WO2007019088A1 - Polypropylene-based wire and cable insulation or jacket - Google Patents

Polypropylene-based wire and cable insulation or jacket Download PDF

Info

Publication number
WO2007019088A1
WO2007019088A1 PCT/US2006/029491 US2006029491W WO2007019088A1 WO 2007019088 A1 WO2007019088 A1 WO 2007019088A1 US 2006029491 W US2006029491 W US 2006029491W WO 2007019088 A1 WO2007019088 A1 WO 2007019088A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
polypropylene
conductive device
ethylene
copolymer
Prior art date
Application number
PCT/US2006/029491
Other languages
French (fr)
Inventor
John Klier
David P. Wright
Bharat I. Chaudhary
Original Assignee
Dow Global Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Inc. filed Critical Dow Global Technologies Inc.
Priority to MX2008001750A priority Critical patent/MX2008001750A/en
Priority to EP06800483A priority patent/EP1925004A1/en
Priority to US11/997,787 priority patent/US20080227887A1/en
Priority to JP2008525057A priority patent/JP2009503801A/en
Priority to CA002617902A priority patent/CA2617902A1/en
Publication of WO2007019088A1 publication Critical patent/WO2007019088A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers

Definitions

  • This invention relates to insulation and jackets for electrically conductive devices.
  • the invention relates to polypropylene-based insulation and jackets while in another aspect, the invention relates to polypropylene-based insulation and jackets for wire and cable.
  • the invention relates to insulated wire and cable with improved crush resistance.
  • typically comprise a metal core surrounded by one or more layers or sheaths of polymeric material.
  • USP 5,246,783 is illustrative.
  • the core is typically copper or aluminum surrounded by a number of different polymeric layers, each serving a specific function, e.g., a semi-conducting shield layer, an insulation layer, a metallic tape shield layer and a polymeric jacket.
  • Nonmetallic cores are also known, e.g., the variously metallically doped silicon dioxide cores of fiber optic cables.
  • Cables may comprise one or more polymeric layers. Specific layers can provide more than one function and/or the function(s) of two or more layers can overlap, e.g., an abuse- resistance jacket can also serve as an insulation layer, and both an insulation layer and outer- jacket can provide abuse-resistance.
  • low voltage wire and cable (rated for 5 or less kilovolts (Kv)), often are surrounded or encased by a single polymeric layer that serves as both an insulating layer and an abuse-resistant jacket, while medium (rated for more than 5 to 69 Kv), high (rated for more than 69 to 225 Kv) and extra-high (rated for more than 225 Kv) voltage wire and cable often are surrounded or encased by at least separate insulating and jacket layers.
  • Kv kilovolts
  • Wire and cable jackets need to exhibit, among others properties, good water and solvent resistance, flexibility and crush-resistance and for this purpose, wire and cable jackets are often made from silane-crosslinked polyethylene.
  • USP 4,144,202 is illustrative of silane-crosslinking of ethylene polymers. Moreover, some of these materials are more difficult and expensive to fabricate than others.
  • the fabrication of insulation or jacket sheaths for medium voltage power cables often requires the melt processing of polymeric compositions containing peroxide. These materials subsequently require exposure to heat in a continuous vulcanization tube to effect crosslinking of the polymer.
  • Important in this process is the avoidance of scorch, i.e., premature crosslinking, during melt processing, e.g., extrusion. Typically this is avoided by extruding at relatively low temperatures above the melting point of the polymer, e.g., 140C for low density polyethylene used for the insulation layer of the cable, and employing peroxides that decompose slowly at this temperature.
  • Polypropylene is a well-known and long-established polymer of commerce. It is widely available both as a homopolymer and as a copolymer. Both homopolymers and copolymers are
  • MILWAUKEE ⁇ 1268056.1 2 of 25 Express Mail No. EV377672071US available with a wide variety of properties as measured by, among other things, molecular weight, molecular weight distribution (MWD or M w /M n ), melt flow rate (MFR), flexural modulus, crystallinity, tacticity and if a copolymer, then comonomer type, amount and distribution.
  • Polypropylene can be manufactured in a gas, solution, slurry or suspension polymerization process using any one or more of a number of known catalysts, e.g., Zeigler-Natta; metallocene; constrained geometry; nonmetallocene, metal-centered, pyridinyl ligand; etc.
  • Polypropylene has found usefulness in a wide variety of applications of which some of the more conventional include film, fiber, automobile and appliance parts, rope, cordage, webbing and carpeting.
  • polypropylene is a known component in many compositions used as adhesives, fillers and the like. Like any other polymer, the ultimate end use of a particular polypropylene will be determined by its various chemical and physical properties. To date however, polypropylene has not found wide usage as an insulation or jacket cover for wire and cable, particularly power cables.
  • the invention is an electrically conductive device, e.g., a wire or cable, having a crush resistance of at least about 18 pounds per square inch (psi), the device comprising:
  • An electrically conductive member comprising at least one electrically conductive substrate, e.g., a wire strand or a pair of twisted wire strands;
  • At least one electric-insulating member substantially surrounding the electrically conductive member e.g., at least one polymer coating or layer acting as a jacket and/or insulation layer, the electric-insulating member comprising a polymer blend, the polymer blend comprising: 1. At least about 50 weight percent of a polypropylene, and
  • the electrically conductive member comprises copper or aluminum
  • the elastomer comprises at least one copolymer of ethylene and an ⁇ -olefin, e.g., a copolymer of ethylene and octene.
  • the polypropylene can be either a homopolymer or copolymer, or a blend comprising both a homopolymer and copolymer, and prepared by any polymerization process.
  • the polymer blend can be either an in-reactor or post-reactor blend.
  • the invention is an electrically conductive device in which the elastomer component of the polymer blend is preferably an ethylene/ ⁇ -olef ⁇ n copolymer, and the propylene component of the polymer blend is prepared by nonmetallocene, metal-centered, pyridinyl catalysis, and the blend exhibits (i) a hot creep of less than 200% at 150C, (ii) a dielectric constant at 60 hertz (Hz) and 9OC of less than about 2.5, (iii) a dissipation factor at 60
  • the blend also exhibits at least one of a (v) tensile strength of less than about 6,000 pounds per square inch (psi), and (vi) tensile elongation greater than about 50%.
  • the polypropylene component is a homopolymer.
  • Figure 1 is a bar graph comparing the tensile strength and percent elongation of the compression molded plaques of Comparative Examples 4-5 and Examples 4-6.
  • Figure 2 is a bar graph comparing the hot creep of the compression molded plaques of Comparative Example 4 and Examples 5-6.
  • Figure 3 is a line graph comparing the dielectric constant of the compression molded plaques of Comparative Examples 4-5 and Examples 4-6.
  • Figure 4 is a line graph comparing the dissipation factor of the compression molded plaques of Comparative Examples 4-5 and Examples 4-6.
  • Figure 5 is a bar graph comparing the AC breakdown strength of the compression molded plaques of Comparative Examples 4-5 and Examples 4-6.
  • the elastomer component of the polymer blend used in the practice of this invention includes ethylene copolymers and rubbers, thermoplastic urethanes, polychloroprene, nitrile MILWAUKEEU268056 . 1 4 of 25 Express Mail No. EV377672071US rubbers, butyl rubbers, polysulf ⁇ de rubbers, cis-l,4 ⁇ polyisoprene, silicone rubbers and the like.
  • Copolymers of ethylene (CH 2 CH 2 ) and at least one C 3 -C 20 ⁇ -olefm (preferably an aliphatic ⁇ - olefin) comonomer and/or a polyene comonomer, e.g., a conjugated diene, a nonconjugated diene, a triene, etc., are the preferred elastomer component of this invention.
  • the term "copolymer” includes polymers comprising units derived from two or more monomers, e.g.
  • copolymers such as ethylene/propylene, ethylene/octene, propylene/octene, etc.; terpolymers such as ethylene/propylene/octene, ethylene/propylene/butadiene; tetrapolymers such as ethylene/propylene/octene/butadiene; and the like.
  • the C 3 -C 20 ⁇ -olefms include propene, 1-butene, 4-methyl-l-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1 -tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
  • the ⁇ -olef ⁇ n can also contain a cyclic structure such as cyclohexane or cyclopentane, resulting in an ⁇ -olefin such as 3-cyclohexyl-l -propene (allyl- cyclohexane) and vinyl-cyclohexane.
  • a cyclic structure such as cyclohexane or cyclopentane
  • 3-cyclohexyl-l -propene allyl- cyclohexane
  • vinyl-cyclohexane vinyl-cyclohexane
  • certain cyclic olefins such as norbornene and related olefins, are ⁇ -olef ⁇ ns and can be used in place of some or all of the ⁇ -olefms described above.
  • styrene and its related olefins are ⁇ -olefins for purposes of this invention.
  • Polyenes are unsaturated aliphatic or alicyclic compounds containing more than four carbon atoms in a molecular chain and having at least two double and/or triple bonds, e.g., conjugated and nonconjugated dienes and trienes.
  • nonconjugated dienes include aliphatic dienes such as 1 ,4-pentadiene, 1,4-hexadiene, 1 ,5-hexadiene, 2-methyl-l,5-hexadiene, 1,6-heptadiene, 6-methyl-l,5-heptadiene, 1 ,6-octadiene, 1 ,7-octadiene, 7-methyl-l,6-octadiene, 1,13-tetradecadiene, 1,19-eicosadiene, and the like; cyclic dienes such as 1,4-cyclohexadiene, bicyclo[2.2.1]hept-2,5-diene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-vinyl-2- norbornene, bicyclo[2.2.2]oct-2,5-diene, 4-vinylcyclohex-l-ene, bicyclo[2.2.2
  • MILWAUKEEM268056.1 5 of 25 Express Mail No. EV37767207 IUS ethylidene-3-isopropylidene-5-norbornene, 2-propenyl-2,5-norbornadiene, 1,3,7-octatriene, 1,4,9- decatriene, and the like; with 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene and 7-methyl-l,6- octadiene preferred nonconjugated dienes.
  • conjugated dienes examples include butadiene, isoprene, 2,3-dimethylbutadiene-l,3, l,2-dimethylbutadiene-l,3, l,4-dimethylbutadiene-l,3, l-ethylbutadiene-1,3, 2-phenylbutadiene-
  • trienes examples include 1,3,5-hexatriene, 2-methyl-l,3,5-hexatriene, 1,3,6- heptatriene, 1,3,6-cycloheptatriene, 5-methyl-l ,3,6-heptatriene, 5-methyl-l, 4,6-heptatriene, 1,3,5- octatriene, 1,3,7-octatriene, 1,5,7-octatriene, 1 ,4,6-octatriene, 5-methyl-l, 5, 7-octatriene, 6- methyl-l,5,7-octatriene, 7-methyl-l,5,7-octatriene, 1,4,9-decatriene and 1 ,5,9-cyclodecatriene.
  • the elastomers used in the practice of this invention comprise at least about 51, preferably at least about 60 and more preferably at least about 70, weight percent (wt %) ethylene; at least about 1 , preferably at least about 3 and more preferably at least about 5, wt % of at least one ⁇ -olefm; and, if a polyene-containing terpolymer, greater than 0, preferably at least about 0.1 and more preferably at least about 0.5, wt % of at least one polyene.
  • the blend components made by the process of this invention comprise not more than about 99, preferably not more than about 97 and more preferably not more than about 95, wt % ethylene; not more than about 49, preferably not more than about 40 and more preferably not more than about 30, wt % of at least one ⁇ -olefin; and, if a terpolymer, not more than about 20, preferably not more than about 15 and more preferably not more than about 12, wt % of at least one of a polyene.
  • the preferred ethylene copolymers used as the elastomer in the practice of this invention are either homogeneous linear or substantially linear polymers. Both polymers are well known in the art, and both are fully described in USP 5,986,028. Substantially linear ethylene copolymers
  • MILWAUKEE ⁇ 268056.1 6 of 25 Express Mail No. EV37767207 IUS are preferred, and the Engage® and Affinity® ethylene copolymers manufactured and sold by The Dow Chemical Company are representative of this class of ethylene copolymer.
  • the density of the ethylene copolymer is measured in accordance with ASTM D-792. Typically, the density of the ethylene copolymer does not exceed about 0.92, preferably it does not exceed about 0.90 and more preferably it does not exceed about 0.88, grams per cubic centimeter (g/cm 3 ).
  • the crystallinity of the ethylene copolymer is preferably less than about 40, more preferably less than about 30, percent, and preferably in combination with a melting point of less than about 115, more preferably less than about 105, C. Ethylene copolymers with a crystallinity of zero to about 25 percent are even more preferred.
  • the percent crystallinity is determined by dividing the heat of fusion as determined by differential scanning calorimetry (DSC) of a copolymer sample by the total heat of fusion for that polymer.
  • the total heat of fusion for high- density homopolymer polyethylene (100% crystalline) is 292 joule/gram (J/g).
  • the polypropylene component of the polymer blend is either a homopolymer, or a copolymer of propylene and up to about 35 mole percent ethylene or other ⁇ -olefin having up to about 20 carbon atoms, or a blend of a homopolymer and one or more copolymers, or a blend of two or more copolymers. If a copolymer, the polypropylene can be random, block or graft.
  • the polypropylene component of the polymer blend has a typical melt flow rate (as determined by ASTM D-1238, Condition L, at a temperature of 230C) of at least about 0.01, preferably at least about 0.1, and more preferably at least about 0.2.
  • the MFR of the polypropylene component typically does not exceed about 1,000, preferably it does not exceed about 500, and more preferably it does not exceed about 100.
  • the polypropylene is a homopolymer.
  • Polypropylene homopolymer and similar terms mean a polymer consisting solely or essentially all of units derived from propylene.
  • Polypropylene copolymer and similar terms mean a polymer comprising units derived from propylene and ethylene and/or one or more unsaturated comonomers.
  • copolymer includes terpolymers, tetrapolymers, etc.
  • the unsaturated comonomers used in the practice of this invention include C 4-2O ⁇ -olef ⁇ ns, especially C 4-12 ⁇ -olefins such as 1-butene, 1-pentene, 1-hexene, 4-methyl-l-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene and the like; C 4-2O diolefins, preferably 1,3-butadiene, 1,3-pentadiene, norbornadiene, 5-ethylidene-2-norbornene (ENB) and dicyclopentadiene; C 8-40 vinyl aromatic compounds including styrene, o-, m-, and p-methylstyrene, divinylbenzene, vinylbiphenyl, vinylnapthalene; and halogen-substituted C 8-40 vinyl
  • the propylene copolymers used in the practice of this invention typically comprise units derived from propylene in an amount of at least about 65, preferably at least about 75 and more preferably at least about 80, mol% of the copolymer.
  • the typical amount of units derived from ethylene in propylene/ethylene copolymers is at least about 2, preferably at least about 5 and more preferably at least about 10 mol%, and the maximum amount of units derived from ethylene present in these copolymers is typically not in excess of about 35, preferably not in excess of about 25 and more preferably not in excess of about 20, mol% of the copolymer.
  • the amount of units derived from the unsaturated comonomer(s), if present, is typically at least about 0.01, preferably at least about 0.1 and more preferably at least about 1, mol%, and the typical maximum amount of units derived from the unsaturated comonomer(s) typically does not exceed about 35, preferably it does not exceed about 20 and more preferably it does not exceed about 10, mol% of the copolymer.
  • the combined total of units derived from ethylene and any unsaturated comonomer typically does not exceed about 35, preferably it does not exceed about 25 and more preferably it does not exceed about 20, mol% of the copolymer.
  • copolymers used in the practice of this invention comprising propylene and one or more unsaturated comonomers (other than ethylene) also typically comprise units derived from propylene in an amount of at least about 65, preferably at least about 75 and more preferably at least about 80, mol% of the copolymer.
  • the one or more unsaturated comonomers of the copolymer comprise at least about 2, preferably at least about 5 and more preferably at least about
  • the propylene component of the polymer blend can be made by any conventional polymerization process using any known catalyst, e.g., Ziegler-Natta, constrained geometry, metallocene and the like, in one embodiment the propylene component is made using a nonmetallocene, metal-centered, pyridinyl ligand catalyst, hi this embodiment, the propylene homopolymer is typically characterized as having 13 C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity (occasionally referred to as a "P* homopolymer" or similar term).
  • the P* homopolymer is characterized as having substantially isotactic propylene sequences, i.e., the sequences have an isotactic triad (mm) measured by 13 C NMR of greater than 0.85.
  • These propylene homopolymers typically have at least 50 percent more of this regio-error than a comparable polypropylene homopolymer prepared with a Ziegler-Natta catalyst.
  • a "comparable" polypropylene as here used means an isotactic propylene homopolymer having the same weight average molecular weight, i.e., within plus or minus 10%.
  • P* homopolymers are more fully described in USSN 10/139,786 and 10/289,122.
  • the polypropylene comprises units derived from propylene, ethylene and, optionally, one or more unsaturated comonomers, e.g., C 4-2O ⁇ -olefms, C 4 . 20 dienes, vinyl aromatic compounds (e.g., styrene), etc.
  • unsaturated comonomers e.g., C 4-2O ⁇ -olefms, C 4 . 20 dienes, vinyl aromatic compounds (e.g., styrene), etc.
  • copolymers are characterized as comprising at least about 65 mole percent (mol%) of units derived from propylene, about 0.1-35 mol% of units derived from ethylene, and 0 to about 35 mol% of units derived from one or more unsaturated comonomers, with the proviso that the combined mole percent of units derived from ethylene and the unsaturated comonomer does not exceed about 35.
  • copolymers are also characterized as having at least one of the following properties: (i) 13 C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a skewness index, Sj x , greater than about -1.20, and (iii) a DSC curve with a T me that remains essentially the same and a T max that decreases as the amount of comonomer, i.e., the units derived from ethylene and/or the unsaturated comonomer(s), in the
  • the copolymers of this embodiment are propylene/ethylene copolymers, and they are typically characterized by at least two of these three properties.
  • the polypropylene comprises propylene and one or more unsaturated comonomers.
  • These copolymers are characterized in having at least about 65 mol% of the units derived from propylene, and between about 0.1 and 35 mol% the units derived from the unsaturated comonomer.
  • copolymers are also characterized as having at least one of the following properties: (i) 13 C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a skewness index, Sj x , greater than about -1.20, and (iii) a DSC curve with a T me that remains essentially the same and a T max that decreases as the amount of comonomer, i.e., the units derived from the unsaturated comonomer(s), in the copolymer is increased.
  • the copolymers of this embodiment are propylene/unsaturated comonomer copolymers Typically the copolymers of this embodiment are characterized by at least two of these properties.
  • P/E* copolymer The propylene/ethylene/optional unsaturated comonomer and/or the propylene/unsaturated comonomer copolymers described above are occasionally referred to, individually and collectively, as "P/E* copolymer” or similar term.
  • P/E* copolymers are a unique subset of propylene/ethylene (P/E) copolymers, and they are more fully described in USSN 10/139,786.
  • P/E copolymers comprise 50 weight percent or more propylene while EP (ethylene/propylene) copolymers comprise 51 weight percent or more ethylene.
  • "comprise . . .propylene” "comprise . . . ethylene” and similar terms mean that the polymer comprises units derived from propylene, ethylene or the like as opposed to the compounds themselves.
  • the polypropylene component of the polymer blend is itself a blend of two or more polypropylenes.
  • at least one component of the blend i.e., a first component
  • the other component i.e., the second component
  • the propylene homopolymers preferably a P* homopolymer.
  • the amount of each polypropylene in the blend can vary widely and to convenience, although preferably the second component comprises at least about 50 weight
  • the blend may be either homo- or heterophasic. If the latter, the propylene homopolymer and/or the P/E* copolymer can be either the continuous or discontinuous (i.e., dispersed) phase.
  • the polymer blend comprises at least about 50, and typically at least about 60 and " preferably at least about 70, wt % of the polypropylene component.
  • the polymer blend comprises at least about 10, typically at least about 15 and preferably at least about 20, weight percent of the elastomer component.
  • the polymer blend can contain other polymer components in addition to the polypropylene and elastomer components but if such polymer components are present, then they are present in relatively small amounts, e.g., less than about 5 wt % based on the total weight of the polymer blend.
  • Representative of other polymer component(s) that can be included in the blend are ethylene vinyl acetate (EVA) and styrene-butadiene-styrene (SBS).
  • the polypropylene and/or elastomers used in the practice of this invention can also be functionalized with alkoxy silanes and/or similar materials to enable moisture crosslinking.
  • the polypropylene and/or elastomers used in the practice of this invention are preferably free or contain inconsequential amounts of water-soluble salts that can have a deleterious effect on wet electrical properties. Examples include the various sodium salts, e.g., sodium benzoates that are often used as nucleating agents for polypropylene.
  • the polymer blend can be formed either in- or post-reactor. If formed in-reactor, then either single or multiple reaction vessels can be employed. If the former, then typically one blend component is made first followed by the making of the second component in the same reactor and in the presence of the first component. If the latter, then the reaction vessels can be arranged in either in series or in parallel.
  • the polymerizations can be conducted in any phase, e.g., solution, slurry, gas, etc.; single or mixed catalyst systems can be used; and the conventional equipment and conditions are employed.
  • any conventional mixing means can be employed, e.g., static mixers, extruders and the like. Typically, each component is fed into an extruder along with appropriate processing aids, crosslinking agents and other additives, and then blended into a relatively homogeneous mass, typically crosslinked or at
  • the polymer blend before the addition of additives, exhibits a combination of desirable properties.
  • these properties are (i) a hot creep at 150C of less than 200, preferably less than 150 and more preferably less than 100, percent, (ii) a dielectric constant at 60 hertz (Hz) and 9OC of less than about 2.5, preferably less than about 2.4 and more preferably less than about 2.3, (iii) a dissipation factor at 60 Hz and 9OC of less than about 0.005, preferably less than about 0.004 and more preferably less than about 0.003, and (iv) an alternating current (AC) breakdown strength of greater than about 600, preferably greater than about 700 and more preferably greater than about 800, volts/mil (v/mil).
  • AC alternating current
  • the blend also exhibits at least one of a (v) tensile strength of less than about 6,000, preferably less than about 5000 and more preferably less than about 4000, pounds per square inch (psi), and (vi) tensile elongation greater than about 50, preferably greater than about 75 and more preferably greater than about 100, percent.
  • Hot creep is measured from a 50 mil plaque at 150C by ICEA T-28-562 ("Test Method for Measurement of Hot Creep of Polymeric Insulations" dated March 1995).
  • Dielectric constant and dissipation factor (OCfDF) are measured at 60 Hz and 9OC by ASTM D-150.
  • AC breakdown strength is measured by ASTM D- 149.
  • Tensile strength (stress at maximum load) and elongation are measured from 50 mil plaques at room temperature and a displacement rate of 2 inches per minute by ASTM D-638-00.
  • the polymer blend has a typical melt flow rate (MFR as determined by ASTM D-1238,
  • the polypropylene component of the polymer blend has a typical flexural modulus (as determined by ASTM D-790A) of less than about 300,000, preferably less than about 250,000 and more preferably less than about 200,000, psi.
  • the insulating coating or jacket of the electrically conductive device may comprise the polymer blend in combination with one or more additives. Typically, the polymer blend comprises at least about 30, preferably at least about 40 and more preferably at least about 50, weight percent of the insulating coating or jacket.
  • Typical additives include such materials as fillers, pigments, crosslinking agents, processing aids, metal deactivators, extender oils, antioxidants, stabilizers, lubricants, flame retardants and the like.
  • the insulation or jacket preferably comprises from greater than 0 to about 70, more preferably from about 10 to about 70 and more preferably from about 20 to about 70, weight percent of at least one filler.
  • Representative fillers include carbon black, silicon dioxide (e.g., glass beads), talc, calcium carbonate, clay, fluorocarbons, siloxanes and the like.
  • Suitable extender oils include aromatic, naphthenic, paraffinic, or hydrogenated (white) oils and mixtures of two or more of these materials. If extender oil is added to the insulation or jacket composition, then it is typically added at a level from about 0.5 to about 25, preferably from about 5 to 15, parts by weight per hundred parts.
  • Suitable antioxidants include hindered phenols such as 2,6-di-t-butyl-4-methylphenol; 1, 3, 5-trimethyl-2,4,6-tris (3', 5'-di-t-butyl-4'-hydroxybenzyl)-benzene; tetrakis [(methylene 3, 5-di-t-butyl-4-hydroxyhydrocinnamate)] methane (IRGANOXTM 1010, commercially available from Ciba-Geigy); octadecyl-3,5-di-t-butyl-4-hydroxy cinnamate (IRGANOXTM 1076, also commercially available from Ciba-Geigy); and like known materials.
  • hindered phenols such as 2,6-di-t-butyl-4-methylphenol; 1, 3, 5-trimethyl-2,4,6-tris (3', 5'-di-t-butyl-4'-hydroxybenzyl)-benzene; tetrakis
  • the antioxidant is used at a preferred level of from about 0.05 to about 2 parts by weight per 100 parts by weight of insulation or jacket composition.
  • the stabilizing additives, antioxidants, metal deactivators, and/or UV stabilizers used in the practice of this invention are well known, used conventionally, and described in the literature, e.g., USP 5,143,968 and 5,656,698.
  • the crosslinking agents that can be used in the practice of this invention include conventional silanes, such as the vinyltrialkoxysilanes described in USP 5,266,627, and peroxides, such as dicumyl peroxide and the others described in USP 6,124,370.
  • the crosslinking agents and cross-linkable polymers are used in known ways and in known amounts.
  • the electrically conductive member of the electrically conductive device is typically a conductive metal wire or cable, e.g., copper or aluminum, but it can also be a conductive nonmetallic material such as silicon dioxide doped with one or more metallic substances, e.g., germanium, gallium, arsenic, antimony and the like, such as the core of a fiber optic cable.
  • the member may comprise a single strand or multiple strands, e.g., a pair of twisted copper wires.
  • the electrically conductive device is formed in any conventional manner, typically with the insulating member, e.g., coating, extruded about the electrically conductive member as it is formed, drawn or processed such that the insulating member surrounds the conductive member. The equipment and conditions for making such a device are well known in the art.
  • the electrically conductive devices of this invention have a crush resistance of at least about 18, preferably at least about 20 and more preferably at least about 22, psi as measured on a 45 mil wall insulation or jacket on 14 American Wire Gauge (AWG) solid copper wire by test method SAE Jl 128 (pinch test).
  • AMG American Wire Gauge
  • compositions reported in Table 2 were prepared from the components described in Table 1. Four of these compositions were then extruded onto 14 AWG solid copper wire using a Davis Standard single screw 2.5 inch extruder, 24:1 length:diameter(L/D) with a polyethylene screw and Maddock mixing head. Typical melt temperature was 185C for Comparative Examples 1 and 2, but the melt temperature of Examples 1 and 2 was adjusted until a smooth surface was achieved, typically at a melt temperature of 215C. Forty-five mil (0.045 inch) wall insulation or jacket was extruded onto the solid copper wire. Samples were collected and Comparative Examples 1 and 2 were cured in a 9OC water bath for one hour. Examples 1 and 2 were not cured in the water bath. All samples were allowed to come to ambient conditions for at least 24 hours. Wire samples were measured according to SAE-Jl 128 on a pinch test apparatus. The values are reported in Table 3.
  • Example 3 MILWAUKEEU 268056.1 14 o f 25 Express Mail No. EV377672071US
  • the compositions of Example 3 and Comparative Example 3 were extruded onto a 1/0 aluminum conductor with 19 strands. Samples of this cable were then subjected to various physical tests, and the results are reported in Table 4. The improvement factor is reported as improvement over Comparative Example 3, DGDA-5800 NT, a typical high density polyethylene used in ruggedized cable constructions.
  • ⁇ AU polymers are products of The Dow Chemical Company
  • HDPE high density polyethylene
  • the data of Table 3 are from 14 AWG solid copper wire with 45 mil of insulation or jacket. Four readings were taken from four sides and averaged to calculate the pinch number in psi. The actual thickness was measured and used to calculate the psi/mil.
  • the pinch values of the inventive examples are much higher that the pinch values of the comparative examples, and the higher the pinch value, the greater the resistance to crush force.
  • the data of Table 4 is from 1/0 aluminum conductor with a jacket thickness of between 70 and 75 mil. In each of the seven tests reported, the jacket of the composition of this invention markedly outperformed the HDPE j acket.
  • Low density polyethylene (246.9 g, 2.4 dg/min MI, 0.9200 g/cc density) was added to a Brabender mixing bowl previously purged with nitrogen. After fluxing for 3 minutes at 125 C, 3.1 grams of Luperox Ll 30 peroxide (manufactured by Arkema, Inc.) was added to the bowl, and the LDPE and peroxide were mixed for an additional 4 minutes at 125 C. From this mixture two 50 mil plaques were compression molded at 125C for 10 minutes followed by 180C for 70 minutes. From one plaque seven dogbone samples were cut for measurement of tensile strength, elongation and hot creep. The other plaque was used for measuring dielectric constant and dissipation factor.
  • Luperox Ll 30 peroxide manufactured by Arkema, Inc.
  • SI-LINK DFDA-5451 NT ethylene-silane copolymer (249.13 g) was added to a Brabender mixing bowl previously purged with nitrogen. After fluxing for 3 minutes at 160C, 0.5 grams of Irganox 1010 (a hindered phenolic antioxidant available from Ciba Specialty Chemicals) and 0.38 grams of dibutyltin laurate (DBTDL) were added to the bowl, and the resulting mixture was blended for an additional 3 minutes at 160C. From this mixture a number of 50 mil plaques were immediately compression molded at 160C for 10 minutes.
  • Irganox 1010 a hindered phenolic antioxidant available from Ciba Specialty Chemicals
  • DBTDL dibutyltin laurate
  • DOW H314-02Z propylene homopolymer (hPP, 70 wt%) and 30 wt% Affinity 8150 polyolefin elastomer (POE) were melt blended in a Banbury mixer at 180C for 3.5 minutes, and passed through an extruder and then an underwater pelleter. Pellets from the pelleter were then collected and compression molded into 50 mil plaques at 170C for 10 minutes. Five dog bone samples were cut from each plaque, and the samples were then measured for tensile strength,
  • DOW H314-02Z propylene homopolymer (137.50 g) and of Affinity 8150 (112.50 g) were added to a Brabender mixing bowl previously purged with nitrogen. After fluxing for 3 minutes at 170C, 50 mil plaques were immediately compression molded at 170C for 10 minutes. Seven dogbone samples were cut from each plaque, and measured for tensile strength, elongation, hot creep dielectric constant, dissipation factor, and measure alternating current breakdown strength. The results of these measurements are also reported in Figures 1-5.
  • Example 6 (94/6 ICP/POE)
  • DOW 7C54H impact copolymer polypropylene 235 grams
  • Affinity 8150 15 g
  • 50 mil plaques were immediately compression molded at 170C for 10 minutes.
  • Seven dogbone samples were cut from each plaque, and measured for tensile strength, elongation, hot creep dielectric constant, dissipation factor, and measure alternating current breakdown strength. The results of these measurements are also reported in Figures 1-5.
  • the compression molded plaques of the invention either met or exceeded the properties of the comparative example plaques.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)

Abstract

The invention is an electrically conductive device, e.g., a wire or cable, having a crush resistance of at least about 18 pounds per square inch (psi), the device comprising : A. An electrically conductive member comprising at least one electrically conductive substrate, e.g., a wire strand or a pair of twisted wire strands ; and B. At least one electric-insulating member substantially surrounding the electrically conductive member, e.g., a polymer coating or layer, the electric-insulating member comprising a polymer blend, the polymer blend comprising: 1. At least about 50 weight percent of a polypropylene, and 2. At least about 10 weight percent of an elastomer. In one embodiment, the blend is characterized as having (i) a hot creep of less than 200% at 150C, (ii) a dielectric constant at 60 Hz and 90C of less than about 2.5, (iii) a dissipation factor at 60 Hz and 90C of less than about 0.005, and (iv) an AC breakdown strength of greater than about 600 v/mil.

Description

POLYPROPYLENE-BASED WIRE AND CABLE INSULATION OR JACKET
FIELD OF THE INVENTION
This invention relates to insulation and jackets for electrically conductive devices. In one aspect, the invention relates to polypropylene-based insulation and jackets while in another aspect, the invention relates to polypropylene-based insulation and jackets for wire and cable. In still another aspect, the invention relates to insulated wire and cable with improved crush resistance.
BACKGROUND OF THE INVENTION
Many of the electrically conductive devices commercially available today, e.g., wire and cable, typically comprise a metal core surrounded by one or more layers or sheaths of polymeric material. USP 5,246,783 is illustrative. The core is typically copper or aluminum surrounded by a number of different polymeric layers, each serving a specific function, e.g., a semi-conducting shield layer, an insulation layer, a metallic tape shield layer and a polymeric jacket. Nonmetallic cores are also known, e.g., the variously metallically doped silicon dioxide cores of fiber optic cables.
Cables may comprise one or more polymeric layers. Specific layers can provide more than one function and/or the function(s) of two or more layers can overlap, e.g., an abuse- resistance jacket can also serve as an insulation layer, and both an insulation layer and outer- jacket can provide abuse-resistance. For example, low voltage wire and cable (rated for 5 or less kilovolts (Kv)), often are surrounded or encased by a single polymeric layer that serves as both an insulating layer and an abuse-resistant jacket, while medium (rated for more than 5 to 69 Kv), high (rated for more than 69 to 225 Kv) and extra-high (rated for more than 225 Kv) voltage wire and cable often are surrounded or encased by at least separate insulating and jacket layers. USP 5,246,783 provides an example of this latter cable construction.
M.LWAUKEE\,268056.i ExPress Mail No- EV377672071US Many different polymeric materials are used in the manufacture of wire and cable. The choice of which polymeric material to use is, of course, decided by matching the properties of the polymeric material to the function to be served. The insulation and/or jacket layers for electrical wire and cable must exhibit good dielectric and tree-resistant properties, and both unfilled polyethylene and filled ethylene-propylene rubber (EPR) are often used for this layer (see, for example, USP 5,246,783 and 5,266,627). Wire and cable jackets need to exhibit, among others properties, good water and solvent resistance, flexibility and crush-resistance and for this purpose, wire and cable jackets are often made from silane-crosslinked polyethylene. USP 4,144,202 is illustrative of silane-crosslinking of ethylene polymers. Moreover, some of these materials are more difficult and expensive to fabricate than others.
For example, the fabrication of insulation or jacket sheaths for medium voltage power cables often requires the melt processing of polymeric compositions containing peroxide. These materials subsequently require exposure to heat in a continuous vulcanization tube to effect crosslinking of the polymer. Important in this process is the avoidance of scorch, i.e., premature crosslinking, during melt processing, e.g., extrusion. Typically this is avoided by extruding at relatively low temperatures above the melting point of the polymer, e.g., 140C for low density polyethylene used for the insulation layer of the cable, and employing peroxides that decompose slowly at this temperature. However, this then requires a considerable amount of additional time at an elevated temperature, e.g., 180C, to decompose the remaining peroxide and insure the degree of crosslinking required for the insulation layer. As a result, the overall process suffers from relatively low extrusion rates and added costs.
While these known materials serve well, a continued interest exists in identifying replacement materials that not only exhibit superior physical properties, particularly crush strength, but also are more efficiently and less expensively fabricated.
Polypropylene is a well-known and long-established polymer of commerce. It is widely available both as a homopolymer and as a copolymer. Both homopolymers and copolymers are
MILWAUKEE\1268056.1 2 of 25 Express Mail No. EV377672071US available with a wide variety of properties as measured by, among other things, molecular weight, molecular weight distribution (MWD or Mw/Mn), melt flow rate (MFR), flexural modulus, crystallinity, tacticity and if a copolymer, then comonomer type, amount and distribution. Polypropylene can be manufactured in a gas, solution, slurry or suspension polymerization process using any one or more of a number of known catalysts, e.g., Zeigler-Natta; metallocene; constrained geometry; nonmetallocene, metal-centered, pyridinyl ligand; etc.
Polypropylene has found usefulness in a wide variety of applications of which some of the more conventional include film, fiber, automobile and appliance parts, rope, cordage, webbing and carpeting. In addition, polypropylene is a known component in many compositions used as adhesives, fillers and the like. Like any other polymer, the ultimate end use of a particular polypropylene will be determined by its various chemical and physical properties. To date however, polypropylene has not found wide usage as an insulation or jacket cover for wire and cable, particularly power cables.
SUMMARY OF THE INVENTION
In a first embodiment, the invention is an electrically conductive device, e.g., a wire or cable, having a crush resistance of at least about 18 pounds per square inch (psi), the device comprising:
A. An electrically conductive member comprising at least one electrically conductive substrate, e.g., a wire strand or a pair of twisted wire strands; and
B. At least one electric-insulating member substantially surrounding the electrically conductive member, e.g., at least one polymer coating or layer acting as a jacket and/or insulation layer, the electric-insulating member comprising a polymer blend, the polymer blend comprising: 1. At least about 50 weight percent of a polypropylene, and
2. At least about 10 weight percent of an elastomer.
MILWAUKEEM268056.1 3 of 25 Express Mail No. EV377672071US Typically the electrically conductive member comprises copper or aluminum, and the elastomer comprises at least one copolymer of ethylene and an α-olefin, e.g., a copolymer of ethylene and octene. The polypropylene can be either a homopolymer or copolymer, or a blend comprising both a homopolymer and copolymer, and prepared by any polymerization process. The polymer blend can be either an in-reactor or post-reactor blend.
In a second embodiment, the invention is an electrically conductive device in which the elastomer component of the polymer blend is preferably an ethylene/α-olefϊn copolymer, and the propylene component of the polymer blend is prepared by nonmetallocene, metal-centered, pyridinyl catalysis, and the blend exhibits (i) a hot creep of less than 200% at 150C, (ii) a dielectric constant at 60 hertz (Hz) and 9OC of less than about 2.5, (iii) a dissipation factor at 60
Hz and 9OC of less than about 0.005, and (iv) an alternating current (AC) breakdown strength of greater than about 600 volts/mil (v/mil). Preferably, the blend also exhibits at least one of a (v) tensile strength of less than about 6,000 pounds per square inch (psi), and (vi) tensile elongation greater than about 50%. Preferably, the polypropylene component is a homopolymer. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a bar graph comparing the tensile strength and percent elongation of the compression molded plaques of Comparative Examples 4-5 and Examples 4-6.
Figure 2 is a bar graph comparing the hot creep of the compression molded plaques of Comparative Example 4 and Examples 5-6. Figure 3 is a line graph comparing the dielectric constant of the compression molded plaques of Comparative Examples 4-5 and Examples 4-6.
Figure 4 is a line graph comparing the dissipation factor of the compression molded plaques of Comparative Examples 4-5 and Examples 4-6.
Figure 5 is a bar graph comparing the AC breakdown strength of the compression molded plaques of Comparative Examples 4-5 and Examples 4-6.
DETAILED DESCRIPTION OF THE INVENTION
The elastomer component of the polymer blend used in the practice of this invention includes ethylene copolymers and rubbers, thermoplastic urethanes, polychloroprene, nitrile MILWAUKEEU268056.1 4 of 25 Express Mail No. EV377672071US rubbers, butyl rubbers, polysulfϊde rubbers, cis-l,4~polyisoprene, silicone rubbers and the like. Copolymers of ethylene (CH2=CH2) and at least one C3-C20 α-olefm (preferably an aliphatic α- olefin) comonomer and/or a polyene comonomer, e.g., a conjugated diene, a nonconjugated diene, a triene, etc., are the preferred elastomer component of this invention. The term "copolymer" includes polymers comprising units derived from two or more monomers, e.g. copolymers such as ethylene/propylene, ethylene/octene, propylene/octene, etc.; terpolymers such as ethylene/propylene/octene, ethylene/propylene/butadiene; tetrapolymers such as ethylene/propylene/octene/butadiene; and the like. Examples of the C3-C20 α-olefms include propene, 1-butene, 4-methyl-l-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1 -tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene. The α-olefϊn can also contain a cyclic structure such as cyclohexane or cyclopentane, resulting in an α-olefin such as 3-cyclohexyl-l -propene (allyl- cyclohexane) and vinyl-cyclohexane. Although not α-olefins in the classical sense of the term, for purposes of this invention certain cyclic olefins, such as norbornene and related olefins, are α-olefϊns and can be used in place of some or all of the α-olefms described above. Similarly, styrene and its related olefins (e.g., α-methylstyrene, etc.) are α-olefins for purposes of this invention.
Polyenes are unsaturated aliphatic or alicyclic compounds containing more than four carbon atoms in a molecular chain and having at least two double and/or triple bonds, e.g., conjugated and nonconjugated dienes and trienes. Examples of nonconjugated dienes include aliphatic dienes such as 1 ,4-pentadiene, 1,4-hexadiene, 1 ,5-hexadiene, 2-methyl-l,5-hexadiene, 1,6-heptadiene, 6-methyl-l,5-heptadiene, 1 ,6-octadiene, 1 ,7-octadiene, 7-methyl-l,6-octadiene, 1,13-tetradecadiene, 1,19-eicosadiene, and the like; cyclic dienes such as 1,4-cyclohexadiene, bicyclo[2.2.1]hept-2,5-diene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-vinyl-2- norbornene, bicyclo[2.2.2]oct-2,5-diene, 4-vinylcyclohex-l-ene, bicyclo[2.2.2]oct-2,6-diene, l,7,7-trimethylbicyclo-[2.2.1]hept-2,5-diene, dicyclopentadiene, methyltetrahydroindene, 5- allylbicyclo[2.2.1]hept-2-ene, 1,5-cyclooctadiene, and the like; aromatic dienes such as 1,4- diallylbenzene, 4-allyl-lH-indene; and trienes such as 2,3-diisopropenylidiene-5-norbornene, 2-
MILWAUKEEM268056.1 5 of 25 Express Mail No. EV37767207 IUS ethylidene-3-isopropylidene-5-norbornene, 2-propenyl-2,5-norbornadiene, 1,3,7-octatriene, 1,4,9- decatriene, and the like; with 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene and 7-methyl-l,6- octadiene preferred nonconjugated dienes.
Examples of conjugated dienes include butadiene, isoprene, 2,3-dimethylbutadiene-l,3, l,2-dimethylbutadiene-l,3, l,4-dimethylbutadiene-l,3, l-ethylbutadiene-1,3, 2-phenylbutadiene-
1,3, hexadiene-1,3, 4-methylpentadiene-l,3, 1 ,3-pentadiene (CH3CH=CH-CH=CH2; commonly called piperylene), 3-methyl-l,3-pentadiene, 2,4-dimethyl-l,3-pentadiene, 3-ethyl-l ,3-pentadiene, and the like; with 1,3-pentadiene a preferred conjugated diene.
Examples of trienes include 1,3,5-hexatriene, 2-methyl-l,3,5-hexatriene, 1,3,6- heptatriene, 1,3,6-cycloheptatriene, 5-methyl-l ,3,6-heptatriene, 5-methyl-l, 4,6-heptatriene, 1,3,5- octatriene, 1,3,7-octatriene, 1,5,7-octatriene, 1 ,4,6-octatriene, 5-methyl-l, 5, 7-octatriene, 6- methyl-l,5,7-octatriene, 7-methyl-l,5,7-octatriene, 1,4,9-decatriene and 1 ,5,9-cyclodecatriene.
Typically, the elastomers used in the practice of this invention comprise at least about 51, preferably at least about 60 and more preferably at least about 70, weight percent (wt %) ethylene; at least about 1 , preferably at least about 3 and more preferably at least about 5, wt % of at least one α-olefm; and, if a polyene-containing terpolymer, greater than 0, preferably at least about 0.1 and more preferably at least about 0.5, wt % of at least one polyene. As a general maximum, the blend components made by the process of this invention comprise not more than about 99, preferably not more than about 97 and more preferably not more than about 95, wt % ethylene; not more than about 49, preferably not more than about 40 and more preferably not more than about 30, wt % of at least one α-olefin; and, if a terpolymer, not more than about 20, preferably not more than about 15 and more preferably not more than about 12, wt % of at least one of a polyene.
The preferred ethylene copolymers used as the elastomer in the practice of this invention are either homogeneous linear or substantially linear polymers. Both polymers are well known in the art, and both are fully described in USP 5,986,028. Substantially linear ethylene copolymers
MILWAUKEE^ 268056.1 6 of 25 Express Mail No. EV37767207 IUS are preferred, and the Engage® and Affinity® ethylene copolymers manufactured and sold by The Dow Chemical Company are representative of this class of ethylene copolymer.
The density of the ethylene copolymer is measured in accordance with ASTM D-792. Typically, the density of the ethylene copolymer does not exceed about 0.92, preferably it does not exceed about 0.90 and more preferably it does not exceed about 0.88, grams per cubic centimeter (g/cm3).
The crystallinity of the ethylene copolymer is preferably less than about 40, more preferably less than about 30, percent, and preferably in combination with a melting point of less than about 115, more preferably less than about 105, C. Ethylene copolymers with a crystallinity of zero to about 25 percent are even more preferred. The percent crystallinity is determined by dividing the heat of fusion as determined by differential scanning calorimetry (DSC) of a copolymer sample by the total heat of fusion for that polymer. The total heat of fusion for high- density homopolymer polyethylene (100% crystalline) is 292 joule/gram (J/g).
The polypropylene component of the polymer blend is either a homopolymer, or a copolymer of propylene and up to about 35 mole percent ethylene or other α-olefin having up to about 20 carbon atoms, or a blend of a homopolymer and one or more copolymers, or a blend of two or more copolymers. If a copolymer, the polypropylene can be random, block or graft. The polypropylene component of the polymer blend has a typical melt flow rate (as determined by ASTM D-1238, Condition L, at a temperature of 230C) of at least about 0.01, preferably at least about 0.1, and more preferably at least about 0.2. The MFR of the polypropylene component typically does not exceed about 1,000, preferably it does not exceed about 500, and more preferably it does not exceed about 100. Preferably, the polypropylene is a homopolymer. "Propylene homopolymer" and similar terms mean a polymer consisting solely or essentially all of units derived from propylene. "Polypropylene copolymer" and similar terms mean a polymer comprising units derived from propylene and ethylene and/or one or more unsaturated comonomers. The term "copolymer" includes terpolymers, tetrapolymers, etc.
MILWAUKEE\1268056.1 7 of 25 Express Mail No. EV37767207 IUS The unsaturated comonomers used in the practice of this invention include C4-2O α-olefϊns, especially C4-12 α-olefins such as 1-butene, 1-pentene, 1-hexene, 4-methyl-l-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene and the like; C4-2O diolefins, preferably 1,3-butadiene, 1,3-pentadiene, norbornadiene, 5-ethylidene-2-norbornene (ENB) and dicyclopentadiene; C8-40 vinyl aromatic compounds including styrene, o-, m-, and p-methylstyrene, divinylbenzene, vinylbiphenyl, vinylnapthalene; and halogen-substituted C8-40 vinyl aromatic compounds such as chlorostyrene and fluorostyrene. For purposes of this invention, ethylene and propylene are not included in the definition of unsaturated comonomers.
The propylene copolymers used in the practice of this invention typically comprise units derived from propylene in an amount of at least about 65, preferably at least about 75 and more preferably at least about 80, mol% of the copolymer. The typical amount of units derived from ethylene in propylene/ethylene copolymers is at least about 2, preferably at least about 5 and more preferably at least about 10 mol%, and the maximum amount of units derived from ethylene present in these copolymers is typically not in excess of about 35, preferably not in excess of about 25 and more preferably not in excess of about 20, mol% of the copolymer. The amount of units derived from the unsaturated comonomer(s), if present, is typically at least about 0.01, preferably at least about 0.1 and more preferably at least about 1, mol%, and the typical maximum amount of units derived from the unsaturated comonomer(s) typically does not exceed about 35, preferably it does not exceed about 20 and more preferably it does not exceed about 10, mol% of the copolymer. The combined total of units derived from ethylene and any unsaturated comonomer typically does not exceed about 35, preferably it does not exceed about 25 and more preferably it does not exceed about 20, mol% of the copolymer.
The copolymers used in the practice of this invention comprising propylene and one or more unsaturated comonomers (other than ethylene) also typically comprise units derived from propylene in an amount of at least about 65, preferably at least about 75 and more preferably at least about 80, mol% of the copolymer. The one or more unsaturated comonomers of the copolymer comprise at least about 2, preferably at least about 5 and more preferably at least about
MILWAUKEE^! 268056.1 8 of 25 Express Mail No. EV377672071US 10, mole percent, and the typical maximum amount of unsaturated comonomer does not exceed about 35, and preferably it does not exceed about 25, mol% of the copolymer.
Although the propylene component of the polymer blend can be made by any conventional polymerization process using any known catalyst, e.g., Ziegler-Natta, constrained geometry, metallocene and the like, in one embodiment the propylene component is made using a nonmetallocene, metal-centered, pyridinyl ligand catalyst, hi this embodiment, the propylene homopolymer is typically characterized as having 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity (occasionally referred to as a "P* homopolymer" or similar term). Preferably, the P* homopolymer is characterized as having substantially isotactic propylene sequences, i.e., the sequences have an isotactic triad (mm) measured by 13C NMR of greater than 0.85. These propylene homopolymers typically have at least 50 percent more of this regio-error than a comparable polypropylene homopolymer prepared with a Ziegler-Natta catalyst. A "comparable" polypropylene as here used means an isotactic propylene homopolymer having the same weight average molecular weight, i.e., within plus or minus 10%. P* homopolymers are more fully described in USSN 10/139,786 and 10/289,122.
In an embodiment in which the polypropylene is a copolymer, the polypropylene comprises units derived from propylene, ethylene and, optionally, one or more unsaturated comonomers, e.g., C4-2O α-olefms, C4.20 dienes, vinyl aromatic compounds (e.g., styrene), etc. These copolymers are characterized as comprising at least about 65 mole percent (mol%) of units derived from propylene, about 0.1-35 mol% of units derived from ethylene, and 0 to about 35 mol% of units derived from one or more unsaturated comonomers, with the proviso that the combined mole percent of units derived from ethylene and the unsaturated comonomer does not exceed about 35. These copolymers are also characterized as having at least one of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a skewness index, Sjx, greater than about -1.20, and (iii) a DSC curve with a Tme that remains essentially the same and a Tmax that decreases as the amount of comonomer, i.e., the units derived from ethylene and/or the unsaturated comonomer(s), in the
MILWAUKEEU 268056.1 9 of 25 Express Mail No. EV377672071US copolymer is increased. The copolymers of this embodiment are propylene/ethylene copolymers, and they are typically characterized by at least two of these three properties.
In yet another embodiment in which the polypropylene is a copolymer, the polypropylene comprises propylene and one or more unsaturated comonomers. These copolymers are characterized in having at least about 65 mol% of the units derived from propylene, and between about 0.1 and 35 mol% the units derived from the unsaturated comonomer. These copolymers are also characterized as having at least one of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a skewness index, Sjx, greater than about -1.20, and (iii) a DSC curve with a Tme that remains essentially the same and a Tmax that decreases as the amount of comonomer, i.e., the units derived from the unsaturated comonomer(s), in the copolymer is increased. The copolymers of this embodiment are propylene/unsaturated comonomer copolymers Typically the copolymers of this embodiment are characterized by at least two of these properties.
The propylene/ethylene/optional unsaturated comonomer and/or the propylene/unsaturated comonomer copolymers described above are occasionally referred to, individually and collectively, as "P/E* copolymer" or similar term. P/E* copolymers are a unique subset of propylene/ethylene (P/E) copolymers, and they are more fully described in USSN 10/139,786. For purposes of this disclosure, P/E copolymers comprise 50 weight percent or more propylene while EP (ethylene/propylene) copolymers comprise 51 weight percent or more ethylene. As here used, "comprise . . .propylene", "comprise . . . ethylene" and similar terms mean that the polymer comprises units derived from propylene, ethylene or the like as opposed to the compounds themselves.
In still another embodiment, the polypropylene component of the polymer blend is itself a blend of two or more polypropylenes. In certain variations on this embodiment, at least one component of the blend, i.e., a first component, comprises at least one P/E* copolymer, and the other component, i.e., the second component, comprises one or more propylene homopolymers, preferably a P* homopolymer. The amount of each polypropylene in the blend can vary widely and to convenience, although preferably the second component comprises at least about 50 weight
MILWAUKEE\1268056.I 10 of 25 Express Mail No. EV377672071US percent of the blend. The blend may be either homo- or heterophasic. If the latter, the propylene homopolymer and/or the P/E* copolymer can be either the continuous or discontinuous (i.e., dispersed) phase.
The polymer blend comprises at least about 50, and typically at least about 60 and " preferably at least about 70, wt % of the polypropylene component. The polymer blend comprises at least about 10, typically at least about 15 and preferably at least about 20, weight percent of the elastomer component. The polymer blend can contain other polymer components in addition to the polypropylene and elastomer components but if such polymer components are present, then they are present in relatively small amounts, e.g., less than about 5 wt % based on the total weight of the polymer blend. Representative of other polymer component(s) that can be included in the blend are ethylene vinyl acetate (EVA) and styrene-butadiene-styrene (SBS).
The polypropylene and/or elastomers used in the practice of this invention can also be functionalized with alkoxy silanes and/or similar materials to enable moisture crosslinking. The polypropylene and/or elastomers used in the practice of this invention are preferably free or contain inconsequential amounts of water-soluble salts that can have a deleterious effect on wet electrical properties. Examples include the various sodium salts, e.g., sodium benzoates that are often used as nucleating agents for polypropylene.
The polymer blend can be formed either in- or post-reactor. If formed in-reactor, then either single or multiple reaction vessels can be employed. If the former, then typically one blend component is made first followed by the making of the second component in the same reactor and in the presence of the first component. If the latter, then the reaction vessels can be arranged in either in series or in parallel. The polymerizations can be conducted in any phase, e.g., solution, slurry, gas, etc.; single or mixed catalyst systems can be used; and the conventional equipment and conditions are employed. If the polymer blend is formed post-reactor, i.e., it is compounded, then any conventional mixing means can be employed, e.g., static mixers, extruders and the like. Typically, each component is fed into an extruder along with appropriate processing aids, crosslinking agents and other additives, and then blended into a relatively homogeneous mass, typically crosslinked or at
MILWAUKEEU268056.1 11 of 25 Express Mail No. EV377672071US least ready for post-extruder crosslinking by any conventional means, e.g., exposure to moisture, irradiation, etc.
The polymer blend, before the addition of additives, exhibits a combination of desirable properties. Among these properties are (i) a hot creep at 150C of less than 200, preferably less than 150 and more preferably less than 100, percent, (ii) a dielectric constant at 60 hertz (Hz) and 9OC of less than about 2.5, preferably less than about 2.4 and more preferably less than about 2.3, (iii) a dissipation factor at 60 Hz and 9OC of less than about 0.005, preferably less than about 0.004 and more preferably less than about 0.003, and (iv) an alternating current (AC) breakdown strength of greater than about 600, preferably greater than about 700 and more preferably greater than about 800, volts/mil (v/mil). Preferably, the blend also exhibits at least one of a (v) tensile strength of less than about 6,000, preferably less than about 5000 and more preferably less than about 4000, pounds per square inch (psi), and (vi) tensile elongation greater than about 50, preferably greater than about 75 and more preferably greater than about 100, percent. Hot creep is measured from a 50 mil plaque at 150C by ICEA T-28-562 ("Test Method for Measurement of Hot Creep of Polymeric Insulations" dated March 1995). Dielectric constant and dissipation factor (OCfDF) are measured at 60 Hz and 9OC by ASTM D-150. AC breakdown strength is measured by ASTM D- 149. Tensile strength (stress at maximum load) and elongation are measured from 50 mil plaques at room temperature and a displacement rate of 2 inches per minute by ASTM D-638-00. The polymer blend has a typical melt flow rate (MFR as determined by ASTM D-1238,
Condition L, 230C, 2.16 kg) of less than about 100, preferably less about 50 and more preferably less than about 30, grams/10 minute (g/10 min). The polypropylene component of the polymer blend has a typical flexural modulus (as determined by ASTM D-790A) of less than about 300,000, preferably less than about 250,000 and more preferably less than about 200,000, psi. The insulating coating or jacket of the electrically conductive device may comprise the polymer blend in combination with one or more additives. Typically, the polymer blend comprises at least about 30, preferably at least about 40 and more preferably at least about 50, weight percent of the insulating coating or jacket.
MiLWAUKEE\i268056.i 12 of 25 Express Mail No. EV377672071US Typical additives include such materials as fillers, pigments, crosslinking agents, processing aids, metal deactivators, extender oils, antioxidants, stabilizers, lubricants, flame retardants and the like. When fillers are used, the insulation or jacket preferably comprises from greater than 0 to about 70, more preferably from about 10 to about 70 and more preferably from about 20 to about 70, weight percent of at least one filler. Representative fillers include carbon black, silicon dioxide (e.g., glass beads), talc, calcium carbonate, clay, fluorocarbons, siloxanes and the like.
Suitable extender oils (or plasticizers) include aromatic, naphthenic, paraffinic, or hydrogenated (white) oils and mixtures of two or more of these materials. If extender oil is added to the insulation or jacket composition, then it is typically added at a level from about 0.5 to about 25, preferably from about 5 to 15, parts by weight per hundred parts.
Suitable antioxidants include hindered phenols such as 2,6-di-t-butyl-4-methylphenol; 1, 3, 5-trimethyl-2,4,6-tris (3', 5'-di-t-butyl-4'-hydroxybenzyl)-benzene; tetrakis [(methylene 3, 5-di-t-butyl-4-hydroxyhydrocinnamate)] methane (IRGANOX™ 1010, commercially available from Ciba-Geigy); octadecyl-3,5-di-t-butyl-4-hydroxy cinnamate (IRGANOX™ 1076, also commercially available from Ciba-Geigy); and like known materials. Where present, the antioxidant is used at a preferred level of from about 0.05 to about 2 parts by weight per 100 parts by weight of insulation or jacket composition. The stabilizing additives, antioxidants, metal deactivators, and/or UV stabilizers used in the practice of this invention are well known, used conventionally, and described in the literature, e.g., USP 5,143,968 and 5,656,698.
The crosslinking agents that can be used in the practice of this invention include conventional silanes, such as the vinyltrialkoxysilanes described in USP 5,266,627, and peroxides, such as dicumyl peroxide and the others described in USP 6,124,370. The crosslinking agents and cross-linkable polymers are used in known ways and in known amounts. The electrically conductive member of the electrically conductive device is typically a conductive metal wire or cable, e.g., copper or aluminum, but it can also be a conductive nonmetallic material such as silicon dioxide doped with one or more metallic substances, e.g., germanium, gallium, arsenic, antimony and the like, such as the core of a fiber optic cable. The
MILWAUKEEM268056.1 13 of 25 Express Mail No. EV37767207 IUS difference between wire and cable is typically one of gauge. The member may comprise a single strand or multiple strands, e.g., a pair of twisted copper wires. The electrically conductive device is formed in any conventional manner, typically with the insulating member, e.g., coating, extruded about the electrically conductive member as it is formed, drawn or processed such that the insulating member surrounds the conductive member. The equipment and conditions for making such a device are well known in the art.
In one embodiment, the electrically conductive devices of this invention have a crush resistance of at least about 18, preferably at least about 20 and more preferably at least about 22, psi as measured on a 45 mil wall insulation or jacket on 14 American Wire Gauge (AWG) solid copper wire by test method SAE Jl 128 (pinch test).
The following examples are provided as further illustration of the invention, and these examples are not to be construed as a limitation on the scope of the invention. Unless otherwise indicated, all parts and percentages are expressed on a weight basis.
EXAMPLES
Examples 1-3 and Comparative Examples 1-3
The compositions reported in Table 2 were prepared from the components described in Table 1. Four of these compositions were then extruded onto 14 AWG solid copper wire using a Davis Standard single screw 2.5 inch extruder, 24:1 length:diameter(L/D) with a polyethylene screw and Maddock mixing head. Typical melt temperature was 185C for Comparative Examples 1 and 2, but the melt temperature of Examples 1 and 2 was adjusted until a smooth surface was achieved, typically at a melt temperature of 215C. Forty-five mil (0.045 inch) wall insulation or jacket was extruded onto the solid copper wire. Samples were collected and Comparative Examples 1 and 2 were cured in a 9OC water bath for one hour. Examples 1 and 2 were not cured in the water bath. All samples were allowed to come to ambient conditions for at least 24 hours. Wire samples were measured according to SAE-Jl 128 on a pinch test apparatus. The values are reported in Table 3.
MILWAUKEEU 268056.1 14 of 25 Express Mail No. EV377672071US The compositions of Example 3 and Comparative Example 3 were extruded onto a 1/0 aluminum conductor with 19 strands. Samples of this cable were then subjected to various physical tests, and the results are reported in Table 4. The improvement factor is reported as improvement over Comparative Example 3, DGDA-5800 NT, a typical high density polyethylene used in ruggedized cable constructions.
MILWAUKEE\1268056.1 15 of 25 Express Mail No. EV377672071US 63737A
Table 1
Components of the Compositions of Table 2
Figure imgf000017_0001
ΛAU polymers are products of The Dow Chemical Company
^Registered trademark of The Dow Chemical Company
MB - Masterbatch
HDPE - high density polyethylene
LLDPE - linear low density polyethylene
ICP - impact copolymer polypropylene
10 hPP - homopolymer polypropylene
MILWAUKEEM268056.1
Table 2
Blend Compositions
Figure imgf000018_0001
MILWAUKEEU268056.1 17 of 25 Express Mail No. EV377672071US Table 3
Results of the Automotive Pinch Test (SAE Jl 1281
Figure imgf000019_0001
Table 4 Example 3 ICEA Test Results
Figure imgf000019_0002
The data of Table 3 are from 14 AWG solid copper wire with 45 mil of insulation or jacket. Four readings were taken from four sides and averaged to calculate the pinch number in psi. The actual thickness was measured and used to calculate the psi/mil. The pinch values of the inventive examples are much higher that the pinch values of the comparative examples, and the higher the pinch value, the greater the resistance to crush force.
The data of Table 4 is from 1/0 aluminum conductor with a jacket thickness of between 70 and 75 mil. In each of the seven tests reported, the jacket of the composition of this invention markedly outperformed the HDPE j acket.
MILWAUKEEU268056.1 18 of 25 Express Mail No. EV377672071US Comparative Example 4 (Peroxide Crosslinked LDPE)
Low density polyethylene (246.9 g, 2.4 dg/min MI, 0.9200 g/cc density) was added to a Brabender mixing bowl previously purged with nitrogen. After fluxing for 3 minutes at 125 C, 3.1 grams of Luperox Ll 30 peroxide (manufactured by Arkema, Inc.) was added to the bowl, and the LDPE and peroxide were mixed for an additional 4 minutes at 125 C. From this mixture two 50 mil plaques were compression molded at 125C for 10 minutes followed by 180C for 70 minutes. From one plaque seven dogbone samples were cut for measurement of tensile strength, elongation and hot creep. The other plaque was used for measuring dielectric constant and dissipation factor. The mixture was also used to compression mold a 40 mil plaque under the same conditions, and this plaque was used to measure alternating current breakdown strength. The results of these measurements are reported in Figures 1-5. Comparative Example 5 (Moisture Crosslinked Ethylene-Silane Copolymer)
SI-LINK DFDA-5451 NT ethylene-silane copolymer (249.13 g) was added to a Brabender mixing bowl previously purged with nitrogen. After fluxing for 3 minutes at 160C, 0.5 grams of Irganox 1010 (a hindered phenolic antioxidant available from Ciba Specialty Chemicals) and 0.38 grams of dibutyltin laurate (DBTDL) were added to the bowl, and the resulting mixture was blended for an additional 3 minutes at 160C. From this mixture a number of 50 mil plaques were immediately compression molded at 160C for 10 minutes. Seven dogbone samples were cut from each plaque, cured in a 9OC water bath for four hours, and then measured for tensile strength, elongation, hot creep dielectric constant, dissipation factor, and measure alternating current breakdown strength. The results of these measurements are also reported in Figures 1-5. Example 4 (70/30 hPP/POE Blend)
DOW H314-02Z propylene homopolymer (hPP, 70 wt%) and 30 wt% Affinity 8150 polyolefin elastomer (POE) were melt blended in a Banbury mixer at 180C for 3.5 minutes, and passed through an extruder and then an underwater pelleter. Pellets from the pelleter were then collected and compression molded into 50 mil plaques at 170C for 10 minutes. Five dog bone samples were cut from each plaque, and the samples were then measured for tensile strength,
MILWAUKERI268056.1 19 of 25 . Express Mail No. EV37767207 IUS elongation, hot creep dielectric constant, dissipation factor, and measure alternating current breakdown strength. The results of these measurements are also reported in Figures 1-5. Example 5 (55/45 hPP/POE Blend)
DOW H314-02Z propylene homopolymer (137.50 g) and of Affinity 8150 (112.50 g) were added to a Brabender mixing bowl previously purged with nitrogen. After fluxing for 3 minutes at 170C, 50 mil plaques were immediately compression molded at 170C for 10 minutes. Seven dogbone samples were cut from each plaque, and measured for tensile strength, elongation, hot creep dielectric constant, dissipation factor, and measure alternating current breakdown strength. The results of these measurements are also reported in Figures 1-5. Example 6 (94/6 ICP/POE)
DOW 7C54H impact copolymer polypropylene (235 grams) and of Affinity 8150 (15 g) were added to a Brabender mixing bowl previously purged with nitrogen. After fluxing for 3 minutes at 170C, 50 mil plaques were immediately compression molded at 170C for 10 minutes. Seven dogbone samples were cut from each plaque, and measured for tensile strength, elongation, hot creep dielectric constant, dissipation factor, and measure alternating current breakdown strength. The results of these measurements are also reported in Figures 1-5.
In all instances, the compression molded plaques of the invention either met or exceeded the properties of the comparative example plaques.
Although the invention has been described in considerable detail through the specification and examples, one skilled in the art will recognize that many variations and modifications can be made without departing from the spirit and scope of the invention as described in the following claims. All U.S. patents and allowed U.S. patent applications cited in the specification or examples are incorporated herein by reference.
MILWAUKEEM268056.1 20 of 25 Express Mail No. EV377672071US

Claims

What is claimed is:
1. An electrically conductive device having a crash resistance of at least about 18 psi, the device comprising: A. An electrically conductive member comprising at least one electrically conductive substrate; and
B. At least one electric-insulating member substantially surrounding the electrically conductive member, the electric-insulating member comprising a polymer blend, the polymer blend comprising: 1. At least about 50 weight percent of a polypropylene, and
2. At least about 10 weight percent of an elastomer.
2. The electrically conductive device of Claim 1 in which the elastomer is a copolymer of ethylene and an α-olefϊn.
3. The electrically conductive device of Claim 1 in which the elastomer is a copolymer of ethylene and a Gf-2O α-olefϊn.
4. The electrically conductive device of Claim 1 in which the elastomer is a copolymer of ethylene and a C4.|0 α-olefϊn.
5. The electrically conductive device of Claim 1 in which the elastomer is a copolymer of ethylene and octene.
6. The electrically conductive device of Claim 2 in which the elastomer has a density of not greater than about 0.92 g/cm3.
7. The electrically conductive device of Claim 6 in which the polypropylene is a copolymer of propylene and an α-olefϊn other than propylene.
8. The electrically conductive device of Claim 6 in which the polypropylene is a copolymer of propylene and at least one of ethylene and a Gf-2O α-olefϊn.
9. The electrically conductive device of Claim 8 in which the polypropylene is prepared by at least one of Zeigler-Natta, constrained geometry and metallocene catalysis.
MILWAUKEEM268056.1 21 of 25 Express Mail No. EV377672071US
10. The electrically conductive device of Claim 8 in which the polypropylene is prepared by nonmetallocene, metal-centered, pyridinyl catalysis.
11. The electrically conductive device of Claim 10 in which the polypropylene is characterized as comprising at least about 65 mole percent (mol%) of units derived from propylene, about 0.1-35 mol% of units derived from ethylene, and 0 to about 35 mol% of units derived from one or more unsaturated comonomers, with the proviso that the combined mole percent of units derived from ethylene and the unsaturated comonomer does not exceed about 35.
12. The electrically conductive device of Claim 11 in which the polypropylene is characterized as having at least one of the following properties: (i) 3C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a skewness index, Six, greater than about -1.20, and (iii) a DSC curve with a Tme that remains essentially the same and a Tmax that decreases as the amount of comonomer in the copolymer is increased.
13. The electrically conductive device of Claim 10 in which the polypropylene is characterized as comprising having at least about 65 mol% of the units derived from propylene, and between about 0.1 and 35 mol% the units derived from the unsaturated comonomer.
14. The electrically conductive device of Claim 13 in which the polypropylene is characterized as having at least one of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a skewness index, S;x, greater than about -1.20, and (iii) a DSC curve with a Tme that remains essentially the same and a Tmax that decreases as the amount of comonomer in the copolymer is increased.
15. The electrically conductive device of Claim 6 in which the polypropylene is a homopolymer.
16. The electrically conductive device of Claim 15 in which the polypropylene is prepared by at least one of Zeigler-Natta, constrained geometry and metallocene catalysis.
17. The electrically conductive device of Claim 15 in which the polypropylene is prepared by nonmetallocene, metal-centered, pyridinyl catalysis.
MILWAUKEEM268056.1 22 of 25 Express Mail No. EV377672071US
18. The electrically conductive device of Claim 17 in which the polypropylene is characterized as having (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) substantially isotactic propylene sequences, and (iii) at least 50 percent more of the regio-error than a comparable polypropylene homopolymer prepared with a Ziegler-Natta catalyst.
19. The electrically conductive device of Claim 1 in which the polypropylene comprises at least about 60 weight percent of the polymer blend.
20. The electrically conductive device of Claim 1 in which the polypropylene comprises at least about 70 weight percent of the polymer blend.
21. The electrically conductive device of Claim 1 in which the insulating member further comprises at least one of a filler, pigment, crosslinking agent, anti-oxidant, processing aid, metal deactivator, oil extender, stabilizer and lubricant.
22. The electrically conductive device of Claim 1 in which the polymer blend comprises at least about 30 weight percent of the insulating member.
23. The electrically conductive device of Claim 1 in which the conductive member is at least one of wire and cable.
24. The electrically conductive device of Claim 1 having a crush resistance of at least about 20 psi.
25. The electrically conductive device of Claim 1 in which the polymer blend is a post-reactor blend.
26. The electrically conductive device of Claim 1 in which the polymer blend is an in-reactor blend.
27. The electrically conductive device of Claim 1 in which the polymer blend contains no more than an inconsequential amount of a water-soluble salt that has a deleterious effect on the wet electrical properties of the device.
28. An electrically conductive device comprising:
A. An electrically conductive member comprising at least one electrically conductive substrate; and
MILWAUKEEU268056.1 • 23 of 25 Express Mail No. EV377672071US B. At least one electric-insulating member substantially surrounding the electrically conductive member, the electric-insulating member comprising a polymer blend, the polymer blend comprising: 1. At least about 50 weight percent of a polypropylene, and 2. At least about 10 weight percent of an elastomer, the blend characterized as having (i) a hot creep of less than 200% at 150C, (ii) a dielectric constant at 60 Hz and 9OC of less than about 2.5, (iii) a dissipation factor at 60 Hz and 9OC of less than about 0.005, and (iv) an AC breakdown strength of greater than about 600 v/mil.
29. The device of Claim 28 in which the blend is further characterized as having at least one of a (v) tensile strength of less than about 6,000 pounds per square inch (psi), and (vi) tensile elongation greater than about 50%.
30. The device of Claim 28 in which the elastomer is an ethylene/α-olefin copolymer.
31. The device of Claim 28 in the form of a low, medium, high or extra-high voltage wire or cable.
32. The electrically conductive device of Claim 28 in which the polymer blend contains no more than an inconsequential amount of a water-soluble salt that has a deleterious effect on the wet electrical properties of the device.
33. The device of Claim 1 in the form of a low, medium, high or extra-high voltage wire or cable.
MILWAUKEEU268056.1 24 of 25 Express Mail No. EV377672071US
PCT/US2006/029491 2005-08-05 2006-07-27 Polypropylene-based wire and cable insulation or jacket WO2007019088A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2008001750A MX2008001750A (en) 2005-08-05 2006-07-27 Polypropylene-based wire and cable insulation or jacket.
EP06800483A EP1925004A1 (en) 2005-08-05 2006-07-27 Polypropylene-based wire and cable insulation or jacket
US11/997,787 US20080227887A1 (en) 2005-08-05 2006-07-27 Polypropylene-Based Wire and Cable Insulation or Jacket
JP2008525057A JP2009503801A (en) 2005-08-05 2006-07-27 Polypropylene-based insulation or jacket for wires and cables
CA002617902A CA2617902A1 (en) 2005-08-05 2006-07-27 Polypropylene-based wire and cable insulation or jacket

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70588905P 2005-08-05 2005-08-05
US60/705,889 2005-08-05

Publications (1)

Publication Number Publication Date
WO2007019088A1 true WO2007019088A1 (en) 2007-02-15

Family

ID=37398421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/029491 WO2007019088A1 (en) 2005-08-05 2006-07-27 Polypropylene-based wire and cable insulation or jacket

Country Status (8)

Country Link
US (1) US20080227887A1 (en)
EP (1) EP1925004A1 (en)
JP (1) JP2009503801A (en)
CN (1) CN101258561A (en)
CA (1) CA2617902A1 (en)
MX (1) MX2008001750A (en)
TW (1) TW200713336A (en)
WO (1) WO2007019088A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319102B2 (en) * 2006-04-18 2012-11-27 Borealis Technology Oy Layer for cables having improved stress whitening resistance
WO2015009562A1 (en) * 2013-07-16 2015-01-22 Dow Global Technologies Llc Flexible power cable insulation
US9404005B2 (en) 2010-09-30 2016-08-02 Dow Global Technologies Llc Recyclable thermoplastic insulation with improved breakdown strength
EP3103123A4 (en) * 2014-02-07 2017-09-20 General Cable Technologies Corporation Methods of forming cables with improved coverings

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE441931T1 (en) * 2006-07-10 2009-09-15 Borealis Tech Oy CABLE LAYER BASED ON POLYPROPYLENE WITH HIGH ELECTRICAL FAILURE DIAGRAM STRENGTH
CN101878264B (en) * 2007-09-25 2012-11-07 陶氏环球技术有限责任公司 Styrenic polymers as blend components to control adhesion between olefinic substrates
US8729900B1 (en) * 2009-03-03 2014-05-20 Superior Essex International LP Locatable fiber optic cable
BR112012011085A2 (en) 2009-11-11 2016-07-05 Borealis Ag polymer composition and power cable comprising the polymer composition
EA022361B1 (en) 2009-11-11 2015-12-30 Бореалис Аг Crosslinkable polymer composition, cable with advantageous electrical properties and process for producing the same
ES2758129T3 (en) 2009-11-11 2020-05-04 Borealis Ag A cable and its production procedure
CN102597020B (en) 2009-11-11 2014-07-23 博瑞立斯有限公司 A polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
KR20110100018A (en) * 2010-03-03 2011-09-09 엘에스전선 주식회사 Insulation resin composition resistant to thermal deformation and the cable using the same
EP2450910B1 (en) 2010-11-03 2019-09-25 Borealis AG A polymer composition and a power cable comprising the polymer composition
JP5614376B2 (en) * 2011-06-09 2014-10-29 日立金属株式会社 Silane cross-linked polyolefin insulated wire
CN102617931B (en) * 2012-04-01 2014-04-16 广东三凌塑料管材有限公司 Modified polypropylene cable guide
JP6182315B2 (en) * 2013-01-10 2017-08-16 古河電気工業株式会社 Resin composition with excellent surface smoothness
CA2954746A1 (en) 2014-08-05 2016-02-11 Givaudan Sa Sweetener compositions
US10501645B2 (en) * 2015-10-07 2019-12-10 Union Carbide Chemicals & Plastics Technology Semiconductive shield composition
JP6455420B2 (en) * 2015-12-25 2019-01-23 オムロン株式会社 Electronic device and manufacturing method thereof
US10131774B2 (en) 2016-11-16 2018-11-20 Corning Optical Communications LLC Fiber optic cable having low thermal strain and methods of manufacturing the same according to ASTM D4065 and D638
AU2018205241A1 (en) * 2017-01-05 2019-07-25 General Cable Technologies Corporation Linear low-density polyethylene polymers suitable for use on cables
US10497491B2 (en) * 2017-03-30 2019-12-03 Ls Cable & System Ltd. Halogen-free flame-retardant polyolefin insulation composition and cable having an insulating layer formed from the same
JP7396114B2 (en) * 2020-02-26 2023-12-12 株式会社オートネットワーク技術研究所 Communication wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973626A (en) * 1982-09-29 1990-11-27 Wilkus Edward V Crosslinked polymer interdispersions containing polyolefin and method of making
EP0893801A1 (en) * 1997-07-23 1999-01-27 PIRELLI CAVI E SISTEMI S.p.A. Cables with a halogen-free recyclable coating comprising polypropylene and an ethylene copolymer having high elastic recovery
WO1999005688A1 (en) * 1997-07-23 1999-02-04 Pirelli Cavi E Sistemi S.P.A. Low-smoke self-extinguishing cable and flame-retardant composition used therein
WO2000041187A1 (en) * 1998-12-30 2000-07-13 Pirelli Cavi E Sistemi S.P.A. Cables with a recyclable coating

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144202A (en) * 1977-12-27 1979-03-13 Union Carbide Corporation Dielectric compositions comprising ethylene polymer stabilized against water treeing with epoxy containing organo silanes
US5143968A (en) * 1989-08-11 1992-09-01 The Dow Chemical Company Polystyrene-polyisoprene-polystyrene block copolymers, hot melt adhesive compositions, and articles produced therefrom
US5266627A (en) * 1991-02-25 1993-11-30 Quantum Chemical Corporation Hydrolyzable silane copolymer compositions resistant to premature crosslinking and process
US5246783A (en) * 1991-08-15 1993-09-21 Exxon Chemical Patents Inc. Electrical devices comprising polymeric insulating or semiconducting members
US5783638A (en) * 1991-10-15 1998-07-21 The Dow Chemical Company Elastic substantially linear ethylene polymers
JPH09507082A (en) * 1993-11-03 1997-07-15 エクソン・ケミカル・パテンツ・インク Aromatic tackifier resin
US6124370A (en) * 1999-06-14 2000-09-26 The Dow Chemical Company Crosslinked polyolefinic foams with enhanced physical properties and a dual cure process of producing such foams
US6861143B2 (en) * 1999-11-17 2005-03-01 Pirelli Cavi E Sistemi S.P.A. Cable with recyclable covering
AU780051B2 (en) * 1999-12-21 2005-02-24 Exxonmobil Chemical Patents Inc Adhesive alpha-olefin inter-polymers
US6824870B2 (en) * 2000-09-28 2004-11-30 Pirelli S.P.A. Cable with recyclable covering
US6943215B2 (en) * 2001-11-06 2005-09-13 Dow Global Technologies Inc. Impact resistant polymer blends of crystalline polypropylene and partially crystalline, low molecular weight impact modifiers
US6960635B2 (en) * 2001-11-06 2005-11-01 Dow Global Technologies Inc. Isotactic propylene copolymers, their preparation and use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973626A (en) * 1982-09-29 1990-11-27 Wilkus Edward V Crosslinked polymer interdispersions containing polyolefin and method of making
EP0893801A1 (en) * 1997-07-23 1999-01-27 PIRELLI CAVI E SISTEMI S.p.A. Cables with a halogen-free recyclable coating comprising polypropylene and an ethylene copolymer having high elastic recovery
WO1999005688A1 (en) * 1997-07-23 1999-02-04 Pirelli Cavi E Sistemi S.P.A. Low-smoke self-extinguishing cable and flame-retardant composition used therein
WO2000041187A1 (en) * 1998-12-30 2000-07-13 Pirelli Cavi E Sistemi S.P.A. Cables with a recyclable coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319102B2 (en) * 2006-04-18 2012-11-27 Borealis Technology Oy Layer for cables having improved stress whitening resistance
US9404005B2 (en) 2010-09-30 2016-08-02 Dow Global Technologies Llc Recyclable thermoplastic insulation with improved breakdown strength
WO2015009562A1 (en) * 2013-07-16 2015-01-22 Dow Global Technologies Llc Flexible power cable insulation
EP3103123A4 (en) * 2014-02-07 2017-09-20 General Cable Technologies Corporation Methods of forming cables with improved coverings
US10818409B2 (en) 2014-02-07 2020-10-27 General Cable Technologies Corporation Cables with improved coverings and methods of forming thereof

Also Published As

Publication number Publication date
CA2617902A1 (en) 2007-02-15
CN101258561A (en) 2008-09-03
EP1925004A1 (en) 2008-05-28
JP2009503801A (en) 2009-01-29
MX2008001750A (en) 2008-04-15
US20080227887A1 (en) 2008-09-18
TW200713336A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
US20080227887A1 (en) Polypropylene-Based Wire and Cable Insulation or Jacket
CA2626131C (en) Energy cable comprising a dielectric fluid and a mixture of thermoplastic polymers
EP2160739B1 (en) Energy cable
EP1588387B1 (en) Cable with recyclable covering layer
KR100536616B1 (en) Cables with a halogen-free, recyclable coating containing polypropylene and ethylene copolymers with high structural uniformity
JP4902093B2 (en) Semiconductive shield composition
EP2622012B2 (en) Recyclable thermoplastic insulation with improved breakdown strength
KR19990014105A (en) Cables with a halogen-free, recyclable coating containing ethylene copolymer and polypropylene with high elastic recovery
CA2524252C (en) Improved strippable cable shield compositions
EP2831152B1 (en) Process for producing polypropylene blends for thermoplastic insulation
CA2491013C (en) Improved insulation compositions containing metallocene polymers
WO2006089735A1 (en) Power or communications cable with flame retardant polymer layer
KR102498801B1 (en) Ethylene-alpha-olefin copolymer-triallyl phosphate composition
EP2582751A2 (en) Insulation containing styrene copolymers
NZ566870A (en) Energy cable comprising a dielectric fluid and a mixture of thermoplastic polymers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032363.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2617902

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11997787

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/001750

Country of ref document: MX

Ref document number: 2008525057

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006800483

Country of ref document: EP