が 1. 5倍以下では所望の位相差が得られない場合がある。
[0208] 延伸したフィルムは、そのまま冷却してもよいが、 Tg— 20°C〜Tgの温度雰囲気下 に少なくとも 10秒以上、好ましくは 30秒〜 60分間、さらに好ましくは 1分〜 60分間保 持してヒートセットすることが好ましい。これにより、透過光の位相差の経時変化が少 なく安定した位相差フィルムが得られる。
[0209] 本発明においては、横方向への延伸倍率および縦方向の収縮率を制御することに より、位相差フィルムの視野角特性を制御することができる。
[0210] フィルムの、横方向への延伸倍率は、フィルムを構成する榭脂の種類、厚さ、温度 条件および延伸速度にもよるが、通常 1. 5〜5倍、好ましくは 1. 7〜3倍程度である のが望ましい。
[0211] フィルムの縦方向の収縮率は、横方向の延伸倍率にもよるが、 15%以上、好ましく は 15〜70%、更に好ましくは 20〜50%、特に好ましくは 25〜40%である。この収 縮率を満たせば、従来の横一軸延伸で得られた位相差フィルムと比較して視野角特 '性に優れたものとなる。
[0212] 横方向の延伸倍率が(STD)であるとき、縦方向の倍率が(1ZSTD) 1/2である場合 、すなわち収縮率が(100— 100 X (lZSTD) 1/2) %である場合には、延伸方向であ る横方向を X軸とした時の Y軸方向(縦方向)の屈折率 nyと Z軸方向(厚さ方向)の屈 折率 nzとが同一となり、 NZ係数が 1となって最も視野角特性に優れるためとくに好ま しい。 [0213] ここで、 NZ係数の定義は、下記式(1)で表される。
式(1) : NZ ,¾= { (Nx-Nz) / (Nx-Ny) }
[Nxはフィルム面内での最大屈折率(光軸に該当)、 Nyはフィルム面内で Nxに垂直 方向の屈折率、 Nzはフィルム厚み方向の屈折率]
NZ係数の値は、 0. 90〜: L 20、好ましくは 0. 95〜: L 10、特に好ましくは 1. 00 〜1. 05である。 NZ係数を本範囲でコントロールすることで、液晶ディスプレイに使用 したときの視野角特性を良好に得ることができる。
[0214] 本発明において、フィルムの縦方向の収縮率は、(100—100 X (lZSTD) 1/2) % の ± 30%以内、好ましくは ± 20%以内、より好ましくは ± 10%以内、さらに好ましく は ± 5 %以内であるのが望まし 、。
[0215] 本発明に係る位相差フィルムの加熱による寸法収縮率は、 80°Cにおける加熱を 50 0時間行った場合に、通常 10%以下、好ましくは 5%以下、さらに好ましくは 3%以下 、特に好ましくは 1%以下である。
[0216] 本発明では、使用されるノルボルネン系榭脂の原料である特定単量体やその他の 共重合性単量体を適宜選択する、フィルム成形方法やその条件、延伸方法やその 条件あるいは上記ヒートセットの条件を適宜選択することにより、寸法収縮率を上記 範囲内にすることができる。
[0217] 上記のようにして延伸したフィルムは、延伸により分子が配向して透過光に位相差 を与えるようになる力 このフィルムの位相差(レターデーシヨン、 Re)は、延伸倍率、 延伸温度あるいはフィルムの厚さ等により制御することができる。例えば、延伸前のフ イルムの厚さが同じである場合、延伸倍率が大きいフィルムほど透過光の位相差の絶 対値が大きくなる傾向があるので、延伸倍率を変更することによって所望の位相差を 透過光に与える位相差フィルムを得ることができる。一方、延伸倍率が同じである場 合、延伸前のフィルムの厚さが厚いほど透過光の位相差の絶対値が大きくなる傾向 があるので、延伸前のフィルムの厚さを変更することによって所望の位相差を透過光 に与える位相差フィルムを得ることができる。また、上記延伸加工温度範囲において は、延伸温度が低いほど透過光の位相差の絶対値が大きくなる傾向があるので、延 伸温度を変更することによって所望の位相差を透過光に与える位相差フィルムを得 ることがでさる。
[0218] なお、位相差(レターデーシヨン: Retardation): Reは、次式
Re= (Nx-Ny) X d
で定義される値である。ここで、 dは光路長を示し、 Nxはフィルム面内の最大屈折率 方向(X軸)方向の屈折率、 Nyはフィルム面内で Nxと垂直方向(Y軸)の屈折率であ る。
[0219] 上記のように延伸して得た位相差フィルムの厚さは、好ましくは 0. 1-300 m、さ らに好ましくは 0. 5〜200 μ m、特に好ましくは 1〜150 μ m、最も好ましくは 1〜: LOO μ mである。厚みを薄くすることで位相差フィルムが使われる分野の製品に求める小 型化、薄肉化に大きく応えることができる。位相差フィルムの厚みは、延伸前のフィル ムの厚さを適宜選択したり、延伸倍率を適宜選択することによりコントロールできる。 例えば、延伸前のフィルムを薄くしたり、延伸倍率を大きくしたりすることで、位相差フ イルムの厚さを薄くすることができる。
[0220] 位相差フィルムの位相差値、すなわち、透過光に与える位相差の値は、位相差フィ ルムに求められる効果により決定されるものであり、透過光の波長によっても異なるこ とがあり、一義的に決められるものではないが、透過光の波長が 550nmでの値で、 通常 1〜: L000nm、好ましくは 10〜500nm、さらに好ましくは 100〜200nm、特に 好ましくは 120〜150nm、最も好ましくは 1Z4 λである。 1Ζ4えとは透過光の波長 550nmに対し、概ね 1Z4の位相差を発現するものであり、すなわち 138± 10nm、 好ましくは 138 ± 5nmの位相差を発現する位相差フィルムを意味する。位相差値を 1 nm未満でコントロールすることは実質的に困難であり、 lOOOnmを超える位相差値 を有する位相差フィルムは製造が困難であるば力りでなぐ後述する位相差の均一 性を確保することが困難な場合がある。
[0221] また、位相差フィルムを透過した光の位相差は、その面内での均一性が高いことが 好ましぐ波長 550nmにおけるバラツキは通常は ± 20%以下であり、好ましくは 10 %以下、さらに好ましくは ± 1%以下である。位相差のバラツキが ± 20%の範囲を超 えると、液晶表示素子等に用いた場合色にムラ等が発生してディスプレイとしての性 能が悪ィ匕することがある。 [0222] さらに、本発明に係る位相差フィルムは、好ましくは可視光領域において逆波長分 散性を有する。すなわち、波長40011111での位相差1^ (400)と、波長 550nmでの位 相差 Re (550)と、波長70011111での位相差1^ (700)とカ Re (400)く Re (550) < Re (700)を示す。
[0223] より好ましくは、波長 550nmでの位相差 Re (550)と波長 400nmでの位相差 Re (4 00)との it : Re (400) /Re (550)力 Si. 0〜0. 5、好ましくは 0. 8〜0. 6、さらに好ま しくは 0. 75〜0. 65の範囲にあり、力つ前記位ネ目差 Re (550)と波長 700nmでの位 相差 Re (700)の比: Re (700) ZRe (550)力 i. 5〜1. 0、好ましくは 1. 4〜1. 1、さ らに好ましくは 1. 3〜1. 1の範囲にあると、ある波長えでの位相差を Re ( )としたと き、 400〜700nmの全波長領域で、 Re ( λ ) Z λの値をほぼ一定とすることが可能と なる。この Re ( ) Z の値を、 400〜700nmの全波長領域で ± 20%以内、好まし くは ± 10%以内に制御すると、例えば、当該波長領域全てにおいて位相差が 1Z4 λであるような広帯域の位相差フィルムを得ることができる。
[0224] 本発明にお 、ては、このような逆波長分散性を有する位相差フィルムを、原料であ るノルボルネン系榭脂の選択により容易に得ることができる。逆波長分散性を有する 位相差フィルムを製造するのに好適なノルボルネン系榭脂としては、上述した式 (I) で表される構造単位 (I)を有するノルボルネン系榭脂が特に好適であるが、本発明で はこれに限定されることなぐ位相差フィルムに逆波長分散性を与えるこれ以外のノ ルボルネン系重合体、 2種以上のノルボルネン系重合体力 なる榭脂組成物、ノルボ ルネン系重合体とその他の重合体力もなる榭脂組成物を用いてもよ 、。
<偏光板の製造方法 >
•偏光子
本発明の偏光板の製造方法で用い、本発明に係る偏光板を構成する偏光子は、 高分子フィルムに、ヨウ素または二色性染料を吸着 '配向させることにより形成するこ とができる。本発明の偏光板を構成する偏光子は、ポリビュルアルコール (PVA)系 フィルムからなることが好まし 、。
[0225] PVA系フィルム力 なる偏光子としては、偏光子としての機能を有するものであれ ば特に限定されるものではなぐ例えば、 PVAフィルムにヨウ素を吸着させた後、ホウ 酸浴中で一軸延伸して得られる PVA'ヨウ素系偏光膜; PVAフィルムに二色性の高 V、直接染料を拡散吸着させた後、一軸延伸して得られる PVA ·染料系偏光膜; PVA フィルムにヨウ素を吸着させ延伸してポリビ-レン構造とした PVA.ポリビ-レン系偏 光膜; PVAフィルムに金、銀、水銀、鉄などの金属を吸着させた PVA'金属系偏光 膜;ヨウ化カリウムとチォ硫酸ナトリウムとを含むホウ酸溶液で PVAフィルムを処理した 近紫外偏光膜;分子内にカチオン基を含有する変成 PVAからなる PVA系フィルムの 表面および Zまたは内部に二色性染料を有する偏光膜などを挙げることができる。
[0226] PVA系フィルム力 なる偏光子の製造方法にっ 、ても特に限定されるものではなく 、例えば、 PVA系フィルムを延伸後にヨウ素イオンを吸着させる方法; PVA系フィル ムを二色性染料により染色後、延伸する方法; PVA系フィルムを延伸後、二色性染 料で染色する方法;二色性染料を PVA系フィルムに印刷後、延伸する方法; PVA系 フィルムを延伸後、二色性染料を印刷する方法などが挙げられる。より具体的には、 ヨウ素をヨウ素カリウム溶液に溶解して、高次のヨウ素イオンを調製し、このヨウ素ィォ ンを PVAフィルムに吸着させて延伸し、次いで 1〜4%ホウ酸水溶液に浴温度 30〜 40°Cで浸漬して偏光膜を製造する方法、あるいは PVAフィルムを同様にホウ酸処理 して一軸方向に 3〜7倍程度延伸し、 0. 05〜5%の二色性染料水溶液に浴温度 30 〜40°Cで浸漬して染料を吸着し、 80〜100°Cで乾燥して熱固定して偏光膜を製造 する方法などを挙げることができる。
[0227] 本発明で用いる偏光子は、縦方向に吸収軸を有することが好ましい。縦方向に吸 収軸を有する偏光子は、高分子フィルムの延伸を、縦一軸延伸により行うことにより製 造することができる。
'接着剤
本発明の偏光板の製造方法にぉ ヽては、上述した方法で得られる位相差フィルム と、偏光子との接着を、粘着剤もしくは接着剤を用いて行うのが好ましい。粘着剤もし くは接着剤としては、 PVAを水に溶解させた水系接着剤や、極性基を有する粘着剤 もしくは極性基を有する接着剤 (以下、これらをまとめて「極性基含有粘接着剤」とも いう。)が好ましく用いられる。
[0228] 極性基含有粘接着剤の有する極性基としては、ハロゲン原子およびハロゲン原子 含有基、カルボキシル基、カルボ-ル基、水酸基、アルキルエステル基や芳香族ェ ステル基などのエステル基、アミノ基、アミド基、シァノ基、エーテル基、ァシル基、シ リルエーテル基、チォエーテル基などが挙げられる。これらの中では、カルボキシル 基、カルボニル基、水酸基、エステル基が好ましい。また、極性基含有粘接着剤は、 水系粘着剤もしくは水系接着剤であることが好ましい。特定の榭脂フィルムを貼り付 けるために使用する好適な極性基含有粘接着剤としては、アクリル酸エステル系重 合体の水系分散体を挙げることができる。
[0229] 極性基含有粘接着剤を構成するアクリル酸エステル系重合体は、アクリル酸エステ ルと、極性基含有単量体とを含む単量体組成物を重合処理することにより得ることが できる。ここに、アクリル酸エステルとしては、アクリル酸ェチル、アクリル酸プロピル、 アクリル酸シクロへキシル、アクリル酸ブチル、アクリル酸 2—ェチルへキシルなどを 挙げることができる。また、極性基含有単量体の有する極性基としては、ハロゲン原 子およびハロゲン原子含有基、カルボキシル基、カルボニル基、水酸基、アルキルェ ステル基や芳香族エステル基などのエステル基、アミノ基、アミド基、シァノ基、エー テル基、ァシル基、シリルエーテル基、チォエーテル基などを挙げることができ、これ らのうち、カルボキシル基、カルボニル基、水酸基、エステル基が好ましぐ水酸基お よびカルボキシル基が特に好まし 、。好まし 、極性基含有単量体の具体例としては 、 2—ヒドロキシェチルアタリレート、 2—ヒドロキシェチルメタタリレート、アクリル酸、メ タクリル酸などを挙げることができる。アクリル酸エステル系重合体の合成に供される アクリル酸エステルと、極性基含有単量体との比率は、アクリル酸エステル系重合体 100重量部に対して、極性基含有単量体が 0. 5〜 15重量部程度であるのが好まし い。
[0230] さらに、アクリル酸エステル系重合体の合成に供される単量体として、ジビュルベン ゼンなどのジェン系単量体を使用することが好ましい。アクリル酸エステルと、極性基 含有単量体と、ジェン系単量体とを含む組成物を重合処理して得られるアクリル酸ェ ステル系重合体は、高い強度の接着層を形成することができる。ここで、ジェン系単 量体の使用量は、アクリル酸エステル系重合体 100重量部に対して 0〜 10重量部で あるのが望ましい。ジェン系単量体の使用量が 10重量部を超えると、粘着剤層もしく は接着剤層が硬くなる。
[0231] アクリル酸エステル系重合体を得るための重合法としては、乳化重合法、懸濁重合 法、溶液重合法などを挙げることができる。なお、重合溶媒に、トルエン、キシレンな どの非極性溶媒を用いると、得られる粘着剤を使用する際に、被粘着体である偏光 子と位相差フィルムとの間にずれ等を生じやすく、好ましくな 、。
[0232] 極性基含有粘接着剤を構成するアクリル酸エステル系重合体の分子量としては、 G PC分析により測定したポリスチレン換算の数平均分子量(Mn)が 5, 000〜500, 00 0であること力 S好ましく、更に好ましくは 10, 000-200, 000であり、重量平均分子 量(Mw)力 15, 000〜1, 000, 000であること力 S好ましく、更に好ましくは 20, 000 〜500, 000であり、その分子量分布(MwZMn)は 1. 2〜5であることが好ましく、 更に好ましくは 1. 4〜3. 6である。
[0233] 本発明で使用できる極性基含有粘接着剤には、イソシァネートやブチル化メラミン などの架橋剤、紫外線吸収剤などを添加することができる。ここに、極性基含有粘接 着剤への架橋剤の添加は、通常、当該極性基含有粘接着剤を塗布する直前に行わ れる。
,偏光板の製造方法
本発明においては、偏光板は、 PVA系フィルムなど力もなる偏光子の一面および Zまたは他面に、ノルボルネン系榭脂製フィルムカゝら得た位相差フィルムを、極性基 含有粘接着剤を使用して貼り合わせ、これを加熱し圧着して、偏光子と位相差フィル ムとを接着 (複合化)させること〖こより製造することができる。
[0234] 偏光板の製造においては、偏光子の吸収軸と位相差フィルムの光軸とが直行する ように、位相差フィルムを偏光子の少なくとも片面に貼付する。
[0235] 本発明の製造方法で得た位相差フィルムは、横方向に光軸を有しており、通常フィ ルムロールとして得られるため、縦方向に吸収軸を有する偏光子のフィルムロールと 、いわゆる roll to rollで連続的に接着することができる。すなわち、位相差フィルムの 長手方向と、縦方向に吸収軸を有する偏光子の長手方向とを揃え、両者を連続的に 貼付して、偏光板を製造することができる。このため、本発明の偏光板の製造方法に よれば、長手方向に光軸を有する位相差フィルムを偏光子の幅に合わせて切断した 後、位相差フィルムの向きを偏光子の吸収軸と直行する方向として、個々に接着して いた偏光板の製造を、連続的に行うことができ、製造効率を格段に向上させることが できる。
[0236] 本発明の偏光板の製造方法では、本発明の製造方法で得たノルボルネン系榭脂 製の位相差フィルムを用いる力 この位相差フィルムはガス透過性が低ぐ耐湿性に 優れたものであって、保護フィルムの役割を兼ねることができるため、従来公知の偏 光板が位相差フィルムの他に通常有する保護フィルムを用いる必要がな 、。このた め、本発明の偏光板の製造方法では、偏光子を保護する保護フィルムを位相差フィ ルムの他に別途貼付する必要がなぐ積層するフィルムの数や用いる接着剤の量が 多 、ことによる透過度の低下、多数のフィルムを接着することによる精度の低下など の問題を大幅に軽減することができるうえ、製造工程を簡素化することができ、偏光 板を薄型化および軽量ィ匕することができる。
[0237] 特に、本発明の偏光板の製造方法にお!、て、用いる位相差フィルムの好ま 、NZ 係数の値 ίま、上述したよう【こ、通常 0. 90-1. 20、好ましく ίま 0. 95-1. 10、特【こ好 ましくは 1. 00-1. 05である。 ΝΖ係数を本範囲でコントロールすることで、液晶ディ スプレイに使用したときの視野角特性を良好に得ることができる。
[0238] また特に、本発明の偏光板の製造方法において、位相差フィルムが逆波長分散性 を有し、可視光領域において長波長ほど大きな位相差を示す場合には、広範な波長 領域において好適な位相差を透過光に与える偏光板が得られる。
[0239] 本発明で得られる偏光板は、透明性に優れ、高温高湿環境下においても寸法安定 性に優れ、しかも薄型化、軽量化され高性能である。
実施例
[0240] 以下、実施例を挙げ、本発明をさらに具体的に説明するが、本発明は、その要旨を 超えない限り、以下の実施例に限定されるものではない。なお、以下において、「部」 及び「%」は、特に断りのない限り「重量部」および「重量%」を意味する。
[0241] 本発明における各種物性値の測定方法を以下に示す。
ガラス転移温度 (Tg)
セイコーインスツルメンッ社製、示差走査熱量計 (DSC)を用いて、窒素雰囲気、昇 温速度: 20°CZ分の条件で測定した。
ASTM D570に準拠し、 23°Cの水中に 1週間サンプルを浸漬し、浸漬前後の重 量変化を測定して求めた。
全光線诱渦率、ヘイズ
スガ試験機社製ヘイズメーター (HGM— 2DP型)を使用して測定した。
诱渦光の i 相差
王子計測機器 (株)製 KOBRA— 21ADHを用い、波長 480、 550、 590、 630、 7 50nmで測定し、当該波長以外の部分にっ ヽては前記波長での位相差値を用いて コーシ一(Cauchy)の分散式を用いて算出した。
点、沏
サンプルをクロス-コル状態の偏光板の間に挟んで観察したときに肉眼で認められ る部分的な光りの漏れを、 lOOOcdZm2の光源上にサンプルを置いて、 10 /z m以上 の
大きさのものを計測した。
度、祸. : よびコントラス M:h沏
ミノルタ株式会社製の輝度計 LS— 110を用い、液晶パネルの輝度、視野角および コントラスト比を暗室にて測定した。 サンプルを塩化メチレンに溶解し、得られた溶液をガスクロマトグラフィー(島津製作 所製 GC― 7A)を用 ヽて分析した。
籠粘度
ウベローデ型粘度計を用いて、クロ口ホルムまたは N—メチルー 2—ピロリドン中(試 料濃度: 0. 5g/dL)、 30°Cで測定した。
<合成例 1 >
8—メチル 8—メトキシカルボ-ルテトラシクロ [4. 4. 0. I2'5. l7'10]— 3 ドデセン (特定単量体) 250部と、 1—へキセン (分子量調節剤) 18部と、トルエン (開環重合 反応用溶媒) 750部とを窒素置換した反応容器に仕込み、この溶液を 60°Cに加熱し た。次いで、反応容器内の溶液に、重合触媒としてトリェチルアルミニウム(1. 5モル Z1)のトルエン溶液 0. 62部と、 tーブタノールおよびメタノールで変性した六塩化タ ングステン(t ブタノール:メタノール:タングステン =0. 35モル: 0. 3モル: 1モル) のトルエン溶液 (濃度 0. 05モル ZD 3. 7部とを添カ卩し、この系を 80°Cで 3時間加熱 攪拌することにより開環重合反応させて開環重合体溶液を得た。この重合反応にお ける重合転ィ匕率は 97%であり、得られた開環重合体について、 30°Cのクロ口ホルム 中で測定した対数粘度は 0. 75dlZgであった。
[0243] このようにして得られた開環重合体溶液 1, 000部をオートクレーブに仕込み、この 開環重合体溶液に、 RuHCl(CO)[P(C H ) ] 0. 12部を添カ卩し、水素ガス圧 100k
6 5 3 3
g/cm2,反応温度 165°Cの条件下で、 3時間加熱攪拌して水素添加反応 を行った。
[0244] 得られた反応溶液 (水素添加重合体溶液)を冷却した後、水素ガスを放圧した。こ の反応溶液を大量のメタノール中に注 、で凝固物を分離回収し、これを乾燥して、 水素添加重合体 (以下、「榭脂 Al」という。)を得た。
[0245] このようにして得られた榭脂 A1について各種物性を測定したところ、 iH— NMRを 用いて測定した水素添加率は 99. 9%、 DSC法により測定したガラス転移温度 (Tg) は 165°C、 GPC法 (溶媒:テトラヒドロフラン)により測定した、ポリスチレン換算の数平 均分子量(Mn)は 32, 000、重量平均分子量(Mw)は 137, 000、分子量分布(M wZMn)は 4. 29、 23°Cにおける飽和吸水率は 0. 3%、 SP値は 19 (MP/2)、 30°C のクロ口ホルム中における対数粘度は 0. 78dl/gであった。
[0246] <合成例 2>
8—メチル 8—メトキシカルボ-ルテトラシクロ [4. 4. 0. I2'5. l7'10]— 3 ドデセン 215部と、ビシクロ [2. 2. 1]ヘプト— 2 ェン 35部とを使用し、 1—へキセン(分子量 調節剤)の添加量を 18部としたこと以外は、合成例 1と同様にして水素添加重合体( 以下、「樹脂 B」という。)を得た。
[0247] 得られた榭脂 Bについて、各種物性を測定したところ、水素添加率は 99. 9%、 DS C法により測定したガラス転移温度 (Tg)は 125°C、 GPC法 (溶媒:テトラヒドロフラン) により測定した、ポリスチレン換算の Mnは 46, 000、 Mwは 190, 000、分子量分布 (MwZMn)は 4. 15、 23°Cにおける飽和吸水率は 0. 18%、 SP値は 19 (MPa1/2)、 30°Cのクロ口ホルム中における対数粘度は 0. 69dlZg、ゲル含有量は 0. 2%であつ た。
<合成例 3 >
くスピロ [フルオレン一 9,8' -トリシクロ [4.3.0.12'5] [3]デセン] (endo体、下記式 (A )参照)の合成 >
[0248] [化 51]
Figure imgf000058_0001
[0249] 滴下ロートを取り付けた 1000mlフラスコに、 5 ノルボルネン 2endo— 3endo ジ メタノールを 50. 0g (0. 3242mol)は力り取り、系内を窒素置換した。次いで、これに ピリジン 225ml (2. 7876mol )を加え、スターラーにてよく攪拌して溶解させた。次に 、予め脱水 THF (テトラヒドロフラン) 180mlに溶解させた p—トルエンスルホユルクロリ ド 136. 0g (0. 7133mol)を、氷冷バスで反応系を 0°C以下に保ち、充分に攪拌しな がら徐々に滴下した。滴下終了後、氷冷バス中で 8時間攪拌を継続して反応させた。 反応終了後、反応混合物を 0. 12N塩酸水溶液で 3回、飽和炭酸水素ナトリウム水溶 液で 3回、蒸留水で 3回洗浄を行い、硫酸ナトリウムで乾燥させた。その後、減圧、加 熱して溶媒を除去し、得られた結晶を n—へキサン Z酢酸ェチル混合溶媒を用いて 再結晶させて、白色結晶状の 2endo, 3endo ビス (トルエン 4ースルホ-ルォキ シ)— 5 ノルボルネン 21. 60gを得た。
[0250] 一方、滴下ロートを取り付けた 1000mlフラスコにフルオレン 15. 52g (0. 0934mol) をは力り取り、系内を窒素置換した。これに脱水 THF165mlをカ卩え、スターラーにてよ く攪拌して溶解させた。次に n-ブチルリチウムの 1. 6mol/lへキサン溶液117mlを反 応系の温度をドライアイスノ ス中で 78°Cに保ちながら徐々に滴下した。滴下終了 後、反応系を— 78°Cに保持しつつ、 1時間攪拌を継続した。この反応液中に、上記 で得た 2endo, 3endo ビス (トルエン 4 スルホ -ルォキシ) 5 ノルボルネン 2 1. 60gを予め脱水 THF 500mlに溶解させたものを、反応系の温度を— 78°Cに保ち ながら徐々に滴下した。滴下終了後、ドライアイスバス中で 1時間攪拌を継続し、その 後、冷却ノ スを取りのぞき、反応系が完全に室温に戻るまで攪拌を継続した (約 3時 間)。
[0251] これに、食塩水を添加してタエンチした後、反応液を蒸留水で 3回洗浄を行い、硫 酸ナトリウムを用いて乾燥させた。その後、減圧、加熱して溶媒を除去し、得られた結 晶をメタノールを用いて再結晶させ、薄黄色の結晶として、上記式 (A)で表されるス ピロ [フル
オレン一 9, 8' -トリシクロ [4.3.0.12·5] [3]デセン] (endo体) 5.68gを得た。
[0252] このようにして得られたスピロ [フルオレン一 9, 8' -トリシクロ [4.3.0.12·5] [3]デセン] (e ndo体) 73部と、 8—メチル 8—メトキシカルボ-ルテトラシクロ [4. 4. 0. I2'5 . I7'10] — 3 ドデセン 177部とを使用し、 1 -へキセン (分子量調節剤)の添加量を 9部とし たこと以外は、合成例 1と同様にして水素添加重合体 (以下、「榭脂 C」という。)を得 た。
[0253] 得られた榭脂 Cについて、各種物性を測定したところ、水素添加率は 99. 9%、 DS C法により測定したガラス転移温度 (Tg)は 184°C、 GPC法 (溶媒:テトラヒドロフラン) により測定した。ポリスチレン換算の Mnは 18, 000、 Mwは 74, 000、分子量分布( MwZMn)は 4. 06、 30°Cのクロ口ホルム中における対数粘度は 0. 54dlZgであつ た。
[0254] <製造例 1 > 榭脂フィルム (A— 1)の製造
上記榭脂 A1をトルエンに 30%濃度(室温での溶液粘度は 30, 000mPa- s)になる ように溶解し、酸ィ匕防止剤としてペンタエリスリチルテトラキス [3— (3, 5—ジ一 t—ブ チルー 4ーヒドロキシフエ-ル)プロピオネート]を重合体 100重量部に対して 0. 1重 量部を添カ卩し、 日本ポール製の孔径 5 μ mの金属繊維焼結フィルターを用い、差圧 が 0. 4MPa以内に収まるように溶液の流速をコントロールしながら濾過した。得られ たポリマー溶液を、クラス 1000のクリーンルーム内に設置した井上金属工業製 INV EXラボコーターを用い、アクリル酸系で親水化 (易接着性化)表面処理した厚さ 100 /z mの基材の PETフィルム(東レ(株)製、ルミラー U94)上に、乾燥後のフィルム厚 みが 100 mになるように塗布し、これを 50°Cで一次乾燥の後、 90°Cで二次乾燥を 行った。 PETフィルムより剥がした榭脂フィルムを(al— 1)とした。得られたフィルムの 残留溶媒量は 0. 5%であり、全光線透過率は 93%であった。
[0255] <製造例 2> 榭脂フィルム (B— 1)の製造
榭脂 Aの代わりに榭脂 Bを使用した以外は製造例 1と同様の方法により、厚さ 100 mの榭脂フィルム (B— 1)を得た。得られたフィルムの残留溶媒量は 0. 5%であり、 全光線透過率は 93%であった。
[0256] く製造例 3 > 榭脂フィルム (C 1)の製造
榭脂 Aの代わりに榭脂 Cを使用し、乾燥後の厚みが 130 mとなるように塗布した 以外は製造例 1と同様の方法により、厚さ 130 mの榭脂フィルム (C—1)を得た。得 られたフィルムの残留溶媒量は 0. 5%であり、全光線透過率は 93%であった。
[0257] <実施例 1 >
同時二軸延伸機 (FITS:巿金工業社製)を用いて、製造例 1で得た榭脂フィルム A 1 (厚み 100 πι、幅方向 350mm)を幅方向(TD)へ 2. 0倍に延伸しつつ、延伸 後のフィルム卷取り速度を、延伸前のロールからのフィルム排出速度よりも 30%遅く することでフィルムを長手方向(MD)に収縮し、位相差フィルムを得た。なお、延伸時 の加工温度は 185°Cとした。この位相差フィルムについて、配向角(長手方向を基準 0° とする)、厚み d、面内位相差 RO (R0= (nx-ny) X d)、厚み方向位相差 Rth(R th = { (nx + ny) Z2— nz } X d)、 NZ係数 NZ = (nx nz) / (nx ny)、外観を測 定した結果を表 1に示す。本位相差フィルムは光軸が幅方向の ΐΖ4 λ板であり、で ΝΖ係数が 1. 05という光学特性を達成し、外観も良好であった。また位相差フィルム の、 Re ( λ ) Ζ λ (ここで、 λは当該フィルムの透過光の波長を表し、 Re ( l )は波長 λにおける位相差を表す。)で表される値のバラツキ力 波長 400〜700nmのすベ ての範囲において、その平均値に対して ±4%であった。
[0258] <実施例 2> 使用するフィルムを製造例 2で得た榭脂フィルム B— 1に、延伸時の加工温度を 15 0°Cとしたこと以外は実施例 1と同様にして位相差フィルムを作成した。その結果を表 1に示す。本位相差フィルムは光軸が幅方向の ΐΖ4 λ板であり、で ΝΖ係数が 1. 00 t ヽぅ光学特性を達成し、外観も良好であった。また位相差フィルムの、 Re ( λ ) Z λ で表される値のバラツキが、波長 400〜700nmのすベての範囲において、その平均 値に対して ± 5%であった。
[0259] <実施例 3 >
使用するフィルムを製造例 3で得た榭脂フィルム C 1に、延伸時の加工温度を 18 9°Cと変更したこと以外は実施例 1と同様にして位相差フィルムを作成した。その結果 を表 1に示す。本位相差フィルムは光軸が幅方向の ΐΖ4 λ板であり、で ΝΖ係数が 1 . 00という光学特性を達成し、外観も良好であった。また位相差フィルムの、 Re ( ) Ζ λで表される値のバラツキ力 波長 400〜700nmのすベての範囲において、その 平均値に対して ± 10%以内であった。位相差フィルム力 波長 550nmにおける位 相差 Re (550)と、波長 400nmにおける位相差 Re (400)との比 Re (400) /Re (55 0)力 ^Ο. 66であり、波長 550nmにおける位ネ目差 Re (550)と、波長 700nmにおける 位相差 Re (700)との比 Re (700) ZRe (550)は 1. 15であり、可視光領域において 逆波長分散性を有することが分力つた。
[0260] <実施例 4 >
使用するフィルムを製造例 3で得た榭脂フィルム C—1とし、幅方向(TD)へ 3. 0倍 に延伸しつつ、延伸後のフィルム卷取り速度を、延伸前のロールからのフィルム排出 速度よりも 30%遅くすることでフィルムを長手方向(MD)に収縮させ、延伸時の加工 温度を 194°Cとしたこと以外は実施例 1と同様にして位相差フィルムを作成した。その 結果を表 1に示す。本位相差フィルムは光軸が幅方向の ΐΖ4 λ板であり、で ΝΖ係 数が 1. 04という光学特性を達成し、外観も良好であった。また位相差フィルムの、 R e ( X ) / X (ここで、 λは当該フィルムの透過光の波長を表し、 Re ( l )は波長 λにお ける位相差を表す。)で表される値のバラツキ力 波長 400〜700nmのすベての範 囲において、その平均値に対して ± 15%以内であった。 Re (400) ZRe (550)が 0. 67であり、 Re (700) ZRe (550)は 1. 08であり、可視光領域において逆波長分散 性を有することが分力つた。
[0261] <実施例 5>
使用するフィルムを製造例 3で得た榭脂フィルム C—1とし、幅方向(TD)へ 2. 0倍 に延伸しつつ、延伸後のフィルム卷取り速度を、延伸前のロールからのフィルム排出 速度よりも 15%遅くすることでフィルムを長手方向(MD)に収縮させ、延伸時の加工 温度を 184°Cとしたこと以外は実施例 1と同様にして位相差フィルムを作成した。その 結果を表 1に示す。本位相差フィルムは光軸が幅方向の ΐΖ4λ板であり、で ΝΖ係 数が 1. 20という光学特性を達成し、外観も良好であった。また位相差フィルムの、 R e(X)/X (ここで、 λは当該フィルムの透過光の波長を表し、 Re(l)は波長 λにお ける位相差を表す。)で表される値のバラツキ力 波長 400〜700nmのすベての範 囲において、その平均値に対して ±10%以内であった。 Re(400)ZRe(550)が 0. 67であり、 Re (700) ZRe (550)は 1. 15であり、可視光領域において逆波長分散 性を有することが分力つた。
[0262] <実施例 6>
使用するフィルムを製造例 3で得た榭脂フィルム C—1とし、幅方向(TD)へ 1. 5 倍に延伸しつつ、延伸後のフィルム卷取り速度を、延伸前のロールからのフィルム排 出速度よりも 15%遅くすることでフィルムを長手方向(MD)に収縮させ、延伸時の加 ェ温度を 181°Cとしたこと以外は実施例 1と同様にして位相差フィルムを作成した。そ の結果を表 1に示す。本位相差フィルムは光軸が幅方向の ΐΖ4λ板であり、で ΝΖ 係数が 1. 15という光学特性を達成し、外観も良好であった。また位相差フィルムの、 Re(X)/X (ここで、 λは当該フィルムの透過光の波長を表し、 Re(l)は波長 λに おける位相差を表す。)で表される値のバラツキ力 波長 400〜700nmのすベての 範囲において、その平均値に対して ±10%以内であった。 Re (400) ZRe (550)が 0. 66であり、 Re (700) ZRe (550)は 1. 15であり、可視光領域において逆波長分 散性を有することが分力つた。
[0263] ·水系粘着剤の調製例
反応容器に蒸留水 250部を仕込み、当該反応容器にアクリル酸ブチル 90部と、 2 ーヒドロキシェチルメタタリレート 8部と、ジビュルベンゼン 2部と、ォレイン酸カリウム 0 . 1部とを添加し、これをテフロン (登録商標)製の撹拌羽根により撹拌して分散処理 した。
[0264] 当該反応容器内を窒素置換した後、この系を 50°Cまで昇温し、過硫酸カリウム 0. 2 部を添加して重合を開始した。 2時間経過後、過硫酸カリウム 0. 1部をさらに添加し、 この系を 80°Cまで昇温し、 1時間にわたり重合反応を継続させて重合体分散液を得 た。次いで、エバポレータを用いて、固形分濃度が 70%になるまでこの重合体分散 液を濃縮することにより、アクリル酸エステル系重合体の水系分散体力 なる水系粘 着剤 (極性基を有する粘着剤)を得た。
[0265] このようにして得られた水系粘着剤を構成するアクリル酸エステル系重合体につ!ヽ て、 GPC法 (溶媒:テトラヒドロフラン)によりポリスチレン換算の数平均分子量 (Mn) および重量平均分子量(Mw)を測定したところ、 Mnは 69, 000、 Mwは 135, 000 であり、 30°Cのクロ口ホルム中で測定した対数粘度は 1. 2dlZgであった。
[0266] <実施例 7>
ポリビュルアルコール(以下、「PVA」ともいう。)製フィルムを、ヨウ素濃度が 0. 03 重量%であり、ヨウ化カリウム濃度が 0. 5重量%である 30°C水溶液の染色浴にて、延 伸倍率 3倍で前延伸した後、ほう酸濃度が 5重量%であり、ヨウ化カリウム濃度が 8重 量%である水溶液の 55°Cの架橋浴中で、さらに延伸倍率 2倍で後延伸し、乾燥処理 して偏光子を得た。
[0267] 次に、上記偏光子の片面に、実施例 3で得られた上記位相差フィルムを、偏光板の 吸収軸と位相差フィルムの幅方向に存在する光軸が直行になるようにロール状のフィ ルムを揃えて、上記水系接着剤を用いて両者を連続的に貼付し、もう一方の面に、ト リアセチルセルロース(以下、「TAC」ともいう。)製フィルムを PVA系接着剤を用いて 貼付して偏光板を得た。得られた偏光板の透過率および偏光度を調べたところ、そ れぞれ 44. 0%および 99. 9%であった。
[0268] <実施例 8 >
上記偏光板の特性を評価するため、 ASV方式低反射ブラック TFT液晶を採用して V、るシャープ株式会社製液晶テレビ (LC— 13B1— S)の液晶パネルの観察者側の 前面に貼付している偏光板および位相差フィルムを剥離し、この剥離した箇所に、上 記偏光板を、元々貼付されていた偏光板の透過軸と同一にして、偏光板の位相差フ イルムが液晶セル側になるように貼付した。
[0269] この偏光板を有する液晶テレビの、方位角 45度で極角 60度方向でのコントラスト比 を確認したところ、 70と高い数値であった。また、全方位で視野角(コントラスト比 10 以上の領域)を確認したところ、上下、左右、斜め方向の全てで 175度以上であるこ とを確認した。また黒表示状態で方位角 45度において、極角 0度力も 60度でのカラ 一シフト現象を目視で確認したところ、色抜けなく良好であった。
[0270] <比較例 1 >
長手方向に収縮させず、幅方向を 2. 0倍で一軸延伸を行い、位相差フィルムを得 た以外は前記実施例 3と同様にして各種特性の測定を行った。その結果を表 1に示 す。位相差フィルムは ΐΖ4 λ板とはならず、 ΝΖ= 1. 47であった。
[0271] <比較例 2>
幅方向へ 1. 3倍で延伸しつつ、延伸後のフィルム卷取り速度を、延伸前のロール 力ものフィルム排出速度よりも 30%遅くすることでフィルムを長手方向(MD)に収縮 させ、位相差フィルムを得た以外は前記実施例 3と同様にして各種特性の測定を行 つた。その結果を表 1に示す。位相差フィルムは ΐΖ4 λ板とはならず、 ΝΖ= 1. 01で あった。なお、フィルムの全面に幅方向に平行なシヮが発生し、外観は不良であった
[0272] [表 1]
表 1
Figure imgf000065_0001
産業上の利用の可能性
本発明に係る位相差フィルムは、各種表示装置の偏光板、液晶ディスプレイの用 途に好適に利用できる。

Claims

請求の範囲
[1] ノルボルネン系榭脂製フィルムを、フィルムロールの幅方向に 1. 5〜5倍の範囲で 延伸するとともに、フィルム長手方向に収縮させ、光軸がフィルムロールの幅方向に ある位相差フィルムを得ることを特徴とする位相差フィルムの製造方法。
[2] ノルボルネン系榭脂製フィルムの延伸を、同時二軸延伸機を用いて行 、、テンター を用 、てフィルムをフィルムロールの幅方向に延伸しつつ、延伸後のフィルム卷取り 速度を、延伸前のロールからのフィルム排出速度よりも 15%以上遅くすることを特徴 とする請求項 1に記載の位相差フィルムの製造方法。
[3] 位相差フィルムが 1Z4 λ板であることを特徴とする請求項 1または 2に記載の位相 差フィルムの製造方法。
[4] 位相差フィルムの、 Re ( λ ) Ζ λ (ここで、 λは当該フィルムの透過光の波長を表し 、 Re ( λ )は波長 λにおける位相差を表す。 )で表される値のバラツキ力 波長 400〜 700nmのすベての範囲にお!、て、その平均値に対して士 20%の範囲内にあること を特徴とする請求項 1〜3のいずれかに記載の位相差フィルムの製造方法。
[5] 位相差フィルムの、下記式で表される NZ係数力 0. 90-1. 20の範囲内にあ ることを特徴とする請求項 1〜4のいずれかに記載の位相差フィルムの製造方法;
ΝΖ= (ηχ— ηζ) / (,ηχ— ny)
(式中、 nxは位相差板の X軸方向の屈折率、 nyは位相差板の Y軸方向の屈折率、 n zは位相差板の Z軸方向の屈折率を示す。 )
[6] 位相差フィルムが可視光領域において逆波長分散性を有することを特徴とする請 求項 1〜 5のいずれかに記載の位相差フィルムの製造方法。
[7] 位相差フィルム力 波長 550nmにおける位相差 Re (550)と、波長 400nmにおけ る位ネ目差 Re (400)との itRe (400) /Re (550)力 Si. 0〜0. 1の範囲にあり、波長 55 Onmにおける位相差 Re (550)と、波長 700nmにおける位相差 Re (700)との比 Re ( 700) 71^ (550)カ . 5〜1. 0の範囲にあることを特徴とする請求項 1〜6のいずれ かに記載の位相差フィルムの製造方法。
[8] ノルボルネン系榭脂製フィルムが、下記式 (I)で表される構造単位 (I)を有するノル ボルネン系榭脂を製膜してなるフィルムであることを特徴とする請求項 1〜7のいずれ かに記載の位相差フィルムの製造方法;
[化 1]
Figure imgf000067_0001
(式 (I)中、 mおよび nは、それぞれ独立に 0〜2の整数であり、
Xは、式:—CH=CH で表される基、または、式: CH CH—で表される基であり、
2 2
Figure imgf000067_0002
R9は、それぞれ独立に、水素原子;ハロ ゲン原子;酸素原子、窒素原子、ィォゥ原子もしくはケィ素原子を含む連結基を有し て!、てもよ!/、置換もしくは非置換の炭素原子数 1〜30の炭化水素基;および極性基 よりなる群力 選ばれる原子もしくは基を表し、
s、 t、 uは、それぞれ独立に 0〜3の整数である。 ) o
[9] 請求項 1〜8のいずれかに記載の製造方法により得られたことを特徴とする位相差 フイノレム。
[10] 請求項 1〜8のいずれかに記載の製造方法で得た位相差フィルムを、偏光子の少 なくとも片面に貼付してなることを特徴とする偏光板。
[11] ノルボルネン系榭脂からなり、前記 NZ係数が 0. 90〜: L 20である位相差フィルム のロールであって、フィルムロールの幅方向に光軸を有し、逆波長分散性を有するこ とを特徴とするフィルムロール。
[12] 請求項 11に記載のフィルムロールの長手方向と、縦方向に吸収軸を有する偏光子 の長手方向とを揃え、両者を連続的に貼付することを特徴とする偏光板の製造方法 請求項 12に記載の方法により得たことを特徴とする偏光板。
請求項 9に記載の位相差フィルムまたは請求項 10または 13に記載の偏光板を用 V、てなることを特徴とする液晶表示装置。
PCT/JP2006/320306 2005-10-14 2006-10-11 位相差フィルムの製造方法、位相差フィルムおよびその用途 WO2007043573A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005300710A JP2007108529A (ja) 2005-10-14 2005-10-14 位相差フィルムの製造方法、位相差フィルムおよびその用途
JP2005-300710 2005-10-14

Publications (1)

Publication Number Publication Date
WO2007043573A1 true WO2007043573A1 (ja) 2007-04-19

Family

ID=37942803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320306 WO2007043573A1 (ja) 2005-10-14 2006-10-11 位相差フィルムの製造方法、位相差フィルムおよびその用途

Country Status (4)

Country Link
JP (1) JP2007108529A (ja)
KR (1) KR20080059644A (ja)
TW (1) TW200734381A (ja)
WO (1) WO2007043573A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287218A (ja) * 2007-04-20 2008-11-27 Fujifilm Corp 熱可塑性フィルムおよびその製造方法
JP2009119796A (ja) * 2007-11-16 2009-06-04 Fujifilm Corp 熱可塑性樹脂フィルムおよびその製造方法、並びに、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
CN116217772A (zh) * 2023-01-10 2023-06-06 中国科学院长春应用化学研究所 一种环烯烃共聚物及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221782A (ja) * 2007-03-15 2008-09-25 Sony Corp 延伸シートの製造方法および異方性光学シートの製造方法
FR2924048B1 (fr) * 2007-11-28 2013-03-08 Darlet Marchante Technologie Procede d'etirage d'un film en matiere synthetique
JP5375043B2 (ja) * 2007-11-30 2013-12-25 Jsr株式会社 積層光学フィルムの製造方法、積層光学フィルムおよびその用途
JP4964794B2 (ja) * 2008-01-22 2012-07-04 富士フイルム株式会社 光学フィルムおよびその製造方法
JP5534684B2 (ja) * 2008-02-29 2014-07-02 日東電工株式会社 光学フィルムの製造方法
WO2014162928A1 (ja) 2013-04-03 2014-10-09 三井化学株式会社 光学フィルム
KR101589347B1 (ko) * 2013-07-31 2016-01-27 제일모직주식회사 액정표시장치용 모듈 및 이를 포함하는 액정표시장치
JP7083030B2 (ja) * 2018-08-28 2022-06-09 富士フイルム株式会社 液晶パネル及び画像表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181450A (ja) * 2003-12-16 2005-07-07 Nitto Denko Corp 複屈折フィルムの製造方法、およびそれを用いた光学フィルムおよび画像表示装置
JP2006133720A (ja) * 2004-10-07 2006-05-25 Nitto Denko Corp 複屈折フィルムの製造方法、およびそれを用いた光学フィルム、液晶パネル、液晶表示装置、画像表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622130B2 (ja) * 2001-03-27 2011-02-02 コニカミノルタホールディングス株式会社 延伸フィルム構成物とそれを用いた光学補償フィルム、楕円偏光板及び液晶表示装置
JP4900636B2 (ja) * 2003-03-06 2012-03-21 Jsr株式会社 ノルボルネン誘導体
JP4236098B2 (ja) * 2003-08-01 2009-03-11 日東電工株式会社 複屈折性光学フィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181450A (ja) * 2003-12-16 2005-07-07 Nitto Denko Corp 複屈折フィルムの製造方法、およびそれを用いた光学フィルムおよび画像表示装置
JP2006133720A (ja) * 2004-10-07 2006-05-25 Nitto Denko Corp 複屈折フィルムの製造方法、およびそれを用いた光学フィルム、液晶パネル、液晶表示装置、画像表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287218A (ja) * 2007-04-20 2008-11-27 Fujifilm Corp 熱可塑性フィルムおよびその製造方法
JP2009119796A (ja) * 2007-11-16 2009-06-04 Fujifilm Corp 熱可塑性樹脂フィルムおよびその製造方法、並びに、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
CN116217772A (zh) * 2023-01-10 2023-06-06 中国科学院长春应用化学研究所 一种环烯烃共聚物及其制备方法
CN116217772B (zh) * 2023-01-10 2024-05-28 中国科学院长春应用化学研究所 一种环烯烃共聚物及其制备方法

Also Published As

Publication number Publication date
TW200734381A (en) 2007-09-16
KR20080059644A (ko) 2008-06-30
JP2007108529A (ja) 2007-04-26

Similar Documents

Publication Publication Date Title
WO2007043573A1 (ja) 位相差フィルムの製造方法、位相差フィルムおよびその用途
JP4178810B2 (ja) 熱可塑性ノルボルネン系樹脂系光学用フィルム
JP3912159B2 (ja) 光学用フィルムおよびその製造方法並びに偏光板
JP5407108B2 (ja) 熱可塑性樹脂組成物、光学フィルムおよびフィルム製造方法
JP5186926B2 (ja) 積層光学フィルムの製造方法、積層光学フィルムならびにその用途
JP4172310B2 (ja) 偏光板
JP2008102498A (ja) 位相差フィルムの製造方法、位相差フィルムおよびその用途
JP2005164632A (ja) 光学用フィルムおよび偏光板
JP5251214B2 (ja) 積層光学フィルムの製造方法、積層光学フィルムおよびその用途
JP2010060618A (ja) 積層光学フィルム付き偏光板およびそれを具備する液晶表示装置
JP3650852B2 (ja) 液晶基板および偏光フィルム
JP5566403B2 (ja) 位相差フィルム、並びに、それを用いた有機el表示装置及び液晶表示装置
JP4325196B2 (ja) 光学用フィルムおよびその製造方法並びにその応用製品
JP2006188671A (ja) 光学用フィルムおよびその用途
JPWO2006070687A1 (ja) 熱可塑性樹脂組成物およびそれからなる光学フィルム
KR20080027203A (ko) 위상차 필름의 제조 방법, 위상차 필름 및 그의 용도
JP2007223242A (ja) 位相差フィルムの製造方法、位相差フィルムおよびその用途
JP2009046615A (ja) ノルボルネン系開環(共)重合体、フィルム、これらの製造方法、および偏光板
WO2007001020A1 (ja) 光学フィルムの製造方法、光学フィルムおよび偏光板
JP4610329B2 (ja) 位相差フィルム及びそれを用いた液晶表示装置
KR20090127331A (ko) 위상차 필름, 그의 제조 방법 및 편광판
JP4352776B2 (ja) 光学用フィルムおよびその用途
JP2006188555A (ja) 光学フィルムの製造方法および光学フィルム
JP2009265605A (ja) 液晶パネルおよび液晶パネル用光学フィルムセット
JP2009128821A (ja) 光学フィルムの製造方法、光学フィルムおよび液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087011395

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06811613

Country of ref document: EP

Kind code of ref document: A1