WO2007043236A1 - Micro suction structure and method of forming the same - Google Patents

Micro suction structure and method of forming the same Download PDF

Info

Publication number
WO2007043236A1
WO2007043236A1 PCT/JP2006/315120 JP2006315120W WO2007043236A1 WO 2007043236 A1 WO2007043236 A1 WO 2007043236A1 JP 2006315120 W JP2006315120 W JP 2006315120W WO 2007043236 A1 WO2007043236 A1 WO 2007043236A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
layer
flow path
vacuum
internal
Prior art date
Application number
PCT/JP2006/315120
Other languages
French (fr)
Japanese (ja)
Inventor
Shin-Ichi Hinooda
Kazuya Ogino
Original Assignee
Shin-Ichi Hinooda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Ichi Hinooda filed Critical Shin-Ichi Hinooda
Publication of WO2007043236A1 publication Critical patent/WO2007043236A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • B01L2400/049Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • B01L2400/0683Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers mechanically breaking a wall or membrane within a channel or chamber

Definitions

  • the present invention relates to a simple micro-suction structure that can transport gas, fluid such as Z or liquid, does not require an external driving force such as a pump, can be used alone, and can be incorporated. .
  • An integrated micro-analysis system has recently attracted attention as a chip for chemical analysis such as gene analysis, clinical diagnosis, drug screening, and environmental measurement.
  • Microanalytical systems made from polymer cartridges such as glass, silicon, or acrylic have flow paths with tens / zm to hundreds / zm width through which fluids such as gases and / or liquids flow. It is a chip that enables one or more operations among unit operations of mixing, reaction, separation, extraction, and analysis.
  • Non-Patent Document 1 As one type of chip, there is a type in which a sample such as a secretion from a human body, a reagent, and a control solution are transported to the same channel and reacted (for example, see Non-Patent Document 1). As another type of chip, there is a type in which a solution in which two kinds of substances are dissolved and a catalyst are transported from different places into the same channel, mixed and reacted (for example, see Non-Patent Document 2). ). Another type of chip is a composite type that includes an area where two types of solutions containing different substances are transported, mixed, and reacted in the same channel, and an area where only the reactants required for analysis are separated and extracted. (See Non-Patent Document 3, for example).
  • Non-Patent Document 1 B.H. Weigl et al., Advanced Drug Delivery Reveiew 55 (2003) 349-37 7
  • Non-Patent Document 2 M. Ueno et al., Chem. Commun., 2003, 936-937
  • Non-Patent Document 3 M. Tokeshi et al., Anal. Chem. 2002, 74, 1565-1571
  • Non-Patent Document 4 D. C. Duffy et al., Anal. Chem. 1998, 70, 4974-4984
  • a general method for transporting fluid is an external pump, electrophoresis (for example, see Patent Document 1), a method using osmotic pressure and surface tension.
  • an external pump a pump using a syringe (for example, see Patent Document 2), a pump using a piston (for example, see Patent Document 3), a pump using a screw, a pump using a piezoelectric element (for example, , See Patent Document 4).
  • Patent Document 1 Japanese Patent Laid-Open No. 10-10088
  • Patent Document 2 Japanese Patent Publication No. 11-502931
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-21715
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-249074
  • the object of the present invention does not depend on the physical properties of the fluid to be used, and can be transported without using a special external drive device such as an external pump.
  • a suction structure and a method of forming the same are provided.
  • the invention according to claim 1 has an internal space separated from the vacuum space by a separating layer on the vacuum space reduced to a pressure lower than the atmospheric pressure, A covering layer is provided to cover the internal space, and a bridge portion is provided in the internal space to transmit external force to the separation layer and destroy a part of the isolation layer.
  • a microstructure having a flow path space connected to an external space, and present in the flow path space or in a space connected to the flow path space due to the decompression of the internal space due to the destruction of the isolation layer A micro-suction structure characterized in that a fluid that is gas and Z or liquid is transported toward the internal space.
  • the invention according to claim 2 is described in claim 1.
  • the adsorbent in order to maintain the vacuum degree in the vacuum space or to further increase the vacuum degree, the adsorbent may be a micro suction structure installed in the vacuum space.
  • the invention according to claim 3 is connected to the internal space for transporting a fluid in a plurality of different spaces in the invention according to claim 1 or 2. It may be a microsuction structure in which one or a plurality of the channel spaces and one or a plurality of different small spaces connected to the channel spaces are formed.
  • the invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the vacuum space, the isolation layer, and the internal
  • the space, the channel space, the small space, and the coating layer are made of Pyrex (registered trademark) glass, silicon, PDMS, polyethylene, polypropylene, polyolefin, PET, chlorinated chloride, acrylic, fluorine resin, epoxy resin. It may be a micro-suction structure in which one or a plurality of types of material forces are also selected. These materials are materials that can be easily processed by conventional techniques related to processing that is not expensive but easy to handle.
  • the invention according to claim 5 is characterized in that a vacuum space reduced to an atmospheric pressure or lower is formed in the base layer, and an internal space separated from the vacuum space by an isolation layer. Is formed in the flow path layer, the internal space is covered with a covering layer, an external force is transmitted to the isolation layer, and a bridge portion for breaking a part of the isolation layer is provided in the flow path layer.
  • a method of forming a micro-suction structure that includes forming in the channel layer a channel space that is formed in a partial space and connected to the internal space and the external space, and a small space that is connected to the channel space.
  • the base layer, the isolation layer, the flow path layer, and the coating layer are laminated and bonded by a technique related to bonding such as positive electrode bonding or thermal welding.
  • a method of forming a bow I structure is characterized in that a vacuum space reduced to an atmospheric pressure or lower is formed in the base layer, and an internal space separated from the vacuum space by an isolation layer. Is formed in the flow path layer
  • the invention according to claim 6 is the invention according to claim 5, wherein the vacuum space is joined to the base layer and the isolation layer under a simple vacuum.
  • a method of forming the micro suction structure to be formed may be used.
  • the invention according to claim 7 is the invention according to claim 5 or 6, wherein one or a plurality of the vacuum spaces are provided in one base layer. or Is related to wet or dry etching using optical lithography, machining, FIB, LIGA, hot embossing, and printing on one flow path layer that has a plurality of the internal spaces and the flow path space connected to each internal space. It may be a method of forming a micro-suction structure to be formed by selecting and using technical power. These processing techniques are suitable for forming a plurality of spaces on a plane simultaneously or sequentially. In order to form one micro suction structure or to form a plurality of micro suction structures simultaneously. Used in
  • the invention according to claim 8 is the invention according to any one of claims 5 to 7, wherein one or more of the flows connected to the internal space are provided.
  • a path space and one or more small spaces connected to the flow path space form a micro-suction structure that is formed simultaneously when the internal space and the flow path space are formed in the flow path layer. Even the method.
  • the adsorbent since the adsorbent is installed in the vacuum space, the degree of vacuum in the vacuum space is maintained or the degree of vacuum is further increased. It is possible to maintain the suction force for transporting the fluid in the interior or the space connected to the flow path space, or increase the suction force.
  • the material for forming the micro-suction structure can be easily processed by a conventional technique related to easy-to-access processing, which is not expensive, and is inexpensive and can be discarded after use.
  • a micro-suction structure that can be provided can be provided.
  • a simple and inexpensive analysis or inspection chip including a micro suction structure is provided by forming the flow path space related to transportation and the small space related to operation in the material. You can also.
  • micro suction structure is formed by laminating and joining the base layer, the isolation layer, the flow path layer, and the coating layer, many complicated formation elements are formed. A minute suction structure can be easily produced without requiring a process. This is a formation method suitable for mass production.
  • the vacuum space is formed by joining the base layer and the isolation layer under a simple vacuum. It does not need a place.
  • one or more of the vacuum spaces are connected to the base layer, and one or more of the internal spaces and the flow path space connected to each of the internal spaces are the flow path layers.
  • it is formed with a processing technique suitable for mass production in which a plurality of spaces are formed simultaneously or sequentially on a flat surface.
  • a plurality of minute suction structures can be formed simultaneously.
  • the internal space, the one or more flow passage spaces connected to the internal space, and the one or more small spaces connected to the flow passage space are arranged in front of each other. Since the flow path layer is formed at the same time, the flow path layer used for the transportation and the small space related to the operation are reduced by the same number of lamination joining steps as the micro suction structure is formed. It is also possible to produce a simple analysis or inspection chip with a fine suction structure. wear.
  • a plurality of the vacuum spaces are formed in the base layer, the plurality of internal spaces, one or a plurality of the channel spaces connected to each of the internal spaces, and one channel connected to the channel space
  • a plurality of micro suction structures can be attached with the same number of lamination joining steps as when one micro suction structure is formed using those layers. It is also possible to form a simple analysis or inspection chip.
  • FIG. 1 is a schematic sectional view of a micro suction structure according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view of one component part of the micro suction structure according to the embodiment of the present invention.
  • FIG. 3 is a schematic top view of a component part of a micro suction structure according to an embodiment of the present invention.
  • FIG. 4 is a schematic top view of one component part of the micro suction structure according to the embodiment of the present invention.
  • FIG. 5 is a schematic top view of a component part of a micro suction structure according to an embodiment of the present invention.
  • FIG. 6 is a process of forming a micro suction structure according to an embodiment of the present invention.
  • FIG. 7 is a step of forming a micro suction structure according to an embodiment of the present invention.
  • FIG. 8 is a step of forming a micro suction structure according to an embodiment of the present invention.
  • FIG. 9 is a step of forming a micro suction structure according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a micro suction structure according to an embodiment of the present invention.
  • FIG. 2 shows a top view of layer 12 in FIG.
  • the micro-suction structure is separated by a separation layer 13 on a vacuum space 21 having a volume of 3 ⁇ 10 3 mm 3 or less, which is decompressed to an atmospheric pressure in the range of vacuum degree 10 _6 to 10 _3 TOT r or less.
  • a covering layer 11 is provided to cover the inner space 22, and a bridge portion 16 that transmits a force 31 applied directly or indirectly from the outside to the separating layer 13 is provided in the inner space 22.
  • This is a micro-suction structure provided with a flow path space 23 connected to the internal space 22 and the external space as shown in FIG.
  • the base layer 14 including the vacuum space 21, the isolation layer 13, the flow path layer 12 including the internal space 12 and the flow path space 23, and the covering layer 11 are made of, for example, Nylex (registered trademark) glass or silicon.
  • Nylex registered trademark
  • the thickness of the base layer 14, the isolation layer 13, the flow path layer 12, and the covering layer 11 is in the range of 0.5 mm to 3. Omm.
  • the adsorbent 15 may be installed in the vacuum space 21.
  • a porous material that adsorbs gas such as Stl22 sold by SAES Getter, is used.
  • One or more channel spaces connected to the internal space 22 and one or more small spaces connected to the channel space 23 are related to, for example, fluid mixing, reaction, separation, extraction, analysis, etc.
  • FIG. Fig. 3 shows an example of the channel layer 12 formed to sequentially react the fluid sucked from the channel end 24 using different reactants installed in two different small spaces 25.
  • Fig. 4 shows the flow path layer formed to branch the fluid sucked from the flow path end 24 and react in parallel using different kinds of reactants installed in two different small spaces 25. 12 examples.
  • Fig. 5 shows an example of the channel layer 12 formed to mix different fluids sucked from the two channel ends 24 and react with each other using the reactants installed in the small space 25. is there.
  • FIG. 6 to FIG. 9 show a method of forming a micro suction structure as an example of the embodiment of the present invention.
  • the base layer 14 has a 3 mm thick Pyrex (registered trademark) glass
  • the isolation layer 13 has a 500 m thick silicon substrate
  • the channel layer 12 has a 2 mm thick Pyrex (registered trademark) glass.
  • PDMS having a thickness of 500 ⁇ m is used.
  • a microspace having a width of 10 mm, a depth of 1.5 mm, and a length of 20 mm, which forms a vacuum space 21 is formed of Pyrex (registered trademark) glass having a base layer of 14.
  • etching was formed by means such as machining.
  • the adsorbent 15 was placed in the minute space formed in the first step in order to maintain the vacuum degree of the vacuum space 21 or further increase the degree of vacuum.
  • a porous material that adsorbs gas such as Stl 22 sold by SAES Getter, was used.
  • a to-be-destructed portion 26 having a width of 10 mm, a depth of 400 ⁇ m, and a length of 10 mm is formed on the silicon substrate of the isolation layer 13 by etching or machining. Formed by means.
  • the vacuum space 21 is isolated from the Pyrex (registered trademark) glass of the base layer 14. It is formed by anodic bonding of the silicon substrate of layer 13 at a bonding temperature of 400 degrees Celsius under a vacuum of 10_4 Torr. At the time of joining, the adsorbent 15 is heated for a certain period of time, so it is activated and adsorbs the gas remaining in the vacuum space to maintain the degree of vacuum.
  • a small space 25 as shown in FIGS. 3 to 5 was formed in the Pyrex (registered trademark) glass of the channel layer 12 by means such as etching or machining.
  • a glass (Norex) glass of the flow path layer 12 was anodically bonded onto the silicon substrate of the isolation layer 13.
  • the Pyrex (registered trademark) glass of the flow path layer 12 and the silicon substrate of the isolation layer 13 may be bonded simultaneously with the bonding of the silicon substrate of the isolation layer 13 and the Nilex (registered trademark) glass of the base layer 14. But you can do it sequentially.
  • the internal space 22 is formed by oxidizing the surface of the PDMS of the coating layer 11 by means of oxygen plasma or the like, and then the Pyrex of the flow path layer 12. (Registered trademark) It is formed by sticking so as to cover the glass.
  • a flow path layer 12 When forming a plurality of internal spaces 22 in the flow path layer 12, which is one of the forming steps in which a plurality of micro suction structures can be formed simultaneously using the coating layer 11, Channel space 23 or small space for any unit operation part connected to internal space 22, for example, as shown in Figs. 3-5, involved in fluid mixing, reaction, separation, extraction, analysis, etc. 25 may be formed simultaneously.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micromachines (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

To provide a simple micro suction structure which is capable of transporting fluid without relying on the physical properties of a fluid in use and without a special external drive device such as an external pump, and which is singly usable and installable in an assembly; and a method of forming the micro suction structure. Internal spaces partitioned by a separating layer are formed on the upper side of a vacuum space depressurized to less than the atmospheric pressure and a covering layer is provided to cover the internal space. Cross-linking portions for transmitting an external force to the separating layer to destruct a part of the separating layer are formed in the internal space. Furthermore, a flow passage space communicating with the internal space and an external space is formed.

Description

明 細 書  Specification
微小吸引構造体及びその形成方法  Microsuction structure and method for forming the same
技術分野  Technical field
[oooi] 本発明は、ポンプなどの外部の駆動力を必要とせず、気体及び Z又は液体などの 流体を輸送でき、単体でも使え、組み込み可能な、簡易な微小吸引構造体及びその 形成方法に関する。  [oooi] The present invention relates to a simple micro-suction structure that can transport gas, fluid such as Z or liquid, does not require an external driving force such as a pump, can be used alone, and can be incorporated. .
背景技術  Background art
[0002] 統合型マイクロ分析システムは、最近、遺伝子分析、臨床診断、薬物検診、環境測 定などの化学分析のためのチップとして、注目されている。ガラス、シリコン、又はァク リルなどのポリマーカゝら作製されるマイクロ分析システムは、気体及び/又は液体など の流体が流れる、幅が数十/ z mから数百/ z mの流路を有し、混合、反応、分離、抽 出、分析の単位操作のうち、 1つ又は複数の操作を可能にするチップである。  [0002] An integrated micro-analysis system has recently attracted attention as a chip for chemical analysis such as gene analysis, clinical diagnosis, drug screening, and environmental measurement. Microanalytical systems made from polymer cartridges such as glass, silicon, or acrylic have flow paths with tens / zm to hundreds / zm width through which fluids such as gases and / or liquids flow. It is a chip that enables one or more operations among unit operations of mixing, reaction, separation, extraction, and analysis.
[0003] チップの 1つの型として、人体からの分泌物などのサンプル、試薬、制御溶液を、同 一流路へ輸送し、反応させる型がある(例えば、非特許文献 1を参照)。チップの他の 型として、 2種類の物質が溶解した溶液と触媒とを、別の場所から同一の流路内へ輸 送し、混合、反応させる型がある (例えば、非特許文献 2を参照)。チップの別の型と して、異なる物質を含む 2種類の溶液を同一流路内へ輸送、混合、反応させる領域、 および、分析に必要な反応物質のみ分離、抽出する領域を含む、複合型もある (例 えば、非特許文献 3を参照)。  [0003] As one type of chip, there is a type in which a sample such as a secretion from a human body, a reagent, and a control solution are transported to the same channel and reacted (for example, see Non-Patent Document 1). As another type of chip, there is a type in which a solution in which two kinds of substances are dissolved and a catalyst are transported from different places into the same channel, mixed and reacted (for example, see Non-Patent Document 2). ). Another type of chip is a composite type that includes an area where two types of solutions containing different substances are transported, mixed, and reacted in the same channel, and an area where only the reactants required for analysis are separated and extracted. (See Non-Patent Document 3, for example).
[0004] 非特許文献 1: B.H. Weigl et al., Advanced Drug Delivery Reveiew 55 (2003) 349—37 7  [0004] Non-Patent Document 1: B.H. Weigl et al., Advanced Drug Delivery Reveiew 55 (2003) 349-37 7
非特許文献 2 : M. Ueno et al., Chem. Commun., 2003, 936-937  Non-Patent Document 2: M. Ueno et al., Chem. Commun., 2003, 936-937
非特許文献 3 : M. Tokeshi et al., Anal. Chem. 2002, 74, 1565-1571  Non-Patent Document 3: M. Tokeshi et al., Anal. Chem. 2002, 74, 1565-1571
[0005] これらのチップは、同種あるいは異種の材料を、従来の接合技術を用い、重ね合わ せることにより、作製される (例えば、非特許文献 4を参照)。 [0005] These chips are manufactured by overlapping the same or different materials using conventional bonding techniques (see, for example, Non-Patent Document 4).
[0006] 非特許文献 4 : D. C. Duffy et al., Anal. Chem. 1998, 70, 4974-4984 [0006] Non-Patent Document 4: D. C. Duffy et al., Anal. Chem. 1998, 70, 4974-4984
[0007] これらのチップ内における、流体の一般的な輸送方法は、外部ポンプ、電気泳動( 例えば、特許文献 1を参照)、浸透圧、表面張力を利用する方法である。外部ポンプ として、シリンジを用いたポンプ (例えば、特許文献 2を参照)、ピストンを用いたボン プ (例えば、特許文献 3を参照)、スクリューを用いたポンプ、圧電素子を用いたボン プ (例えば、特許文献 4を参照)などがある。 [0007] In these chips, a general method for transporting fluid is an external pump, electrophoresis ( For example, see Patent Document 1), a method using osmotic pressure and surface tension. As an external pump, a pump using a syringe (for example, see Patent Document 2), a pump using a piston (for example, see Patent Document 3), a pump using a screw, a pump using a piezoelectric element (for example, , See Patent Document 4).
[0008] 特許文献 1 :特開平 10— 10088号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-10088
特許文献 2:特表平 11― 502931号公報  Patent Document 2: Japanese Patent Publication No. 11-502931
特許文献 3:特開 2002— 21715号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-21715
特許文献 4:特開 2000 - 249074号公報  Patent Document 4: Japanese Patent Laid-Open No. 2000-249074
[0009] しかし、これらの方法は、使用する流体の物性に依存し、外部駆動力を必要とする ため、分析システムが大きく複雑になり、その作製と操作に時間がかかり、取り扱いが 難しくなるという問題がある。使用現場で分析又は検査し、その後使い捨てる簡易チ ップのような、長時間に渡る精密な制御を必要としない、簡単な流体の輸送には、こ れらの方法は適して ヽな 、。  [0009] However, these methods depend on the physical properties of the fluid to be used and require an external driving force. Therefore, the analysis system becomes large and complicated, and it takes time to manufacture and operate, and it is difficult to handle. There's a problem. These methods are suitable for transporting simple fluids that do not require precise control over a long period of time, such as simple tips that are analyzed or inspected at the site of use and then disposable. .
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] したがって、本発明の目的は、使用する流体の物性に依存せず、外部ポンプなど の特殊な外部駆動装置なしで、流体を輸送でき、単体でも使え、組み込みも可能な 、簡易な微小吸引構造体及びその形成方法を提供することである。 [0010] Therefore, the object of the present invention does not depend on the physical properties of the fluid to be used, and can be transported without using a special external drive device such as an external pump. A suction structure and a method of forming the same are provided.
課題を解決するための手段  Means for solving the problem
[0011] 前記課題を解決するための手段として、請求項 1に係る発明は、大気圧以下に減 圧された真空空間上に、隔離層により前記真空空間と隔てられた内部空間を有し、 前記内部空間を覆う被覆層が設けられ、前記内部空間内に、外部からの力を前記隔 離層に伝え、前記隔離層の一部を破壊するための橋架部分が設けられ、前記内部 空間と外部空間につながる流路空間が設けられた微小構造体であって、前記隔離 層の破壊による前記内部空間の減圧により、前記流路空間内や前記流路空間につ ながる空間に在る気体及び Z又は液体である流体が、前記内部空間へ向かって輸 送されることを特徴とする微小吸引構造体である。 [0011] As means for solving the above-mentioned problem, the invention according to claim 1 has an internal space separated from the vacuum space by a separating layer on the vacuum space reduced to a pressure lower than the atmospheric pressure, A covering layer is provided to cover the internal space, and a bridge portion is provided in the internal space to transmit external force to the separation layer and destroy a part of the isolation layer. A microstructure having a flow path space connected to an external space, and present in the flow path space or in a space connected to the flow path space due to the decompression of the internal space due to the destruction of the isolation layer A micro-suction structure characterized in that a fluid that is gas and Z or liquid is transported toward the internal space.
[0012] 前記課題を解決するための手段として、請求項 2に係る発明は、請求項 1に記載の 発明において、前記真空空間内の真空度を保っため、又は、その真空度を更に上 げるために、吸着材が前記真空空間内に設置された微小吸引構造体であってもよい [0012] As means for solving the above-mentioned problem, the invention according to claim 2 is described in claim 1. In the invention, in order to maintain the vacuum degree in the vacuum space or to further increase the vacuum degree, the adsorbent may be a micro suction structure installed in the vacuum space.
[0013] 前記課題を解決するための手段として、請求項 3に係る発明は、請求項 1又は 2に 記載の発明において、流体を複数の異なる空間において輸送するための、前記内 部空間につながる 1つ又は複数の前記流路空間と、前記流路空間につながる 1つ又 は複数の異なる小空間が形成された微小吸引構造体であってもよい。 [0013] As a means for solving the above-mentioned problem, the invention according to claim 3 is connected to the internal space for transporting a fluid in a plurality of different spaces in the invention according to claim 1 or 2. It may be a microsuction structure in which one or a plurality of the channel spaces and one or a plurality of different small spaces connected to the channel spaces are formed.
[0014] 前記課題を解決するための手段として、請求項 4に係る発明は、請求項 1〜3のい ずれか 1項に記載の発明において、前記真空空間と、前記隔離層と、前記内部空間 と、前記流路空間と、前記小空間と、前記被覆層が、パイレックス (登録商標)ガラス、 シリコン、 PDMS、ポリエチレン、ポリプロピレン、ポリオレフイン、 PET、塩化ビュル、 アクリル、フッ素榭脂、エポキシ榭脂などカゝら選ばれる、 1つ又は複数の種類の材料 力も形成された微小吸引構造体であってもよい。これらの材料は、高価ではなぐ取り 扱い易ぐ加工に関わる従来技術により容易に加工できる材料である。 [0014] As a means for solving the above-mentioned problem, the invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the vacuum space, the isolation layer, and the internal The space, the channel space, the small space, and the coating layer are made of Pyrex (registered trademark) glass, silicon, PDMS, polyethylene, polypropylene, polyolefin, PET, chlorinated chloride, acrylic, fluorine resin, epoxy resin. It may be a micro-suction structure in which one or a plurality of types of material forces are also selected. These materials are materials that can be easily processed by conventional techniques related to processing that is not expensive but easy to handle.
[0015] 前記課題を解決するための手段として、請求項 5に係る発明は、大気圧以下に減 圧された真空空間を基底層に形成し、隔離層により前記真空空間と隔てられた内部 空間を流路層に形成し、前記内部空間を被覆層で覆い、外部からの力を前記隔離 層に伝え、前記隔離層の一部を破壊するための橋架部分を前記流路層内の前記内 部空間内に形成し、前記内部空間と外部空間につながる流路空間と、前記流路空 間につながる小空間を前記流路層に形成することを含む、微小吸引構造体を形成 する方法であって、前記基底層と、前記隔離層と、前記流路層と、前記被覆層が、陽 極接合や熱溶着などの接合に関わる技術により、積層接合されることを特徴とする微 小吸弓 I構造体を形成する方法である。 [0015] As means for solving the above-mentioned problems, the invention according to claim 5 is characterized in that a vacuum space reduced to an atmospheric pressure or lower is formed in the base layer, and an internal space separated from the vacuum space by an isolation layer. Is formed in the flow path layer, the internal space is covered with a covering layer, an external force is transmitted to the isolation layer, and a bridge portion for breaking a part of the isolation layer is provided in the flow path layer. A method of forming a micro-suction structure that includes forming in the channel layer a channel space that is formed in a partial space and connected to the internal space and the external space, and a small space that is connected to the channel space. The base layer, the isolation layer, the flow path layer, and the coating layer are laminated and bonded by a technique related to bonding such as positive electrode bonding or thermal welding. A method of forming a bow I structure.
[0016] 前記課題を解決するための手段として、請求項 6に係る発明は、請求項 5に記載の 発明において、前記真空空間が、前記基底層と前記隔離層が簡易真空下で接合さ れることにより、形成される微小吸引構造体を形成する方法であってもよい。  [0016] As a means for solving the above problem, the invention according to claim 6 is the invention according to claim 5, wherein the vacuum space is joined to the base layer and the isolation layer under a simple vacuum. Thus, a method of forming the micro suction structure to be formed may be used.
[0017] 前記課題を解決するための手段として、請求項 7に係る発明は、請求項 5又は 6に 記載の発明において、 1つ又は複数の前記真空空間が 1つの前記基底層に、 1つ又 は複数の前記内部空間と各内部空間につながる前記流路空間が 1つの前記流路層 に、光リソグラフィーを用いたウエット又はドライエッチング、機械加工、 FIB, LIGA、 ホットエンボス、プリンティングの加工に関わる技術力も選び用いることにより、形成さ れる微小吸引構造体を形成する方法であってもよい。これらの加工技術は、平面上 に複数の空間を同時に又は順次に形成することに適しており、 1つの微小吸引構造 体を形成するために、又は、複数の微小吸引構造体を同時に形成するために用いら れる。 [0017] As a means for solving the above-mentioned problems, the invention according to claim 7 is the invention according to claim 5 or 6, wherein one or a plurality of the vacuum spaces are provided in one base layer. or Is related to wet or dry etching using optical lithography, machining, FIB, LIGA, hot embossing, and printing on one flow path layer that has a plurality of the internal spaces and the flow path space connected to each internal space. It may be a method of forming a micro-suction structure to be formed by selecting and using technical power. These processing techniques are suitable for forming a plurality of spaces on a plane simultaneously or sequentially. In order to form one micro suction structure or to form a plurality of micro suction structures simultaneously. Used in
[0018] 前記課題を解決するための手段として、請求項 8に係る発明は、請求項 5〜7のい ずれ力 1項に記載の発明において、前記内部空間につながる 1つ又は複数の前記 流路空間と、前記流路空間につながる 1つ又は複数の前記小空間が、前記内部空 間と前記流路空間を前記流路層に形成する時、同時に形成される微小吸引構造体 を形成する方法であってもよ 、。  [0018] As a means for solving the above-mentioned problem, the invention according to claim 8 is the invention according to any one of claims 5 to 7, wherein one or more of the flows connected to the internal space are provided. A path space and one or more small spaces connected to the flow path space form a micro-suction structure that is formed simultaneously when the internal space and the flow path space are formed in the flow path layer. Even the method.
発明の効果  The invention's effect
[0019] 請求項 1に係る発明により、前記微小吸引構造体上の一箇所に、外部から直接的 又は間接的に力が加えられる際、前記橋架部分を介し、その力が前記隔離層に伝 わるため、前記隔離層の一部が破壊し、前記内部空間と前記真空空間がつながり、 流体が前記内部空間から前記真空空間へ流れ、前記内部空間は減圧し、前記流路 空間内や前記流路空間につながる空間に在る流体が前記内部空間に向かい吸引さ れる。故に、流体を輸送するための外部の駆動力を必要とせず、前記流路空間内や 前記流路空間につながる空間に在る流体を輸送できる。  [0019] According to the invention of claim 1, when a force is directly or indirectly applied to one place on the minute suction structure from the outside, the force is transmitted to the isolation layer via the bridge portion. Therefore, a part of the isolation layer is destroyed, the internal space and the vacuum space are connected, fluid flows from the internal space to the vacuum space, the internal space is depressurized, and the flow path space and the flow are The fluid in the space connected to the road space is sucked toward the internal space. Therefore, an external driving force for transporting the fluid is not required, and the fluid existing in the flow path space or in the space connected to the flow path space can be transported.
[0020] 請求項 2に係る発明により、吸着材を前記真空空間内に設置したことにより、前記 真空空間内の真空度が保たれ、又は、その真空度が更に上がるため、前記流路空 間内や前記流路空間につながる空間にある流体を輸送するための吸引力を保つこ と力 又は、その吸引力を上げることができる。  [0020] According to the invention of claim 2, since the adsorbent is installed in the vacuum space, the degree of vacuum in the vacuum space is maintained or the degree of vacuum is further increased. It is possible to maintain the suction force for transporting the fluid in the interior or the space connected to the flow path space, or increase the suction force.
[0021] 請求項 3に係る発明により、前記内部空間につながる 1つ又は複数の前記流路空 間が形成されたため、前記隔離層一部破壊により前記内部空間が減圧された際、 1 つ又は複数の前記流路空間内や前記流路空間につながる空間に在る流体を輸送 できる。例えば、複数の前記流路空間を組み合わせ、流体を分岐又は混合すること もできる。さらに、前記流路空間につながる 1つ又は複数の前記小空間が形成された ため、輸送される流体を操作することもできる。例えば、前記小空間に反応物質を設 置し、前記小空間内に輸送される流体を反応させることもできる。さらに、前記内部空 間と前記真空空間は、輸送された、又は反応した使用後の流体を留める空間にもな る。 [0021] According to the invention of claim 3, since one or a plurality of the flow passage spaces connected to the internal space are formed, when the internal space is decompressed due to partial destruction of the isolation layer, one or Fluid in a plurality of the flow path spaces and spaces connected to the flow path spaces can be transported. For example, combining a plurality of flow path spaces to branch or mix fluids You can also. Furthermore, since one or more of the small spaces connected to the flow path space are formed, the fluid to be transported can be manipulated. For example, a reactive substance can be installed in the small space, and a fluid transported in the small space can be reacted. Furthermore, the internal space and the vacuum space also serve as a space for retaining the used fluid that has been transported or reacted.
[0022] 請求項 4に係る発明により、微小吸引構造体を形成する材料が、高価ではなぐ入 手し易ぐ加工に関わる従来技術により容易に加工できるため、安価であり、使用後 捨てることができる微小吸引構造体を提供することができる。さらに、上記のように、輸 送に関わる前記流路空間と操作に関わる前記小空間をその材料に形成することによ り、微小吸引構造体を含む簡易で安価な分析又は検査チップを提供することもでき る。  [0022] According to the invention of claim 4, the material for forming the micro-suction structure can be easily processed by a conventional technique related to easy-to-access processing, which is not expensive, and is inexpensive and can be discarded after use. A micro-suction structure that can be provided can be provided. Furthermore, as described above, a simple and inexpensive analysis or inspection chip including a micro suction structure is provided by forming the flow path space related to transportation and the small space related to operation in the material. You can also.
[0023] 請求項 5に係る発明により、微小吸引構造体が、前記基底層と前記隔離層と前記 流路層と前記被覆層を積層接合することにより形成されるため、多くの複雑な形成ェ 程を必要とせず、微小吸引構造体を簡易に作製できる。量産に適した形成方法であ る。  [0023] According to the invention of claim 5, since the micro suction structure is formed by laminating and joining the base layer, the isolation layer, the flow path layer, and the coating layer, many complicated formation elements are formed. A minute suction structure can be easily produced without requiring a process. This is a formation method suitable for mass production.
[0024] 請求項 6に係る発明により、前記真空空間が、前記基底層と前記隔離層が簡易真 空下で接合されることにより形成されるため、上記の形成工程を利用でき、特別な装 置を必要としない。  [0024] According to the invention of claim 6, the vacuum space is formed by joining the base layer and the isolation layer under a simple vacuum. It does not need a place.
[0025] 請求項 7に係る発明により、 1つ又は複数の前記真空空間が前記基底層に、 1つ又 は複数の前記内部空間と各前記内部空間につながる前記流路空間が前記流路層 に、平面上に複数の空間を同時に又は順次に形成する量産に適した加工技術で形 成されるため、それらの層を用い、 1つの微小吸引構造を形成するときと同じ積層接 合工程数で、複数の微小吸引構造体を同時に形成することができる。  [0025] According to the invention of claim 7, one or more of the vacuum spaces are connected to the base layer, and one or more of the internal spaces and the flow path space connected to each of the internal spaces are the flow path layers. In addition, it is formed with a processing technique suitable for mass production in which a plurality of spaces are formed simultaneously or sequentially on a flat surface. Thus, a plurality of minute suction structures can be formed simultaneously.
[0026] 請求項 8に係る発明により、前記内部空間と、前記内部空間につながる 1つ又は複 数の前記流路空間と、前記流路空間につながる 1つ又は複数の前記小空間が、前 記流路層に同時に形成されるため、前記流路層を用い、微小吸引構造体を形成す るときと同じ積層接合工程数で、輸送に関わる前記流路空間と操作に関わる前記小 空間を有する、微小吸引構造体付の簡易な分析又は検査チップを作製することもで きる。さらに、複数の前記真空空間を前記基底層に形成し、複数の前記内部空間と、 各前記内部空間につながる 1つ又は複数の前記流路空間と、前記流路空間につな がる 1つ又は複数の前記小空間とを前記流路層に同時に形成することにより、それら の層を用い、 1つの微小吸引構造体を形成するときと同じ積層接合工程数で、複数 の微小吸引構造体付の簡易な分析又は検査チップを形成することもできる。 [0026] According to the invention of claim 8, the internal space, the one or more flow passage spaces connected to the internal space, and the one or more small spaces connected to the flow passage space are arranged in front of each other. Since the flow path layer is formed at the same time, the flow path layer used for the transportation and the small space related to the operation are reduced by the same number of lamination joining steps as the micro suction structure is formed. It is also possible to produce a simple analysis or inspection chip with a fine suction structure. wear. Further, a plurality of the vacuum spaces are formed in the base layer, the plurality of internal spaces, one or a plurality of the channel spaces connected to each of the internal spaces, and one channel connected to the channel space Alternatively, by simultaneously forming a plurality of the small spaces in the flow path layer, a plurality of micro suction structures can be attached with the same number of lamination joining steps as when one micro suction structure is formed using those layers. It is also possible to form a simple analysis or inspection chip.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]本発明の実施例に係る微小吸引構造体の概要断面図である。  FIG. 1 is a schematic sectional view of a micro suction structure according to an embodiment of the present invention.
[図 2]本発明の実施例に係る微小吸引構造体の一構成部分の概要上面図である。  FIG. 2 is a schematic top view of one component part of the micro suction structure according to the embodiment of the present invention.
[図 3]本発明の実施例に係る微小吸引構造体の一構成部分の概要上面図である。  FIG. 3 is a schematic top view of a component part of a micro suction structure according to an embodiment of the present invention.
[図 4]本発明の実施例に係る微小吸引構造体の一構成部分の概要上面図である。  FIG. 4 is a schematic top view of one component part of the micro suction structure according to the embodiment of the present invention.
[図 5]本発明の実施例に係る微小吸引構造体の一構成部分の概要上面図である。  FIG. 5 is a schematic top view of a component part of a micro suction structure according to an embodiment of the present invention.
[図 6]本発明の実施例に係る微小吸引構造体を形成する工程である。  FIG. 6 is a process of forming a micro suction structure according to an embodiment of the present invention.
[図 7]本発明の実施例に係る微小吸引構造体を形成する工程である。  FIG. 7 is a step of forming a micro suction structure according to an embodiment of the present invention.
[図 8]本発明の実施例に係る微小吸引構造体を形成する工程である。  FIG. 8 is a step of forming a micro suction structure according to an embodiment of the present invention.
[図 9]本発明の実施例に係る微小吸引構造体を形成する工程である。  FIG. 9 is a step of forming a micro suction structure according to an embodiment of the present invention.
符号の説明  Explanation of symbols
[0028] 11 被覆層  [0028] 11 Coating layer
12 流路層  12 Channel layer
13 隔離層  13 Isolation layer
14 基底層  14 Basal layer
15 吸着剤  15 Adsorbent
16 橋架部分  16 Bridge part
17 被破壊小部分  17 Small parts destroyed
21 真空空間  21 Vacuum space
22 内部空間  22 Internal space
23 流路空間  23 Channel space
24 流路端  24 Channel end
25 小空間 26 被破壊部分 25 small space 26 Damaged parts
31 外部力  31 External force
32 流体の流れ  32 Fluid flow
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 図 1は、本発明の実施形態となる微小吸引構造体の断面図を示す。図 2は、図 1中 の層 12を上方から見た面を示す。前記微小吸引構造体は、真空度 10_6〜10_3TOT rの範囲の大気圧以下に減圧された、体積 3 X 103mm3以下の範囲の真空空間 21 上に、隔離層 13により隔てられた内部空間 22を有し、前記内部空間 22を覆う被覆 層 11が設けられ、内部空間 22内に、外部から直接的又は間接的に加わる力 31を隔 離層 13に伝える橋架部分 16が設けられ、図 2に示されるような、内部空間 22と外部 空間につながる流路空間 23が設けられた、微小吸引構造体である。 FIG. 1 is a cross-sectional view of a micro suction structure according to an embodiment of the present invention. FIG. 2 shows a top view of layer 12 in FIG. The micro-suction structure is separated by a separation layer 13 on a vacuum space 21 having a volume of 3 × 10 3 mm 3 or less, which is decompressed to an atmospheric pressure in the range of vacuum degree 10 _6 to 10 _3 TOT r or less. A covering layer 11 is provided to cover the inner space 22, and a bridge portion 16 that transmits a force 31 applied directly or indirectly from the outside to the separating layer 13 is provided in the inner space 22. This is a micro-suction structure provided with a flow path space 23 connected to the internal space 22 and the external space as shown in FIG.
[0030] 真空空間 21を含む基底層 14と、隔離層 13と、内部空間 12と流路空間 23を含む 流路層 12と、被覆層 11は、ノ ィレックス (登録商標)ガラスやシリコンなどの無機材料 、 PDMS、ポリエチレン、ポリプロピレン、ポリオレフイン、 PET、塩化ビュル、アクリル 、フッ素榭脂、エポキシ榭脂などの榭脂材料などカゝら選ばれた、 1つ又は複数の種類 の材料から形成される。  [0030] The base layer 14 including the vacuum space 21, the isolation layer 13, the flow path layer 12 including the internal space 12 and the flow path space 23, and the covering layer 11 are made of, for example, Nylex (registered trademark) glass or silicon. Inorganic materials PDMS, polyethylene, polypropylene, polyolefin, PET, chlorinated chloride, acrylic, fluorine resin, epoxy resin, etc. .
[0031] 基底層 14と、隔離層 13と、流路層 12と、被覆層 11の厚さは、 0. 5mm〜3. Omm の範囲である。  [0031] The thickness of the base layer 14, the isolation layer 13, the flow path layer 12, and the covering layer 11 is in the range of 0.5 mm to 3. Omm.
[0032] 真空空間 21内の真空度を保っため、又は、その真空度を更に上げるために、吸着 材 15を真空空間 21内に設置してもよい。なお、吸着材 15の一例として、サエスゲッ ター社より販売されている Stl22のような、ガスを吸着する多孔質材を用いる。  In order to maintain the vacuum level in the vacuum space 21 or to further increase the vacuum level, the adsorbent 15 may be installed in the vacuum space 21. As an example of the adsorbent 15, a porous material that adsorbs gas, such as Stl22 sold by SAES Getter, is used.
[0033] 微小吸引構造体上の一箇所に、外部力 31が加えられた際、図 2に示される内部空 間 22を含む流路層 12の一部分である被破壊小部分 17が破壊され、外部力 31は、 流路層 12の橋架部分 16を介し、隔離層 13の一部分を破壊する。その際、内部空間 22内の流体力 矢印 32の向きに真空空間 21へ流れることにより、内部空間 22が減 圧し、流路空間 23内ゃ流路空間 23の一部である流路端 24につながる空間に在る 流体が、内部空間 22に向かい吸引される。故に、外部からの駆動力を必要とせず、 流路空間 23内ゃ流路空間 23につながる空間に在る流体を輸送できる。 [0034] 隔離層 13の一部に、外部力 31が橋架部分 16を介し隔離層 13に伝わる際、隔離 層 13の一部が破壊され易いように、その一部分の厚みが他の部分よりも薄い、溝状 の被破壊部分 26を形成してもよ 、。 [0033] When an external force 31 is applied to one place on the microsuction structure, the small portion 17 to be destroyed, which is a part of the flow path layer 12 including the internal space 22 shown in FIG. The external force 31 destroys a part of the isolation layer 13 through the bridge portion 16 of the flow path layer 12. At that time, the fluid force in the internal space 22 flows into the vacuum space 21 in the direction of the arrow 32, whereby the internal space 22 is depressurized, and the flow path space 23 has a flow path end 24 that is a part of the flow path space 23. The fluid in the connected space is sucked toward the internal space 22. Therefore, it is possible to transport the fluid present in the space connected to the channel space 23 in the channel space 23 without requiring external driving force. [0034] When an external force 31 is transmitted to a part of the isolation layer 13 via the bridge portion 16 to the isolation layer 13, the thickness of a part of the isolation layer 13 is smaller than that of the other part so that the part of the isolation layer 13 is easily broken. A thin, groove-like part to be destroyed 26 may be formed.
[0035] 内部空間 22につながる 1つ又は複数の流路空間と、流路空間 23につながる 1つ又 は複数の小空間を、例えば、流体の混合、反応、分離、抽出、分析などに関わる任 意の単位操作部分として、図 1中に示される流路層 12に任意に形成してもよい。図 3 は、流路端 24から吸引される流体を、 2つの異なる小空間 25内に設置された異種の 反応物質を使い、順次反応させるために形成された、流路層 12の例である。図 4は、 流路端 24から吸引される流体を、分岐し、 2つの異なる小空間 25内に設置された異 種の反応物質を使い、並列に反応させるために形成された、流路層 12の例である。 図 5は、 2つの流路端 24から吸引される異種の流体を、混合し、小空間 25内に設置 された反応物質を使い、反応させるために形成された、流路層 12の例である。  [0035] One or more channel spaces connected to the internal space 22 and one or more small spaces connected to the channel space 23 are related to, for example, fluid mixing, reaction, separation, extraction, analysis, etc. As an arbitrary unit operation part, it may be arbitrarily formed in the channel layer 12 shown in FIG. Fig. 3 shows an example of the channel layer 12 formed to sequentially react the fluid sucked from the channel end 24 using different reactants installed in two different small spaces 25. . Fig. 4 shows the flow path layer formed to branch the fluid sucked from the flow path end 24 and react in parallel using different kinds of reactants installed in two different small spaces 25. 12 examples. Fig. 5 shows an example of the channel layer 12 formed to mix different fluids sucked from the two channel ends 24 and react with each other using the reactants installed in the small space 25. is there.
[0036] 図 6から図 9に、この発明の実施形態の一例となる、微小吸引構造体の形成方法を 示す。  FIG. 6 to FIG. 9 show a method of forming a micro suction structure as an example of the embodiment of the present invention.
[0037] 一例として、基底層 14に厚さ 3mmのパイレックス (登録商標)ガラス、隔離層 13に 厚さ 500 mのシリコン基板、流路層 12に厚さ 2mmのパイレックス (登録商標)ガラス [0037] As an example, the base layer 14 has a 3 mm thick Pyrex (registered trademark) glass, the isolation layer 13 has a 500 m thick silicon substrate, and the channel layer 12 has a 2 mm thick Pyrex (registered trademark) glass.
、被覆層 11に厚さ 500 μ mの PDMSを用いる。 For the covering layer 11, PDMS having a thickness of 500 μm is used.
[0038] 第 1工程として、図 6に示されるように、真空空間 21を成す、幅 10mm、深さ 1. 5m m、長さ 20mmの微小空間を、基底層 14のパイレックス(登録商標)ガラスに、エッチ ングゃ機械加工等の手段により、形成した。 [0038] As a first step, as shown in FIG. 6, a microspace having a width of 10 mm, a depth of 1.5 mm, and a length of 20 mm, which forms a vacuum space 21, is formed of Pyrex (registered trademark) glass having a base layer of 14. In addition, etching was formed by means such as machining.
[0039] 第 2工程として、真空空間 21の真空度を保っため、又は、その真空度を更に上げ るため、第 1工程で形成された微小空間内に、吸着剤 15を設置した。吸着材 15の一 例として、サエスゲッタ一社より販売されている Stl 22のような、ガスを吸着する多孔 質材を用いた。 [0039] As the second step, the adsorbent 15 was placed in the minute space formed in the first step in order to maintain the vacuum degree of the vacuum space 21 or further increase the degree of vacuum. As an example of the adsorbent 15, a porous material that adsorbs gas, such as Stl 22 sold by SAES Getter, was used.
[0040] 第 3工程として、図 7に示されるように、幅 10mm、深さ 400 μ m、長さ 10mmの被破 壊部分 26を、隔離層 13のシリコン基板に、エッチングや機械加工等の手段により形 成した。  [0040] As the third step, as shown in FIG. 7, a to-be-destructed portion 26 having a width of 10 mm, a depth of 400 μm, and a length of 10 mm is formed on the silicon substrate of the isolation layer 13 by etching or machining. Formed by means.
[0041] 第 4工程として、真空空間 21が、基底層 14のパイレックス (登録商標)ガラスと隔離 層 13のシリコン基板を、 10_4Torrの真空下、摂氏 400度の接合温度において陽極 接合することにより、形成される。接合時、吸着材 15は一定時間加熱されるため、活 性化し、真空空間内に残るガスを吸着し、真空度を保つ。 [0041] As the fourth step, the vacuum space 21 is isolated from the Pyrex (registered trademark) glass of the base layer 14. It is formed by anodic bonding of the silicon substrate of layer 13 at a bonding temperature of 400 degrees Celsius under a vacuum of 10_4 Torr. At the time of joining, the adsorbent 15 is heated for a certain period of time, so it is activated and adsorbs the gas remaining in the vacuum space to maintain the degree of vacuum.
[0042] 第 5工程として、図 8に示されるように、橋架部分 16と図 2に示されるような被破壊小 部分 17を含む内部空間 22と、内部空間 22につながる流路空間 23と、図 3〜5に示 されるような小空間 25を、流路層 12のパイレックス (登録商標)ガラスに、エッチング や機械加工等の手段により形成した。  As a fifth step, as shown in FIG. 8, an internal space 22 including a bridge portion 16 and a small portion 17 to be destroyed as shown in FIG. 2, a flow path space 23 connected to the internal space 22, A small space 25 as shown in FIGS. 3 to 5 was formed in the Pyrex (registered trademark) glass of the channel layer 12 by means such as etching or machining.
[0043] 第 6工程として、流路層 12のノ ィレックス (登録商標)ガラスを隔離層 13のシリコン 基板上に陽極接合した。流路層 12のパイレックス (登録商標)ガラスと隔離層 13のシ リコン基板の接合は、隔離層 13のシリコン基板と基底層 14のノ ィレックス (登録商標 )ガラスの接合と同時に行ってもょ 、し、順次連続して行なってもよ 、。  [0043] As a sixth step, a glass (Norex) glass of the flow path layer 12 was anodically bonded onto the silicon substrate of the isolation layer 13. The Pyrex (registered trademark) glass of the flow path layer 12 and the silicon substrate of the isolation layer 13 may be bonded simultaneously with the bonding of the silicon substrate of the isolation layer 13 and the Nilex (registered trademark) glass of the base layer 14. But you can do it sequentially.
[0044] 第 7工程として、図 9に示されるように、内部空間 22は、被覆層 11の PDMSを、酸 素プラズマ等の手段によりその表面を酸ィ匕した後、流路層 12のパイレックス (登録商 標)ガラスを覆うように、密着することにより、形成される。  As the seventh step, as shown in FIG. 9, the internal space 22 is formed by oxidizing the surface of the PDMS of the coating layer 11 by means of oxygen plasma or the like, and then the Pyrex of the flow path layer 12. (Registered trademark) It is formed by sticking so as to cover the glass.
[0045] この発明の実施形態の一例として、図中には 1つの微小吸引構造体のみが示され ているが、広面積を有する基底層 14と、隔離層 13と、流路層 12と、被覆層 11を用い 、複数の微小吸引構造体を同時に形成してもよぐその形成工程の 1つである、流路 層 12に複数の内部空間 22を形成する際、各微小吸引構造体の内部空間 22につな がる、例えば、図 3〜5に示されるような、流体の混合、反応、分離、抽出、分析などに 関わる任意の単位操作部分のための流路空間 23や小空間 25を、同時に形成しても よい。  [0045] As an example of an embodiment of the present invention, only one micro-suction structure is shown in the figure, but a base layer 14 having a large area, an isolation layer 13, a flow path layer 12, When forming a plurality of internal spaces 22 in the flow path layer 12, which is one of the forming steps in which a plurality of micro suction structures can be formed simultaneously using the coating layer 11, Channel space 23 or small space for any unit operation part connected to internal space 22, for example, as shown in Figs. 3-5, involved in fluid mixing, reaction, separation, extraction, analysis, etc. 25 may be formed simultaneously.

Claims

請求の範囲 The scope of the claims
[1] 大気圧以下に減圧された真空空間上に、隔離層により前記真空空間と隔てられた内 部空間を有し、前記内部空間を覆う被覆層が設けられ、前記内部空間内に、外部か らのカを前記隔離層に伝え、前記隔離層の一部を破壊するための橋架部分が設け られ、前記内部空間と外部空間につながる流路空間が設けられた微小構造体であつ て、前記隔離層の破壊による前記内部空間の減圧により、前記流路空間内や前記 流路空間につながる空間に在る気体及び Z又は液体である流体が、前記内部空間 へ向かって輸送されることを特徴とする微小吸引構造体。  [1] An internal space separated from the vacuum space by a separating layer is provided on a vacuum space whose pressure is reduced to below atmospheric pressure, and a covering layer is provided to cover the internal space. A microstructure that is provided with a bridge portion for transmitting the mosquito from the isolation layer to destroy a part of the isolation layer, and provided with a flow path space connected to the internal space and the external space; Due to the decompression of the internal space due to the destruction of the isolation layer, the gas and the fluid that is Z or liquid in the flow path space and the space connected to the flow path space are transported toward the internal space. Characteristic micro-suction structure.
[2] 前記真空空間内の真空度を保っため、又は、その真空度を更に上げるために、吸着 材が前記真空空間内に設置されたことを特徴とする請求項 1に記載の微小吸引構造 体。  [2] The microsuction structure according to claim 1, wherein an adsorbent is installed in the vacuum space in order to maintain the vacuum degree in the vacuum space or to further increase the vacuum degree. body.
[3] 流体を複数の異なる空間において輸送するための、前記内部空間につながる 1つ又 は複数の前記流路空間と、前記流路空間につながる 1つ又は複数の異なる小空間 が形成されたことを特徴とする請求項 1又は 2に記載の微小吸引構造体。  [3] One or a plurality of the channel spaces connected to the internal space and one or a plurality of different small spaces connected to the channel space are formed for transporting the fluid in a plurality of different spaces. The microsuction structure according to claim 1 or 2, wherein
[4] 前記真空空間と、前記隔離層と、前記内部空間と、前記流路空間と、前記小空間と、 前記被覆層が、パイレックス (登録商標)ガラス、シリコン、 PDMS、ポリエチレン、ポリ プロピレン、ポリオレフイン、 PET、塩化ビュル、アクリル、フッ素榭脂、エポキシ榭脂 など力も選ばれた、 1つ又は複数の種類の材料力も形成されたことを特徴とする、請 求項 1〜3のいずれか 1項に記載の微小吸引構造体。  [4] The vacuum space, the isolation layer, the internal space, the flow path space, the small space, and the coating layer are made of Pyrex (registered trademark) glass, silicon, PDMS, polyethylene, polypropylene, Any one of claims 1 to 3, characterized in that one or more types of material forces are also formed, such as polyolefin, PET, butyl chloride, acrylic, fluorine resin, epoxy resin, etc. The micro suction structure according to Item.
[5] 大気圧以下に減圧された真空空間を基底層に形成し、隔離層により前記真空空間と 隔てられた内部空間を流路層に形成し、前記内部空間を被覆層で覆い、外部からの 力を前記隔離層に伝え、前記隔離層の一部を破壊するための橋架部分を前記流路 層内の前記内部空間内に形成し、前記内部空間と外部空間につながる流路空間と 、前記流路空間につながる小空間を前記流路層に形成することを含む、微小吸引構 造体を形成する方法であって、前記基底層と、前記隔離層と、前記流路層と、前記 被覆層が、陽極接合や熱溶着などの接合に関わる技術により、積層接合されることを 特徴とする微小吸弓 I構造体を形成する方法。  [5] A vacuum space reduced to atmospheric pressure or lower is formed in the base layer, an internal space separated from the vacuum space by the isolation layer is formed in the flow path layer, the internal space is covered with a coating layer, and externally A flow path space connected to the internal space and the external space by forming a bridge portion in the internal flow space in the flow path layer to transmit a force of A method of forming a micro-suction structure comprising forming a small space connected to the flow path space in the flow path layer, the base layer, the isolation layer, the flow path layer, and the A method of forming a micro arch I structure characterized in that the coating layer is laminated and bonded by a technique related to bonding such as anodic bonding or thermal welding.
[6] 前記真空空間が、前記基底層と前記隔離層が簡易真空下で接合されることにより、 形成されることを特徴とする請求項 5に記載の微小吸引構造体を形成する方法。 [6] The vacuum space is formed by joining the base layer and the isolation layer under a simple vacuum. 6. The method of forming a microsuction structure according to claim 5, wherein the microsuction structure is formed.
[7] 1つ又は複数の前記真空空間が前記基底層に、 1つ又は複数の前記内部空間と各 前記内部空間につながる前記流路空間が前記流路層に、光リソグラフィーを用いた ウエット又はドライエッチング、機械加工、 FIB, LIGA、ホットエンボス、プリンティング の加工に関わる技術力 選び用いることにより、形成されることを特徴とする請求項 5 又は 6に記載の微小吸弓 I構造体を形成する方法。 [7] One or a plurality of the vacuum spaces are formed in the base layer, and one or a plurality of the internal spaces and the flow path spaces connected to the internal spaces are formed in the flow path layer using a wet or The microabsorbent I structure according to claim 5 or 6, wherein the structure is formed by selecting and using a technical force related to dry etching, machining, FIB, LIGA, hot embossing, and printing. Method.
[8] 前記内部空間につながる 1つ又は複数の前記流路空間と、前記流路空間につなが る 1つ又は複数の前記小空間が、前記内部空間と前記流路空間を前記流路層に形 成する時、同時に形成されることを特徴とする請求項 5〜7のいずれか 1項に記載の 微小吸弓 I構造体を形成する方法。 [8] One or more of the channel spaces connected to the internal space, and one or more of the small spaces connected to the channel space, the internal space and the channel space as the channel layer. The method for forming a micro arch I structure according to any one of claims 5 to 7, wherein the micro arch I structure is formed at the same time as forming.
PCT/JP2006/315120 2005-10-13 2006-07-31 Micro suction structure and method of forming the same WO2007043236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-298770 2005-10-13
JP2005298770A JP3844305B1 (en) 2005-10-13 2005-10-13 Microsuction structure and method for forming the same

Publications (1)

Publication Number Publication Date
WO2007043236A1 true WO2007043236A1 (en) 2007-04-19

Family

ID=37478003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315120 WO2007043236A1 (en) 2005-10-13 2006-07-31 Micro suction structure and method of forming the same

Country Status (2)

Country Link
JP (1) JP3844305B1 (en)
WO (1) WO2007043236A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211931A (en) * 2014-05-01 2015-11-26 学校法人同志社 Method and apparatus for producing microdroplet using microfluidic chip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5244461B2 (en) * 2008-05-29 2013-07-24 株式会社東芝 Chemical analyzer and analysis chip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013127A1 (en) * 1999-08-11 2001-02-22 Asahi Kasei Kabushiki Kaisha Analyzing cartridge and liquid feed control device
JP2005031070A (en) * 2003-06-17 2005-02-03 Institute Of Physical & Chemical Research Micro fluid control mechanism and microchip
JP2006053064A (en) * 2004-08-12 2006-02-23 Pentax Corp Micro-fluid chip and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013127A1 (en) * 1999-08-11 2001-02-22 Asahi Kasei Kabushiki Kaisha Analyzing cartridge and liquid feed control device
JP2005031070A (en) * 2003-06-17 2005-02-03 Institute Of Physical & Chemical Research Micro fluid control mechanism and microchip
JP2006053064A (en) * 2004-08-12 2006-02-23 Pentax Corp Micro-fluid chip and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONG C.-C. ET AL: "Disposable air-bursting detonators as an alternative on-chip power source", MICRO ELECTRO MECHANICAL SYSTEMS 2002, 20 January 2002 (2002-01-20) - 24 January 2002 (2002-01-24), pages 240 - 243, XP003010996 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211931A (en) * 2014-05-01 2015-11-26 学校法人同志社 Method and apparatus for producing microdroplet using microfluidic chip

Also Published As

Publication number Publication date
JP2007107997A (en) 2007-04-26
JP3844305B1 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
Park et al. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices
Grover et al. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices
JP5579443B2 (en) Microfluidic device
US7863035B2 (en) Fluidics devices
Prakash et al. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier
Vasudev et al. Prospects of low temperature co-fired ceramic (LTCC) based microfluidic systems for point-of-care biosensing and environmental sensing
US9512421B1 (en) Miniature acoustic wave lysis system and uses thereof
US8097222B2 (en) Microfluidic device with integrated micropump, in particular biochemical microreactor, and manufacturing method thereof
Nath et al. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes
CN100537219C (en) Methods and apparatus for pathogen detection and analysis
US20060057030A1 (en) Fluid transport device and disposable chip having the same
JP4372616B2 (en) Microvalve, micropump and microchip incorporating them
CA2512071A1 (en) Methods and apparatus for pathogen detection and analysis
WO2006123578A1 (en) Testing chip for analyzing target substance contained in analyte, and microscopic comprehensive analytical system
JP2008082961A (en) Microchannel device
US10308977B2 (en) Device and method for processing a biological sample and analysis system for analyzing a biological specimen
WO2015150742A1 (en) Fluid delivery
WO2007043236A1 (en) Micro suction structure and method of forming the same
JP2006053064A (en) Micro-fluid chip and its manufacturing method
Kuru et al. Lab-on-a-chip sensors: recent trends and future applications
Karlsson et al. PCR on a PDMS-based microchip with integrated bubble removal
JP2005249540A (en) Microchip and lamination method of pdms substrate and counter substrate
Knapkiewicz et al. Anodic bonding of glass-to-glass through magnetron spattered nanometric silicon layer
JP2006029485A (en) Microvalve and micro fluid device having the same
JP2004113967A (en) Micromixer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781998

Country of ref document: EP

Kind code of ref document: A1