WO2007014775A1 - Procede de fonctionnalisation successive d’un substrat et microstructure obtenue par ce procede - Google Patents

Procede de fonctionnalisation successive d’un substrat et microstructure obtenue par ce procede Download PDF

Info

Publication number
WO2007014775A1
WO2007014775A1 PCT/EP2006/007665 EP2006007665W WO2007014775A1 WO 2007014775 A1 WO2007014775 A1 WO 2007014775A1 EP 2006007665 W EP2006007665 W EP 2006007665W WO 2007014775 A1 WO2007014775 A1 WO 2007014775A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
chemical
zones
substance
functionalization
Prior art date
Application number
PCT/EP2006/007665
Other languages
English (en)
Inventor
Guillaume Delapierre
Cyril Delattre
Original Assignee
Commissariat A L'energie Atomique (Cea)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique (Cea) filed Critical Commissariat A L'energie Atomique (Cea)
Priority to US11/997,477 priority Critical patent/US20090053481A1/en
Priority to EP06776577A priority patent/EP1920245A1/fr
Priority to JP2008524439A priority patent/JP2009505844A/ja
Publication of WO2007014775A1 publication Critical patent/WO2007014775A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00387Applications using probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00529DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00617Delimitation of the attachment areas by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00617Delimitation of the attachment areas by chemical means
    • B01J2219/00619Delimitation of the attachment areas by chemical means using hydrophilic or hydrophobic regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the invention relates to a method of successively functionalizing a substrate and to the micro structure obtained by this method.
  • the word functionalization defines the action of attaching or grafting a chemical molecule onto a support.
  • the purpose of this functionalization is to confer specific properties on said support (wettability, adsorption, neutral or charged surface, chemical reactivity for the grafting of chemical or biological molecules.)
  • the invention relates to a method of successive functionalization of a substrate, at the surface of which are at least two zones made of different materials, with at least one chemical substance without masking.
  • microsystem To confer properties of very specific surfaces on the surface of a microsystem (microstructure) is an important problem in the field of microtechnologies. It is even more important to have these different properties on the same support consisting of different areas. Each zone can thus lead to different properties.
  • zone 2 functionalization of zone 1, unmasking of zone 2, possibly masking of zone 1, functionalization of zone 2, - if zone 1 has been masked, unmasking of this zone
  • Surface functionalization is often provided by the reaction of an organic silane on an oxide layer, for example SiO 2 . Numerous examples will be noted concerning the production of surfaces comprising hydrophilic and hydrophobic zones made according to the diagram indicated in FIG. 1.
  • the application of the organic layer may be carried out for example by dipping in the liquid phase (see “Nanoliter liquid metering in microchannels using hydrophobic patterns “Anal Chemicals 2000, 72, 4100-4109), in the gaseous phase, by embossing (see” Chemical nano-patterning using hot embossing lithography “, Microelectronics Engineering 2002, 61-62, 423-428) by spin coating (see “Automatic transportation of a droplet on a wettability gradient surface", 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, October 5-9, 2003, Sqaw Valley, CA (USA)).
  • zone 1 functionalization to be preserved
  • degradation of the chemical functionalization layer on zone 2 for example by O 2 plasma
  • functionalization of zone 2 unmasking of zone 1 .
  • WO-A-02/16023 describes for example these two types of approach.
  • US 2005/0014151 discloses a method named SMAP (selective molecular assembly patterning technique) that uses three variants to selectively functionalize surface areas of a substrate:
  • SMAP selective molecular assembly patterning technique
  • One variant uses monolayers of alkane phosphates which form self-assembled monolayers (self-assembled monolayers).
  • the other variant uses polyionic polymers due to their electrostatic nature and hydrophobic polymers.
  • the chemical functionalization in this document is therefore only by selective adsorption on the surface of an area to be functionalized by molecules.
  • the masking of the zones is carried out by a polymer.
  • a polymer In general, the simultaneous presence of sub-molecular substances [instead of "chemistry"] (in particular solvents) and of this polymer (photosensitive or non-photosensitive) leads to compatibility problems.
  • the resin may optionally be replaced by a deposit metal, but it is a part of a heavier technology (metal deposition, resin deposit, photolithography to open reactive zones, etching), on the other hand the metals are also attacked by strong acids.
  • the objective of the present invention is therefore to avoid the problems of the prior art and to provide a suitable method for the functionalization of the microstructures.
  • the present invention therefore relates to a method of successively functionalizing a substrate, on the surface of which there are at least two zones made of different materials, with at least one chemical substance, characterized in that the functionalization is carried out without masking and in what he understands the steps
  • the present invention also relates to a microstructure containing zones which consist of different materials, wherein at least one zone is functionalized by chemical bonding, achievable by a method according to the method of the present invention.
  • FIG. 1 illustrates the conventional method of localization (functionalization) according to the state of the art.
  • FIG. 2 illustrates another conventional method of localization (functionalization) according to the state of the art.
  • Figure 3 illustrates the method according to an exemplary embodiment of the present invention.
  • FIG. 1 illustrates the method of functionalization according to the state of the art on a support 3 of a microstructure.
  • a zone 2 is masked in a first step 5. Then, the zone 1 is functionalized in a second step 6 and after, the zone 2 is unmasked. If the zone 1 is masked in a step 5, it follows a functionalization step 6 of the zone 2 and unmasking 7 of the zone 1. Alternatively, the zone 2 could functionalised directly after the unmasking of the zone 2.
  • FIG. 1 illustrates another method of functionalization according to the technical state. The order of these steps is as follows:
  • Figure 3 illustrates the method according to an exemplary embodiment of the present invention.
  • the zone 1 is functionalized by reaction forming a covalent bond through the transformation of the substrate with a chemical substance. Some parts of this chemical substance X 1 also react with zone 2. Consequently, zone 2 is treated with a chemical substance Y 1 to clean these zones of the substance X 1 and / or its reaction products, which have deposited on these zones during the functionalization of the first zone, without the functionalized surface of the first zone being damaged.
  • zone 2 is activated by chemical activation or physical (step 9) and then functionalized (step 6). A functionalization of a substrate of the different zones is thus obtained by the formation of covalent bonds.
  • steps (b1), (b2) and / or (c) could be repeated one or more times, for example using in the steps (a) and (c) chemical substances X different from X 1 and X 2 and in steps (bl) and / or (b2) of different chemicals Y of Y 1 and Y 2.
  • step (bl) and / or step (b2) is carried out in acidic or basic medium.
  • Preferred X 1 molecules having alkene, alkyne, halogen, diazo, thio, di or tri-coordinated phosphine atom (phosphine, phosphinine), aldehyde, alcohol groups.
  • Preferred X 2 molecules having silane, siloxane, pentacoordinated phosphorus atom (phosphate, phosphonate) moieties.
  • the conductive or semiconductor materials are selected from those of the group comprising silicon, crystalline or amorphous carbon, optionally doped n or p and metals.
  • Preferred metals are gold, silver, copper, nickel, aluminum.
  • the preferable materials are silicon, germanium, carbon in crystalline or amorphous form, dope (graphite, carbon nanotubes, mono or polycrystalline diamond.
  • Preferable combinations of materials from different areas are gold / oxide, Si / Si oxide, aluminum / Si oxide, Si / Si nitride, gold / Si / Si oxide.
  • PDMS poly (dimethylsiloxane)
  • acrylic polymers such as PMMA, etc.
  • Cleaning and activation steps could therefore be carried out in an acidic or basic medium with chemical substances Y 1 , Y 2 or Y, for example HF at different dilutions and possibly buffered, a mixture H 2 SO 4 / H 2 O 2 in varying proportions, HNO 3 , their mixtures and strong bases such as NaOH, KOH.
  • chemical substances Y 1 , Y 2 or Y for example HF at different dilutions and possibly buffered, a mixture H 2 SO 4 / H 2 O 2 in varying proportions, HNO 3 , their mixtures and strong bases such as NaOH, KOH.
  • the functionalized zones could be modified by means of chemical bonds or physical treatment.
  • the substrate is therefore structured in different areas (different materials). This structuring can be performed by microtechnology techniques (masking, photolithography, etching or deposition, unmasking).
  • the zones can be differentiated for example at the hydrophilic level.
  • the zones can here derive from a single material, which can subsequently be modified chemically.
  • the chemical modification can also be, for example, the transformation in 2 steps of an epoxide function in aldehyde function to graft molecules with amine-type groups.
  • an ester function can be converted into an acid function to give hydrophilic surfaces and also reactive with NH 2 functions.
  • the method of the present invention further comprises sequential functionalization with at least one chemical substance.
  • the functionalization of a first zone could "polluting" also a second zone or subsequent zones by non-specific adsorption of reagents used for this functionalization.
  • the method of the present invention could be used for the preparation of chemical and biological sensors, in the context of the production of DNA chips, proteins, sugars, peptides, small organic molecules for therapeutic purposes, and also for the preparation of fluidic microsystems requiring functionalization of their walls.
  • the method of the present invention could be used for the preparation of any microelectronic device where it is necessary to impart mechanical or chemical properties to the surfaces of this device.
  • This invention makes it possible to functionally differentiate two zones of a structured or non-structured support (glass, polymers, silicon, mineral oxide layers, etc.) without protection of any of the areas during the chemical process.
  • the present invention proposes an approach whose main interest is to be able to completely dissociate the technology steps (masking, etching, photolithography, etc.) and chemical functionalization (see FIG. 3).
  • the protocol described is an example of the method of the present invention. It integrates:
  • zone A the functionalization of zone A, the cleaning and activation of zone B (simultaneously), the functionalization of zone B, the chemical modification of the functions of zone B.
  • a drop of liquid deposited on the flat surface of a solid body forms a contact angle at the interface between the liquid and the substrate.
  • a drop is a liquid that does not wet and has a contact angle greater than 90 °.
  • the measurement of contact angles is a method for characterizing the interaction between a liquid and a solid surface.
  • the contact angle and the function of the surface tension of the liquid and the surface free energy of the substrate are also called direction finding (C. J. Van Oz "Medium interfacial force, 1996).
  • a non-oxidized silicon surface is regenerated on zone 1 by soaking the substrate in dilute HF (1%) for a short time (a few tens of seconds) in order to limit the consumption of the SiO 2 layer (zone 2).
  • the substrate is dried under nitrogen flow and then introduced in reaction with 1-octadecene.
  • the reaction takes place under argon at 150 ° C for 12 hours.
  • the substrate is then rinsed successively with various solvents (heptane, dichloromethane, acetone, ethanol, water).
  • the contact angle measurement indicates that zone A is functionalized (contact angle of 102 ° close to theoretical 105 ° for a perfectly organized surface, Table 1) while zone B is polluted by organic molecules (86 °) .
  • the next step cleans this zone B and activates it by creating silanol groups (contact angle of 13 °) without noticeably degrading the zone A (contact angle from 102 to 100 °).
  • Zone B is then functionalized with a silane carrying an epoxide function according to one of the methods known in the art.
  • the contact angle obtained (66 °) is characteristic of this type of surface. It is obtained by preserving almost completely the surface properties of zone A (passage from 100 to 90 °).
  • a solution of oligomer (10 ⁇ M, phosphate buffer) of 20 seas modified by an NH 2 functional reactive function of the aldehyde functions of the surface (5 'NH 2 TT TCG TTT GAT ACC CAA GGA 3') are deposited on this surface at room temperature. using a robot equipped with piezoelectric heads that eject drops of 330 pL.
  • a reducing post-treatment is carried out (0.1M NaBH 4 ) and the substrate is then rinsed with 0.2% SDS and with deionized water.
  • a complementary target solution 5 'GTC TCC TTG GGT ATC CGA TGT 3'
  • This technology thus makes it possible to obtain spots of excellent quality, in particular in terms of size and alignment (conditioned by the design of the underlying inorganic materials) but also in terms of homogeneity within a spot.
  • Another example which works in principle as the execution example number 1 uses a substrate whose surface comprises a plurality of zones.
  • the plurality of different areas is divided by groups of areas consisting of the same material.
  • each zone of the plurality (several tens, or even hundreds) of the zones may consist of a different material.
  • the material of the plurality of zones was gold and silicon oxide, i.e., the substrate had two groups of zones each of which consisted of a different material.
  • the reagent X 1 is preferably a thiol
  • the reagent X 2 is a silane or siloxane.
  • fluoric acid (HF) is preferred.
  • the reagent X 1 is chosen from alkenes, alkines and halogens.
  • the reagent Y is HF or H 2 SO 4 , the reagent X 2 is a thiol, the reagent Y is the fluoric acid HF and the reagent X 3 is a silane and siloxane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Procédé de f onctionnalisation successive d'un substrat, à la surface duquel se trouvent au moins deux zones (1,2) constituées de matériaux différents, avec au moins une substance chimique, caractérisé en ce que la f onctionnalisation s'effectue sans masquage et en ce qu'il comprend les étapes (a) f onctionnalisation d'une première zone (1) sans masquage de la seconde zone (2) ou des zones suivante éventuelles grâce à la transformation du substrat par une substance chimique X1, où le matériau de la première zone a une réactivité plus élevée par rapport à la substance X1 que les matériaux des zones suivantes éventuelles, et (bl) traitement de la seconde zone (2) ou/et des zones suivantes éventuelles avec une substance chimique Y1 pour nettoyer ces zones de la substance X1 et/ou de ses produits de réaction, qui se sont déposés sur ces zones pendant la f onctionnalisation de la première zone, sans que la surface fonctionnalisée de la première zone ne soit endommagée.

Description

Procédé de fonctionnalisation successive d'un substrat et microstructure obtenue par ce procédé
L' invention est relative à un procédé de fonctionnalisation successive d'un substrat et à la micro-structure obtenue par ce procédé. Le mot fonctionnalisation définit l'action d' attacher ou de greffer une molécule chimique sur un support. Cette fonctionnalisation a pour but de conférer des propriétés particulières au dit support (mouillabilité, adsorption, surface neutre ou chargée, réactivité chimique pour le greffage de molécules chimiques ou biologiques. En particulier, l'invention est relative à un procédé de fonctionnalisation successive d'un substrat, à la surface duquel se trouvent au moins deux zones constituées de matériaux différents, avec au moins une substance chimique sans masquage.
Conférer des propriétés de surfaces bien particulières à la surface d'un microsystème (microstructure) est une problématique importante dans le domaine des microtechnologies. Il est encore plus important de pouvoir disposer de ces différentes propriétés sur un même support constitué de différentes zones. Chaque zone peut ainsi conduire à des propriétés différentes.
Actuellement, la technique la plus utilisée utilise l'enchaînement des étapes suivantes (Figure 1) :
- masquage de la zone 2, fonctionnalisation de la zone 1, démasquage de la zone 2, éventuellement, masquage de la zone 1, fonctionnalisation de la zone 2, - si la zone 1 a été masquée, démasquage de cette zone La fonctionnalisation de surface est souvent assurée par la réaction d'un silane organique sur une couche d'oxyde par exemple SiO2. On notera de nombreux exemples concernant la réalisation de surfaces comportant des zones hydrophiles et hydrophobes réalisés suivant le schéma indiqué en Figure 1. L'application de la couche organique peut être réalisée par exemple par trempage en phase liquide (cf. "Nanoliter liquid metering in microchannels using hydrophobic patterns" Anal. Chem. 2000, 72, 4100-4109), en phase gazeuse, par embossing (cf. "Chemical nano-patterning using hot embossing lithography", Microelectronics Engineering 2002, 61-62, 423- 428), par dépôt, par spin coating (cf. "Automatic transportation of a droplet on a wettability gradient surface", 7th International Conférence on miniaturized Chemical and Biochemical analysis Systems, October 5-9 2003, Sqaw Valley, CA (USA) ) .
L'ordre de ces étapes peut aussi être classiquement le suivant comme démontré dans la figure 2 :
fonctionnalisation de l'ensemble de la surface, masquage de la zone 1 (fonctionnalisation à conserver) , dégradation de la couche de fonctionnalisation chimique sur la zone 2, par exemple par plasma O2, fonctionnalisation de la zone 2, démasquage de la zone 1.
La WO-A-02/16023 décrit par exemple ces deux types d'approche.
La US 2005/0014151 décrit un procédé nommé SMAP (sélective molecular assembly patterning technique) qui utilise trois variantes afin de fonctionnaliser sélectivement des zones de surface d'un substrat : Une variante utilise des monocouches des alcanes phosphates qui forment des monocouches auto-assemblées (self-assembled monolayers). L'autre variante utilise des polymères polyioniques dû à leur caractère électrostatique et des polymères hydrophobes . La fonctionnalisation chimique dans ce document se fait donc uniquement par une adsorption sélective à la surface d'une zone à fonctionnaliser par des molécules.
Dans tous ces procédés, certains inconvénients apparaissent :
En général, le masquage des zones est effectué par un polymère. La présence simultanée des substances sous- moléculaires [au lieu de "la chimie »] (notamment solvants) et de ce polymère (photosensible ou non) entraîne des problèmes de compatibilité. Pour contourner ce problème, la résine peut éventuellement être remplacée par un dépôt métallique, mais il s'agit d'une part d'une technologie plus lourde (dépôt métallique, dépôt résine, photolithographie pour ouvrir des zones réactives, gravure), d'autre part les métaux sont également attaqués par les acides forts.
Dans le deuxième cas de figure (fig. 2), la résine recouvre directement la surface fonctionnalisée qui peut alors être contaminée. Il est en effet assez difficile de nettoyer parfaitement ce type de surfaces sans endommager la couche de fonctionnalisation .
Afin de contourner ces problèmes, des solutions ont été proposées dans des cas particuliers. On notera en particulier les brevets déposés par Alchimer (publié comme WO-A- 2004/019385, WO-A-2004/018349) qui concernent tous 1 ' électrogreffage de polymères organiques sur matériaux semiconducteurs et conducteurs. La localisation de la fonctionnalisation est alors assurée par un adressage électrique des zones. Mais il est difficile d'adresser exactement des locations par voie électrique. L'inconvénient de cette méthode est qu'elle nécessite la présence de contacts électriques qui peuvent complexifier et augmenter le coût des objets produits. De plus, cette technologie impose obligatoirement la présence d'un « gap » entre les électrodes qui ne peuvent donc pas être parfaitement contiguës.
L'objectif de la présente invention est donc d'éviter les problèmes de l'art antérieur et de proposer un procédé convenable pour la fonctionnalisation des microstructures.
La présente invention concerne donc un procédé de fonctionnalisation successif d'un substrat, à la surface duquel se trouvent au moins deux zones constituées de matériaux différents, avec au moins une substance chimique, caractérisé en ce que la fonctionnalisation s'effectue sans masquage et en ce qu'il comprend les étapes
(a) fonctionnalisation d'une première zone sans masquage de la seconde zone ou des zones suivantes éventuelles grâce à la transformation du substrat par une substance chimique X1, où le matériau de la première zone a une réactivité plus élevée par rapport à la substance X1 que les matériaux des zones suivantes éventuelles et formation d'une liaison covalente entre la substance X1 et le matériau de la première zone, et
(bl) traitement de la seconde zone et/ou des zones suivantes éventuelles avec une substance chimique Y1 pour nettoyer ces zones de la substance X1 et/ou de ses produits de réaction, qui se sont déposés sur ces zones pendant la fonctionnalisation de la première zone, sans que la surface fonctionnalisée de la première zone ne soit endommagée. La formation d' une liaison covalente entre la substance X1 et le matériau de la première zone donne accès à une stabilité augmentée de la couche consistant de la substance X1 sur le substrat par rapport à par exemple une couche obtenue par simple adsorption chimique.
La présente invention concerne également une microstructure contenant des zones qui consistent en matériaux différents, où au moins une zone est fonctionnalisée grâce à une liaison chimique, réalisable par un procédé selon le procédé de la présente invention.
Brève description des dessins
D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre, en référence aux figures des dessins annexés. Les exemples de réalisation décrits avec référence aux dessins ci-annexés ne sont nullement limitatifs.
La figure 1 illustre le procédé classique de localisation ( fonctionnalisation) selon l'état de la technique.
La figure 2 illustre un autre procédé classique de localisation ( fonctionnalisation) selon l'état de la technique .
La figure 3 illustre le procédé selon un exemple de réalisation de la présente invention.
La figure 4 illustre l'hybridation sur un substrat Si / SiO2 doublement fonctionnalisé. La figure 1 illustre le procédé de fonctionnalisation selon l'état de la technique sur un support 3 d'une microstructure. Une zone 2 est masquée dans une première étape 5. Ensuite, la zone 1 est fonctionnalisée dans une deuxième étape 6 et après, la zone 2 est démasquée. Si la zone 1 est masquée dans une étape 5, il s'ensuit une étape de fonctionnalisation 6 de la zone 2 et une démasquage 7 de la zone 1. Alternativement, la zone 2 pourrait fonctionnalisée directement après la démasquage de la zone 2.
La figure 2 illustre un autre procédé de fonctionnalisation selon l'état technique. L'ordre de ces étapes est ici le suivant :
- fonctionnalisation 6 de l'ensemble de la surface, masquage 5 de la zone 1 (fonctionnalisation à conserver) , dégradation 8 de la couche chimique sur la zone 2, par exemple par plasma O2, - fonctionnalisation 6 de la zone 2, démasquage 7 de la zone 1.
La figure 3 illustre le procédé selon un exemple de réalisation de la présente invention. Sur un substrat 3, il existe deux zones 1 et 2. Dans une première étape 6, la zone 1 est fonctionnalisée par réaction en formant une liaison covalente grâce à la transformation du substrat par une substance chimique. Quelques parties de cette substance chimiques X1 réagissent aussi avec la zone 2. En conséquence, la zone 2 est traitée avec une substance chimique Y1 pour nettoyer ces zones de la substance X1 et/ou de ses produits de réaction, qui se sont déposés sur ces zones pendant la fonctionnalisation de la première zone, sans que la surface fonctionnalisée de la première zone ne soit endommagée. Après le nettoyage, la zone 2 est activée par activation chimique ou physique (étape 9) et ensuite fonctionnalisée (étape 6) . On obtient donc une fonctionnalisation d'un substrat des zones différentes par la formation de liaisons covalentes.
Dans le procédé de la présente invention, il est avantageux de réaliser aussi l'étape
(c) fonctionnalisation d'une seconde zone sans masquage des zones suivantes grâce à la transformation du substrat par une substance chimique X2 différente de X1, où le matériau de la seconde zone a une réactivité plus élevée par rapport à la substance X2 que les autres matériaux et formation d'une liaison covalente entre la substance X2 et le matériau de la seconde zone; et supprimer de la troisième zone ou des zones suivantes éventuelles, dans le cas où ces zones sont présentes.
En outre, il est préférable dans la présente invention de réaliser avant la fonctionnalisation l'étape
(b2) activation chimique ou physique de la seconde zone et des zones suivantes éventuelles en vue d'une fonctionnalisation, grâce au traitement par une substance chimique Y2 différente des substances chimiques X1 et X2.
Les étapes (bl), (b2) et/ou (c) pourraient être répétées une ou plusieurs fois, par exemple en utilisant dans les étapes (a) et (c) des substances chimiques X différentes de X1 et X2 et dans les étapes (bl) et/ou (b2) des substances chimiques Y différemment de Y1 et de Y2.
Il est en outre préférable que l'étape (bl) et/ou l'étape (b2) soit réalisée en milieu acide ou basique. Dans une une utilisation préférable, il existe au moins une zone 1 consistant en matériaux conducteurs ou semiconducteurs ou des isolants dopés et pouvant réagir de manière thermique, photochimique, mécanochimique ("scribing") avec des substances chimiques X1, X2 ou X dont les molécules possèdent une fonctionnalisation chimique réactive vis-à-vis de ces matériaux.
Molécules X1 préférées possédant des groupements de type alcène, alcyne, halogène, diazo, thio, atome de phosphore di ou tri-coordiné (phosphine, phosphinine) , aldéhyde, alcool.
Molécules X2 préférées possédant des groupements de type silane, siloxane, atome de phosphore pentacoordiné (phosphate, phosphonate) .
Avantageusement, les matériaux conducteurs ou semiconducteurs sont sélectionnés parmi ceux du groupe comprenant le silicium, le carbone cristallin ou amorphe, éventuellement dopé n ou p et les métaux. Les métaux préférés sont or, argent, cuivre, nickel, aluminium. Les matériaux préférables sont silicium, germanium, carbone sous forme cristalline ou amorphe, dope (graphite, nanotubes de carbone, diamant mono ou polycristallin .
Associations préférables de matériaux de différentes zones sont or/oxyde, Si/oxyde de Si, aluminium/oxyde de Si, Si/nitrure de Si, or/oxyde de Si/Si.
Dans une autre utilisation préférable de la présente invention, il existe au moins une zone 2 consistant en un matériau sélectionné parmi ceux du groupe comprenant les oxydes (verre, quartz, pyrex, SiO2, TiO2, ...) ou les nitrures métalliques ou semi-métalliques (Si3N4, ...) ou un mélange de ces matériaux, et des polymères comme la poly (diméthylsiloxane) (PDMS), des polymères acryliques comme la PMMA, etc.
Des étapes de nettoyage et d'activation pourraient donc être réalisées en milieu acide ou basique par des substances chimiques Y1, Y2 ou Y comme par exemple HF à différentes dilutions et éventuellement tamponné, un mélange H2SO4 / H2O2 dans des proportions variables, HNO3, leurs mélanges et des bases fortes telles que NaOH, KOH.
Les zones fonctionnalisées pourraient être modifiées au moyen de liens chimiques ou d'un traitement physique.
A la surface du substrat utilisé dans la présente invention, il se trouve au moins deux zones constituées de matériaux différents. Le substrat est donc structuré en différentes zones (différents matériaux) . Cette structuration peut être effectuée par les techniques de microtechnologie (masquage, photolithographie, gravure ou dépôt, démasquage) .
Les zones peuvent se différencier par exemple au niveau de 1 ' hydrophilie . Les zones peuvent ici dériver d'un seul matériau, qui peut être par la suite modifié chimiquement.
La modification chimique peut aussi être, par exemple, la transformation en 2 étapes d'une fonction époxyde en fonction aldéhyde pour y greffer des molécules munies de groupements de type aminé. De même une fonction ester peut être transformée en fonction acide pour conduire à des surfaces hydrophiles et également réactives vis-à-vis des fonctions NH2.
Le procédé de la présente invention comprend en outre un fonctionnalisation successive avec au moins une substance chimique. La fonctionnalisation d'une première zone pourrait "polluer" également une seconde zone ou des zones suivantes par adsorption non spécifique de réactifs utilisés pour cette fonctionnalisâtion .
II est donc nécessaire selon la présente invention de faire
(bl) un traitement de la seconde zone et des zones suivantes éventuelles avec une substance chimique Y1 pour nettoyer ces zones de la substance X1 et/ou de ses produits de réaction, qui se sont déposés sur ces zones pendant la fonctionnalisation de la première zone, sans que la surface fonctionnalisée de la première zone ne soit endommagée.
II n'est pas exclu que les étapes de nettoyage (bl) et d'activation (b2) citées ci-dessus soient confondues (même réactif utilisé).
Le procédé de la présente invention pourrait être utilisée pour la préparation de capteurs chimiques et biologiques, dans le cadre de la réalisation de puces à ADN, à protéines, à sucres, à peptides, à petites molécules organiques à visée thérapeutique, et aussi pour la préparation de microsystèmes fluidiques nécessitant une fonctionnalisation de leurs parois.
En outre, le procédé de la présente invention pourrait être utilisé pour la préparation de tout dispositif de microélectronique où il est nécessaire de conférer des propriétés mécaniques ou chimiques aux surfaces de ce dispositif .
Cette invention permet de fonctionnaliser différemment deux zones d'un support structuré ou non (verre, polymères, silicium, couches d'oxydes minéraux,...) sans protection de l'une quelconque des zones au cours du procédé chimique.
En effet, la présente invention propose une approche dont le principal intérêt est de pouvoir dissocier complètement les étapes de technologie (masquage, gravure, photolithographie, ...) et de fonctionnalisation chimique (cf. figure 3).
L'exemple suivant illustre en outre la présente invention. Cet exemple est donné en illustration et ne saurait être considéré comme limitatif.
Exemple de réalisation
Le protocole décrit est un exemple du procédé de la présente invention. Il intègre :
la fonctionnalisation de la zone A, le nettoyage et l'activation de la zone B (simultanément) , - la fonctionnalisation de la zone B, la modification chimique des fonctions de la zone B.
Un substrat constitué de 2 zones A et B est utilisé dont la zone A consiste en silicium et la zone B en SiO2 (500 nm) obtenu par oxydation thermique du silicium.
Les résultats obtenus seront discutés en terme d'angle de contact. La mesure de l'angle de contact se fait de la manière suivante :
Une goutte d'un liquide déposé sur la surface plane d'un corps solide forme un angle de contact à l'interface entre le liquide et le substrat. Par définition, une goutte est un liquide qui ne mouille pas et qui a un angle de contact supérieur à 90°. A l'inverse, une goutte d'un liquide qui mouille a un angle inférieur à 90°.
La mesure des angles de contact est une méthode pour caractériser l'interaction entre un liquide et une surface solide. L'angle de contact et la fonction de la tension de surface du liquide et de l'énergie libre de surface du substrat s'appellent également goniométrie (C. J. Van Oz « Force interfaciale en milieu à queue, 1996) .
Lorsque les 2 chimies décrites ci-après sur des substrats séparés et sans étapes de nettoyage (non nécessaire alors) , les angles de contact suivants sont obtenus:
103° sur la zone A - 65-70° sur la zone B au stade époxyde 55-60° sur la zone B au stade diol .
Fonctlonnallsatlon de la zone 1 :
Une surface de silicium non oxydé est régénérée sur la zone 1 par trempage du substrat dans du HF dilué (1%) pendant un temps court (quelques dizaines de secondes) afin de limiter la consommation de la couche de SiO2 (zone 2) . Après un rinçage éventuel à l'eau désionisée, le substrat est séché sous flux d'azote puis introduit en réaction avec le 1- octadécène . La réaction a lieu sous argon à 150°C pendant 12 heures. Le substrat est alors rincé successivement par divers solvants (heptane, dichlorométhane, acétone, éthanol, eau) . La mesure d'angle de contact indique que la zone A est fonctionnalisée (angle de contact de 102° proche des 105° théoriques pour une surface parfaitement organisée, Tableau 1) tandis que la zone B est polluée par des molécules organiques (86°) . Nettoyage / activation de la zone B :
L'étape suivante (HF 1 %, 30 s) permet de nettoyer cette zone B et de l'activer en créant des groupements silanols (angle de contact de 13°) sans dégrader de manière notable la zone A (angle de contact passant de 102 à 100°).
Fonctionnalisat±on de la zone B :
La zone B est ensuite fonctionnalisée par un silane portant une fonction époxyde suivant un des procédés connus dans l'art. L'angle de contact obtenu (66°) est caractéristique de ce type de surface. Il est obtenu en conservant presque intégralement les propriétés de surface de la zone A (passage de 100 à 90°) .
Modification chimique des fonctions de la zone B : La transformation chimique de la fonction époxyde en diol sur la zone B s'effectue par un traitement acide (HCl 0,2N pendant 3 heures à température ambiante ; angle de contact = 56°) sans dégrader la zone A (conservation d'un angle de contact de 90°) .
On a ainsi pu localiser deux fonctionnalisations chimiques par formation des liaisons covalentes différentes sur un même support sans protection d'une quelconque des zones au cours du procédé chimique. Tableau 1 : Angles de contact de la surface
Figure imgf000016_0001
La fonctionnalisation de la surface du substrat est suivie par le spotting des sondes de brins d'ADN.
Spott±ng des sondes de brins d'ADN :
Une solution d' oligomère (10 μM, tampon phosphate) de 20 mers modifiés par une function NH2 réactive des functions aldéhyde de la surface (5' NH2 TT TTT TCG GAT ACC CAA GGA 3') sont déposés sur cette surface à l'aide d'un robot muni de têtes piézoélectriques qui éjectent des gouttes de 330 pL.
Après 12 heures de réaction à température ambiante, un post traitement réducteur est réalisé (NaBH4 0,1M) puis le substrat est rincé au SDS 0,2% et à l'eau désionisée.
Hybridation avec une séquence complémentaire :
Le substrat est alors immergé dans une solution de cible complémentaire (5' GTC TCC TTG GGT ATC CGA TGT 3') marqué par un fluorophore CY3. Après 1 h d'incubation à 500C dans un tampon Tris-EDTA, NaCl (pH = 8,5), les puces sont rincées dans différentes solutions salines, séchées sous Argon puis lues au scanner à fluorescence (longueur d'onde d'excitation = 532 nm) . On obtient l'image illustrée Figure 4.
Ainsi, une puce à ADN a été réalisée sur un substrat bifonctionnalisé :
fonction hydrophobe en dehors des plots (zone A, chaîne alkyle Cis) fonction réactive vis-à-vis des molécules biologiques (zone B, aldéhyde)
A partir d'une surface inorganique comportant 2 matériaux différents (Si et SiO2) , une biopuce a été entièrement fabriquée ( fonctionnalisation chimiques, dépôt des sondes biologiques) et utilisée (hybridation par des cibles fluorescents) sans masquage d'une quelconque des zones de la surface .
Cette technologie permet donc d'obtenir des spots d'excellente qualité, notamment en terme de taille et d'alignement (conditionnée par le design des matériaux inorganiques sous-jacents) mais aussi en terme d'homogénéité au sein d'un spot.
Un autre exemple qui fonctionne en principe comme l'exemple d'exécution numéro 1 fait utilisation d'un substrat dont la surface comporte une pluralité de zones. La pluralité des zones différentes est divisée par des groupes des zones consistant du même matériau. In extremis, chaque zone de la pluralité (plusieurs dizaines, voire centaines) des zones peut consister en un matériau différent.
Le matériau de la pluralité de zones était or et oxyde de silicium, c'est-à-dire le substrat comportait deux groupes de zones dont chaque groupe consiste en un matériau différent. La substance chimique, le réactif X1 est de préférence un thiol, et le réactif X2 est un silane ou un siloxane. Comme réactif Y1, Y2 et Y, l'acide fluorique (HF) est préféré.
Un autre substrat consistait en trois groupes de zones comportant des matériaux différents, notamment un groupe consiste en une pluralité de zones en or, le deuxième groupe en un oxyde de silicium et le troisième groupe de silicium pur. Le réactif X1 est choisi parmi les alcènes, alcines et halogènes. Le réactif Y est HF ou H2SO4, le réactif X2 est un thiol, le réactif Y est l'acide fluorique HF et le réactif X3 est un silane et siloxane.

Claims

Revendications
1. Procédé de fonctionnalisation successive d'un substrat, à la surface duquel se trouvent au moins deux zones (1/2) constituées de matériaux différents, avec au moins une substance chimique, comprenant les étapes
(a) fonctionnalisation d'une première zone (1) sans masquage de la seconde zone (2) ou des zones suivantes éventuelles grâce à la transformation du substrat par une substance chimique X1 et formation d'une liaison covalente entre la substance chimique X1 et le matériau de la première zone (1), où le matériau de la première zone a une réactivité plus élevée par rapport à la substance X1 que les matériaux des zones suivantes éventuelles et formation d'une liaison covalente entre la substance chimique X1 et le matériau de la première zone (1) , et
(bl) traitement de la seconde zone (2) ou/et des zones suivantes éventuelles avec une substance chimique Y1 pour nettoyer ces zones de la substance X1 et/ou de ses produits de réaction, qui se sont déposés sur ces zones pendant la fonctionnalisation de la première zone (1), sans que la surface fonctionnalisée de la première zone (1) ne soit endommagée.
2. Procédé selon la revendication 1, caractérisé en ce qu'est réalisée de surcroît l'étape
(c) fonctionnalisation d'une seconde zone (2) sans masquage des zones suivantes grâce à la transformation du substrat par une substance chimique X2 différente de X1, où le matériau de la seconde zone a une réactivité plus élevée par rapport à la substance X2 que les autres matériaux et formation d'une liaison entre la substance chimique X2 et le matériau de la seconde zone (2); supprimer de la troisième zone ou des zones suivantes éventuelles, dans le cas où ces zones sont présentes.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'est réalisée avant la fonctionnalisation l'étape
(b2) activation chimique ou physique de la seconde zone (2) et des zones suivantes éventuelles en vue d'une fonctionnalisation, grâce au traitement par une substance chimique Y2 différente des substances chimiques X1 et X2 .
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que les étapes (bl), (b2) et/ou (c) sont répétées une ou plusieurs fois, en pouvant utiliser dans les étapes (a) et (c) des substances chimiques X différentes de X1 et X2 et dans les étapes (bl) et/ou (b2) des substances chimiques Y différentes de Y1 et de Y2.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que Y1 est identique à Y2.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'étape (bl) et/ou l'étape (b2) est réalisée en milieu acide ou basique.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'il existe au moins une zone (1) consistant en matériaux conducteurs ou semi-conducteurs et pouvant réagir de manière thermique, photochimique, mécanochimique avec des substances chimiques X1, X2 ou X dont leurs molécules possèdent une fonctionnalité chimique réactive vis-à-vis de ces matériaux afin de former une liaison chimique, notamment une liaison covalente .
8. Procédé selon la revendication 7, caractérisé en ce que les matériaux conducteurs ou semi-conducteurs sont sélectionnés parmi ceux du groupe comprenant le silicium, le carbone cristallin ou amorphe et les métaux.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'il existe au moins une zone (2) consistant en un matériau sélectionné parmi ceux du groupe comprenant les oxydes ou les nitrures métalliques ou semi-métalliques ou un mélange de ces matériaux, et des polymères .
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que les substances chimiques Y1, Y2 ou
Y sont choisies parmi celles du groupe comportant HF, H2SO4, H2O2, HNO3 et leur mélanges ou des bases fortes.
11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que les zones fonctionnalisées sont modifiées au moyen de liaisons chimiques ou d'un traitement physique.
12. Micro-structure contenant des zones qui consistent en différents matériaux, où au moins une zone est fonctionnalisée grâce à une liaison covalente, réalisable par un procédé selon l'une des revendications précédentes .
PCT/EP2006/007665 2005-08-02 2006-08-02 Procede de fonctionnalisation successive d’un substrat et microstructure obtenue par ce procede WO2007014775A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/997,477 US20090053481A1 (en) 2005-08-02 2006-08-02 Method for successively functionalizing a substrate and microstructure is obtainable by said method
EP06776577A EP1920245A1 (fr) 2005-08-02 2006-08-02 Procede de fonctionnalisation successive d un substrat et microstructure obtenue par ce procede
JP2008524439A JP2009505844A (ja) 2005-08-02 2006-08-02 基板の連続的官能化方法およびこの方法によって得られる微細構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0508221 2005-08-02
FR0508221A FR2889516B1 (fr) 2005-08-02 2005-08-02 Procede de fonctionnalisation successive d'un substrat et microstructure obtenue par ce procede

Publications (1)

Publication Number Publication Date
WO2007014775A1 true WO2007014775A1 (fr) 2007-02-08

Family

ID=36658670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/007665 WO2007014775A1 (fr) 2005-08-02 2006-08-02 Procede de fonctionnalisation successive d’un substrat et microstructure obtenue par ce procede

Country Status (5)

Country Link
US (1) US20090053481A1 (fr)
EP (1) EP1920245A1 (fr)
JP (1) JP2009505844A (fr)
FR (1) FR2889516B1 (fr)
WO (1) WO2007014775A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008138934A2 (fr) * 2007-05-09 2008-11-20 Westfälische Wilhelms-Universität Münster Procédé pour la fabrication de structures monocouches fonctionnelles imprimées et produits de celui-ci
CA2761966A1 (fr) * 2009-05-29 2010-12-02 Georgia Tech Research Corporation Composants thermochimiques de nanolithographie, systemes et procedes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017670A1 (fr) * 1999-09-09 2001-03-15 Ben-Gurion University Of The Negev Matrices de sondes et preparation de celles-ci
US20020132272A1 (en) * 1998-07-14 2002-09-19 Peter Wagner Non-specific binding resistant protein arrays and methods for making the same
WO2004027501A1 (fr) * 2002-09-19 2004-04-01 Koninklijke Philips Electronics N.V. Paire de substrats espaces l'un de l'autre par des espaceurs et leur procede de fabrication
US20050014151A1 (en) * 2001-09-12 2005-01-20 Marcus Textor Device with chemical surface patterns
US20050019804A1 (en) * 2003-07-23 2005-01-27 Eastman Kodak Company Random array of microspheres

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0353328A1 (fr) * 1988-08-03 1990-02-07 Dräger Nederland B.V. Capteur à trois électrodes pour mesures polarographiques et amperométriques
US7399365B2 (en) * 2003-04-18 2008-07-15 Ekc Technology, Inc. Aqueous fluoride compositions for cleaning semiconductor devices
US7780841B2 (en) * 2005-02-15 2010-08-24 Hewlett-Packard Development Company. L.P. E-field induced ion selective molecular deposition onto sensor arrays

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020132272A1 (en) * 1998-07-14 2002-09-19 Peter Wagner Non-specific binding resistant protein arrays and methods for making the same
WO2001017670A1 (fr) * 1999-09-09 2001-03-15 Ben-Gurion University Of The Negev Matrices de sondes et preparation de celles-ci
US20050014151A1 (en) * 2001-09-12 2005-01-20 Marcus Textor Device with chemical surface patterns
WO2004027501A1 (fr) * 2002-09-19 2004-04-01 Koninklijke Philips Electronics N.V. Paire de substrats espaces l'un de l'autre par des espaceurs et leur procede de fabrication
US20050019804A1 (en) * 2003-07-23 2005-01-27 Eastman Kodak Company Random array of microspheres

Also Published As

Publication number Publication date
FR2889516A1 (fr) 2007-02-09
FR2889516B1 (fr) 2007-10-19
JP2009505844A (ja) 2009-02-12
EP1920245A1 (fr) 2008-05-14
US20090053481A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US20200377940A1 (en) Articles having localized molecules disposed thereon and methods of producing same
CA2568805C (fr) Dispositif de manipulation de gouttes destine a l'analyse biochimique, procede de fabrication du dispositif, et systeme d'analyse microfluidique
EP1114314B1 (fr) Dispositif comprenant une pluralite de sites d'analyse sur un support et procede de fabrication du dispositif
US7405034B2 (en) Polymeric structures, particularly microstructures, and methods for making same
WO2007014775A1 (fr) Procede de fonctionnalisation successive d’un substrat et microstructure obtenue par ce procede
EP1744828A1 (fr) Procede sol-gel de fonctionnalisation d'une surface d'un substrat solide
EP1677914B1 (fr) Procede de repartition de gouttes d un liquide d interet sur une surface
JP4214233B2 (ja) 透明材料の微細加工方法および微細構造体
EP1163049B1 (fr) Procede de realisation d'une matrice de sequences de molecules chimiques ou biologiques pour dispositif d'analyse chimique ou biologique
EP1343801A2 (fr) Procede d'immobilisation de sondes, en particulier pour realiser des puces biologiques
WO2012120420A1 (fr) Fonctionnalisation en surface d'un substrat en milieu liquide ionique
FR2839660A1 (fr) Microreacteur,son procede de preparation,et procede pour realiser une reaction biochimique ou biologique
Gad et al. Method for patterning stretched DNA molecules on mica surfaces by soft lithography
FR2842826A1 (fr) Procede de fabrication de puces biologiques
EP1215186A1 (fr) Support solide pour l'immobilisation d'oligonucléotides
EP1476756B1 (fr) Composant pour microsysteme d'analyse biologique ou biochimique
FR2804129A1 (fr) Procedes de synthese et d'immobilisation d'acides nucleiques sur un support solide silanise
WO2019241103A1 (fr) Dispositifs microfluidique à motifs et procédés de fabrication de ceux-ci
WO2008040769A1 (fr) Procede de formation d'un film de polymere(s) sur des sites predetermines d'un substrat
WO2002019407A2 (fr) Procede de distribution spatiale de groupes chimiques sur une surface de semi-conducteur
FR2869599A1 (fr) Microsysteme presentant une surface en silicium noir fonctionnalisee chimiquement ou biologiquement
FR2787581A1 (fr) Procede et equipement de garnissage de sites d'une biopuce
Trau et al. Preservation of DNA and protein biofunctionality for bio-MEMS & NEMS fabrication
FR2872503A1 (fr) Procede de fabrication d'une ebauche de biopuce, ebauche et biopuce

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008524439

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006776577

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006776577

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11997477

Country of ref document: US