WO2007013562A1 - 分析用具 - Google Patents

分析用具 Download PDF

Info

Publication number
WO2007013562A1
WO2007013562A1 PCT/JP2006/314905 JP2006314905W WO2007013562A1 WO 2007013562 A1 WO2007013562 A1 WO 2007013562A1 JP 2006314905 W JP2006314905 W JP 2006314905W WO 2007013562 A1 WO2007013562 A1 WO 2007013562A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
channel
flow path
tool according
common
Prior art date
Application number
PCT/JP2006/314905
Other languages
English (en)
French (fr)
Inventor
Daisuke Matsumoto
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to US11/989,649 priority Critical patent/US7856896B2/en
Priority to EP06781816.1A priority patent/EP1912074B1/en
Priority to JP2007526897A priority patent/JPWO2007013562A1/ja
Priority to CN200680027391XA priority patent/CN101233412B/zh
Publication of WO2007013562A1 publication Critical patent/WO2007013562A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44782Apparatus specially adapted therefor of a plurality of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis

Definitions

  • the present invention relates to an analysis tool in which a plurality of channels for moving a sample by capillary force are connected via a common channel.
  • sample analysis method for example, there is a method of analyzing a reaction solution obtained by reacting a sample and a reagent by an optical method.
  • analytical tools that provide a reaction field are used.
  • the analysis tool is used by being attached to an analyzer for analyzing the reaction solution.
  • a so-called micro device having a fine flow path is used as an analysis tool.
  • FIG. 7 As shown in FIG. 7, as the microdevice 9, there is one in which a plurality of flow paths 90 for moving a sample by capillary force are arranged radially (see, for example, Patent Document 1).
  • a branch channel 91 in which the intermediate force of each channel 90 is branched is provided.
  • the plurality of channels 90 have an annular common flow at the end (downstream in the sample flow direction).
  • Road 92 Connected to Road 92.
  • the branch channel 91 can communicate with the outside. By connecting the inside of the branch channel 91 to the outside, the sample flows into the branch channel 91 and flows into the channel 90 as shown in FIG. 8A.
  • the sample is moved to the front (branch part) before the reaction part 93 (part where the reagent part is provided).
  • the common channel 92 can also communicate with the outside. By discharging the gas inside the common channel 92, as shown in FIG. 8B, the sample is collectively collected with respect to the reaction parts 93 of the plurality of channels 90. Thus, the sample and the reagent can be reacted in the reaction section 93.
  • the measurement accuracy decreases in the channel 90 where the moving speed of the sample is low.
  • the flow path 90 since the flow path 90 is miniaturized, the influence described above on the moving speed of the sample is greatly affected by manufacturing variations. is there.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-117178
  • the present invention suppresses inflow of a sample into a common channel and improves measurement accuracy in an analysis tool in which a plurality of channels that move a sample by capillary force are connected via a common channel. As a challenge! / Speak.
  • a common flow path having a detection cell for detecting a specific component contained in a sample and connecting a plurality of flow paths for moving the sample by capillary force and the plurality of flow paths And each of the flow channels includes a water stop portion for suppressing the sample from flowing into the common flow channel.
  • the water stop portion is configured to suppress the movement of the sample, for example, by making a cross-sectional area in a direction orthogonal to the flow direction of the sample in the target portion different from the vicinity of the target site.
  • the water stop portion may include one or a plurality of concave portions. In this case, a step is provided between the concave portion and the vicinity of the target portion.
  • the water-stop portion is provided by a water-absorbing substance or by subjecting the target portion to a water-repellent treatment.
  • the water-absorbing substance is disposed in the recess.
  • the water-absorbing substance for example, a porous water-absorbing member, a water-swellable polymer material, or a water-curable polymer material can be used.
  • the water repellent treatment is applied to the inner surface of the recess.
  • Each flow path is configured to include, for example, a main flow path having a detection cell, and a branch flow path branched from the main flow path upstream of the detection cell in the sample flow direction.
  • the analysis tool according to the present invention is configured, for example, such that the main flow path is not in communication with the common flow path, while the branch flow path is in communication with the common flow path.
  • the water stop portion is preferably provided in the branch flow path.
  • the analysis tool according to the present invention may be configured such that the main flow path communicates with the common flow path while the branch flow path does not communicate with the common flow path.
  • the water stop portion is provided in the main flow path and downstream of the detection cell.
  • the plurality of flow paths are provided radially, for example.
  • the main channel or the branch channel has, for example, a main channel exhaust port for discharging the gas inside the detection cell or a branch channel exhaust port for discharging the gas inside the branch channel.
  • the common channel is provided on the same circumference as the main channel or branch channel exhaust port, and has a common channel exhaust port for exhausting the gas inside the common channel. Composed.
  • the main channel or branch channel exhaust port and the common channel exhaust port are closed by, for example, a sealing material.
  • the analysis tool of the present invention includes, for example, a reagent cell in which a main flow path is provided upstream of a detection cell in a sample flow direction and a reagent layer is provided, and a branch flow path includes a detection cell and a reagent cell. It is assumed that it has branched between.
  • the detection cell is provided with an additional reagent layer containing a coloring reagent, and the reagent layer contains an electron transfer substance that mediates electron transfer between the coloring reagent and the sample.
  • FIG. 1 is a plan view of a microdevice according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of a substrate in the microdevice shown in FIG.
  • Fig. 3A is a sectional view taken along line Ilia-Ilia in Fig. 1
  • Fig. 3B is a sectional view taken along line Illb- Illb in Fig. 1
  • Fig. 3C is a sectional view taken along line IIIc IIIc in Fig. 1.
  • FIG. 4 is a schematic diagram for explaining the operation of the microdevice shown in FIG. 1.
  • FIG. 5 is a plan view of a substrate in a microdevice according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram for explaining the operation of the microdevice shown in FIG.
  • FIG. 7 is a plan view of a substrate in a micro device for explaining an example of a conventional micro device.
  • FIG. 8 is a schematic diagram for explaining the operation of the microdevice shown in FIG.
  • Second reagent layer (additional reagent layer)
  • the microdevice 1 shown in FIGS. 1 to 3 is used when analyzing a sample by an optical method, and is used by being attached to an analyzer (not shown).
  • the microdevice 1 is configured as a single-use device and includes a substrate 2 and a cover 3.
  • the substrate 2 is formed in a disk shape as a whole, and includes a liquid receiving part 20, a plurality of flow paths 21, and
  • the liquid receiving part 20 is for holding a sample to be introduced into each flow path 21 and is formed as a cylindrical concave part in the central part of the substrate 2.
  • the plurality of flow paths 21 are radially provided as a whole, and are divided into four groups corresponding to the number of common flow paths 21.
  • Each channel 21 is for moving the sample by capillary force, and has a main channel 23 and a branch channel 24.
  • the main flow path 23 corresponds to the upstream portion 23B corresponding to the portion between the liquid receiving portion 20 and the branch portion 23A, and to the portion before the common flow path 22 from the branch portion 23A. Includes downstream part 23C.
  • the upstream portion 23B has a first reagent cell 25, and a first reagent layer 27 is provided in the first reagent cell 25.
  • the first reagent layer 27 includes, for example, an electron transfer substance and an acid-reducing enzyme, and is formed in a solid state that dissolves when contacting the sample.
  • the downstream portion 23C includes a second reagent cell 26, and a second reagent layer 28 is provided in the second reagent cell 26.
  • the second reagent layer 28 includes, for example, a color former that reacts with a specific component in the sample and develops a color, and is formed in a solid state that dissolves when contacting the sample.
  • the electron transfer substance, the oxidoreductase and the color former can be selected from known ones according to, for example, the type of the specific component to be analyzed.
  • the reagents to be included in the second reagent layers 27 and 28 are not limited to those illustrated, and can be variously changed.
  • the branch flow path 24 is used to achieve a state in which the sample is supplied to the first reagent cell 23 while the sample is not supplied to the second reagent cell, and the first reagent cell 23 and the second reagent cell Branching from the main channel 21 is made at a branching portion 23A located between 24 and 24A.
  • the branch channel 24 is connected to the common channel 22, and is configured such that a capillary force acts by discharging the gas in the common channel 22 to the outside. In the middle of the branch channel 24, there are three water stop sections. 29 is provided.
  • Each water stop 29 is for stopping the movement of the sample in the branch channel 24.
  • the water stop portion 29 is formed as a substantially cylindrical concave portion whose cross-sectional area in the orthogonal direction orthogonal to the flow direction is larger than other portions of the branch flow path 24. More specifically, the water stop portion 29 has a height dimension and a width dimension in the cross-section in the orthogonal direction that are larger than those of the branch channel 24 other than the water stop portion 29. As a result, a step is provided in the middle of the branch flow path 24, and there is an area where the width dimension is enlarged. As a result, by providing the water stop portion 29, the movement of the sample moving through the branch channel 24 can be suppressed at a step or the like.
  • the water stop portion 29 In addition to the configuration in which the water stop portion 29 is provided with a step (a configuration in which the cross-sectional area is changed), or in place of the configuration in which the step is provided, a configuration in which a water-absorbing substance is disposed in the branch channel 24, A configuration in which the inner surface of the branch channel 24 is partially water-repellent can be employed.
  • the water stop portion 29 may be configured to stop the movement of the sample when it reaches the sample while allowing the gas to move until the sample arrives.
  • the number is not limited to three, and any other number may be used as long as the intended purpose can be achieved.
  • examples of the water-absorbing substance that can be used as the water-stop portion 29 of the present invention include a water-swellable or water-curable polymer material in addition to a porous water-absorbing member.
  • examples of the porous water-absorbing member include foam (sponge), knitted fabric, woven fabric, non-woven fabric, and paper.
  • Water-swelling or water-curable polymer materials include water-absorbing polymers, water-soluble proteins such as gelatin, water-swelling acrylic, and water-curing acrylic, as well as CMC, CMC-Na, polyethylene oxide and their cross-linking substances be able to.
  • water repellent treatment various known methods can be adopted, and typically, a coating treatment with a fluorinated resin can be adopted.
  • Each common flow path 22 is used when the gas inside the branch flow path 24 is discharged, and communicates with a common flow path exhaust port 32 described later.
  • Each common flow path 22 is formed in an arc shape extending along the circumference of the substrate 2.
  • the substrate 2 having the above-described configuration is made of, for example, an acrylic resin such as polymethyl methacrylate (PMMA) or polydimethylsiloxane (PDMS) t, and a transparent resin. It can be formed by resin molding using a material. That is, the liquid receiving part 20, the plurality of flow paths 21, and the common flow path 22 can be simultaneously formed at the time of the above resin molding by devising the shape of the mold.
  • PMMA polymethyl methacrylate
  • PDMS polydimethylsiloxane
  • the cover 3 is formed in a transparent disk shape as a whole, and includes a sample introduction port 30, a plurality of main channel exhaust ports 31, and four common channels. It has an exhaust port 32 for use.
  • the sample inlet 30 is used when a sample is introduced, and is formed as a through hole.
  • the sample inlet 30 is formed at the center of the cover 3 so as to be positioned immediately above the liquid receiving part 20 of the substrate 2.
  • Each main channel exhaust port 31 is for discharging gas inside the downstream portion 23C in the main channel 21, and is formed as a through hole.
  • Each main channel exhaust port 31 is formed so as to be located immediately above the downstream end of the corresponding main channel 21 in the substrate 2.
  • the plurality of main channel exhaust ports 31 are provided so as to be located on the same circumference.
  • Each main channel exhaust port 31 has its upper opening closed by a sealing material 33.
  • Each common channel exhaust port 32 is formed on the same circumference as the main channel exhaust port 31 as a through hole communicating with the corresponding common channel 22.
  • the upper opening of each common flow path exhaust port 32 is closed by a sealing material 34.
  • the cover 3 having the above configuration can be formed by a resin molding using a transparent resin material in the same manner as the substrate 2. That is, the sample introduction port 30, the plurality of main channel exhaust ports 31 and the four common channel exhaust ports 32 can be formed at the same time in the above-described resin molding.
  • the sample is first supplied to the microdevice 1 through the sample inlet 30.
  • an opening is formed in the sealing material 34 to open the common channel exhaust port 32.
  • the upstream portion 23B and the branch portion of the main flow channel 21 are separated from the branch portion 23A.
  • the inside of the channel 24 communicates with the outside through the common channel 22. Therefore, in the flow channel 21 connected to the same common flow channel 22, capillary force acts on the upstream portion 23B and the branch flow channel 24, and the sample S of the liquid receiving part 20 is applied to these flow channels 21. Introduced into branch channel 24 via upstream part 23B. The progress of the sample introduced into the branch channel 24 is stopped depending on whether or not the three water stop portions 29 provided in the branch channel 24 are displaced.
  • the movement of the sample in the main channel 21 is stopped, while the sample introduced into the branch channel 24 is suppressed from flowing into the common channel 22.
  • the light amount in the water stop unit 29 may be monitored, and it may be detected that the liquid has reached the water stop unit 29 due to a change in the light amount.
  • the upstream portion 23B has the first reagent cell 25 provided with the first reagent layer 27, the first reagent layer 27 is dissolved by introducing the sample into the upstream portion 23B. This is used as the first reagent solution.
  • the first reagent layer 27 contains an electron transfer substance and an oxidoreductase, electrons are extracted by a specific component force acid reductase in the sample and supplied to the electron transfer substance. . That is, the first reagent solution in the first reagent cell 25 is likely to react with the reagent contained in the second reagent layer 28 of the second reagent cell 26.
  • openings are formed in the plurality of sealing materials 33 to open the main channel exhaust port 31.
  • the plurality of sealing materials 33 (main channel exhaust ports 31) are provided on the same circumference as the sealing material 33 (common channel exhaust ports 32). Therefore, the formation of the opening with respect to the sealing material 33 can be sequentially performed using, for example, the mechanism used for forming the opening in the sealing material 34 while rotating the microdevice 1 by a predetermined angle. For example, when the openings are formed in the sealing materials 33 and 34 by laser beam irradiation, the same laser diode can be used to form the openings in the sealing materials 33 and 34.
  • openings may be collectively formed for a plurality of sealing materials 33 connected to the same common flow path 22.
  • a method other than a method using laser light such as a method of piercing a needle-like member, can be employed.
  • the second reagent cell 26 is filled with the sample (first chemical solution), and the second reagent layer 28 of the second reagent cell 26 is dissolved to become the second reagent solution, which is specified in the second reagent solution.
  • a component for example, an electron transfer substance
  • reacts with a reagent for example, a color former
  • the photometry of the second reagent cell 26 is performed according to a predetermined order, and based on the photometry result, for example, The concentration of the specific component in the sample is calculated.
  • the sample introduced into the flow channel 21 as described above is appropriately suppressed from being introduced into the common flow channel 22. Therefore, even when there is a manufacturing variation in the volume (cross-sectional area) of the plurality of flow paths 21 in the microdevice 1, a reduction in capillary force acting on each flow path 21 due to the variation is suppressed. be able to. As a result, the movement of the sample is not stopped before a sufficient amount of sample is supplied to the second reagent cell 26, or the speed of the sample flowing into the second reagent cell 26 is significantly reduced. There is nothing.
  • the micro device 1 even if there is a manufacturing variation in the flow channel 21 in the micro device 1 in which the flow channel 21 is miniaturized, it is suppressed that the variation affects the analysis accuracy of the sample. Therefore, the reliability of analysis accuracy can be increased appropriately.
  • FIG. 5 a microdevice according to a second embodiment of the present invention
  • FIG. 5 the same reference numerals are given to the same elements as those of the microdevice according to the first embodiment of the present invention, and the duplicate description below will be omitted.
  • the microdevice shown in FIGS. 5 and 6! / Is the same as the above-described microdevice 1 according to the first embodiment of the present invention in that it includes the flow path 21 / and the common flow path 22.
  • the structure of the channel 21 / is different from that shown in Fig. 1 to Fig. 4.
  • the flow path 2 includes a main flow path 23 ⁇ and a branch flow path 24 ⁇ in the same manner as the micro device 1 according to the first embodiment of the present invention described above (see Figs. 1 to 4). ing.
  • the main flow path 23 ' communicates with the common flow path 22 at the downstream end.
  • two water stop portions 29 ′ are provided between the second reagent cell 26 and the common flow path 22.
  • Each water stop 29 ' has a cylindrical shape in which the cross-sectional area in the orthogonal direction perpendicular to the flow direction is larger than the portion between the second reagent cell 26 and the common flow path 22 in the main flow path 23'. It is formed as a recess. That is, a step is provided between the second reagent cell 26 and the common flow path 22 in the main flow path 23 ⁇ , and there is an area where the width dimension is enlarged. There is a step.
  • the water stop portion 29 ′ in addition to a configuration in which a step is provided (a configuration in which a cross-sectional area is changed), or in place of a configuration in which a step is provided, a configuration in which a water absorbing material is disposed in the branch flow path 24 ′ In addition, it is possible to adopt a configuration in which the inner surface of the branch flow path 24 ′ is partially water-repellent. Further, the number of the water stop portions 29 ′ is not limited to one, and may be any other number as long as the intended purpose can be achieved.
  • the branch channel 24 'does not communicate with the common channel 22, but communicates with the branch channel exhaust port 35'.
  • the branch channel exhaust port 3 is provided on the same circumference as the common channel exhaust port 32, and is closed by a sealing material 36 ′.
  • the sample is introduced into the liquid receiver 20 through the sample inlet 30 as shown in FIG. 6A, and then the sealing material. Open the 36Z.
  • the upstream portion 23B of the main channel 21 and the branch channel 24 communicate with the outside via the branch channel exhaust port 35 ⁇ .
  • the sample is introduced into the upstream portion 23B and the branch channel 24, and the first reagent layer 27 is dissolved in the first reagent cell 25.
  • the downstream portion 23 C communicates with the outside through the common channel 22.
  • the sample also moves toward the second reagent cell 26 at the branching portion 23A ′ of the main channel 23 ′, and the second reagent cell is collectively collected in the channel 21 / of the same group.
  • the sample is introduced at 26.
  • the movement of the sample stops at a water stop 29 ⁇ provided between the second reagent cell 26 and the common flow path 22. The As a result, the sample can be prevented from entering the common flow path 22.
  • the second reagent cell 26 in which the sample does not enter the common flow path 22 is provided in the same manner as in the microdevice 1 according to the first embodiment of the present invention (see FIGS. 1 to 4).
  • the sample can be introduced appropriately, and the analysis accuracy can be improved.
  • the present invention is not limited to the first and second embodiments described above, and various design changes are possible.
  • the present invention can also be applied to an analysis tool that is configured by only the second reagent cell 26 without the first reagent cell 25.
  • the present invention is not limited to an analytical tool for analyzing a sample by an optical method, but can be applied to an analytical tool configured to analyze a sample by an electrochemical method. it can

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 本発明は、試料中に含まれる特定成分を検出するための検出セル26を有し、かつ毛細管力により試料を移動させる複数の流路21と、複数の流路21どうしを繋ぐ共通流路22と、を備えた分析用具に関する。各流路21が共通流路22に試料が流入するのを抑制するための止水部29を備えたものとした。好ましくは、止水部29は、目的部分における試料の流れ方向と直交する方向の断面積を、当該目的部分の近傍とは異ならせて試料の移動を抑制するように構成される。  

Description

明 細 書
分析用具
技術分野
[0001] 本発明は、毛細管力により試料を移動させる複数の流路どうしが共通流路を介して 繋げられた分析用具に関する。
背景技術
[0002] 試料の分析方法としては、たとえば試料と試薬とを反応させたときの反応液を、光 学的手法により分析する方法がある。この手法により試料の分析を行う場合には、反 応場を提供する分析用具が使用されている。分析用具は、反応液を分析するための 分析装置に装着して使用される。そして、微量な試料を分析する場合には、分析用 具としては、微細な流路が形成された、いわゆるマイクロデバイスが利用されている。
[0003] 図 7に示したように、マイクロデバイス 9としては、毛細管力により試料を移動させる ための複数の流路 90が放射状に配置されたものがある (たとえば特許文献 1参照)。 このマイクロデバイス 9では、各流路 90の途中力も分岐した分岐流路 91が設けられ ている一方で、複数の流路 90が端部 (試料の流れ方向の下流側)において円環状 の共通流路 92に繋げられている。分岐流路 91は外部に連通可能とされており、分 岐流路 91の内部を外部に連通させることにより、図 8Aに示したように分岐流路 91に 試料が流入し、流路 90にお 、ては反応部 93 (試薬部が設けられた部分)の手前 (分 岐部分)まで試料が移動させられる。一方、共通流路 92も外部に連通可能とされて おり、その内部の気体を排出することにより、図 8Bに示したように複数の流路 90の反 応部 93に対して一括して試料を導入し、反応部 93において試料と試薬とを反応させ ることがでさる。
[0004] し力しながら、マイクロデバイス 9に対して複数の流路 90を設ける場合、各流路 90 の容積(断面積)などに製造上のバラツキが生じるため、各流路 90毎に試料の移動 速度にバラツキが生じる。そのため、試料の移動速度の大きな流路 90においては、 試料が共通流路 92に先に到達し、共通流路 92を塞いでしまうことがある。このような 事態が生じた場合には、試料の移動速度の小さい流路においては、作用する毛細 管力が小さくなつて、反応部 93に対して十分な量の試料が供給される前に試料の移 動が停止させられ、あるいは反応部 93に流入する試料の速度が著しく小さくなる。そ の結果、試料の移動速度の小さい流路 90においては、測定精度が低下しまう。とく に、マイクロデバイス 9では、流路 90が微細化されているために、製造上のバラツキ が試料の移動速度に与える影響が大きぐ先に説明した問題がより顕著に現れる傾 I口」にある。
[0005] 特許文献 1:特開 2004 - 117178号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、毛細管力により試料を移動させる複数の流路どうしが共通流路を介して 繋げられた分析用具において、共通流路に対する試料の流入を抑制し、測定精度を 向上させることを課題として!/ヽる。
課題を解決するための手段
[0007] 本発明においては、試料中に含まれる特定成分を検出するための検出セルを有し 、かつ毛細管力により試料を移動させる複数の流路と、複数の流路どうしを繋ぐ共通 流路と、を備えた分析用具であって、上記各流路は、上記共通流路に試料が流入す るのを抑制するための止水部を備えていることを特徴とする、分析用具が提供される
[0008] 止水部は、たとえば目的部分における試料の流れ方向と直交する方向の断面積を 、当該目的部位の近傍と異ならせることにより試料の移動を抑制するように構成され る。
[0009] 止水部は、 1または複数の凹部を含むものとすることもできる。この場合、凹部と上 記目的部分の近傍との間には段差が設けられる。
[0010] 止水部は、吸水性物質により、あるいは目的部分に撥水処理を施すことにより設け ることちでさる。
[0011] 好ましくは、吸水性物質は、凹部に配置される。吸水性物質としては、たとえば多孔 質吸水部材、水膨潤性高分子材料、または水硬化性高分子材料を用いることができ る。 [0012] 好ましくは、撥水処理は、凹部の内面に施される。
[0013] 各流路は、たとえば検出セルを有する主流路と、検出セルよりも試料の流れ方向の 上流側において、主流路から分岐した分岐流路と、を備えたものとして構成される。
[0014] 本発明に係る分析用具は、たとえば主流路が共通流路に連通していない一方で、 分岐流路が共通流路に連通したものとして構成される。この場合、止水部は、分岐流 路に設けるのが好ましい。
[0015] 本発明に係る分析用具は、主流路が共通流路に連通している一方で、分岐流路が 共通流路に連通しないように構成することもできる。この場合、止水部は、主流路に お!、て検出セルの下流側に設けるのが好ま 、。
[0016] 複数の流路は、たとえば放射状に設けられる。この場合、主流路または分岐流路は 、たとえば検出セルの内部の気体を排出するための主流路用排気口または分岐流 路の内部の気体を排出するための分岐流路用排気口を有するものとされ、共通流路 は、主流路用または分岐流路排気口と同一円周上に設けられ、かつ共通流路の内 部の気体を排出するための共通流路用排気口を有するものとして構成される。主流 路用または分岐流路用排気口および共通流路用排気口は、たとえばシール材により 閉鎖される。
[0017] 本発明の分析用具は、たとえば主流路が検出セルよりも試料の流れ方向の上流側 に設けられ、かつ試薬層が設けられた試薬セルを備え、分岐流路が検出セルと試薬 セルの間において分岐したものとされる。この場合、検出セルには、発色試薬を含む 追加の試薬層が設けられ、試薬層は、発色試薬と試料との間の電子授受を媒介する 電子伝達物質を含むものとされる。
図面の簡単な説明
[0018] [図 1]本発明の第 1の実施の形態に係るマイクロデバイスの平面図である。
[図 2]図 1に示したマイクロデバイスにおける基板の平面図である。
[図 3]図 3Aは図 1の Ilia— Ilia線に沿う断面図であり、図 3Bは図 1の Illb— Illb線に沿う 断面図であり、図 3Cは図 1の IIIc IIIc線に沿う断面図である。
[図 4]図 1に示したマイクロデバイスの作用を説明するための模式図である。
[図 5]本発明の第 2の実施の形態に係るマイクロデバイスにおける基板の平面図であ る。
[図 6]図 5に示したマイクロデバイスの作用を説明するための模式図である。
[図 7]従来のマイクロデバイスの一例を説明するためのマイクロデバイスにおける基板 の平面図である。
[図 8]図 7に示したマイクロデバイスの作用を説明するための模式図である。
符号の説明
[0019] 1, \' マイクロデバイス (分析用具)
21, 21' 流路
22 共通流路
24, 24' 分岐流路
25 第 1試薬セル(試薬セル)
26 第 2試薬セル (検出セル)
27 第 1試薬層 (試薬層)
28 第 2試薬層(追加の試薬層)
29, 29' 止水部
31 主流路用排気口
32 共通流路用排気口
33 (主流路用排気口の)シール材
34 (共通流路用排気口の)シール材
35' 分岐流路用排気口
3 (分岐流路用排気口の)シール材
発明を実施するための最良の形態
[0020] 以下、本発明について、第 1および第 2の実施の形態として図面を参照しつつ説明 する。
[0021] まず、本発明に第 1の実施の形態に係るマイクロデバイスについて、図 1ないし図 4 を参照して説明する。
[0022] 図 1ないし図 3に示したマイクロデバイス 1は、光学的手法により試料を分析する際 に利用するものであるとともに、分析装置(図示略)に装着して使用するものである。 このマイクロデバイス 1は、使い捨てとして構成されており、基板 2およびカバー 3を備 えている。
[0023] 基板 2は、全体として円盤状に形成されており、受液部 20、複数の流路 21、および
4つの共通流路 22を備えて!/、る。
[0024] 受液部 20は、各流路 21に導入する試料を保持するためのものであり、基板 2の中 央部において、円柱状の凹部として形成されている。
[0025] 複数の流路 21は、全体として放射状に設けられており、共通流路 21の数に対応し て 4つのグループに分けられている。各流路 21は、毛細管力により試料を移動させる ためのものであり、主流路 23および分岐流路 24を有している。
[0026] 図 3Aに良く表れているように、主流路 23は、受液部 20から分岐部分 23Aの間に 相当する上流部分 23Bと、分岐部分 23Aから共通流路 22の手前までに相当する下 流部分 23Cを含んでいる。
[0027] 上流部分 23Bは、第 1試薬セル 25を有するものであり、この第 1試薬セル 25に第 1 試薬層 27が設けられている。第 1試薬層 27は、たとえば電子伝達物質および酸ィ匕還 元酵素を含むものとして、試料と接触したときに溶解する固体状に形成されている。
[0028] 下流部分 23Cは、第 2試薬セル 26を有するものであり、この第 2試薬セル 26に第 2 試薬層 28が設けられている。第 2試薬層 28は、たとえば試料中の特定成分と反応し て発色する発色剤を含むものとして、試料と接触したときに溶解する固体状に形成さ れている。
[0029] なお、電子伝達物質、酸化還元酵素および発色剤は、たとえば分析すべき特定成 分の種類に応じて、公知のものの中から選択して使用することができ、また第 1およ び第 2試薬層 27, 28に含ませるべき試薬は、例示したものには限定されず、種々に 変更可能である。
[0030] 分岐流路 24は、第 1試薬セル 23に試料を供給する一方で第 2試薬セルに試料が 供給されない状態を達成するためのものであり、第 1試薬セル 23と第 2試薬セル 24と の間に位置する分岐部分 23Aにおいて、主流路 21から分岐している。この分岐流路 24は、共通流路 22に繋がっており、共通流路 22の気体を外部に排出することにより 毛細管力が作用するように構成されている。分岐流路 24の途中には、 3つの止水部 29が設けられている。
[0031] 各止水部 29は、分岐流路 24における試料の移動を停止させるためのものである。
止水部 29は、流れ方向に直交する直交方向の断面積が分岐流路 24の他の部分よ りも大きい略円柱状の凹部として形成されている。より具体的には、止水部 29は、上 記直交方向の断面における高さ寸法および幅寸法が分岐流路 24における止水部 2 9以外の部分よりも大きくされている。これにより、分岐流路 24の途中には、段差を設 けられ、また幅寸法が拡大する領域が存在することとなる。その結果、止水部 29を設 けることによって、分岐流路 24を移動する試料の移動を段差などにおいて抑制する ことができる。
[0032] なお、止水部 29としては、段差を設ける構成(断面積を変化させる構成)に加えて、 あるいは段差を設ける構成に代えて、分岐流路 24に吸水性物質を配置する構成、 分岐流路 24の内面を部分的に撥水処理する構成を採用することができる。すなわち 、止水部 29は、試料が到達するまでは気体の移動を許容しつつも、試料が到達した ときに試料の移動を停止させることができる構成であればよぐまた止水部 29の数も 3 つに限らず、所期の目的を達成できる範囲であれば、それ以外の数であってもよい。
[0033] ここで、本発明の止水部 29として採用できる吸水性物質としては、たとえば多孔質 吸水部材の他、水膨潤性または水硬化性高分子材料を挙げることができる。多孔質 吸水部材としては、たとえば発泡体 (スポンジ)、編地、織布、不織布、紙を挙げること ができる。水膨潤または水硬化性高分子材料としては、吸水性ポリマ、ゼラチンなど の水溶性タンパク質、水膨潤アクリル、および水硬化アクリルの他、 CMC、 CMC— Na、ポリエチレンオキサイドおよびそれらの架橋物質を使用することができる。
[0034] 一方、撥水処理としては、公知の種々の方法を採用することができ、典型的には、 フッ素系榭脂によるコーティング処理を採用することができる。
[0035] 各共通流路 22は、分岐流路 24の内部の気体を排出する際に利用されるものであ り、後述する共通流路用排気口 32に連通している。各共通流路 22は、基板 2の円周 に沿って延びる円弧状に形成されている。
[0036] 以上に説明した構成を有する基板 2は、たとえばポリメチルメタタリレート (PMMA) などのアクリル系榭脂あるいはポリジメチルシロキサン (PDMS) t 、つた透明な榭脂 材料を用いた榭脂成型により形成することができる。すなわち、受液部 20、複数の流 路 21、および共通流路 22は、金型の形状を工夫することにより、上記榭脂成型の際 に同時に作り込むことができる。
[0037] 図 1および図 3に示したように、カバー 3は、全体として透明な円盤状に形成されて おり、試料導入口 30、複数の主流路用排気口 31、および 4つの共通流路用排気口 32を有している。
[0038] 試料導入口 30は、試料を導入する際に利用されるものであり、貫通孔として形成さ れている。試料導入口 30は、カバー 3の中央部において、基板 2の受液部 20の直上 に位置するように形成されて 、る。
[0039] 各主流路用排気口 31は、主流路 21における下流部分 23Cの内部の気体を排出 するためのものであり、貫通孔として形成されている。各主流路用排気口 31は、基板 2における対応する主流路 21の下流端部の直上に位置するように形成されている。 その結果、複数の主流路用排気口 31は、同一円周上に位置するように設けられて いる。各主流路用排気口 31は、シール材 33により上部開口が塞がれている。
[0040] 各共通流路用排気口 32は、対応する共通流路 22に連通する貫通孔として、主流 路用排気口 31と同一円周上に形成されて 、る。各共通流路用排気口 32の上部開 口は、シール材 34によって塞がれている。
[0041] 以上の構成を有するカバー 3は、基板 2と同様に透明な榭脂材料を用いた榭脂成 型により形成することができる。すなわち、試料導入口 30、複数の主流路用排気口 3 1、および 4つの共通流路用排気口 32は、上記榭脂成型の際に同時に作り込むこと ができる。
[0042] 次に、マイクロデバイス 1を用いての試料の分析方法について説明する。
[0043] 試料の分析時には、まずマイクロデバイス 1に対して、試料導入口 30を介して試料
Sを供給する。マイクロデバイス 1は、各主流路用および分岐流路用排気口 31, 32が シール材 33, 34によって閉鎖されているので、図 4Aに示したように試料 Sが受液部
20に保持される力 一部の試料 Sは、主流路 21に侵入する。
[0044] 次 、で、シール材 34に開口を形成して共通流路用排気口 32を開放する。これによ り、流路 21では、主流路 21における分岐部分 23Aよりも上流部分 23Bおよび分岐 流路 24の内部が共通流路 22を介して外部に連通する。そのため、同一の共通流路 22に繋がる流路 21においては、上流部分 23Bおよび分岐流路 24に毛細管力が作 用し、それらの流路 21に対しては、受液部 20の試料 Sが上流部分 23Bを経由して分 岐流路 24に一括して導入される。分岐流路 24に導入された試料は、分岐流路 24〖こ 設けられた 3つの止水部 29の!、ずれかによつてその進行が停止させられる。これによ り、主流路 21における試料の移動が停止する一方で、分岐流路 24に導入された試 料が共通流路 22に流入するのが抑制される。また、止水部 29における光量を監視し ておき、光量の変化により止水部 29に液が到達したこと検知するようにしてもよい。
[0045] その一方、上流部分 23Bは、第 1試薬層 27が設けられた第 1試薬セル 25を有して いるため、上流部分 23Bに試料が導入されることにより第 1試薬層 27が溶解して第 1 試薬液とされる。このとき、第 1試薬層 27が電子伝達物質および酸化還元酵素を含 んでいる場合には、試料における特定成分力 酸ィ匕還元酵素によって電子が取り出 され、それが電子伝達物質に供給される。すなわち、第 1試薬セル 25の第 1試薬液 は、第 2試薬セル 26の第 2試薬層 28に含まれる試薬と反応し易いものとなっている。
[0046] 次いで、複数のシール材 33に開口を形成して主流路用排気口 31を開放する。ここ で、止水部 29における光量の変化を監視した場合には、止水部 29における光量の 変化が検知されて力も一定時間後にシール材 33に開口を形成することにより、試薬 の反応時間を管理することが可能となる。複数のシール材 33 (主流路用排気口 31) は、シール材 33 (共通流路用排気口 32)と同一円周上に設けられている。そのため 、シール材 33に対する開口の形成は、たとえばマイクロデバイス 1を所定角度ずつ回 転させつつ、シール材 34に開口を形成するために使用した機構を利用して順次行う ことができる。たとえば、シール材 33, 34をレーザ光照射により開口を形成する場合 には、シール材 33, 34に開口を形成するために、同一のレーザダイオードを用いる ことができる。
[0047] もちろん、複数のレーザ光源を用いることにより、同一の共通流路 22に繋がる複数 のシール材 33について、一括して開口を形成するようにしてもよい。また、シール材 3 3, 34に対する開口の形成は、針状部材を突き刺す手法など、レーザ光を利用する 方法以外の方法を採用することもできる。 [0048] 主流路用排気口 31を開放した場合には、対応する主流路 21の下流部分 23Cが主 流路用排気口 31に連通する。その結果、主流路 21における上流部分 23Bに毛細 管力が作用し、上流部分 23Bにおいて移動が停止していた試料 (第 1試薬液)が再 び下流部分 23Cにおいて移動する。これにより、第 2試薬セル 26が試料 (第 1誌薬液 )により満たされて第 2試薬セル 26の第 2試薬層 28が溶解して第 2試薬液とされ、こ の第 2試薬液における特定成分 (たとえば電子伝達物質)が第 2試薬層 28に含まれ る試薬 (たとえば発色剤)と反応する。
[0049] 一方、第 2試薬セル 26における反応開始から一定時間が経過した場合には、予め 定められた順序にしたがって、第 2試薬セル 26の測光を行い、その測光結果に基づ いて、たとえば試料における特定成分の濃度が演算される。
[0050] マイクロデバイス 1では、上述のように流路 21に導入された試料が共通流路 22に導 入されるのが適切に抑制されている。そのため、マイクロデバイス 1における複数の流 路 21の容積(断面積)などに製造上のバラツキがある場合であっても、そのバラツキ に起因する各流路 21に作用する毛細管力の低下を抑制することができる。その結果 、第 2試薬セル 26に対して十分な量の試料が供給される前に試料の移動が停止さ せられることもなぐあるいは第 2試薬セル 26に流入する試料の速度が著しく小さくな ることもない。したがって、マイクロデバイス 1では、流路 21が微細化されたマイクロデ バイス 1において、流路 21に製造上のバラツキがあつたとしても、そのバラツキが試 料の分析精度に影響を与えることを抑制することができ、分析精度の信頼性を適切 に高めることができるようになる。
[0051] 次に、本発明の第 2の実施の形態に係るマイクロデバイスについて、図 5および図 6 を参照しつつ説明する。これらの図においては、本発明の第 1の実施の形態に係る マイクロデバイスと同一の要素について同一の符号を付してあり、以下における重複 説明は省略する。
[0052] 図 5および図 6に示したマイクロデバイス!/ は、流路 21/ および共通流路 22を備 えている点において、先に説明した本発明の第 1の実施の形態に係るマイクロデバイ ス 1と同様であるが、このマイクロデバイス 1 (図 1ないし図 4参照)とは、流路 21/ の構 成が異なっている。 [0053] 流路 2 は、先に説明した本発明の第 1の実施の形態に係るマイクロデバイス 1 ( 図 1ないし図 4参照)と同様に、主流路 23^ および分岐流路 24^ を備えている。
[0054] 主流路 23' は、下流端において共通流路 22に連通している。この主流路 23' に は、第 2試薬セル 26と共通流路 22との間に 2つの止水部 29' が設けられている。
[0055] 各止水部 29' は、流れ方向に直交する直交方向の断面積が、主流路 23' におけ る第 2試薬セル 26と共通流路 22との間の部分よりも大きい円柱状の凹部として形成 されている。すなわち、主流路 23^ における第 2試薬セル 26と共通流路 22との間に は、段差を設けられ、また幅寸法が拡大する領域が存在することとなる。段差が設け られている。また、止水部 29' としては、段差などを設ける構成 (断面積を変化させる 構成)に加えて、あるいは段差などを設ける構成に代えて、分岐流路 24' に吸水性 物質を配置する構成、分岐流路 24' の内面を部分的に撥水処理する構成を採用す ることができる。また止水部 29' の数は、 1つに限らず、所期の目的を達成できる範 囲であれば、それ以外の数であってもよい。
[0056] 分岐流路 24' は、共通流路 22とは連通しておらず、分岐流路用排気口 35' に連 通している。分岐流路用排気口 3 は、共通流路用排気口 32と同一円周上に設け られて 、るとともに、シール材 36' により閉鎖されて 、る。
[0057] このマイクロデバイス!/ を使用して試料の分析を行う場合には、まず図 6Aに示し たように試料導入口 30を介して受液部 20に試料を導入し、その後にシール材 36Z に開口を設ける。このとき、主流路 21の上流部分 23Bおよび分岐流路 24が分岐流 路用排気口 35^ を介して外部と連通する。これにより、図 6Aに示したように上流部 分 23Bおよび分岐流路 24に試料が導入されるとともに、第 1試薬セル 25において第 1試薬層 27が溶解する。
[0058] 次いで、シール材 34に開口を形成して共通流路用排気口 32を開放させる。これに より、共通流路 22に連通する同一グループの主流路 23' においては、下流部分 23 C が共通流路 22を介して外部に連通する。その結果、図 6Cに示したように主流路 23' の分岐部分 23A' 力も第 2試薬セル 26に向けて試料が移動し、同一グループ の流路 21/ においては、一括して第 2試薬セル 26に試料が導入される。試料の移 動は、第 2試薬セル 26と共通流路 22の間に設けられた止水部 29^ において停止す る。これにより、共通流路 22に試料が入り込むのを抑制することができる。そのため、 マイクロデバイス] においても、本発明の第 1の実施の形態に係るマイクロデバイス 1 (図 1ないし図 4参照)と同様に共通流路 22に試料が入り込むことなぐ第 2試薬セ ル 26に適切に試料を導入し、分析精度を向上させることができる。
もちろん、本発明は上述した第 1および第 2の実施の形態には限定されず、種々に 設計変更が可能である。たとえば、本発明は、第 1試薬セル 25が省略され、第 2試薬 セル 26のみにより構成された分析用具に対しても適用することができる。本発明はさ らに、光学的手法により試料の分析を行うための分析用具に限らず、電気化学的手 法により試料の分析を行うように構成された分析用具に対しても適用することができる

Claims

請求の範囲
[I] 試料中に含まれる特定成分を検出するための検出セルを有し、かつ毛細管力によ り試料を移動させる複数の流路と、上記複数の流路どうしを繋ぐ 1以上の共通流路と
、を備えた分析用具であって、
上記各流路は、上記共通流路に試料が流入するのを抑制するための止水部を備 えていることを特徴とする、分析用具。
[2] 上記止水部は、目的部分における試料の流れ方向と直交する方向の断面積を、当 該目的部分の近傍とは異ならせて試料の移動を抑制するように構成されている、請 求項 1に記載の分析用具。
[3] 上記止水部は、 1または複数の凹部を含んでおり、
上記凹部と上記目的部分の近傍との間には段差が設けられている、請求項 2に記 載の分析用具。
[4] 上記止水部は、吸水性物質を含んで!/ヽる、請求項 1に記載の分析用具。
[5] 上記止水部は、 1または複数の凹部を含んでおり、
上記吸水性物質は、上記凹部に配置されている、請求項 4に記載の分析用具。
[6] 上記吸水性物質は、多孔質吸水部材、水膨潤性高分子材料、または水硬化性高 分子材料である、請求項 4に記載の分析用具。
[7] 上記止水部は、目的部分に撥水処理を施すことにより設けられている、請求項 1に 記載の分析用具。
[8] 上記止水部は、 1または複数の凹部を含んでおり、
上記撥水処理は、上記凹部の内面に施されている、請求項 7に記載の分析用具。
[9] 上記各流路は、上記検出セルを有する主流路と、上記検出セルよりも試料の流れ 方向の上流側において、上記主流路から分岐した分岐流路と、を備えている、請求 項 1に記載の分析用具。
[10] 上記主流路は上記共通流路に連通していない一方で、上記分岐流路は上記共通 流路に連通しており、かつ、
上記止水部は、上記分岐流路に設けられている、請求項 9に記載の分析用具。
[II] 上記複数の流路は、放射状に設けられており、かつ、 上記主流路は、上記検出セルの内部の気体を排出するための主流路用排気口を 有しており、
上記共通流路は、上記主流路用排気口と同一円周上に設けられ、かつ上記共通 流路の内部の気体を排出するための共通流路用排気口を有している、請求項 10に 記載の分析用具。
[12] 上記主流路用および共通流路用排気口は、シール材により閉鎖されている、請求 項 11に記載の分析用具。
[13] 上記主流路は、上記検出セルよりも試料の流れ方向の上流側に設けられ、かつ試 薬層が設けられた試薬セルを備えており、
上記分岐流路は、上記検出セルと上記試薬セルの間において分岐している、請求 項 10に記載の分析用具。
[14] 上記検出セルには、発色試薬を含む追加の試薬層が設けられており、
上記試薬層は、上記発色試薬と試料との間の電子授受を媒介する電子伝達物質 を含んでいる、請求項 13に記載の分析用具。
[15] 上記主流路は上記共通流路に連通している一方で、上記分岐流路は上記共通流 路に連通しておらず、かつ、
上記止水部は、上記主流路において上記検出セルの下流側に設けられている、請 求項 9に記載の分析用具。
[16] 上記複数の流路は、放射状に設けられており、かつ、
上記分岐流路は、当該分岐流路の内部の気体を排出するための分岐流路用排気 口を有しており、
上記共通流路は、上記分岐流路用排気口と同一円周上に設けられ、かつ上記共 通流路の内部の気体を排出するための共通流路用排気口を有して!/、る、請求項 15 に記載の分析用具。
[17] 上記分岐流路用および共通流路用排気口は、シール材により閉鎖されている、請 求項 16に記載の分析用具。
[18] 上記主流路は、上記検出セルよりも試料の流れ方向の上流側に設けられ、かつ試 薬層が設けられた試薬セルを備えており、 上記分岐流路は、上記検出セルと上記試薬セルの間において分岐している、請求 項 15に記載の分析用具。
上記検出セルには、発色試薬を含む追加の試薬層が設けられており、 上記試薬層は、上記発色試薬と試料との間の電子授受を媒介する電子伝達物質 を含んでいる、請求項 18に記載の分析用具。
PCT/JP2006/314905 2005-07-29 2006-07-27 分析用具 WO2007013562A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/989,649 US7856896B2 (en) 2005-07-29 2006-07-27 Analyzer
EP06781816.1A EP1912074B1 (en) 2005-07-29 2006-07-27 Analyzer
JP2007526897A JPWO2007013562A1 (ja) 2005-07-29 2006-07-27 分析用具
CN200680027391XA CN101233412B (zh) 2005-07-29 2006-07-27 分析用具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005222286 2005-07-29
JP2005-222286 2005-07-29

Publications (1)

Publication Number Publication Date
WO2007013562A1 true WO2007013562A1 (ja) 2007-02-01

Family

ID=37683453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314905 WO2007013562A1 (ja) 2005-07-29 2006-07-27 分析用具

Country Status (5)

Country Link
US (1) US7856896B2 (ja)
EP (1) EP1912074B1 (ja)
JP (1) JPWO2007013562A1 (ja)
CN (1) CN101233412B (ja)
WO (1) WO2007013562A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130976A1 (ja) * 2008-04-25 2009-10-29 アークレイ株式会社 微細流路および分析用具
JP2014199206A (ja) * 2013-03-29 2014-10-23 ソニー株式会社 マイクロチップ及びマイクロチップの製造方法
JP2016523365A (ja) * 2013-06-25 2016-08-08 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション サンプル体積の自己デジタル処理
WO2018025705A1 (ja) * 2016-08-03 2018-02-08 国立研究開発法人理化学研究所 分析セル、分析デバイス、分析装置および分析システム
US10421070B2 (en) 2008-08-15 2019-09-24 University Of Washington Method and apparatus for the discretization and manipulation of sample volumes
US10794925B2 (en) 2015-07-07 2020-10-06 University Of Washington Systems, methods, and devices for self-digitization of samples

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431769B1 (ko) * 2009-12-10 2014-08-20 삼성전자주식회사 당화 혈색소 측정용 원심력 기반의 미세유동 구조물, 당화 혈색소 측정용 원심력 기반 미세유동 장치 및 당화 혈색소의 측정방법
DE102010002921A1 (de) * 2010-03-16 2011-09-22 Senslab-Gesellschaft Zur Entwicklung Und Herstellung Bioelektrochemischer Sensoren Mbh Mikrofluidische Mehrfach-Messkammeranordnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138233A (ja) * 1995-11-15 1997-05-27 Kdk Corp 液体試料測定用具
JP2003215133A (ja) * 2002-01-25 2003-07-30 Matsushita Electric Ind Co Ltd 試料分析用ディスクおよび試料分析装置
JP2004117178A (ja) 2002-09-26 2004-04-15 Arkray Inc 分析用具
JP2004150804A (ja) * 2002-10-28 2004-05-27 Arkray Inc 分析用具および分析装置
JP2005502031A (ja) * 2001-08-28 2005-01-20 ユィロス・アクチボラグ 保持するためのマイクロ流体マイクロキャビティおよび他のマイクロ流体構造体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469751A (en) * 1994-05-25 1995-11-28 Sentry Equipment Corp. Manifolded sampling valve assembly
US6241950B1 (en) * 1998-02-13 2001-06-05 Airxpert Systems, Inc. Fluid sampling system
US6637463B1 (en) * 1998-10-13 2003-10-28 Biomicro Systems, Inc. Multi-channel microfluidic system design with balanced fluid flow distribution
US6717136B2 (en) 2001-03-19 2004-04-06 Gyros Ab Microfludic system (EDI)
EP1413879B1 (en) * 2001-08-01 2012-01-25 ARKRAY, Inc. Analyzing instrument, analyzing device
US6919058B2 (en) 2001-08-28 2005-07-19 Gyros Ab Retaining microfluidic microcavity and other microfluidic structures
US8128889B2 (en) * 2002-04-30 2012-03-06 Arkray, Inc. Analyzing article, analyzer and method of analyzing a sample using the analyzing article, and a method of forming an opening in the analyzing article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138233A (ja) * 1995-11-15 1997-05-27 Kdk Corp 液体試料測定用具
JP2005502031A (ja) * 2001-08-28 2005-01-20 ユィロス・アクチボラグ 保持するためのマイクロ流体マイクロキャビティおよび他のマイクロ流体構造体
JP2003215133A (ja) * 2002-01-25 2003-07-30 Matsushita Electric Ind Co Ltd 試料分析用ディスクおよび試料分析装置
JP2004117178A (ja) 2002-09-26 2004-04-15 Arkray Inc 分析用具
JP2004150804A (ja) * 2002-10-28 2004-05-27 Arkray Inc 分析用具および分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1912074A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398937B2 (en) 2008-04-25 2013-03-19 Arkray, Inc. Microchannel and analyzing device
JP5255628B2 (ja) * 2008-04-25 2013-08-07 アークレイ株式会社 微細流路および分析用具
CN102016598B (zh) * 2008-04-25 2013-10-30 爱科来株式会社 微细流路及分析用具
WO2009130976A1 (ja) * 2008-04-25 2009-10-29 アークレイ株式会社 微細流路および分析用具
US10421070B2 (en) 2008-08-15 2019-09-24 University Of Washington Method and apparatus for the discretization and manipulation of sample volumes
JP2014199206A (ja) * 2013-03-29 2014-10-23 ソニー株式会社 マイクロチップ及びマイクロチップの製造方法
JP2016523365A (ja) * 2013-06-25 2016-08-08 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション サンプル体積の自己デジタル処理
US11219896B2 (en) 2013-06-25 2022-01-11 University Of Washington Through Its Center For Commercialization Self-digitization of sample volumes
US10794925B2 (en) 2015-07-07 2020-10-06 University Of Washington Systems, methods, and devices for self-digitization of samples
US11408903B2 (en) 2015-07-07 2022-08-09 University Of Washington Systems, methods, and devices for self-digitization of samples
JPWO2018025705A1 (ja) * 2016-08-03 2019-06-27 国立研究開発法人理化学研究所 分析セル、分析デバイス、分析装置および分析システム
RU2737513C2 (ru) * 2016-08-03 2020-12-01 КАБУСИКИ КАЙСЯ ДиЭнЭйФОРМ Аналитическая ячейка, устройство для анализа, прибор для анализа и система анализа
WO2018025705A1 (ja) * 2016-08-03 2018-02-08 国立研究開発法人理化学研究所 分析セル、分析デバイス、分析装置および分析システム

Also Published As

Publication number Publication date
US7856896B2 (en) 2010-12-28
CN101233412A (zh) 2008-07-30
CN101233412B (zh) 2011-10-19
US20090031829A1 (en) 2009-02-05
EP1912074A1 (en) 2008-04-16
EP1912074A4 (en) 2013-02-27
JPWO2007013562A1 (ja) 2009-02-12
EP1912074B1 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
WO2007013562A1 (ja) 分析用具
KR100878229B1 (ko) 유체분석용 칩
CN1715932B (zh) 用于处理液体的微结构平台和方法
EP2972331B1 (en) Microfluidic distributing device
EP2529220B1 (en) Centrifugal micro-fluidic device and method for detecting analytes from liquid specimen
US20040265172A1 (en) Method and apparatus for entry and storage of specimens into a microfluidic device
US6989130B2 (en) Method and automated fluidic system for detecting protein in biological sample
EP1462805A1 (en) Sample measuring device
US20080257754A1 (en) Method and apparatus for entry of specimens into a microfluidic device
KR20140095342A (ko) 핵산 분석용 미세 유체 시스템
JP5376427B2 (ja) 分析用デバイス
TW200909338A (en) Autonomous microfluidic apparatus
US7858372B2 (en) Flow cell facilitating precise delivery of reagent to a detection surface using evacuation ports and guided laminar flows, and methods of use
JP2018522241A (ja) アッセイを実行するための流体システム
JP5255628B2 (ja) 微細流路および分析用具
KR101816933B1 (ko) 바이오 센서 및 그의 작동방법
CN101109759B (zh) 流体装置及其控制方法
JP2004132820A (ja) 分析装置及び分析方法
TWI382177B (zh) 二合一流體檢測試片
CN211865063U (zh) 微流控芯片及体外检测装置
JP2009174891A (ja) マイクロチップ
JP2006317285A (ja) バイオセンサ
JP4555610B2 (ja) 気液反応ユニットおよび分析装置
KR20130099648A (ko) 바이오 센서
Biswas Automatic processing of solutions for integrated microfluidic biosensing devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027391.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526897

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11989649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006781816

Country of ref document: EP