WO2007040081A1 - 単結晶半導体製造装置および製造方法 - Google Patents

単結晶半導体製造装置および製造方法 Download PDF

Info

Publication number
WO2007040081A1
WO2007040081A1 PCT/JP2006/318960 JP2006318960W WO2007040081A1 WO 2007040081 A1 WO2007040081 A1 WO 2007040081A1 JP 2006318960 W JP2006318960 W JP 2006318960W WO 2007040081 A1 WO2007040081 A1 WO 2007040081A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
single crystal
crucible
crystal semiconductor
heaters
Prior art date
Application number
PCT/JP2006/318960
Other languages
English (en)
French (fr)
Inventor
Tetsuhiro Iida
Yutaka Shiraishi
Junsuke Tomioka
Original Assignee
Komatsu Denshi Kinzoku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Denshi Kinzoku Kabushiki Kaisha filed Critical Komatsu Denshi Kinzoku Kabushiki Kaisha
Priority to US11/992,510 priority Critical patent/US8241424B2/en
Priority to JP2007538706A priority patent/JP5343272B2/ja
Priority to DE112006002595.3T priority patent/DE112006002595B4/de
Priority to KR1020087010256A priority patent/KR101391057B1/ko
Publication of WO2007040081A1 publication Critical patent/WO2007040081A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1052Seed pulling including a sectioned crucible [e.g., double crucible, baffle]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]

Definitions

  • the present invention relates to an apparatus and a manufacturing method for manufacturing a single crystal semiconductor.
  • FIG. 3 shows an example of the configuration of a conventional single crystal bow I raising apparatus 1.
  • a quartz crucible 3 is provided in the single crystal pulling vessel 2, that is, the CZ furnace 2.
  • polycrystalline silicon (Si) is heated and melted.
  • the pulling mechanism 4 pulls the single crystal silicon 6 from the silicon melt 5 in the quartz crucible 3 by the CZ method.
  • the quartz crucible 3 is rotated by the rotating shaft 9.
  • argon (Ar) gas is supplied to the single crystal pulling container 2 and exhausted together with the evaporated substance outside the container 2 to remove the evaporated substance from the container 2 and clean it.
  • the argon gas supply flow rate is set for each process in a batch.
  • a heat shielding plate 8a gas rectifying cylinder for shielding from a heat source is provided.
  • the distance between the lower end of the heat shielding plate 8a and the melt surface 5a is set as appropriate.
  • oxygen is dissolved in the single crystal silicon 6 that has been pulled and grown.
  • Oxygen dissolves from the quartz crucible 3 into the silicon melt 5 and is taken into the single crystal silicon 6 when the single crystal silicon 6 is pulled up.
  • the oxygen concentration in the single crystal silicon 6 has a significant influence on the characteristics of the element and the device, and also has a significant influence on the yield in the manufacturing process of the element and the device. Elements and devices require different oxygen concentrations depending on their types. Therefore, manufacturing single crystal silicon requires a process that can handle various oxygen concentrations. At the same time, the more uniform the oxygen concentration is in the crystal growth direction, the more parts that match the oxygen concentration required for the device and device. Therefore, expanding the control range of oxygen concentration throughout the crystal can improve the yield of single crystal silicon. It becomes possible.
  • a single heater 10 is provided in an annular shape.
  • the heater 10 includes a plus electrode 11 and a minus (earth) electrode 12, and heat is generated when a voltage is applied between these electrodes, and the melt 5 in the quartz crucible 3 is heated.
  • the electric power supplied to the heater 10 the amount of heat generated by the heater 10 changes, thereby changing the temperature of the quartz crucible 3, and the behavior of oxygen eluted from the quartz crucible 3 and taken into the single crystal silicon 6 Changes.
  • the amount of heat generated by the heater 10 affects the oxygen concentration in the single crystal silicon 6.
  • Patent Document 1 discloses a heater device in which heaters are provided in two upper and lower stages on the side surface of a quartz crucible.
  • Patent Document 2 discloses a heater device in which a heater is provided on each of a side surface and a bottom surface of a quartz crucible.
  • Patent Document 3 heaters are provided in two upper and lower sides of the side surface of the quartz crucible, respectively, and the ratio of electric power supplied to each heater is limited to a predetermined range. An invention for controlling the oxygen concentration is described.
  • Patent Document 4 heaters are provided on the upper and lower three stages of the side surface of the quartz crucible, the electric resistance of each heater is made different, and a common power supply power is supplied to each heater.
  • the invention describes that the oxygen concentration of single crystal silicon is controlled by varying the amount of heat generated in the heater.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 62-153191
  • Patent Document 2 Japanese Patent No. 2681115
  • Patent Document 3 Japanese Patent No. 3000923
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-39792
  • the following method for controlling the oxygen concentration by a method other than the heater has already been implemented and is publicly known.
  • the above method 1) has a low yield of single crystal silicon in which the control range of the oxygen concentration of single crystal silicon is narrow.
  • the method 2) described above is difficult to manufacture at a low cost a semiconductor product that is extremely expensive due to the introduction of the magnetic field generator and the costs associated with its maintenance and management.
  • the method for controlling the oxygen concentration of single crystal silicon using a plurality of heaters can control the oxygen concentration of single crystal silicon somewhat wider than the method of 1) above.
  • the yield of single crystal silicon is also improved slightly.
  • the cost is not as high as the method 2) above.
  • the temperature in the vertical direction of the quartz crucible is adjusted by adjusting the ratio of the power supplied to the plurality of heaters. Actively change the distribution. This changes the dissolution rate of the quartz crucible, which is the oxygen source, and changes the convection of the melt that transports the dissolved oxygen to the single crystal silicon. As a result, the temperature distribution in the growth direction of the single crystal silicon changes, and the oxygen concentration of the single crystal silicon can be changed.
  • Patent Document 3 is a method of limiting the ratio of the power supplied to each heater within a predetermined range, and naturally the temperature in the growth direction of single crystal silicon.
  • the change range of the distribution is defined by the power ratio within the predetermined range, and the temperature distribution cannot be changed greatly.
  • the control range of the oxygen concentration of single crystal silicon is It cannot be said that the area is sufficiently large, and the yield of semiconductor products is not satisfactory.
  • the resistance value is varied for each heater and the amount of heat generated is varied for each heater.
  • the change range of the temperature distribution in the growth direction of single crystal silicon is as follows: It is determined by the height of each heater and the number of heaters, and the temperature distribution cannot be changed greatly. For this reason, the control range of the oxygen concentration of single crystal silicon is not sufficiently wide, and the yield of semiconductor products is not satisfactory.
  • the present invention has been made in view of such a situation, and when controlling the oxygen concentration of single crystal silicon using a plurality of heaters, the temperature distribution of the quartz crucible can be changed, The issue to be solved is to improve the yield of semiconductor products by further expanding the control range of the oxygen concentration of single crystal silicon.
  • the first invention is:
  • the heater is a plurality of heaters provided at respective positions in the vertical direction of the crucible, and each heater is supplied with electric power and energized independently. It consists of a conductor that generates heat by
  • the resistance value in each part of the heater should be adjusted so that the amount of heat generated in the lower part of the heater is relatively smaller than that in the upper part of the heater.
  • the second invention is:
  • the heater is a plurality of heaters provided at respective positions in the vertical direction of the crucible, and each heater is supplied with electric power and energized independently. It consists of a conductor that generates heat by For the heater located on the lower side, the resistance value in each part of the heater should be adjusted so that the amount of heat generated is relatively lower in the upper part of the heater than in the lower part of the heater.
  • the third invention provides
  • the heater is a plurality of heaters provided at respective positions in the vertical direction of the crucible, and each heater is supplied with electric power and energized independently. It consists of a conductor that generates heat by
  • the resistance value in each part of the heater is adjusted so that the amount of heat generated in the lower part of the heater is relatively smaller than that in the upper part of the heater
  • the resistance value in each part of the heater should be adjusted so that the amount of heat generated is relatively lower in the upper part of the heater than in the lower part of the heater.
  • the fourth invention is the first invention, the second invention, the third invention,
  • the current passing cross-sectional area of the heater is different between the upper part of the heater and the lower part of the heater.
  • a fifth invention is the fourth invention, wherein:
  • the current passage cross section of the heater is adjusted by the width of the current passage or the thickness of the current passage.
  • a sixth invention is the first invention, the second invention, the third invention, the fourth invention, or the fifth invention, wherein the plurality of heaters are provided at two positions in the vertical direction of the crucible.
  • the upper heater is formed such that a part of the current flow path enters a position below the position corresponding to the upper end position of the lower heater, and the lower heater Part of the current flow path is formed so as to enter a position above the position corresponding to the lower end position of the upper heater. It is characterized by.
  • the seventh invention provides
  • a crucible that melts the raw material of the single crystal semiconductor and a heater around the crucible that heats the raw material in the crucible are placed in the chamber, and the seed crystal is immersed in the melted raw material to pull up the single crystal.
  • the heaters are a plurality of heaters provided at respective positions in the vertical direction of the crucible, and each heater is composed of a conductor that is supplied with power independently and generates heat when energized,
  • the eighth invention provides
  • a crucible that melts the raw material of the single crystal semiconductor and a heater around the crucible that heats the raw material in the crucible are placed in the chamber, and the seed crystal is immersed in the melted raw material to pull up the single crystal.
  • the heaters are a plurality of heaters provided at respective positions in the vertical direction of the crucible, and each heater is composed of a conductor that is supplied with power independently and generates heat when energized,
  • the single crystal semiconductor is manufactured by adjusting the resistance value in each part of the heater so that the amount of heat generated in the upper part of the heater is relatively smaller than that in the lower part of the heater.
  • the ninth invention provides
  • a crucible for melting the raw material of the single crystal semiconductor and a heater for heating the raw material in the crucible around the crucible are arranged in the chamber, and the seed crystal is immersed in the melted raw material.
  • the heaters are a plurality of heaters provided at respective positions in the vertical direction of the crucible, and each heater is composed of a conductor that is supplied with power independently and generates heat when energized,
  • the single crystal semiconductor is manufactured by adjusting the resistance value in each part of the heater so that the amount of heat generated in the upper part of the heater is relatively smaller than that in the lower part of the heater.
  • the tenth invention is the seventh invention, the eighth invention, the ninth invention,
  • the current passage cross section of the heater is different between the upper part and the lower part of the heater.
  • the eleventh invention is the tenth invention
  • the current passage cross section of the heater is adjusted by the width of the current passage or the thickness of the current passage.
  • the twelfth invention is the seventh invention, the eighth invention, the ninth invention, the tenth invention, or the eleventh invention, wherein the plurality of heaters are two heaters provided at respective positions in the vertical direction of the crucible.
  • the upper heater is formed such that a part of the current flow path enters a position below the position corresponding to the upper end position of the lower heater. Part of the current flow path is formed so as to enter a position above the position corresponding to the lower end position of the upper heater.
  • Oxygen in a single crystal is generally known to depend on the amount of quartz crucible force, which is the oxygen incorporated into the silicon melt, and the amount of oxygen eluted from the bottom inner surface of the quartz crucible. It has been. In other words, the higher the temperature at the bottom of the quartz crucible, the greater the amount of elution, and the higher the concentration of oxygen taken into the single crystal, and vice versa. The oxygen concentration is low.
  • the width of the current flow path is smaller in the width c2 at the lower portion of the heater than the width cl at the upper portion of the heater. It is configured to be wide.
  • the current passage cross-sectional area of the upper side heater 10 is larger in the lower part of the heater than in the upper part of the heater, and accordingly, the resistance value is smaller in the direction S in the lower part of the heater than in the upper part of the heater, The lower part of the heater generates a relatively small amount of heat.
  • the lower side heater 20 is configured such that the width of the current flow path is wider in the width c2 at the upper portion of the heater than the width cl at the lower portion of the heater.
  • the current passage cross-sectional area of the lower heater 20 on the side surface is larger in the upper part of the heater than in the lower part of the heater, and the resistance value is accordingly smaller in the upper part of the heater than in the lower part of the heater.
  • the upper part generates relatively less heat.
  • the present invention As a result, according to the present invention, as shown in FIG. 8, power is supplied at a predetermined power ratio (a ratio between about 1 to 3 in the figure) with respect to the lower side heater 20 and the upper side heater 10. It can be seen that the temperature distribution range at the bottom of the quartz crucible 3 is larger than in the conventional example. Therefore, by adjusting the power ratio, the spread of the temperature distribution at each position in the vertical direction of the quartz crucible 3, that is, at each position in the growth direction of the single crystal silicon 6, is further expanded compared to the conventional example. Thus, the control range of the oxygen concentration of the single crystal silicon 6 is further expanded.
  • a predetermined power ratio a ratio between about 1 to 3 in the figure
  • the resistance value in each part of the heater is adjusted so that the amount of heat generated is relatively lower in the lower part of the heater than in the upper part of the heater.
  • the upper and lower heaters are The resistance value is adjusted so that the amount of generated heat is the same in each section.
  • the resistance value in each part of the heater is adjusted so that the amount of heat generated in the upper part of the heater is relatively smaller than that in the lower part of the heater.
  • the resistance value is adjusted so that the heating value is the same between the upper and lower heaters.
  • the amount of heat generated in each part of the heater is adjusted by adjusting the current passing cross-sectional area of the heater (fourth invention, fifth invention).
  • the upper heater is configured such that a part of the current flow path enters a position below a position corresponding to the upper end position of the lower heater.
  • the lower heater is formed such that a part of the current flow path enters a position above the position corresponding to the lower end position of the upper heater.
  • the amount of heat generated in the upper region of the entire heaters 10 and 20 and the amount of heat generated in the lower region of the entire heaters 10 and 20 are reduced compared to the amount of heat generated in the entire lower region of the heaters 10 and 20. be able to.
  • the seventh to twelfth inventions are inventions of a method for producing a single crystal semiconductor using the single crystal semiconductor production apparatus of the first invention to the sixth invention.
  • FIG. 1 is a side sectional view showing a configuration of a single crystal semiconductor manufacturing apparatus in which a heater according to an embodiment is incorporated.
  • FIG. 2 is a cross-sectional view showing the configuration of the heater of Example 1.
  • FIG. 3 is a side cross-sectional view showing the configuration of a single crystal semiconductor manufacturing apparatus incorporating a conventional heater.
  • FIG. 4 is a cross-sectional view showing a configuration of a heater of a reference example.
  • FIG. 5 is a cross-sectional view showing the configuration of the heater of Example 2.
  • FIG. 6 is a cross-sectional view showing the configuration of the heater of Example 3.
  • FIG. 7 is a cross-sectional view showing the configuration of the heater of Example 4.
  • FIG. 8 is a comparison diagram of the temperature distribution range at the bottom of the quartz crucible when the heater of the present invention and the conventional heater are used.
  • Fig. 9 Fig. 9 (a) is a graph showing the relationship between the crystal constant diameter part length and the oxygen concentration of single crystal silicon, and Fig. 9 (b) shows the growth of single crystal silicon corresponding to Fig. 9 (a). It is a figure showing the length of yield in a direction.
  • Fig. 1 (a) is a sectional view showing a configuration of the single crystal pulling apparatus 1 of the embodiment in a side view!
  • the heater of the embodiment is incorporated in the single crystal bow I raising apparatus 1.
  • a single crystal pulling apparatus 1 according to the embodiment includes a CZ furnace (chamber) 2 as a single crystal pulling vessel.
  • a quartz crucible for melting a polycrystalline silicon raw material and storing it as a melt 5 is provided.
  • the quartz crucible 3 is provided.
  • the quartz crucible 3 is covered with a graphite crucible 7 on the outside.
  • side side upper stage heaters 10 and side side lower stage heaters 20 are provided on the side surfaces of the crucibles 3 and 7 to heat and melt the polycrystalline silicon material in the quartz crucible 3.
  • the side upper stage heater 10 and the side lower stage heater 20 are respectively arranged at respective positions of the upper and lower stages along the vertical direction of the side face of the quartz crucible 3.
  • FIG. 1 (b) is a view of the upper side heater 10 and the lower side heater 20 from the top.
  • the upper side heater 10 and the lower side heater 20 are formed in an annular shape along the outer periphery of the quartz crucible 3. Is formed.
  • annular bottom heater may be provided on the bottom of the crucibles 3 and 7 in the lower stage of the side lower heater 20.
  • Fig. 2 is a cross-sectional view of the upper side heaters 10 and 20 as viewed from the direction of arrow A in Fig. 1 (b).
  • the side upper stage heater 10 and the side lower stage heater 20 are supplied with electric power independently. It is composed of a conductor that generates heat when energized. That is, an independent power source is provided for each heater 10, 20, and each heater 10, 20 has a positive electrode 11, 21, and a negative (ground) electrode 12, 22.
  • an independent power source is provided for each heater 10, 20, and each heater 10, 20 has a positive electrode 11, 21, and a negative (ground) electrode 12, 22.
  • the voltage force of the power source for the side lower heater 20 is applied between the plus electrode 21 and the minus electrode 22 of the heater 20, whereby a current flows through the side lower heater 20 to generate heat.
  • the amount of heat generated by the lower side heater 20 is adjusted, and the lower heating amount of the quartz crucible 3 is controlled.
  • the side upper stage heater 10 and the side lower stage heater 20 are made of, for example, black iron (carbon).
  • the heaters 10 and 20 may be made of a material other than graphite as long as it is a conductive material that can be heated by current and does not cause contamination.
  • CZ C composite carbon fiber reinforced carbon composite material! / ⁇ .
  • a heat insulating cylinder 8b made of a heat insulating material is provided between the side upper stage heater 10, the side lower stage heater 20 and the inner wall of the CZ furnace 2.
  • a pulling mechanism 4 is provided above the quartz crucible 3.
  • the pulling mechanism 4 includes a pulling shaft 4a and a seed crystal 4b.
  • the pulling shaft 4a moves in the vertical direction, the seed crystal 4b is immersed in the melt 5, and the single crystal silicon ingot 6 is transformed from the melt 5 to the CZ method. Pulled up by. At the time of pulling up, the quartz crucible 3 is rotated by the rotating shaft 9. A shaft hole 49 through which the rotary shaft 9 is passed is formed on the bottom surface of the CZ furnace 2.
  • the inside of the furnace 2 is maintained at a vacuum (for example, about 20 Torr).
  • argon gas as an inert gas is supplied to the CZ furnace 2 and exhausted by a pump from the exhaust rotor of the CZ furnace 2.
  • the inside of the furnace 2 is depressurized to a predetermined pressure.
  • Various evaporants are generated in the CZ furnace 2 during the single crystal pulling process (1 batch). Therefore, argon gas is supplied to the CZ furnace 2 and exhausted together with the evaporated substance outside the CZ furnace 2 to remove the evaporated substance from the CZ furnace 2 and clean it.
  • the argon gas supply flow rate is set for each process in a batch.
  • a heat shielding plate 8a (gas rectifier) is provided above the quartz crucible 3 and around the single crystal silicon 6, a heat shielding plate 8a (gas rectifier) is provided.
  • the heat shielding plate 8a is supported by the heat insulating cylinder 8b.
  • the heat shielding plate 8a guides argon gas as a carrier gas supplied from above into the CZ furnace 2 to the center of the melt surface 5a, and further passes through the melt surface 5a to the peripheral portion of the melt surface 5a. Lead. Then, the argon gas 7 is discharged together with the gas evaporated from the melt 5 at the exhaust port provided in the lower part of the CZ furnace 2. Therefore, oxygen evaporated from the melt 5 can be kept stable, and the gas flow rate on the liquid surface can be stabilized.
  • the heat shielding plate 8a insulates and shields the single crystal silicon 6 from radiant heat generated by heat sources such as the quartz crucible 3, the melt 5, the heaters 10 and 20. Further, the heat shielding plate 8a prevents the single crystal silicon 6 from being impeded by impurities (for example, silicon oxide) generated in the furnace and inhibiting single crystal growth.
  • the distance between the lower end of the heat shielding plate 8a and the melt surface 5a can be adjusted by raising and lowering the rotary shaft 9 and changing the vertical position of the crucible 3.
  • the upper and lower positional relationship with 20 also changes relatively.
  • FIG. 4 shows a configuration of the heater of the reference example.
  • the heater of Example 1 shown in FIG. 2 and the heater of the reference example shown in FIG. 4 will be compared.
  • the width c and the thickness d of the current flow path of the upper side heater 10 are the same in each part of the heater. There is no difference.
  • the width c and the thickness d of the current flow path are the same in each part of the heater, and the amount of heat generated is not different between the upper part and the lower part of the heater.
  • the width of the current flow path is smaller than the width cl of the heater upper portion than the width cl of the heater upper portion c2. Is configured to be wider.
  • the current passing cross-sectional area of the upper side heater 10 is The lower part of the heater is wider than the upper part, and the resistance value is correspondingly lower in the lower part of the heater than in the upper part of the heater.
  • the lower side heater 20 is configured such that the width of the current flow path is larger in the width c2 at the upper part of the heater than the width cl at the lower part of the heater.
  • the current passage cross-sectional area of the lower heater 20 on the side surface is larger in the upper part of the heater than in the lower part of the heater, and the resistance value is accordingly smaller in the upper part of the heater than in the lower part of the heater.
  • the upper part generates relatively less heat.
  • the side upper heater 10 of Example 1 shown in FIG. 2 has a part of the current flow path below the position corresponding to the upper end position of the side lower heater 20 of the reference example shown in FIG.
  • the side lower heater 20 of Example 1 shown in FIG. 2 is part of the current flow path at the lower end position of the side upper heater 10 of the reference example shown in FIG. It is formed so as to enter a position above the corresponding position.
  • the heaters 10 and 20 of Example 1 shown in FIG. 4 are viewed as a whole, the amount of heat generated in the upper region of the heaters 10 and 20 as a whole, and the amount of heat generated in the lower region of the heaters 10 and 20 as a whole, The amount of heat generated in the middle area of heaters 10 and 20 is reduced.
  • the heating part height X of the main heating part of the side upper stage heater 10 and the side lower stage heater 20 is preferably not more than 1Z2.5 times the overall height Y of the heater.
  • the current passing cross-sectional area ratio of the lower part of the heater with respect to the upper part of the heater is 1.5 times or more.
  • the current passing cross-sectional area ratio of the upper part of the heater with respect to the lower part of the heater is 1.5 times or more.
  • the heater width cl and the heater width c2 satisfy the relationship of c2 ⁇ l .5 X cl.
  • the number of slits may be set in accordance with a desired heater resistance value without any limitation on the number of slits.
  • the interval between the current flow paths constituting the heater can be set to, for example, about 5 to 30 mm, and the interval b between the upper heater 10 and the lower heater 20 can be set to, for example, about 10 to 30 mm. desirable. If these distances a and b are widened, the heat escape from the gap increases, making it difficult to obtain the effects of the present invention. Conversely, if the distances a and b are narrowed, the possibility of discharge increases, and the process itself It is a force that may fail to hold.
  • FIG. 8 is a diagram comparing temperature distribution ranges at the bottom of a quartz crucible when the heater of the present invention and a conventional heater are used.
  • the heaters of the present invention are the upper and lower heaters 10 and 20 of FIG. 2, and the conventional heaters are the upper and lower heaters 10 and 20 of FIG.
  • the horizontal axis in the figure is the power ratio (between about 1 and 3 in the figure) obtained by dividing the power output of the lower heater by the power output of the upper heater, and the output of the lower heater 20 increases as the power ratio increases. Means greater than the output.
  • the vertical axis in the figure shows the temperature at the center of the bottom of the quartz crucible 3 as an arbitrary value.
  • the temperature distribution range H 1 of the present invention and the conventional temperature distribution range H 2 at a power ratio of 1 to 3 are respectively shown.
  • the temperature distribution range at the bottom of the quartz crucible 3 is larger than the conventional one. Therefore, by adjusting the power ratio, the spread of the temperature distribution at each position in the vertical direction of the quartz crucible 3, that is, at each position in the growth direction of the single crystal silicon 6, is further expanded compared to the reference example. Thus, the control range of the oxygen concentration of the single crystal silicon 6 is further expanded.
  • Fig. 9 (a) is a graph showing the control range of the oxygen concentration of the single crystal silicon 6
  • Fig. 9 (b) is a graph corresponding to Fig. 9 (a). The yield range in the growth direction is shown.
  • the horizontal axis represents the crystal constant diameter portion length (%)
  • the vertical axis represents the oxygen concentration (arbitrary value) of the single crystal silicon 6.
  • the oxygen concentration of the single crystal silicon 6 when the heater of the reference example is used is indicated by a broken line, and the oxygen of the single crystal silicon 6 when the heater of the present invention (Example 1) is used.
  • the concentration is indicated by a solid line.
  • the upper limit value of the oxygen concentration of single crystal silicon 6 is A1
  • the lower limit value is A2
  • the width of the lower limit A2 indicates the oxygen concentration control width of the single crystal silicon 6 when the heater of the reference example is used.
  • E indicates the oxygen concentration standard.
  • the oxygen concentration in the oxygen concentration standard E is a condition for the yield of the single crystal silicon 6.
  • the oxygen concentration control width B1 to B2 of the single crystal silicon 6 is wide, so that the oxygen concentration standard E is higher than when the heater of the reference example is used.
  • the length of the constant-diameter portion of the crystal entering is expanded. As a result, as shown in FIG.
  • the yield range of the single crystal silicon 6 when the heater 1) is used is larger than the yield range of the single crystal silicon 6 when the heater of the reference example is used.
  • the heater of the present invention (Embodiment 1) is used in a single crystal silicon manufacturing apparatus, the yield of the single crystal silicon 6 to be pulled can be improved.
  • the configuration of the heater of the first embodiment shown in FIG. 2 described above is merely an example, and the heater having the configuration shown in FIGS. 5, 6, and 7 may be used.
  • FIG. 5 shows the configuration of the heater of Example 2.
  • the lower end position of the side upper heater 10 and the upper end position of the side lower heater 20 are the same as the lower end position of the side upper heater 10 and the side lower heater 20 of the reference example shown in FIG.
  • the heater is configured in the same manner as the heater of Example 1 in FIG.
  • the upper side heater 10 is configured such that the width of the current flow path is wider in the width c2 at the lower portion of the heater than the width cl at the upper portion of the heater.
  • the current passing cross-sectional area of the upper side heater 10 is larger at the lower part of the heater than at the upper part of the heater, and the resistance value is accordingly smaller at the lower part of the heater than at the upper part of the heater.
  • the amount of heat generated is relatively lower in the lower part of the heater.
  • the lower side heater 20 is configured such that the width of the current flow path is larger in the width c2 at the upper portion of the heater than the width cl at the lower portion of the heater.
  • the current passing cross-sectional area of the lower heater 20 on the side surface is larger at the upper part of the heater than at the lower part of the heater, and the resistance increases accordingly.
  • the value is lower in the upper part of the heater than in the lower part of the heater, and the amount of heat generated is relatively lower in the upper part of the heater than in the lower part of the heater.
  • the heat generating portion height X of the main heat generating portion of the side upper heater 10 and the side lower heater 20 is not more than 1Z2.5 times the height Y of the entire heater.
  • the current passing cross-sectional area ratio of the lower part of the heater with respect to the upper part of the heater is 1.5 times or more.
  • the current passing cross-sectional area ratio of the upper part of the heater with respect to the lower part of the heater is 1.5 times or more.
  • the heater width cl and the heater width c2 satisfy the relationship c2 ⁇ l. 5 X cl.
  • FIG. 6 shows the configuration of the heater of Example 3.
  • the lower end position of the side upper heater 10 and the upper end position of the side lower heater 20 are the same as in the reference example shown in FIG.
  • the lower side position of the heater 10 on the side surface is the same as the upper end position of the lower side heater 20 on the side surface.
  • the amount of heat generated is changed by changing the thickness d of the current flow path not the width c of the current flow path.
  • the upper side heater 10 is configured such that the thickness of the current flow path is greater at the thickness d2 at the lower portion of the heater than at the thickness d1 at the upper portion of the heater.
  • the current passing cross-sectional area of the upper heater 10 on the side surface is larger in the lower part of the heater than in the upper part of the heater, and the resistance value is correspondingly smaller in the lower part of the heater than in the upper part of the heater, and in comparison with the upper part of the heater.
  • the lower part of the heater generates relatively less heat.
  • the lower side heater 20 is configured such that the thickness of the current flow path is larger at the thickness d2 at the upper portion of the heater than at the thickness dl at the lower portion of the heater.
  • the lower side The current cross-sectional area of the heater 20 is larger at the upper part of the heater than at the lower part of the heater, and the resistance is accordingly smaller at the upper part of the heater than at the lower part of the heater, and relative to the upper part of the heater rather than the lower part of the heater. Heat generation is reduced.
  • the heating part height X of the main heating part of the upper side heater 10 and the lower side heater 20 is preferably 1Z2.5 or less times the height Y of the entire heater.
  • the current passing cross-sectional area ratio of the lower part of the heater with respect to the upper part of the heater is 1.5 times or more.
  • the current passing cross-sectional area ratio of the upper part of the heater with respect to the lower part of the heater is 1.5 times or more.
  • the heater wall thickness dl and the heater wall thickness d2 preferably satisfy the relationship of d2 ⁇ l.5 X dl.
  • FIG. 7 shows the configuration of the heater of Example 4.
  • Example 4 Unlike the heaters of Example 1, Example 2, and Example 3, the heater of Example 4 is composed of upper and lower three-stage heaters that are not combined with upper and lower two-stage heaters.
  • the upper side heater 10, the intermediate side heater 30, and the lower side heater 20 are sequentially arranged from the upper side.
  • the side surface upper stage heater 10 is configured such that the width of the current flow path is wider in the lower width c2 of the heater than in the upper width of the heater cl.
  • the current passage cross-sectional area of the upper side heater 10 is larger in the lower part of the heater than in the upper part of the heater, and the resistance value is accordingly smaller in the lower part of the heater than in the upper part of the heater.
  • the calorific value is relatively lower in the lower part.
  • the lower side heater 20 is configured such that the width of the current flow path is larger in the width c2 at the upper part of the heater than the width cl at the lower part of the heater.
  • the side heater 20 The current passage cross-sectional area is larger at the upper part of the heater than at the lower part of the heater, and the resistance value is accordingly smaller at the upper part of the heater than at the lower part of the heater, and the heat at the upper part of the heater is relatively higher than that at the lower part of the heater. The amount is reduced.
  • the side surface intermediate stage heater 30 is configured such that the width of the current flow path becomes the same width c2 in each part of the heater. This is because the width of the current flow path of the side middle stage heater 30 is reduced so that the amount of heat generated by the side middle stage heater 30 is smaller than the upper part of the side upper stage heater 10 and the lower part of the side lower stage heater 20.
  • the force equal to the maximum width (c2) of the current path of the upper side heater 10 and the lower side heater 20 may be set to a width larger than that to further reduce the amount of heat generation.
  • the heating part height X of the main heating part of the upper side heater 10 and the lower side heater 20 is preferably 1Z2.5 or less times the height Y of the entire heater.
  • the current passing cross-sectional area ratio of the lower part of the heater with respect to the upper part of the heater is 1.5 times or more.
  • the current passing cross-sectional area ratio of the upper part of the heater with respect to the lower part of the heater is 1.5 times or more.
  • the heater width cl and the heater width c2 satisfy the relationship of c2 ⁇ l .5 X cl.
  • Example 4 of FIG. 7 the force that changes the amount of heat generated in each part of the heater by changing the width c of the current flow path in each part of the heater.
  • the heating value of each part of the heater may be changed by changing the thickness d of the heater.
  • the resistance value in each part of the heater is adjusted so that the amount of heat generation is relatively lower in the lower part of the heater than in the upper part of the heater.
  • the force that adjusts the resistance value in each part of the heater so that the amount of heat generated is relatively lower in the upper part of the heater than in the lower part of the heater.
  • it is also possible to adjust the resistance value so that the amount of heat generated is different between the upper part and the lower part of the heater 20 only on the lower side. For example, in the case of Example 2 shown in Fig.
  • the resistance value at each part of the heater is adjusted so that only the upper heater 10 on the side face generates less heat at the lower part of the heater than at the upper part of the heater.
  • the current flow path widths cl and c2 are different
  • the side heater 20 has the same amount of heat generated at the top and bottom of the heater as in the reference example of FIG. Implementation is also possible (assuming the same channel width c).
  • the resistance value in each part of the heater is adjusted so that the amount of heat generated is relatively lower in the upper part of the heater than in the lower part of the heater. As with the reference example in Fig. 4, it is possible to make the heat generation the same between the upper and lower heaters.
  • the force of the upper and lower three-stage heater configuration in Example 4 may be configured such that four or more stages of heaters are arranged at each position in the vertical direction of the quartz crucible 3.
  • the resistance value at each part of the heater is adjusted so that the amount of heat generated at the lower part of the heater is relatively smaller than that at the upper part of the heater.
  • Adjusts the resistance value in each part of the heater so that the amount of heat generated in the upper part of the heater is relatively smaller than that in the lower part of the heater.
  • the present invention can be similarly applied not only to a silicon single crystal but also to an apparatus for producing a compound semiconductor such as gallium arsenide.

Abstract

 側面上段ヒータ10については、電流流路の幅が、ヒータ上部よりもヒータ下部の方が広くなるように構成している。これにより、側面上段ヒータ10の電流通過断面積は、ヒータ上部よりもヒータ下部の方が広くなり、それに応じて抵抗値は、ヒータ上部よりもヒータ下部の方が小さくなり、ヒータ上部よりもヒータ下部の方が相対的に発熱量が少なくなる。一方、側面下段ヒータ20については、電流流路の幅が、ヒータ下部よりもヒータ上部の方が広くなるように構成している。これにより、側面下段ヒータ20の電流通過断面積は、ヒータ下部よりもヒータ上部の方が広くなり、それに応じて抵抗値は、ヒータ下部よりもヒータ上部の方が小さくなり、ヒータ下部よりもヒータ上部の方が相対的に発熱量が少なくなる。

Description

明 細 書
単結晶半導体製造装置および製造方法
技術分野
[0001] 本発明は、単結晶半導体を製造する装置および製造方法に関する。
背景技術
[0002] 図 3は従来の単結晶弓 I上げ装置 1の構成の一例を示して 、る。
[0003] 単結晶引上げ用容器 2つまり CZ炉 2内には石英るつぼ 3が設けられている。この石 英るつぼ 3内で多結晶シリコン(Si)が加熱され溶融される。溶融が安定化すると、引 上げ機構 4によって石英るつぼ 3内のシリコン融液 5から単結晶シリコン 6が、 CZ法に よって引き上げられる。引上げの際、石英るつぼ 3は回転軸 9によって回転する。
[0004] 単結晶引上げのプロセス(1バッチ)の間で、容器 2内には種々の蒸発物が発生す る。そこで単結晶引上げ用容器 2にアルゴン (Ar)ガスを供給して容器 2外に蒸発物と ともに排気して容器 2内から蒸発物を除去しクリーンにしている。アルゴンガスの供給 流量は 1バッチ中の各工程ごとに設定する。
[0005] また石英るつぼ 3の上方にあって、単結晶シリコン 6の周囲には、単結晶引上げ容 器 2内のガスを整流して融液 5の表面 5aに導くとともに、単結晶シリコン 6を熱源から 遮蔽する熱遮蔽板 8a (ガス整流筒)が設けられて 、る。熱遮蔽板 8aの下端と融液表 面 5aとの間隙の距離は適宜設定する。
[0006] 引上げ成長した単結晶シリコン 6中には、酸素が固溶している。酸素は石英るつぼ 3からシリコン融液 5中に溶け込み、単結晶シリコン 6の引上げ時に単結晶シリコン 6 中に取り込まれる。単結晶シリコン 6中の酸素濃度は、素子、デバイスの特性に重大 な影響を与えるとともに、素子、デバイスの製造工程において、その歩留まりに重大 な影響を与える。素子、デバイスはその種類によって必要とする酸素濃度が様々であ る。そのため単結晶シリコンの製造には、様々な酸素濃度に対応出来るプロセスが必 要となる。また同時にこの酸素濃度は、結晶の成長方向に対して均一であるほど、素 子、デバイスに必要な酸素濃度に適合する部分が多くなる。従って酸素濃度の制御 範囲を結晶全体にわたって拡大すると単結晶シリコンの歩留まりを向上させることが 可能となる。
[0007] 石英るつぼ 3の周囲には、円環状に、単一のヒータ 10が設けられている。ヒータ 10 は、プラス電極 11、マイナス(アース)電極 12を備えており、これら電極間に電圧が印 加されることで発熱し、石英るつぼ 3内の融液 5が加熱される。ヒータ 10に供給される 電力を調整することで、ヒータ 10の発熱量が変化し、これにより石英るつぼ 3の温度 が変化し、石英るつぼ 3から溶出されて単結晶シリコン 6に取り込まれる酸素の挙動 が変化する。このように、ヒータ 10の発熱量は、単結晶シリコン 6中の酸素濃度に影 響を与える。
[0008] しかしながら、図 3に示す単一のヒータ 10を用いた場合には、ヒータ 10の上下方向 の発熱量の分布、つまり石英るつぼ 3の温度分布を大きく変えることが出来ない。こ のため、単一のヒータ 10に対して供給される電力を調整するだけでは、単結晶シリコ ン 6の酸素濃度の制御幅は極めて狭ぐ単結晶シリコン 6の成長方向の酸素濃度を 均一にすることは事実上困難である。
[0009] そこで、石英るつぼ 3の周囲の上下方向の各位置に複数のヒータを設けて、単結晶 シリコン 6の酸素濃度の制御幅を幾分でも拡大しょうとする発明が、従来より下記特許 文献に示すように、公知となっている。
[0010] 下記特許文献 1には、石英るつぼの側面の上下 2段にそれぞれヒータを設けたヒー タ装置が開示されている。
[0011] 下記特許文献 2には、石英るつぼの側面と底面それぞれにヒータを設けたヒータ装 置が開示されている。
[0012] 下記特許文献 3には、石英るつぼの側面の上下 2段にそれぞれヒータを設け、各ヒ ータに対して供給される電力の比率を所定の範囲に制限して、単結晶シリコンの酸 素濃度を制御するという発明が記載されている。
[0013] 下記特許文献 4には、石英るつぼの側面の上下 3段にそれぞれヒータを設け、各ヒ ータの電気抵抗を異ならせ、共通の電源力 各ヒータに電力を供給することで、各ヒ ータで発生する発熱量を異ならせて、単結晶シリコンの酸素濃度を制御するという発 明が記載されている。
特許文献 1 :特開昭 62— 153191号公報 特許文献 2:特許第 2681115号公報
特許文献 3:特許第 3000923号公報
特許文献 4:特開 2001— 39792号公報 また、ヒータ以外の方法で酸素濃度を制御 する下記の方法も既に実施されており、公知となっている。
[0014] 1)るつぼ回転数、炉内圧力、炉内ガス流量によって、単結晶シリコンの酸素濃度を 制御するという方法
2)磁場発生装置を設け、この磁場発生装置によって、石英るつぼ内の融液に対して 磁場を印加することによって、単結晶シリコンの酸素濃度を制御するという方法 発明の開示
発明が解決しょうとする課題
[0015] しかし、上記 1)の方法は、単結晶シリコンの酸素濃度の制御幅が狭ぐ単結晶シリ コンの歩留まりが低い。
[0016] また、上記 2)の方法は、磁場発生装置の導入に伴うコストおよびその維持、管理に 伴うコストが極めて高ぐ半導体製品を安価に製造することが困難である。
[0017] これに対して、複数のヒータを用いて、単結晶シリコンの酸素濃度を制御する方法 は、上記 1)の方法よりも、幾分でも単結晶シリコンの酸素濃度を制御幅を広くとれ、 単結晶シリコンの歩留まりについても僅かではあるが向上する。また、上記 2)の方法 のように高コストになることもな 、。
[0018] 複数のヒータを用いて、単結晶シリコンの酸素濃度を制御する方法では、複数のヒ ータに対して供給される電力の比率を調整することで、石英るつぼの上下方向の温 度分布を能動的に変化させる。これにより酸素源である石英るつぼの溶解レートが変 化したり、溶解した酸素を単結晶シリコンまで輸送する融液の対流が変化したりする。 この結果、単結晶シリコンの成長方向の温度分布が変化して、単結晶シリコンの酸素 濃度を変化させることができる。
[0019] しかし、上記特許文献 3に示される方法は、各ヒータに対して供給される電力の比 率を所定の範囲内に制限する方法であり、自ずと、単結晶シリコンの成長方向の温 度分布の変化範囲は、その所定範囲内の電力比率によって規定されてしまい、温度 分布を大きく変えることができない。このため、単結晶シリコンの酸素濃度の制御幅は 十分な広さとはいえず、半導体製品の歩留まりは、満足できるものではない。
[0020] また、上記特許文献 4に示される方法では、ヒータ単位で抵抗値を異ならせヒータ 単位で発熱量を異ならせるというものであり、単結晶シリコンの成長方向の温度分布 の変化範囲は、個々のヒータの高さ、ヒータの個数によって規定されてしまい、温度 分布を大きく変えることができない。このため、単結晶シリコンの酸素濃度の制御幅は 十分な広さとはいえず、半導体製品の歩留まりは、満足できるものではない。
[0021] 本発明はこうした実状に鑑みてなされたものであり、複数のヒータを用いて、単結晶 シリコンの酸素濃度を制御するに際して、石英るつぼの温度分布を変えることができ るようにして、単結晶シリコンの酸素濃度の制御幅を従来よりも一層拡大して、半導体 製品の歩留まりを向上させることを解決課題とするものである。
課題を解決するための手段
[0022] 第 1発明は、
単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置において、 前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、
上側に位置するヒータについては、ヒータ上部よりもヒータ下部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値が調整されていること
を特徴とする。
[0023] 第 2発明は、
単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置において、 前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、 下側に位置するヒータについては、ヒータ下部よりもヒータ上部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値が調整されていること
を特徴とする。
[0024] 第 3発明は、
単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置において、 前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、
上側に位置するヒータについては、ヒータ上部よりもヒータ下部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値が調整され、
下側に位置するヒータについては、ヒータ下部よりもヒータ上部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値が調整されていること
を特徴とする。
[0025] 第 4発明は、第 1発明、第 2発明、第 3発明において、
ヒータの電流通過断面積が、ヒータ上部とヒータ下部とで異なって 、ること を特徴とする。
[0026] 第 5発明は、第 4発明において、
前記ヒータの電流通過断面積は、電流通路の幅または電流通路の肉厚で調整され ること
を特徴とする。
[0027] 第 6発明は、第 1発明、第 2発明、第 3発明、第 4発明、第 5発明において、前記複 数のヒータは、るつぼの上下方向の各位置に設けられた 2個のヒータであって、上側 のヒータは、その一部の電流流路が下側のヒータの上端位置に相当する位置よりも 下方の位置まで入り込むように形成されているとともに、下側ヒータは、その一部の電 流流路が上側ヒータの下端位置に相当する位置よりも上方の位置まで入り込むよう に形成されていること を特徴とする。
[0028] 第 7発明は、
単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置を用いた単 結晶半導体製造方法において、
前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、
上側に位置するヒータについては、ヒータ上部よりもヒータ下部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値を調整して単結晶半導体を製造 すること
を特徴とする。
[0029] 第 8発明は、
単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置を用いた単 結晶半導体製造方法において、
前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、
下側に位置するヒータについては、ヒータ下部よりもヒータ上部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値を調整して単結晶半導体を製造 すること
を特徴とする。
[0030] 第 9発明は、
単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置を用いた単 結晶半導体製造方法において、
前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、
上側に位置するヒータについては、ヒータ上部よりもヒータ下部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値を調整し、
下側に位置するヒータについては、ヒータ下部よりもヒータ上部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値を調整して単結晶半導体を製造 すること
を特徴とする。
[0031] 第 10発明は、第 7発明、第 8発明、第 9発明において、
ヒータの電流通過断面積が、ヒータ上部とヒータ下部とで異なって 、ること
を特徴とする。
[0032] 第 11発明は、第 10発明において、
前記ヒータの電流通過断面積は、電流通過路の幅または電流通路の肉厚で調整 されることを特徴とする。
[0033] 第 12発明は、第 7発明、第 8発明、第 9発明、第 10発明、第 11発明において、 前記複数のヒータは、るつぼの上下方向の各位置に設けられた 2個のヒータであつ て、上側のヒータは、その一部の電流流路が下側のヒータの上端位置に相当する位 置よりも下方の位置まで入り込むように形成されているとともに、下側ヒータは、その 一部の電流流路が上側ヒータの下端位置に相当する位置よりも上方の位置まで入り 込むように形成されて ヽること
を特徴とする。
[0034] 単結晶中の酸素は、石英るつぼ力 シリコン融液中に溶出した酸素が結晶に取り 込まれたものである力 主として石英るつぼの底部内表面からの溶出量に依存する 事が一般に知られている。すなわち、石英るつぼ底部の温度が高いほど溶出量は増 え、単結晶に取り込まれる酸素濃度は高くなり、逆に温度が低くなると単結晶に取り 込まれる酸素濃度は低くなる。
[0035] 本発明を図面に即して説明すると、図 2に示すように、側面上段ヒータ 10について は、電流流路の幅が、ヒータ上部の幅 clよりもヒータ下部の幅 c2の方が広くなるように 構成している。これにより、側面上段ヒータ 10の電流通過断面積は、ヒータ上部よりも ヒータ下部の方が広くなり、それに応じて抵抗値は、ヒータ上部よりもヒータ下部の方 力 S小さくなり、ヒータ上部よりもヒータ下部の方が相対的に発熱量が少なくなる。
[0036] 一方、側面下段ヒータ 20については、電流流路の幅が、ヒータ下部の幅 clよりもヒ ータ上部の幅 c2の方が広くなるように構成している。これにより、側面下段ヒータ 20の 電流通過断面積は、ヒータ下部よりもヒータ上部の方が広くなり、それに応じて抵抗 値は、ヒータ下部よりもヒータ上部の方が小さくなり、ヒータ下部よりもヒータ上部の方 が相対的に発熱量が少なくなる。
[0037] この結果、本発明によれば、図 8に示すように、側面下段ヒータ 20、側面上段ヒータ 10に対して、所定の電力比率(図では約 1〜3の間の比率)で電力を供給した場合、 石英るつぼ 3の底部の温度分布範囲が従来例よりも拡大することがわかる。このため 電力比率を調整することで、石英るつぼ 3の上下方向の各位置、つまり単結晶シリコ ン 6の成長方向の各位置での温度分布の広がりは、従来例と比較して、より拡大され て、単結晶シリコン 6の酸素濃度の制御幅は、より広がることになる。
[0038] そして、本発明のヒータを使用した場合には、図 9 (a)に示すように、単結晶シリコン 6の酸素濃度制御幅 B1〜B2が広いため、酸素濃度規格 Eに入る結晶定径部長さが 、拡大される。この結果、図 9 (b)に示すように、本発明のヒータを使用した場合には、 単結晶シリコン 6の歩留まりの範囲力 拡大される。
[0039] このように本発明のヒータを単結晶シリコン製造装置に使用すると、引き上げられる 単結晶シリコン 6の歩留まりが向上するという効果が得られる。
[0040] 第 1発明では、上側のヒータ 10のみにおいて、第 2発明では、下側のヒータ 20のみ において、ヒータの上部と下部とで発熱量を異ならせるように抵抗値を調整する。第 1 発明では、たとえば図 5を例にとると、側面上段ヒータ 10のみについて、ヒータ上部よ りもヒータ下部の方が相対的に発熱量が少なくなるように、ヒータ各部における抵抗 値を調整するとともに、側面下段ヒータ 20については、図 4と同様に、ヒータ上部と下 部とで発熱量が同じように抵抗値が調整される。
[0041] 第 2発明では、側面下段ヒータ 20のみについて、ヒータ下部よりもヒータ上部の方が 相対的に発熱量が少なくなるように、ヒータ各部における抵抗値を調整するとともに、 側面上段ヒータ 10については、図 4と同様に、ヒータ上部と下部とで発熱量が同じと なるように抵抗値を調整する。
[0042] ヒータ各部の発熱量の調整は、ヒータの電流通過断面積を調整することで行う(第 4 発明、第 5発明)。
[0043] 第 6発明では、図 2に示すように、上側のヒータは、その一部の電流流路が下側のヒ ータの上端位置に相当する位置よりも下方の位置まで入り込むように形成されている とともに、下側ヒータは、その一部の電流流路が上側ヒータの下端位置に相当する位 置よりも上方の位置まで入り込むように形成されて ヽる。
[0044] これ〖こより、ヒータ 10、 20全体の上側領域の発熱量、ヒータ 10、 20全体の下側領域 の発熱量に比較して、ヒータ 10、 20全体の中間領域の発熱量を少なくすることがで きる。
[0045] 第 7〜第 12発明は、第 1発明〜第 6発明の単結晶半導体製造装置を用いて単結 晶半導体を製造する方法の発明である。
図面の簡単な説明
[0046] [図 1]図 1は実施形態のヒータが組み込まれた単結晶半導体製造装置の構成を示す 側面断面図である。
[図 2]図 2は実施例 1のヒータの構成を示す断面図である。
[図 3]図 3は従来のヒータが組み込まれた単結晶半導体製造装置の構成を示す側面 断面図である。
[図 4]図 4は参考例のヒータの構成を示す断面図である。
[図 5]図 5は実施例 2のヒータの構成を示す断面図である。
[図 6]図 6は実施例 3のヒータの構成を示す断面図である。
[図 7]図 7は実施例 4のヒータの構成を示す断面図である。
[図 8]図 8は本発明のヒータと従来のヒータを使用した場合の石英るつぼ底部の温度 分布範囲の比較図である。 [図 9]図 9 (a)は結晶定径部長さと単結晶シリコンの酸素濃度との関係を示すグラフで 、図 9 (b)は図 9 (a)に対応させて、単結晶シリコンの成長方向の歩留まりの長さを示 した図である。
符号の説明
[0047] 10 側面上段ヒータ
20 側面下段ヒータ
30 側面中間段ヒータ
発明を実施するための最良の形態
[0048] 以下図面を参照して、本発明に係る単結晶半導体製造装置およびそれに使用さ れるヒータの実施の形態について説明する。
[0049] 図 1 (a)は、実施形態の単結晶引上げ装置 1の構成を側面力 みた図で断面図に て示して!、る。実施形態のヒータはこの単結晶弓 I上げ装置 1に組み込まれて 、る。 同図 1に示すように、実施形態の単結晶引上げ装置 1は、単結晶引上げ用容器とし ての CZ炉(チャンバ) 2を備えて 、る。
[0050] CZ炉 2内には、多結晶シリコンの原料を溶融して融液 5として収容する石英るつぼ
3が設けられている。石英るつぼ 3は、その外側が黒鉛るつぼ 7によって覆われている
。るつぼ 3、 7の周囲にあって、るつぼ 3、 7の側面には、石英るつぼ 3内の多結晶シリ コン原料を加熱して溶融する側面上段ヒータ 10、側面下段ヒータ 20が設けられてい る。側面上段ヒータ 10、側面下段ヒータ 20は、石英るつぼ 3の側面の上下方向に沿 つて上下 2段の各位置にそれぞれ配置されて 、る。
[0051] 図 1 (b)は、側面上段ヒータ 10、側面下段ヒータ 20を上面からみた図であり、側面 上段ヒータ 10、側面下段ヒータ 20は、石英るつぼ 3の外周に沿って、円環状に形成 されている。
[0052] なお、図 1では、図示していないが、側面下段ヒータ 20の更に下段にあって、るつ ぼ 3、 7の底面に、円環状の底面ヒータを設けてもよい。
[0053] 図 2は、側面上段ヒータ 10、 20を、図 1 (b)の矢視 Aからみた断面図 (A— A断面図
)であり、実施例 1のヒータの構成を示している。
[0054] 側面上段ヒータ 10、側面下段ヒータ 20は、独立して電力が供給されるものであり、 通電されることによって発熱する導体で構成されている。すなわち、各ヒータ 10、 20 に対応して独立した電源が設けられており、各ヒータ 10、 20毎〖こ、プラス電極 11、 2 1、マイナス(アース)電極 12、 22を備えている。各ヒータ 10、 20に印加される電圧を 独立して調整することによって発熱量、つまり石英るつぼ 3に対する加熱量を独立し て調整することができる。
[0055] 側面上段ヒータ 10用電源の電圧が、ヒータ 10のプラス電極 11、マイナス電極 12間 に印加されることによって側面上段ヒータ 10に電流が流れ、発熱する。側面上段ヒー タ 10用電源の電圧を変化させることで、側面上段ヒータ 10の発熱量が調整され、石 英るつぼ 3の上側の加熱量が制御される。
[0056] また、側面下段ヒータ 20用電源の電圧力 ヒータ 20のプラス電極 21、マイナス電極 22間に印加されることによって側面下段ヒータ 20に電流が流れ、発熱する。側面下 段ヒータ 20用電源の電圧を変化させることで、側面下段ヒータ 20の発熱量が調整さ れ、石英るつぼ 3の下側の加熱量が制御される。
[0057] 側面上段ヒータ 10、側面下段ヒータ 20は、たとえば黒翁 (カーボン)で構成されて いる。なお、ヒータ 10、 20の材質としては、導電性のある材質で、通電加熱ができ、 汚染発生源にならないものであれば、黒鉛以外の材質であってもよい。たとえば CZ Cコンポジット (炭素繊維強化炭素複合材料)であってもよ!/ヽ。
[0058] 側面上段ヒータ 10、側面下段ヒータ 20と CZ炉 2の内壁との間には、断熱材で構成 された保温筒 8bが設けられて 、る。
[0059] 石英るつぼ 3の上方には引上げ機構 4が設けられている。引上げ機構 4は、引上げ 軸 4aと種結晶 4bを含む。
[0060] 石英るつぼ 3内での溶融が安定ィ匕すると、引上げ軸 4aが鉛直方向に移動し種結晶 4bが融液 5に浸漬されて融液 5から単結晶シリコンのインゴット 6が、 CZ法により引き 上げられる。引上げの際、石英るつぼ 3は回転軸 9によって回転する。 CZ炉 2の底面 には、回転軸 9が揷通される軸孔 49が形成されて 、る。
[0061] CZ炉 2内と外気を遮断することで炉 2内は真空 (たとえば 20Torr程度)に維持され る。すなわち CZ炉 2には不活性ガスとしてのアルゴンガスが供給され、 CZ炉 2の排気 ロカゝらポンプによって排気される。これにより炉 2内は所定の圧力に減圧される。 [0062] 単結晶引上げのプロセス(1バッチ)の間で、 CZ炉 2内には種々の蒸発物が発生す る。そこで CZ炉 2にアルゴンガスを供給して CZ炉 2外に蒸発物とともに排気して CZ 炉 2内から蒸発物を除去しクリーンにしている。アルゴンガスの供給流量は 1バッチ中 の各工程ごとに設定する。
[0063] 石英るつぼ 3の上方にあって、単結晶シリコン 6の周囲には、熱遮蔽板 8a (ガス整 流筒)が設けられている。熱遮蔽板 8aは、保温筒 8bに支持されている。熱遮蔽板 8a は、 CZ炉 2内に上方より供給されるキャリアガスとしてのアルゴンガスを、融液表面 5a の中央に導き、さらに融液表面 5aを通過させて融液表面 5aの周縁部に導く。そして 、アルゴンガス 7は、融液 5から蒸発したガスとともに、 CZ炉 2の下部に設けた排気口 力 排出される。このため融液 5から蒸発される酸素を安定に保ち液面上のガス流速 を安定ィ匕することができる。
[0064] また熱遮蔽板 8aは、単結晶シリコン 6を、石英るつぼ 3、融液 5、ヒータ 10、 20など の熱源で発生する輻射熱から、断熱、遮蔽する。また熱遮蔽板 8aは、単結晶シリコン 6に、炉内で発生した不純物 (たとえばシリコン酸ィ匕物)等が付着して、単結晶育成を 阻害することを防止する。熱遮蔽板 8aの下端と融液表面 5aとの間隙の距離の大きさ は、回転軸 9を上昇下降させ、るつぼ 3の上下方向位置を変化させることで調整する ことができる。
[0065] また、石英るつぼ 3の上下方向位置を変化させることで、るつぼ 3と、上下ヒータ 10
、 20との上下の位置関係も相対的に変化する。
[0066] 図 4に、参考例のヒータの構成を示す。以下、図 2に示す実施例 1のヒータと、図 4に 示す参考例のヒータを対比して説明する。
[0067] 図 4に示す参考例の場合には、側面上段ヒータ 10の電流流路の幅 c、肉厚 dは、ヒ ータ各部で同じであり、ヒータ上部とヒータ下部とで発熱量は異なることはない。同様 に、側面下段ヒータ 20についても、電流流路の幅 c、肉厚 dは、ヒータ各部で同じであ り、ヒータ上部とヒータ下部とで発熱量が異なることはない。
[0068] これに対して図 2に示すように、実施例 1のヒータにあっては、側面上段ヒータ 10に ついては、電流流路の幅が、ヒータ上部の幅 clよりもヒータ下部の幅 c2の方が広くな るように構成している。これにより、側面上段ヒータ 10の電流通過断面積は、ヒータ上 部よりもヒータ下部の方が広くなり、それに応じて抵抗値は、ヒータ上部よりもヒータ下 部の方が小さくなり、ヒータ上部よりもヒータ下部の方が相対的に発熱量が少なくなる
[0069] 一方、側面下段ヒータ 20については、電流流路の幅が、ヒータ下部の幅 clよりもヒ ータ上部の幅 c2の方が広くなるように構成している。これにより、側面下段ヒータ 20の 電流通過断面積は、ヒータ下部よりもヒータ上部の方が広くなり、それに応じて抵抗 値は、ヒータ下部よりもヒータ上部の方が小さくなり、ヒータ下部よりもヒータ上部の方 が相対的に発熱量が少なくなる。
[0070] さらに、図 2に示す実施例 1の側面上段ヒータ 10は、その一部の電流流路が、図 4 に示す参考例の側面下段ヒータ 20の上端位置に相当する位置よりも下方の位置ま で入り込むように形成されているとともに、図 2に示す実施例 1の側面下段ヒータ 20は 、その一部の電流流路が、図 4に示す参考例の側面上段ヒータ 10の下端位置に相 当する位置よりも上方の位置まで入り込むように形成されている。これにより、図 4に 示す実施例 1のヒータ 10、 20を全体としてみたとき、ヒータ 10、 20全体の上側領域の 発熱量、ヒータ 10、 20全体の下側領域の発熱量に比較して、ヒータ 10、 20全体の 中間領域の発熱量が、少なくなる。
[0071] 側面上段ヒータ 10および側面下段ヒータ 20の主発熱部の発熱部高さ Xは、ヒータ 全体の高さ Yに対して 1Z2. 5倍以下とするのが好ましい。
[0072] また、側面上段ヒータ 10において、ヒータ上部よりヒータ下部の発熱量を小さくする ために、ヒータ上部に対するヒータ下部の電流通過断面積比を 1. 5倍以上にするの が好ましい。同様に、側面下段ヒータ 20において、ヒータ下部よりヒータ上部の発熱 量を小さくするために、ヒータ下部に対するヒータ上部の電流通過断面積比を 1. 5倍 以上にするのが好ましい。たとえばヒータの幅 clとヒータの幅 c2は、 c2≥l . 5 X clの 関係を満たすことが好ま 、。
[0073] なお、図 2の実施例 1のヒータを構成するに際して、スリットの数に制限はなぐ所望 するヒータ抵抗値に合わせてスリットの数を設定すればよい。
[0074] また、ヒータを構成する電流流路の間隔 (スリット幅 a)は例えば 5〜30mm程度に、 上段ヒータ 10と下段ヒータ 20の間隔 bは、例えば 10〜30mm程度に設定することが 望ましい。これら間隔 a、 bを広くすると、隙間からの熱の逃げが多くなり、本発明の効 果が得られ難くなり、逆に間隔 a、 bを狭くすると、放電の可能性が高くなり、プロセス 自体が成立しなくなることがある力 である。
[0075] 図 8は本発明のヒータと従来のヒータを使用した場合の石英るつぼ底部の温度分布 範囲を比較した図である。
[0076] 同図 8において、本発明のヒータは図 2の上下段ヒータ 10、 20であり、従来のヒータ は図 4の上下段ヒータ 10, 20である。
[0077] 図の横軸は下段ヒータの電力出力を上段ヒータの電力出力で割った電力比率(図 では約 1〜3の間)であり、電力比率が大きいほど下段ヒータ 20の出力が上段ヒータ の出力より大きいことを意味する。図の縦軸は石英るつぼ 3底部の中心部の温度を任 意値で示している。また、電力比率が 1から 3の間における本発明の温度分布範囲 H 1と従来の温度分布範囲 H2がそれぞれ示されて 、る。
[0078] 図 8によれば、本発明の場合、石英るつぼ 3の底部の温度分布範囲は従来よりも大 きい。このため電力比率を調整することで、石英るつぼ 3の上下方向の各位置、つま り単結晶シリコン 6の成長方向の各位置での温度分布の広がりは、参考例と比較して 、より拡大されて、単結晶シリコン 6の酸素濃度の制御幅は、より広がることになる。
[0079] 図 9 (a)は、単結晶シリコン 6の酸素濃度の制御幅をグラフで示し、図 9 (b)は、図 9 ( a)に対応させて、単結晶シリコン 6 (インゴット)の成長方向における歩留まり範囲を示 している。図 9 (a)の横軸は、結晶定径部長さ(%)であり、縦軸は単結晶シリコン 6の 酸素濃度 (任意値)である。
[0080] 図 9 (a)では参考例のヒータを使用した場合の単結晶シリコン 6の酸素濃度を破線 で示し、本発明(実施例 1)のヒータを使用した場合の単結晶シリコン 6の酸素濃度を 実線で示している。
[0081] 同図 9 (a)に示すように、参考例のヒータを使用した場合の単結晶シリコン 6の酸素 濃度の上限値は A1であり、同下限値は A2であり、これら上限値 Al、下限値 A2の幅 が参考例のヒータを使用した場合の単結晶シリコン 6の酸素濃度制御幅を示す。
[0082] 一方、本発明(実施例 1)のヒータを使用した場合の単結晶シリコン 6の酸素濃度の 上限値は B1であり、同下限値は B2であり、これら上限値 Bl、下限値 B2の幅が本発 明(実施例 1)のヒータを使用した場合の単結晶シリコン 6の酸素濃度制御幅を示す。
[0083] 本発明(実施例 1)のヒータを使用した場合の単結晶シリコン 6の酸素濃度制御幅 B
1〜B2は、参考例のヒータを使用した場合の単結晶シリコン 6の酸素濃度制御幅 A1
〜A2よりも明らかに広いことがわかる。
[0084] 図 9 (a)にお 、て、 Eは酸素濃度規格を示して 、る。この酸素濃度規格 Eに酸素濃 度が入ることが、単結晶シリコン 6の歩留まりの条件となる。
[0085] 本発明(実施例 1)のヒータを使用した場合には、単結晶シリコン 6の酸素濃度制御 幅 B1〜B2が広いため、参考例のヒータを使用した場合よりも、酸素濃度規格 Eに入 る結晶定径部長さが、拡大される。この結果、図 9 (b)に示すように、本発明(実施例
1)のヒータを使用した場合の単結晶シリコン 6の歩留まりの範囲は、参考例のヒータ を使用した場合の単結晶シリコン 6の歩留まりの範囲よりも、拡大される。
[0086] このように本発明(実施例 1)のヒータを単結晶シリコン製造装置に使用すると、引き 上げられる単結晶シリコン 6の歩留まりが向上するという効果が得られる。
[0087] 上述した図 2に示す実施例 1のヒータの構成は、一例であり、図 5、図 6、図 7に示す 構成のヒータであってもよ 、。
[0088] 図 5は、実施例 2のヒータの構成を示している。
[0089] この実施例 2のヒータは、側面上側ヒータ 10の下端位置、側面下側ヒータ 20の上端 位置が、図 4に示す参考例の側面上側ヒータ 10の下端位置、側面下側ヒータ 20の 上端位置と同 f立置になっている他は、図 2の実施例 1のヒータと同様に構成されて いる。
[0090] すなわち、側面上段ヒータ 10については、電流流路の幅が、ヒータ上部の幅 clより もヒータ下部の幅 c2の方が広くなるように構成している。これにより、側面上段ヒータ 1 0の電流通過断面積は、ヒータ上部よりもヒータ下部の方が広くなり、それに応じて抵 抗値は、ヒータ上部よりもヒータ下部の方が小さくなり、ヒータ上部よりもヒータ下部の 方が相対的に発熱量が少なくなる。
[0091] 一方、側面下段ヒータ 20については、電流流路の幅が、ヒータ下部の幅 clよりもヒ ータ上部の幅 c2の方が広くなるように構成している。これにより、側面下段ヒータ 20の 電流通過断面積は、ヒータ下部よりもヒータ上部の方が広くなり、それに応じて抵抗 値は、ヒータ下部よりもヒータ上部の方が小さくなり、ヒータ下部よりもヒータ上部の方 が相対的に発熱量が少なくなる。
[0092] 側面上段ヒータ 10および側面下段ヒータ 20の主発熱部の発熱部高さ Xは、ヒータ 全体の高さ Yに対して 1Z2. 5倍以下とするのが好ましい。
[0093] また、側面上段ヒータ 10において、ヒータ上部よりヒータ下部の発熱量を小さくする ために、ヒータ上部に対するヒータ下部の電流通過断面積比を 1. 5倍以上にするの が好ましい。同様に、側面下段ヒータ 20において、ヒータ下部よりヒータ上部の発熱 量を小さくするために、ヒータ下部に対するヒータ上部の電流通過断面積比を 1. 5倍 以上にするのが好ましい。たとえばヒータの幅 clとヒータの幅 c2は、 c2≥l. 5 X clの 関係を満たすことが好ま 、。
[0094] この実施例 2のヒータを使用した場合には、図 8において実施例 1のヒータを使用し た場合と同様に、電力比率の操作範囲を一定とした場合に、石英るつぼ 3の底部の 温度分布範囲が従来よりも拡大されるため、実施例 1のヒータを使用した場合と同様 に、単結晶シリコン 6の酸素濃度幅 B1〜B2が拡大され(図 9 (a) )、この結果、単結晶 シリコン 6の歩留まりが向上する(図 9 (b) )。
[0095] 図 6は、実施例 3のヒータの構成を示している。
[0096] この実施例 3のヒータは、上述した図 5の実施例 2のヒータと同様に、側面上側ヒー タ 10の下端位置、側面下側ヒータ 20の上端位置が、図 4に示す参考例の側面上側 ヒータ 10の下端位置、側面下側ヒータ 20の上端位置と同じ位置になっている。
[0097] ただし、図 5の実施例 2のヒータと異なり、電流流路の幅 cではなぐ電流流路の肉 厚 dを変えることで、発熱量を変化させている。
[0098] すなわち、側面上段ヒータ 10については、電流流路の肉厚が、ヒータ上部の肉厚 d 1よりもヒータ下部の肉厚 d2の方が広くなるように構成している。これにより、側面上段 ヒータ 10の電流通過断面積は、ヒータ上部よりもヒータ下部の方が広くなり、それに応 じて抵抗値は、ヒータ上部よりもヒータ下部の方が小さくなり、ヒータ上部よりもヒータ下 部の方が相対的に発熱量が少なくなる。
[0099] 一方、側面下段ヒータ 20については、電流流路の肉厚が、ヒータ下部の肉厚 dlより もヒータ上部の肉厚 d2の方が広くなるように構成している。これにより、側面下段ヒー タ 20の電流通過断面積は、ヒータ下部よりもヒータ上部の方が広くなり、それに応じて 抵抗値は、ヒータ下部よりもヒータ上部の方が小さくなり、ヒータ下部よりもヒータ上部 の方が相対的に発熱量が少なくなる。
[0100] 側面上段ヒータ 10および側面下段ヒータ 20の主発熱部の発熱部高さ Xは、ヒータ 全体の高さ Yに対して 1Z2. 5倍以下とするのが好ましい。
[0101] また、側面上段ヒータ 10において、ヒータ上部よりヒータ下部の発熱量を小さくする ために、ヒータ上部に対するヒータ下部の電流通過断面積比を 1. 5倍以上にするの が好ましい。同様に、側面下段ヒータ 20において、ヒータ下部よりヒータ上部の発熱 量を小さくするために、ヒータ下部に対するヒータ上部の電流通過断面積比を 1. 5倍 以上にするのが好ましい。たとえばヒータの肉厚 dlとヒータの肉厚 d2は、 d2≥l. 5 X dlの関係を満たすことが好ましい。
[0102] この実施例 3のヒータを使用した場合には、図 8において実施例 1のヒータを使用し た場合と同様に、電力比率の操作範囲を一定とした場合に、石英るつぼ 3の底部の 温度分布範囲が従来よりも拡大されるため、実施例 1のヒータを使用した場合と同様 に、単結晶シリコン 6の酸素濃度幅 B1〜B2が拡大され(図 9 (a) )、この結果、単結晶 シリコン 6の歩留まりが向上する(図 9 (b) )。
[0103] 図 7は、実施例 4のヒータの構成を示している。
[0104] この実施例 4のヒータは、実施例 1、実施例 2、実施例 3のヒータと異なり、上下 2段 のヒータではなぐ上下 3段のヒータで構成されている。
[0105] すなわち、石英るつぼ 3の上下方向の各位置には、上側より、側面上段ヒータ 10、 側面中間段ヒータ 30、側面下段ヒータ 20が順に配置される。
[0106] 側面上段ヒータ 10については、電流流路の幅が、ヒータ上部の幅 clよりもヒータ下 部の幅 c2の方が広くなるように構成している。これにより、側面上段ヒータ 10の電流 通過断面積は、ヒータ上部よりもヒータ下部の方が広くなり、それに応じて抵抗値は、 ヒータ上部よりもヒータ下部の方が小さくなり、ヒータ上部よりもヒータ下部の方が相対 的に発熱量が少なくなる。
[0107] 一方、側面下段ヒータ 20については、電流流路の幅が、ヒータ下部の幅 clよりもヒ ータ上部の幅 c2の方が広くなるように構成している。これにより、側面下段ヒータ 20の 電流通過断面積は、ヒータ下部よりもヒータ上部の方が広くなり、それに応じて抵抗 値は、ヒータ下部よりもヒータ上部の方が小さくなり、ヒータ下部よりもヒータ上部の方 が相対的に発熱量が少なくなる。
[0108] これに対して、側面中間段ヒータ 30については、電流流路の幅が、ヒータ各部で同 じ幅 c2になるように構成されている。これは、側面上段ヒータ 10の上部、側面下段ヒ ータ 20の下部に比して、側面中間段ヒータ 30の発熱量が少なくなるように、側面中 間段ヒータ 30の電流流路の幅を、側面上段ヒータ 10、側面下段ヒータ 20の電流流 路の最大幅 (c2)と同等にしている力 それ以上の大きさの幅にしてさらに発熱量が 少なくなる様にしてもよい。
[0109] なお、ヒータにおける電流通過断面積の設定だけでなぐ側面中間ヒータ 30に供給 する電力を、ヒータ 3段全ての合計電力の 33%以下に設定する事が好ましい。これ により、側面上段ヒータ 10のヒータ上部および側面下段ヒータ 20のヒータ下部の発熱 量を、他のヒータ部の発熱量に比べて相対的に大きくすることができる。
[0110] 側面上段ヒータ 10および側面下段ヒータ 20の主発熱部の発熱部高さ Xは、ヒータ 全体の高さ Yに対して 1Z2. 5倍以下とするのが好ましい。
[0111] また、側面上段ヒータ 10において、ヒータ上部よりヒータ下部の発熱量を小さくする ために、ヒータ上部に対するヒータ下部の電流通過断面積比を 1. 5倍以上にするの が好ましい。同様に、側面下段ヒータ 20において、ヒータ下部よりヒータ上部の発熱 量を小さくするために、ヒータ下部に対するヒータ上部の電流通過断面積比を 1. 5倍 以上にするのが好ましい。たとえばヒータの幅 clとヒータの幅 c2は、 c2≥l . 5 X clの 関係を満たすことが好ま 、。
[0112] なお、図 7の実施例 4では、ヒータ各部の電流流路の幅 cを変化させて、ヒータ各部 の発熱量を変化させている力 図 6と同様に、ヒータ各部の電流流路の肉厚 dを変化 させて、ヒータ各部の発熱量を変化させてもよい。
[0113] この実施例 4のヒータを使用した場合には、図 8において実施例 1のヒータを使用し た場合と同様に、電力比率の操作範囲を一定とした場合に、石英るつぼ 3の底部の 温度分布範囲が従来よりも拡大されるため、側面上段ヒータ 10の発熱領域と側面下 段ヒータ 20の発熱領域とが明確に分離する温度分布を呈し、実施例 1のヒータを使 用した場合と同様に、単結晶シリコン 6の酸素濃度幅 B1〜B2が拡大され(図 9 (a) )、 この結果、単結晶シリコン 6の歩留まりが向上する(図 9 (b) )。
[0114] 以上説明した実施例では、上側に位置するヒータ 10については、ヒータ上部よりも ヒータ下部の方が相対的に発熱量が少なくなるように、ヒータ各部における抵抗値を 調整するとともに、下側に位置するヒータ 20については、ヒータ下部よりもヒータ上部 の方が相対的に発熱量が少なくなるように、ヒータ各部における抵抗値を調整してい る力 本発明としては、上側のヒータ 10のみにおいて、あるいは、下側のヒータ 20の みにおいて、ヒータ上部と下部とで発熱量を異ならせるように抵抗値を調整する実施 も可能である。たとえば図 5に示す実施例 2を例にとると、側面上段ヒータ 10のみに ついて、ヒータ上部よりもヒータ下部の方が相対的に発熱量が少なくなるように、ヒー タ各部における抵抗値を調整する(たとえば電流流路の幅 cl、 c2を異ならせる)ととも に、側面下段ヒータ 20については、図 4の参考例と同様に、ヒータ上部と下部とで発 熱量が同じとする(たとえば電流流路の幅 cを同じとする)実施も可能である。
[0115] 逆に、側面下段ヒータ 20のみについて、ヒータ下部よりもヒータ上部の方が相対的 に発熱量が少なくなるように、ヒータ各部における抵抗値を調整するとともに、側面上 段ヒータ 10については、図 4の参考例と同様に、ヒータ上部と下部とで発熱量が同じ とする実施も可能である。
[0116] また、実施例 4では上下 3段のヒータ構成であった力 石英るつぼ 3の上下方向の 各位置に 4段以上のヒータを配置した構成にしてもよい。その場合、たとえば最上段 に位置するヒータについては、ヒータ上部よりもヒータ下部の方が相対的に発熱量が 少なくなるように、ヒータ各部における抵抗値を調整するとともに、最下段に位置する ヒータについては、ヒータ下部よりもヒータ上部の方が相対的に発熱量が少なくなるよ うに、ヒータ各部における抵抗値を調整する。その他についても実施例 4に準じて行う ことができるので、その説明につ ヽては省略する。
産業上の利用可能性
[0117] 本発明は、シリコン単結晶のみならず、ガリウム砒素等の化合物半導体を製造する 装置に対しても、同様に適用することができる。

Claims

請求の範囲
[1] 単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置において、 前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、
上側に位置するヒータについては、ヒータ上部よりもヒータ下部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値が調整されていること
を特徴とする単結晶半導体製造装置。
[2] 単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置において、 前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、
下側に位置するヒータについては、ヒータ下部よりもヒータ上部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値が調整されていること
を特徴とする単結晶半導体製造装置。
[3] 単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置において、 前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、
上側に位置するヒータについては、ヒータ上部よりもヒータ下部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値が調整され、
下側に位置するヒータについては、ヒータ下部よりもヒータ上部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値が調整されていること を特徴とする単結晶半導体製造装置。
[4] ヒータの電流通過断面積が、ヒータ上部とヒータ下部とで異なっていることを特徴とす る請求項 1、 2、 3記載の単結晶半導体製造装置。
[5] 前記ヒータの電流通過断面積は、電流通路の幅または電流通路の肉厚で調整され ることを特徴とする請求項 4記載の単結晶半導体製造装置。
[6] 前記複数のヒータは、るつぼの上下方向の各位置に設けられた 2個のヒータであって 、上側のヒータは、その一部の電流流路が下側のヒータの上端位置に相当する位置 よりも下方の位置まで入り込むように形成されているとともに、下側ヒータは、その一 部の電流流路が上側ヒータの下端位置に相当する位置よりも上方の位置まで入り込 むように形成されていることを特徴とする請求項 1、 2、 3、 4、 5記載の単結晶半導体 製造装置。
[7] 単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置を用いた単 結晶半導体製造方法において、
前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、
上側に位置するヒータについては、ヒータ上部よりもヒータ下部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値を調整して単結晶半導体を製造 すること
を特徴とする単結晶半導体製造方法。
[8] 単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置を用いた単 結晶半導体製造方法において、
前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、
下側に位置するヒータについては、ヒータ下部よりもヒータ上部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値を調整して単結晶半導体を製造 すること
を特徴とする単結晶半導体製造方法。
[9] 単結晶半導体の原料を溶解するるつぼと、このるつぼの周囲にあって、るつぼ内の 原料を加熱するヒータとがチャンバ内に配置され、溶解した原料に種子結晶を浸漬し て単結晶を引き上げる引上げ機構が備えられた単結晶半導体製造装置を用いた単 結晶半導体製造方法において、
前記ヒータは、るつぼの上下方向の各位置に設けられた複数のヒータであって、 各ヒータは、独立して電力が供給され、通電されることによって発熱する導体で構 成され、
上側に位置するヒータについては、ヒータ上部よりもヒータ下部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値を調整し、
下側に位置するヒータについては、ヒータ下部よりもヒータ上部の方が相対的に発 熱量が少なくなるように、ヒータ各部における抵抗値を調整して単結晶半導体を製造 すること
を特徴とする単結晶半導体製造方法。
[10] ヒータの電流通過断面積が、ヒータ上部とヒータ下部とで異なっていることを特徴とす る請求項 7、 8、 9記載の単結晶半導体製造方法。
[11] 前記ヒータの電流通過断面積は、電流通過路の幅または電流通路の肉厚で調整さ れることを特徴とする請求項 10記載の単結晶半導体製造方法。
[12] 前記複数のヒータは、るつぼの上下方向の各位置に設けられた 2個のヒータであって 、上側のヒータは、その一部の電流流路が下側のヒータの上端位置に相当する位置 よりも下方の位置まで入り込むように形成されているとともに、下側ヒータは、その一 部の電流流路が上側ヒータの下端位置に相当する位置よりも上方の位置まで入り込 むように形成されていることを特徴とする請求項 7、 8、 9、 10、 11記載の単結晶半導 体製造方法。
PCT/JP2006/318960 2005-09-30 2006-09-25 単結晶半導体製造装置および製造方法 WO2007040081A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/992,510 US8241424B2 (en) 2005-09-30 2006-09-25 Single crystal semiconductor manufacturing apparatus and manufacturing method
JP2007538706A JP5343272B2 (ja) 2005-09-30 2006-09-25 単結晶半導体製造装置および製造方法
DE112006002595.3T DE112006002595B4 (de) 2005-09-30 2006-09-25 Herstellungsvorrichtung und Herstellungsverfahren für einen Einkristall-Halbleiter
KR1020087010256A KR101391057B1 (ko) 2005-09-30 2006-09-25 단결정 반도체 제조 장치 및 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-287356 2005-09-30
JP2005287356 2005-09-30

Publications (1)

Publication Number Publication Date
WO2007040081A1 true WO2007040081A1 (ja) 2007-04-12

Family

ID=37906125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318960 WO2007040081A1 (ja) 2005-09-30 2006-09-25 単結晶半導体製造装置および製造方法

Country Status (6)

Country Link
US (1) US8241424B2 (ja)
JP (1) JP5343272B2 (ja)
KR (1) KR101391057B1 (ja)
DE (1) DE112006002595B4 (ja)
TW (1) TW200730673A (ja)
WO (1) WO2007040081A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120831A (ja) * 2008-11-21 2010-06-03 Sumitomo Metal Mining Co Ltd サファイア単結晶育成装置
JP2021042095A (ja) * 2019-09-09 2021-03-18 株式会社Sumco シリコン単結晶の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105547B1 (ko) * 2009-03-04 2012-01-17 주식회사 엘지실트론 단결정 제조용 흑연 히터, 이를 포함하는 단결정 제조 장치및 방법
KR101275382B1 (ko) * 2010-03-02 2013-06-14 주식회사 엘지실트론 단결정 냉각장치 및 단결정 냉각장치를 포함하는 단결정 성장장치
DE102011079284B3 (de) * 2011-07-15 2012-11-29 Siltronic Ag Ringförmiger Widerstandsheizer zum Zuführen von Wärme zu einem wachsenden Einkristall
EP3108042B1 (en) * 2014-02-21 2022-08-10 Momentive Performance Materials Quartz, Inc. Multi-zone variable power density heater apparatus
KR101654856B1 (ko) * 2015-01-22 2016-09-06 주식회사 사파이어테크놀로지 단결정 성장용 히터 및 이를 이용한 단결정 성장장치 및 성장방법.
JP6579046B2 (ja) 2016-06-17 2019-09-25 株式会社Sumco シリコン単結晶の製造方法
JP2022063653A (ja) * 2020-10-12 2022-04-22 不二越機械工業株式会社 酸化ガリウム結晶の製造装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046998A (ja) * 1983-08-26 1985-03-14 Sumitomo Electric Ind Ltd 単結晶引上方法及びそのための装置
JPH10101482A (ja) * 1996-10-01 1998-04-21 Komatsu Electron Metals Co Ltd 単結晶シリコンの製造装置および製造方法
JP2001039792A (ja) * 1999-07-26 2001-02-13 Mitsubishi Materials Silicon Corp 単結晶成長用多機能ヒーターおよび単結晶引上装置
JP2004217503A (ja) * 2002-12-27 2004-08-05 Shin Etsu Handotai Co Ltd 単結晶製造用黒鉛ヒーター及び単結晶製造装置ならびに単結晶製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153191A (ja) 1985-12-27 1987-07-08 Mitsubishi Metal Corp 単結晶引き上げ装置
JPH0716081B2 (ja) 1987-08-05 1995-02-22 三菱電機株式会社 半導体発光装置
JP2681115B2 (ja) 1989-02-14 1997-11-26 住友シチックス株式会社 単結晶製造方法
JP3031470B2 (ja) 1989-05-29 2000-04-10 ヤマハ発動機株式会社 4サイクルエンジン
JP2926994B2 (ja) 1990-12-14 1999-07-28 石川島播磨重工業株式会社 立体自動倉庫のラック組立方法
US5363796A (en) 1991-02-20 1994-11-15 Sumitomo Metal Industries, Ltd. Apparatus and method of growing single crystal
JPH09227286A (ja) 1996-02-24 1997-09-02 Komatsu Electron Metals Co Ltd 単結晶製造装置
JPH09263491A (ja) 1996-03-27 1997-10-07 Shin Etsu Handotai Co Ltd シリコン単結晶の製造装置
JP3000923B2 (ja) * 1996-03-28 2000-01-17 住友金属工業株式会社 単結晶引き上げ方法
JP2001039782A (ja) * 1999-07-29 2001-02-13 Kumagai Gumi Co Ltd 軽量モルタル
US6285011B1 (en) 1999-10-12 2001-09-04 Memc Electronic Materials, Inc. Electrical resistance heater for crystal growing apparatus
JP3595977B2 (ja) 1999-10-15 2004-12-02 株式会社日鉱マテリアルズ 結晶成長装置及び単結晶の製造方法
DE19959416C1 (de) 1999-12-09 2001-03-15 Freiberger Compound Mat Gmbh Heizelement zum Beheizen von Schmelztiegeln und Anordnung von Heizelementen
TWI281695B (en) * 2004-03-31 2007-05-21 Sumco Techxiv Corp Semiconductor single crystal manufacturing equipment and graphite crucible

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046998A (ja) * 1983-08-26 1985-03-14 Sumitomo Electric Ind Ltd 単結晶引上方法及びそのための装置
JPH10101482A (ja) * 1996-10-01 1998-04-21 Komatsu Electron Metals Co Ltd 単結晶シリコンの製造装置および製造方法
JP2001039792A (ja) * 1999-07-26 2001-02-13 Mitsubishi Materials Silicon Corp 単結晶成長用多機能ヒーターおよび単結晶引上装置
JP2004217503A (ja) * 2002-12-27 2004-08-05 Shin Etsu Handotai Co Ltd 単結晶製造用黒鉛ヒーター及び単結晶製造装置ならびに単結晶製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120831A (ja) * 2008-11-21 2010-06-03 Sumitomo Metal Mining Co Ltd サファイア単結晶育成装置
JP2021042095A (ja) * 2019-09-09 2021-03-18 株式会社Sumco シリコン単結晶の製造方法
JP7238709B2 (ja) 2019-09-09 2023-03-14 株式会社Sumco シリコン単結晶の製造方法

Also Published As

Publication number Publication date
US20090133617A1 (en) 2009-05-28
KR20080058442A (ko) 2008-06-25
DE112006002595B4 (de) 2018-03-01
US8241424B2 (en) 2012-08-14
JPWO2007040081A1 (ja) 2009-04-16
TW200730673A (en) 2007-08-16
DE112006002595T5 (de) 2008-10-23
JP5343272B2 (ja) 2013-11-13
KR101391057B1 (ko) 2014-04-30
TWI337208B (ja) 2011-02-11

Similar Documents

Publication Publication Date Title
WO2007040081A1 (ja) 単結晶半導体製造装置および製造方法
JP5707040B2 (ja) 結晶製造
US7390361B2 (en) Semiconductor single crystal manufacturing apparatus and graphite crucible
US7918934B2 (en) Single crystal semiconductor manufacturing apparatus and manufacturing method, and single crystal ingot
US5766347A (en) Apparatus for fabricating a semiconductor single crystal
US10494734B2 (en) Method for producing silicon single crystals
WO2007046287A1 (ja) 半導体単結晶製造装置および製造方法
KR101574749B1 (ko) 단결정 제조용 상부히터, 단결정 제조장치 및 단결정 제조방법
US6749685B2 (en) Silicon carbide sublimation systems and associated methods
JPWO2005075714A1 (ja) 単結晶半導体の製造装置および製造方法
JP3788116B2 (ja) 単結晶成長用多機能ヒーターおよび単結晶引上装置
JP4758338B2 (ja) 単結晶半導体の製造方法
WO2018159109A1 (ja) シリコン単結晶インゴットの製造方法およびシリコン単結晶育成装置
US6136090A (en) Method for producing a silicon single crystal
JP4497913B2 (ja) 単結晶半導体製造用ヒータ装置
KR102038960B1 (ko) 실리콘 단결정 제조 방법
JP2019073412A (ja) シリコン単結晶の製造方法
JP2009286650A (ja) 分割式ヒーターおよびこれを用いた単結晶引上げ装置
JPH10167891A (ja) 単結晶シリコンの製造装置および製造方法
CN115044966A (zh) 一种加热器及其工作方法
JP2020203813A (ja) セラミックス、セラミックスコーティング方法、およびセラミックスコーティング装置
KR20070051567A (ko) 실리콘 웨이퍼 및 실리콘 단결정 잉곳의 제조방법
JPH05315260A (ja) 多結晶シリコン膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007538706

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11992510

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087010256

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112006002595

Country of ref document: DE

Date of ref document: 20081023

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112006002595

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798291

Country of ref document: EP

Kind code of ref document: A1