WO2007024472A2 - USE OF PAR- l/PAR- 4 INHIBITORS FOR TREATING OR PREVENTING VASCULAR DISEASES - Google Patents

USE OF PAR- l/PAR- 4 INHIBITORS FOR TREATING OR PREVENTING VASCULAR DISEASES Download PDF

Info

Publication number
WO2007024472A2
WO2007024472A2 PCT/US2006/030831 US2006030831W WO2007024472A2 WO 2007024472 A2 WO2007024472 A2 WO 2007024472A2 US 2006030831 W US2006030831 W US 2006030831W WO 2007024472 A2 WO2007024472 A2 WO 2007024472A2
Authority
WO
WIPO (PCT)
Prior art keywords
metabolite
par
clopidogrel
vascular
adp
Prior art date
Application number
PCT/US2006/030831
Other languages
French (fr)
Other versions
WO2007024472A3 (en
Inventor
John Thomas Brandt
Victor Leonid Serebruany
Kenneth John Winters
Original Assignee
Eli Lilly And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eli Lilly And Company filed Critical Eli Lilly And Company
Priority to US11/996,380 priority Critical patent/US20080214599A1/en
Priority to EP06789565A priority patent/EP1940399A2/en
Priority to JP2008526989A priority patent/JP2009504737A/en
Publication of WO2007024472A2 publication Critical patent/WO2007024472A2/en
Publication of WO2007024472A3 publication Critical patent/WO2007024472A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/452Piperidinium derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system having sulfur as a ring hetero atom, e.g. ticlopidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • This invention relates to a novel method for the treatment of vascular diseases related to inhibition of the G coupled Protease Activating Receptors 1/4 (PAR-1/PAR- 4) receptor expression.
  • the platelet aggregation inhibitor clopidogrel (marketed as Plavix ® and Iscover ® ) has achieved relative success in reducing the untoward effects of cardiovascular diseases caused by or exacerbated by platelet activation and/or aggregation. Platelet aggregation inhibition and the prevention of embolism is only one of the possible points of intervention to prevent or minimize the incidence of vascular diseases. Thus, there is a need to discover and develop pharmaceutical agents which are effective at treating or preventing vascular diseases caused by or exacerbated by different or multiple sites in the cascade of events leading to various vascular events.
  • U.S. Patent No. 5,288,726, discloses the preparation and use of compounds useful for the treatment and/or prevention of thrombosis and thromboembolism.
  • U.S. Patent No. 6,693,115 discloses acid addition salts (notably the compound CS-747.HC1 (now Prasugrel) particularly useful and beneficial for the treatment and/or prevention of thrombosis and thromboembolism.
  • the above disclosures provide compounds, methods and/or pharmaceutical compositions for the treatment of thrombosis and/or thromboembolism. Nevertheless, there remains a need to discover and develop pharmaceutical agents that are effective at treating or preventing coagulation induced vascular diseases caused by or exacerbated by the cascade of events related to PAR-l/PAR-4 thrombin receptor activity leading to various vascular events.
  • the present invention relates to the use of a compound of formula I
  • the present invention relates to a method of reducing platelet activation and thrombin generation state of an individual comprising, administering to the individual an effective amount of at least one platelet ADP receptor or thienopyridine inhibitor blocking the G coupled PAR-l/PAR-4 on human platelets of the individual, and wherein the ADP- receptor inhibitor or thienopyridine is selected from the group consisting of prasugrel, a prasugrel metabolite, clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite.
  • the present invention also relates to a method of treating or preventing a vascular event, disease or disorder selected from a group consisting of myocardial infarction, angina, pulmonary embolism, transient ischemic attack, deep vein thrombosis, thrombotic re-occlusion subsequent to a coronary intervention procedure, heart surgery or vascular surgery, peripheral vascular thrombosis, Syndrome X, heart failure, and a disorder in which a narrowing of at least one coronary artery occurs caused by, exacerbated by, or related to activation of PAR-l/PAR-4 receptor expression comprising administering to the individual an effective amount of an ADP-receptor inhibitor or thienopyridine selected from the group consisting of prasugrel, a prasugrel metabolite, clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD
  • a method of treating an individual with vascular disease comprising administering a therapeutically effective amount of at least one ADP-receptor inhibitor or thienopyridine in a carrier to the individual, wherein the ADP-receptor inhibitor or thienopyridine prevents the over expression of the platelet PAR-l/PAR-4 receptor of the individual, and the ADP-receptor inhibitor or thienopyridine is selected from the group consisting of prasugrel, a prasugrel metabolite, clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor , a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite.
  • Vascular Diseases refers to diseases treatable, preventable, or able to be ameliorated by inhibition of PAR-l/PAR-4 receptor activity (i.e. PAR-l/PAR-4 induced).
  • Examples of Vascular Diseases encompassed by the invention include myocardial infarction, angina, pulmonary embolism, transient ischemic attack, deep vein thrombosis, thrombotic re-occlusion subsequent to a coronary intervention procedure, heart surgery or vascular surgery, peripheral vascular thrombosis, vascular disorders related diabetes mellitus, and/or syndrome X (metabolic suyndrome), heart failure, and a disorder in which a narrowing of at least one coronary artery occurs.
  • administering is intended to include various routes of administration, particularly oral, which allow for a compound (s) of the invention to perform its intended function of treating and/or preventing the occurrence or recurrence of vascular diseases. ,
  • treatment refers to the amelioration, inhibition, prevention of occurrence or recurrence, reduction in severity or effect of vascular diseases including myocardial infarction, angina, pulmonary embolism, transient ischemic attack, deep vein thrombosis, thrombotic re-occlusion subsequent to a coronary intervention procedure, heart surgery or vascular surgery, peripheral vascular thrombosis, vascular disorders related diabetes mellitus, and/or syndrome X (metabolic syndrome), heart failure, vascular diseases associated with diabetes, and a disorder in which a narrowing of at least one coronary artery occurs.
  • vascular diseases including myocardial infarction, angina, pulmonary embolism, transient ischemic attack, deep vein thrombosis, thrombotic re-occlusion subsequent to a coronary intervention procedure, heart surgery or vascular surgery, peripheral vascular thrombosis, vascular disorders related diabetes mellitus, and/or syndrome X (metabolic syndrome), heart failure, vascular diseases associated with diabetes, and
  • the effective amount may vary depending on factors known to one of skill in the art, including for example, the optional combination of compound I with aspirin, the use of drag coated stents, mode and regimen of administration, the size of the subject, genetic determinants of absorption or metabolism, genetic or behavioral predisposition to vascular diseases or the severity and/or potential for recurrence thereof.
  • factors known to one of skill in the art including for example, the optional combination of compound I with aspirin, the use of drag coated stents, mode and regimen of administration, the size of the subject, genetic determinants of absorption or metabolism, genetic or behavioral predisposition to vascular diseases or the severity and/or potential for recurrence thereof.
  • One of skill in the art would be able to consider these and related factors to make the appropriate determination regarding effective amount.
  • protease-activated receptors PARs
  • PARs G-protein-coupled receptors
  • the newly generated N terminus acts as a tethered ligand and interacts intramolecularly with the body of the receptor to initiate subsequent cell signaling events (Chambers RC, Leoni P, Blanc-Brude OP, Wembridge DE, Laurent GJ. Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor- 1. J Biol Chem. 2000 Nov 10;275(45):35584-91).
  • thrombin stimulates production of prostacyclin (Weksler, B. B., C. W. Ley, and E. A. Jaffe. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A23187. J. Clin. Invest. 62: 923-930, 1978), increase the cytosolic Ca2+ signal, and induce expression of cell surface adhesion proteins, P-selectin and intercellular adhesion molecule-1 (ICAM-I) (Weksler, B. B., C. W. Ley, and E. A. Jaffe. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A23187. J. Clin. Invest. 62: 923-930, 1978).
  • IAM-I intercellular adhesion molecule-1
  • GP Ib-IX alone, lacking V, is capable of nearly complete adhesive function and surface expression, and GPV is present in only half of the Ib-IX complexes (14).
  • aspirin in combination or conjunction with as compound or compounds of the invention to obtain therapeutic or prophylactic effect
  • amount of aspirin for the purpose of the present invention is about that generally approved for the particular patient population, e.g. from about 75 mg to about 300 mg of aspirin 1 to 3 times daily.
  • the Active Ingredient may be dissolved or suspended in a pharmaceutically acceptable carrier, such as sterile water, sterile organic solvent or a mixture of both.
  • a pharmaceutically acceptable carrier such as sterile water, sterile organic solvent or a mixture of both.
  • the Active ingredient may also be dissolved in a suitable organic solvent, for instance aqueous propylene glycol.
  • Dispersing the finely divided Active ingredient in aqueous starch or sodium carboxymethyl cellulose solution, or binder or pharmaceutically acceptable adhesive may result in other compositions.
  • Impregnate the solution or suspension on a stent by coating the admixture of active ingredient on the stent and allowing the solvent to evaporate slowly under vacuum until nearly all solvent or liquid is evaporated.
  • a solid composition of formula I is prepared using the ingredients below:
  • the components are blended and compressed to form a solid each weighing 425 mg.
  • the solid is then tableted or capsuled or admixed with a pharmaceutically acceptable adhesion agent.

Abstract

Use of a compound of formula (I) or a compound selected from the group consisting of a prasugrel metabolite, clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite for the treatment of and/or prevention of coagulation induced vascular diseases and recurrence thereof in a patient in need thereof.

Description

Method for Treating Vascular Diseases
Field of the Invention
This invention relates to a novel method for the treatment of vascular diseases related to inhibition of the G coupled Protease Activating Receptors 1/4 (PAR-1/PAR- 4) receptor expression.
Background of the Invention
Vascular Disease including myocardial infarction and ischemic stroke is a leading cause of death and disability. While the processes causing vascular disease(s) are complex and not completely understood, an underlying etiology common to the numerous theories includes atherosclerosis due to atherosclerotic lesion formation and the disruption of plaques leading to thrombosis or thromboembolism.
The platelet aggregation inhibitor clopidogrel (marketed as Plavix® and Iscover®) has achieved relative success in reducing the untoward effects of cardiovascular diseases caused by or exacerbated by platelet activation and/or aggregation. Platelet aggregation inhibition and the prevention of embolism is only one of the possible points of intervention to prevent or minimize the incidence of vascular diseases. Thus, there is a need to discover and develop pharmaceutical agents which are effective at treating or preventing vascular diseases caused by or exacerbated by different or multiple sites in the cascade of events leading to various vascular events.
U.S. Patent No. 5,288,726, discloses the preparation and use of compounds useful for the treatment and/or prevention of thrombosis and thromboembolism. U.S. Patent No. 6,693,115 discloses acid addition salts (notably the compound CS-747.HC1 (now Prasugrel) particularly useful and beneficial for the treatment and/or prevention of thrombosis and thromboembolism.
U.S. Patent No. 4,529,596, 4,847,265, and 6,429,210Bl disclose compounds, pharmaceutical compositions, salts, enantiomers and/or polymorphs of clopidogrel useful for the treatment of thrombosis via inhibition of platelet aggregation.
The above disclosures provide compounds, methods and/or pharmaceutical compositions for the treatment of thrombosis and/or thromboembolism. Nevertheless, there remains a need to discover and develop pharmaceutical agents that are effective at treating or preventing coagulation induced vascular diseases caused by or exacerbated by the cascade of events related to PAR-l/PAR-4 thrombin receptor activity leading to various vascular events.
Summary of the Invention
The present invention relates to the use of a compound of formula I
Figure imgf000003_0001
as a PAR-l/PAR-4 thrombin receptor inhibitor for the treatment and/or prevention of coagulation induced vascular diseases and recurrence thereof, in a patient in need thereof.
The present invention relates to the use of a compound selected from the group consisting of clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite for the treatment and/or prevention of coagulation induced vascular diseases and recurrence in a patient in need thereof.
The present invention relates to a method of reducing platelet activation and thrombin generation state of an individual comprising, administering to the individual an effective amount of at least one platelet ADP receptor or thienopyridine inhibitor blocking the G coupled PAR-l/PAR-4 on human platelets of the individual, and wherein the ADP- receptor inhibitor or thienopyridine is selected from the group consisting of prasugrel, a prasugrel metabolite, clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite.
The present invention also relates to a method of preventing and/or treating an individual at risk for a vascular event, by blocking expression of platelet PAR-l/PAR-4 receptor of the individual comprising administering to the individual an effective amount of an ADP-receptor inhibitor or a thienopyridine selected from the group consisting of prasugrel, a prasugrel metabolite, clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite.
The present invention also relates to a method of treating or preventing a vascular event, disease or disorder selected from a group consisting of myocardial infarction, angina, pulmonary embolism, transient ischemic attack, deep vein thrombosis, thrombotic re-occlusion subsequent to a coronary intervention procedure, heart surgery or vascular surgery, peripheral vascular thrombosis, Syndrome X, heart failure, and a disorder in which a narrowing of at least one coronary artery occurs caused by, exacerbated by, or related to activation of PAR-l/PAR-4 receptor expression comprising administering to the individual an effective amount of an ADP-receptor inhibitor or thienopyridine selected from the group consisting of prasugrel, a prasugrel metabolite, clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD- 6140, and an AZD-6140 metabolite.
A method of treating an individual with vascular disease comprising administering a therapeutically effective amount of at least one ADP-receptor inhibitor or thienopyridine in a carrier to the individual, wherein the ADP-receptor inhibitor or thienopyridine prevents the over expression of the platelet PAR-l/PAR-4 receptor of the individual, and the ADP-receptor inhibitor or thienopyridine is selected from the group consisting of prasugrel, a prasugrel metabolite, clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor , a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite.
The present invention relates to the use of a compound of formula I in combination with other effective antiplatelet and/or anticoagulant agent(s) selected from the group consisting of aspirin, heparin, hirudin, bivalirudin, dipyridamole, statin and a platelet glycoprotein Hb/HIa inhibitor, angiotensin receptor inhibitor, or selective serotonin reuptake inhibitor for the treatment or prevention of PAR-l/PAR-4 receptor induced coagulation related vascular events.
The present invention relates to the use of 2-acetoxy-5-(D- cyclopropylcarbonyl-2-fluorobenzyl))-4,5,6,7-tetrahydrothieno[3,2-c]pyridine hydrochloric acid addition salt singly or in combination with other effective anti- coagulants for the treatment and/or prevention of PAR-l/PAR-4 receptor induced Vascular Diseases.
Definitions
The term, "Vascular Diseases" refers to diseases treatable, preventable, or able to be ameliorated by inhibition of PAR-l/PAR-4 receptor activity (i.e. PAR-l/PAR-4 induced). Examples of Vascular Diseases encompassed by the invention include myocardial infarction, angina, pulmonary embolism, transient ischemic attack, deep vein thrombosis, thrombotic re-occlusion subsequent to a coronary intervention procedure, heart surgery or vascular surgery, peripheral vascular thrombosis, vascular disorders related diabetes mellitus, and/or syndrome X (metabolic suyndrome), heart failure, and a disorder in which a narrowing of at least one coronary artery occurs.
The term "administering" as used herein is intended to include various routes of administration, particularly oral, which allow for a compound (s) of the invention to perform its intended function of treating and/or preventing the occurrence or recurrence of vascular diseases. ,
The term "treatment" as used herein refers to the amelioration, inhibition, prevention of occurrence or recurrence, reduction in severity or effect of vascular diseases including myocardial infarction, angina, pulmonary embolism, transient ischemic attack, deep vein thrombosis, thrombotic re-occlusion subsequent to a coronary intervention procedure, heart surgery or vascular surgery, peripheral vascular thrombosis, vascular disorders related diabetes mellitus, and/or syndrome X (metabolic syndrome), heart failure, vascular diseases associated with diabetes, and a disorder in which a narrowing of at least one coronary artery occurs.
The term "effective amount" as used herein refers to the amount of a compound of formula I and/or other vascular protective agent (drug) necessary or sufficient to treat or prevent the particular vascular disease in a treatment regimen comprised of a compound of formula I and/or other compounds of the invention including clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite as prescribed by a qualified physician. The effective amount may vary depending on factors known to one of skill in the art, including for example, the optional combination of compound I with aspirin, the use of drag coated stents, mode and regimen of administration, the size of the subject, genetic determinants of absorption or metabolism, genetic or behavioral predisposition to vascular diseases or the severity and/or potential for recurrence thereof. One of skill in the art would be able to consider these and related factors to make the appropriate determination regarding effective amount.
The phrase "pharmaceutically acceptable carrier" refers to any substance coadministered with the compound of the invention including compound 1 singly and/or in combination with other compounds of the invention and which allows the comρσund(s) to perform its intended function. Examples of such carriers include solutions, solvents, dispersion media, delay agents, emulsions, microparticles and the like for combination therapies.
As used herein, the terms "thienopyridine therapy" and "treatment with a thienopyridine" are synonymous and mean the use of an approved drug having a thienopyridine core or portion for the treatment, prevention and/or amelioration of diseases caused, related to, or exacerbated by PAR-l/PAR-4 receptor activity.
The phrase "combination therapy," for the purpose of this invention means the use of a compound of formula I and other effective ADP receptor inhibitors, thienopyridines or anticoagulant selected from the group consisting of low-molecular weight heparins, fondaparinux, direct thrombin inhibitors [including ximelegatran], factor Xa inhibitors, clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite, wherein both treatments are initiated simultaneously or within a short period (typically within 1 to 30 days) after initiation of the first therapy. The phrase also connotes the use of a combination delivery method wherein both chosen therapies are delivered in a single tablet, capsule, inhalation mechanism, intravenous solution ox rectal suppository. The period of combination therapy as defined above may be from about 30 days to about 700 days and preferably from about 30 days to about 365 days. Ultimately, the precise period of therapy according to this invention is a determination to be made by the treating or attending physician and tailored to the particular patient including considerations of whether the need is acute or chronic.
One aspect of the present invention is in the provision of a compound that reduces the thrombin generation state of an individual or patient. Thrombin is a pluripotent serine protease that plays a central role in hemostasis following tissue injury by converting soluble plasma fibrinogen into an insoluble fibrin clot and by promoting platelet aggregation. In addition to these procoagulant effects, thrombin also influences a number of cellular responses that play important roles in subsequent inflammatory and tissue repair processes. Thrombin influences the recruitment and trafficking of inflammatory cells and is a potent mitogen for a number of cell types, including endothelial cells, fibroblasts, and smooth muscle cells. Thrombin also promotes the production and secretion of extracellular matrix proteins and influences connective tissue remodeling processes. There is increasing in vivo evidence that the pro-inflammatory and pro-fibrotic effects of thrombin play an important role in both normal tissue and vascular repair, as well as in a number of pathological conditions associated with acute or persistent activation of the coagulation cascade, including restenosis and neointima formation following vascular injury, atherosclerosis, pulmonary fibrosis, and glomerulonephritis.
Most of the cellular effects elicited by thrombin are mediated via a family of widely expressed G-protein-coupled receptors, termed protease-activated receptors (PARs) that are activated by limited proteolytic cleavage of the N-terminal extracellular domain. The newly generated N terminus acts as a tethered ligand and interacts intramolecularly with the body of the receptor to initiate subsequent cell signaling events (Chambers RC, Leoni P, Blanc-Brude OP, Wembridge DE, Laurent GJ. Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor- 1. J Biol Chem. 2000 Nov 10;275(45):35584-91).
Although it has long been recognized that catalytically active thrombin is required for stimulation of platelet aggregation (Phillips DR. Thrombin interaction with human platelets: potentiation of thrombin-induced aggregation and release by inactivated thrombin. Thromb Diathesis Haemorrhag. 1974;32:207-215) increased interest in the effects of thrombin in cellular stimulation resulted from the identification of a seven- transmembrane domain G-protein-coupled receptor/substrate for thrombin (Vu TH, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 ;64: 1057-1066).
When this receptor, PAR- 1,4 is proteolytically cleaved, the new amino terminus functions as a tethered ligand to initiate signal transduction, and peptides derived from the new amino terminus, thrombin receptor agonist peptides (TRAPs), function as agonists for the uncleaved receptor. In addition to platelet aggregation and release, PAR-I mediates several other cellular responses (Pilcher BK, Kim DW, Carnery DH, Tomasek JJ. Thrombin stimulates fibroblast-mediated collagen lattice contraction by its proteolytically activated receptor. Exp Cell Res. 1994; 211:368-373; see also Sower LE, Froelich CJ, Carney DH, Fenton JW JI, Klimpel GR. Thrombin induces JJL-6 production in fibroblasts and epithelial cells: evidence for the involvement of the seven- transmembrane domain (STD) receptor for -thrombin. J Immunol. 1995; 155. -895-901; and Rabiet M, Plantier J, Rival Y, Genoux Y, Lampugnani M, Del Mai- EG. Thrombin- induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vase Biol. 1996; 16:488^9) It is now known that PAR-I interacts with anion binding exosite I of thrombin the site of the mutation in Thrombin Quick I, accounting for the low platelet-aggregating activity of this mutant thrombin. The relatively greater activity of Thrombin Quick I in stimulating thromboxane production suggested that anion binding exosite I is not involved in interaction of thrombin with a second, unidentified receptor/substrate. Since it has now been reported that the hexapeptide derived from the new amino terminus of PAR-I (TRAP-6) can stimulate thromboxane production by human platelets (Kinlough-Rathbone RL, Rand ML, Packham MA. Rabbit and rat platelets do not respond to thrombin receptor peptides that activate human platelets. Blood. 1993;82: 103-106).
The thrombin stimulates thromboxane production through two proteolytically activated receptors on the platelet surface. One pathway, which does not result in maximal thromboxane production, is stimulated and downregulated by TRAP through PAR-1/3. The second pathway, which is inhibited by genistein, apparently requires at least one tyrosine kinase but does not depend on a [Ca2+] flux (Henriksen RA, Samokhin GP, Tracy PB. Thrombin-induced thromboxane synthesis by human platelets. Properties of anion binding exosite I-independent receptor. Arterioscler Thromb Vase Biol. 1997 Dec;17(12):3519-26).
Through the activation of PAR-I, thrombin stimulates production of prostacyclin (Weksler, B. B., C. W. Ley, and E. A. Jaffe. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A23187. J. Clin. Invest. 62: 923-930, 1978), increase the cytosolic Ca2+ signal, and induce expression of cell surface adhesion proteins, P-selectin and intercellular adhesion molecule-1 (ICAM-I) (Weksler, B. B., C. W. Ley, and E. A. Jaffe. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A23187. J. Clin. Invest. 62: 923-930, 1978).
PAR-I is the major receptor responsible for mediating most of the proinflammatory and pro-fibrinolytic effects of thrombin. Once thrombin has interacted with its receptor, it exerts its cellular effects either directly or via the induction and release of secondary mediators, including classical growth factors, pro-inflammatory cytokines, and vasoactive peptides and amines (Sugama, Y., C. Tiruppathi, K. Janakidevi, T. T. Andersen, J. W. Fenton II, and A. B. Malik. Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. J. Cell Biol. 119: 935-944, 1992).
Thrombin also binds with high affinity to the platelet glycoprotein Ib (GPIb) that belongs to the leucine-rich repeat family of proteins (Chambers RC, Leoni P, Blanc-Brude OP, Wembridge DE, Laurent GJ. Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor- 1. J Biol Chem. 2000 Nov 10;275(45):35584-91). GPIb is a part of GPIb-K-V system, that mainly involved into process of platelet adhesion. GPIb binds thrombin with high affinity and contributes to platelet activation by the enzyme; however, there is no evidence that thrombin ligation to GpIb per se is able to trigger platelet activation. Results from available studies show that GpIb can function as a cof actor for PAR-I cleavage and activation in human platelets. In fact, by directly measuring the hydrolysis of PAR-I on intact platelets, it was possible to evaluate the effect of the inhibition of thrombin binding to GpIb on PAR-I cleavage. (Buchanan, S. T., and Gay, N. J. (1996) Prog. Biophys. MoI. Biol. 65, 1-44). But, GP Ib-IX alone, lacking V, is capable of nearly complete adhesive function and surface expression, and GPV is present in only half of the Ib-IX complexes (14). The platelets of GP V -/- mice, possessing only the Ib-IX form of the receptor, display nearly normal function, except for their modest, and perhaps entirely unexpected, increase in reactivity to thrombin (De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of PAR-I on intact platelets. J Biol Chem. 2001 Feb 16;276(7):4692-8. Epub 2000 Nov 17). This initial insight, GP V serves as an inhibitor of the platelet response to thrombin (Kahn, M. L. , Diacovo, T. G. , Bainton, D. R , Lanza, R , Trejo, J. & Coughlin, S. R. (1999) Blood 94, 4112-4121). Key reagents were protease-active thrombin (capable of activating both PARs and Ib-IX) as contrasted to protease-inactive thrombin (activating only Ib-TX/incapable of activating PARs) (Ramakrishnan, V. , Reeves, P. S. , DeGuzman, F. , Deshpande, U. , Ministri-Madrid, K. , DuBridge, R. B. & Phillips, D. R. (1999) Proc. Natl. Acad. Sci. USA 96, 13336-13341).
Preferred Embodiments of the Invention
One embodiment of the present invention is the use of a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula I, or pharmaceutically acceptable salt, solvate, racemate or enantiomer thereof for the treatment and/or prevention of Vascular Diseases and recurrence thereof.
Also preferred is the use of the combination of aspirin and a compound of formula I, or pharmaceutically acceptable salt, solvate, racemate or enantiomer thereof, in combination with one of either clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite, including low-molecular weight heparins, fondaparinux, direct thrombin inhibitors (including ximelegatran), and factor Xa inhibitors for the treatment and/or prevention of Vascular Diseases and recurrence thereof.
More preferred for the purpose of the invention is the use of a compound of formula I, or a pharmaceutically acceptable salt, solvate, racemate or enantiomer thereof, in combination with aspirin for the inhibition of the activity or activation of PAR-I and/or PAR-4 receptors for the treatment and/or prevention of Vascular Diseases. A preferred compound for the practice of the invention is 2-Acetoxy-5-(α- cyclopropylca-bonyl-2-fluorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine hydrochloride having the following formula:
Figure imgf000011_0001
Also preferred for the practice of the invention is the compound 2-Acetoxy-5-(oc- cyclopropylcarbonyl-2-fluorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine maleate, which has the following formula:
Figure imgf000011_0002
Also preferred for the practice of the invention is the active metabolite of the compound of formula I represented by the structure II:
Figure imgf000011_0003
π
The active metabolite H is a mixture of four enantiomers each of which has shown dose dependent anti-platelet aggregation ability, and thus useful for the practice of the invention. The RS enantiomer has been shown to be most potent and is therefore preferred. Also preferred for the practice of the invention is a prodrug of the compound of formula I represented by formulae IH and IV, their respective pharmaceutically acceptable salts, solvates, racemates or enantiomers thereof:
Figure imgf000012_0001
m
Figure imgf000012_0002
IV, and other conjugates, derivatives or homologs of compound I or π, which may readily cleave to form the active metabolite H Procedures and processes for making prodrugs described herein are known to one of skill in the art or may be arrived at with minimal experimentation or modifications from those procedures known to one of skill in the art. The compound clopidogrel is represented by the structure
Figure imgf000012_0003
The compound AZD6140 is represented by the structure
Figure imgf000013_0001
The compound cangrelor from the Medicines Company is represented by the structure
Figure imgf000013_0002
Preparing Compounds of the Invention
A 2-acetoxy-5-(oc-cyclopropylcarbonyl-2-fluorobenzyl)-4,5,6,7- tetrahydrothieno[3,2-c]pyridine or the acid addition salt has an asymmetric carbon in their molecule and in each compound two isomers having R and S configuration can exist. The present invention encompasses an individual isomer or a mixture of these isomers in optional proportions. An optically active isomer of 2-acetoxy-5-(α-cyclopropylcarbonyl- 2-fluorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine acid addition salt is prepared using an optically active starting material or is isolated from a racemic mixture of synthetically prepared 2-acetoxy-5-(α-cyclopropylcarbonyl-2-fluorobenzyl)-4,5, 6,7- tetrahydrothieno[3,2-c]pyridine acid addition salt by a conventional optical resolution.
Under certain conditions when a (2~acetoxy-5-(α-cyclopropylcarbonyl-2- fluorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine acid addition salt is allowed to stand in contact with the atmosphere or is recrystallized, it may absorb water or may take up water to form a hydrate. The present invention encompasses these hydrates.
The compound of formula I may be prepared by a variety of methods, particularly those disclosed in U.S. Patent No. 5,288,726, the entire content of which is incorporated herein by reference. The acid addition salts of the compound of formula I may be prepared following procedures disclosed in PCT application WO 02/04461, published January 17, 2002, now U.S patent 6,693,115.
Procedures and processes for making other compounds of the invention are known to one of skill in the art based on publications including but not limited to those cited herein and which are hereby incorporated by reference. For example, procedures for preparing clopidogrel are discloseded or may be adduced by one of skill in the art from disclosures in US patents 4,529,596, 4,847,265, 5,576,328, and 6,429,210Bl all of which are incorporated herein by reference. Procedures for preparing Cangrelor and/or related analogs are disclosed in one or more of PCT international publications WO 94/18216, WO 92/17488, WO 98/28009, WO 99/02542, WO 01/39781, and related publications and/or references therein.
Procedures for preparaing AZD6140 and/or.related analogs are disclosed in one or more of PCT international publications WO 00/034283, WO 01/092262, WO 01/092263 and related publications and/or references therein.
Method of Using the Invention
During a substudy of samples from a platelet inhibition study comparing the compound of formula I (prasugrel) versus clopidogrel in patients undergoing coronary stenting, the inventors observed that prasugrel in particular and ADP inhibitors including clopidegrel have beneficial effects on PAR-I and PAR-4 receptor activities. The study sought to compare the antiplatelet properties of prasugrel and clopidogrel in the frame of a Phase 2 randomized trial.
Specifically, nine patients undergoing coronary stenting were randomized to one of three arms of prasugrel (40-60-60rng loading, and 7.5-10-15mg maintenance daily dose), or clopidogrel (300 mg/75mg). Aspirin and GP Hb/IIIa inhibitors were allowed. Platelet activity was assessed at baseline, at 4, and 24 hours, and at 30 days after stent implantation and samples taken were analyzed for various markers of vascular disease including PARl/Par-4 inhibition. Results are shown in table I.
Table 1 Results (Flow Cytometry Data)
Figure imgf000015_0001
Figure imgf000016_0001
Independent of the dosing regimen, patients treated with prasugrel exhibited more potent platelet inhibition as determined by ADP-, and collagen-induced aggregation, Ultegra ® Analyzer, and surface expression of PECAM-I, GPπb/HIa antigen, and activity with PAC-I antibody, GPIb, P-selectin, CD40-ligand, GP37, and thrombospondin receptor when compared with those treated with clopidogrel, hence the particular preference for the use of Prasugrel in the practice of the present invention. Applicants believe the above results are significant and establish a correlation between use of CS-747 (prasugrel) and inhibition of the activity or activation of PAR-I and/or PAR-4 receptors. To a lesser degree, a similar correlation is established between use of Clopidogrel, the active ingredient in Plavix/Iscover, and PAR-l/PAR-4 expression. The correlations or trends shown in table 1 are independent of aspirin or Gb-I Ib inhibitor use by some patients at baseline. Confounding effects by aspirin or GB-Hb/IHA use at baseline should be absent at 30 days.
The advantages to be obtained by the use of a compound of formula I, other compound(s) of the invention or a combination of compounds of the invention include simultaneous platelet aggregation inhibition and inhibition of PAR-l/PAR-4 receptor expression. Thus, the invention provides a compound of formula I (Prasugrel) or other compound of the invention disclosed herein singly or in combination with other ADP inhibitors as a potent dual anticoagulant and anti thrombotic agent. Moreover, additional advantage is to be gained by the ability of Prasugrel to be delivered orally either as an antiplatelt agent, an anticoagulant or for patients where it is indicated, as both an antiplatelet agent and an anticoagulant.
The combination of a compound of formula I, or other compound of the invention and aspirin for the purpose of practicing the invention may be accomplished by having individual or unit doses of the compound of formula I or other compound of the invention and aspirin or by having a combined prepackaged or pre-formulated dose of aspirin and the compound of formula I or other compound of the invention.
The specific dose of a compound of the present invention administered to obtain therapeutic or prophylactic effect will, of course, be determined by the particular circumstances of the patient, including, for example, the route of administration and the particular Vascular Disease being treated. Typical doses will contain a non-toxic dosage level of from about 0.01 mg/kg to about 50 mg/kg of body weight of a compound of the invention. More preferred doses of the compound(s) of the invention singly or in combination as tablets or capsules contain from 5 mg to 100 mg of Active Ingredient per dose to an average weight patient or calibrated for the patient's weight and health characteristics. The frequency of dosing and length of dosing are determinations to be made by the treating physician(s) to achieve maximum efficacy for the particular patient and circumstance.
The co-administration of aspirin in combination or conjunction with as compound or compounds of the invention to obtain therapeutic or prophylactic effect will of course be determined by the particular circumstances of the patient. In general the amount of aspirin for the purpose of the present invention is about that generally approved for the particular patient population, e.g. from about 75 mg to about 300 mg of aspirin 1 to 3 times daily.
For the pharmaceutical formulations of compound I with or without aspirin or other compound of the invention, any suitable carrier known to one of skill in the art may be used. In such a formulation, the carrier may be a solid, liquid, or mixture of a solid and a liquid. For example, the Active Ingredient may be dissolved in a suitable solvent at a concentration of about 2 to 200mg/mL in a 4% dextrose/0.5% Na citrate aqueous solution. Solid form formulations for impregnation on the stent include powders and pastes. A solid carrier can be one or more substance, which may also act as lubricants, solubilizers, suspending agents, and pharmaceutically acceptable adhesive agents.
In powders, the carrier is a finely divided solid having the necessary binding properties in suitable proportions, which is in an admixture with the finely divided Active Ingredient. The powders will typically be sprayed on optionally followed by spray-on of annealing or sealing agents. The powders preferably contain from about 1 to about 99 weight percent of the Active Ingredient. Suitable solid carriers are magnesium carbonate, magnesium stearate, talc, sugar lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethyl cellulose, pharmaceutically acceptable low melting waxes, and pharmaceutically acceptable adhesives. The Active Ingredient may be dissolved or suspended in a pharmaceutically acceptable carrier, such as sterile water, sterile organic solvent or a mixture of both. The Active ingredient may also be dissolved in a suitable organic solvent, for instance aqueous propylene glycol. Dispersing the finely divided Active ingredient in aqueous starch or sodium carboxymethyl cellulose solution, or binder or pharmaceutically acceptable adhesive may result in other compositions. Impregnate the solution or suspension on a stent by coating the admixture of active ingredient on the stent and allowing the solvent to evaporate slowly under vacuum until nearly all solvent or liquid is evaporated.
The following pharmaceutical formulations are illustrative only and are not intended to limit the scope of the invention in any way. "Active ingredient", refers to a compound according to Formula (I) and/or other compound of the invention optionally including aspirin which is/are to be administered to a patient in need thereof. Slow Release Formulation 1.
Hard gelatin powder is prepared using the following ingredients:
Quantity (mg/capsule)
Active ingredient 20
Starch, dried 200
Magnesium stearate K)
Total 230 mg
Formulation 2
A solid composition of formula I is prepared using the ingredients below:
Quantity (mg/tablet)
Active ingredient 5
Cellulose, microcrystalline 400
Silicon dioxide, fumed 10
Stearic acid 5
Total 420 mg The components are blended and compressed to form a solid each weighing 425 mg which is then tableted or capsuled or admixed with a pharmaceutically acceptable adhesion agent. Formulation 3
A solid composition of formula I is prepared using the ingredients below:
Quantity (mg/tabletf)
Active ingredient 10
Cellulose, microcrystalline 400
Silicon dioxide, fumed 10
Stearic acid 5
Total 425 mg
The components are blended and compressed to form a solid each weighing 425 mg that is then tableted or capsuled or admixed with a pharmaceutically acceptable adhesion agent. Formulation 4
A solid composition of formula I is prepared using the ingredients below:
Quantity (mg/tablet)
Active ingredient 20
Cellulose, microcrystalline 400
Silicon dioxide, fumed 10
Stearic acid 5_
Total 435 mg
The components are blended and compressed to form a solid each weighing 425 mg. The solid is then tableted or capsuled or admixed with a pharmaceutically acceptable adhesion agent.

Claims

WE CLAIM:
1. Use of a compound of formula I
Figure imgf000020_0001
for the treatment of and/or prevention of coagulation induced vascular diseases and recurrence thereof, in a patient in need thereof.
2. Use of PAR-l/PAR-4 inhibitors selected from the group consisting of clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite for the treatment of coagulation induced vascular diseases.
3. The method of claim 1, wherein the ADP-receptor inhibitor or thienopyridine is administered orally, by injection, intravenously, intramuscularly, subcutaneously, parenterally, nasally, by inhalation, by implant, or by suppository.
4. A method of treating an individual at risk for a vascular event, disease or disorder, comprising administering to the individual an effective amount of a platelet ADP-receptor inhibitor, or thienopyridine wherein the ADP-receptor inhibitor, or thienopyridine inhibits the expression of platelet PAR-l/PAR-4 receptor of the individual, and the ADP-receptor inhibitor is selected from the group consisting of prasugrel, a prasugrel metabolite, clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite.
5. The method of claim 4, wherein the vascular event, disease or disorder is selected from a group consisting of: myocardial infarction, angina, pulmonary embolism, transient ischemic attack, deep vein thrombosis, thrombotic re-occlusion subsequent to a coronary intervention procedure, heart surgery or vascular surgery, peripheral vascular thrombosis, vascular diseases associated with diabetes mellitus, and/or Syndrome X (metabolic syndrome), heart failure, vascular complications of diabetes, and a disorder in which a narrowing of at least one coronary artery occurs.
6. The method of claim 4, wherein the ADP-receptor inhibitor or thienopyridine is administered orally, by injection, intravenously, intramuscularly, subcutaneously, parenterally, nasally, by inhalation, by implant, or by suppository.
7. A method of treating an individual with vascular disease comprising administering a therapeutically effective amount of at least one ADP-receptor inhibitor or thienopyridine in a carrier to the individual, wherein the ADP-receptor inhibitor or thienopyridine prevents the over expression of the platelet PAR-l/PAR-4 receptor of the individual, and the ADP-receptor inhibitor or thienopyridine is selected from the group consisting of prasugrel, a prasugrel metabolite, clopidogrel, a clopidogrel metabolite, ticlopidine, a ticlopidine metabolite, cangrelor, a cangrelor metabolite, AZD-6140, and an AZD-6140 metabolite.
PCT/US2006/030831 2005-08-19 2006-08-08 USE OF PAR- l/PAR- 4 INHIBITORS FOR TREATING OR PREVENTING VASCULAR DISEASES WO2007024472A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/996,380 US20080214599A1 (en) 2005-08-19 2006-08-08 Use of Par-1/Par-4 Inhibitors for Treating or Preventing Vascular Diseases
EP06789565A EP1940399A2 (en) 2005-08-19 2006-08-08 Use of par-i/par- 4 inhibitors for treating or preventing vascular diseases
JP2008526989A JP2009504737A (en) 2005-08-19 2006-08-08 Use of PAR-1 / PAR-4 inhibitors for the treatment or prevention of vascular diseases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70993705P 2005-08-19 2005-08-19
US60/709,937 2005-08-19

Publications (2)

Publication Number Publication Date
WO2007024472A2 true WO2007024472A2 (en) 2007-03-01
WO2007024472A3 WO2007024472A3 (en) 2007-06-07

Family

ID=37517308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/030831 WO2007024472A2 (en) 2005-08-19 2006-08-08 USE OF PAR- l/PAR- 4 INHIBITORS FOR TREATING OR PREVENTING VASCULAR DISEASES

Country Status (4)

Country Link
US (1) US20080214599A1 (en)
EP (1) EP1940399A2 (en)
JP (1) JP2009504737A (en)
WO (1) WO2007024472A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009007675A2 (en) * 2007-07-11 2009-01-15 Cardoz Ab Combination for use in the treatment of atherosclerosis comprising a mast cell inhibitor and a p2 gamma 12 antagonist
EP2112155A1 (en) 2008-04-25 2009-10-28 Sandoz AG Hydrogensulfate salt of 2-acetoxy-5-(a-cyclopropylcarbonyl-2-fluorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine and its preparation
WO2009140092A1 (en) * 2008-05-13 2009-11-19 The Medicines Company Maintenance of platelet inhibition during antiplatelet therapy
FR2932387A1 (en) * 2008-06-16 2009-12-18 Cll Pharma ORAL COMPOSITION CONTAINING AN ANTI-PLAQUE AGENT OF THE FAMILY OF THIENOPYRIDINES IN THE BASIC FORM.
CN102268013A (en) * 2011-08-24 2011-12-07 天津药物研究院 Thiadiazole derivative as well as preparation method and application thereof
CN103193792A (en) * 2013-03-13 2013-07-10 广东中科药物研究有限公司 New compound for treating ischemic cardiovascular and cerebrovascular diseases
EP2633857A1 (en) * 2009-12-23 2013-09-04 Ratiopharm GmbH Solid pharmaceutical dosage form of ticagrelor and acetylsalicylic acid
US8716261B2 (en) 2008-05-13 2014-05-06 The Medicines Company Maintenance of platelet inhibition during antiplatelet therapy
US8759316B2 (en) 2008-05-13 2014-06-24 The Medicines Company Maintenance of platelet inhibition during antiplatelet therapy
EP2398468B1 (en) 2009-02-17 2016-11-30 KRKA, D.D., Novo Mesto Pharmaceutical compositions comprising prasugrel base or its pharmaceutically acceptable acid addition salts and processes for their preparation
US9623045B2 (en) 2007-04-27 2017-04-18 Cydex Pharmaceuticals, Inc. Formulations containing clopidogrel and sulfoalkyl ether cyclodextrin and methods of use
KR101743591B1 (en) * 2009-05-13 2017-06-20 사이덱스 파마슈티칼스, 인크. Pharmaceutical compositions comprising prasugrel and cyclodextrin derivatives and methods of making and using the same
EA028885B1 (en) * 2009-11-11 2018-01-31 Чиези Фармачеутичи С.П.А. Methods of treating or preventing stent thrombosis and myocardial infarction (embodiments)
US10231987B2 (en) 2008-05-13 2019-03-19 Chiesi Farmaceutici S.P.A. Maintenance of platelet inhibition during antiplatelet therapy
US10376532B2 (en) 2009-11-11 2019-08-13 Chiesi Farmaceutici, S.P.A. Methods of treating, reducing the incidence of, and/or preventing ischemic events
US11260071B2 (en) 2017-06-23 2022-03-01 Chiesi Farmaceutici S.P.A. Method of preventing of systemic-to-pulmonary-artery shunt thrombosis
US11351187B2 (en) 2009-11-11 2022-06-07 Chiesi Farmaceutici S.P.A. Methods of treating, reducing the incidence of, and/or preventing ischemic events

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090297576A1 (en) * 2008-06-02 2009-12-03 Medtronic Vascular, Inc. Local Delivery of PAR-1 Antagonists to Treat Vascular Complications
EP2990051B1 (en) 2009-04-10 2016-10-26 Tufts Medical Center, Inc. Par-1 activation by metalloproteinase-1 (mmp-1)
US20110144049A1 (en) * 2009-10-21 2011-06-16 Serebruany Victor L Treating Cardiac Arrhythmias, Heart Failure, Peripheral Artery Disease and Stroke with Cyclopentyl-Triazolo-Pyrimidine or Derivative Thereof
JP2013032289A (en) * 2009-10-28 2013-02-14 Daiichi Sankyo Co Ltd Wax stable formulation
CN102885774B (en) * 2011-07-18 2014-03-12 李勤耕 Prasugrel composition and preparation method thereof
EA201792085A1 (en) * 2015-04-30 2018-05-31 Зе Реджентс Оф Зе Юниверсити Оф Мичиган MIXED DISULPHIDE CONJUGATES OF THYENOPYRIDINE COMPOUNDS AND THEIR APPLICATION

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0934928A1 (en) * 1996-08-28 1999-08-11 Sankyo Company Limited Cyclic amine derivatives
EP1350511A1 (en) * 2000-12-25 2003-10-08 Sankyo Company, Limited Medicinal compositions containing aspirin
US6693115B2 (en) * 2000-07-06 2004-02-17 Sankyo Company, Limited Acid addition salts of hydropyridine derivatives
WO2004098713A2 (en) * 2003-05-05 2004-11-18 Eli Lilly And Company Treating cardiovascular diseases with a compound of formula (i) (cs 747 - prasugrel; rn 150322-43-4)
US20050215618A1 (en) * 2004-03-29 2005-09-29 Heartdrug Research, L.L.C. Treating vascular events with statins by inhibiting PAR-1 and PAR-4

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049397A1 (en) * 1996-06-26 1997-12-31 Sankyo Company, Limited Novel medicinal compositions of hydropyridines
WO2003106628A2 (en) * 2002-06-17 2003-12-24 Bristol-Myers Squibb Company Benzodiazepine inhibitors of mitochondial f1f0 atp hydrolase and methods of inhibiting f1f0 atp hydrolase
JP5557410B2 (en) * 2004-07-13 2014-07-23 第一三共株式会社 Preventive and therapeutic agent for thrombus and embolism by oral administration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0934928A1 (en) * 1996-08-28 1999-08-11 Sankyo Company Limited Cyclic amine derivatives
US6693115B2 (en) * 2000-07-06 2004-02-17 Sankyo Company, Limited Acid addition salts of hydropyridine derivatives
EP1350511A1 (en) * 2000-12-25 2003-10-08 Sankyo Company, Limited Medicinal compositions containing aspirin
WO2004098713A2 (en) * 2003-05-05 2004-11-18 Eli Lilly And Company Treating cardiovascular diseases with a compound of formula (i) (cs 747 - prasugrel; rn 150322-43-4)
US20050215618A1 (en) * 2004-03-29 2005-09-29 Heartdrug Research, L.L.C. Treating vascular events with statins by inhibiting PAR-1 and PAR-4

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI 23 February 2006 (2006-02-23), Derwent Publications Ltd., London, GB; Class 061,page 8, AN 2006-169196 XP002412659 MORISHIMA Y, WATANABE K.: "Prophylactic and therapeutic agent of thrombus/embolus by oral administration" & JP 2006 052208 A (DAIICHI SEIYAKU CO) 23 February 2006 (2006-02-23) *
DATABASE WPI 31 December 1997 (1997-12-31), Derwent Publications Ltd., London, GB; Class 980,page 7, AN 1998-076898 XP002412658 ASAI F. ET AL.: "Novel medicinal compositions of hydropyridines" & WO 97/49397 A (SANKYO CO LTD; UBE IND LTD) 31 December 1997 (1997-12-31) -& WO 97/49397 A (SANKYO CO [JP]; UBE INDUSTRIES [JP]; ASAI FUMITOSHI [JP]; OGAWA TAKETO) 31 December 1997 (1997-12-31) *
NIITSU YOICHI ET AL: "Pharmacology of CS-747 (Prasugrel, LY640315), a novel, potent antiplatelet agent with in vivo P2Y(12) receptor antagonist activity" SEMINARS IN THROMBOSIS AND HEMOSTASIS, vol. 31, no. 2, April 2005 (2005-04), pages 184-194, XP008072432 ISSN: 0094-6176 *
SEREBRUANY V L ET AL: "Platelet inhibition with prasugrel (CS-747) compared with clopidogrel in patients undergoing coronary stenting: the subset from the JUMBO study." POSTGRADUATE MEDICAL JOURNAL. JUN 2006, vol. 82, no. 968, June 2006 (2006-06), pages 404-410, XP008072434 ISSN: 1469-0756 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512697B2 (en) 2007-04-27 2019-12-24 Cydex Pharmaceuticals, Inc. Formulations containing clopidogrel and sulfoalkyl ether cyclodextrin and methods of use
US10034947B2 (en) 2007-04-27 2018-07-31 Cydex Pharmaceuticals, Inc. Formulations containing clopidogrel and sulfoalkyl ether cyclodextrin and methods of use
US9623045B2 (en) 2007-04-27 2017-04-18 Cydex Pharmaceuticals, Inc. Formulations containing clopidogrel and sulfoalkyl ether cyclodextrin and methods of use
WO2009007675A3 (en) * 2007-07-11 2009-03-12 Cardoz Ab Combination for use in the treatment of atherosclerosis comprising a mast cell inhibitor and a p2 gamma 12 antagonist
WO2009007675A2 (en) * 2007-07-11 2009-01-15 Cardoz Ab Combination for use in the treatment of atherosclerosis comprising a mast cell inhibitor and a p2 gamma 12 antagonist
EP2112155A1 (en) 2008-04-25 2009-10-28 Sandoz AG Hydrogensulfate salt of 2-acetoxy-5-(a-cyclopropylcarbonyl-2-fluorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine and its preparation
US8759316B2 (en) 2008-05-13 2014-06-24 The Medicines Company Maintenance of platelet inhibition during antiplatelet therapy
US11510934B2 (en) 2008-05-13 2022-11-29 Chiesi Farmaceutici S.P.A. Maintenance of platelet inhibition during antiplatelet therapy
EP2276541A4 (en) * 2008-05-13 2012-05-09 Medicines Co Maintenance of platelet inhibition during antiplatelet therapy
US10744149B2 (en) 2008-05-13 2020-08-18 Chiesi Farmaceutici S.P.A. Maintenance of platelet inhibition during antiplatelet therapy
CN102089035A (en) * 2008-05-13 2011-06-08 医药公司 Maintenance of platelet inhibition during antiplatelet therapy
US8716261B2 (en) 2008-05-13 2014-05-06 The Medicines Company Maintenance of platelet inhibition during antiplatelet therapy
EP2276541A1 (en) * 2008-05-13 2011-01-26 The Medicines Company Maintenance of platelet inhibition during antiplatelet therapy
US8871736B2 (en) 2008-05-13 2014-10-28 The Medicines Company Maintenance of platelet inhibition during antiplatelet therapy
US10231987B2 (en) 2008-05-13 2019-03-19 Chiesi Farmaceutici S.P.A. Maintenance of platelet inhibition during antiplatelet therapy
US9320754B2 (en) 2008-05-13 2016-04-26 The Medicines Company Maintenance of platelet inhibition during antiplatelet therapy
WO2009140092A1 (en) * 2008-05-13 2009-11-19 The Medicines Company Maintenance of platelet inhibition during antiplatelet therapy
US9029390B2 (en) 2008-06-16 2015-05-12 Cll Pharma Oral composition containing an antiplatelet agent of the thienopyridine family in the form of free base
FR2932387A1 (en) * 2008-06-16 2009-12-18 Cll Pharma ORAL COMPOSITION CONTAINING AN ANTI-PLAQUE AGENT OF THE FAMILY OF THIENOPYRIDINES IN THE BASIC FORM.
EP2398468B1 (en) 2009-02-17 2016-11-30 KRKA, D.D., Novo Mesto Pharmaceutical compositions comprising prasugrel base or its pharmaceutically acceptable acid addition salts and processes for their preparation
KR101991367B1 (en) 2009-05-13 2019-06-21 사이덱스 파마슈티칼스, 인크. Pharmaceutical compositions comprising prasugrel and cyclodextrin derivatives and methods of making and using the same
KR20180117205A (en) * 2009-05-13 2018-10-26 사이덱스 파마슈티칼스, 인크. Pharmaceutical compositions comprising prasugrel and cyclodextrin derivatives and methods of making and using the same
KR101743591B1 (en) * 2009-05-13 2017-06-20 사이덱스 파마슈티칼스, 인크. Pharmaceutical compositions comprising prasugrel and cyclodextrin derivatives and methods of making and using the same
US10111863B2 (en) 2009-05-13 2018-10-30 Cydex Pharmaceuticals, Inc. Pharmaceutical compositions comprising prasugrel and cyclodextrin derivatives and methods of making and using the same
KR101912709B1 (en) 2009-05-13 2018-10-30 사이덱스 파마슈티칼스, 인크. Pharmaceutical compositions comprising prasugrel and cyclodextrin derivatives and methods of making and using the same
US10376532B2 (en) 2009-11-11 2019-08-13 Chiesi Farmaceutici, S.P.A. Methods of treating, reducing the incidence of, and/or preventing ischemic events
US9925265B2 (en) 2009-11-11 2018-03-27 Chiesi Farmaceutici S.P.A. Methods of treating or preventing stent thrombosis
EA028885B1 (en) * 2009-11-11 2018-01-31 Чиези Фармачеутичи С.П.А. Methods of treating or preventing stent thrombosis and myocardial infarction (embodiments)
US11147879B2 (en) 2009-11-11 2021-10-19 Chiesi Farmaceutici S.P.A Methods of treating or preventing stent thrombosis
US11351187B2 (en) 2009-11-11 2022-06-07 Chiesi Farmaceutici S.P.A. Methods of treating, reducing the incidence of, and/or preventing ischemic events
US11633419B2 (en) 2009-11-11 2023-04-25 Chiesi Farmaceutici S.P.A. Methods of treating, reducing the incidence of, and/or preventing ischemic events
EP2515871B1 (en) 2009-12-23 2015-09-23 ratiopharm GmbH Solid pharmaceutical dosage form of ticagrelor
EP2633857A1 (en) * 2009-12-23 2013-09-04 Ratiopharm GmbH Solid pharmaceutical dosage form of ticagrelor and acetylsalicylic acid
EP2633857B1 (en) 2009-12-23 2015-08-12 ratiopharm GmbH Solid pharmaceutical dosage form of ticagrelor and acetylsalicylic acid
CN102268013A (en) * 2011-08-24 2011-12-07 天津药物研究院 Thiadiazole derivative as well as preparation method and application thereof
CN103193792A (en) * 2013-03-13 2013-07-10 广东中科药物研究有限公司 New compound for treating ischemic cardiovascular and cerebrovascular diseases
US11260071B2 (en) 2017-06-23 2022-03-01 Chiesi Farmaceutici S.P.A. Method of preventing of systemic-to-pulmonary-artery shunt thrombosis

Also Published As

Publication number Publication date
US20080214599A1 (en) 2008-09-04
JP2009504737A (en) 2009-02-05
WO2007024472A3 (en) 2007-06-07
EP1940399A2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
WO2007024472A2 (en) USE OF PAR- l/PAR- 4 INHIBITORS FOR TREATING OR PREVENTING VASCULAR DISEASES
US5393772A (en) Use of, and method of treatment using, hydroxycarbazole compounds for inhibition of smooth muscle migration and proliferation
JP4237822B2 (en) Methods and compositions for the treatment of allergic rhinitis and other diseases using descarboethoxyloratadine
KR100692934B1 (en) Medicinal compositions containing aspirin
SK170999A3 (en) Compositions for treating and preventing arterial thrombosis and use of a factor xa inhibitor on its own and/or combined with a platelet antiaggregating agent
EA015122B1 (en) New pharmaceutical compositions for treatment of thrombosis
US20030032618A1 (en) Pharmaceutical combinations
KR20160108611A (en) Method of treating atrial fibrillation
US20040146498A1 (en) Pharmaceutical combinations
BRPI0620641A2 (en) Uses of Thrombin Receptor Antagonist Compounds in Prophylaxis of Cardiopulmonary Surgery Complications
JP2023175694A (en) Composition of 2,4,6-trifluoro-n-[6-(1-methyl-piperidin-4-carbonyl)-pyridin-2-yl]-benzamide
AU2002305952A1 (en) Pharmaceutical combinations
AU2006259538A1 (en) Dosage regimen for prasugrel
KR20020075797A (en) Remedies for endothelin-induced diseases
Michel Treatment of myocardial ischemia
US20190046466A1 (en) Composition and method for inhibiting platelet aggregation
TW200946113A (en) PAI-1 expression and activity inhibitors for the treatment of ocular disorders
EP1333855A1 (en) Use of melagatran for manufacture of a medicament for the treatment of ischemic disorders
AU2001225625A1 (en) Use of melagatran for manufacture of a medicament for the treatment of ischemic disorders
WO2011122899A2 (en) Pharmaceutical composition for inhibiting platelet aggregation or for thrombolysis
WO2002028388A2 (en) Use of mek1 inhibitors as protective agents against damage due to ischemia
TW200920354A (en) Association between an anti-atherothrombotic compound and an angiotensin-converting enzyme inhibitor
CA2285350A1 (en) Treatment for pulmonary fibrosis
US7662805B2 (en) Oral antidepressant formulation
KR20050074598A (en) An acqueous pharmaceutical formulation comprising the thrombin inhibitor melagatran and use of the formulation in the manufacture of a medicament for use by nasal administration in treating thromboembolism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008526989

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11996380

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006789565

Country of ref document: EP