WO2007042252A1 - Hybrid catalyst systems supported on magnesium halide - Google Patents

Hybrid catalyst systems supported on magnesium halide Download PDF

Info

Publication number
WO2007042252A1
WO2007042252A1 PCT/EP2006/009749 EP2006009749W WO2007042252A1 WO 2007042252 A1 WO2007042252 A1 WO 2007042252A1 EP 2006009749 W EP2006009749 W EP 2006009749W WO 2007042252 A1 WO2007042252 A1 WO 2007042252A1
Authority
WO
WIPO (PCT)
Prior art keywords
radicals
aryl
alkyl
substituted
carbon atoms
Prior art date
Application number
PCT/EP2006/009749
Other languages
French (fr)
Inventor
Shahram Mihan
Fabiana Fantinel
Original Assignee
Basell Polyolefine Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basell Polyolefine Gmbh filed Critical Basell Polyolefine Gmbh
Priority to US12/083,066 priority Critical patent/US7723448B2/en
Priority to EP06806126.6A priority patent/EP1943281B1/en
Priority to JP2008534916A priority patent/JP2009511681A/en
Priority to BRPI0617253A priority patent/BRPI0617253A2/en
Priority to AU2006301483A priority patent/AU2006301483A1/en
Publication of WO2007042252A1 publication Critical patent/WO2007042252A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61912Component covered by group C08F4/60 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61916Component covered by group C08F4/60 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/6392Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a catalyst system comprising at least two different transition metal coordination compounds supported on an adduct containing magnesium halide and an or- ganoaluminum compound and it relates to a polymerisation process in the presence of said catalyst system.
  • Single site catalyst components are well known in the art and are usually used in conjunction with alumoxanes or boron compounds as cocatalysts.
  • the catalyst systems so obtained can be used supported on an inert support in order to control the morphology of the obtained polymer and to avoid fouling in the reactor, especially in a gas-phase or slurry polymerization processes.
  • catalyst compositions comprising two or more different olefin polymerization catalysts of the Ziegler type or the metallocene type is known.
  • the copolymers of ethylene with higher ⁇ -olefins such as propene, 1-butene, 1-pentene, 1-hexene or 1-octene known as LLDPE (linear low density polyethylene) which are formed using classical Ziegler-Natta catalysts based on titanium are different from an LLDPE which is prepared using a metallocene.
  • LLDPE linear low density polyethylene
  • SCBD short chain branching distribution
  • the mechanical properties are therefore particularly dependent on the short chain branching distribution.
  • the short chain branching distribution also plays a role in particular processing methods, e.g. in film extrusion in which the crystallization behaviour of the ethylene copolymers during cooling of the film extrudate is an important factor in determining how quickly and in what quality a film can be extruded.
  • the correct combination of catalysts for a balanced combination of good mechanical properties and good processability is difficult to find in view of the large number of possible combinations.
  • the single site components in the above mentioned catalyst systems are usually activated by aluminoxanes.
  • WO 99/46302 describes a catalyst composition based on (a) an iron-pyridinebisimine component and (b) a further catalyst such as a zirconocene or Ziegler catalyst and their use for the polymerization of ethylene and olefins.
  • the transition metal coordination compounds in theses types of catalysts are usually activated by aluminoxanes.
  • EP 1568716 describes catalyst systems comprising a support based on magnesium halide and a special transition metal coordination compound. These special catalyst systems are active without the addition of alumoxanes. None is said about catalyst systems comprising two different transition metal coordination compounds.
  • Mg is magnesium
  • T is chlorine, bromine, or iodine, preferably chlorine
  • R u is a linear or branched C 1 -Ci 0 alkyl radical, preferably a linear C 1 -C 10 alkyl radical, more preferably methyl or ethyl; y ranges from 6.00 to 0.05; preferably Y ranges from 2 to 0.1 , more preferably from 1 to 0.1 ; j ranges from 3 to 0.1 , preferably from 3 to 0.5; more preferably from 3 to 1 being also a non integer number; and
  • R q are substituents which are the same or different and which are hydrocarbon radicals containing from 1 to 20 carbon atoms optionally containing silicon or germanium atoms, pref- erably R q is a linear or branched, cyclic or acyclic, d-C 2 o-alkyl, C 2 -C 2 o-alkenyl, C 2 -C 20 - alkynyl, C 6 -C 20 -aryl, C 7 -C 20 -alkylaryl or C 7 -C 2 o-arylalkyl radicals optionally containing silicon or germanium atoms; more preferably R q is a linear or branched C ⁇ C ⁇ -alkyl radical; even more preferably R q is an ethyl, a n-propyl, an iso-propyl, a n-butyl, an iso-butyl, a tert-butyl, a hexyl or an
  • transition metal coordination compounds b) with at least two different transition metal coordination compounds wherein one of the transition metal coordination compounds is a compound in which the transition metal is selected from Groups 6, 8, 9 and 10 of the Periodic Table of the Elements (B), preferably selected from the group of elements consisting of Cr, Fe, Co, Ni and Pd, particularly pref- erably Fe and Co, in particular Fe.
  • BET surface area
  • R q1 substituents same or different, are hydrogen at- oms, halogen atoms, or hydrocarbon radicals containing from 1 to 20 carbon atoms optionally containing silicon or germanium atoms; with the proviso that at least one R q1 is different from halogen, and e ranges from 0 to 1 , being also a non-integer number; preferably such hydrocarbon radicals are linear or branched, cyclic or acyclic, CrC ⁇ o-alkyI, C 2 -C 20 -alkenyl, C 2 -C 20 -alkynyl, C 6 - C 20 -aryl, C 7 -C 20 -alkylaryl or C 7 -C 20 -arylalkyl radicals optionally containing silicon or germanium atoms; preferably R q1 is a linear or branched C ⁇ C ⁇ -alky
  • adduct of formula MgT 2 * w R U OH is partially dealcoholated as described in US 5,698,487. Therefore a further object of the present invention is a supported catalyst system obtainable by the process comprising the following steps:
  • R q1 sub- stituents are hydrogen atoms, halogen atoms, or hydrocarbon radicals containing from 1 to 20 carbon atoms optionally containing silicon or germanium atoms; with the proviso that at least one R q1 is different from halogen, and e ranges from 0 to 1 , being also a non-integer number; preferably such hydrocarbon radicals are linear or branched, cyclic or acyclic, CrC ⁇ o-alkyl, C 2 -C 20 -alkenyl, C 2 -C 20 -alkynyl, C 6 -C 20 -aryl, C 7 - C 20 -alkylaryl or C 7 -C 20 -arylalkyl radicals optionally containing silicon or germanium atoms;
  • step b) contacting the product obtained from step a) with at least two different transition metal coordination compounds wherein one of the transition metal coordination compounds is a compound in which the transition metal is selected from Groups 6, 8, 9 and 10 of the Periodic Table of the Elements (B), preferably selected from the group of elements consisting of Cr, Fe, Co, Ni and Pd, particularly preferably Fe and Co, in particular Fe as described above.
  • the transition metal coordination compounds is a compound in which the transition metal is selected from Groups 6, 8, 9 and 10 of the Periodic Table of the Elements (B), preferably selected from the group of elements consisting of Cr, Fe, Co, Ni and Pd, particularly preferably Fe and Co, in particular Fe as described above.
  • the partially dealcoholated adduct of formula MgT 2 * w R U OH used in step a) can be obtained by partial dealcoholation of adducts of MgT 2 with alcohols, said adducts contains from 1 to 6 mol of alcohol. It is possible that two adducts having the same content of alcohol, i.e. having the same empirical formula, be different in porosity and surface area for the reason that one adduct is partially dealcoholated.
  • the dealcoholation can be carried out according to known methodologies such as those described in US 5,698,487.
  • partially dealcoholated adducts can be obtained having an alcohol content generally ranging from 0.1 to 3 moles of alcohol per mole of MgT 2 , preferably from 2.9 to 0.5; more preferably from 2.9 to 1.
  • Said partially dealcoholated magnesium adduct is then contacted with an organo-aluminium compound of formula H e AIR q1 3-e or H e AI 2 R q V e in an inert solvent with methods common known in the art, such as the method described in EP-A-553 806.
  • step b) of the process of the present invention at least two different transition metal coordina- tion compounds, preferably 2 or 3, more preferably two different transition metal coordination compounds can be supported on the carrier obtained in step a) according to known methods by bringing the product of step a) into contact, for example, with a solution of the said transition metal coordination compounds, operating at temperatures between -78 0 C and 15O 0 C, preferably between room temperature and 12O 0 C.
  • the said transition metal coordination compounds that are not fixed on the support are removed by filtration or similar methods.
  • the amount of said transition metal coordination compounds supported on the adduct of formula (I) is generally between 1000 ⁇ mol/g of support and 1 ⁇ mol/g of support; preferably said amount ranges from 500 ⁇ mol/g of support to 2 ⁇ mol/g of support; more preferably from 200 ⁇ mol/g of support to 2 ⁇ mol/g of support.
  • the molar ratio of said transition metal coordination compounds in the inventive catalyst system depends on the individual activity of each transition metal coordination compound and on the intended polymer composition.
  • the molar proportion of each transition metal coordination com- pound supported on the adduct of formula (I) is usually at least 1 %, preferably at least 5%, more preferably at least 10%, most preferably at least 15% of the total molar amount of used transition metal coordination compounds.
  • the supported catalyst system described in the present invention comprises at least two different transition metal coordination compounds wherein one of the transition metal coordination compounds is a compound in which the transition metal is selected from Groups 6, 8, 9 and 10 of the Periodic Table of the Elements (B), preferably selected from the group of elements consisting of Cr, Fe, Co, Ni and Pd, particularly preferably Fe and Co, in particular Fe.
  • B Periodic Table of the Elements
  • This first transition metal compound (B) comprises preferably ligands selected from the group consisting of cyclopentadi- enyl derivatives, phenoxyimine derivatives and uncharged or singly or multiply negatively charged monodentate, bidentate or tridentate nitrogen ligands having one, two or three coordinating nitrogen atoms, preferably cyclopentadienyl derivatives and uncharged, tridentate nitrogen ligands having three coordinating nitrogen atoms.
  • transition metal coordination compounds (A) it is in principle possible to use all compounds of the transition metals of groups 3 to 12 of the Periodic Table or the lanthanides which comprise organic or inorganic groups and usually form active catalysts for olefin polymerization after reaction with a cocatalyst, specially with the adduct of formula (I).
  • the transition metal coordination compounds are usually compounds in which at least one monodentate or polyden- tate ligand is bound via sigma or pi bonds to the central transition metal atom.
  • Possible ligands include both ligands comprising cyclopentadienyl radicals and ligands which are free of cyclopentadienyl radicals, preferably ligands selected from the group consisting of cyclopentadienyl derivatives, phenoxyimine derivatives and uncharged or singly or multiply negatively charged monodentate, bidentate or tridentate nitrogen ligands having one, two or three coordinating nitrogen atoms, preferably cyclopentadienyl derivatives and uncharged, tridentate nitrogen ligands having three coordinating nitrogen atoms. Chem. Rev. 2000, Vol. 100, No. 4, describes many such compounds which are suitable for olefin polymerization. Furthermore, multinuclear cyclopentadienyl complexes are also suitable for olefin polymerization.
  • (A) and (B) are two different iron coordination compounds like:
  • (A) is a Ti, Zr or Hf coordination compound like TiCI 4 , Ti(OiPr) 4 , ZrCI 4 or (n-Bu-Cp) 2 HfCI 2 and (B) is an iron coordination compound like
  • one of the transition metal coordination compounds is an iron or cobalt, preferably an iron coordination compound (B) comprising a neutral tridentate ligand comprising three coordinating nitrogen atoms, preferably a 2,6-bisimino pyri- din ligand.
  • the neutral tridentate ligand comprising three coordinating nitrogen atoms of the iron or cobalt coordination compound (B) bears at least two ortho, ortho-disubstituted aryl radicals.
  • transition metal coordination compounds (B) of formula (II) Preference is given to transition metal coordination compounds (B) of formula (II)
  • M is Fe or Co, in particular Fe
  • E 1C is nitrogen or phosphorus, in particular nitrogen
  • E 2C -E 4C are each, independently of one another, carbon, nitrogen or phosphorus, in particular carbon
  • R 1c -R 3C are each, independently of one another, hydrogen Ci-C 22 -alkyl, C 2 -C 22 -alkenyl, C 6 -C 22 - aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR 18C 2 , OR 18C , SiR 19C 3 , where the organic radicals R 1C -R 3C may also be substituted by halogens and/or two vicinal radicals R 1C -R 3C may also be joined to form a five-, six- or seven- membered ring, and/or two vicinal radicals R 1C -R 3C are joined to form a five-, six- or seven- membered heterocycle containing at least one atom from the group consisting of N, P,
  • R 4C -R 7C are each, independently of one another, hydrogen, d-C 22 -alkyl, C 2 -C 22 -alkenyl, C 6 -C 22 - aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR 18C 2 , SiR 19C 3 , where the organic radicals R 4C -R 7C may also be substituted by halogens and/or two geminal or vicinal radicals R 4C -R 7C may also be joined to form a five-, six- or seven- membered ring, and/or two geminal or vicinal radicals R 4C -R 7C are joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and S, and when v is 0, R 6C is a bond to L 1C and/or R 7C is a
  • u is 0 when E 2C -E 4C is nitrogen or phosphorus and is 1 when E 2C -E 4C is carbon
  • L 1C -L 2C are each, independently of one another, nitrogen or phosphorus, in particular nitrogen,
  • independently of one another, d-C ⁇ -alkyl, C 2 -C 22 -alkenyl, C 6 -C 22 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR 18C 2 , OR 18C , SiR 19C 3 , where the organic radicals R 8C -R 11C may also be substituted by halogens and/or two vicinal radicals R 8C -R 17C may also be joined to form a five-, six- or seven- membered ring, and/or two vicinal radicals R 8C -R 17C are joined to form a five-, six- or seven- membered heterocycle containing at least one atom from the group consisting of N, P, O and S,
  • R i2 c_ R i7 c are eacn ⁇ independently of one another, hydrogen, C r C 22 -alkyl, C 2 -C 22 -alkenyl, C 6 -C 22 - aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR 18C 2 , OR 18C , SiR 19C 3 , where the organic radicals R 12C -R 17C may also be substituted by halogens and/or two vicinal radicals R 8C -R 17C may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R 8C -R 17C are joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and S,
  • the indices v are each, independently of one another, 0 or 1 ,
  • the radicals X c are each, independently of one another, fluorine, chlorine, bromine, iodine, hy- drogen, d-do-alky!, C 2 -C 10 -alkenyl, C 6 -C 20 -aryl, arylalkyl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR 18C 2 , 0R 18C , SR 18C , SO 3 R 18C , OC(O)R 18C , CN, SCN, ⁇ -diketonate, CO, BF 4 " , PF 6 " or a bulky noncoordinating anion and the radicals X c may be joined to one another,
  • the radicals R 18C are each, independently of one another, hydrogen, C 1 -C 2O -BlKyI, C 2 -C 2 o-alkenyl, C 6 -C 2 o-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR 19C 3 , where the organic radicals R 18C may also be substituted by halogens or nitrogen- and oxygen-containing groups and two radicals R 18C may also be joined to form a five- or six-membered ring,
  • the radicals R 19C are each, independently of one another, hydrogen, Ci-C 2 o-alkyl, C 2 -C 20 -alkenyl, C 6 -C 20 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, where the organic radicals R 19C may also be substituted by halogens or nitrogen- and oxygen-containing groups and two radicals R 19C may also be joined to form a five- or six- membered ring,
  • s is 1 , 2, 3 or 4, in particular 2 or 3,
  • D is an uncharged donor
  • t is from 0 to 4, in particular 0, 1 or 2.
  • E 2C to E 4C in a molecule of formula (II) can be identical or different. If E 1C is pphhoosspphhoorruuss, tthheenn EE 22CC ttoo EE 44CC aarree pprreeffeerraabbllyy eeaacchh ccaarrbboonn. If E 1C is nitrogen, then E 2C to E 4C are each preferably nitrogen or carbon, in particular carbon.
  • the substituents R 1C -R 3C and R 8C -R 17C can be varied within a wide range. Possible carboorganic substituents R 1C -R 3C and R 8C -R 17C are, for example, the following: d-C 22 -alkyl which may be linear or branched, e.g.
  • cyclopropyl cyclobu- tyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C 2 -C 22 -alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g.
  • halogens such as fluorine, chlorine or bromine.
  • R 1C -R 3C and R 8C -R 17C can also be amino NR 18C 2 or N(SiR 19 S) 2 , alkoxy or aryloxy OR 18C , for example dimethylamino, N- pyrrolidinyl, picolinyl, methoxy, ethoxy or isopropoxy or halogen such as fluorine, chlorine or bromine.
  • Possible radicals R 19C in organosilicon substituents SiR 19C 3 are the same carboorganic radicals as have been described above for R 1C -R 3C , where two R 19C may also be joined to form a 5- or 6-membered ring, e.g.
  • SiR 19C 3 radicals may also be bound to E 2C - E 4C via an oxygen or nitrogen, for example trimethylsilyloxy, triethylsilyloxy, butyldimethylsilyloxy, tributylsilyloxy or tri-tert-butylsilyloxy.
  • Preferred radicals R 1C -R 3C are hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, ortho-dialkyl- or -dichloro-substituted phenyls, trialkyl- or trichloro-substituted phenyls, naphthyl, biphenyl and anthranyl.
  • Particularly preferred organosilicon substituents are trialkylsilyl groups having from 1 to 10 carbon atoms in the alkyl radical, in particular trimethylsilyl groups.
  • Preferred radicals R 12C -R 17C are hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine, in particular hydrogen.
  • R 13C and R 16C are each methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine or bromine and R 12C , R 14C , R 15C and R 17C are each hydrogen.
  • R 8C -R 11C are methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine.
  • R 8C and R 10C are each a d-C ⁇ -alkyl which may also be substituted by halogens, in particular a CVC ⁇ rn-alkyl which may also be substituted by halogens, e.g.
  • R 8C and R 10C each being a CrC ⁇ -alkyl which may also be substituted by halogens, in particular a C r C 22 -n-alkyl which may also be substituted by halogens, e.g.
  • R 9C and R 11C are each a halogen such as fluorine, chlorine or bromine.
  • R 12C , R 14C , R 15C and R 17C are identical, R 13C and R 16C are identical, R 9C and R 11C are identical and R 8C and R 10C are identical.
  • R 4C -R 7C can be varied within a wide range. Possible carboorganic substitu- ents R 4C -R 7C are, for example, the following: Ci-C 22 -alkyl which may be linear or branched, e.g.
  • cyclopropyl cyclobutyl, cyclopentyl, cyclo- hexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C 2 -C 22 -alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g.
  • halogens such as fluorine, chlorine or bromine.
  • R 4C -R 7C may be amino NR 18C 2 or N(SiR 19C 3 ) 2 , for example dimethylamino, N-pyrrolidinyl or picolinyl.
  • Possible radicals R 19C in organosilicone substituents SiR 19C 3 are the same carboorganic radicals as have been described above for R 1C -R 3C , where two R 19C may also be joined to form a 5- or 6-membered ring, e.g.
  • SiR 19C 3 radicals can also be bound via nitrogen to the carbon bearing them.
  • R 6C is a bond to L 1C and/or R 7C is a bond to L 2C , so that L 1C forms a double bond to the carbon atom bearing R 4C and/or L 2C forms a double bond to the carbon atom bearing R 5C .
  • Preferred radicals R 4C -R 7C are hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert- butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, benzyl, phenyl, ortho-dialkyl- or dichloro-substituted phenyls, trialkyl- or trichloro-substituted phenyls, naphthyl, biphenyl and anthranyl.
  • amide substituents NR 18C 2 in particular secondary amides such as dimethylamide, N-ethylmethylamide, diethylamide, N-methylpropylamide, N-methylisopropylamide, N-ethyliso- propylamide, dipropylamide, diisopropylamide, N-methylbutylamide, N-ethylbutylamide, N-methyl- tert-butylamide, N-tert-butylisopropylamide, dibutylamide, di-sec-butylamide, diisobutylamide, tert- amyl-tert-butylamide, dipentylamide, N-methylhexylamide, dihexylamide, tert-amyl-tert- octylamide, dioctylamide, bis(2-ethylhexyl)amide, didecylamide, N-methyloctade
  • L 1C and L 2C are each, independently of one another, nitrogen or phosphorus, in particular nitro- gen, and when v is 0 can form a double bond with the carbon atom bearing R 4C or R 5C .
  • L 1C and/or L 2C together with the carbon atom bearing R 4C or R 5C forms, in particular, an amido group -CR 4C R 6C -N ⁇ - or -CR 5C R 7C -N " -.
  • the ligands X c result, for example, from the choice of the appropriate starting metal compounds used for the synthesis of the iron complexes, but can also be varied afterward.
  • Possible ligands X c are, in particular, the halogens such as fluorine, chlorine, bromine or iodine, in particular chlorine.
  • Alkyl radicals such as methyl, ethyl, propyl, butyl, vinyl, allyl, phenyl or benzyl are also usable ligands X c .
  • ligands X c mention may be made, purely by way of example and in no way exhaustively, of trifluoroacetate, BF 4 " , PF 6 " and weakly coordinating or noncoordinating anions (cf., for example, S. Strauss in Chem. Rev. 1993, 93, 927-942), e.g. B(C 6 Fs) 4 " Amides, alkox- ides, sulfonates, carboxylates and ⁇ -diketonates are also particularly useful ligands X c . Some of these substituted ligands X are particularly preferably used since they are obtainable from cheap and readily available starting materials.
  • a particularly preferred embodiment is that in which X c is dimethylamide, methoxide, ethoxide, isopropoxide, phenoxide, naphthoxide, triflate, p-toluenesulfonate, acetate or acetylacetonate.
  • Variation of the radicals R 18C enables, for example, physical properties such as solubility to be finely adjusted.
  • Possible carboorganic substituents R 18C are, for example, the following: C 1 -C 20 - alkyl which may be linear or branched, e.g.
  • cyclopropyl cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C 2 -C 2 o-alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g.
  • radicals R 18C may also be joined to form a 5- or 6-membered ring and the organic radicals R may also be substituted by halogens such as fluorine, chlorine or bromine.
  • Possible radicals R 19C in organosilicon substituents SiR 19C 3 are the same radicals which have been described above for R 18C , where two radicals R 19C may also be joined to form a 5- or 6-membered ring, e.g.
  • Ci-Cio-alkyl such as methyl, ethyl, n-propyl, n-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and also vinyl allyl, benzyl and phenyl as radicals R 18C .
  • the number s of the ligands X c depends on the oxidation state of the metal M that Fe or Co, in particular Fe. The number s can thus not be given in general terms.
  • the oxidation state of the iron in catalytically active complexes is usually known to those skilled in the art. However, it is also possible to use complexes whose oxidation state does not correspond to that of the active catalyst. Such complexes can then be appropriately reduced or oxidized by means of suitable activators. Preference is given to using iron complexes in the oxidation state +3 or +2.
  • D is an uncharged donor, in particular an uncharged Lewis base or Lewis acid, for example amines, alcohols, ethers, ketones, aldehydes, esters, sulfides or phosphines which may be bound to the iron center or else still be present as residual solvent from the preparation of the iron complexes.
  • Lewis base or Lewis acid for example amines, alcohols, ethers, ketones, aldehydes, esters, sulfides or phosphines which may be bound to the iron center or else still be present as residual solvent from the preparation of the iron complexes.
  • the number t of the ligands D can be from 0 to 4 and is often dependent on the solvent in which the iron or cobalt complex is prepared and the time for which the resulting complexes are dried and can therefore also be a nonintegral number such as 0.5 or 1.5.
  • t is 0, 1 to 2.
  • transition metal coordination compounds (B) of formula (Na) are the transition metal coordination compounds (B) of formula (Na)
  • E 2C -E 4C are each, independently of one another, carbon, nitrogen or phosphorus, in particular carbon,
  • R i1C - O R3C are each, independently of one another, hydrogen, C 1 -C 22 -alkyl, C 2 -C 22 -alkenyl, C 6 -C 22 - aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR ,1 1 8 ⁇ C 2 , OR j1 1 8 B C U , SiR 19C 3 , where the organic radicals R 1C -R 3C may also be substituted by halogens and/or two vicinal radicals R 1C -R 3C may also be joined to form a five-, six- or seven- membered ring, and/or two vicinal radicals R 1C -R 3C are bound to form a five-, six- or seven- membered heterocycle containing at least one atom from the group consisting of N, P, O and S, R 4C -R 5
  • u is 0 when E 2C -E 4C is nitrogen or phosphorus and is 1 when E 2C -E 4C is carbon
  • L 1C -L 2C are each, independently of one another, nitrogen or phosphorus, in particular nitrogen,
  • R 8C -R 11C are each, independently of one another, d-C 22 -alkyl, C 2 -C 22 -alkenyl, C 6 -C 22 -aryl, arylal- kyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR 18C 2 , OR 18C , SiR 19C 3 , where the organic radicals R 8C -R 11C may also be substituted by halogens and/or two vicinal radicals R 8C -R 17C may also be joined to form a five-, six- or seven- membered ring, and/or two vicinal radicals R 8C -R 17C are joined to form a five-, six- or seven- membered heterocycle containing at least one atom from the group consisting of N, P, O and S,
  • R 12C -R 17C are each, independently of one another, hydrogen, Ci-C 22 -alkyl, C 2 -C 22 -alkenyl, C 6 -C 22 - aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR 18C 2 , OR 18C , SiR 19C 3 , where the organic radicals R 12C -R 17C may also be substituted by halogens and/or two vicinal radicals R 8C -R 17C may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R 8C -R 17C are joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N 1 P, O or S,
  • the indices v are each, independently of one another, 0 or 1 ,
  • the radicals X c are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, CrC t o-alkyl, C 2 -C 10 -alkenyl, C 6 -C 20 -aryl, arylalkyl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR 18C 2 , OR 18C , SR 18C , SO 3 R 180 , OC(O)R 180 , CN, SCN, ⁇ -diketonate, CO, BF 4 " , PF 6 " or a bulky noncoordinating anion and the radicals X° may be joined to one another,
  • the radicals R 18C are each, independently of one another, hydrogen, Ci-C 20 -alkyl, C 2 -C 20 -alkenyl, C 6 -C 20 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR 19C 3 , where the organic radicals R 180 may also be substituted by halogens and nitrogen- and oxygen-containing groups and two radicals R 180 may also be joined to form a five- or six-membered ring,
  • the radicals R 190 are each, independently of one another, hydrogen, d-C ⁇ -alkyl, C 2 -C 20 -alkenyl, C 6 -C 20 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, where the organic radicals R 190 may also be substituted by halogens or nitrogen- and oxygen-containing groups and two radicals R 19C may also be joined to form a five- or six- membered ring,
  • s is 1 , 2, 3 or 4, in particular 2 or 3,
  • D is an uncharged donor
  • t is from 0 to 4, in particular 0, 1 or 2.
  • the substituents R 4C -R 5C can be varied within a wide range.
  • Possible carboorganic substituents R 4C -R 5C are, for example, the following: hydrogen, CrC ⁇ -alkyl which may be linear or branched, e.g.
  • cyclopropyl cyclobutyl, cyclopean- tyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C 2 -C 22 -alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g.
  • halogens such as fluorine, chlorine or bromine.
  • R 4C - R 5C can be amino NR 18C 2 or N(SiR 19C 3 ) 2 , for example dimethylamino, N-pyrrolidinyl or picolinyl.
  • Possible radicals R 19C in organosilicon substituents SiR 19C 3 are the same carboorganic radicals as described above for R 1C -R 3C , where two radicals R 19C may also be joined to form a 5- or 6-mem- bered ring, e.g.
  • SiR 19C 3 radicals can also be bound via nitrogen to the carbon bearing them.
  • Preferred radicals R 4C -R 5C are hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert- butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl or benzyl, in particular methyl.
  • the substituents R 8C -R 17C can be varied within a wide range. Possible carboorganic substituents R 8C -R 17C are, for example, the following: CrC ⁇ -alkyl which may be linear or branched, e.g.
  • cyclopropyl cyclobutyl, cyclopentyl, cyclohe- xyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C 2 -C 22 -alkenyl which may be linear, cyclic or branched and in which the double may be internal or terminal, e.g.
  • halogens such as fluorine, chlorine or bromine
  • R 8C -R 17C can be halogen such as fluorine, chlorine, bromine, amino NR 18C 2 or N(SiR 19C 3 ) 2 , alkoxy or aryloxy OR 180 , for example dimethylamino, N- pyrrolidinyl, picolinyl, methoxy, ethoxy or isopropoxy.
  • Possible radicals R 19C in organosilicon sub- stituents SiR 19C 3 are the same carboorganic radicals which have been mentioned above for R 1C - R 3C , where two radicals R 19C may also be joined to form a 5- or 6-membered ring, e.g.
  • SiR 19C 3 radicals can also be bound via an oxygen or nitrogen, for example trimethylsilyloxy, triethylsilyloxy, butyldimethylsilyloxy, tributylsilyloxy or tritert. butylsilyloxy.
  • Preferred radicals R 12C -R 17C are hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine, in particular hydrogen.
  • R 13C and R 16C are each methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine or bromine and R 12C , R 14C , R 15C and R 17C are each hydrogen.
  • R 8C -R 11C are methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine.
  • R 8C and R 10C are each a C r C 22 -alkyl which may also be substituted by halo- gens, in particular a CrC ⁇ -n-alkyl which may also be substituted by halogens, e.g.
  • R 8C and R 10C each being a C ⁇ C ⁇ -alky! which may also be substituted by halogens, in particular a CrC ⁇ rn-alkyI which may also be substituted by halo- gens, e.g.
  • R 9C and R 11C each being a halogen such as fluorine, chlorine or bromine.
  • R 12C , R 14C , R 15C and R 17C are identical, R 13C and R 16C are identical, R 9C and R 11C are identical and R 8C and R 10C are identical.
  • This is also preferred in the preferred embodiments de- scribed above.
  • the preparation of the transition metal coordination compounds of formula (II) or (Ha) is described, for example, in J. Am. Chem. Soc. 120, p. 4049 ff. (1998), J. Chem. Soc, Chem. Com- mun. 1998, 849 and WO 98/27124.
  • Preferred complexes B) are 2,6-Bis[1-(2,6-dimethylphenyl- imino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,4,6-trimethylphenylimino)-ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2-chloro-4,6-dimethylphenylimino)ethyl]pyridine iron(ll) dichloride, 2, 6-Bis[1- (2-chloro-6-methylphenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,6-diisopropylphenyl- imino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,6-dichlorophenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1 -(2,6-di
  • the second transition metal coordination compound (A) is a monocyclopentadienyl complex of a metal of groups 4-6 of the Periodic Table of the Elements whose cyclopentadienyl system is substituted by an uncharged donor (A1) or a hafnocene (A2).
  • an uncharged donor is an uncharged functional group containing an element of group 15 or 16 of the Periodic Table.
  • Hafnocene catalyst components are, for example, cyclopentadienyl complexes.
  • the cyclopentadienyl complexes can be, for example, bridged or unbridged biscyclopentadienyl complexes as described, for example, in EP 129 368, EP 561 479, EP 545 304 and EP 576 970, monocyclo- pentadienyl complexes such as bridged amidocyclopentadienyl complexes described, for example, in EP 416 815, multinuclear cyclopentadienyl complexes as described in EP 632 063, pi- ligand-substituted tetrahydropentalenes as described in EP 659 758 or pi-ligand-substituted tetra- hydroindenes as described in EP 661 300.
  • Cp is a cyclopentadienyl system
  • Y is a substituent which is bound to Cp and contains at least one uncharged donor containing at least one atom of group 15 or 16 of the Periodic Table,
  • M A is titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten, in particular chromium, and m is 1 , 2 or 3.
  • Suitable monocyclopentadienyl complexes (A1) contain the structural element of the general formula Cp-Y m M A (III), where the variables are as defined above. Further ligands can therefore be bound to the metal atom M A . The number of further ligands depends, for example, on the oxidation state of the metal atom. These ligands are not further cyclopentadienyl systems. Suitable ligands include monoanionic and dianionic ligands as have been described, for example, for X. In addition, Lewis bases such as amines, ethers, ketones, aldehydes, esters, sulfides or phosphines can also be bound to the metal center M A . The monocyclopentadienyl complexes can be in monomeric, dimeric or oligomeric form. The monocyclopentadienyl complexes are preferably in monomeric form.
  • M A is a metal selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten.
  • the oxidation state of the transition metals M A in catalytically active complexes is usually known to those skilled in the art. Chromium, molybdenum and tungsten are very probably present in the oxidation state +3, zirconium and hafnium in the oxidation state +4 and titanium in the oxidation state +3 or +4. However, it is also possible to use complexes whose oxidation state does not correspond to that of the active catalyst. Such complexes can then be appropriately reduced or oxidized by means of suitable activators.
  • M A is preferably titanium in the oxidation state 3, vanadium, chromium, molybdenum or tungsten. Particular preference is given to chromium in the oxidation states 2, 3 and 4, in particular 3.
  • the uncharged donor Y is an uncharged functional group containing an element of group 15 or 16 of the Periodic Table, e.g. an amine, imine, carboxamide, carboxylic ester, ketone (oxo), ether, thioketone, phosphine, phosphite, phosphine oxide, sulfonyl, sulfonamide or unsubstituted, substi- tuted or fused, partially unsaturated heterocyclic or heteroaromatic ring systems.
  • the donor Y can be bound intermolecularly or intramolecularly to the transition metal M A or not be bound to it.
  • the donor Y is preferably bound intramolecularly to the metal center M A . Particular preference is given to monocyclopentadienyl complexes containing the structural element of the general formula Cp-Y-M A .
  • Cp is a cyclopentadienyl system which may be substituted in any way and/or be fused with one or more aromatic, aliphatic, heterocyclic or heteroaromatic rings, with 1 , 2 or 3 substituents, preferably 1 substituent, being formed by the group Y and/or 1 , 2 or 3 substituents, preferably 1 substitu- ent being substituted by the group Y and/or the aromatic, aliphatic, heterocyclic or heteroaromatic fused-on ring bearing 1 , 2 or 3 substituents, preferably 1 substituent.
  • the cyclopentadienyl skele- ton itself is a C 5 ring system having 6 ⁇ electrons, in which one of the carbon atoms may also be replaced by nitrogen or phosphorus, preferably phosphorus. Preference is given to using C 5 ring systems without replacement by a heteroatom.
  • This cyclopentadienyl skeleton can be, for example, fused with a heteroaromatic containing at least one atom from the group consisting of N, P, O and S or with an aromatic. In this context, fused means that the heterocycle and the cyclopentadienyl skeleton share two atoms, preferably carbon atoms.
  • the cyclopentadienyl system is bound to M A
  • Particularly well-suited monocyclopentadienyl complexes (A1) are ones in which Y is formed by the group -Z k -A- and together with the cyclopentadienyl system Cp and M A forms a monocyclopentadienyl complex containing the structural element of the general formula Cp-Z k -A-M A (IV), where the variables have the following meanings:
  • E 1A -E 5A are each carbon or not more than one E 1A to E 5A phosphorus
  • R 1A -R 4A are each, independently of one another, hydrogen, Ci-C 22 -alkyl, C 2 -C 22 -alkenyl, C 6 -C 22 - aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical, NR 5A 2 , N(SiR 5A 3 ) 2 , 0R 5A , OSiR 5A 3 , SiR 5A 3 , BR 5A 2 , where the organic radicals R 1A -R 4A may also be substituted by halogens and two vicinal radicals R 1A -R 4A may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R 1A -R 4A are joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P 1 O and S,
  • the radicals R 5A are each, independently of one another, hydrogen, CrC ⁇ o-alkyI, C 2 -C 20 -atkenyl, C 6 -C 20 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R 5A may also be joined to form a five- or six-membered ring, is a divalent bridge between A and Cp which is selected from the following group
  • L 1A -L 3A are each, independently of one another, silicon or germanium,
  • R 6A _ R I I A gre egch j nc
  • radicals R 12A are each, independently of one another, hydrogen, C ⁇ C ⁇ -alkyl, C 2 -C 2(r alkenyl, C 6 -C 20 -aryl or arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, CrC ⁇ -alkoxy or C 6 -C 10 -aryloxy and two radicals R 12A may also be joined to form a five- or six-membered ring, and
  • A is an uncharged donor group containing one or more atoms of group 15 and/or 16 of the Periodic Table of the Elements, preferably an unsubstituted, substituted or fused, heteroaromatic ring system
  • M ⁇ is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten, in particular chromium
  • k is O or l
  • all E 1A to E 5A are carbon.
  • the polymerization behavior of the metal complexes can be influenced by varying the substituents R1A R 4A
  • type o f su bstituents can influence the accessibility of the metal atom M for the olefins to be polymerized. In this way, it is possible to modify the activity and selectivity of the catalyst in respect of various monomers, in particular bulky monomers. Since the substituents can also influence the rate of termination reactions of the growing polymer chain, the molecular weight of the polymers formed can also be altered in this way.
  • the chemical structure of the substituents R 1A to R 4A can therefore be varied within a wide range in order to achieve the desired results and to obtain a tailored catalyst system.
  • Possible carboorganic substituents R 1A -R 4A are, for example, the following: hydrogen, CrC 22 -alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a Ci-Cio-alkyl group and/or C 6 -C 10 -aryl group as substituent, e.g.
  • cyclopropyl cyclobutyl cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C 2 -C 22 -alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g.
  • halogens such as fluorine, chlorine or bromine.
  • R 1A -R 4A may be amino NR 5A 2 or N(SiR 5A 3 ) 2 , alkoxy or aryloxy OR 5A , for example dimethylamino, N-pyrrolidinyl, picolinyl, methoxy, ethoxy or isopropoxy.
  • the radicals R 5A in organosilicone substituents SiR 5A 3 can be the same carboorganic radicals as described above for R 1A -R 4A , where two radicals R 5A may also be joined to form a 5- or 6-membered ring, e.g.
  • SiR 5A 3 radicals may also be joined to the cyclopentadienyl skeleton via an oxygen or nitrogen, for example trimethylsilyloxy, triethylsilyloxy, butyldimethylsilyloxy, tributylsilyloxy or tritert-butylsilyloxy.
  • Preferred radicals R 1A -R 4A are hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, ortho-dialkyl- or -dichloro-substituted phenyls, trialkyl- or trichloro-substituted phenyls, naphthyl, biphenyl and anthranyl.
  • Possible organosili- con substituents are, in particular, trialkylsilyl groups having from 1 to 10 carbon atoms in the alkyl radical, in particular trimethylsilyl groups.
  • Two vicinal radicals R 1A -R 4A together with the E 1A -E 5A bearing them may form a heterocycle, pref- erably heteroaromatic, containing at least one atom from the group consisting of nitrogen, phosphorus, oxygen and sulfur, particularly preferably nitrogen and/or sulfur, with the E 1A -E 5A present in the heterocycle or heteroaromatic preferably being carbons.
  • Examples of 5-membered heterocycles which may contain from one to four nitrogen atoms and/or a sulfur or oxygen atom as ring atoms in addition to carbon atoms are 1 ,2-dihydrofuran, furan, thiophene, pyrrole, isoxazole, 3- isothiazole, pyrazole, oxazole, thiazole, imidazole, 1 ,2,4-oxadiazole, 1 ,2,5-oxadiazole, 1 ,3,4- oxadiazole, 1 ,2,3-triazole and 1 ,2,4-triazole.
  • 6-membered heteroaryl groups which may contain from one to four nitrogen atoms and/or a phosphorus atom are pyridine, phospha- benzene, pyridazine, pyrimidine, pyrazine, 1 ,3,5-triazine 1 ,2,4-triazine or 1 ,2,3-triazine.
  • the 5- membered and 6-membered heterocycles may also be substituted by Ci-C ⁇ >-alkyl, C 6 -C 10 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-10 carbon atoms in the aryl part, trialkylsilyl or halogens such as fluorine, chlorine or bromine, dialkylamide, arylalkylamide, di- arylamide, alkoxy or aryloxy or be fused with one or more aromatics or heteroaromatics.
  • benzo-fused 5-membered heteroaryl groups are indole, indazole, benzofuran, benzothio- phene, benzothiazole, benzoxazole and benzimidazole.
  • benzo-fused 6-membered heteroaryl groups are chroman, benzopyran, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, 1 ,10-phenanthroline and quinolizine. Naming and numbering of the heterocycles has been taken from Lettau, Chemie der Heterocyclen, 1st edition, VEB, Weinheim 1979.
  • heterocycles/heteroaromatics are preferably fused with the cyclopentadienyl skeleton via a C-C double bond of the heterocycle/heteroaromatic.
  • Heterocycles/heteroaromatics having one heteroatom are preferably 2,3- or b-fused.
  • Cyclopentadienyl systems Cp having a fused-on heterocycle are, for example, thiapentalene, 2-methylthiapentalene, 2-ethylthiapentalene, 2-isopropylthiapentalene, 2-n-butylthiapentalene, 2-tert-butylthiapentalene, 2-trimethylsilylthiapentalene, 2-phenylthiapentalene, 2-naphthylthia- pentalene, 3-methylthiopentalene, 4-phenyl-2,6-dimethyl-1 -thiopentalene, 4-phenyl-2,6-diethyl-1 - thiopentalene, 4-phenyl-2,6-diisopropyl-1 -thiopentalene, 4-phenyl-2,6-di-n-butyl-1 -thiopentalene, 4-phenyl-2,6-ditrimethylsilyl-1 -thiopen
  • cyclopentadienyl systems Cp 1 the four radicals R 1A -R 4A , i.e. the two pairs of vicinal radicals, form two heterocycles, in particular heteroaromatics.
  • the heterocyclic systems are the same as those described above.
  • Cyclopentadienyl systems Cp having two fused heterocycles are, for example, 7-cyclopenta- dithiophene, 7-cyclopentadipyrrole or 7-cyclopentadiphosphole.
  • substituents R 1A -R 4A are the carboorganic substituents described above and the carboorganic substituents which form a cyclic fused ring system, i.e. together with the E 1A -E 5A - cyclopentadienyl skeleton, preferably a C 5 -cyclopentadienyl skeleton, form, for example, an un- substituted or substituted indenyl, benzindenyl, phenanthrenyl, fluorenyl or tetrahydroindenyl sys- tern, and also, in particular, their preferred embodiments.
  • Examples of such cyclopentadienyl systems are 3-methylcyclopentadienyl, 3-ethylcyclopentadienyl, 3-isopropylcyclopenta- dienyl, 3-tert-butylcyclopentadienyl, dialkylalkylcyclopentadienyl such as tetrahydroindenyl, 2,4-dimethylcyclopentadienyl or 3-methyl-5-tert-butylcyclopentadienyl, trialkylcyclopentadienyl such as 2,3,5-trimethylcyclopentadienyl or tetraalkylcyclopentadienyl such as 2,3,4,5-tetramethyl- cyclopentadienyl, and also indenyl, 2-methylindenyl, 2-ethylindenyl, 2-isopropylindenyl, 3-methyl- inden
  • the fused ring system may bear further C 1 -C 20 - alkyl, C 2 -C 2 o-alkenyl, C 6 -C 2 o-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR 5A 2 , N(SiR 5A 3 ) 2 , OR 5A , OSiR 5A 3 or SiR 5A 3 , e.g.
  • one of the substituents R 1A -R 4A is a C 6 -C 22 -aryl or an arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, preferably C 6 -C 22 -aryl such as phenyl, naphthyl, biphenyl, anthracenyl or phenanthrenyl, where the aryl may also be substituted by N-, P-, O- or S-containing substituents, Ci-C 22 -alkyl, C 2 -C 22 -alkenyl, halogens or haloalkyls or haloaryls having 1-10 carbon atoms, for example o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-
  • the N-, P-, O- or S-containing substituents, Ci-C ⁇ -alkyI, C 2 -C 22 -alkenyl, halogens or haloalkyls or haloaryls having 1-10 carbon atoms as substituents on the aryl radical are preferably located in the para position relative to the bond to the cyclopentadienyl ring.
  • the aryl substituent can be bound in the vicinal position relative to the substituent -Z-A or the two substituents are located relative to one another in the 1 ,3 positions on the cyclopentadienyl ring.
  • -Z-A and the aryl substituent are preferably present in the 1 ,3 positions relative to one another on the cyclopentadienyl ring.
  • the monocyclopentadienyl complexes (A1 ) can be chiral.
  • one of the substituents R 1A -R 4A of the cyclopentadienyl skeleton can have one or more chiral centers or the cyclopentadienyl system Cp itself can be enantiotopic so that chirality is induced only when it is bound to the transition metal M (for the formalism regarding chirality in cyclopentadienyl compounds, see R. Halterman, Chem. Rev. 92, (1992), 965-994).
  • the activity of the catalyst can be influenced by changing the length of the link- age between the cyclopentadienyl system and A.
  • Z is preferably bound to the cyclopentadienyl skeleton next to the fused-on heterocycle or fused-on aromatic. Thus, if the heterocycle or aromatic is fused on in the 2,3 positions of the cyclopentadienyl skeleton, then Z is preferably located in the 1 or 4 position of the cyclopentadienyl skeleton.
  • Possible carboorganic substituents R 6A -R 11A on the linkage Z are, for example, the following: hydrogen, C 1 -C 2 o-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a C 6 -Ci 0 -aryl group as substituent, e.g.
  • cyclo- propyl cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C 2 -C 20 -alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g.
  • halogens such as fluorine, chlorine or bromine
  • the radicals R 12A in organosilicon substitutents SiR 12A 3 can be the same radicals as mentioned above for R 6A -R 11A , where two radicals R 12A may also be joined to form a 5- or 6-membered ring, e.g. trimethylsilyl, triethylsilyl, butyldimethylsilyl, tributylsilyl, t ⁇ tert-butylsilyl, triallylsilyl, triphenyl- silyl or dimethylphenylsilyl.
  • Preferred radicals R 6A -R 11A are hydrogen, methyl, ethyl, n-propyl, iso- propyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, benzyl, phenyl, ortho- dialkyl- or dichloro-substituted phenyls, trialkyl- or trichioro-substituted phenyls, naphthyl, biphenyl and anthranyl.
  • substituents R 6A to R 11A are hydrogen, d-C ⁇ o-alkyI which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, C 6 -C 2 o-aryl which may be substituted by further alkyl groups, e.g.
  • Z is preferably a group -CR 6A R 7A -, -SiR 6A R 7A -, in particular -Si(CH 3 ) r , -CR 6A R 7A CR 8A R 9A -, -SiR 6A R 7A CR 8A R 9A - or substituted or unsubstituted 1 ,2-phenylene and in particular -CR 6A R 7A -.
  • the preferred embodiments of the substituents R 6A to R 11A described above are likewise preferred embodiments here. Preference is given to -CR 6A R 7A - being a -CHR 6A -, -CH 2 - or -C(CH 3 ) 2 - group.
  • the group -SiR 6A R 7A - in -L 1A R 6A R 7A CR 8A R 9A - can be bound to the cyclopentadienyl system or to A.
  • This group -SiR 6A R 7A - or a preferred embodiment thereof is preferably bound to Cp.
  • k is 0 or 1 ; in particular, k is 1 or when A is an unsubstituted, substituted or fused, heterocyclic ring system may also be 0. Preference is given to k being 1.
  • A is an uncharged donor containing an atom of group 15 or 16 of the Periodic Table, preferably one or more atoms selected from the group consisting of oxygen, sulfur, nitrogen and phosphor- rus, preferably nitrogen and phosphorus.
  • the donor function in A can bind intermolecularly or intramolecularly to the metal M A .
  • the donor in A is preferably bound intramolecularly to M.
  • Possi- ble donors are uncharged functional groups containing an element of group 15 or 16 of the Periodic Table, e.g.
  • a to the cyclopentadienyl radical and Z can be carried out synthetically by, for example, a method analogous to that described in WO 00/35928.
  • R 13A and R 14A are each, independently of one another, hydrogen, d-C ⁇ o-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a C 6 -C 10 -aryl group as substituent, e.g.
  • cyclopropyl cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C 2 -C 20 -alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g.
  • radicals R 13A -R 14A may also be substituted by halogens such as fluorine, chlorine or bromine or nitrogen- containing groups and further Ci-C 20 -alkyl, C 2 -C 20 -alkenyl, C 6 -C 20 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR 15A 3 groups and two vicinal radicals R 13A -R 14A may also be joined to form a five- or six-membered ring and the radicals R 15A are each, independently of one another, hydrogen, CVC ⁇ -alkyl, C 2 -C 20 -alkenyl, C 6 -C 20 -aryl or arylalkyl having from 1 to 10 carbon atoms in the alky
  • NR 13A R 14A is an amide substituent. It is preferably a secondary amide such as dimethylamide, N-ethylmethylamide, diethylamide, N-methylpropylamide, N-methylisopropylamide, N-ethyliso- propylamide, dipropylamide, diisopropylamide, N-methylbutylamide, N-ethylbutylamide, N-methyl- tert-butylamide, N-tert-butylisopropylamide, dibutylamide, di-sec-butylamide, diisobutylamide, tert- amyl-tert-butylamide, dipentylamide, N-methylhexylamide, dihexylamide, tert-amyl-tert-octyl- amide, dioctylamide, bis(2-ethylhexyl)amide, didecylamide, N-methylocta
  • R 13A is preferably a C 6 -C 20 -aryl radical which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphen-i-yl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphen-i-yl.
  • alkyl groups e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphen-i-yl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphen-i-yl.
  • A is preferably an unsubstituted, substituted or fused heteroaromatic ring system which can con- tain heteroatoms from the group consisting of oxygen, sulfur, nitrogen and phosphorus in addition to ring carbons.
  • 5-membered heteroaryl groups which may contain from one to four nitrogen atoms or from one to three nitrogen atoms and/or a sulfur or oxygen atom as ring members in addition to carbon atoms are 2-furyl, 2-thienyl, 2-pyrrolyl, 3-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 5-isothiazolyl, 1-pyrazolyl, 3-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazo- IyI, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 1 ,2,4-oxadiazol-3-yl,
  • 6-membered heteroaryl groups which may contain from one to four nitrogen atoms and/or a phosphorus atom are 2- pyridinyl, 2-phosphabenzenyl, 3-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 2-pyrazinyl, 1 ,3,5-triazin- 2-yl and 1 ,2,4-triazin-3-yl, 1 ,2,4-triazin-5-yl and 1 ,2,4-triazin-6-yl.
  • the 5-membered and 6-mem- bered heteroaryl groups may also be substituted by C 1 -C 1O -SlKyI, C 6 -C 10 -aryl, arylalKyl having from 1 to 10 carbon atoms in the alkyl part and 6-10 carbon atoms in the aryl part, trialKylsilyl or halogens such as fluorine, chlorine or bromine or be fused with one or more aromatics or heteroaro- matics.
  • benzo-fused 5-membered heteroaryl groups are 2-indolyl, 7-indolyl, 2-cou- maronyl, 7-coumaronyl, 2-thionaphthenyl, 7-thionaphthenyl, 3-indazolyl, 7-indazolyl, 2-benz- imidazolyl and 7-benzimidazolyl.
  • benzo-fused 6-membered heteroaryl groups are 2- quinolyl, 8-quinolyl, 3-cinnolyl, 8-cinnolyl, 1-phthalazyl, 2-quinazolyl, 4-quinazolyl, 8-quinazolyl, 5- quinoxalyl, 4-acridyl, 1-phenanthridyl and 1-phenazyl.
  • Naming and numbering of the heterocycles has been taken from L.Fieser and M. Fieser, Lehrbuch der organischen Chemie, 3 rd revised edition, Verlag Chemie, Weinheim 1957.
  • heteroaromatic systems particular preference is given to unsubstituted, substituted and/or fused six-membered heteroaromatics having 1 ,2, 3, 4 or 5 nitrogen atoms in the heteroaromatic part, in particular substituted and unsubstituted 2-pyridyl or 2-quinolyl.
  • A is therefore preferably a group of the formula (Vl)
  • E 6A -E 9A are each, independently of one another, carbon or nitrogen,
  • R i6A _ R i9 A are each ⁇ j nc
  • p is 0 when E 6A -E 9A is nitrogen and is 1 when E 6A -E 9A is carbon.
  • A is particularly preferably a 2-pyridyl, 6-methyl-2-pyridyl, 4-methyl-2-pyridyl, 5-methyl-2-pyridyl, 5-ethyl-2-pyridyl, 4,6-di- methyl-2-pyridyl, 3-pyridazyl, 4-pyrimidyl, 6-methyl-4-pyrimidyl, 2-pyrazinyl, 6-methyl-2-pyrazinyl, 5-methyl-2-pyrazinyl, 3-methyl-2-pyrazinyl, 3-ethylpyrazinyl, 3,5,6-trimethyl-2-pyrazinyl, 2-quinolyl, 4-methyl-2-quinolyl, 6-methyl-2-quinolyl, 7-methyl-2-quinolyl, 2-quinoxalyl or 3-methyl-2-qui- noxalyl.
  • Z and A are those in which Z is un- substituted or substituted 1 ,2-phenylene and A is NR 16A R 17A and those in which Z is -CHR 6A -, -CH 2 -, -C(CH 3 ) 2 or -Si(CH 3 ) 2 - and A is unsubstituted or substituted 2-quinolyl or unsubstituted or substituted 2-pyridyl.
  • Systems without a bridge Z, in which k is 0, are also very particularly simple to synthesize.
  • A is preferably unsubstituted or substituted 8-quinolyl in this case.
  • R 2A is preferably a C 6 -C 22 -aryl or an arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, preferably C 6 -C 22 -aryl such as phenyl, naphthyl, bi- phenyl, anthracenyl or phenanthrenyl, where the aryl may also be substituted by N-, P-, O- or S- containing substituents, Ci-C 22 -alkyl, C 2 -C 22 -alkenyl, halogens or haloalkyls or haloaryls having 1-10 carbon atoms.
  • M A is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten, preferably titanium in the oxidation state 3 and chromium. Particular preference is given to chromium in the oxidation states 2, 3 and 4, in particular 3.
  • the metal complexes, in particular the chromium complexes can be obtained in a simple manner by reacting the appropriate metal salts, e.g. metal chlorides, with the ligand anion (e.g. using a method analogous to the examples in DE 197 10615).
  • X A are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, C r Cio-alkyl, C 2 -C 10 -alkenyl, C 6 -C 2 o-aryl, arylalkyl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR 21A R 22A , OR 21A , SR 21A , SO 3 R 21A , OC(O)R 21A , CN, SCN, ⁇ -diketonate, CO, BF 4 " , PF 6 " or a bulky noncoordinating anion or two radicals X A form a
  • R 21A _ R 22A gre each
  • radicals R 23A are each, independently of one another, hydrogen, d-C ⁇ -alkyl, C 2 -C 20 - alkenyl, C 6 -C 20 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R 23A may also be joined to form a five- or six-membered ring and
  • n 1 , 2, or 3.
  • Cp, Y, Z, A, m and M A also apply individually and in combination to these preferred monocyclopentadienyl complexes.
  • the ligands X A result, for example, from the choice of the appropriate starting metal compounds used for the synthesis of the monocyclopentadienyl complexes, but can also be varied afterwards.
  • Possible ligands X A are, in particular, the halogens such as fluorine, chlorine, bromine or iodine, especially chlorine.
  • Alkyl radicals such as methyl, ethyl, propyl, butyl, vinyl, allyl, phenyl or benzyl are also advantageous ligands X A .
  • ligands X A which may be mentioned, purely by way of example and in no way exhaustively, are trifluoroacetate, BF 4 " , PF 6 " and also weakly coordinating or noncoordinating anions (cf., for example, S. Strauss in Chem. Rev. 1993, 93, 927-942), e.g. B(C 6 Fs) 4 " .
  • R 21A and R 22A are also particularly useful ligands X A Variation of the radicals R 21A and R 22A enables, for example, physical properties such as solubility to be finely adjusted.
  • Possible carboorganic substituents R 21A -R 22A are, for example, the following: Ci-C 20 -alkyl which may be linear or branched, e.g.
  • cyclo- propyl cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C 2 -C 2 o-alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g.
  • R 21A may also be joined to R 22A to form a 5- or 6-membered ring and the organic radicals R 21A -R 22A may also be substituted by halogens such as fluorine, chlorine or bro- mine.
  • Possible radicals R 23A in organosilicon substituents SiR 23A 3 are the same radicals as have been mentioned above for R 21A -R 22A , where two R 23A may also be joined to form a 5- or 6- membered ring, e.g.
  • d-Cio-alkyl such as methyl, ethyl, n- propyl, n-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and also vinyl allyl, benzyl and phenyl as radicals R 21A and R 22A .
  • X is dimethylamide, methoxide, ethoxide, isopropoxide, phenoxide, naphthoxide, triflate, p-toluenesulfonate, acetate or acetylacetonate.
  • the number n of ligands X A depends on the oxidation state of the transition metal M A .
  • the number n can thus not be given in general terms.
  • the oxidation state of transition metals M A in cata- lytically active complexes is usually known to those skilled in the art. Chromium, molybdenum and tungsten are very probably present in the oxidation state +3, vanadium in the oxidation state +3 or +4. However, it is also possible to use complexes whose oxidation state does not correspond to that of the active catalyst. Such complexes can then be appropriately reduced or oxidized by means of suitable activators. Preference is given to using chromium complexes in the oxidation state +3 and titanium complexes in the oxidation state 3.
  • Preferred monocyclopentadienyl complexes (A1) of this type are 1-(8-quinolyl)-3-phenylcyclo- pentadienylchromium(lll) dichloride, 1-(8-quinolyl)-3-(1-naphthyl)cyclopentadienylchromium(lll) dichloride, 1-(8-quinolyl)-3-(4-trifluoromethylphenyl)cyclopentadienylchromium(lll) dichloride, 1-(8- quinolyl)-3-(4-chlorophenyl)cyclopentadienylchromium(lll) dichloride, 1-(8-quinolyl)-2-methyl-3- phenylcyclopentadienylchromium(lll) dichloride, H ⁇ -quinolyl ⁇ -methyl-S-O-naphthyOcyclo- pentadienylchromium(lll) dichloride,
  • hafnocenes (A2) are hafnium complexes of the general formula (VIII)
  • X B is fluorine, chlorine, bromine, iodine, hydrogen, C r C 10 -alkyl, C 2 -C 10 -alkenyl, C 6 -C 15 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part, -OR 6B or -NR 6B R 7B , or two radicals X B form a substituted or unsubstituted diene ligand, in particular a 1 ,3-diene ligand, and the radicals X B are identical or different and may be joined to one another,
  • E 1B -E 5B are each carbon or not more than one E 1B to E 5B is phosphorus or nitrogen, preferably carbon,
  • t is 1 , 2 or 3 and is, depending on the valence of Hf, such that the metallocene complex of the general formula (Vl) is uncharged, where
  • R 6B and R 7B are each (-VC ⁇ -alkyl, C 6 -Ci 5 -aryl, arylalkyl, arylalkyl, fluoroalkyl or fluoroaryl each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part and
  • R IB tQ R 5B gre egch ⁇ independently of one another hydrogen, CrC 22 -alkyl, 5- to 7-mem- bered cycloalkyl or cycloalkenyl which may in turn bear Ci-Cio-alkyl groups as substituents, C 2 -C 22 -alkenyl, C 6 -C 22 -aryl, arylalkyl having from 1 to 16 carbon atoms in the alkyl part and from 6 to 21 carbon atoms in the aryl part, NR 8B 2 ,
  • radicals R 8B can be identical or different and can each be Ci-Cio-alkyl, C 3 -C 10 -cycloalkyl, C 6 -C 15 -aryl, C 1 -C ⁇ aIkOXy or C 6 -Ci 0 -aryloxy and
  • R 9B to R 13B are each, independently of one another, hydrogen, d-C 22 -alkyl, 5- to 7- membered cycloalkyl or cycloalkenyl which may in turn bear d-C ⁇ -alky! groups as substituents, C 2 -C 22 -alkenyl, C 6 -C 22 -aryl, arylalkyl having from 1 to 16 carbon atoms in the alkyl part and 6-21 carbon atoms in the aryl part, NR 14B 2 , N(SiR 14B 3 ) 2 , OR 14B , OSiR 14B 3 , SiR 14B 3 , where the organic radicals R 9B -R 13B may also be substi- tuted by halogens and/or two radicals R 98 -R 13B , in particular vicinal radicals, may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R 9B
  • E 6B -E 10B are each carbon or not more than one E 6B to E 10B is phosphorus or nitrogen, preferably carbon,
  • R 16B_ R 21B are identical or different and are each a hydrogen atom, a halogen atom, a trimethylsilyl group, a C 1 -C 10 -BlKyI group, a group, a C 6 -C 10 - fluoroaryl group, a C 6 -C 10 -aryl group, a d-C ⁇ -alKoxy group, a C 7 -C 15 - alKylaryloxy group, a C 2 -C 10 -alKenyl group, a C 7 - C 40 - arylalkyl group, a C 8 -C 40 - arylalKenyl group or a C 7 - C 40 - alkylaryl group or two adjacent radicals together with the atoms connecting them form a saturated or unsaturated ring having from 4 to 15 carbon atoms, and M 2B -M 4B are each silicon, germanium or tin, or preferably silicon,
  • radicals R 22B are each, independently of one another, d-C ⁇ -alkyl, C 6 -C 15 -aryl, C 3 -C 10 - cycloalkyl, C 7 -C 18 -arylalkyl or Si(R 23B ) 3 ,
  • R 23B is hydrogen, C 1 - C 10 - alkyl, C 6 -C 15 -aryl which may in turn bear C 1 -C 4 -SlKyI groups as substituents or C 3 -C 10 -cycloalkyl,
  • v is 1 or when A 1B is an unsubstituted, substituted or fused, heterocyclic ring system may also be 0
  • a 1B can, for example together with the bridge R 15B , form an amine, ether, thioether or phosphine.
  • a 1B can also be an unsubstituted, substituted or fused, heterocyclic aromatic ring sys- tern which can contain heteroatoms from the group consisting of oxygen, sulfur, nitrogen and phosphorus in addition to ring carbons.
  • Examples of 5-membered heteroaryl groups which can contain from one to four nitrogen atoms and/or a sulfur or oxygen atom as ring members in addition to carbon atoms are 2-furyl, 2-thienyl, 2-pyrrolyl, 3-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 5- isothiazolyl, 1-pyrazolyl, 3-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4- thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 1 ,2,4-oxadiazol-3-yl, 1 ,2,4-oxadiazol- 5-yl, 1 ,3,4-oxadiazol-2-yl and 1 ,2,4-triazol-3-yl.
  • 6-membered heteroaryl groups which may contain from one to four nitrogen atoms and/or a phosphorus atom are 2-pyridinyl, 2- phosphabenzenyl, 3-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 2-pyrazinyl, 1 ,3,5-triazin-2-yl and 1 ,2,4-triazin-3-yl, 1 ,2,4-triazin-5-yl and 1 ,2,4-triazin-6-yl.
  • the 5-membered and 6-membered het- eroaryl groups may also be substituted by C 1 -C 1O -SIkVl, C 6 -C 10 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-10 carbon atoms in the aryl part, trialkylsilyl or halogens such as fluorine, chlorine or bromine or be fused with one or more aromatics or heteroaromatics.
  • benzo-fused 5-membered heteroaryl groups are 2-indolyl, 7-indolyl, 2-coumaronyl, 7- coumaronyl, 2-thionaphthenyl, 7-thionaphthenyl, 3-indazolyl, 7-indazolyl, 2-benzimidazolyl and 7- benzimidazolyl.
  • benzo-fused 6-membered heteroaryl groups are 2-quinolyl, 8-quino- IyI, 3-cinnolyl, 8-cinnolyl, 1-phthalazyl, 2-quinazolyl, 4-quinazolyl, 8-quinazolyl, 5-quinoxalyl, A- acridyl, 1-phenanthridyl and 1-phenazyl.
  • Naming and numbering of the heterocycles has been taken from L.Fieser and M. Fieser, Lehrbuch der organischen Chemie, 3 rd revised edition, Verlag Chemie, Weinheim 1957.
  • the radicals X B in the general formula (XIII) are preferably identical, preferably fluorine, chlorine, bromine, CrCy-alkyl or aralkyl, in particular chlorine, methyl or benzyl.
  • the hafnocenes can be used in the Rac or pseudo-Rac form.
  • pseudo-Rac refers to complexes in which the two cyclopentadienyl ligands are in the Rac arrangement relative to one another when all other substituents of the complex are disregarded.
  • hafnocenes (A2) are, inter alia, methylenebis(cyclopentadienyl)hafnium dichloride, methylenebis(3-methylcyclopentadienyl)- hafnium dichloride, methylenebis(3-n-butylcyclopentadienyl)hafnium dichloride, methylene- bis(indenyl)hafnium dichloride, methylenebis(tetrahydroindenyl) hafnium dichloride, isopro- pylidenebis(cyclopentadienyl)hafnium dichloride, isopropylidenebis(3-trimethylsilylcyclopenta- dienyl)hafnium dichloride, isopropylidenebis(3-methylcyclopentadienyl)hafnium dichloride, iso- propylidenebis(3-n-butylcyclopentadienyl)
  • X B is fluorine, chlorine, bromine, C 1 -C 4 -SIkYl or benzyl, or two radicals X B form a substituted or unsubstituted butadiene ligand,
  • t is 1 or 2, preferably 2,
  • R 1 B to R 5B are each hydrogen, C r C 8 -alkyl, C 6 -C 8 -aryl, NR 8B 2 , OSiR 8B 3 or Si(R 8B ) 3 and
  • R 9B to R 13B are each hydrogen, C r C 8 -alkyl or C 6 -C 8 -aryl, NR 14B 2 , OSiR 14B 3 or Si(R 14B ) 3
  • hafnocenes of the formula (IX) in which the cyclopentadienyl radicals are identical are par- ticularly useful.
  • hafnocenes (A2) of the formula (IX) are, inter alia: bis(cyclopentadienyl)hafnium dichloride, bis(indenyl)hafnium dichloride, bis(fluorenyl)hafnium dichloride, bis(tetrahydroindenyl)hafnium dichloride, bis(pentamethylcyclopentadienyl)hafnium dichloride, bis(trimethylsilylcyclopentadienyl)hafnium dichloride, bis(trimethoxysilylcyclopenta- dienyl)hafnium dichloride, bis(ethylcyclopentadienyl)hafnium dichloride, bis(isobutylcyclopenta- dienyl)hafnium dichloride, bis(3-butenylcyclopentadienyl)hafnium dichloride, bis(methylcyclo- pentadieny
  • hafnocene compounds in which one or two of the chlo- ride ligands have been replaced by bromide or iodide.
  • the second transition metal coordination compound is an iron or cobalt coordination compound comprising a neutral tridentate ligand comprising three coordinating nitrogen atoms bearing at least one ortho- monosubstituted aryl radical (A3).
  • M is Fe or Co, in particular Fe
  • E 2C -E 4C are each, independently of one another, carbon, nitrogen or phosphorus, in particular carbon,
  • R 1c -R 3C are each, independently of one another, hydrogen, Ci-C 22 -alkyl, C 2 -C 22 -alkenyl, C 6 -C 22 - aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR 18C 2 , OR 18C , SiR 19C 3 , where the organic radicals R 1C -R 3C may also be substituted by halogens and/or two vicinal radicals R 1C -R 30 may also be joined to form a five-, six- or seven- membered ring, and/or two vicinal radicals R 1C -R 3C are bound to form a five-, six- or seven- membered heterocycle containing at least one atom from the group consisting of N, P, O and S,
  • R 4C -R 5C are each, independently of one another, hydrogen, CrC ⁇ -alkyl, C 2 -C 22 -alkenyl, C 6 -C 22 - aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR 18C 2 , SiR 19C 3 , where the organic radicals R 4C -R 5C may also be substituted by halogens,
  • L 1C -L 2C are each, independently of one another, nitrogen or phosphorus, in particular nitrogen,
  • R -R are each, independently of one another, hydrogen, CrC ⁇ -alkyl, C 2 -C 22 -alkenyl, C 6 -C 22 - aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR 18C 2) OR 18C , SiR 19C 3 , where the organic radicals R 12C -R 17C may also be substituted by halogens and/or two vicinal radicals R 8C -R 17C may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R 8C -R 17C are joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O or S,
  • the indices v are each, independently of one another, 0 or 1 ,
  • the radicals X c are each, independently of one another, fluorine, chlorine, bromine, iodine, hydro- gen, C-i-Cio-alkyl, C 2 -C 10 -alkenyl, C 6 -C 20 -aryl, arylalkyl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR 18C 2 , OR 18C , SR 18C , SO 3 R 18C , OC(O)R 18C , CN, SCN, ⁇ -diketonate, CO, BF 4 " , PF 6 " or a bulky noncoordinating anion and the radicals X c may be joined to one another,
  • the radicals R are each, independently of one another, hydrogen, CrC ⁇ o-alkyl, C 2 -C 20 -alkenyl, C 6 -C 20 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR 19C 3 , where the organic radicals R 18C may also be substituted by halogens and nitrogen- and oxygen-containing groups and two radicals R 18C may also be joined to form a five- or six-membered ring,
  • the radicals R 19C are each, independently of one another, hydrogen, d-C ⁇ o-alkyl, C 2 -C 20 -alkenyl, C 6 -C 20 -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, where the organic radicals R 19C may also be substituted by halogens or nitrogen- and oxygen-containing groups and two radicals R 19C may also be joined to form a five- or six- membered ring,
  • s is 1 , 2, 3 or 4, in particular 2 or 3,
  • D is an uncharged donor
  • t is from 0 to 4, in particular 0, 1 or 2.
  • R 3C , X c , R 18C and R 19C The substituents R 4C -R 5C can be varied within a wide range. Possible carboorganic substituents R 4C -R 5C are, for example, the following: hydrogen, CrC ⁇ -alkyl which may be linear or branched, e.g.
  • cyclopropyl cyclobutyl, cyclopean- tyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C 2 -C 22 -alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g.
  • halogens such as fluorine, chlorine or bromine.
  • R 4C - R 5C can be amino NR 18C 2 or N(SiR 19C 3 ) 2 , for example dimethylamino, N-pyrrolidinyl or picolinyl.
  • Possible radicals R 19C in organosilicon substituents SiR 19C 3 are the same carboorganic radicals as described above for R 1C -R 3C , where two radicals R 19C may also be joined to form a 5- or 6-mem- bered ring, e.g.
  • Preferred radicals R 4C -R 5C are hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert- butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl or benzyl, in particular methyl.
  • the substituents R 8C -R 17C can be varied within a wide range. Possible carboorganic substituents R 8C -R 17C are, for example, the following: d-C 22 -alkyl which may be linear or branched, e.g.
  • cyclopropyl cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C 2 -C 22 -alkenyl which may be linear, cyclic or branched and in which the double may be internal or terminal, e.g.
  • halogens such as fluorine, chlorine or bromine
  • R 8C -R 17C can be halogen such as fluorine, chlorine, bromine, amino NR 18C 2 or N(SiR 19C 3 ) 2 , alkoxy or aryloxy OR 18C , for example dimethylamino, N- pyrrolidinyl, picolinyl, methoxy, ethoxy or isopropoxy.
  • Possible radicals R 19C in organosilicon sub- stituents SiR 19C 3 are the same carboorganic radicals which have been mentioned above for R 1C - R 3C , where two radicals R 19C may also be joined to form a 5- or 6-membered ring, e.g.
  • SiR 19C 3 radicals can also be bound via an oxygen or nitrogen, for example trimethylsilyloxy, triethylsilyloxy, butyldimethylsilyloxy, tributylsilyloxy or tritert.butylsilyloxy.
  • Preferred radicals R 12C -R 17C are hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine, in particular hydrogen.
  • R 13C and R 16C are each methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine or bromine and R 12C , R 14C , R 15C and R 17C are each hydrogen.
  • Preferred radicals R 8C -R 11C are hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n- butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine.
  • R 12C , R 14C , R 15C and R 17C are identical, R 13C and R 16C are identical, R 9C and R 11C are identical and R 8C and R 10C are identical. This is also preferred in the preferred embodiments described above.
  • Preferred complexes (A3) of formula (X) are 2,6-Bis[1-(2-methylphenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,4,-dimethylphenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2- chloro-phenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2-isopropylphenylimino)- ethyljpyridine iron(ll) dichloride, 2,6-Bis[1-(2,4-diisopropyl phenylimino)methyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,4-dichloro-phenylimino)
  • the supported catalyst system of the present invention is active without the addition of the usual cocatalysts like aluminoxanes, strong uncharged Lewis acids or ionic compounds having a Lewis- acid cation or an ionic compound containing a Br ⁇ nsted acid as cation.
  • the addition of at least one of the known cocatalysts which are for example disclosed in WO 2005/058916 in some cases enhances the activity of the inventive catalyst systems.
  • the catalyst system may further comprise, as additional component (E), a metal compound of the general formula (XX),
  • M G is Li, Na, K, Be, Mg, Ca, Sr, Ba, boron, aluminum, gallium, indium, thallium, zinc, in particular Li, Na, K 1 Mg, boron, aluminum or Zn,
  • R 1G is hydrogen, d-do-alkyl, C 6 -C 15 -aryl, arylalkyl or arylalkyl each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part,
  • R 2G and R 3G are each hydrogen, halogen, d-do-alkyl, C 6 -C 15 -aryl, alkylaryl, arylalkyl or alkoxy each having from 1 to 20 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part, or alkoxy together with d-do-alkyl or C 6 -C 15 -aryl,
  • r G is an integer from 1 to 3
  • s G and t are integers from 0 to 2, with the sum r G +s G +t G corresponding to the valence of
  • R 1G is d-C 20 -alkyl.
  • Particularly preferred metal compounds of the formula (XX) are methyllithium, ethyllithium, n butyl- lithium, methylmagnesium chloride, methylmagnesium bromide, ethylmagnesium chloride, ethyl- magnesium bromide, butylmagnesium chloride, dimethylmagnesium, diethylmagnesium, dibutyl- magnesium, n-butyl-n-octylmagnesium, n-butyl-n-heptylmagnesium, in particular n butyl— n— octylmagnesium, tri-n-hexylaluminum, triisobutylaluminum, tri-n-butylaluminum, triethylaluminum, dimethylaluminum chloride, dimethylaluminum fluoride, methylaluminum dichloride, methylalumi- num sesquichloride, diethylaluminum chloride and
  • the partial hydrolysis products of aluminum alkyls with alcohols can also be used.
  • a metal compound (E) is used, it is preferably present in the catalyst system in such an amount that the molar ratio of M G from formula (XX) to the sum of the transition metals from the transition metal coordination compounds is from 3000:1 to 0.1 :1 , preferably from 800:1 to 0.2:1 and particularly preferably from 100:1 to 1 :1.
  • the metal compound (E) of the general formula (XX) is used as constituent of a catalyst system for the polymerization or copolymerization of olefins.
  • the metal compound (E) can, for example, be added during or shortly before the polymerization.
  • the metal compounds (E) used can be identical or different.
  • the catalyst system firstly to be prepolymerized with ⁇ -olefins, preferably linear C 2 -C 10 -I -alkenes and in particular ethylene or propylene, and the resulting prepolymerized catalyst solid then to be used in the actual polymerization.
  • the mass ratio of catalyst solid used in the prepolymerization to a monomer polymerized onto it is usually in the range from 1 :0.1 to 1 :1000, preferably from 1 :1 to 1 :200.
  • an olefin preferably an ⁇ -olefin, for example vinylcyclohexane, styrene or phenyldimethylvinylsilane
  • an antistatic or a suitable inert compound such as a wax or oil
  • the molar ratio of additives to the sum of transition metals from the transition metal coordination compounds is usually from 1 :1000 to 1000:1 , preferably from 1 :5 to 20:1.
  • the catalyst system of the invention is suitable for the polymerization or copolymerization of olefins, preferably for the polymerization and copolymerization of ethylene with ⁇ -olefins preferably having from 3 to 12 carbon atoms.
  • the invention further provides a process for preparing ethylene homopolymers or copolymers, wherein ethylene is optionally copolymerized with C 3 -C 12 -I -alkenes in the presence of the inventive catalyst system.
  • ethylene is preferably polymerized with ⁇ -olefins having from 3 to 12 carbon atoms.
  • Preferred ⁇ -olefins are linear or branched C 3 -C 12 -I -alkenes, in particular linear C 3 -C 10 -I -alkenes such as propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1- octene, 1-decene or branched C 5 -C 10 -I -alkenes such as 4-methyl-1-pentene.
  • Particularly pre- ferred ⁇ -olefins are C 4 -C 12 -I -alkenes, in particular linear C 6 -C 10 -I -alkenes. It is also possible to polymerize mixtures of various ⁇ -olefins. Preference is given to (co)polymerizing at least one ⁇ - olefin selected from the group consisting of ethene, propene, 1-butene, 1-pentene, 1-hexene, 1- heptene, 1-octene and 1-decene. Monomer mixtures containing at least 50 mol% of ethene are preferably used.
  • the process of the invention for polymerizing ethylene with or without ⁇ -olefins can be carried out using all industrially known polymerization methods at temperatures in the range from -60 to 350 0 C, preferably from 0 to 200 0 C and particularly preferably from 25 to 150 0 C, and under pressures of from 0.5 to 4000 bar, preferably from 1 to 100 bar and particularly preferably from 3 to 40 bar.
  • the polymerization can be carried out in a known manner in bulk, in suspension, in the gas phase or in a supercritical medium in the customary reactors used for the polymerization of olefins. It can be carried out batchwise or preferably continuously in one or more stages. High- pressure polymerization processes in tube reactors or autoclaves, solution processes, suspension processes, stirred gas-phase processes and gas-phase fluidized-bed processes are all possible.
  • the polymerizations are usually carried out at temperatures in the range from -60 to 350°C, preferably in the range from 20 to 300 0 C, and under pressures of from 0.5 to 4000 bar.
  • the mean residence times are usually from 0.5 to 5 hours, preferably from 0.5 to 3 hours.
  • the advantageous pressure and temperature ranges for carrying out the polymerizations usually depend on the po- lymerization method. In the case of high-pressure polymerization processes, which are customarily carried out at pressures of from 1000 to 4000 bar, in particular from 2000 to 3500 bar, high polymerization temperatures are generally also set.
  • Advantageous temperature ranges for these high-pressure polymerization processes are from 200 to 32O 0 C, in particular from 220 to 290°C.
  • a temperature which is at least a few degrees below the softening temperature of the polymer. In particular, temperatures of from 50 to 18O 0 C, preferably from 70 to 12O 0 C, are set in these polymerization processes.
  • the polymerization is usually carried out in a suspension medium, preferably an inert hydrocarbon such as isobutane or mixtures of hydrocarbons or else in the monomers themselves.
  • the polymerization temperatures are generally in the range from -20 to 115 0 C, and the pressure is generally in the range from 1 to 100 bar.
  • the solids content of the suspension is generally in the range from 10 to 80%.
  • the polymerization can be carried out either batchwise, e.g. in stirring autoclaves, or continuously, e.g. in tube reactors, preferably in loop reactors. Particular preference is given to employing the Phillips PF process as described in US- A 3 242 150 and US-A 3 248 179.
  • the gas-phase polymerization is generally carried out in the range from 30 to 125 0 C at pressures of from 1 to 50 bar.
  • gas- phase polymerization in particular in gas-phase fluidized-bed reactors, solution polymerization and suspension polymerization, in particular in loop reactors and stirred tank reactors.
  • the gas- phase polymerization can also be carried out in the condensed or supercondensed mode, in which part of the circulating gas is cooled to below the dew point and is recirculated as a two- phase mixture to the reactor.
  • the two zones can also have different polymerization condi- tions.
  • Such a reactor is described, for example, in WO 97/04015.
  • the different or identical polym- erization processes can also, if desired, be connected in series so as to form a polymerization cascade, for example as in the Hostalen® process.
  • a parallel reactor arrangement using two or more identical or different processes is also possible.
  • molar mass regulators for example hydrogen, or customary additives such as antistatics can also be used in the polymeriza- tions.
  • the polymerization is preferably carried out with smaller amounts or no hydrogen present.
  • the polymerization is preferably carried out in a single reactor, in particular in a gas-phase reactor.
  • the polymerization of ethylene with ⁇ -olefins having from 3 to 12 carbon atoms gives prefer- alby a bi- or multimodal polyethylene when the catalyst of the invention is used.
  • the polyethylene powder obtained directly from the reactor displays a very high homogeneity, so that, unlike the case of cascade processes, subsequent extrusion is not necessary in order to obtain a homogeneous product.
  • bimodal polyethylenes which are accessible by using the inventive catalyst system is their use for producing pressure pipes for the transport of gas, drinking water and wastewater.
  • Pressure pipes made of polyethylene are increasingly replacing metal pipes.
  • Even small flaws or notches in a pressure pipe can grow bigger even under low pressures and lead to brittle failure, with this process being able to be accelerated by increased temperatures and/or aggressive chemicals. It is therefore extremely important to reduce the number and size of the flaws in a pipe, for example specks or "white spots" as far as at all possible.
  • the vinyl group content was determined by means of IR in accordance with ASTM D 6248-98.
  • the methyl group content was determined by means of 13 C-NMR spectroscopy as described by
  • the density [g/cm 3 ] was determined in accordance with ISO 1183.
  • the intrinsic viscosity was determined in accordance with EN ISO 1628-1.
  • the determination of the molar mass distributions and the means M n , M w , and M w /M n derived therefrom was carried out by means of high-temperature gel permeation chromatography on a WATERS 150 C using a method based on DIN 55672 and the following columns connected in series: 3x SHODEX AT 806 MS, 1x SHODEX UT 807 and 1x SHODEX AT-G under the following conditions: solvent: 1 ,2,4-trichlorobenzene (stabilized with 0.025% by weight of 2,6-di-tert-butyl-4- methylphenol), flow: 1 ml/min, 500 ⁇ l injection volume, temperature: 135°C, calibration using PE Standards. Evaluation was carried out using WIN-GPC.
  • Polymer ex. means polymer from example
  • 2,6-Bis[1-(2-chloro-4,6-dimethylphenylimino)ethyl]pyridine was produced analogue to example 2 of WO 98/27124 and converted to 2,6-bis[1-(2-chloro-4,6-dimethylphenylimino)ethyl]pyridine- iron(ll)chloride by using with iron(ll)chloride as described in example 8 of WO 98/27124.
  • the support for catalysts A to E was prepared using MgCI 2 *1 1 EtOH and AIEt 3 analog to the method described in EP 1 568 716 A1 to give the MgCI 2 /AIR n (OEt) 3 .
  • n - support with a composition of MgCI 2 * 0 20 AIEt 2 25 OEt 0 7 5
  • a 1-1- steel autoclave was filled under argon at 70°C with 150 g of PE-powder (which was already dried at 8O 0 C for 6 hours in vacuum and stored under argon atmosphere) having a particle size of > 1 mm.
  • 200 mg isoprenylaluminum IPRA (IPRA in heptane 50 mg/ml) as well as 5 mg of Costelan AS 100 (Costelan in heptane 5 mg/ml) were added. In case of copolymerization the corresponding amount of hexane was added. After 5 minutes of stirring catalyst was added and the catalyst dosing unit was rinsed with 7 ml of heptane.
  • argon pressure was increased up to 10 bar at 70°C then a pressure of 20 bar was adjusted with ethylene.
  • the pressure of 20 bar was kept constant for 1 hour via adding additional ethylene during the polymerization. After one hour the pressure was released and the autoclave was cooled down to room temperature. The polymer was dried in vacuum, removed from the autoclave and sieved in order to remove the polymer bed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a catalyst system comprising at least two different transition metal coordination compounds supported on an adduct containing magnesium halide and an organoaluminum compound and it relates to a polymerisation process in the presence of said catalyst system.

Description

Hybrid catalyst systems supported on magnesium halide
Description
The present invention relates to a catalyst system comprising at least two different transition metal coordination compounds supported on an adduct containing magnesium halide and an or- ganoaluminum compound and it relates to a polymerisation process in the presence of said catalyst system.
Single site catalyst components are well known in the art and are usually used in conjunction with alumoxanes or boron compounds as cocatalysts. The catalyst systems so obtained can be used supported on an inert support in order to control the morphology of the obtained polymer and to avoid fouling in the reactor, especially in a gas-phase or slurry polymerization processes.
The drawback of the catalyst systems so obtained is that the resulting catalyst is very expensive since alumoxanes have to be used in large excess with respect to single site catalyst components. Therefore it should be desirable to reduce or eliminate the use of alumoxanes.
When boron compounds are used as cocatalyst, a large excess is not required. Boron com- pounds have however the drawback of being more expensive than alumoxanes and dangerous to handle.
The use of catalyst compositions comprising two or more different olefin polymerization catalysts of the Ziegler type or the metallocene type is known. For example, it is possible to use a combina- tion of two catalysts of which one produces a polyethylene having a mean molar mass which is different from that produced by the other for preparing reactor blends having broad molecular weight distributions (WO 95/11264). The copolymers of ethylene with higher α-olefins such as propene, 1-butene, 1-pentene, 1-hexene or 1-octene, known as LLDPE (linear low density polyethylene) which are formed using classical Ziegler-Natta catalysts based on titanium are different from an LLDPE which is prepared using a metallocene. The number of side chains formed by incorporation of the comonomer and their distribution, known as the SCBD (short chain branching distribution) is very different when using the various catalyst systems. The number and distribution of the side chains has a critical influence on the crystallization behaviour of the ethylene copolymers. While the flow properties and thus the processability of these ethylene copolymers depends mainly on their molar mass and molar mass distribution, the mechanical properties are therefore particularly dependent on the short chain branching distribution. However, the short chain branching distribution also plays a role in particular processing methods, e.g. in film extrusion in which the crystallization behaviour of the ethylene copolymers during cooling of the film extrudate is an important factor in determining how quickly and in what quality a film can be extruded. The correct combination of catalysts for a balanced combination of good mechanical properties and good processability is difficult to find in view of the large number of possible combinations. The single site components in the above mentioned catalyst systems are usually activated by aluminoxanes.
WO 99/46302 describes a catalyst composition based on (a) an iron-pyridinebisimine component and (b) a further catalyst such as a zirconocene or Ziegler catalyst and their use for the polymerization of ethylene and olefins. The transition metal coordination compounds in theses types of catalysts are usually activated by aluminoxanes.
The drawback of these mixed catalyst systems is that during storage of these catalyst systems the structure and nature of aluminoxane is changing resulting in changing activities of the initial catalyst systems. The activities of the different supported single site systems are differently changed. Therefore the reproducibility of the preparation of a desired bimodal polyolefin product using an aged catalyst system is limited.
EP 1568716 describes catalyst systems comprising a support based on magnesium halide and a special transition metal coordination compound. These special catalyst systems are active without the addition of alumoxanes. Nothing is said about catalyst systems comprising two different transition metal coordination compounds.
It was an object of the present invention to provide a catalyst system useable in commercial production plants comprising at least two different transition metal coordination compounds wherein said catalyst system is more economical and is more stable during storage than the known systems.
It has surprisingly been found that this object can be achieved by a supported catalyst system comprising the product obtainable by contacting:
a) an adduct of formula (I)
MgT2 * y AIRq j(OR% (I)
wherein
Mg is magnesium; T is chlorine, bromine, or iodine, preferably chlorine;
Al is aluminium Ru is a linear or branched C1-Ci0 alkyl radical, preferably a linear C1-C10 alkyl radical, more preferably methyl or ethyl; y ranges from 6.00 to 0.05; preferably Y ranges from 2 to 0.1 , more preferably from 1 to 0.1 ; j ranges from 3 to 0.1 , preferably from 3 to 0.5; more preferably from 3 to 1 being also a non integer number; and
Rq are substituents which are the same or different and which are hydrocarbon radicals containing from 1 to 20 carbon atoms optionally containing silicon or germanium atoms, pref- erably Rq is a linear or branched, cyclic or acyclic, d-C2o-alkyl, C2-C2o-alkenyl, C2-C20- alkynyl, C6-C20-aryl, C7-C20-alkylaryl or C7-C2o-arylalkyl radicals optionally containing silicon or germanium atoms; more preferably Rq is a linear or branched C^C^-alkyl radical; even more preferably Rq is an ethyl, a n-propyl, an iso-propyl, a n-butyl, an iso-butyl, a tert-butyl, a hexyl or an octyl radical;
b) with at least two different transition metal coordination compounds wherein one of the transition metal coordination compounds is a compound in which the transition metal is selected from Groups 6, 8, 9 and 10 of the Periodic Table of the Elements (B), preferably selected from the group of elements consisting of Cr, Fe, Co, Ni and Pd, particularly pref- erably Fe and Co, in particular Fe.
The adduct of formula (I)
MgT2 * y AIRq (ORu)3, (I)
has a surface area (BET) higher than 30 m2/g; more preferably higher than 38 m2/g; even more preferably higher than 200 m2/g; but it can reach values higher than 300 m2/g. It can be obtained with methods commonly known in the art. For example the adduct MgT2 * w RUOH, wherein w ranges from 0.1 to 6 is contacted with an aluminum compound of formula HeAIRq1 3.e or HeAI2 RqVe, in an inert solvent; where the Rq1 substituents, same or different, are hydrogen at- oms, halogen atoms, or hydrocarbon radicals containing from 1 to 20 carbon atoms optionally containing silicon or germanium atoms; with the proviso that at least one Rq1 is different from halogen, and e ranges from 0 to 1 , being also a non-integer number; preferably such hydrocarbon radicals are linear or branched, cyclic or acyclic, CrCo-alkyI, C2-C20-alkenyl, C2-C20-alkynyl, C6- C20-aryl, C7-C20-alkylaryl or C7-C20-arylalkyl radicals optionally containing silicon or germanium atoms; preferably Rq1 is a linear or branched C^C^-alkyl radical; more preferably an ethyl, a n-propyl, an iso-propyl, a n-butyl, an iso-butyl, a tert-butyl, a hexyl or an octyl radical. Examples of this reaction can be found in US 4,399,054 and US 5,698,487.
Preferably the adduct of formula MgT2 * w RUOH is partially dealcoholated as described in US 5,698,487. Therefore a further object of the present invention is a supported catalyst system obtainable by the process comprising the following steps:
a) contacting (i) a partially dealcoholated adduct of formula MgT2 * w RUOH wherein T is chlorine, bromine, or iodine, preferably chlorine; R" is a linear or branched C1-C10 alkyl radical, preferably Ru is a linear C1-C10 alkyl radical; more preferably Ru is a methyl or an ethyl radical; w ranges from 6 to 0.1 , preferably from 3 to 0.5; more preferably from 2.9 to 0.5 being also a non integer number; with
(ii) an organo-aluminium compound of formula HeAIRq1 3.e or H6AI2 RqYe, where the Rq1 sub- stituents, same or different, are hydrogen atoms, halogen atoms, or hydrocarbon radicals containing from 1 to 20 carbon atoms optionally containing silicon or germanium atoms; with the proviso that at least one Rq1 is different from halogen, and e ranges from 0 to 1 , being also a non-integer number; preferably such hydrocarbon radicals are linear or branched, cyclic or acyclic, CrCo-alkyl, C2-C20-alkenyl, C2-C20-alkynyl, C6-C20-aryl, C7- C20-alkylaryl or C7-C20-arylalkyl radicals optionally containing silicon or germanium atoms; preferably Rq1 is a linear or branched CrC20-alkyl radical; more preferably Rq1 is an ethyl, a n-propyl, an iso-propyl, a n-butyl, an iso-butyl, a tert-butyl, a hexyl or an octyl radical;
to obtain an adduct of formula (I) MgT2 * y AIRq j(ORu)3.j described above; and
b) contacting the product obtained from step a) with at least two different transition metal coordination compounds wherein one of the transition metal coordination compounds is a compound in which the transition metal is selected from Groups 6, 8, 9 and 10 of the Periodic Table of the Elements (B), preferably selected from the group of elements consisting of Cr, Fe, Co, Ni and Pd, particularly preferably Fe and Co, in particular Fe as described above.
The partially dealcoholated adduct of formula MgT2 * w RUOH used in step a) can be obtained by partial dealcoholation of adducts of MgT2 with alcohols, said adducts contains from 1 to 6 mol of alcohol. It is possible that two adducts having the same content of alcohol, i.e. having the same empirical formula, be different in porosity and surface area for the reason that one adduct is partially dealcoholated.
The dealcoholation can be carried out according to known methodologies such as those described in US 5,698,487. Depending on the extent of the dealcoholation treatment, partially dealcoholated adducts can be obtained having an alcohol content generally ranging from 0.1 to 3 moles of alcohol per mole of MgT2, preferably from 2.9 to 0.5; more preferably from 2.9 to 1.
Said partially dealcoholated magnesium adduct is then contacted with an organo-aluminium compound of formula HeAIRq1 3-e or HeAI2 RqVe in an inert solvent with methods common known in the art, such as the method described in EP-A-553 806.
In step b) of the process of the present invention at least two different transition metal coordina- tion compounds, preferably 2 or 3, more preferably two different transition metal coordination compounds can be supported on the carrier obtained in step a) according to known methods by bringing the product of step a) into contact, for example, with a solution of the said transition metal coordination compounds, operating at temperatures between -780C and 15O0C, preferably between room temperature and 12O0C. The said transition metal coordination compounds that are not fixed on the support are removed by filtration or similar methods.
The amount of said transition metal coordination compounds supported on the adduct of formula (I) is generally between 1000 μmol/g of support and 1 μmol/g of support; preferably said amount ranges from 500 μmol/g of support to 2 μmol/g of support; more preferably from 200 μmol/g of support to 2 μmol/g of support.
The molar ratio of said transition metal coordination compounds in the inventive catalyst system depends on the individual activity of each transition metal coordination compound and on the intended polymer composition. The molar proportion of each transition metal coordination com- pound supported on the adduct of formula (I) is usually at least 1 %, preferably at least 5%, more preferably at least 10%, most preferably at least 15% of the total molar amount of used transition metal coordination compounds.
The supported catalyst system described in the present invention comprises at least two different transition metal coordination compounds wherein one of the transition metal coordination compounds is a compound in which the transition metal is selected from Groups 6, 8, 9 and 10 of the Periodic Table of the Elements (B), preferably selected from the group of elements consisting of Cr, Fe, Co, Ni and Pd, particularly preferably Fe and Co, in particular Fe. This first transition metal compound (B) comprises preferably ligands selected from the group consisting of cyclopentadi- enyl derivatives, phenoxyimine derivatives and uncharged or singly or multiply negatively charged monodentate, bidentate or tridentate nitrogen ligands having one, two or three coordinating nitrogen atoms, preferably cyclopentadienyl derivatives and uncharged, tridentate nitrogen ligands having three coordinating nitrogen atoms.
As additional transition metal coordination compounds (A), it is in principle possible to use all compounds of the transition metals of groups 3 to 12 of the Periodic Table or the lanthanides which comprise organic or inorganic groups and usually form active catalysts for olefin polymerization after reaction with a cocatalyst, specially with the adduct of formula (I). The transition metal coordination compounds are usually compounds in which at least one monodentate or polyden- tate ligand is bound via sigma or pi bonds to the central transition metal atom. Possible ligands include both ligands comprising cyclopentadienyl radicals and ligands which are free of cyclopentadienyl radicals, preferably ligands selected from the group consisting of cyclopentadienyl derivatives, phenoxyimine derivatives and uncharged or singly or multiply negatively charged monodentate, bidentate or tridentate nitrogen ligands having one, two or three coordinating nitrogen atoms, preferably cyclopentadienyl derivatives and uncharged, tridentate nitrogen ligands having three coordinating nitrogen atoms. Chem. Rev. 2000, Vol. 100, No. 4, describes many such compounds which are suitable for olefin polymerization. Furthermore, multinuclear cyclopentadienyl complexes are also suitable for olefin polymerization.
Illustrative examples which do not, however, restrict the scope of the invention of the at least two different transition metal compounds (A) and (B) which can be used in the preparation of the inventive catalyst system are:
a) (A) and (B) are two different iron coordination compounds like:
Figure imgf000007_0001
b) (A) and (B) are two different chromium coordination compounds like:
Figure imgf000007_0002
c) (A) is a Ti, Zr or Hf coordination compound like TiCI4, Ti(OiPr)4, ZrCI4 or (n-Bu-Cp)2HfCI2 and (B) is an iron coordination compound like
Figure imgf000007_0003
d) (A) is a chromium coordination compound and (B) is a iron coordination compound like
Figure imgf000008_0001
Preference is given to supported catalyst systems wherein one of the transition metal coordination compounds is an iron or cobalt, preferably an iron coordination compound (B) comprising a neutral tridentate ligand comprising three coordinating nitrogen atoms, preferably a 2,6-bisimino pyri- din ligand.
Preferably the neutral tridentate ligand comprising three coordinating nitrogen atoms of the iron or cobalt coordination compound (B) bears at least two ortho, ortho-disubstituted aryl radicals.
Preference is given to transition metal coordination compounds (B) of formula (II)
Figure imgf000008_0002
where the variables have the following meanings:
M is Fe or Co, in particular Fe
E1C is nitrogen or phosphorus, in particular nitrogen,
E2C-E4C are each, independently of one another, carbon, nitrogen or phosphorus, in particular carbon, R1c-R3C are each, independently of one another, hydrogen Ci-C22-alkyl, C2-C22-alkenyl, C6-C22- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR18C 2, OR18C, SiR19C 3, where the organic radicals R1C-R3C may also be substituted by halogens and/or two vicinal radicals R1C-R3C may also be joined to form a five-, six- or seven- membered ring, and/or two vicinal radicals R1C-R3C are joined to form a five-, six- or seven- membered heterocycle containing at least one atom from the group consisting of N, P, O and S,
R4C-R7C are each, independently of one another, hydrogen, d-C22-alkyl, C2-C22-alkenyl, C6-C22- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR18C 2, SiR19C 3, where the organic radicals R4C-R7C may also be substituted by halogens and/or two geminal or vicinal radicals R4C-R7C may also be joined to form a five-, six- or seven- membered ring, and/or two geminal or vicinal radicals R4C-R7C are joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and S, and when v is 0, R6C is a bond to L1C and/or R7C is a bond to L2C so that L1C forms a double bond to the carbon atom bearing R4C and/or L2C forms a double bond to the carbon atom bearing
D5C
u is 0 when E2C-E4C is nitrogen or phosphorus and is 1 when E2C-E4C is carbon,
L1C-L2C are each, independently of one another, nitrogen or phosphorus, in particular nitrogen,
R 8c_R iic gre egch| independently of one another, d-C^-alkyl, C2-C22-alkenyl, C6-C22-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR18C 2, OR18C, SiR19C 3, where the organic radicals R8C-R11C may also be substituted by halogens and/or two vicinal radicals R8C-R17C may also be joined to form a five-, six- or seven- membered ring, and/or two vicinal radicals R8C-R17C are joined to form a five-, six- or seven- membered heterocycle containing at least one atom from the group consisting of N, P, O and S,
R i2c_R i7c are eacn^ independently of one another, hydrogen, CrC22-alkyl, C2-C22-alkenyl, C6-C22- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR18C 2, OR18C, SiR19C 3, where the organic radicals R12C-R17C may also be substituted by halogens and/or two vicinal radicals R8C-R17C may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R8C-R17C are joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and S,
the indices v are each, independently of one another, 0 or 1 ,
the radicals Xc are each, independently of one another, fluorine, chlorine, bromine, iodine, hy- drogen, d-do-alky!, C2-C10-alkenyl, C6-C20-aryl, arylalkyl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR18C 2, 0R18C, SR18C , SO3R18C, OC(O)R18C, CN, SCN, β-diketonate, CO, BF4 ", PF6 " or a bulky noncoordinating anion and the radicals Xc may be joined to one another,
the radicals R18C are each, independently of one another, hydrogen, C1-C2O-BlKyI, C2-C2o-alkenyl, C6-C2o-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR19C 3, where the organic radicals R18C may also be substituted by halogens or nitrogen- and oxygen-containing groups and two radicals R18C may also be joined to form a five- or six-membered ring,
the radicals R19C are each, independently of one another, hydrogen, Ci-C2o-alkyl, C2-C20-alkenyl, C6-C20-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, where the organic radicals R19C may also be substituted by halogens or nitrogen- and oxygen-containing groups and two radicals R19C may also be joined to form a five- or six- membered ring,
s is 1 , 2, 3 or 4, in particular 2 or 3,
D is an uncharged donor and
t is from 0 to 4, in particular 0, 1 or 2.
The three atoms E2C to E4C in a molecule of formula (II) can be identical or different. If E1C is pphhoosspphhoorruuss,, tthheenn EE22CC ttoo EE44CC aarree pprreeffeerraabbllyy eeaacchh ccaarrbboonn. If E1C is nitrogen, then E2C to E4C are each preferably nitrogen or carbon, in particular carbon.
The substituents R1C-R3C and R8C-R17C can be varied within a wide range. Possible carboorganic substituents R1C-R3C and R8C-R17C are, for example, the following: d-C22-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a CrC^-alkyl group and/or C6-C10-aryl group as substituents, e.g. cyclopropyl, cyclobu- tyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C2-C22-alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g. vinyl, 1-allyl, 2-allyl, 3-allyl, butenyl, pentenyl, hexenyl, cyclopentenyl, cyclohexenyl, cyclooc- tenyl or cyclooctadienyl, C6-C22-aryl which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphenyl, or arylalkyl which may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2-phenylethyl, where two radicals R1C to R3C and/or two vicinal radicals R8C-R17C may also be joined to form a 5-, 6- or 7-membered ring and/or two of the vicinal radicals R1C-R3C and/or two of the vicinal radicals R8C-R17C may be joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and S and/or the organic radicals R1C-R3C and/or R8C-R17C may also be substituted by halogens such as fluorine, chlorine or bromine. Furthermore, R1C-R3C and R8C-R17C can also be amino NR18C 2 or N(SiR19S)2, alkoxy or aryloxy OR18C, for example dimethylamino, N- pyrrolidinyl, picolinyl, methoxy, ethoxy or isopropoxy or halogen such as fluorine, chlorine or bromine. Possible radicals R19C in organosilicon substituents SiR19C 3 are the same carboorganic radicals as have been described above for R1C-R3C, where two R19C may also be joined to form a 5- or 6-membered ring, e.g. trimethylsilyl, triethylsilyl, butyldimethylsilyl, tributylsilyl, tri-tert-butylsilyl, triallylsilyl, triphenylsilyl or dimethylphenylsilyl. These SiR19C 3 radicals may also be bound to E2C- E4C via an oxygen or nitrogen, for example trimethylsilyloxy, triethylsilyloxy, butyldimethylsilyloxy, tributylsilyloxy or tri-tert-butylsilyloxy.
Preferred radicals R1C-R3C are hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, ortho-dialkyl- or -dichloro-substituted phenyls, trialkyl- or trichloro-substituted phenyls, naphthyl, biphenyl and anthranyl. Particularly preferred organosilicon substituents are trialkylsilyl groups having from 1 to 10 carbon atoms in the alkyl radical, in particular trimethylsilyl groups.
Preferred radicals R12C-R17C are hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine, in particular hydrogen. In particular, R13C and R16C are each methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine or bromine and R12C, R14C, R15C and R17C are each hydrogen.
Preferred radicals R8C-R11C are methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine. In particular, R8C and R10C are each a d-C∑∑-alkyl which may also be substituted by halogens, in particular a CVCrn-alkyl which may also be substituted by halogens, e.g. methyl, trifluoromethyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, or a halogen such as fluorine, chlorine or bromine and R9C and R11C are each a halogen such as fluorine, chlorine or bromine. Particular preference is given to R8C and R10C each being a CrC∑∑-alkyl which may also be substituted by halogens, in particular a CrC22-n-alkyl which may also be substituted by halogens, e.g. methyl, trifluoromethyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl and R9C and R11C are each a halogen such as fluorine, chlorine or bromine.
In particular, R12C, R14C, R15C and R17C are identical, R13C and R16C are identical, R9C and R11C are identical and R8C and R10C are identical. This is also preferred in the preferred embodiments described above. The substituents R4C-R7C, too, can be varied within a wide range. Possible carboorganic substitu- ents R4C-R7C are, for example, the following: Ci-C22-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n- nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a d-C^-alkyl group and/or C6-C10-aryl group as substituent, e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclo- hexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C2-C22-alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g. vinyl, 1-allyl, 2- allyl, 3-allyl, butenyl, pentenyl, hexenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl or cyclooctadi- enyl, C6-C22-aryl which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphenyl, or arylalkyl, where the arylalkyl may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2-phenylethyl, where two radicals R4C to R7C may also be joined to form a 5-, 6- or 7-membered ring and/or two geminal radicals R4C-R7C may be joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and S and/or the organic radicals R4C-R7C may also be substituted by halogens such as fluorine, chlorine or bromine. Furthermore, R4C-R7C may be amino NR18C 2 or N(SiR19C 3)2, for example dimethylamino, N-pyrrolidinyl or picolinyl. Possible radicals R19C in organosilicone substituents SiR19C 3 are the same carboorganic radicals as have been described above for R1C-R3C, where two R19C may also be joined to form a 5- or 6-membered ring, e.g. trimethylsilyl, triethylsilyl, butyldimethylsilyl, tributylsilyl, tri-tert-butylsilyl, triallylsilyl, triphenyl- silyl or dimethylphenylsilyl. These SiR19C 3 radicals can also be bound via nitrogen to the carbon bearing them. When v is 0, R6C is a bond to L1C and/or R7C is a bond to L2C, so that L1C forms a double bond to the carbon atom bearing R4C and/or L2C forms a double bond to the carbon atom bearing R5C.
Preferred radicals R4C-R7C are hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert- butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, benzyl, phenyl, ortho-dialkyl- or dichloro-substituted phenyls, trialkyl- or trichloro-substituted phenyls, naphthyl, biphenyl and anthranyl. Preference is also given to amide substituents NR18C 2, in particular secondary amides such as dimethylamide, N-ethylmethylamide, diethylamide, N-methylpropylamide, N-methylisopropylamide, N-ethyliso- propylamide, dipropylamide, diisopropylamide, N-methylbutylamide, N-ethylbutylamide, N-methyl- tert-butylamide, N-tert-butylisopropylamide, dibutylamide, di-sec-butylamide, diisobutylamide, tert- amyl-tert-butylamide, dipentylamide, N-methylhexylamide, dihexylamide, tert-amyl-tert- octylamide, dioctylamide, bis(2-ethylhexyl)amide, didecylamide, N-methyloctadecylamide, N-methylcyclohexylamide, N-ethylcyclohexylamide, N-isopropylcyclohexylamide, N-tert-butyl- cyclohexylamide, dicyclohexylamide, pyrrolidine, piperidine, hexamethylenimine, decahydro- quinoline, diphenylamine, N-methylanilide or N-ethylanilide.
L1C and L2C are each, independently of one another, nitrogen or phosphorus, in particular nitro- gen, and when v is 0 can form a double bond with the carbon atom bearing R4C or R5C. In particu- lar, when v is 0, L1C and/or L2C together with the carbon atom bearing R4C or R5C form an imino group -CR4C=N- or -CR5C=N-. When v is 1 , L1C and/or L2C together with the carbon atom bearing R4C or R5C forms, in particular, an amido group -CR4CR6C-N~- or -CR5CR7C-N"-.
The ligands Xc result, for example, from the choice of the appropriate starting metal compounds used for the synthesis of the iron complexes, but can also be varied afterward. Possible ligands Xc are, in particular, the halogens such as fluorine, chlorine, bromine or iodine, in particular chlorine. Alkyl radicals such as methyl, ethyl, propyl, butyl, vinyl, allyl, phenyl or benzyl are also usable ligands Xc. As further ligands Xc, mention may be made, purely by way of example and in no way exhaustively, of trifluoroacetate, BF4 ", PF6 " and weakly coordinating or noncoordinating anions (cf., for example, S. Strauss in Chem. Rev. 1993, 93, 927-942), e.g. B(C6Fs)4 " Amides, alkox- ides, sulfonates, carboxylates and β-diketonates are also particularly useful ligands Xc. Some of these substituted ligands X are particularly preferably used since they are obtainable from cheap and readily available starting materials. Thus, a particularly preferred embodiment is that in which Xc is dimethylamide, methoxide, ethoxide, isopropoxide, phenoxide, naphthoxide, triflate, p-toluenesulfonate, acetate or acetylacetonate.
Variation of the radicals R18C enables, for example, physical properties such as solubility to be finely adjusted. Possible carboorganic substituents R18C are, for example, the following: C1-C20- alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a C6-C10-aryl group as substituent, e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C2-C2o-alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g. vinyl, 1 -allyl, 2-allyl, 3-allyl, butenyl, pentenyl, hexenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl or cyclooctadienyl, C6-C20-aryl which may be substituted by further alkyl groups and/or N- or O- containing radicals, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphenyl, 2-methoxyphenyl, 2-N,N-dimethylaminophenyl, or arylalkyl which may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2-phenylethyl, where two radicals R18C may also be joined to form a 5- or 6-membered ring and the organic radicals R may also be substituted by halogens such as fluorine, chlorine or bromine. Possible radicals R19C in organosilicon substituents SiR19C 3 are the same radicals which have been described above for R18C, where two radicals R19C may also be joined to form a 5- or 6-membered ring, e.g. trimethylsilyl, triethylsilyl, butyldimethylsilyl, tributylsilyl, triallylsilyl, triphenylsilyl or dimethylphenylsilyl. Preference is given to using Ci-Cio-alkyl such as methyl, ethyl, n-propyl, n-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and also vinyl allyl, benzyl and phenyl as radicals R18C.
The number s of the ligands Xc depends on the oxidation state of the metal M that Fe or Co, in particular Fe. The number s can thus not be given in general terms. The oxidation state of the iron in catalytically active complexes is usually known to those skilled in the art. However, it is also possible to use complexes whose oxidation state does not correspond to that of the active catalyst. Such complexes can then be appropriately reduced or oxidized by means of suitable activators. Preference is given to using iron complexes in the oxidation state +3 or +2.
D is an uncharged donor, in particular an uncharged Lewis base or Lewis acid, for example amines, alcohols, ethers, ketones, aldehydes, esters, sulfides or phosphines which may be bound to the iron center or else still be present as residual solvent from the preparation of the iron complexes.
The number t of the ligands D can be from 0 to 4 and is often dependent on the solvent in which the iron or cobalt complex is prepared and the time for which the resulting complexes are dried and can therefore also be a nonintegral number such as 0.5 or 1.5. In particular, t is 0, 1 to 2.
In a preferred embodiment are the transition metal coordination compounds (B) of formula (Na)
Figure imgf000014_0001
where
E2C-E4C are each, independently of one another, carbon, nitrogen or phosphorus, in particular carbon,
R i1C - OR3C . are each, independently of one another, hydrogen, C1-C22-alkyl, C2-C22-alkenyl, C6-C22- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR ,118^C2, OR j118BCU, SiR19C 3, where the organic radicals R1C-R3C may also be substituted by halogens and/or two vicinal radicals R1C-R3C may also be joined to form a five-, six- or seven- membered ring, and/or two vicinal radicals R1C-R3C are bound to form a five-, six- or seven- membered heterocycle containing at least one atom from the group consisting of N, P, O and S, R4C-R5O are each, independently of one another, hydrogen, d-C^-alkyl, C2-C22-alkenyl, C6-C22- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR18C 2, SiR19C 3, where the organic radicals R4C-R5C may also be substituted by halogens,
u is 0 when E2C-E4C is nitrogen or phosphorus and is 1 when E2C-E4C is carbon,
L1C-L2C are each, independently of one another, nitrogen or phosphorus, in particular nitrogen,
R8C-R11C are each, independently of one another, d-C22-alkyl, C2-C22-alkenyl, C6-C22-aryl, arylal- kyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR18C 2, OR18C, SiR19C 3, where the organic radicals R8C-R11C may also be substituted by halogens and/or two vicinal radicals R8C-R17C may also be joined to form a five-, six- or seven- membered ring, and/or two vicinal radicals R8C-R17C are joined to form a five-, six- or seven- membered heterocycle containing at least one atom from the group consisting of N, P, O and S,
R12C-R17C are each, independently of one another, hydrogen, Ci-C22-alkyl, C2-C22-alkenyl, C6-C22- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR18C 2, OR18C, SiR19C 3, where the organic radicals R12C-R17C may also be substituted by halogens and/or two vicinal radicals R8C-R17C may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R8C-R17C are joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N1 P, O or S,
the indices v are each, independently of one another, 0 or 1 ,
the radicals Xc are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, CrCto-alkyl, C2-C10-alkenyl, C6-C20-aryl, arylalkyl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR18C 2, OR18C, SR18C , SO3R180, OC(O)R180, CN, SCN, β-diketonate, CO, BF4 ", PF6 " or a bulky noncoordinating anion and the radicals X° may be joined to one another,
the radicals R18C are each, independently of one another, hydrogen, Ci-C20-alkyl, C2-C20-alkenyl, C6-C20-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR19C 3, where the organic radicals R180 may also be substituted by halogens and nitrogen- and oxygen-containing groups and two radicals R180 may also be joined to form a five- or six-membered ring,
the radicals R190 are each, independently of one another, hydrogen, d-C^-alkyl, C2-C20-alkenyl, C6-C20-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, where the organic radicals R190 may also be substituted by halogens or nitrogen- and oxygen-containing groups and two radicals R19C may also be joined to form a five- or six- membered ring,
s is 1 , 2, 3 or 4, in particular 2 or 3,
D is an uncharged donor and
t is from 0 to 4, in particular 0, 1 or 2.
The embodiments and preferred embodiments described above likewise apply to E2C-E4C, R1C-
R3C χC R18C and R19C
The substituents R4C-R5C can be varied within a wide range. Possible carboorganic substituents R4C-R5C are, for example, the following: hydrogen, CrC^-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a Crdo-alkyl group and/or C6-Ci0-aryl group as substituent, e.g. cyclopropyl, cyclobutyl, cyclopean- tyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C2-C22-alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g. vinyl, 1- allyl, 2-allyl, 3-allyl, butenyl, pentenyl, hexenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl or cyclo- octadienyl, C6-C22-aryl which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphenyl, or arylalkyl which may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2-phenylethyl, where the organic radicals R4C- R5C may also be substituted by halogens such as fluorine, chlorine or bromine. Furthermore, R4C- R5C can be amino NR18C 2 or N(SiR19C 3)2, for example dimethylamino, N-pyrrolidinyl or picolinyl. Possible radicals R19C in organosilicon substituents SiR19C 3 are the same carboorganic radicals as described above for R1C-R3C, where two radicals R19C may also be joined to form a 5- or 6-mem- bered ring, e.g. trimethylsilyl, triethylsilyl, butyldimethylsilyl, tributylsilyl, tritert-butylsilyl, triallylsilyl, triphenylsilyl or dimethylphenylsilyl. These SiR19C 3 radicals can also be bound via nitrogen to the carbon bearing them.
Preferred radicals R4C-R5C are hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert- butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl or benzyl, in particular methyl.
The substituents R8C-R17C can be varied within a wide range. Possible carboorganic substituents R8C-R17C are, for example, the following: CrC^-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a CrC^-alky! group and/or C6-C10-aryl group as substituent, e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohe- xyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C2-C22-alkenyl which may be linear, cyclic or branched and in which the double may be internal or terminal, e.g. vinyl, 1-allyl, 2-allyl, 3-allyl, butenyl, pentenyl, hexenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl or cyclooctadienyl, C6-C22- aryl which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphenyl, or arylalkyl which may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2-phenylethyl, where two radicals R8C to R17C may also be joined to form a 5-, 6- or 7-membered ring and/or two of the vicinal radicals R8C-R17C may be joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and S and/or the organic radicals R8C-R17C may also be substituted by halogens such as fluorine, chlorine or bromine. Furthermore, R8C-R17C can be halogen such as fluorine, chlorine, bromine, amino NR18C 2 or N(SiR19C 3)2, alkoxy or aryloxy OR180, for example dimethylamino, N- pyrrolidinyl, picolinyl, methoxy, ethoxy or isopropoxy. Possible radicals R19C in organosilicon sub- stituents SiR19C 3 are the same carboorganic radicals which have been mentioned above for R1C- R3C, where two radicals R19C may also be joined to form a 5- or 6-membered ring, e.g. trimethyl- silyl, triethylsilyl, butyldimethylsilyl, tributylsilyl, tritert-butylsilyl, triallylsilyl, triphenylsilyl or dimeth- yiphenylsilyl. These SiR19C 3 radicals can also be bound via an oxygen or nitrogen, for example trimethylsilyloxy, triethylsilyloxy, butyldimethylsilyloxy, tributylsilyloxy or tritert. butylsilyloxy.
Preferred radicals R12C-R17C are hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine, in particular hydrogen. In particular, R13C and R16C are each methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine or bromine and R12C, R14C, R15C and R17C are each hydrogen.
Preferred radicals R8C-R11C are methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine. In particular R8C and R10C are each a CrC22-alkyl which may also be substituted by halo- gens, in particular a CrC^-n-alkyl which may also be substituted by halogens, e.g. methyl, trifluoromethyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, or a halogen such as fluorine, chlorine or bromine and R9C and R11C are each a halogen such as fluorine, chlorine or bromine. Particular preference is given to R8C and R10C each being a C^C^-alky! which may also be substituted by halogens, in particular a CrCrn-alkyI which may also be substituted by halo- gens, e.g. methyl, trifluoromethyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl and R9C and R11C each being a halogen such as fluorine, chlorine or bromine.
In particular, R12C, R14C, R15C and R17C are identical, R13C and R16C are identical, R9C and R11C are identical and R8C and R10C are identical. This is also preferred in the preferred embodiments de- scribed above. The preparation of the transition metal coordination compounds of formula (II) or (Ha) is described, for example, in J. Am. Chem. Soc. 120, p. 4049 ff. (1998), J. Chem. Soc, Chem. Com- mun. 1998, 849 and WO 98/27124. Preferred complexes B) are 2,6-Bis[1-(2,6-dimethylphenyl- imino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,4,6-trimethylphenylimino)-ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2-chloro-4,6-dimethylphenylimino)ethyl]pyridine iron(ll) dichloride, 2, 6-Bis[1- (2-chloro-6-methylphenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,6-diisopropylphenyl- imino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,6-dichlorophenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1 -(2,6-diisopropyl phenylimino)methyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,4- dichloro-6-methylphenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,6-difluorophenylimino)- ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,6-dibromophenylimino)ethyl]pyridine iron(ll) dichloride or the respective dibromides or tribromides.
Preference is given to the supported catalyst system as described above wherein the second transition metal coordination compound (A) is a monocyclopentadienyl complex of a metal of groups 4-6 of the Periodic Table of the Elements whose cyclopentadienyl system is substituted by an uncharged donor (A1) or a hafnocene (A2).
For the purposes of the present invention, an uncharged donor is an uncharged functional group containing an element of group 15 or 16 of the Periodic Table.
Hafnocene catalyst components are, for example, cyclopentadienyl complexes. The cyclopentadienyl complexes can be, for example, bridged or unbridged biscyclopentadienyl complexes as described, for example, in EP 129 368, EP 561 479, EP 545 304 and EP 576 970, monocyclo- pentadienyl complexes such as bridged amidocyclopentadienyl complexes described, for example, in EP 416 815, multinuclear cyclopentadienyl complexes as described in EP 632 063, pi- ligand-substituted tetrahydropentalenes as described in EP 659 758 or pi-ligand-substituted tetra- hydroindenes as described in EP 661 300.
Preference is given to monocyclopentadienyl complexes (A1) containing the following structural feature of the general formula Cp-YmMA (III), where the variables have the following meanings:
Cp is a cyclopentadienyl system,
Y is a substituent which is bound to Cp and contains at least one uncharged donor containing at least one atom of group 15 or 16 of the Periodic Table,
MA is titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten, in particular chromium, and m is 1 , 2 or 3.
Suitable monocyclopentadienyl complexes (A1) contain the structural element of the general formula Cp-YmMA (III), where the variables are as defined above. Further ligands can therefore be bound to the metal atom MA. The number of further ligands depends, for example, on the oxidation state of the metal atom. These ligands are not further cyclopentadienyl systems. Suitable ligands include monoanionic and dianionic ligands as have been described, for example, for X. In addition, Lewis bases such as amines, ethers, ketones, aldehydes, esters, sulfides or phosphines can also be bound to the metal center MA. The monocyclopentadienyl complexes can be in monomeric, dimeric or oligomeric form. The monocyclopentadienyl complexes are preferably in monomeric form.
MA is a metal selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten. The oxidation state of the transition metals MA in catalytically active complexes is usually known to those skilled in the art. Chromium, molybdenum and tungsten are very probably present in the oxidation state +3, zirconium and hafnium in the oxidation state +4 and titanium in the oxidation state +3 or +4. However, it is also possible to use complexes whose oxidation state does not correspond to that of the active catalyst. Such complexes can then be appropriately reduced or oxidized by means of suitable activators. MA is preferably titanium in the oxidation state 3, vanadium, chromium, molybdenum or tungsten. Particular preference is given to chromium in the oxidation states 2, 3 and 4, in particular 3.
m can be 1 , 2 or 3, i.e. 1 , 2 or 3 donor groups Y may be bound to Cp, with these being able to be identical or different when 2 or 3 groups Y are present. Preference is given to only one donor group Y being bound to Cp (m = 1).
The uncharged donor Y is an uncharged functional group containing an element of group 15 or 16 of the Periodic Table, e.g. an amine, imine, carboxamide, carboxylic ester, ketone (oxo), ether, thioketone, phosphine, phosphite, phosphine oxide, sulfonyl, sulfonamide or unsubstituted, substi- tuted or fused, partially unsaturated heterocyclic or heteroaromatic ring systems. The donor Y can be bound intermolecularly or intramolecularly to the transition metal MA or not be bound to it. The donor Y is preferably bound intramolecularly to the metal center MA. Particular preference is given to monocyclopentadienyl complexes containing the structural element of the general formula Cp-Y-MA.
Cp is a cyclopentadienyl system which may be substituted in any way and/or be fused with one or more aromatic, aliphatic, heterocyclic or heteroaromatic rings, with 1 , 2 or 3 substituents, preferably 1 substituent, being formed by the group Y and/or 1 , 2 or 3 substituents, preferably 1 substitu- ent being substituted by the group Y and/or the aromatic, aliphatic, heterocyclic or heteroaromatic fused-on ring bearing 1 , 2 or 3 substituents, preferably 1 substituent. The cyclopentadienyl skele- ton itself is a C5 ring system having 6 π electrons, in which one of the carbon atoms may also be replaced by nitrogen or phosphorus, preferably phosphorus. Preference is given to using C5 ring systems without replacement by a heteroatom. This cyclopentadienyl skeleton can be, for example, fused with a heteroaromatic containing at least one atom from the group consisting of N, P, O and S or with an aromatic. In this context, fused means that the heterocycle and the cyclopentadienyl skeleton share two atoms, preferably carbon atoms. The cyclopentadienyl system is bound to MA
Particularly well-suited monocyclopentadienyl complexes (A1) are ones in which Y is formed by the group -Zk-A- and together with the cyclopentadienyl system Cp and MA forms a monocyclopentadienyl complex containing the structural element of the general formula Cp-Zk-A-MA (IV), where the variables have the following meanings:
Figure imgf000020_0001
where the variables have the following meanings:
E1A-E5A are each carbon or not more than one E1A to E5A phosphorus,
R1A-R4A are each, independently of one another, hydrogen, Ci-C22-alkyl, C2-C22-alkenyl, C6-C22- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical, NR5A 2, N(SiR5A 3)2, 0R5A, OSiR5A 3, SiR5A 3, BR5A 2, where the organic radicals R1A-R4A may also be substituted by halogens and two vicinal radicals R1A-R4A may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R1A-R4A are joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P1O and S,
the radicals R5A are each, independently of one another, hydrogen, CrCo-alkyI, C2-C20-atkenyl, C6-C20-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R5A may also be joined to form a five- or six-membered ring, is a divalent bridge between A and Cp which is selected from the following group
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0003
-BR6A-, -BNR6AR7A-, -AIR6A-, -Sn-, -O-, -S-, -SO-, -SO2-, -NR6A- -CO-, -PR6A- or
-P(O)R6A- where
L1A-L3A are each, independently of one another, silicon or germanium,
R 6A_RI IA gre egch jnc|epenc|entiy of one another, hydrogen, C^C^-alkyl, C2-C20-alkenyl, C6-C20- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR12A 3, where the organic radicals R6A-R11A may also be substituted by halogens and two geminal or vicinal radicals R6A-R11A may also be joined to form a five- or six-membered ring and
the radicals R12A are each, independently of one another, hydrogen, C^C^-alkyl, C2-C2(ralkenyl, C6-C20-aryl or arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, CrC^-alkoxy or C6-C10-aryloxy and two radicals R12A may also be joined to form a five- or six-membered ring, and
A is an uncharged donor group containing one or more atoms of group 15 and/or 16 of the Periodic Table of the Elements, preferably an unsubstituted, substituted or fused, heteroaromatic ring system, MΛ is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten, in particular chromium, and k is O or l
In preferred cyclopentadienyl systems Cp, all E1A to E5A are carbon.
The polymerization behavior of the metal complexes can be influenced by varying the substituents R1A R 4A The num|-,er. anc| type of substituents can influence the accessibility of the metal atom M for the olefins to be polymerized. In this way, it is possible to modify the activity and selectivity of the catalyst in respect of various monomers, in particular bulky monomers. Since the substituents can also influence the rate of termination reactions of the growing polymer chain, the molecular weight of the polymers formed can also be altered in this way. The chemical structure of the substituents R1A to R4A can therefore be varied within a wide range in order to achieve the desired results and to obtain a tailored catalyst system. Possible carboorganic substituents R1A-R4Aare, for example, the following: hydrogen, CrC22-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a Ci-Cio-alkyl group and/or C6-C10-aryl group as substituent, e.g. cyclopropyl cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C2-C22-alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g. vinyl, 1-allyl, 2-allyl, 3-allyl, butenyl, pentenyl, hexenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl or cyclooctadienyl, C6-C22-aryl which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, an- thranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphenyl, or arylalkyl which may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2-phenylethyl, where two radicals R1A to R4A may also be joined to form a 5-, 6- or 7-membered ring and/or two vicinal radicals R1A-R4A may be joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and S and/or the organic radicals R1A-R4A may also be substituted by halogens such as fluorine, chlorine or bromine. Furthermore, R1A-R4A may be amino NR5A 2 or N(SiR5A 3)2, alkoxy or aryloxy OR5A, for example dimethylamino, N-pyrrolidinyl, picolinyl, methoxy, ethoxy or isopropoxy. The radicals R5A in organosilicone substituents SiR5A 3 can be the same carboorganic radicals as described above for R1A-R4A, where two radicals R5A may also be joined to form a 5- or 6-membered ring, e.g. trimethylsilyl, triethylsilyl, butyldimethylsilyl, tributylsilyl, tritert-butylsilyl, triallylsilyl, triphenylsilyl or dimethylphenylsilyl. These SiR5A 3 radicals may also be joined to the cyclopentadienyl skeleton via an oxygen or nitrogen, for example trimethylsilyloxy, triethylsilyloxy, butyldimethylsilyloxy, tributylsilyloxy or tritert-butylsilyloxy. Preferred radicals R1A-R4A are hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, ortho-dialkyl- or -dichloro-substituted phenyls, trialkyl- or trichloro-substituted phenyls, naphthyl, biphenyl and anthranyl. Possible organosili- con substituents are, in particular, trialkylsilyl groups having from 1 to 10 carbon atoms in the alkyl radical, in particular trimethylsilyl groups.
Two vicinal radicals R1A-R4A together with the E1A-E5A bearing them may form a heterocycle, pref- erably heteroaromatic, containing at least one atom from the group consisting of nitrogen, phosphorus, oxygen and sulfur, particularly preferably nitrogen and/or sulfur, with the E1A-E5A present in the heterocycle or heteroaromatic preferably being carbons. Preference is given to heterocycles and heteroaromatics having a ring size of 5 or 6 ring atoms. Examples of 5-membered heterocycles which may contain from one to four nitrogen atoms and/or a sulfur or oxygen atom as ring atoms in addition to carbon atoms are 1 ,2-dihydrofuran, furan, thiophene, pyrrole, isoxazole, 3- isothiazole, pyrazole, oxazole, thiazole, imidazole, 1 ,2,4-oxadiazole, 1 ,2,5-oxadiazole, 1 ,3,4- oxadiazole, 1 ,2,3-triazole and 1 ,2,4-triazole. Examples of 6-membered heteroaryl groups which may contain from one to four nitrogen atoms and/or a phosphorus atom are pyridine, phospha- benzene, pyridazine, pyrimidine, pyrazine, 1 ,3,5-triazine 1 ,2,4-triazine or 1 ,2,3-triazine. The 5- membered and 6-membered heterocycles may also be substituted by Ci-Cκ>-alkyl, C6-C10-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-10 carbon atoms in the aryl part, trialkylsilyl or halogens such as fluorine, chlorine or bromine, dialkylamide, arylalkylamide, di- arylamide, alkoxy or aryloxy or be fused with one or more aromatics or heteroaromatics. Examples of benzo-fused 5-membered heteroaryl groups are indole, indazole, benzofuran, benzothio- phene, benzothiazole, benzoxazole and benzimidazole. Examples of benzo-fused 6-membered heteroaryl groups are chroman, benzopyran, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, 1 ,10-phenanthroline and quinolizine. Naming and numbering of the heterocycles has been taken from Lettau, Chemie der Heterocyclen, 1st edition, VEB, Weinheim 1979. The heterocycles/heteroaromatics are preferably fused with the cyclopentadienyl skeleton via a C-C double bond of the heterocycle/heteroaromatic. Heterocycles/heteroaromatics having one heteroatom are preferably 2,3- or b-fused.
Cyclopentadienyl systems Cp having a fused-on heterocycle are, for example, thiapentalene, 2-methylthiapentalene, 2-ethylthiapentalene, 2-isopropylthiapentalene, 2-n-butylthiapentalene, 2-tert-butylthiapentalene, 2-trimethylsilylthiapentalene, 2-phenylthiapentalene, 2-naphthylthia- pentalene, 3-methylthiopentalene, 4-phenyl-2,6-dimethyl-1 -thiopentalene, 4-phenyl-2,6-diethyl-1 - thiopentalene, 4-phenyl-2,6-diisopropyl-1 -thiopentalene, 4-phenyl-2,6-di-n-butyl-1 -thiopentalene, 4-phenyl-2,6-ditrimethylsilyl-1 -thiopentalene, azapentalene, 2-methylazapentalene, 2-ethylaza- pentalene, 2-isopropylazapentalene, 2-n-butylazapentalene, 2-trimethylsilylazapentalene, 2-phenylazapentalene, 2-naphthylazapentalene, 1-phenyl-2,5-dimethyl-1 -azapentalene, 1-phenyl- 2, 5-diethyl-1 -azapentalene, 1-phenyl-2,5-di-n-butyl-1 -azapentalene, 1-phenyl-2,5-di-tert-butyl-1- azapentalene, 1-phenyl-2,5-di-trimethylsilyl-1 -azapentalene, 1-tert-butyl-2,5-dimethyl-1-azapen- talene, oxapentalene, phosphapentalene, 1-phenyl-2,5-dimethyl-1-phosphapentalene, 1-phenyl- 2,5-diethyl-1 -phosphapentalene, 1 -phenyl-2,5-di-n-butyl-1 -phosphapentalene, 1 -phenyl-2,5-di- tert-butyl-1 -phosphapentalene, 1-phenyl-2,5-di-trimethylsilyl-1 -phosphapentalene, 1-methyl-2,5- dimethyl-1-phosphapentalene, 1-tert-butyl-2,5-dimethyl-1-phosphapentalene, 7-cyclopenta- [1 ,2]thiophene[3,4]cyclopentadiene or 7-cyclopenta[1 ,2]pyrrol[3,4]cyclopentadiene.
In further preferred cyclopentadienyl systems Cp1 the four radicals R1A-R4A, i.e. the two pairs of vicinal radicals, form two heterocycles, in particular heteroaromatics. The heterocyclic systems are the same as those described above.
Cyclopentadienyl systems Cp having two fused heterocycles are, for example, 7-cyclopenta- dithiophene, 7-cyclopentadipyrrole or 7-cyclopentadiphosphole.
The synthesis of such cyclopentadienyl systems having a fused-on heterocycle is described, for example, in the abovementioned WO 98/22486. In "metalorganic catalysts for synthesis and polymerisation", Springer Verlag 1999, Ewen et al., p. 150 ff describe further syntheses of these cyclopentadienyl systems.
Particularly preferred substituents R1A-R4A are the carboorganic substituents described above and the carboorganic substituents which form a cyclic fused ring system, i.e. together with the E1A-E5A- cyclopentadienyl skeleton, preferably a C5-cyclopentadienyl skeleton, form, for example, an un- substituted or substituted indenyl, benzindenyl, phenanthrenyl, fluorenyl or tetrahydroindenyl sys- tern, and also, in particular, their preferred embodiments.
Examples of such cyclopentadienyl systems (without the group -Z-A-, which is preferably located in the 1 position) are 3-methylcyclopentadienyl, 3-ethylcyclopentadienyl, 3-isopropylcyclopenta- dienyl, 3-tert-butylcyclopentadienyl, dialkylalkylcyclopentadienyl such as tetrahydroindenyl, 2,4-dimethylcyclopentadienyl or 3-methyl-5-tert-butylcyclopentadienyl, trialkylcyclopentadienyl such as 2,3,5-trimethylcyclopentadienyl or tetraalkylcyclopentadienyl such as 2,3,4,5-tetramethyl- cyclopentadienyl, and also indenyl, 2-methylindenyl, 2-ethylindenyl, 2-isopropylindenyl, 3-methyl- indenyl, benzindenyl and 2-methylbenzindenyl. The fused ring system may bear further C1-C20- alkyl, C2-C2o-alkenyl, C6-C2o-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR5A 2, N(SiR5A 3)2, OR5A, OSiR5A 3 or SiR5A 3, e.g. 4-methyl- indenyl, 4-ethylindenyl, 4-isopropylindenyl, 5-methylindenyl, 4-phenylindenyl, 5-methyl-4- phenylindenyl, 2-methyl-4-phenylindenyl or 4-naphthylindenyl.
In a particularly preferred embodiment, one of the substituents R1A-R4A , preferably R2A, is a C6-C22-aryl or an arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, preferably C6-C22-aryl such as phenyl, naphthyl, biphenyl, anthracenyl or phenanthrenyl, where the aryl may also be substituted by N-, P-, O- or S-containing substituents, Ci-C22-alkyl, C2-C22-alkenyl, halogens or haloalkyls or haloaryls having 1-10 carbon atoms, for example o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphenyl, o-, m-, p-dimethylaminophenyl, o-, m-, p-methoxyphenyl, o-, m-, p-fluorophenyl, o-, m-, p-chlorophenyl, o-, m-, p-trifluoromethylphenyl, 2,3-, 2,4-, 2,5- or 2,6-difluorophenyl, 2,3-, 2,4-, 2,5- or 2,6-dichlorophenyl or 2,3-, 2,4-, 2,5- or 2,6-di(trifluoromethyl)- phenyl. The N-, P-, O- or S-containing substituents, Ci-C∑∑-alkyI, C2-C22-alkenyl, halogens or haloalkyls or haloaryls having 1-10 carbon atoms as substituents on the aryl radical are preferably located in the para position relative to the bond to the cyclopentadienyl ring. The aryl substituent can be bound in the vicinal position relative to the substituent -Z-A or the two substituents are located relative to one another in the 1 ,3 positions on the cyclopentadienyl ring. -Z-A and the aryl substituent are preferably present in the 1 ,3 positions relative to one another on the cyclopentadienyl ring.
As in the case of the metallocenes, the monocyclopentadienyl complexes (A1 ) can be chiral. Thus, one of the substituents R1A-R4A of the cyclopentadienyl skeleton can have one or more chiral centers or the cyclopentadienyl system Cp itself can be enantiotopic so that chirality is induced only when it is bound to the transition metal M ( for the formalism regarding chirality in cyclopentadienyl compounds, see R. Halterman, Chem. Rev. 92, (1992), 965-994).
The bridge Z between the cyclopentadienyl system Cp and the uncharged donor A is a divalent organic bridge (k = 1) which preferably consists of carbon- and/or silicon- and/or boron-containing bridge members. The activity of the catalyst can be influenced by changing the length of the link- age between the cyclopentadienyl system and A. Z is preferably bound to the cyclopentadienyl skeleton next to the fused-on heterocycle or fused-on aromatic. Thus, if the heterocycle or aromatic is fused on in the 2,3 positions of the cyclopentadienyl skeleton, then Z is preferably located in the 1 or 4 position of the cyclopentadienyl skeleton.
Possible carboorganic substituents R6A-R11A on the linkage Z are, for example, the following: hydrogen, C1-C2o-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a C6-Ci0-aryl group as substituent, e.g. cyclo- propyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C2-C20-alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g. vinyl, 1-allyl, 2-allyl, 3-allyl, butenyl, pentenyl, hexenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl or cyclooctadienyl, C6-C20-aryl which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphen-1-yl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphen-1-yl, or arylalkyl which may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2- phenylethyl, where two R6A to R11A may also be joined to form a 5- or 6-membered ring, for example cyclohexane, and the organic radicals R6A-R11A may also be substituted by halogens such as fluorine, chlorine or bromine, for example pentafluorophenyl or bis-3,5-trifluoromethylphen-1-yl and alkyl or aryl. The radicals R12A in organosilicon substitutents SiR12A 3 can be the same radicals as mentioned above for R6A-R11A, where two radicals R12A may also be joined to form a 5- or 6-membered ring, e.g. trimethylsilyl, triethylsilyl, butyldimethylsilyl, tributylsilyl, tπtert-butylsilyl, triallylsilyl, triphenyl- silyl or dimethylphenylsilyl. Preferred radicals R6A-R11A are hydrogen, methyl, ethyl, n-propyl, iso- propyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, benzyl, phenyl, ortho- dialkyl- or dichloro-substituted phenyls, trialkyl- or trichioro-substituted phenyls, naphthyl, biphenyl and anthranyl.
Particularly preferred substituents R6A to R11A are hydrogen, d-Co-alkyI which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, C6-C2o-aryl which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphen-1-yl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphen-1-yl, or arylalkyl which may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2- phenylethyl where two radicals R6A to R11A may also be joined to form a 5- or 6-membered ring, for example cyclohexane, and the organic radicals R6A-R2B may also be substituted by halogens such as fluorine, chlorine or bromine, in particular fluorine, for example pentafluorophenyl or bis- 3,5-trifluoromethylphen-1-yl and alkyl or aryl. Particular preference is given to methyl, ethyl, 1 -propyl, 2-isopropyl, 1 -butyl, 2-tert-butyl, phenyl and pentafluorophenyl.
Z is preferably a group -CR6AR7A-, -SiR6AR7A-, in particular -Si(CH3)r, -CR6AR7ACR8AR9A-, -SiR6AR7ACR8AR9A- or substituted or unsubstituted 1 ,2-phenylene and in particular -CR6AR7A-. The preferred embodiments of the substituents R6A to R11A described above are likewise preferred embodiments here. Preference is given to -CR6AR7A- being a -CHR6A-, -CH2- or -C(CH3)2- group. The group -SiR6AR7A- in -L1AR6AR7ACR8AR9A- can be bound to the cyclopentadienyl system or to A. This group -SiR6AR7A- or a preferred embodiment thereof is preferably bound to Cp.
k is 0 or 1 ; in particular, k is 1 or when A is an unsubstituted, substituted or fused, heterocyclic ring system may also be 0. Preference is given to k being 1.
A is an uncharged donor containing an atom of group 15 or 16 of the Periodic Table, preferably one or more atoms selected from the group consisting of oxygen, sulfur, nitrogen and phosphor- rus, preferably nitrogen and phosphorus. The donor function in A can bind intermolecularly or intramolecularly to the metal MA. The donor in A is preferably bound intramolecularly to M. Possi- ble donors are uncharged functional groups containing an element of group 15 or 16 of the Periodic Table, e.g. amine, imine, carboxamide, carboxylic ester, ketone (oxo), ether, thioketone, phos- phine, phosphite, phosphine oxide, sulfonyl, sulfonamide or unsubstituted, substituted or fused, heterocyclic ring systems. The attachment of A to the cyclopentadienyl radical and Z can be carried out synthetically by, for example, a method analogous to that described in WO 00/35928. A is preferably a group selected from among -OR13A-, -SR13A-, -NR13AR14A-, -PR13AR14A-, -C=NR13A- and unsubstituted, substituted or fused heteroaromatic ring systems, in particular -NR13AR14A-, -C=NR13A- and unsubstituted, substituted or fused heteroaromatic ring systems.
R13A and R14A are each, independently of one another, hydrogen, d-Co-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a C6-C10-aryl group as substituent, e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C2-C20-alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g. vinyl, 1-allyl, 2-allyl, 3-allyl, butenyl, pentenyl, hexenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl or cyclooctadienyl, C6-C2o-aryl which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, an- thranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphen-1-yl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphen-1-yl, arylalkyl which has from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2-phenylethyl or SiR15A 3, where the organic radicals R13A-R14A may also be substituted by halogens such as fluorine, chlorine or bromine or nitrogen- containing groups and further Ci-C20-alkyl, C2-C20-alkenyl, C6-C20-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR15A 3 groups and two vicinal radicals R13A-R14A may also be joined to form a five- or six-membered ring and the radicals R15A are each, independently of one another, hydrogen, CVC^-alkyl, C2-C20-alkenyl, C6-C20-aryl or arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R15A may also be joined to form a five- or six-membered ring.
NR13AR14A is an amide substituent. It is preferably a secondary amide such as dimethylamide, N-ethylmethylamide, diethylamide, N-methylpropylamide, N-methylisopropylamide, N-ethyliso- propylamide, dipropylamide, diisopropylamide, N-methylbutylamide, N-ethylbutylamide, N-methyl- tert-butylamide, N-tert-butylisopropylamide, dibutylamide, di-sec-butylamide, diisobutylamide, tert- amyl-tert-butylamide, dipentylamide, N-methylhexylamide, dihexylamide, tert-amyl-tert-octyl- amide, dioctylamide, bis(2-ethylhexyl)amide, didecylamide, N-methyloctadecylamide, N-methyl- cyclohexylamide, N-ethylcyclohexylamide, N-isopropylcyclohexylamide, N-tert-butylcyclohexyl- amide, dicyclohexylamide, pyrrolidine, piperidine, hexamethylenimine, decahydroquinoline, diphenylamine, N-methylanilide or N-ethylanilide.
In the imino group -C=NR13A, R13A is preferably a C6-C20-aryl radical which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphen-i-yl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphen-i-yl.
A is preferably an unsubstituted, substituted or fused heteroaromatic ring system which can con- tain heteroatoms from the group consisting of oxygen, sulfur, nitrogen and phosphorus in addition to ring carbons. Examples of 5-membered heteroaryl groups which may contain from one to four nitrogen atoms or from one to three nitrogen atoms and/or a sulfur or oxygen atom as ring members in addition to carbon atoms are 2-furyl, 2-thienyl, 2-pyrrolyl, 3-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 5-isothiazolyl, 1-pyrazolyl, 3-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazo- IyI, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 1 ,2,4-oxadiazol-3-yl, 1 ,2,4-oxadiazol-5-yl, 1 ,3,4-oxadiazol-2-yl and 1 ,2,4-triazol-3-yl. Examples of 6-membered heteroaryl groups which may contain from one to four nitrogen atoms and/or a phosphorus atom are 2- pyridinyl, 2-phosphabenzenyl, 3-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 2-pyrazinyl, 1 ,3,5-triazin- 2-yl and 1 ,2,4-triazin-3-yl, 1 ,2,4-triazin-5-yl and 1 ,2,4-triazin-6-yl. The 5-membered and 6-mem- bered heteroaryl groups may also be substituted by C1-C1O-SlKyI, C6-C10-aryl, arylalKyl having from 1 to 10 carbon atoms in the alkyl part and 6-10 carbon atoms in the aryl part, trialKylsilyl or halogens such as fluorine, chlorine or bromine or be fused with one or more aromatics or heteroaro- matics. Examples of benzo-fused 5-membered heteroaryl groups are 2-indolyl, 7-indolyl, 2-cou- maronyl, 7-coumaronyl, 2-thionaphthenyl, 7-thionaphthenyl, 3-indazolyl, 7-indazolyl, 2-benz- imidazolyl and 7-benzimidazolyl. Examples of benzo-fused 6-membered heteroaryl groups are 2- quinolyl, 8-quinolyl, 3-cinnolyl, 8-cinnolyl, 1-phthalazyl, 2-quinazolyl, 4-quinazolyl, 8-quinazolyl, 5- quinoxalyl, 4-acridyl, 1-phenanthridyl and 1-phenazyl. Naming and numbering of the heterocycles has been taken from L.Fieser and M. Fieser, Lehrbuch der organischen Chemie, 3rd revised edition, Verlag Chemie, Weinheim 1957.
Among these heteroaromatic systems A, particular preference is given to unsubstituted, substituted and/or fused six-membered heteroaromatics having 1 ,2, 3, 4 or 5 nitrogen atoms in the heteroaromatic part, in particular substituted and unsubstituted 2-pyridyl or 2-quinolyl. A is therefore preferably a group of the formula (Vl)
Figure imgf000028_0001
, where
E6A-E9A are each, independently of one another, carbon or nitrogen,
R i6A_R i9A are each^ jnc|epencjentiy of one another, hydrogen, C1-C20-BlKyI, C2-C2o-alkenyl, C6-C20-aryl, arylalKyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR20A 3, where the organic radicals R16A-R19A may also be substituted by halogens or nitrogen and further CrC2o-alKyl, C2-C2o-alKenyl, C6-C20-aryl, arylalKyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR20A 3 and two vicinal radicals R16A-R19A or R16A and Z may also be joined to form a five- or six-membered ring and the radicals R20A are each, independently of one another, hydrogen, d-Cao-alkyl, C2-C2o-alkenyl, C6-C2o-aryl or arylalkyl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoommss iinn tthhe aryl radical and two radicals R20A may also be joined to form a five- or six-membered ring and
p is 0 when E6A-E9A is nitrogen and is 1 when E6A-E9A is carbon.
In particular, 0 or 1 E6A-E9A are nitrogen and the remainder are carbon. A is particularly preferably a 2-pyridyl, 6-methyl-2-pyridyl, 4-methyl-2-pyridyl, 5-methyl-2-pyridyl, 5-ethyl-2-pyridyl, 4,6-di- methyl-2-pyridyl, 3-pyridazyl, 4-pyrimidyl, 6-methyl-4-pyrimidyl, 2-pyrazinyl, 6-methyl-2-pyrazinyl, 5-methyl-2-pyrazinyl, 3-methyl-2-pyrazinyl, 3-ethylpyrazinyl, 3,5,6-trimethyl-2-pyrazinyl, 2-quinolyl, 4-methyl-2-quinolyl, 6-methyl-2-quinolyl, 7-methyl-2-quinolyl, 2-quinoxalyl or 3-methyl-2-qui- noxalyl.
Owing to the ease of preparation, preferred combinations of Z and A are those in which Z is un- substituted or substituted 1 ,2-phenylene and A is NR16AR17A and those in which Z is -CHR6A-, -CH2-, -C(CH3)2 or -Si(CH3)2- and A is unsubstituted or substituted 2-quinolyl or unsubstituted or substituted 2-pyridyl. Systems without a bridge Z, in which k is 0, are also very particularly simple to synthesize. A is preferably unsubstituted or substituted 8-quinolyl in this case. In addition, when k is 0, R2A is preferably a C6-C22-aryl or an arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, preferably C6-C22-aryl such as phenyl, naphthyl, bi- phenyl, anthracenyl or phenanthrenyl, where the aryl may also be substituted by N-, P-, O- or S- containing substituents, Ci-C22-alkyl, C2-C22-alkenyl, halogens or haloalkyls or haloaryls having 1-10 carbon atoms.
The preferred embodiments described above for the variables are also preferred in these preferred combinations.
MA is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten, preferably titanium in the oxidation state 3 and chromium. Particular preference is given to chromium in the oxidation states 2, 3 and 4, in particular 3. The metal complexes, in particular the chromium complexes, can be obtained in a simple manner by reacting the appropriate metal salts, e.g. metal chlorides, with the ligand anion (e.g. using a method analogous to the examples in DE 197 10615).
Among the suitable monocyclopentadienyl complexes (A1), preference is given to those of the formula Cp-YmMAXA n (VII) where the variables Cp, Y, A, m and MA are as defined above and their preferred embodiments are also preferred here and: XA are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, CrCio-alkyl, C2-C10-alkenyl, C6-C2o-aryl, arylalkyl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR21AR22A, OR21A, SR21A, SO3R21A, OC(O)R21A, CN, SCN, β-diketonate, CO, BF4 ", PF6 " or a bulky noncoordinating anion or two radicals XA form a substituted or unsubstituted diene ligand, in particular a 1 ,3-diene ligand, and the radicals XA may be joined to one another,
R 21A_R 22A gre each| jncjepencjentiy of one another, hydrogen, CrC2o-alkyl, C2-C2o-alkenyl, C6-C20-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR23A 3, where the organic radicals R21A-R22A may also be substituted by halogens or nitrogen- and oxygen-containing groups and two radicals R21A-R22A may also be joined to form a five- or six-membered ring,
the radicals R23A are each, independently of one another, hydrogen, d-C^-alkyl, C2-C20- alkenyl, C6-C20-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R23A may also be joined to form a five- or six-membered ring and
n is 1 , 2, or 3.
The embodiments and preferred embodiments described above for Cp, Y, Z, A, m and MA also apply individually and in combination to these preferred monocyclopentadienyl complexes.
The ligands XA result, for example, from the choice of the appropriate starting metal compounds used for the synthesis of the monocyclopentadienyl complexes, but can also be varied afterwards. Possible ligands XA are, in particular, the halogens such as fluorine, chlorine, bromine or iodine, especially chlorine. Alkyl radicals such as methyl, ethyl, propyl, butyl, vinyl, allyl, phenyl or benzyl are also advantageous ligands XA. Further ligands XA which may be mentioned, purely by way of example and in no way exhaustively, are trifluoroacetate, BF4 ", PF6 " and also weakly coordinating or noncoordinating anions (cf., for example, S. Strauss in Chem. Rev. 1993, 93, 927-942), e.g. B(C6Fs)4 ".
Amides, alkoxides, sulfonates, carboxylates and β-diketonates are also particularly useful ligands XA Variation of the radicals R21A and R22A enables, for example, physical properties such as solubility to be finely adjusted. Possible carboorganic substituents R21A-R22A are, for example, the following: Ci-C20-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a C6-C10-aryl group as substituent, e.g. cyclo- propyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C2-C2o-alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g. vinyl, 1-allyl, 2-allyl, 3-allyl, butenyl, pentenyl, hexenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl or cyclooctadienyl, C6-C2o-aryl which may be substituted by further alkyl groups and/or N- or O-containing radicals, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5- trimethylphenyl, 2-methoxyphenyl, 2-N,N-dimethylaminophenyl or arylalkyl, where the arylalkyl may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2- phenylethyl, where R21A may also be joined to R22A to form a 5- or 6-membered ring and the organic radicals R21A-R22A may also be substituted by halogens such as fluorine, chlorine or bro- mine. Possible radicals R23A in organosilicon substituents SiR23A 3 are the same radicals as have been mentioned above for R21A-R22A, where two R23A may also be joined to form a 5- or 6- membered ring, e.g. trimethylsilyl, triethylsilyl, butyldimethylsilyl, tributylsilyl, triallylsilyl, triphenyl- silyl or dimethylphenylsilyl. Preference is given to using d-Cio-alkyl such as methyl, ethyl, n- propyl, n-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and also vinyl allyl, benzyl and phenyl as radicals R21A and R22A. Some of these substituted ligands X are particularly preferably used since they are obtainable from cheap and readily available starting materials. Thus, a particularly preferred embodiment is that in which XA is dimethylamide, methoxide, ethoxide, isopropoxide, phenoxide, naphthoxide, triflate, p-toluenesulfonate, acetate or acetylacetonate.
The number n of ligands XA depends on the oxidation state of the transition metal MA. The number n can thus not be given in general terms. The oxidation state of transition metals MA in cata- lytically active complexes is usually known to those skilled in the art. Chromium, molybdenum and tungsten are very probably present in the oxidation state +3, vanadium in the oxidation state +3 or +4. However, it is also possible to use complexes whose oxidation state does not correspond to that of the active catalyst. Such complexes can then be appropriately reduced or oxidized by means of suitable activators. Preference is given to using chromium complexes in the oxidation state +3 and titanium complexes in the oxidation state 3.
Preferred monocyclopentadienyl complexes (A1) of this type are 1-(8-quinolyl)-3-phenylcyclo- pentadienylchromium(lll) dichloride, 1-(8-quinolyl)-3-(1-naphthyl)cyclopentadienylchromium(lll) dichloride, 1-(8-quinolyl)-3-(4-trifluoromethylphenyl)cyclopentadienylchromium(lll) dichloride, 1-(8- quinolyl)-3-(4-chlorophenyl)cyclopentadienylchromium(lll) dichloride, 1-(8-quinolyl)-2-methyl-3- phenylcyclopentadienylchromium(lll) dichloride, Hδ-quinolyl^-methyl-S-O-naphthyOcyclo- pentadienylchromium(lll) dichloride, 1-(8-quinolyl)-2-methyl-3-(4-trifluoromethylphenyl)cyclo- pentadienylchromium(lll) dichloride, Hδ-quinolyO^-methyl-S-^-chlorophenyOcyclopentadienyl- chromium(lll) dichloride, 1-(8-quinolyl)-2-phenylindenylchromium(lll) dichloride, 1-(8-quinolyl)-2- phenylbenzindenylchromium(lll) dichloride, 1-(8-(2-methylquinolyl))-2-methyl-3-phenylcyclopenta- dienylchromium(lll) dichloride, 1-(8-(2-methylquinolyl))-2-phenylindenylchromium(lll) dichloride, 1-(2-pyridylmethyl)-3-phenylcyclopentadienylchromium(lll) dichloride, 1-(2-pyridylmethyl)-2- methyl-3-phenylcyclopentadienylchromium(lll) dichloride, 1-(2-quinolylmethyl)-3-phenylcyclo- pentadienylchromium dichloride, 1-(2-pyridylethyl)-3-phenylcyclopentadienylchromium dichloride, 1-(2-pyridyl-1-methylethyl)-3-phenylcyclopentadienylchromium dichloride, 1-(2-pyridyl-1-phenyl- methyl)-3-phenylcyclopentadienylchromium dichloride, 1-(2-pyridylmethyl)indenylchromium(lll) dichloride, 1-(2-quinolylmethyl)indenylchromium dichloride, 1-(2-pyridylethyl)indenylchromium dichloride, 1-(2-pyridyl-1-methylethyl)indenylchromium dichloride, 1-(2-pyridyl-1-phenylmethyl)- indenylchromium dichloride, 5-[(2-pyridyl)methyl]-1 ^.S.Φtetramethylcyclopentadienylchromium dichloride and 1-(8-(2-methylquinolyl))-2-methylbenzindenylchromium(lll) dichloride.
The preparation of such functional cyclopentadienyl ligands is known. Various synthetic routes to these complexing ligands are described by, for example, M. Enders et al., in Chem. Ber. (1996), 129, 459-463 or P. Jutzi and U. Siemeling in J. Orgmet. Chem. (1995), 500, 175-185.
The synthesis of such complexes can be carried out by methods known per se, with the reaction of the appropriately substituted, cyclic hydrocarbon anions with halides of titanium, vanadium or chromium being preferred. Examples of appropriate preparative methods are described, for example, in Journal of Organometallic Chemistry, 369 (1989), 359-370 and in EP-A-1212333.
Particularly suitable hafnocenes (A2) are hafnium complexes of the general formula (VIII)
Figure imgf000032_0001
where the substituents and indices have the following meanings:
XB is fluorine, chlorine, bromine, iodine, hydrogen, CrC10-alkyl, C2-C10-alkenyl, C6-C15-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part, -OR6B or -NR6BR7B, or two radicals XB form a substituted or unsubstituted diene ligand, in particular a 1 ,3-diene ligand, and the radicals XB are identical or different and may be joined to one another,
E1B-E5B are each carbon or not more than one E1B to E5B is phosphorus or nitrogen, preferably carbon,
t is 1 , 2 or 3 and is, depending on the valence of Hf, such that the metallocene complex of the general formula (Vl) is uncharged, where
R6B and R7B are each (-VC^-alkyl, C6-Ci5-aryl, arylalkyl, arylalkyl, fluoroalkyl or fluoroaryl each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part and
RIB tQ R 5B gre egch^ independently of one another hydrogen, CrC22-alkyl, 5- to 7-mem- bered cycloalkyl or cycloalkenyl which may in turn bear Ci-Cio-alkyl groups as substituents, C2-C22-alkenyl, C6-C22-aryl, arylalkyl having from 1 to 16 carbon atoms in the alkyl part and from 6 to 21 carbon atoms in the aryl part, NR8B 2,
N(SiR8B 3)2, OR88, OSiR8B 3, SiR8B 3, where the organic radicals R1B-R5B may also be substituted by halogens and/or two radicals R1B-R5B, in particular vicinal radicals, may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R1D-R5D may be joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and
S, where
the radicals R8B can be identical or different and can each be Ci-Cio-alkyl, C3-C10-cycloalkyl, C6-C15-aryl, C1-C^aIkOXy or C6-Ci0-aryloxy and
Figure imgf000033_0001
where the radicals
R9B to R13B are each, independently of one another, hydrogen, d-C22-alkyl, 5- to 7- membered cycloalkyl or cycloalkenyl which may in turn bear d-C^-alky! groups as substituents, C2-C22-alkenyl, C6-C22-aryl, arylalkyl having from 1 to 16 carbon atoms in the alkyl part and 6-21 carbon atoms in the aryl part, NR14B 2, N(SiR14B 3)2, OR14B, OSiR14B 3, SiR14B 3, where the organic radicals R9B-R13B may also be substi- tuted by halogens and/or two radicals R98-R13B, in particular vicinal radicals, may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R9B-R13B may be joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and S1 where , 14B the radicals R are identical or different and are each C1-C10-SlKyI1 C3-C10-cycloalkyl, C6-C15- aryl,
Figure imgf000034_0001
or C6-C10-aryloxy,
E6B-E10B are each carbon or not more than one E6B to E10B is phosphorus or nitrogen, preferably carbon,
or where the radicals R4B and Z1B together form an -R15B V-A1B- group, where
R158Js
Figure imgf000034_0002
Figure imgf000034_0003
= BR168,= BNR166R178, = AIR168, -Ge-, -Sn-, -O-, -S-, = SO, = SO2, = NR168, = CO, = PR168 or
= P(O)R168,
where
R16B_R21B are identical or different and are each a hydrogen atom, a halogen atom, a trimethylsilyl group, a C1-C10-BlKyI group, a
Figure imgf000034_0004
group, a C6-C10- fluoroaryl group, a C6-C10-aryl group, a d-C^-alKoxy group, a C7-C15- alKylaryloxy group, a C2-C10-alKenyl group, a C7- C40- arylalkyl group, a C8-C40- arylalKenyl group or a C7- C40- alkylaryl group or two adjacent radicals together with the atoms connecting them form a saturated or unsaturated ring having from 4 to 15 carbon atoms, and M2B-M4B are each silicon, germanium or tin, or preferably silicon,
A1B is — O — , — S — , NR22B, PR22B, =0, =S, =NR22B, — O — R22B,
— NR22B 2 , — PR22B2 or an unsubstituted, substituted or fused, heterocyclic ring system, where
the radicals R22B are each, independently of one another, d-C^-alkyl, C6-C15-aryl, C3-C10- cycloalkyl, C7-C18-arylalkyl or Si(R23B)3,
R23B is hydrogen, C1- C10- alkyl, C6-C15-aryl which may in turn bear C1-C4-SlKyI groups as substituents or C3-C10-cycloalkyl,
v is 1 or when A1B is an unsubstituted, substituted or fused, heterocyclic ring system may also be 0
or where the radicals R4B and R12B together form an -R15B- group.
A1B can, for example together with the bridge R15B, form an amine, ether, thioether or phosphine. However, A1B can also be an unsubstituted, substituted or fused, heterocyclic aromatic ring sys- tern which can contain heteroatoms from the group consisting of oxygen, sulfur, nitrogen and phosphorus in addition to ring carbons. Examples of 5-membered heteroaryl groups which can contain from one to four nitrogen atoms and/or a sulfur or oxygen atom as ring members in addition to carbon atoms are 2-furyl, 2-thienyl, 2-pyrrolyl, 3-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 5- isothiazolyl, 1-pyrazolyl, 3-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4- thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 1 ,2,4-oxadiazol-3-yl, 1 ,2,4-oxadiazol- 5-yl, 1 ,3,4-oxadiazol-2-yl and 1 ,2,4-triazol-3-yl. Examples of 6-membered heteroaryl groups which may contain from one to four nitrogen atoms and/or a phosphorus atom are 2-pyridinyl, 2- phosphabenzenyl, 3-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 2-pyrazinyl, 1 ,3,5-triazin-2-yl and 1 ,2,4-triazin-3-yl, 1 ,2,4-triazin-5-yl and 1 ,2,4-triazin-6-yl. The 5-membered and 6-membered het- eroaryl groups may also be substituted by C1-C1O-SIkVl, C6-C10-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-10 carbon atoms in the aryl part, trialkylsilyl or halogens such as fluorine, chlorine or bromine or be fused with one or more aromatics or heteroaromatics. Examples of benzo-fused 5-membered heteroaryl groups are 2-indolyl, 7-indolyl, 2-coumaronyl, 7- coumaronyl, 2-thionaphthenyl, 7-thionaphthenyl, 3-indazolyl, 7-indazolyl, 2-benzimidazolyl and 7- benzimidazolyl. Examples of benzo-fused 6-membered heteroaryl groups are 2-quinolyl, 8-quino- IyI, 3-cinnolyl, 8-cinnolyl, 1-phthalazyl, 2-quinazolyl, 4-quinazolyl, 8-quinazolyl, 5-quinoxalyl, A- acridyl, 1-phenanthridyl and 1-phenazyl. Naming and numbering of the heterocycles has been taken from L.Fieser and M. Fieser, Lehrbuch der organischen Chemie, 3rd revised edition, Verlag Chemie, Weinheim 1957. The radicals XB in the general formula (XIII) are preferably identical, preferably fluorine, chlorine, bromine, CrCy-alkyl or aralkyl, in particular chlorine, methyl or benzyl.
The synthesis of such complexes can be carried out by methods known per se, with the reaction of the appropriately substituted cyclic hydrocarbon anions with halides of hafnium being preferred. Examples of appropriate preparative methods are described, for example, in Journal of Or- ganometallic Chemistry, 369 (1989), 359-370.
The hafnocenes can be used in the Rac or pseudo-Rac form. The term pseudo-Rac refers to complexes in which the two cyclopentadienyl ligands are in the Rac arrangement relative to one another when all other substituents of the complex are disregarded.
Examples of suitable hafnocenes (A2) are, inter alia, methylenebis(cyclopentadienyl)hafnium dichloride, methylenebis(3-methylcyclopentadienyl)- hafnium dichloride, methylenebis(3-n-butylcyclopentadienyl)hafnium dichloride, methylene- bis(indenyl)hafnium dichloride, methylenebis(tetrahydroindenyl) hafnium dichloride, isopro- pylidenebis(cyclopentadienyl)hafnium dichloride, isopropylidenebis(3-trimethylsilylcyclopenta- dienyl)hafnium dichloride, isopropylidenebis(3-methylcyclopentadienyl)hafnium dichloride, iso- propylidenebis(3-n-butylcyclopentadienyl)hafnium dichloride, isopropylidenebis(3-phenylcyclo- pentadienyl)hafnium dichloride, isopropylidenebis(indenyl)hafnium dichloride, isopropylidene- bis(tetrahydroindenyl)hafnium dichloride, dimethylsilanediylbis(cyclopentadienyl)hafnium dichloride, dimethylsilanediylbis(indenyl)hafnium dichloride, dimethylsilanediylbis(tetrahydroindenyl)- hafnium dichloride, ethylenebis(cyclopentadienyl)hafnium dichloride, ethylenebis(indenyl)hafnium dichloride, ethylenebis(tetrahydroindenyl)hafnium dichloride, tetramethylethylene-9-fluorenyl- cyclopentadienylhafnium dichloride, dimethylsilanediylbis(tetramethylcyclopentadienyl)hafnium dichloride, dimethylsilanediylbis(3-trimethylsilylcyclopentadienyl)hafnium dichloride, dimethyl- silanediylbis(3-methylcyclopentadienyl)hafnium dichloride, dimethylsilanediylbis(3-n-butylcyclo- pentadienyl)hafnium dichloride, dimethylsilanediylbis(3-tert-butyl-5-methylcyclopentadienyl)- hafnium dichloride, dimethylsilanediylbis(3-tert-butyl-5-ethylcyclopentadienyl)hafnium dichloride, dimethylsilanediylbis(2-methylindenyl)hafnium dichloride, dimethylsilanediylbis(2-isopropylinde- nyl)hafnium dichloride, dimethylsilanediylbis(2-tert-butylindenyl)hafnium dichloride, diethylsilane- diylbis(2-methylindenyl)hafnium dibromide, dimethylsilanediylbis(3-methyl-5-methylcyclopenta- dienyl)hafnium dichloride, dimethylsilanediylbis(3-ethyl-5-isopropylcyclopentadienyl)hafnium dichloride, dimethylsilanediylbis(2-ethylindenyl)hafnium dichloride, dimethylsilanediylbis(2-methyl- 4,5-benzindenyl)hafnium dichloride, dimethylsilanediylbis(2-ethyl-4,5-benzindenyl)hafnium dichloride, methylphenylsilanediylbis(2-methyl-4,5-benzindenyl)hafnium dichloride, methylphenyl- silanediylbis(2-ethyl-4,5-benzindenyl)hafnium dichloride, diphenylsilanediylbis(2-methyl-4,5- benzindenyl)hafnium dichloride, diphenylsilanediylbis(2-ethyM,5-benzindenyl)hafnium dichloride, diphenylsilanediylbis(2-methylindenyl)hafnium dichloride, dimethylsilanediylbis(2-methyl-4-phe- nylindenyl)hafnium dichloride, dimethylsilanediylbis(2-ethyl-4-phenylindenyl)hafnium dichloride, dimethylsiianediylbis(2— methyl— 4-{1-naphthyl)indenyl)hafnium dichloride, dimethylsilanediylbis(2- ethyl-4-(1-naphthyl)indenyl)hafnium dichloride, dimethylsilanediylbis(2— propyl— 4-(1-naphthyI)- indenyl)hafnium dichloride, dimethylsilanediylbis(2-i-butyl-4-(1-naphthyl)indenyl)hafnium dichloride, dimethylsilanediylbis(2-propyl-4-(9-phenanthryl)indenyl)hafnium dichloride, dimethylsilane- diylbis(2-methyl-4-isopropylindenyl)hafnium dichloride, dimethylsilanediylbis(2,7-dimethyl— 4- isopropylindenyl)hafnium dichloride, dimethylsilanediylbis(2— methyl— 4,6— diisopropylindenyl)- hafnium dichloride, dimethylsilanediylbis(2-methyl-4[p-trifluoromethylphenyl]indenyl)hafnium dichloride, dimethylsilanediylbis(2-methyM-[3',5'-dimethylphenyl]indenyl)hafnium dichloride, dimethylsilanediylbis(2-methyl-4-[4'-tert-butylphenyl]indenyl)hafnium dichloride, diethylsilanediyl- bis(2-methyl-4-[4'-tert-butylphenyl]indenyl)hafnium dichloride, dimethylsilanediylbis(2— ethyl— 4- [4'-tert-butylphenyl]indenyl)hafnium dichloride, dimethylsilanediylbis(2— propyl— 4-[4'—tert-butyl- phenyl]indenyl)hafnium dichloride, dimethylsilanediylbis(2— isopropyl— 4-[4'— tert-butylphenyl]- indenyl)hafnium dichloride, dimethylsilanediylbis(2-n-butyl→4-[4'-tert-butylphenyl]indenyl)hafnium dichloride, dimethylsilanediylbis(2-hexyl-4-[4'-tert-butylphenyl]indenyl)hafnium dichloride, di- methylsilanediyl(2-isopropyl-4-phenylindenyl)(2-methyl-4-phenylindenyl)hafnium dichloride, dimethylsilanediyl(2-isopropyl-4-(1-naphthyl)indenyl)(2-methyl-4-(1-naphthyl)indenyl)hafnium dichloride, dimethylsilanediyl(2-isopropyl-4-[4'-tert-butylphenyl]indenyl)(2-methyl-4-[4'-tert- butylphenyl]indenyl)hafnium dichloride, dimethylsilanediyl(2— isopropyl— 4-[4'— tert-butylphenyl]- indenyl)(2-ethyl-4-[4'-tert-butylphenyl]indenyl)hafnium dichloride, dimethylsilanediyl(2— isopropyl— 4-[4'-tert-butylphenyl]indenyl)(2-methyl-4-[3',5'-bis-tert-butylphenyl]indenyl)hafnium dichloride, dimethylsilanediyl(2-isopropyl-4-[4'-tert-butylphenyl]indenyl)(2-methyl-4-[1'-naphthyl]indenyl)- hafnium dichloride and ethylene(2-isopropyl-4-[4'-tert-butylphenyl]indenyl)(2-methyl-4-[4'-tert- butylphenyl]indenyl)hafnium dichloride, and also the corresponding dimethylhafnium, monochloro- mono(alkylaryloxy)hafnium and di(alkylaryloxy)hafnium compounds. The complexes can be used in the rac form, the meso form or as mixtures of these.
Among the hafnocenes of the general formula (VIII), those of the formula (IX)
HfXB t (IX),
Figure imgf000037_0001
are preferred. Among the compounds of the formula (IX), preference is given to those in which XB is fluorine, chlorine, bromine, C1-C4-SIkYl or benzyl, or two radicals XB form a substituted or unsubstituted butadiene ligand,
t is 1 or 2, preferably 2,
R1 B to R5B are each hydrogen, CrC8-alkyl, C6-C8-aryl, NR8B 2, OSiR8B 3 or Si(R8B)3 and
R9B to R13B are each hydrogen, CrC8-alkyl or C6-C8-aryl, NR14B 2, OSiR14B 3 or Si(R14B)3
or in each case two radicals R1 B to R5B and/or R9B to R13B together with the C5 ring form an inde- nyl, fluorenyl or substituted indenyl or fluorenyl system.
The hafnocenes of the formula (IX) in which the cyclopentadienyl radicals are identical are par- ticularly useful.
Examples of particularly suitable hafnocenes (A2) of the formula (IX) are, inter alia: bis(cyclopentadienyl)hafnium dichloride, bis(indenyl)hafnium dichloride, bis(fluorenyl)hafnium dichloride, bis(tetrahydroindenyl)hafnium dichloride, bis(pentamethylcyclopentadienyl)hafnium dichloride, bis(trimethylsilylcyclopentadienyl)hafnium dichloride, bis(trimethoxysilylcyclopenta- dienyl)hafnium dichloride, bis(ethylcyclopentadienyl)hafnium dichloride, bis(isobutylcyclopenta- dienyl)hafnium dichloride, bis(3-butenylcyclopentadienyl)hafnium dichloride, bis(methylcyclo- pentadienyl)hafnium dichloride, bis(1 ,3-di-tert-butylcyclopentadienyl)hafnium dichloride, bis(trifluoromethylcyclopentadienyl)hafnium dichloride, bis(tert-butylcyclopentadienyl)hafnium dichloride, bis(n-butylcyclopentadienyl)hafnium dichloride, bis(phenylcyclopentadienyl)hafnium dichloride, bis(N,N-dimethylaminomethylcyclopentadienyl)hafnium dichloride, bis(1 ,3-dimethyl- cyclopentadienyl)hafnium dichloride, bis(1-n-butyl-3-methylcyclopentadienyl)hafnium dichloride, (cyclopentadienyl)(methylcyclopentadienyl)hafnium dichloride, (cyclopentadienyl)(n-butylcyclo- pentadienyl)hafnium dichloride, (methylcyclopentadienyl)(n-butylcyclopentadienyl)hafnium dichlo- ride, (cyclopentadienyl)(1-methyl-3-n-butylcyclopentadienyl)hafnium dichloride, bis(tetra- methylcyclopentadienyl)hafnium dichloride and also the corresponding dimethylhafnium compounds.
Further examples are the corresponding hafnocene compounds in which one or two of the chlo- ride ligands have been replaced by bromide or iodide.
Also preference is given to the supported catalyst system as described above wherein the second transition metal coordination compound is an iron or cobalt coordination compound comprising a neutral tridentate ligand comprising three coordinating nitrogen atoms bearing at least one ortho- monosubstituted aryl radical (A3). Special preference is given to iron or cobalt coordination compounds (A3) of formula (X)
Figure imgf000039_0001
where
M is Fe or Co, in particular Fe
E2C-E4C are each, independently of one another, carbon, nitrogen or phosphorus, in particular carbon,
R1c-R3C are each, independently of one another, hydrogen, Ci-C22-alkyl, C2-C22-alkenyl, C6-C22- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR18C 2, OR18C, SiR19C 3, where the organic radicals R1C-R3C may also be substituted by halogens and/or two vicinal radicals R1C-R30 may also be joined to form a five-, six- or seven- membered ring, and/or two vicinal radicals R1C-R3C are bound to form a five-, six- or seven- membered heterocycle containing at least one atom from the group consisting of N, P, O and S,
R4C-R5C are each, independently of one another, hydrogen, CrC^-alkyl, C2-C22-alkenyl, C6-C22- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR18C 2, SiR19C 3, where the organic radicals R4C-R5C may also be substituted by halogens,
is 0 when E -2C- iE-4C is nitrogen or phosphorus and is 1 when E 2C- ,E-4C is carbon,
L1C-L2C are each, independently of one another, nitrogen or phosphorus, in particular nitrogen,
R 8c_R i ic gre each independently of one another, hydrogen, CrC22-alkyl, C2-C22-alkenyl, C6-C22- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR18C 2, OR18C, SiR19C 3, where the organic radicals R8C-R11C may also be substituted by halogens and/or two vicinal radicals R8C-R17C may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R8C-R17C are joined to form a five-, six- or seven-mem bered heterocycle containing at least one atom from the group consisting of N, P, O and S, with the provisio that at least one of the radicals R8C-R11C is hydrogen.
15P 17P
R -R are each, independently of one another, hydrogen, CrC^-alkyl, C2-C22-alkenyl, C6-C22- aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, halogen, NR18C 2) OR18C, SiR19C 3, where the organic radicals R12C-R17C may also be substituted by halogens and/or two vicinal radicals R8C-R17C may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R8C-R17C are joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O or S,
the indices v are each, independently of one another, 0 or 1 ,
the radicals Xc are each, independently of one another, fluorine, chlorine, bromine, iodine, hydro- gen, C-i-Cio-alkyl, C2-C10-alkenyl, C6-C20-aryl, arylalkyl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR18C 2, OR18C, SR18C , SO3R18C, OC(O)R18C, CN, SCN, β-diketonate, CO, BF4 ", PF6 " or a bulky noncoordinating anion and the radicals Xc may be joined to one another,
the radicals R are each, independently of one another, hydrogen, CrCo-alkyl, C2-C20-alkenyl, C6-C20-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR19C 3, where the organic radicals R18C may also be substituted by halogens and nitrogen- and oxygen-containing groups and two radicals R18C may also be joined to form a five- or six-membered ring,
the radicals R19C are each, independently of one another, hydrogen, d-Co-alkyl, C2-C20-alkenyl, C6-C20-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, where the organic radicals R19C may also be substituted by halogens or nitrogen- and oxygen-containing groups and two radicals R19C may also be joined to form a five- or six- membered ring,
s is 1 , 2, 3 or 4, in particular 2 or 3,
D is an uncharged donor and
t is from 0 to 4, in particular 0, 1 or 2.
The embodiments and preferred embodiments described above likewise apply to E2C-E4C, R1C-
R3C, Xc, R18C and R19C. The substituents R4C-R5C can be varied within a wide range. Possible carboorganic substituents R4C-R5C are, for example, the following: hydrogen, CrC^-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a CrC^-alkyl group and/or C6-C10-aryl group as substituent, e.g. cyclopropyl, cyclobutyl, cyclopean- tyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C2-C22-alkenyl which may be linear, cyclic or branched and in which the double bond may be internal or terminal, e.g. vinyl, 1- allyl, 2-allyl, 3-allyl, butenyl, pentenyl, hexenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl or cyclo- octadienyl, C6-C22-aryl which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphenyl, or arylalkyl which may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2-phenylethyl, where the organic radicals R4C- R5C may also be substituted by halogens such as fluorine, chlorine or bromine. Furthermore, R4C- R5C can be amino NR18C 2 or N(SiR19C 3)2, for example dimethylamino, N-pyrrolidinyl or picolinyl. Possible radicals R19C in organosilicon substituents SiR19C 3 are the same carboorganic radicals as described above for R1C-R3C, where two radicals R19C may also be joined to form a 5- or 6-mem- bered ring, e.g. trimethylsilyl, triethylsilyl, butyldimethylsilyl, tributylsilyl, tritert-butylsilyl, triallylsilyl, ttrriipphheennyyllssiillyyll oorr ddiimmeetthhylphenylsilyl. These SiR19C 3 radicals can also be bound via nitrogen to the carbon bearing them.
Preferred radicals R4C-R5C are hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert- butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl or benzyl, in particular methyl.
The substituents R8C-R17C can be varied within a wide range. Possible carboorganic substituents R8C-R17C are, for example, the following: d-C22-alkyl which may be linear or branched, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl or n-dodecyl, 5- to 7-membered cycloalkyl which may in turn bear a CrC^-alky! group and/or C6-C10-aryl group as substituent, e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl, C2-C22-alkenyl which may be linear, cyclic or branched and in which the double may be internal or terminal, e.g. vinyl, 1-allyl, 2-allyl, 3-allyl, butenyl, pentenyl, hexenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl or cyclooctadienyl, C6-C22- aryl which may be substituted by further alkyl groups, e.g. phenyl, naphthyl, biphenyl, anthranyl, o-, m-, p-methylphenyl, 2,3-, 2,4-, 2,5- or 2,6-dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- or 3,4,5-trimethylphenyl, or arylalkyl which may be substituted by further alkyl groups, e.g. benzyl, o-, m-, p-methylbenzyl, 1- or 2-phenylethyl, where two radicals R8C to R17C may also be joined to form a 5-, 6- or 7-membered ring and/or two of the vicinal radicals R8C-R17C may be joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and S and/or the organic radicals R8C-R17C may also be substituted by halogens such as fluorine, chlorine or bromine. Furthermore, R8C-R17C can be halogen such as fluorine, chlorine, bromine, amino NR18C 2 or N(SiR19C 3)2, alkoxy or aryloxy OR18C, for example dimethylamino, N- pyrrolidinyl, picolinyl, methoxy, ethoxy or isopropoxy. Possible radicals R19C in organosilicon sub- stituents SiR19C 3 are the same carboorganic radicals which have been mentioned above for R1C- R3C, where two radicals R19C may also be joined to form a 5- or 6-membered ring, e.g. trimethyl- silyl, triethylsilyl, butyldimethylsilyl, tributylsilyl, tritert-butylsilyl, triallylsilyl, triphenylsilyl or dimeth- ylphenylsilyl. These SiR19C 3 radicals can also be bound via an oxygen or nitrogen, for example trimethylsilyloxy, triethylsilyloxy, butyldimethylsilyloxy, tributylsilyloxy or tritert.butylsilyloxy.
Preferred radicals R12C-R17C are hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine, in particular hydrogen. In particular, R13C and R16C are each methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine or bromine and R12C, R14C, R15C and R17C are each hydrogen.
Preferred radicals R8C-R11C are hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n- butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, vinyl, allyl, benzyl, phenyl, fluorine, chlorine and bromine.
In particular, R12C, R14C, R15C and R17C are identical, R13C and R16C are identical, R9C and R11C are identical and R8C and R10C are identical. This is also preferred in the preferred embodiments described above.
The preparation of the transition metal coordination compounds of formula (X) is in principle the same as the preparation of the similar compounds of formula (II) or (Ha) as described above. Preferred complexes (A3) of formula (X) are 2,6-Bis[1-(2-methylphenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,4,-dimethylphenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2- chloro-phenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2-isopropylphenylimino)- ethyljpyridine iron(ll) dichloride, 2,6-Bis[1-(2,4-diisopropyl phenylimino)methyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2,4-dichloro-phenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2- methyl-4-chloro-phenylimino)ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2-fluorophenylimino)- ethyl]pyridine iron(ll) dichloride, 2,6-Bis[1-(2-bromophenylimino)ethyl]pyridine iron(ll) dichloride or the respective dibromides or tribromides.
The supported catalyst system of the present invention is active without the addition of the usual cocatalysts like aluminoxanes, strong uncharged Lewis acids or ionic compounds having a Lewis- acid cation or an ionic compound containing a Brόnsted acid as cation. The addition of at least one of the known cocatalysts which are for example disclosed in WO 2005/058916 in some cases enhances the activity of the inventive catalyst systems. The catalyst system may further comprise, as additional component (E), a metal compound of the general formula (XX),
MG (R1G)rG(R2G)sG (R3G)tG where
MG is Li, Na, K, Be, Mg, Ca, Sr, Ba, boron, aluminum, gallium, indium, thallium, zinc, in particular Li, Na, K1 Mg, boron, aluminum or Zn,
R1G is hydrogen, d-do-alkyl, C6-C15-aryl, arylalkyl or arylalkyl each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part,
R2G and R3G are each hydrogen, halogen, d-do-alkyl, C6-C15-aryl, alkylaryl, arylalkyl or alkoxy each having from 1 to 20 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part, or alkoxy together with d-do-alkyl or C6-C15-aryl,
rG is an integer from 1 to 3
and
sG and t are integers from 0 to 2, with the sum rG+sG+tG corresponding to the valence of
Mc
It is also possible to use mixtures of various metal compounds of the formula (XX).
Among the metal compounds of the general formula (XX), preference is given to those in which MG is lithium, magnesium, boron or aluminum and
R1G is d-C20-alkyl.
Particularly preferred metal compounds of the formula (XX) are methyllithium, ethyllithium, n butyl- lithium, methylmagnesium chloride, methylmagnesium bromide, ethylmagnesium chloride, ethyl- magnesium bromide, butylmagnesium chloride, dimethylmagnesium, diethylmagnesium, dibutyl- magnesium, n-butyl-n-octylmagnesium, n-butyl-n-heptylmagnesium, in particular n butyl— n— octylmagnesium, tri-n-hexylaluminum, triisobutylaluminum, tri-n-butylaluminum, triethylaluminum, dimethylaluminum chloride, dimethylaluminum fluoride, methylaluminum dichloride, methylalumi- num sesquichloride, diethylaluminum chloride and trimethylaluminum and mixtures thereof. The partial hydrolysis products of aluminum alkyls with alcohols can also be used. When a metal compound (E) is used, it is preferably present in the catalyst system in such an amount that the molar ratio of MG from formula (XX) to the sum of the transition metals from the transition metal coordination compounds is from 3000:1 to 0.1 :1 , preferably from 800:1 to 0.2:1 and particularly preferably from 100:1 to 1 :1.
In general, the metal compound (E) of the general formula (XX) is used as constituent of a catalyst system for the polymerization or copolymerization of olefins. Here, the metal compound (E) can, for example, be added during or shortly before the polymerization. The metal compounds (E) used can be identical or different.
It is also possible for the catalyst system firstly to be prepolymerized with α-olefins, preferably linear C2-C10-I -alkenes and in particular ethylene or propylene, and the resulting prepolymerized catalyst solid then to be used in the actual polymerization. The mass ratio of catalyst solid used in the prepolymerization to a monomer polymerized onto it is usually in the range from 1 :0.1 to 1 :1000, preferably from 1 :1 to 1 :200.
Furthermore, a small amount of an olefin, preferably an α-olefin, for example vinylcyclohexane, styrene or phenyldimethylvinylsilane, as modifying component, an antistatic or a suitable inert compound such as a wax or oil can be added as additive during or after the preparation of the catalyst system. The molar ratio of additives to the sum of transition metals from the transition metal coordination compounds is usually from 1 :1000 to 1000:1 , preferably from 1 :5 to 20:1.
The catalyst system of the invention is suitable for the polymerization or copolymerization of olefins, preferably for the polymerization and copolymerization of ethylene with α-olefins preferably having from 3 to 12 carbon atoms.
The invention further provides a process for preparing ethylene homopolymers or copolymers, wherein ethylene is optionally copolymerized with C3-C12-I -alkenes in the presence of the inventive catalyst system.
In the copolymerization process of the invention, ethylene is preferably polymerized with α-olefins having from 3 to 12 carbon atoms. Preferred α-olefins are linear or branched C3-C12-I -alkenes, in particular linear C3-C10-I -alkenes such as propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1- octene, 1-decene or branched C5-C10-I -alkenes such as 4-methyl-1-pentene. Particularly pre- ferred α-olefins are C4-C12-I -alkenes, in particular linear C6-C10-I -alkenes. It is also possible to polymerize mixtures of various α-olefins. Preference is given to (co)polymerizing at least one α- olefin selected from the group consisting of ethene, propene, 1-butene, 1-pentene, 1-hexene, 1- heptene, 1-octene and 1-decene. Monomer mixtures containing at least 50 mol% of ethene are preferably used. The process of the invention for polymerizing ethylene with or without α-olefins can be carried out using all industrially known polymerization methods at temperatures in the range from -60 to 3500C, preferably from 0 to 2000C and particularly preferably from 25 to 1500C, and under pressures of from 0.5 to 4000 bar, preferably from 1 to 100 bar and particularly preferably from 3 to 40 bar. The polymerization can be carried out in a known manner in bulk, in suspension, in the gas phase or in a supercritical medium in the customary reactors used for the polymerization of olefins. It can be carried out batchwise or preferably continuously in one or more stages. High- pressure polymerization processes in tube reactors or autoclaves, solution processes, suspension processes, stirred gas-phase processes and gas-phase fluidized-bed processes are all possible.
The polymerizations are usually carried out at temperatures in the range from -60 to 350°C, preferably in the range from 20 to 3000C, and under pressures of from 0.5 to 4000 bar. The mean residence times are usually from 0.5 to 5 hours, preferably from 0.5 to 3 hours. The advantageous pressure and temperature ranges for carrying out the polymerizations usually depend on the po- lymerization method. In the case of high-pressure polymerization processes, which are customarily carried out at pressures of from 1000 to 4000 bar, in particular from 2000 to 3500 bar, high polymerization temperatures are generally also set. Advantageous temperature ranges for these high-pressure polymerization processes are from 200 to 32O0C, in particular from 220 to 290°C. In the case of low-pressure polymerization processes, it is usual to set a temperature which is at least a few degrees below the softening temperature of the polymer. In particular, temperatures of from 50 to 18O0C, preferably from 70 to 12O0C, are set in these polymerization processes. In the case of suspension polymerizations, the polymerization is usually carried out in a suspension medium, preferably an inert hydrocarbon such as isobutane or mixtures of hydrocarbons or else in the monomers themselves. The polymerization temperatures are generally in the range from -20 to 1150C, and the pressure is generally in the range from 1 to 100 bar. The solids content of the suspension is generally in the range from 10 to 80%. The polymerization can be carried out either batchwise, e.g. in stirring autoclaves, or continuously, e.g. in tube reactors, preferably in loop reactors. Particular preference is given to employing the Phillips PF process as described in US- A 3 242 150 and US-A 3 248 179. The gas-phase polymerization is generally carried out in the range from 30 to 1250C at pressures of from 1 to 50 bar.
Among the abovementioned polymerization processes, particular preference is given to gas- phase polymerization, in particular in gas-phase fluidized-bed reactors, solution polymerization and suspension polymerization, in particular in loop reactors and stirred tank reactors. The gas- phase polymerization can also be carried out in the condensed or supercondensed mode, in which part of the circulating gas is cooled to below the dew point and is recirculated as a two- phase mixture to the reactor. Furthermore, it is possible to use a multizone reactor in which the two polymerization zones are linked to one another and the polymer is passed alternately through these two zones a number of times. The two zones can also have different polymerization condi- tions. Such a reactor is described, for example, in WO 97/04015. The different or identical polym- erization processes can also, if desired, be connected in series so as to form a polymerization cascade, for example as in the Hostalen® process. A parallel reactor arrangement using two or more identical or different processes is also possible. Furthermore, molar mass regulators, for example hydrogen, or customary additives such as antistatics can also be used in the polymeriza- tions. To obtain the high proportions of vinyl groups, the polymerization is preferably carried out with smaller amounts or no hydrogen present.
The polymerization is preferably carried out in a single reactor, in particular in a gas-phase reactor. The polymerization of ethylene with α-olefins having from 3 to 12 carbon atoms gives prefer- alby a bi- or multimodal polyethylene when the catalyst of the invention is used. The polyethylene powder obtained directly from the reactor displays a very high homogeneity, so that, unlike the case of cascade processes, subsequent extrusion is not necessary in order to obtain a homogeneous product.
An important application of bimodal polyethylenes which are accessible by using the inventive catalyst system is their use for producing pressure pipes for the transport of gas, drinking water and wastewater. Pressure pipes made of polyethylene are increasingly replacing metal pipes. For this type of application, it is important that the pipe has a very long operating life without aging and brittle failure having to be feared. Even small flaws or notches in a pressure pipe can grow bigger even under low pressures and lead to brittle failure, with this process being able to be accelerated by increased temperatures and/or aggressive chemicals. It is therefore extremely important to reduce the number and size of the flaws in a pipe, for example specks or "white spots" as far as at all possible.
The following examples illustrate the invention without restricting the scope of the invention.
The measured values described were determined in the following way:
The vinyl group content was determined by means of IR in accordance with ASTM D 6248-98.
The methyl group content was determined by means of 13C-NMR spectroscopy as described by
James. C. Randall, JMS-REV. Macromol. Chem. Phys., C29 (2&3), 201-317 (1989), and is based on the total content of CH3 groups/1000 carbon atoms. The side chains larger than CH3 and especially butyl side chain branches/1000 carbon atoms are likewise determined in this way
The density [g/cm3] was determined in accordance with ISO 1183.
The intrinsic viscosity was determined in accordance with EN ISO 1628-1. The determination of the molar mass distributions and the means Mn, Mw, and Mw/Mn derived therefrom was carried out by means of high-temperature gel permeation chromatography on a WATERS 150 C using a method based on DIN 55672 and the following columns connected in series: 3x SHODEX AT 806 MS, 1x SHODEX UT 807 and 1x SHODEX AT-G under the following conditions: solvent: 1 ,2,4-trichlorobenzene (stabilized with 0.025% by weight of 2,6-di-tert-butyl-4- methylphenol), flow: 1 ml/min, 500 μl injection volume, temperature: 135°C, calibration using PE Standards. Evaluation was carried out using WIN-GPC.
Abbreviations in the table below: Cat. Catalyst
IV Intrinsic viscosity
Mw Weight average molar mass
Mw/Mn Polydispersity
Prod. Productivity of the catalyst in g of polymer obtained per g of catalyst used per hour CH3/ 1000C refers to total CH3/ 1000 carbon atoms (including end groups)
13C-NMR Hexene % Weight % of hexene measured by 13C-NMR
Polymer ex. means polymer from example
Preparation of the individual components
Example 1 Preparation of 2,6-Bis[1-(2-chloro-4,6-dimethylphenylimino)ethyl]pyridine- iron(ll)chloride (Complex 1 or (CIMe2PhNCMe)2Py4FeCI2)
Figure imgf000047_0001
2,6-Bis[1-(2-chloro-4,6-dimethylphenylimino)ethyl]pyridine was produced analogue to example 2 of WO 98/27124 and converted to 2,6-bis[1-(2-chloro-4,6-dimethylphenylimino)ethyl]pyridine- iron(ll)chloride by using with iron(ll)chloride as described in example 8 of WO 98/27124.
Example 2 Preparation of (2-methyl-3-(4-benzotrifluoride)-1 -(δ-quinolyl)cyclopentadienyl)- chromium dichloride (Complex 2 or Me(CF3Ph)CpQ*CrCI2)
2.1. Preparation of 3-hydroxy-2-methyl-3-(4-benzotrifluoride)-1-(8-quinolyl)- cyclopentene
A solution of 3.51 g (15.6 mmol) of 4-bromobenzotrifluoride in 80 ml of tetrahydrofuran was cooled to -9O0C and 6.2 ml of n-butyllithium (2.5 M in hexane, 15.6 mmol) were subsequently added while stirring After stirring at this temperature for 15 minutes, a solution of 2 9 g (13 mmol) of 2-methyl-3-(8-quιnolyl)cyclopent-2-enone (see example 1 2) in 40 ml of tetrahydrofuran was added while stirring The mixture was stirred at this temperature for another one hour and 1 ml of ethyl acetate was then added The mixture was allowed to warm to room temperature while stirring and 100 ml of water were subsequently added The aqueous phase was then separated off from the organic phase and the aqueous phase was extracted twice with diethyl ether The organic phases were combined, dried over magnesium sulfate, filtered and the solvent was distilled off The residue was dissolved in 5 ml of toluene and then admixed with 80 ml of hexane The precipitate which formed was filtered off and dried This gave 2 69 g (7 28 mmol) of 3-hydroxy-2-methyl-3-(4-benzotrιfluorιde)-1-(8-quιnolyl)-cyclopentene A second fraction was obtained after cooling of the mother liquor (1 42 g, 3 84 mmol, total yield 85 4%)
1H NMR (200,13 MHZ, CDCI3) 1 42 (3H, m, Me), 2 52 (2H, m, CH2), 2 98 (1 H, m, CH2), 3 18 (1 H, m, CH2), 4 10 (1 H, s, OH), 7 39 (1 H, dd, H3), 7 56-7 84 (7H, m, CHquinOiyi+aryi), 8 18 (1 H, dd, H4), 8 89 (1 H1 dd, H2)
MS (El), m/e (%) 369 (9) [M+], 351 (100) [M+- H2O], 336 (12) [M+-H2O-Me], 181 (72) [M+-H2O-Me- quιnolyl-CH2]
2 2 Preparation of 2-methyl-3-(4-benzotrιfluorιde)-1-(8-quιnolyl)-cyclopentadιene A mixture of 5 ml of water and 5 ml of concentrated hydrochloric acid was added to a solution of
3 61 g (9 8 mmol) of 3-hydroxy-2-methyl-3-(4-benzotrιfluorιde)-1-(8-quιnolyl)cyclopentene in 100 ml of tetrahydrofuran The mixture was stirred at room temperature for 90 minutes and ammonia solution was then added until the pH was 12 The aqueous phase was then separated off from the organic phase and the aqueous phase was extracted twice with diethyl ether The organic phases were combined, dried over magnesium sulfate, filtered and the solvent was distilled off The residue obtained in this way was distilled at 169-1760C and 2x10'2 mbar to give 2 09 g (5 9 mmol, 60 2%) of 2-methyl-3-(4-benzotrιfluorιde)-1-(8-quιnolyl)cyclopentadιene
1H NMR (200,13 MHZ, CDCI3) 1 13 (3H1 d, Me), 1 97 (3H, m, Me), 2 03 (3H, m, Me), 3 62 (2H, m, CH2), 3 87 (2H, m, CH2), 4 81 (1 H, q, CHMe), 6 59 (1 H, m, CpH), 6 66 (1 H, m, CpH), 7 07 (1 H, m, CpH), 7 26 (1 H, m, CpH), 7 31-7 88 (24H, m, CHquin0ιyι+aryl), 8 14-8 24 (3H, m, H4), 8 93-9 02 (3H, m, H2) MS (El), m/e (%) 351 (100) [M+], 167 (72) [M+-F3CC6H4-C3H3] 2.3 Preparation of (2-methyl-3-(4-benzotrifluoride)-1-(8-quinolyl)-cyclopentadienyl)- chromium dichloride
Figure imgf000049_0001
A solution of 2.09 g (5.95 mmol) of 2-methyl-3-(4-benzotrifluoride)-1-(8-quinolyl)-cyclopentadiene in 40 ml of tetrahydrofuran was added to a suspension of 0.242 g (5.95 mmol) of potassium hydride in 20 ml of tetrahydrofuran. After the addition was complete, the reaction mixture was stirred at room temperature for 6 hours and subsequently added to a solution of 2.23 g
(5.95 mmol) of chromium trichloride tris-(tetrahydrofuran) in 50 ml of tetrahydrofuran while stirring. The mixture was stirred for a further 12 hours at room temperature, the solvent was then distilled off and the residue was washed 3 times with hexane and 3 times with toluene. The residue obtained in this way was extracted 3 times with methylene chloride and filtered off. The combined methylene chloride extracts were freed of the solvent, washed and dried under reduced pressure. This gave 1.58 g (3.34 mmol) of (2-methyl-3-(4-benzotrifluoride)-1-(8-quinolyl)-cyclopentadienyl)- chromium dichloride (56.1 %).
1H NMR (200,13 MHz, CDCI3): -54.1 (1 H, H4); -17.1 (1 H, H5); 13.5 (3H, Me); 14.9 (1 H, H6); 48.8 (1 H1 H3).
MS (El), m/e (%): 472 (100) [M+]; 437 (82) [M+-Cl]; 400 (49) [M+-2HCI]; 380 (22) [M+-2HCI-Cr-HF]; 348 (23) [M+-2HCI-Cr].
Example 3 Bis(n-butylcyclopentadienyl)hafnium dichloride is obtainable from Crompton (complex 3)
Example 4 CpTiCI3 (complex 4)
Example 5 lndTiCI3 (complex 5) Preparation of supported catalysts
Preparation of MgCI2/AIRn(OEt)3 „ - support
The support for catalysts A to E was prepared using MgCI2*1 1 EtOH and AIEt3 analog to the method described in EP 1 568 716 A1 to give the MgCI2/AIRn(OEt)3.n - support with a composition of MgCI2 * 0 20 AIEt2 25OEt0 75
The support for catalysts F and G1 MgCI2 *1 1 EtOH/TIBAL (Al/Mg=1 1/1), was obtained by adding 150 ml Toluol to 56 8 g MgCI2 *1 1 EtOH (Basell, S218-1) under argon Furthermore, a 20 weight- % solution of 400 g Tπisobutylaluminum in Toluene was added The suspension was refluxed at O0C for 1 h Then the temperature was raised to 80°C and the mixture was refluxed for 2 h After cooling the solid was filtrated and washed with heptane 62 g support was obtained
The support for catalysts H and I1 MgCI2I 1 EtOH/TIBAL (Al/Mg=2 1/1 ), was obtained by adding 150 ml Toluol to 40 6 g MgCI2 *1 1 EtOH (Basell, S218-1) Furthermore, a 2M solution of 290 ml tπisobutylaluminum in toluene was added The suspension was refluxed at O0C for 1 h, then the temperature was raised to 80°C and the mixture was refluxed for another 2 h After cooling the solid was filtrated and washed with heptane 35 g support was obtained
Catalyst A
18 mg of complex 1 were dissolved in 20 ml of toluene 2 43 ml (3 86 μmol) of that solution were added to 258 1 mg of the MgCI2 * 0 20 AIEt2 25OEt0 75 - support above (loading 15 μmol/g) After stirring of the obtained suspension for two hours at 4O0C all of the solvent was removed in vacuum The obtained powder had light red colour
Catalyst B
22 mg of complex 2 were dissolved in 25 ml of toluene 3 3 ml (6 00 μmol complex 2) of this solution were added to 240 0 mg of the MgCI2 * 0 20 AIEt2 2sOEt0 75 - support (loading 25 μmol/g) After stirring of the obtained suspension for two hours at 4O0C the solvent was removed in va- cuum The obtained powder had green-blue colour
Catalyst C
4 3 ml (3 87 μmol) of a solution of 15 3 mg of complex 1 in 30 ml toluene and 3 7 ml (6 44 μmol) of a solution of 32 7 mg of complex 2 in 40 ml of toluene were added to 258 mg of the MgCI2 * 0 20 AIEt2 2sOEt0 75- support (loading 15 μmol/g complex 1 and 25 μmol/g complex 2) After stirring of the obtained suspension for one hour at 4O0C the solvent was removed in vacuum The obtained powder had green-blue colour Catalyst D:
5.1 ml (4.60 μmol) of a solution of 15.3 mg of complex 1 in 30 ml of toluene and 8.9 ml (15.29 μmol) of a solution of 32.7 mg of complex 2 in 40 ml of toluene were added to 306.1 mg of the MgCI2 * 0.20 AIEt2 25OEt0 75 - support (loading: 15 μmol/g complex 1 and 50 μmol/g complex 2). After stirring of the obtained suspension for one hour at 4O0C the solvent was removed in vacuum. The obtained powder had green-blue colour.
Catalyst E:
A solution of 32 mg of complex 1 in 42 ml of toluene and a solution of 34.1 mg of complex 2 in 30 ml of toluene were mixed and added to 779.2 mg of the MgCI2 * 0.20 AIEt2 ^OEt0 75 - support
(loading: 50 μmol/g complex 1 and 50 μmol/g complex 2). After stirring of the obtained suspension for one hour at 400C the solvent was removed in vacuum. The obtained powder had green-blue colour.
Catalyst F
A solution of 11 mg of complex 1 and 123 mg of complex 3 in 22 ml toluene and 5.7 ml MAO (30% solution, 4.75 mol/l) in toluene were mixed and added to 4.2 mg of the MgCI2 *1.1 EtOH/TIBAL (Al/Mg=1.1/1) - support (loading: 5 μmol/g complex 1 and 60 μmol/g complex 2). After stirring of the obtained suspension for one hour at 4O0C the solvent was removed in vacuum. The obtained powder (5.5g) had withish colour.
Catalyst G
A solution of 22.25 mg of complex 1 and 92.5 mg of complex 4 in 25 ml toluene and 9.6 ml MAO (30% solution, 4.75 mol/l) in toluene were mixed and added to 6.7 mg of the MgCI2*! 1 EtOH/TIBAL (Al/Mg=1.1/1) - support (loading: 6.3 μmol/g complex 1 and 107 μmol/g complex 2). After stirring of the obtained suspension for one hour at 4O0C the solvent was removed in vacuum. The obtained powder had withish colour.
Catalyst H A solution of 42 mg of complex 1 , 330 mg of complex 2 in 33 ml toluene and 1 ml MAO (30% solution, 4,75 mol/l) in toluene were mixed and added to 10.5 mg of the MgCI2 *1.1 EtOH/TIBAL (Al/Mg=2.1/1) -support (loading: 7μmol/g complex 1 and 60 μmol/g complex 2). After stirring of the obtained suspension for one hour at 4O0C the solvent was filtered, in vacuum. The obtained powder (10 g) had a withish colour.
Catalyst I
A solution of 7.3 mg of complex 1 and 32 mg of complex 2 and 15 mg of complex 5 and 0.2 ml MAO (30% solution, 4.75 mol/l) in toluene were mixed and added to 2 g of the MgCI2*1.1 EtOH/TIBAL (Al/Mg=2.1/1) - support (loading: 6.5 μmol/g complex 1 and 30 μmol/g complex 2 and 30 μmol/g complex 5). After stirring of the obtained suspension for one hour at 40°C the solvent was removed by filtration. The obtained powder (2.1 g) had withish colour.
Polymerizations in a 11 autoclave:
A 1-1- steel autoclave was filled under argon at 70°C with 150 g of PE-powder (which was already dried at 8O0C for 6 hours in vacuum and stored under argon atmosphere) having a particle size of > 1 mm. 200 mg isoprenylaluminum IPRA (IPRA in heptane 50 mg/ml) as well as 5 mg of Costelan AS 100 (Costelan in heptane 5 mg/ml) were added. In case of copolymerization the corresponding amount of hexane was added. After 5 minutes of stirring catalyst was added and the catalyst dosing unit was rinsed with 7 ml of heptane. First the argon pressure was increased up to 10 bar at 70°C then a pressure of 20 bar was adjusted with ethylene. The pressure of 20 bar was kept constant for 1 hour via adding additional ethylene during the polymerization. After one hour the pressure was released and the autoclave was cooled down to room temperature. The polymer was dried in vacuum, removed from the autoclave and sieved in order to remove the polymer bed.
Figure imgf000052_0001
a) A catalyst blend of A and B was used. b) GPC data: Mw= 264 kg/mol, Mw/Mn= 22. c) A total of 130 ml of hydrogen was continiously introduced to the autoclave d) A total of 113 ml of Hydrogen was continiously introduced to the autoclave

Claims

Claims
1 A supported catalyst system comprising the product obtainable by contacting
a) an adduct of formula (I)
MgT2 * y AIRVORV, (I)
wherein
Mg is magnesium, T is chlorine, bromine, or iodine,
Al is aluminum
Ru is a linear or branched C1-C10 alkyl radical, y ranges from 6 00 to 0 05, j ranges from 3 to 0 1 , being also a non integer number, and
Rq are substituents which are the same or different and which are hydrocarbon radicals containing from 1 to 20 carbon atoms optionally containing silicon or germanium atoms,
b) with at least two different transition metal coordination compounds wherein one of the transition metal coordination compounds is a compound in which the transition metal is selected from Groups 6, 8, 9 and 10 of the Periodic Table of the Elements (B)
2 The catalyst system according to claim 1 wherein one of the transition metal coordination compounds is an iron or cobalt coordination compound comprising a neutral tridentate ligand comprising three coordinating nitrogen atoms (B)
3 The catalyst system according to claim 2 wherein the neutral tridentate ligand of the iron or cobalt coordination compound (B) is a 2,6-bιsιmιno pyridin ligand
4 The catalyst system according to claim 2 or 3 wherein the neutral tridentate ligand comprising three coordinating nitrogen atoms of the iron or cobalt coordination compound (B) bears at least two ortho, ortho-disubstituted aryl radicals
5 The catalyst system according to anyone of claims 1 to 4 wherein the second transition metal coordination compound is a monocyclopentadienyl complex of a metal of groups 4-6 of the Periodic Table of the Elements whose cyclopentadienyl system is substituted by an uncharged donor (A1) or a hafnocene (A2)
6. The catalyst system according to anyone of claims 1 to 4 wherein the second transition metal coordination compound is an iron or cobalt coordination compound comprising a neutral tridentate ligand comprising three coordinating nitrogen atoms bearing at least one ortho-monosubstituted aryl radical (A3).
7. The catalyst system according to anyone of claims 1 to 6 wherein a cocatalyst like alumi- noxane, strong uncharged Lewis acid or an ionic compound having a Lewis-acid cation or an ionic compound containing a BrOnsted acid as cation is additionally added.
8. The catalyst system according to anyone of claims 1 to 7 wherein T is chlorine; Ru is a linear CrC^-alkyl radical; Y ranges from 2 to 0.1 ; and Rq is a linear or branched, cyclic or acyclic, C1-C2(TaIKyI, C2-C2o-alkenyl, C2-C20-alkynyl, C6-C20-aryl, C7-C20-alkylaryl or C7-C20- arylalkyl radicals optionally containing silicon or germanium atoms.
9. A prepolymerized catalyst system comprising a catalyst system according to anyone of claims 1 to 8 and linear C2-C10-I -alkenes polymerized onto it in a mass ratio of from 1 :0.1 to 1 :1000.
10. The use of a catalyst system according to any of claims 1 to 8 for the polymerization or copolymerization of olefins.
11. A process for preparing ethylene homopolymers or copolymers, wherein ethylene is optionally copolymerized with C3-C12-I -alkenes in the presence of a catalyst system accord- ing to any of claims 1 to 8.
PCT/EP2006/009749 2005-10-14 2006-10-10 Hybrid catalyst systems supported on magnesium halide WO2007042252A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/083,066 US7723448B2 (en) 2005-10-14 2006-10-10 Hybrid catalyst systems supported on magnesium halide
EP06806126.6A EP1943281B1 (en) 2005-10-14 2006-10-10 Hybrid catalyst systems supported on magnesium halide
JP2008534916A JP2009511681A (en) 2005-10-14 2006-10-10 Composite catalyst system supported on magnesium halide
BRPI0617253A BRPI0617253A2 (en) 2005-10-14 2006-10-10 magnesium halide supported hybrid catalyst systems
AU2006301483A AU2006301483A1 (en) 2005-10-14 2006-10-10 Hybrid catalyst systems supported on magnesium halide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP05022432.8 2005-10-14
EP05022432 2005-10-14
US73179405P 2005-10-31 2005-10-31
US60/731,794 2005-10-31

Publications (1)

Publication Number Publication Date
WO2007042252A1 true WO2007042252A1 (en) 2007-04-19

Family

ID=40059311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/009749 WO2007042252A1 (en) 2005-10-14 2006-10-10 Hybrid catalyst systems supported on magnesium halide

Country Status (10)

Country Link
US (1) US7723448B2 (en)
EP (1) EP1943281B1 (en)
JP (1) JP2009511681A (en)
KR (1) KR20080067629A (en)
CN (1) CN101287768A (en)
AU (1) AU2006301483A1 (en)
BR (1) BRPI0617253A2 (en)
RU (1) RU2008118887A (en)
WO (1) WO2007042252A1 (en)
ZA (1) ZA200803151B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999043B2 (en) * 2007-12-24 2011-08-16 Basell Polyolefine Gmbh Multistage process for the polymerization of olefins

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004020524A1 (en) * 2004-04-26 2005-11-10 Basell Polyolefine Gmbh Polyethylene for film, e.g. stretch film, used in carrier bags, contains ethylene homopolymers and/or copolymers of ethylene with 1-alkenes
DE102006001959A1 (en) 2006-01-13 2007-07-19 Basell Polyolefine Gmbh Preparation of monoimine compound, useful in the polymerization of olefin, comprises reacting dicarbonyl compound with an aniline compound in presence of an aliphatic, non-aromatic solvent
DE102007017903A1 (en) * 2007-04-13 2008-10-16 Basell Polyolefine Gmbh Polyethylene and catalyst composition and process for its preparation
US10208145B2 (en) * 2014-04-24 2019-02-19 China Petroleum & Chemical Corporation Catalyst component for olefin polymerization, and catalyst containing the same
KR102080640B1 (en) * 2015-12-23 2020-05-27 주식회사 엘지화학 Supported hybrid catalyst and method for preparing of olefin based polymer using the same
US20230322972A1 (en) 2020-10-08 2023-10-12 Exxonmobil Chemical Patents Inc. Supported Catalyst Systems and Processes for Use Thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046302A1 (en) * 1998-03-12 1999-09-16 Bp Chemicals Limited Polymerisation catalysts
WO2001036496A1 (en) * 1999-11-15 2001-05-25 Basell Technology Company B.V. Solid catalyst component for olefin polymerization, catalyst for olefin polymerization and process for producing olefin polymer
EP1568716A1 (en) * 2004-02-24 2005-08-31 Stichting Dutch Polymer Institute Catalyst system comprising magnesium halide

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242150A (en) 1960-03-31 1966-03-22 Phillips Petroleum Co Method and apparatus for the recovery of solid olefin polymer from a continuous path reaction zone
US3248179A (en) 1962-02-26 1966-04-26 Phillips Petroleum Co Method and apparatus for the production of solid polymers of olefins
IT1098272B (en) 1978-08-22 1985-09-07 Montedison Spa COMPONENTS, CATALYSTS AND CATALYSTS FOR THE POLYMERIZATION OF ALPHA-OLEFINS
US5324800A (en) 1983-06-06 1994-06-28 Exxon Chemical Patents Inc. Process and catalyst for polyolefin density and molecular weight control
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
TW309523B (en) 1991-11-30 1997-07-01 Hoechst Ag
IT1262934B (en) 1992-01-31 1996-07-22 Montecatini Tecnologie Srl COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINE
US5372980A (en) 1993-06-03 1994-12-13 Polysar Bimetallic metallocene alumoxane catalyst system and its use in the preparation of ethylene-alpha olefin and ethylene-alpha olefin-non-conjugated diolefin elastomers
DE69426936T3 (en) 1993-10-21 2006-07-27 Exxonmobil Oil Corp. POLYOLEFIN MIXTURES FROM BIMODAL MOLECULAR WEIGHT DISTRIBUTION
FI945958A (en) 1993-12-21 1995-06-22 Hoechst Ag Process for the preparation of polyolefins
IT1269837B (en) 1994-05-26 1997-04-15 Spherilene Srl COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINS
IT1275573B (en) 1995-07-20 1997-08-07 Spherilene Spa PROCESS AND EQUIPMENT FOR GAS PHASE POMIMERIZATION OF ALPHA-OLEFINS
CA2260003A1 (en) 1996-07-30 1998-02-05 Studiengesellschaft Kohle Mbh Catalysts containing organochromium compounds and their use for polymerising alkenes
TR199901635T2 (en) 1996-11-15 2000-02-21 Montell Technology Company Bv Heterocyclic metallocenes and polymerization catalysts.
IL129929A0 (en) 1996-12-17 2000-02-29 Du Pont Polymerization of ethylene with specific iron or cobalt complexes novel pyridinebis (imines) and novel complexes of pyridinebis(imines) with iron and cobalt
US6437161B1 (en) 1999-08-13 2002-08-20 Basf Aktiengesellschaft Monocyclopentadienyl complexes of chromium, molybdenum or tungsten
WO2003059511A1 (en) * 2002-01-09 2003-07-24 E.I. Du Pont De Nemours And Company Catalyst for olefin polymerization
DE10358082A1 (en) 2003-12-10 2005-07-14 Basell Polyolefine Gmbh Organometallic transition metal compound used in catalyst system for preparation of polyolefins, uses biscyclopentadienyl ligand systems in its preparation
DE102004020524A1 (en) * 2004-04-26 2005-11-10 Basell Polyolefine Gmbh Polyethylene for film, e.g. stretch film, used in carrier bags, contains ethylene homopolymers and/or copolymers of ethylene with 1-alkenes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046302A1 (en) * 1998-03-12 1999-09-16 Bp Chemicals Limited Polymerisation catalysts
WO2001036496A1 (en) * 1999-11-15 2001-05-25 Basell Technology Company B.V. Solid catalyst component for olefin polymerization, catalyst for olefin polymerization and process for producing olefin polymer
EP1568716A1 (en) * 2004-02-24 2005-08-31 Stichting Dutch Polymer Institute Catalyst system comprising magnesium halide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999043B2 (en) * 2007-12-24 2011-08-16 Basell Polyolefine Gmbh Multistage process for the polymerization of olefins

Also Published As

Publication number Publication date
US7723448B2 (en) 2010-05-25
BRPI0617253A2 (en) 2016-04-19
KR20080067629A (en) 2008-07-21
ZA200803151B (en) 2009-06-24
CN101287768A (en) 2008-10-15
JP2009511681A (en) 2009-03-19
RU2008118887A (en) 2009-11-20
AU2006301483A1 (en) 2007-04-19
US20090118445A1 (en) 2009-05-07
EP1943281A1 (en) 2008-07-16
EP1943281B1 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
EP1753794B1 (en) Polyethylene and catalyst composition for its preparation
US7973114B2 (en) Monocyclopentadienyl complexes
EP1943281B1 (en) Hybrid catalyst systems supported on magnesium halide
WO2008107135A1 (en) Iron complexes and their use in polymerization processes
WO2006063826A1 (en) Monocyclopentadienyl complexes
EP1740626A1 (en) Catalyst system for olefin polymerization, its production and use
US7202373B2 (en) Monocyclopentadienyl complexes
US7629464B2 (en) Monocyclopentadienyl complexes
EP1861409B1 (en) Monocyclopentadienyl complexes
WO2006018264A2 (en) Cyclopentadienyl complexes of group 6 substituted by silyl halides
WO2008052673A1 (en) Process for the polymerization of olefins using catalyst systems based on an organic transition metal complex

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038322.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006806126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006806126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12083066

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006301483

Country of ref document: AU

Ref document number: 1833/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008534916

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087009830

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006301483

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008118887

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006806126

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0617253

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080411