WO2007026791A1 - Polarization compensation optical system - Google Patents

Polarization compensation optical system Download PDF

Info

Publication number
WO2007026791A1
WO2007026791A1 PCT/JP2006/317153 JP2006317153W WO2007026791A1 WO 2007026791 A1 WO2007026791 A1 WO 2007026791A1 JP 2006317153 W JP2006317153 W JP 2006317153W WO 2007026791 A1 WO2007026791 A1 WO 2007026791A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
optical system
phase
optical element
plate
Prior art date
Application number
PCT/JP2006/317153
Other languages
French (fr)
Japanese (ja)
Inventor
Kumiko Matsui
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2007026791A1 publication Critical patent/WO2007026791A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0092Polarisation microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0429Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using polarisation elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry

Definitions

  • the present invention relates to a polarization compensation optical system that uses polarized light.
  • the polarization direction of the linearly polarized light rotates and becomes elliptically polarized by the action of various coatings applied to the lens refractive surfaces and lenses that make up the microscope optical system.
  • the contrast of the obtained image has the problem that the S / N deteriorates. This problem is particularly noticeable when the number of refractive surfaces of the lens is large, the refractive power of the refractive surface is strong, or the antireflection film applied to the refractive surface is multilayered. This is a problem with high NA objective lenses.
  • polarization-compensating optics that compensates for elliptical polarization of linearly polarized light by combining a lens with zero refractive power and a 1 Z 2 wavelength phase plate that has almost the same polarization characteristics as a microscope optical system.
  • Devices are known (see, for example, Japanese Examined Patent Publication No. 3 7 1 5 7 8 2).
  • the present invention has been made in view of the above problems, and a polarization compensation optical system including a polarization compensation optical element capable of highly accurately compensating for the rotation of the polarization direction and the phase difference of the polarization optical system even when the objective lens is replaced.
  • the purpose is to provide.
  • a first aspect of the present invention includes a polarizer, an illumination optical system that irradiates illumination light to the object through the polarizer, and collects light from the object.
  • a polarization optical system that forms an image through the analyzer and compensates for the rotation of the polarization direction and the phase difference generated by the optical element disposed between the polarizer and the analyzer.
  • a polarization compensation optical system is provided, wherein an compensation optical element is disposed between at least one of the polarizer and the object, or between the object and the analyzer.
  • the second aspect of the present invention includes a polarizer, an illumination optical system that irradiates an object with illumination light that has passed through the polarizer, and the light from the object is condensed.
  • An imaging optical system that passes through the deflection element and forms an image through the analyzer, and rotates in the polarization direction generated by the optical element disposed between the polarizer and the analyzer.
  • a polarization compensation optical element that compensates for the phase difference is disposed between at least one of the polarizer and the deflection element or between the deflection element and the analyzer.
  • the third aspect of the present invention includes an illumination optical system that irradiates an object with polarized light as illumination light, and a condensing optical system that collects light from the object via an analyzer, An optical element from the object of the collecting optical system to the analyzer, and a polarization compensating optical element that compensates for a rotation and a phase difference of a polarization direction generated by the optical element of the illumination optical system, the illumination optical system or the object And a polarization compensation optical system, wherein the polarization compensation optical system is disposed in at least one of the analyzer and the analyzer.
  • a polarization compensation optical system including a polarization compensation optical element capable of compensating for the rotation of the polarization direction and the phase difference of the polarization optical system with high accuracy even when the objective lens is replaced.
  • FIG. 1 is a schematic configuration diagram of a transmission illumination type polarization microscope which is a polarization compensation optical system according to the first embodiment of the present invention.
  • 2A and 2B are a schematic diagram showing rotation of the polarization direction in the optical system and a schematic diagram showing ovalization, respectively.
  • FIG. 3A and 3B schematically show examples of the configuration of the polarization compensating optical element
  • FIG. 3A is a schematic diagram of an example of a split type phase plate
  • FIG. 3B is a schematic diagram of an example of a gradient phase plate. It is.
  • FIGS. 4A-4C are schematic views showing the effects of the first configuration method of the structural birefringent member.
  • FIGS. 5A-5C are schematic views showing the effects of the second configuration method of the structural birefringent member.
  • FIG. 6 is a schematic configuration diagram showing a modification of the first embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram of a polarization compensation optical system (an epi-illumination polarization microscope) according to the second embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram of a modified example of the second embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic configuration diagram of a polarization compensation optical system according to a first embodiment of the present invention.
  • a transmission illumination type polarization microscope is taken as a representative example of a polarization compensation optical system, and a polarization compensation optical system that compensates for the rotation of the polarization direction and the phase difference generated in the optical system is described. To do.
  • illumination light from a light source 1 is collected by a collector lens 2 and then illuminates a specimen 4 placed on a slide glass (not shown) via a condenser lens 3.
  • the light from the illuminated specimen 4 is collected by the objective lens 5,
  • a magnified image 6 is formed.
  • the observer observes the magnified image 6 with the naked eye through an eyepiece (not shown).
  • a polarizer P is disposed in the optical path between the collector lens 2 and the condenser lens 3, and an analyzer A is disposed in the optical path between the objective lens 5 and the magnified image 6.
  • the polarizer P and the analyzer A are generally arranged so that their transmission directions are orthogonal to each other (arrangement of crossed Nicols).
  • the illumination light for illuminating the object is not limited to the polarized light transmitted through the polarizer P, but may be polarized light generated by reflecting the polarizer, or a laser light source that directly generates polarized light from the light source.
  • the field of view is dark.
  • the tissue structure becomes bright and dark due to the difference in the polarization state of each part of the specimen 4 and is visualized.
  • a polarizing microscope in order to detect a slight change in the polarization state due to the sample and detect it with high accuracy, it is necessary to avoid as much as possible the disturbance of the polarization state that occurs in the optical system other than the sample.
  • the characteristics of these coats are generally designed to be optimal when light is incident perpendicular to the coat, and when the light passing through the lens has a large angle, such as a high magnification objective lens 5 causess rotation of the polarization direction as shown in Fig. 2A in regions other than the X-axis and y-axis (when incident light is polarized in the y-axis direction). This is because the reflectance of the P-polarized component and the S-polarized component of the incident linearly polarized light differs depending on the incident angle. As a result, the light exiting the lens is converted into the incident linearly polarized light. Rotate against.
  • the condenser 3 of the illumination optical system in FIG. 1 is used for the purpose of compensating for the rotation of the polarization direction and the phase difference caused by the optical system.
  • a polarization compensation optical element C 1 is inserted near the front focal plane to compensate for the rotation of the polarization direction and the phase difference caused by the optical system between the polarizer P and the condenser lens 3.
  • the polarization compensation optical element C 2 compensates for the rotation and phase difference of the polarization direction caused by the optical system between the objective lens 5 and the analyzer A in the optical path between the objective lens 5 and the analyzer A of the imaging optical system. It is configured by inserting.
  • the polarization compensation optical elements C 1 and C 2 divide the effective diameter of the optical system in the circumferential direction and the radial direction, and divide the respective divided regions (for example, 1 a ⁇ Lh, 2a ⁇ 2h) is a so-called split type phase plate in which phase plates corresponding to the rotation of the polarization direction and the phase difference are arranged.
  • the axis of each phase plate in the split phase plate (fast axis or slow axis) is arranged in different directions depending on the characteristics of the optical system.
  • 3A and 3B illustrate the polarization compensation optical systems C 1 and C 2 in the same drawing. However, the phase difference of the phase plate and the direction of the axis of the phase plate are shown in FIG. It differs depending on the characteristics of the optical system in which 1 and C 2 are inserted.
  • phase difference between the phase plates 1 a to lh and 2 a to 2 h of the phase compensation optical element C 1 that is a split type phase plate is ⁇ 1 a to 3 1 h and ⁇ 2 a to d 2 h
  • the phase difference between the light beams passing through each of the divided regions is the rotation and position of the polarization direction caused by the optical elements from the polarizer P to the condenser lens 3 except for the phase compensation optical element C 1 in FIG. Designed to compensate for all phase differences.
  • the divided regions la to lh and 2a to 2h of the phase compensation optical element C2, which is a split type phase plate are used. If the phase difference of each phase plate is (5 1 a to (? 1 h, (5 2 a to 3 2 h), the phase difference is It is designed to compensate for all rotations and phase differences in the polarization direction caused by the optical elements from the objective lens 5 except the phase compensation optical element C 2 to the analyzer A.
  • the number of divisions and the shape of the polarization compensating optical elements C 1 and C 2 are not limited to those shown in FIG. 3A, and any number of divisions and shapes can be used. It is also possible to provide a region that does not give a phase difference to a part of the divided region, that is, has no effect as a phase plate.
  • the polarization compensation optical elements C 1 and C 2 can be composed of gradient phase plates.
  • the gradient phase plate means that the effective diameter of the optical system is divided like the split type phase plate in FIG. 3A, and the phase difference ⁇ 1 a to ⁇ 1 h and ⁇ 2 a to Instead of adding ⁇ 5 2 h, the phase difference within the effective diameter of the optical system and the axial direction are gradually changed as shown in Fig. 3B so as not to have the boundary of the segmented area like the segmented phase plate. It is a thing.
  • the split phase plate in Fig. 3A the polarization in the split region is compensated on the average by the representative value in that region, whereas in the case of the radial phase plate in Fig. 3B, the arbitrary phase within the effective diameter is set.
  • the light beam that has passed through the optical system of the transmission illumination type polarization microscope shown in FIG. 1 (with no specimen placed) has a polarization direction rotation or phase difference depending on the polarization characteristics of the optical system. Since it is compensated by l, and C 2, a high extinction ratio can be secured, and a magnified image 6 with good contrast can be formed when the specimen 4 is observed.
  • the polarization compensation optical elements C1 and C2 can be formed of a structural birefringent optical member, a resin phase plate, or a photonic crystal.
  • a structural birefringent optical member uses the fact that a grating with a sufficiently smaller pitch than the wavelength acts as a phase plate or a polarizing plate.
  • a grating pitch, etc. Arbitrary phase difference and phase axis can be given.
  • a divided phase plate as shown in FIG. 3A can be realized by changing the lattice direction, pitch, etc. for each of the divided regions 1 a to lh and 2 a to 2 h in FIG. 3A.
  • a gradient phase plate can be realized by changing the grating direction pitch so that the phase axis and the phase difference within the effective diameter of the optical system gradually change.
  • a normal resin phase plate uses a resin birefringence to provide a phase axis and phase difference.
  • Fig. 3A A split type phase plate as shown can be realized.
  • resin it is possible to continuously vary the phase axis and phase difference with a single resin phase plate by controlling the tensile stress in each direction when creating the resin phase plate.
  • the gradient phase plate shown in Fig. 3B can be realized.
  • Photonic crystals are optical functional crystals with a three-dimensional structure. By changing the three-dimensional structural parameters, it is possible to create arbitrary optical characteristics such as phase difference and phase axis. When making a split phase plate as shown in Fig. 3A using this photonic crystal, it is possible to make a phase plate with a wide-band wavelength characteristic because of the high degree of design freedom. Effective for color observation optical system with white light source. Further, as shown in Fig. 3B, a gradient phase plate can be realized by changing the parameters of the three-dimensional structure so that the phase axis and the phase difference within the effective diameter of the optical system gradually change.
  • the polarization compensation optical element C 1 Since the polarization compensation optical elements C 1 and C 2 have the same action and effect on the optical system, the polarization compensation optical element C 1 will be described as a representative.
  • the polarization compensation optical element C 1 will be described in detail with respect to the rotation of the polarization direction and the compensation of the phase difference in the case where the polarization compensation optical element C 1 is composed of a structural birefringence optical member. There are two ways to construct the polarization compensation optical element C 1 with a structural birefringent optical member.
  • the first configuration method consists of one-side structural birefringence with compensation for rotation in the polarization direction and compensation for phase difference. This is achieved with an optical member.
  • the incident linearly polarized light polarized in the y-axis direction becomes elliptically polarized due to the rotation of the polarization direction generated in the optical system and the phase difference ⁇ 5, and the state shown by the ellipse in Figure 4A Become.
  • a rectangle ABCD circumscribing the ellipse is drawn. This rectangle ABCD is selected so that the diagonal corner AC exists on the y-axis.
  • This first configuration method can be achieved by configuring a single structural birefringent optical member to compensate for a phase difference obtained by adding two types of phase differences ⁇ and 7 ⁇ ⁇ .
  • the second construction method is a method comprising at least two (front and back) structural birefringent optical members.
  • the incident linearly polarized light polarized in the y-axis direction is the polarization direction rotation and phase difference generated in the optical system (elliptical polarization by 5 and the state shown by the ellipse in Fig. 5A.
  • the angle formed by the axis of the original linearly polarized light (y axis) and the long axis of the elliptically polarized light (fast axis: y ′ axis) is 0.
  • the first structural birefringent optical member has a phase difference of ⁇ / If it is configured to give 2, elliptically polarized light that has passed through the first structural birefringent optical member is converted to linearly polarized light ⁇ having an angle with respect to the y ′ axis.
  • the second Transmitted through the birefringent member Light with linearly polarized light ⁇ is converted into light with linearly polarized light P parallel to the y-axis, and can be returned to the direction of incident linearly polarized light.
  • the first structural birefringent optical member has a characteristic that gives a phase difference of ⁇ (2 (that is, the same characteristic as a quarter-wave phase plate).
  • that is, the same characteristic as a quarter-wave phase plate.
  • the second configuration method is characterized by being easy to manufacture because it can compensate for the rotation of the polarization direction and the phase difference by combining the 1/4 wavelength plate and 1/2 wavelength plate. Have.
  • the polarization compensating optical elements C 1 and C 2 can be arranged at arbitrary positions in the respective optical systems.
  • the pupil position of the illumination optical system that is, It is desirable to place it near the front focal plane of condenser lens 3.
  • the imaging optical system it can be placed near the rear focal plane of the objective lens 5.
  • the polarization compensation optical element C2 is a split type phase plate, the structure near the boundary of the split region gives the imaging performance. It is necessary to consider aberration deterioration.
  • the polarization compensation optical element of the present embodiment has a parallel plate-like thin plate shape, the polarization compensation optical element can be easily inserted into and removed from the optical path. For example, the polarization compensation optical element can be easily replaced even when the lens is changed during magnification switching. be able to. In addition, since it is not necessary to incorporate the lens system, a normal lens can be used as it is.
  • the required phase difference can be configured by superimposing a plurality of structural birefringent optical members and the like. That is, when the phase difference in region 2 a in Fig. 3 ⁇ ⁇ ⁇ is ⁇ 2 a,
  • FIG. 6 shows a modification of the first embodiment of the present invention.
  • This modification is an example in which one polarization compensation optical element is used in the transmission illumination type polarization microscope of FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the polarization compensation optical element C is arranged in the illumination optical system in the transmission illumination type polarization microscope.
  • the polarization compensating optical element C is disposed near the front focal plane of the condenser lens 3.
  • the polarization compensating optical element C has a characteristic for compensating for the rotation of the polarization direction and the phase difference of the entire optical system in a state where the sample 4 is excluded. With this configuration, a single polarization compensation optical element C can be used to compensate for the rotation and phase difference in the polarization direction of the entire optical system.
  • the polarization compensation optical element C can use either the first method or the second method of forming the structural birefringent optical member. Resin phase plates and photonic crystals can also be used in the same manner.
  • the illumination light for illuminating the object is not limited to the polarized light transmitted through the polarizer P, but may be polarized light generated by reflecting the polarizer, or a laser light source that directly generates polarized light from the light source.
  • FIG. 7 is a schematic configuration diagram of a polarization compensating optical system according to the second embodiment of the present invention.
  • an epi-illumination polarization microscope will be taken up, and a polarization compensation optical system that compensates for the rotation of the polarization direction and the phase difference generated in the optical system will be described.
  • the illumination light from the light source 1 1 is collected by the collector lens 1 2 and then passes through the polarizer P and the polarization compensation optical element C 1 and enters the beam splitter BS. 5 illuminates the specimen 14 placed on the glass slide (not shown) through the objective lens 15.
  • the light from the illuminated specimen 1 4 It is condensed by the object lens 15 to form an enlarged image 16.
  • the observer observes the magnified image 16 with the naked eye through an eyepiece (not shown).
  • a polarization compensation optical element C 2 and an analyzer A are arranged in the optical path between the objective lens 15 and the magnified image 16, respectively.
  • the polarizer P and the analyzer A are generally arranged so that their transmission directions are orthogonal to each other (that is, the crossed Nicols arrangement).
  • the illumination light for illuminating the object is not limited to the polarized light transmitted through the polarizer P, but may be polarized light generated by reflecting the polarizer, or a laser light source that directly generates polarized light from the light
  • polarization compensation optical elements C 1 and C 2 either the first configuration method or the second configuration method of the structural birefringence optical member similar to the first embodiment can be used.
  • Resin phase plates and photonic crystals can also be used in the same way. In this way, an epi-illumination polarization microscope is constructed. The operation and effect are the same as those in the first embodiment, and a description thereof will be omitted.
  • FIG. 8 shows a modification of the second embodiment of the present invention.
  • This modification is an example in which one polarization compensation optical element is used in the incident-light illumination type polarization microscope of FIG.
  • the same components as those of the second embodiment are denoted by the same reference numerals and the description thereof is omitted. '
  • the polarization compensation optical element C is arranged in the illumination optical system in the epi-illumination polarization microscope.
  • the polarization compensating optical element C is disposed between the polarizer P and the beam splitter BS.
  • the polarization compensating optical element C has a characteristic for compensating for the rotation and phase difference of the polarization direction of the entire optical system of the epi-illumination polarization microscope in the state excluding the specimen 14. With this configuration, it is possible to compensate for the rotation and the phase difference of the polarization direction of the optical system with a single polarization compensation optical element C.
  • the polarization compensating optical element C can use either the first configuration method or the second configuration method of the structural birefringent optical member. Resin phase plates and photonic crystals can also be used in the same manner.
  • the polarization compensation optical element C can be placed anywhere on the polarizer P and the analyzer A. However, as shown in Fig. 8, the illumination optics PI
  • the illumination light for illuminating the object is not limited to the polarized light transmitted through the polarizer P, but may be polarized light generated by reflecting the polarizer, or a laser light source that directly generates polarized light from the light source.
  • the present invention is not limited to this, and any optical system using polarized light, such as an ellipsometer or differential interference microscope, It is possible to compensate for the polarization characteristics of the optical system itself.
  • the above-described embodiment is merely an example, and is not limited to the above-described configuration and shape, and can be appropriately modified and changed within the scope of the present invention. '

Abstract

A polarization compensation optical system includes a polarization compensation optical element capable of accurately compensating a rotation and phase difference of the polarization direction of the polarization optical system even when an Objective lens is exchanged. The polarization compensation optical system includes: an illumination optical system having a polarizer (P) and applying an illumination light to an object via the polarizer; and an image formation optical system for forming an image by converging light from the object and passing it through an analyzer (A). Polarization compensation optical elements (C1, C2) for compensating the ration and phase difference of the polarization direction caused by the optical element arranged between the polarizer (P) and the analyzer (A) are arranged between the polarizer (P) and the object (4) or between the object (4) and the analyzer (A).

Description

明 細 書 偏光補償光学系 技術分野  Technical description Polarization compensation optics Technical field
本発明は、 偏光された光を用いる偏光補償光学系に関する。 背景技術  The present invention relates to a polarization compensation optical system that uses polarized light. Background art
直線偏光された光を用いる顕微鏡光学系において、 顕微鏡光学系を構成するレ ンズの屈折面やレンズに施されている各種のコートの作用により、 直線偏光の偏 光方向が回転すると共に楕円偏光化し、 得られる像のコントラストゃ S /Nが悪 化するという問題がある。 この問題は、 レンズの屈折面数が多い、 屈折面の屈折 力が強い、 或いは屈折面に施される反射防止膜が多層であるなどの場合に顕著で あるため、 特に収差を高精度に補正した高 NAの対物レンズで問題となる。 このような問題を解決するために、 顕微鏡光学系とほぼ同等の偏光特性を持つ 屈折力がゼロのレンズと 1 Z 2波長位相板を組み合わせることにより直線偏光 の楕円偏光化を補償する偏光補償光学素子が知られている (例えば、 特公昭 3 7 一 5 7 8 2号公報参照)。  In a microscope optical system that uses linearly polarized light, the polarization direction of the linearly polarized light rotates and becomes elliptically polarized by the action of various coatings applied to the lens refractive surfaces and lenses that make up the microscope optical system. The contrast of the obtained image has the problem that the S / N deteriorates. This problem is particularly noticeable when the number of refractive surfaces of the lens is large, the refractive power of the refractive surface is strong, or the antireflection film applied to the refractive surface is multilayered. This is a problem with high NA objective lenses. In order to solve these problems, polarization-compensating optics that compensates for elliptical polarization of linearly polarized light by combining a lens with zero refractive power and a 1 Z 2 wavelength phase plate that has almost the same polarization characteristics as a microscope optical system. Devices are known (see, for example, Japanese Examined Patent Publication No. 3 7 1 5 7 8 2).
しかしながら、 特公昭 3 7 - 5 7 8 2号公報の開示例では、 1つ乃至複数のか さばる素子を顕微鏡の光路中の所定の場所に精度良く配置することが必要であ り、 顕微鏡の対物レンズの変更等による偏光補償光学素子の交換が容易でない。 また、 偏光補償光学素子が固定されたものとならざるを得ず、 この結果、 特定の 対物レンズの使用時には顕微鏡光学系に起因する偏光方向の回転と楕円偏光化 を補償できるものの、 対物レンズを交換した場合には補償が不十分で得られる像 のコントラストや S /Nが充分ではないという問題がある。 発明の開示 However, in the disclosed example of Japanese Examined Patent Publication No. 3 7-5 7 8 2, it is necessary to accurately arrange one or more bulky elements at predetermined positions in the optical path of the microscope. It is not easy to exchange the polarization compensation optical element by changing the lens. In addition, the polarization compensation optical element must be fixed, and as a result, when a specific objective lens is used, the polarization direction rotation and elliptical polarization caused by the microscope optical system can be compensated. In the case of replacement, there is a problem that the contrast and S / N of the obtained image are not sufficient due to insufficient compensation. Disclosure of the invention
本発明は、 上記課題に鑑みて行われたものであり、 対物レンズを交換した場合 でも偏光光学系の偏光方向の回転や位相差を高精度に補償できる偏光補償光学 素子を含む偏光補償光学系を提供することを目的とする。  The present invention has been made in view of the above problems, and a polarization compensation optical system including a polarization compensation optical element capable of highly accurately compensating for the rotation of the polarization direction and the phase difference of the polarization optical system even when the objective lens is replaced. The purpose is to provide.
上記課題を解決するために、 本発明の第 1の態様は、 偏光子を含み、 前記偏光 子を透過して物体に照明光を照射する照明光学系と、 前記物体からの光を集光し、 検光子を透過して結像する結像光学系とからなり、 前記偏光子と前記検光子の間 に配設されている光学素子により発生する偏光方向の回転及び位相差を補償す る偏光補償光学素子を、 前記偏光子と前記物体の間又は前記物体と前記検光子の 間の少なくとも一方に配設したことを特徴とする偏光補償光学系を提供する。 また、 本発明第 2の態様は、 偏光子を含み、 前記偏光子を透過した光を偏向素 子を介して物体に照明光を照射する照明光学系と、 前記物体からの光を集光し前 記偏向素子を透過し、 検光子を透過して結像する結像光学系とからなり、 前記偏 光子と前記検光子の間に配設されている光学素子により発生する偏光方向の回 転及び位相差を補償する偏光補償光学素子を、 前記偏光子と前記偏向素子の間又 は前記偏向素子と前記検光子の間の少なくとも一方に配設したことを特徴とす る偏光補償光学系を提供する。  In order to solve the above-described problem, a first aspect of the present invention includes a polarizer, an illumination optical system that irradiates illumination light to the object through the polarizer, and collects light from the object. A polarization optical system that forms an image through the analyzer and compensates for the rotation of the polarization direction and the phase difference generated by the optical element disposed between the polarizer and the analyzer. A polarization compensation optical system is provided, wherein an compensation optical element is disposed between at least one of the polarizer and the object, or between the object and the analyzer. In addition, the second aspect of the present invention includes a polarizer, an illumination optical system that irradiates an object with illumination light that has passed through the polarizer, and the light from the object is condensed. An imaging optical system that passes through the deflection element and forms an image through the analyzer, and rotates in the polarization direction generated by the optical element disposed between the polarizer and the analyzer. And a polarization compensation optical element that compensates for the phase difference is disposed between at least one of the polarizer and the deflection element or between the deflection element and the analyzer. provide.
また、 本発明の第 3の態様は、 物体に偏光を照明光として照射する照明光学系 と、 前記物体からの光を、 検光子を介して集光する集光光学系とを有し、 前記集 光光学系の前記物体から前記検光子までの光学素子、 及び前記照明光学系の光学 素子により発生する偏光方向の回転及び位相差を補償する偏光補償光学素子を、 前記照明光学系又は前記物体と前記検光子の間の少なくとも一方に配設したこ とを特徴とする偏光補償光学系を提供する。  The third aspect of the present invention includes an illumination optical system that irradiates an object with polarized light as illumination light, and a condensing optical system that collects light from the object via an analyzer, An optical element from the object of the collecting optical system to the analyzer, and a polarization compensating optical element that compensates for a rotation and a phase difference of a polarization direction generated by the optical element of the illumination optical system, the illumination optical system or the object And a polarization compensation optical system, wherein the polarization compensation optical system is disposed in at least one of the analyzer and the analyzer.
本発明によれば、 対物レンズを交換した場合でも偏光光学系の偏光方向の回転 や位相差を高精度に補償できる偏光補償光学素子を含む偏光補償光学系を提供 することができる。 図面の簡単な説明 According to the present invention, it is possible to provide a polarization compensation optical system including a polarization compensation optical element capable of compensating for the rotation of the polarization direction and the phase difference of the polarization optical system with high accuracy even when the objective lens is replaced. Brief Description of Drawings
図 1は、 本発明の第 1実施の形態に係る偏光補償光学系である透過照明型偏光 顕微鏡の概略構成図である。  FIG. 1 is a schematic configuration diagram of a transmission illumination type polarization microscope which is a polarization compensation optical system according to the first embodiment of the present invention.
図 2 A, 図 2 Bはそれぞれ、 光学系における偏光方向の回転を示す模式図と楕 円化を示す模式図である。  2A and 2B are a schematic diagram showing rotation of the polarization direction in the optical system and a schematic diagram showing ovalization, respectively.
図 3 A, 図 3 Bは、 偏光補償光学素子の構成例を模式的に示し、 図 3 Aは分 割型位相板の一例の模式図、 図 3 Bはグラジェント位相板の一例の模式図であ る。  3A and 3B schematically show examples of the configuration of the polarization compensating optical element, FIG. 3A is a schematic diagram of an example of a split type phase plate, and FIG. 3B is a schematic diagram of an example of a gradient phase plate. It is.
図 4 A— 4 Cは、 構造複屈折部材の第 1の構成方法の効果を示す模式図である。 図 5 A— 5 Cは、 構造複屈折部材の第 2の構成方法の効果を示す模式図である。 図 6は、 本発明の第 1実施の形態の変形例を示す概略構成図である。  FIGS. 4A-4C are schematic views showing the effects of the first configuration method of the structural birefringent member. FIGS. 5A-5C are schematic views showing the effects of the second configuration method of the structural birefringent member. FIG. 6 is a schematic configuration diagram showing a modification of the first embodiment of the present invention.
図 7は、 本発明の第 2実施の形態に係る偏光補償光学系 (落射照明型偏光顕微 鏡) の概略構成図である  FIG. 7 is a schematic configuration diagram of a polarization compensation optical system (an epi-illumination polarization microscope) according to the second embodiment of the present invention.
図 8は、 本発明の第 2実施の形態の変形例の概略構成図である。 発明の実施の形態  FIG. 8 is a schematic configuration diagram of a modified example of the second embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態に関し図面を参照しつつ説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第 1実施の形態)  (First embodiment)
図 1は本発明の第 1実施の形態に係る偏光補償光学系の概略構成図である。 本 第 1実施の形態では、 偏光補償光学系の代表例として透過照明型偏光顕微鏡を取 り上げ、 その光学系にて発生する偏光方向の回転と位相差を補償した偏光補償光 学系について説明する。  FIG. 1 is a schematic configuration diagram of a polarization compensation optical system according to a first embodiment of the present invention. In this first embodiment, a transmission illumination type polarization microscope is taken as a representative example of a polarization compensation optical system, and a polarization compensation optical system that compensates for the rotation of the polarization direction and the phase difference generated in the optical system is described. To do.
図 1において、 光源 1からの照明光は、 コレクタ一レンズ 2によって集光され た後、 コンデンサーレンズ 3を介して不図示のスライドガラス上に載置された標 本 4を照明する。照明された標本 4からの光は、対物レンズ 5によって集光され、 拡大像 6が形成される。 観察者はこの拡大像 6を不図示の接眼レンズを介して肉 眼で観察する。 コレクタ一レンズ 2とコンデンサーレンズ 3の間の光路中には、 偏光子 Pが、 また対物レンズ 5と拡大像 6の間の光路中には検光子 Aがそれぞれ 配置されている。 偏光子 Pと検光子 Aは、 一般にその透過方位が直交するように 配置される (クロスニコルの配置) 。 なお、 物体を照明する照明光は、 偏光子 P を透過した偏光に限定されず、 偏光子を反射することによって生じる偏光、 又は 光源から直接偏光を発生させるレーザ光源などでも良い。 In FIG. 1, illumination light from a light source 1 is collected by a collector lens 2 and then illuminates a specimen 4 placed on a slide glass (not shown) via a condenser lens 3. The light from the illuminated specimen 4 is collected by the objective lens 5, A magnified image 6 is formed. The observer observes the magnified image 6 with the naked eye through an eyepiece (not shown). A polarizer P is disposed in the optical path between the collector lens 2 and the condenser lens 3, and an analyzer A is disposed in the optical path between the objective lens 5 and the magnified image 6. The polarizer P and the analyzer A are generally arranged so that their transmission directions are orthogonal to each other (arrangement of crossed Nicols). The illumination light for illuminating the object is not limited to the polarized light transmitted through the polarizer P, but may be polarized light generated by reflecting the polarizer, or a laser light source that directly generates polarized light from the light source.
このような構成において、 スライドガラス上に標本 4が置かれていない場合、 視野は暗黒となる。 この状態で、 例えば鉱物等の薄い標本 4を置くと、 その組織 構造が標本 4の各部の偏光状態の違いによって明暗が生じ可視化される。 このよ うな偏光顕微鏡においては、 試料による僅かな偏光状態の変化を可視 ί匕して高精 度に検出するために試料以外の光学系で発生する偏光状態の乱れを極力避けな ければならない。  In such a configuration, if the specimen 4 is not placed on the slide glass, the field of view is dark. In this state, for example, when a thin specimen 4 such as a mineral is placed, the tissue structure becomes bright and dark due to the difference in the polarization state of each part of the specimen 4 and is visualized. In such a polarizing microscope, in order to detect a slight change in the polarization state due to the sample and detect it with high accuracy, it is necessary to avoid as much as possible the disturbance of the polarization state that occurs in the optical system other than the sample.
ところが、 偏光子 Ρと検光子 Αの間にはコンデンサーレンズ 3や対物レンズ 5 等の光学系が置かれていることが多く、 たとえ偏光子 Pと検光子 Aがクロスニコ ルの配置であったとしても、 光学系による偏光状態の乱れによって消光比が低下 し顕微鏡の検出能力を低くしてしまう。 これは高倍の対物レンズ 5ほど顕著であ る。 その主な原因は対物レンズ 5内に配置されているレンズ屈折面が多いことや レンズ面による屈折角度が大きいこと、 またレンズ表面に施されている反射防止 コート等の偏光特性にある。  However, there are many optical systems such as condenser lens 3 and objective lens 5 between polarizer Ρ and analyzer 、, and it is assumed that polarizer P and analyzer A are arranged in a crossed nicols. However, the extinction ratio is lowered by the disturbance of the polarization state by the optical system, and the detection capability of the microscope is lowered. This is more noticeable for high-power objective lenses 5. The main causes are the large number of lens refracting surfaces arranged in the objective lens 5, the large refraction angle by the lens surface, and the polarization characteristics such as the antireflection coating applied to the lens surface.
これらのコートの特性は、 一般に光がコートに対して垂直入射する場合に最適 となるように設計されており、 高倍の対物レンズ 5のようにレンズを通過する光 が大きな角度を持つ場合には、 X軸、 及び y軸以外の領域において図 2 Aに示す ような偏光方向の回転を引き起こす (入射光が y軸方向に偏光している場合) 。 これは、 入射直線偏光のうち P偏光成分と S偏光成分が入射角度によって反射率 が異なることによるものであり、 その結果レンズを射出する光は入射直線偏光に 対して回転する。 さらに、 レンズ表面に多層反射防止膜が多用されている場合に は、 P偏光成分と S偏光成分との間に位相差が付き、 その影響で直線偏光が回転 するだけでなく、 図 2 Bに示すような楕円偏光となってしまう。 この図 2 A、 図 2 Bに示すような、 偏光方向の回転や位相差の発生による楕円偏光化は、 偏光顕 微鏡の消光比を低下させ、 像のコントラストや S ZNを低下させる。 The characteristics of these coats are generally designed to be optimal when light is incident perpendicular to the coat, and when the light passing through the lens has a large angle, such as a high magnification objective lens 5 Causes rotation of the polarization direction as shown in Fig. 2A in regions other than the X-axis and y-axis (when incident light is polarized in the y-axis direction). This is because the reflectance of the P-polarized component and the S-polarized component of the incident linearly polarized light differs depending on the incident angle. As a result, the light exiting the lens is converted into the incident linearly polarized light. Rotate against. In addition, when a multilayer antireflection film is frequently used on the lens surface, there is a phase difference between the P-polarized component and the S-polarized component, which not only rotates the linearly polarized light, but also in Fig. 2B. It becomes elliptically polarized light as shown. As shown in Fig. 2A and Fig. 2B, elliptical polarization by rotating the polarization direction and generating a phase difference lowers the extinction ratio of the polarization microscope and lowers the contrast and SZN of the image.
そこで本第 1実施の形態に係る偏光補償光学系(透過照明型偏光顕微鏡)では、 光学系に起因する偏光方向の回転や位相差を補償する目的で、 図 1の照明光学系 のコンデンサ 3の前側焦点面近傍に偏光子 Pからコンデンサーレンズ 3間の光 学系に起因する偏光方向の回転や位相差を補償する偏光補償光学素子 C 1を揷 入する。 また結像光学系の対物レンズ 5と検光子 Aの間の光路中に対物レンズ 5 から検光子 A間の光学系に起因する偏光方向の回転や位相差を補償する偏光補 償光学素子 C 2を挿入して構成されている。  Therefore, in the polarization compensation optical system (transmission illumination type polarization microscope) according to the first embodiment, the condenser 3 of the illumination optical system in FIG. 1 is used for the purpose of compensating for the rotation of the polarization direction and the phase difference caused by the optical system. A polarization compensation optical element C 1 is inserted near the front focal plane to compensate for the rotation of the polarization direction and the phase difference caused by the optical system between the polarizer P and the condenser lens 3. In addition, the polarization compensation optical element C 2 compensates for the rotation and phase difference of the polarization direction caused by the optical system between the objective lens 5 and the analyzer A in the optical path between the objective lens 5 and the analyzer A of the imaging optical system. It is configured by inserting.
. 偏光補償光学素子 C 1及び C 2は、 図 3 Aに示されるように、 光学系の有効径 内を円周方向及び半径方向に分割し、 それぞれの分割領域 (例えば、 図中の 1 a 〜 l h、 2 a〜 2 h ) の偏光方向の回転や位相差に対応した位相板を配置した、 所謂分割型位相板である。 また分割型位相板中のそれぞれの位相板の軸 (進相軸 又は遅相軸) は、 光学系の特性に応じてそれぞれ異なった方向に向けて配置され ている。 なお、 図 3 A、 図 3 Bは各々、 偏光補償光学系 C l、 C 2を同じ図面で 説明しているが、 位相板の位相差及び位相板の軸の方向は、 偏光補償光学素子 C 1, C 2が挿入される光学系の特性によってそれぞれ異なっている。  As shown in FIG. 3A, the polarization compensation optical elements C 1 and C 2 divide the effective diameter of the optical system in the circumferential direction and the radial direction, and divide the respective divided regions (for example, 1 a ~ Lh, 2a ~ 2h) is a so-called split type phase plate in which phase plates corresponding to the rotation of the polarization direction and the phase difference are arranged. The axis of each phase plate in the split phase plate (fast axis or slow axis) is arranged in different directions depending on the characteristics of the optical system. 3A and 3B illustrate the polarization compensation optical systems C 1 and C 2 in the same drawing. However, the phase difference of the phase plate and the direction of the axis of the phase plate are shown in FIG. It differs depending on the characteristics of the optical system in which 1 and C 2 are inserted.
分割型位相板である位相補償光学素子 C 1の分割領域 1 a〜l h、 2 a〜2 h それぞれの位相板の位相差を δ 1 a〜3 1 h、 δ 2 a〜 d 2 hとすると、 それら の位相差は分割領域それぞれを通過する光線に対して、 図 1において位相補償光 学素子 C 1を除く偏光子 Pからコンデンサーレンズ 3までの光学素子に起因す る偏光方向の回転や位相差を全て補償するように設計させている。 また、 同様に 分割型位相板である位相補償光学素子 C 2の分割領域 l a〜 l h、 2 a〜2 hそ れぞれの位相板の位相差を (5 1 a〜(? 1 h、 (5 2 a〜3 2 hとすると、 それらの 位相差は分割領域それぞれを通過する光線に対して、 図 1において位相補償光学 素子 C 2を除く対物レンズ 5から検光子 Aまでの光学素子に起因する偏光方向 の回転や位相差を全て補償するように設計させている。 Assuming that the phase difference between the phase plates 1 a to lh and 2 a to 2 h of the phase compensation optical element C 1 that is a split type phase plate is δ 1 a to 3 1 h and δ 2 a to d 2 h The phase difference between the light beams passing through each of the divided regions is the rotation and position of the polarization direction caused by the optical elements from the polarizer P to the condenser lens 3 except for the phase compensation optical element C 1 in FIG. Designed to compensate for all phase differences. Similarly, the divided regions la to lh and 2a to 2h of the phase compensation optical element C2, which is a split type phase plate, are used. If the phase difference of each phase plate is (5 1 a to (? 1 h, (5 2 a to 3 2 h), the phase difference is It is designed to compensate for all rotations and phase differences in the polarization direction caused by the optical elements from the objective lens 5 except the phase compensation optical element C 2 to the analyzer A.
なお、 偏光補償光学素子 C 1および C 2の分割数や分割形状は図 3 Aに限られ るものではなく、 任意の分割数および分割形状とすることができる。 また分割領 域の一部に位相差を付与しない、 すなわち位相板としての効果をもたない領域を 設けることも可能である。  Note that the number of divisions and the shape of the polarization compensating optical elements C 1 and C 2 are not limited to those shown in FIG. 3A, and any number of divisions and shapes can be used. It is also possible to provide a region that does not give a phase difference to a part of the divided region, that is, has no effect as a phase plate.
また、 偏光補償光学素子 C 1および C 2は、 グラジェント位相板により構成す ることも可能である。 ここでグラジェント位相板とは、 図 3 Aの分割型位相板の ように光学系の有効径内を分割しそれぞれの分割領域に対して位相差 δ 1 a〜 δ 1 hおよび δ 2 a〜<5 2 hを付与する代わりに、 図 3 Bに示すように光学系の 有効径内の位相差および軸方向を徐々に変化させて分割型位相板のような分割 領域の境界を持たないようにしたものである。 図 3 Aの分割型位相板では、 分割 領域内の偏光をその領域の代表値で平均的に補償するのに対して、 図 3 Bのダラ ジェント位相板では、 有効径内の任意の座標に対して微妙に異なる偏光方向の回 転や位相差を全ての座標点において最適な補償を行うことができる。  In addition, the polarization compensation optical elements C 1 and C 2 can be composed of gradient phase plates. Here, the gradient phase plate means that the effective diameter of the optical system is divided like the split type phase plate in FIG. 3A, and the phase difference δ 1 a to δ 1 h and δ 2 a to Instead of adding <5 2 h, the phase difference within the effective diameter of the optical system and the axial direction are gradually changed as shown in Fig. 3B so as not to have the boundary of the segmented area like the segmented phase plate. It is a thing. In the split phase plate in Fig. 3A, the polarization in the split region is compensated on the average by the representative value in that region, whereas in the case of the radial phase plate in Fig. 3B, the arbitrary phase within the effective diameter is set. On the other hand, it is possible to optimally compensate for rotations and phase differences in slightly different polarization directions at all coordinate points.
この結果、 図 1の透過照明型偏光顕微鏡の光学系を通過した光束は (標本を載 置していない状態) 、 光学系の偏光特性による偏光方向の回転や位相差が偏光補 償光学素子 C l, 及び C 2によって補償されるため、 高い消光比を確保すること ができ、 標本 4を観察した際にコントラストの良い拡大像 6を形成することがで きる。  As a result, the light beam that has passed through the optical system of the transmission illumination type polarization microscope shown in FIG. 1 (with no specimen placed) has a polarization direction rotation or phase difference depending on the polarization characteristics of the optical system. Since it is compensated by l, and C 2, a high extinction ratio can be secured, and a magnified image 6 with good contrast can be formed when the specimen 4 is observed.
偏光補償光学素子 C l、 C 2は、 構造複屈折光学部材、 樹脂製位相板、 又はフ ォトニック結晶などで形成することができる。  The polarization compensation optical elements C1 and C2 can be formed of a structural birefringent optical member, a resin phase plate, or a photonic crystal.
構造複屈折光学部材とは、 波長より十分ピッチの小さい格子が位相板や偏光板 として作用することを利用するもので、 格子のピッチなどを変えることによって 任意の位相差と位相軸を付与することができるものである。 図 3 Aの分割領域 1 a〜 l h、 2 a〜2 hごとに、 格子の方向やピッチなどを変えることにより、 図 3 Aに示すような分割型位相板を実現することができる。 また、 図 3 Bに示すよ うに光学系の有効径内の位相軸と位相差が徐々に変わるように格子の方向ゃピ ツチを変えることによってグラジェン卜位相板を実現することができる。 A structural birefringent optical member uses the fact that a grating with a sufficiently smaller pitch than the wavelength acts as a phase plate or a polarizing plate. By changing the grating pitch, etc. Arbitrary phase difference and phase axis can be given. A divided phase plate as shown in FIG. 3A can be realized by changing the lattice direction, pitch, etc. for each of the divided regions 1 a to lh and 2 a to 2 h in FIG. 3A. In addition, as shown in FIG. 3B, a gradient phase plate can be realized by changing the grating direction pitch so that the phase axis and the phase difference within the effective diameter of the optical system gradually change.
また、 通常の樹脂製位相板は、 樹脂の複屈折を利用して位相軸や位相差を付与 するもので、 異なる位相軸と位相差の樹脂製位相板を接合することにより、 図 3 Aに示すような分割型位相板を実現することができる。 また、 樹脂では、 樹脂製 位相板作成時に引っ張り応力を各方向に応じて制御することによって、 1枚の樹 脂製位相板で位相軸と位相差を連続的に可変することが可能であり、 図 3 Bのグ ラジェント位相板を実現することができる。  In addition, a normal resin phase plate uses a resin birefringence to provide a phase axis and phase difference. By joining resin phase plates with different phase axes and phase differences, Fig. 3A A split type phase plate as shown can be realized. In addition, with resin, it is possible to continuously vary the phase axis and phase difference with a single resin phase plate by controlling the tensile stress in each direction when creating the resin phase plate. The gradient phase plate shown in Fig. 3B can be realized.
また、 フォトニック結晶は、 三次元構造を持つ光機能性結晶であり、 三次元構 造パラメータを変えることにより、 位相差や位相軸などの任意の光学特性を作る ことが可能である。 このフォトニック結晶を用いて図 3 Aに示すような分割型位 相板を作る場合には、 設計自由度が高いため、 広帯域の波長特性を持つ位相板を 作ることが可能であり、 例えば、 白色光源でのカラー観察光学系などに効果的で ある。 また、 図 3 Bに示すように光学系の有効径内の位相軸と位相差が徐々に変 わるように三次元構造のパラメ一夕を変えることによりグラジェン卜位相板を 実現することができる。  Photonic crystals are optical functional crystals with a three-dimensional structure. By changing the three-dimensional structural parameters, it is possible to create arbitrary optical characteristics such as phase difference and phase axis. When making a split phase plate as shown in Fig. 3A using this photonic crystal, it is possible to make a phase plate with a wide-band wavelength characteristic because of the high degree of design freedom. Effective for color observation optical system with white light source. Further, as shown in Fig. 3B, a gradient phase plate can be realized by changing the parameters of the three-dimensional structure so that the phase axis and the phase difference within the effective diameter of the optical system gradually change.
偏光補償光学素子 C 1と C 2は、 光学系に対して同様の作用、 効果を有するの で、 以降、 偏光補償光学素子 C 1を代表として説明する。  Since the polarization compensation optical elements C 1 and C 2 have the same action and effect on the optical system, the polarization compensation optical element C 1 will be described as a representative.
偏光補償光学素子 C 1を、 構造複屈折光学部材で構成した場合の、 偏光方向の 回転及び位相差の補償に付いて詳説する。 偏光補償光学素子 C 1を構造複屈折光 学部材で構成する場合二つの構成方法がある。  The polarization compensation optical element C 1 will be described in detail with respect to the rotation of the polarization direction and the compensation of the phase difference in the case where the polarization compensation optical element C 1 is composed of a structural birefringence optical member. There are two ways to construct the polarization compensation optical element C 1 with a structural birefringent optical member.
「第 1の構成方法」  "First Configuration Method"
第 1の構成方法は、 偏光方向の回転の補償と位相差の補償を一面の構造複屈折 光学部材で達成するものである。 図 4 A— 4 Cにおいて、 y軸方向に偏光された 入射直線偏光は、 光学系で発生した偏光方向の回転と位相差 <5により楕円偏光化 し、 図 4 Aの楕円で示される状態となる。 この時、 楕円に外接しする四角形 A B C Dを描く。 この四角形 A B C Dは、 対角線上の角 A Cが y軸上に存在するよう なものを選択する。 そして、 A x ' /A y ' = t a n Sとなるように構造複屈折 光学部材の進相軸 (図中の y ' 軸) の方位 0を選ぶ。 The first configuration method consists of one-side structural birefringence with compensation for rotation in the polarization direction and compensation for phase difference. This is achieved with an optical member. In Figure 4A-4C, the incident linearly polarized light polarized in the y-axis direction becomes elliptically polarized due to the rotation of the polarization direction generated in the optical system and the phase difference <5, and the state shown by the ellipse in Figure 4A Become. At this time, a rectangle ABCD circumscribing the ellipse is drawn. This rectangle ABCD is selected so that the diagonal corner AC exists on the y-axis. Then, the direction 0 of the fast axis (y ′ axis in the figure) of the structural birefringent optical member is selected so that A x ′ / A y ′ = tan S.
図 4 Bに示すように、 位相差 δを補償するように形成さ た構造複屈折光学部 材を光が通過すると、 楕円化していた光は偏光方向が矢印の方向の直線偏光 Mに 変換される。 さらに図 4 Cに示すように構造複屈折光学部材に 1 Z 2波長位相板 の特性 (位相差 πを与える) を付与することにより、 直線偏光 Μは πの位相差が 与えられ直線偏光 Νに変換される。 この結果、 直線偏光 Νは入射された入射直線 偏光と同じ y軸方向に偏光されたものとなる。 このように構造複屈折光学部材を 位相差 δ及び πを付与するように形成することで、 光学系で楕円偏光化した光 (図 4 Α) を、 元の入射直線偏光 (図 4 C ) に戻すことが可能になる。  As shown in Fig. 4B, when light passes through a structural birefringent optical member formed so as to compensate for the phase difference δ, the elliptical light is converted into linearly polarized light M whose polarization direction is the direction of the arrow. The Furthermore, as shown in Fig. 4C, by adding the characteristics of a 1 Z 2 wavelength phase plate (giving a phase difference π) to the structural birefringent optical member, the linearly polarized light が is given a phase difference of π and Converted. As a result, the linearly polarized light Ν is polarized in the same y-axis direction as the incident linearly polarized light. In this way, by forming the structural birefringent optical member so as to give phase differences δ and π, the light elliptically polarized in the optical system (Fig. 4 Α) is converted into the original incident linearly polarized light (Fig. 4C) It becomes possible to return.
この第 1の構成方法は、 一枚の構造複屈折光学部材が二種類の位相差 δ及び 7Τ を合算した位相差を補償するように構成することで達成できる。  This first configuration method can be achieved by configuring a single structural birefringent optical member to compensate for a phase difference obtained by adding two types of phase differences δ and 7 及 び.
「第 2の構成方法」  "Second Configuration Method"
第 2の構成方法は、 少なくとも二面 (表裏) の構造複屈折光学部材で構成する 方法である。 図 5 Α— 5 Cにおいて、 y軸方向に偏光された入射直線偏光は、 光 学系で発生した偏光方向の回転と位相差 (5により楕円偏光化し、 図 5 Aの楕円で 示される状態となる。元の直線偏光の軸 (y軸) と楕円偏光の長軸 (進相軸: y ' 軸) のなす角度を 0とする。 ここで第 1の構造複屈折光学部材が位相差 π / 2を 付与するように構成されていると、 この第 1の構造複屈折光学部材を通過した楕 円偏光の光は、 y '軸に対して角度ひを有する直線偏光 Οに変換される。そして、 第 2の構造複屈折構光学部材の進相軸 (y ' ' 軸) の方位を 0 ' = ( θ + α ) / 2となるように構成して、 位相差 πを付与すると、 第 2の複屈折部材を透過した 直線偏光〇の光は、 y軸に平行な直線偏光 Pの光に変換され、 入射直線偏光の方 向に戻すことができる。 The second construction method is a method comprising at least two (front and back) structural birefringent optical members. In Fig. 5 Α-5C, the incident linearly polarized light polarized in the y-axis direction is the polarization direction rotation and phase difference generated in the optical system (elliptical polarization by 5 and the state shown by the ellipse in Fig. 5A. The angle formed by the axis of the original linearly polarized light (y axis) and the long axis of the elliptically polarized light (fast axis: y ′ axis) is 0. Here, the first structural birefringent optical member has a phase difference of π / If it is configured to give 2, elliptically polarized light that has passed through the first structural birefringent optical member is converted to linearly polarized light 角度 having an angle with respect to the y ′ axis. When the orientation of the fast axis (y '' axis) of the second structural birefringent optical component is set to 0 '= (θ + α) / 2 and the phase difference π is given, the second Transmitted through the birefringent member Light with linearly polarized light ○ is converted into light with linearly polarized light P parallel to the y-axis, and can be returned to the direction of incident linearly polarized light.
このように、 第 1の構造複屈折光学部材は πΖ 2の位相差を与える特性 (すな わち、 1 / 4波長位相板と同特性) を有し、 第 2の構造複屈折光学部材は 7Τの位 相差を与える特性 (すなわち、 1 Z 2波長位相板と同特性) 有する構成とするこ とによって、 光学系で楕円化した光を元の入射直線偏光に戻すことができる。 第 2の構成方法は、 1 Ζ 4波長位相版と 1 Ζ 2波長位相板とを組み合わせるこ とによって偏光方向の回転や位相差を補償することができ、 製造するのが簡単で あるという特徴を有する。  As described above, the first structural birefringent optical member has a characteristic that gives a phase difference of π (2 (that is, the same characteristic as a quarter-wave phase plate). By adopting a structure that gives a phase difference of 7 mm (that is, the same characteristics as a 1 Z 2 wavelength phase plate), the light that has been ellipticalized by the optical system can be returned to the original incident linearly polarized light. The second configuration method is characterized by being easy to manufacture because it can compensate for the rotation of the polarization direction and the phase difference by combining the 1/4 wavelength plate and 1/2 wavelength plate. Have.
なお、 図 1において、 偏光補償光学素子 C 1、 及び C 2は、 それぞれの光学系 中の任意の位置に配置することが可能であるが、 照明光学系では照明光学系の瞳 位置 (すなわち、 コンデンサレンズ 3の前側焦点面近傍) に配置することが望ま しい。 また、 結像光学系では対物レンズ 5の後側焦点面近傍に配置することもで きるが、 偏光補償光学素 C 2が分割型位相板では分割領域境界近傍の構造などが 結像性能に与える収差劣化を考慮する必要がある。  In FIG. 1, the polarization compensating optical elements C 1 and C 2 can be arranged at arbitrary positions in the respective optical systems. However, in the illumination optical system, the pupil position of the illumination optical system (that is, It is desirable to place it near the front focal plane of condenser lens 3. Also, in the imaging optical system, it can be placed near the rear focal plane of the objective lens 5. However, if the polarization compensation optical element C2 is a split type phase plate, the structure near the boundary of the split region gives the imaging performance. It is necessary to consider aberration deterioration.
また、本実施の形態の偏光補償光学素子は、平行平板状の薄板形状であるため、 光路中に容易に挿脱可能であり、 例えば倍率切替におけるレンズ交換時にも偏光 補償光学素子を容易に入れ替えることができる。 また、 レンズ系に組込む必要が 無いので、 通常のレンズがそのまま使用できる。  In addition, since the polarization compensation optical element of the present embodiment has a parallel plate-like thin plate shape, the polarization compensation optical element can be easily inserted into and removed from the optical path. For example, the polarization compensation optical element can be easily replaced even when the lens is changed during magnification switching. be able to. In addition, since it is not necessary to incorporate the lens system, a normal lens can be used as it is.
なお、 第 1および第 2の構成方法のいずれも、 必要とされる位相差を構造複屈 折光学部材などを複数重ね合わせることに構成することも可能である。 すなわち、 図 3 Αにおける領域 2 aにおける位相差を δ 2 aとするとき、  In both the first and second configuration methods, the required phase difference can be configured by superimposing a plurality of structural birefringent optical members and the like. That is, when the phase difference in region 2 a in Fig. 3 と す る is δ 2 a,
6 2 a = 5 2 a l + (5 2 a 2 + 5 2 a 3 + - · ■ + δ 2 a ( n - 1 ) + δ 2 a n となるように位相差 <5 2 aを n分害 ijし、 分割したそれぞれの位相差を持つ n個の 構造複屈折光学部材を重ね合わせて合計で δ 2 aとなるようにすることで実現 できる。 但し、 上記 n個の構造複屈折光学部材の位相軸の方向は全て同一方向で ある。これは、分割型位相板に限らずグラジェント位相板でも同様である。なお、 上記構成は、 構造複屈折光学部材に限らず、 樹脂製位相板、 或いはフォトニック 結晶を用いることも可能である。 6 2 a = 5 2 al + (5 2 a 2 + 5 2 a 3 +-· + + δ 2 a (n-1) + δ 2 an This can be realized by superposing n divided structural birefringent optical members having respective phase differences so that the total becomes δ 2 a, provided that the phase of the n structural birefringent optical members is the same. All axes are in the same direction is there. The same applies to a gradient phase plate as well as a split phase plate. The above configuration is not limited to the structural birefringent optical member, and a resin phase plate or a photonic crystal can also be used.
(第 1実施の形態の変形例)  (Modification of the first embodiment)
図 6は、 本発明の第 1実施の形態の変形例を示す。 本変形例は、 図 1の透過照 明型偏光顕微鏡において偏光補償光学素子を一枚用いた例である。 第 1実施の形 態と同様の構成には同じ符号を付し説明を省略する。  FIG. 6 shows a modification of the first embodiment of the present invention. This modification is an example in which one polarization compensation optical element is used in the transmission illumination type polarization microscope of FIG. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
図 6において、 透過照明型偏光顕微鏡中の照明光学系に偏光補償光学素子 Cを 配設して構成されている。 偏光補償光学素子 Cはコンデンサレンズ 3の前側焦点 面近傍に配設されている。 そして、 この偏光補償光学素子 Cは、 標本 4を除いた 状態における光学系全体の偏光方向の回転及び位相差を補償する特性を有して いる。 このように構成することで、 偏光補償光学素子 Cがー個で光学系全体の偏 光方向の回転や位相差を補償することができる。 なお、 偏光補償光学素子 Cは、 上記構造複屈折光学部材の第 1の構成方法と第 2の構成方法のいずれも使用す ることができる。 また、 樹脂製位相板、 フォトニック結晶なども同様に使用する ことができる。 なお、 物体を照明する照明光は、 偏光子 Pを透過した偏光に限定 されず、 偏光子を反射することによって生じる偏光、 又は光源から直接偏光を発 生させるレーザ光源などでも良い。  In FIG. 6, the polarization compensation optical element C is arranged in the illumination optical system in the transmission illumination type polarization microscope. The polarization compensating optical element C is disposed near the front focal plane of the condenser lens 3. The polarization compensating optical element C has a characteristic for compensating for the rotation of the polarization direction and the phase difference of the entire optical system in a state where the sample 4 is excluded. With this configuration, a single polarization compensation optical element C can be used to compensate for the rotation and phase difference in the polarization direction of the entire optical system. Note that the polarization compensation optical element C can use either the first method or the second method of forming the structural birefringent optical member. Resin phase plates and photonic crystals can also be used in the same manner. The illumination light for illuminating the object is not limited to the polarized light transmitted through the polarizer P, but may be polarized light generated by reflecting the polarizer, or a laser light source that directly generates polarized light from the light source.
(第 2実施の形態)  (Second embodiment)
図 7は本発明の第 2実施の形態に係る偏光補償光学系の概略構成図である。 本 第 2実施の形態では、 落射照明型偏光顕微鏡を取り上げ、 その光学系にて発生す る偏光方向の回転と位相差を補償する偏光補償光学系について説明する。  FIG. 7 is a schematic configuration diagram of a polarization compensating optical system according to the second embodiment of the present invention. In the present second embodiment, an epi-illumination polarization microscope will be taken up, and a polarization compensation optical system that compensates for the rotation of the polarization direction and the phase difference generated in the optical system will be described.
図 7において、 光源 1 1からの照明光は、 コレクタ一レンズ 1 2によって集光 された後、 偏光子 P、 偏光補償光学素子 C 1を通過してビームスプリッタ B Sに 入射して、 対物レンズ 1 5に入射し、 対物レンズ 1 5を介して不図示のスライド ガラス上に載置された標本 1 4を照明する。 照明された標本 1 4からの光は、 対 物レンズ 1 5によって集光され、 拡大像 1 6が形成される。 観察者はこの拡大像 1 6を不図示の接眼レンズを介して肉眼で観察する。 また対物レンズ 1 5と拡大 像 1 6の間の光路中には偏光捕償光学素子 C 2、 検光子 Aがそれぞれ配置されて いる。 偏光子 Pと検光子 Aは、 一般にその透過方位が直交するように配置される (すなわち、 クロスニコルの配置) 。 なお、 物体を照明する照明光は、 偏光子 P を透過した偏光に限定されず、 偏光子を反射することによって生じる偏光、 又は 光源から直接偏光を発生させるレーザ光源などでも良い。 In FIG. 7, the illumination light from the light source 1 1 is collected by the collector lens 1 2 and then passes through the polarizer P and the polarization compensation optical element C 1 and enters the beam splitter BS. 5 illuminates the specimen 14 placed on the glass slide (not shown) through the objective lens 15. The light from the illuminated specimen 1 4 It is condensed by the object lens 15 to form an enlarged image 16. The observer observes the magnified image 16 with the naked eye through an eyepiece (not shown). A polarization compensation optical element C 2 and an analyzer A are arranged in the optical path between the objective lens 15 and the magnified image 16, respectively. The polarizer P and the analyzer A are generally arranged so that their transmission directions are orthogonal to each other (that is, the crossed Nicols arrangement). The illumination light for illuminating the object is not limited to the polarized light transmitted through the polarizer P, but may be polarized light generated by reflecting the polarizer, or a laser light source that directly generates polarized light from the light source.
偏光補償光学素子 C l, C 2は、 第 1実施の形態と同様の、 構造複屈折光学部 材の第 1の構成方法または第 2の構成方法のいずれも使用することができる。 ま た、 樹脂製位相板、 フォトニック結晶なども同様に使用することができる。 この ようにして、 落射照明型偏光顕微鏡が構成されている。 また、 作用、 効果は第 1 実施の形態と同様であり説明を省略する。  As the polarization compensation optical elements C 1 and C 2, either the first configuration method or the second configuration method of the structural birefringence optical member similar to the first embodiment can be used. Resin phase plates and photonic crystals can also be used in the same way. In this way, an epi-illumination polarization microscope is constructed. The operation and effect are the same as those in the first embodiment, and a description thereof will be omitted.
(第 2実施の形態の変形例)  (Modification of the second embodiment)
図 8は、 本発明の第 2実施の形態の変形例を示す。 本変形例は、 図 7の落射照 明型偏光顕微鏡において偏光補償光学素子を一枚用いた例である。 第 2実施の形 態と同様の構成には同じ符号を付し説明を省略する。'  FIG. 8 shows a modification of the second embodiment of the present invention. This modification is an example in which one polarization compensation optical element is used in the incident-light illumination type polarization microscope of FIG. The same components as those of the second embodiment are denoted by the same reference numerals and the description thereof is omitted. '
図 8において、 落射照明型偏光顕微鏡中の照明光学系に偏光補償光学素子 Cを 配設して構成されている。 偏光補償光学素子 Cは偏光子 Pとビームスプリッタ B Sの間に配設されている。 そして、 この偏光補償光学素子 Cは、 標本 1 4を除い た状態における落射照明型偏光顕微鏡の光学系全体の偏光方向の回転及び位相 差を補償する特性を有している。 このように構成することで、 偏光補償光学素子 Cがー個で光学系の偏光方向の回転と位相差を補償することができる。 なお、 偏 光補償光学素子 Cは、 上記構造複屈折光学部材の第 1の構成方法または第 2の構 成方法のいずれも使用することができる。 また、 樹脂製位相板、 フォトニック結 晶なども同様に使用することができる。 また、 偏光補償光学素子 Cは、 偏光子 P と検光子 Aの任意の場所に配置することができるが、 図 8に示すように照明光学 PI In FIG. 8, the polarization compensation optical element C is arranged in the illumination optical system in the epi-illumination polarization microscope. The polarization compensating optical element C is disposed between the polarizer P and the beam splitter BS. The polarization compensating optical element C has a characteristic for compensating for the rotation and phase difference of the polarization direction of the entire optical system of the epi-illumination polarization microscope in the state excluding the specimen 14. With this configuration, it is possible to compensate for the rotation and the phase difference of the polarization direction of the optical system with a single polarization compensation optical element C. The polarization compensating optical element C can use either the first configuration method or the second configuration method of the structural birefringent optical member. Resin phase plates and photonic crystals can also be used in the same manner. The polarization compensation optical element C can be placed anywhere on the polarizer P and the analyzer A. However, as shown in Fig. 8, the illumination optics PI
12 系の偏光子 Pとビームスプリッタ B Sの間に配置する方が分割型位相板の結合 部分の結像性能への影響を小さくすることができるので望ましい。 なお、 物体を 照明する照明光は、 偏光子 Pを透過した偏光に限定されず、 偏光子を反射するこ とによって生じる偏光、 又は光源から直接偏光を発生させるレーザ光源などでも 良い。  Positioning between the 12-system polarizer P and the beam splitter B S is desirable because it can reduce the effect on the imaging performance of the coupling part of the split phase plate. The illumination light for illuminating the object is not limited to the polarized light transmitted through the polarizer P, but may be polarized light generated by reflecting the polarizer, or a laser light source that directly generates polarized light from the light source.
上記実施の形態では、 代表的な偏光顕微鏡光学系に適用する場合について述べ たが、 これに限定されるものではなく、 偏光を利用する、 例えばエリプソメ一夕 や微分干渉顕微鏡など、 あらゆる光学系、 に適用可能であり、 その光学系自身が 有する偏光特性を補償することが可能である。 また、 上述の実施の形態は例に過 ぎず、 上述の構成や形状に限定されるものではなく、 本発明の範囲内において適 宜修正、 変更が可能である。 '  In the above-described embodiment, the case where the present invention is applied to a typical polarizing microscope optical system has been described. However, the present invention is not limited to this, and any optical system using polarized light, such as an ellipsometer or differential interference microscope, It is possible to compensate for the polarization characteristics of the optical system itself. Further, the above-described embodiment is merely an example, and is not limited to the above-described configuration and shape, and can be appropriately modified and changed within the scope of the present invention. '

Claims

I I
13 請 求 の 範 囲 l . 偏光子を介して物体に照明光を照射する照明光学系と、  13 Scope of request l. Illumination optical system for irradiating an object with illumination light through a polarizer;
前記物体からの光を集光し、 検光子を介して結像する結像光学系と、 前記偏光子と前記物体の間又は前記物体と前記検光子の間の少なくとも一方 に配設され、 前記偏光子と前記検光子の間に配設されている光学素子により発生 する偏光方向の回転及び位相差を補償する偏光補償光学素子とを有して成る偏 光補償光学系。  An imaging optical system that collects light from the object and forms an image via an analyzer; and is disposed between at least one of the polarizer and the object or between the object and the analyzer, A polarization compensation optical system comprising a polarization compensation optical element for compensating for a rotation and a phase difference of a polarization direction generated by an optical element disposed between a polarizer and the analyzer.
2 . 偏光子を介した照明光を偏向素子を介して物体に照射する照明光学系と、 前記物体からの光を集光し、 前記偏向素子及び検光子を介して結像する結像光 学系と、 2. An illumination optical system that irradiates an object with illumination light via a polarizer via a deflection element, and imaging optics that collects the light from the object and forms an image via the deflection element and an analyzer. The system,
前記偏光子と前記偏向素子の間又は前記偏向素子と前記検光子の間の少なく とも一方に配設され、 前記偏光子と前記検光子の間に配設されている光学素子に より発生する偏光方向の回転及び位相差を補償する偏光補償光学素子とを有し て成る偏光補償光学系。  Polarized light generated by an optical element disposed between the polarizer and the deflector or at least one between the deflector and the analyzer, and disposed between the polarizer and the analyzer. A polarization compensation optical system comprising: a polarization compensation optical element that compensates for direction rotation and phase difference.
3 . 物体に偏光した照明光を照射する照明光学系と、 3. an illumination optical system that illuminates the object with polarized illumination light;
前記物体からの光を検光子を介して集光する集光光学系と、  A condensing optical system for condensing light from the object via an analyzer;
前記照明光学系又は前記物体と前記検光子の間の少なくとも一方に配設され、 前記集光光学系の前記物体から前記検光子までの光学素子及び前記照明光学系 の光学素子により発生する偏光方向の回転及び位相差を補償する偏光補償光学 素子とを有して成る偏光補償光学系。 4 . 前記偏光補償光学素子は、 位相差の異なる複数の領域のそれぞれの位相軸 を所定の方向に向けて配置して形成された少なくとも一層の分割型位相板であ P Polarization direction generated by the optical element from the object to the analyzer of the condensing optical system and the optical element of the illumination optical system, disposed in at least one of the illumination optical system or the object and the analyzer A polarization compensation optical system comprising: a polarization compensation optical element that compensates for the rotation and phase difference. 4. The polarization-compensating optical element is at least one divisional phase plate formed by arranging each phase axis of a plurality of regions having different phase differences in a predetermined direction. P
14 ることを特徴とする請求項 1から 3のいずれか 1項に記載の偏光補償光学系。  14. The polarization compensation optical system according to claim 1, wherein
5 . 前記位相板は、 構造複屈折光学部材から形成されていることを特徴とする 請求項 4項に記載の偏光補償光学系。 5. The polarization compensating optical system according to claim 4, wherein the phase plate is formed of a structural birefringent optical member.
6 . 前記位相板は、 フォトニック結晶から形成されていることを特徴とする請 求項 4に記載の偏光補償光学系。 6. The polarization compensation optical system according to claim 4, wherein the phase plate is formed of a photonic crystal.
7 . 前記偏光補償光学素子は、 前記位相差の異なる複数の領域のそれぞれに対 応する、 複数の 1 Z 4波長板のそれぞれの位相軸を所定の方向に向けて配置し接 合して形成された第 1の分割型位相板と、 前記位相差の異なる複数の領域のそれ ぞれに対応する、 複数の 1 / 2波長板のそれぞれの位相軸を所定の方向に向けて 配置し接合して形成された第 2の分割型位相板を含む複数の層から形成されて いることを特徴とする請求項 1から 3のいずれか 1項に記載の偏光補償光学系。 7. The polarization compensating optical element is formed by arranging and connecting the respective phase axes of the plurality of 1 Z 4 wavelength plates corresponding to the plurality of regions having different phase differences in a predetermined direction. The first divided-type phase plate formed and the phase axes of the plurality of half-wave plates corresponding to the plurality of regions having different phase differences are arranged and bonded in a predetermined direction. 4. The polarization compensation optical system according to claim 1, wherein the polarization compensation optical system is formed of a plurality of layers including a second divided phase plate formed in the above manner. 5.
8 . 前記 1 Z 4波長板及び前記 1 / 2波長板は、 構造複屈折光学部材から形成 されていることを特徴とする請求項 7に記載の偏光補償光学系。 8. The polarization compensating optical system according to claim 7, wherein the 1 Z 4 wavelength plate and the 1/2 wavelength plate are formed of a structural birefringent optical member.
9 . 前記 1 Z 4波長板及び前記 1 2波長板は、 フォトニック結晶から形成さ れていることを特徴とする請求項 7に記載の偏光補償光学系。 9. The polarization compensation optical system according to claim 7, wherein the 1 Z 4 wavelength plate and the 12 wavelength plate are formed of a photonic crystal.
1 0 . 前記偏光補償光学素子は、 少なくとも 1層のグラジェント位相板である ことを特徴とする請求項 1から 3のいずれか 1項に記載の偏光補償光学系。 The polarization compensation optical system according to any one of claims 1 to 3, wherein the polarization compensation optical element is at least one gradient phase plate.
1 1 . 前記グラジェント位相板は、 構造複屈折光学部材から形成されているこ とを特徴とする請求項 1 0に記載の偏光補償光学系。 11. The polarization compensating optical system according to claim 10, wherein the gradient phase plate is formed of a structural birefringent optical member.
1 2 . 前記グラジェント位相板は、 フォトニック結晶から形成されていること を特徴とする請求項 1 0に記載の偏光補償光学系。 12. The polarization compensating optical system according to claim 10, wherein the gradient phase plate is formed of a photonic crystal.
1 3 . 有効径内を周方向及び半径方向に複数の領域に分割し、 それぞれの分割 領域に所定の方向に向けたそれぞれ異なる方向の位相軸を有し、 異なる位相差を 与えるように少なくとも 1層の部材より成る位相板を配置したことを特徴とす る偏光方向の回転及び位相差を補償する偏光補償光学素子。 1 3. The effective diameter is divided into a plurality of regions in the circumferential direction and the radial direction, each divided region has a phase axis in a different direction toward a predetermined direction, and at least 1 so as to give a different phase difference. A polarization-compensating optical element that compensates for the rotation of the polarization direction and the phase difference, characterized in that a phase plate made of layer members is disposed.
1 4 . 前記位相板は、 前記それぞれの分割領域に対応する、 複数の 1 / 4波長 板のそれぞれの位相軸を所定の方向に向けて配置し接合して形成された第 1の 分割型位相板と、 前記それぞれの分割領域に対応する、 複数の 1 Z 2波長板のそ れぞれの位相軸を所定の方向に向けて配置し接合して形成された第 2の分割型 位相板を含む複数の層から形成されていることを特徴とする請求項 1 3に記載 の偏光補償光学素子。 14. The phase plate is a first divided type phase formed by arranging and joining the respective phase axes of a plurality of quarter wavelength plates corresponding to the respective divided regions in a predetermined direction. And a second divided type phase plate formed by arranging and joining the respective phase axes of the plurality of 1 Z 2 wavelength plates corresponding to the respective divided regions in a predetermined direction. The polarization compensating optical element according to claim 13, wherein the polarization compensating optical element is formed of a plurality of layers.
1 5 . 前記位相板、 前記 1ノ 4波長板及び前記 1 / 2波長板は、 構造複屈折光 学部材から形成されていることを特徴とする請求項 1 4に記載の偏光補償光学 素子。 15. The polarization compensating optical element according to claim 14, wherein the phase plate, the 1/4 wavelength plate, and the 1/2 wavelength plate are formed of a structural birefringence optical member.
1 6 . 前記位相板、 前記 1ノ 4波長板及び前記 1 2波長板は、 フォトニック 結晶から形成されていることを特徴とする請求項 1 4項に記載の偏光補償光学 素子。 16. The polarization-compensating optical element according to claim 14, wherein the phase plate, the 1-wave plate, and the 12-wave plate are formed of a photonic crystal.
1 7 . 前記位相板は、 構造複屈折光学部材から形成されていることを特徴とす る請求項 1 3に記載の偏光補償光学素子。 17. The polarization compensating optical element according to claim 13, wherein the phase plate is formed of a structural birefringent optical member.
1 8 . 前記位相板は、 フォトニック結晶から形成されていることを特徴とする 請求項 1 3に記載の偏光補償光学素子。 18. The polarization compensating optical element according to claim 13, wherein the phase plate is made of a photonic crystal.
1 9 . 有効径内の位相軸及び位相差が、 半径方向及び周方向に、 所定の方向に 徐々に変化するように形成した、 少なくとも 1層の部材より成るグラジェント位 相板であることを特徴とする偏光方向の回転及び位相差を補償する偏光補償光 学素子。 1 9. A gradient phase plate composed of at least one layer member formed so that the phase axis and the phase difference within the effective diameter gradually change in a predetermined direction in the radial direction and the circumferential direction. A polarization-compensating optical element that compensates for the rotation and phase difference of the polarization direction.
2 0 . 前記グラジェント位相板は、 構造複屈折光学部材から形成されているこ とを特徴とする請求項 1 9に記載の偏光補償光学素子。 20. The polarization compensating optical element according to claim 19, wherein the gradient phase plate is formed of a structural birefringent optical member.
2 1 . 前記グラジェント位相板は、 フォトニック結晶から形成されていること を特徴とする請求項 1 9に記載の偏光補償光学素子。 21. The polarization compensating optical element according to claim 19, wherein the gradient phase plate is formed of a photonic crystal.
PCT/JP2006/317153 2005-08-29 2006-08-24 Polarization compensation optical system WO2007026791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005248112 2005-08-29
JP2005-248112 2005-08-29

Publications (1)

Publication Number Publication Date
WO2007026791A1 true WO2007026791A1 (en) 2007-03-08

Family

ID=37808875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317153 WO2007026791A1 (en) 2005-08-29 2006-08-24 Polarization compensation optical system

Country Status (1)

Country Link
WO (1) WO2007026791A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044834A1 (en) * 2007-10-01 2009-04-09 Nikon Corporation Polarization compensation optical system and polarization compensation optical element used in this optical system
JP2010025609A (en) * 2008-07-16 2010-02-04 Nikon Corp Wavefront generation optical system and wavefront aberration measuring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236624A (en) * 1985-03-27 1987-02-17 Olympus Optical Co Ltd Scanning type optical microscope
JPH09145920A (en) * 1995-11-22 1997-06-06 Nikon Corp Phase plate locally different in direction of optical axis
JP2001215461A (en) * 1999-11-15 2001-08-10 Sharp Corp Projection type display system, and method for displaying image
JP2001356276A (en) * 2000-06-13 2001-12-26 Nikon Corp Polarizing microscope
WO2004008196A1 (en) * 2002-07-13 2004-01-22 Autocloning Technology Ltd. Polarization analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236624A (en) * 1985-03-27 1987-02-17 Olympus Optical Co Ltd Scanning type optical microscope
JPH09145920A (en) * 1995-11-22 1997-06-06 Nikon Corp Phase plate locally different in direction of optical axis
JP2001215461A (en) * 1999-11-15 2001-08-10 Sharp Corp Projection type display system, and method for displaying image
JP2001356276A (en) * 2000-06-13 2001-12-26 Nikon Corp Polarizing microscope
WO2004008196A1 (en) * 2002-07-13 2004-01-22 Autocloning Technology Ltd. Polarization analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044834A1 (en) * 2007-10-01 2009-04-09 Nikon Corporation Polarization compensation optical system and polarization compensation optical element used in this optical system
JP2010025609A (en) * 2008-07-16 2010-02-04 Nikon Corp Wavefront generation optical system and wavefront aberration measuring system

Similar Documents

Publication Publication Date Title
JP3708260B2 (en) Differential interference microscope
JP6548727B2 (en) Lighting device and measuring device
JP4014716B2 (en) Optical system having polarization compensation optical system
WO2013108626A1 (en) Structured illumination device, structured illumination microscope device, and structured illumination method
WO2008069220A1 (en) Imaging device and microscope
US6034814A (en) Differential interference microscope
US20160259158A1 (en) Polarization-independent differential interference contrast optical arrangement
US20090040601A1 (en) Polarization microscope
JP5965476B2 (en) Assembly for generation of differential interference contrast images
JP2009237109A (en) Phase-contrast microscope
JPWO2009044834A1 (en) Polarization compensation optical system and polarization compensation optical element used in this optical system
US20010040723A1 (en) Differential interference optical system
JP5107547B2 (en) Interferometric surface shape measuring device
WO2007026791A1 (en) Polarization compensation optical system
JP2001356276A (en) Polarizing microscope
WO2021044659A1 (en) Lens unit
JP2008310193A (en) Polarization correction optical system and microscope device using the same
JP2003015042A (en) Differential interference microscope
JP2008111916A (en) Objective lens for polarization observation and microscope having the same
JP2002006222A (en) Microscope provided with function for compensating rogation of polarizing direction
JP2010060854A (en) Microscopic device
US20040070826A1 (en) Polarizing interference microscope
JP2001021807A (en) Transmitted illumination type differential interference microscope
JP2009063722A (en) Polarization correction optical system and microscope device using the same
JPH087383Y2 (en) Binocular stereo microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06783134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP