WO2007013166A1 - バイオディーゼル燃料およびその製造方法 - Google Patents

バイオディーゼル燃料およびその製造方法 Download PDF

Info

Publication number
WO2007013166A1
WO2007013166A1 PCT/JP2005/013926 JP2005013926W WO2007013166A1 WO 2007013166 A1 WO2007013166 A1 WO 2007013166A1 JP 2005013926 W JP2005013926 W JP 2005013926W WO 2007013166 A1 WO2007013166 A1 WO 2007013166A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
oil
biodiesel fuel
acid alkyl
esters
Prior art date
Application number
PCT/JP2005/013926
Other languages
English (en)
French (fr)
Inventor
Katsuya Osuga
Original Assignee
Dawn Of The World Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dawn Of The World Corporation filed Critical Dawn Of The World Corporation
Priority to PCT/JP2005/013926 priority Critical patent/WO2007013166A1/ja
Publication of WO2007013166A1 publication Critical patent/WO2007013166A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a biodiesel fuel conforming to biodiesel fuel specifications, and a method for producing the same.
  • diesel fuel is a vegetable oil that has undergone a chemical conversion of methyl esterification to be used as a diesel engine fuel. It is an oxygen-containing fuel that contains oxygen in its chemical structure and contains almost no sulfur, so it emits little harmful exhaust gas such as black smoke. In addition, emissions from carbon dioxide are regarded as the total count according to the regulations specified in the Kyoto Protocol because they are derived from plants.
  • fatty acid alkyl esters can be obtained by transesterification of monoglycerides, diglycerides and triglycerides, which are main components of oils and fats, with alkyl alcohol. It is also known that fatty acid alkyl esters can be obtained by the esterification reaction of free fatty acids and alkyl alcohols (see, for example, Non-Patent Document 1). Also, various studies have been made on a technology for producing biodiesel fuel oil from fats and oils using this reaction (see, for example, patent documents:! To 4 etc.).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-167356
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-294277
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-44984
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2000-109883
  • Non-Patent Document 1 "Organic Chemistry Handbook” Technical Journal Press, 1988, pl407 to pl409 Disclosure of the Invention
  • the present invention aims to provide a fuel that conforms to biodiesel fuel specifications and can be suitably used as a biodiesel fuel, and a method for producing the fuel.
  • the present invention is a fuel obtained by mixing at least two different oil types along a certain standard, a fuel conforming to important specification items of NO diesel fuel, and a method of producing the bio diesel fuel To achieve the above object.
  • a method is also included in which the lower alcohol in the esterification reaction is changed from methyl alcohol to ethyl alcohol, propyl alcohol or the like, or by addition of an additive to the mixture.
  • Biodiesel fuel compliant with the biodiesel fuel specification, including two; [2] The biodiesel fuel according to the above [1], wherein the at least two different oil species include waste cooking oil obtained from a mixed oil species;
  • fatty acid alkyl ester two or more fatty acid alkyl esters selected from the group consisting of fatty acid methyl ester, fatty acid ethyl ester, fatty acid normal propyl ester, fatty acid isopropyl ester, fatty acid normal butyl ester and fatty acid isobutyl ester
  • fatty acid alkyl ester two or more fatty acid alkyl esters selected from the group consisting of fatty acid methyl ester, fatty acid ethyl ester, fatty acid normal propyl ester, fatty acid isopropyl ester, fatty acid normal butyl ester and fatty acid isobutyl ester
  • biodiesel fuel according to any one of the above [1] to [5], further comprising one or more additives.
  • TIV aIV 1 + WV 2 + cIV 3 + (1)
  • TPP 0.52xMn-0.68xTIV-106 + (40xl)-(2.5xm)-(7.0xn)-(5.5xz) (2)
  • TIV represents a mixed oil iodine value
  • aIVl, bIV2, cIV3 ... represents a mixture percentage (a, b, (; ⁇ ⁇ )
  • X oil type 1, 2, 3 ... represents an iodine value
  • represents the pour point of the biodiesel fuel obtained by mixing
  • is the average molecular weight of the fatty acid moiety (RCOOH) in the fatty acid alkyl ester (with a certain function
  • the saponification value 1 represents a double bond trans-form content at a fatty acid site
  • m represents an ester content
  • n represents a normal and isopropyl ester content
  • z represents a no
  • the 95% distillation temperature (BP) determined by the following equation (3) is a biodiesel fuel standard
  • BP represents a distillation temperature of 95%
  • MT represents the average molecular weight of fatty acid alkyl ester (RCOO R)
  • USV represents the content of polyunsaturated fatty acid alkyl ester higher than linolenic acid. . ];and
  • a software for individually or comprehensively evaluating the method for producing a biodiesel fuel according to the above [8] or [9] is provided.
  • a fuel that conforms to NOD diesel fuel standards and is suitably used as a biodiesel fuel I was able to get
  • the "biodiesel fuel” according to the present invention contains at least two fatty acid alkyl esters obtained from at least two different oil types. With such a configuration, the biodiesel fuel according to the present invention conforms to the biodiesel fuel standard.
  • biodiesel fuel standard means that it can be used as a biodiesel fuel. Therefore, although it does not mean to conform to a specific biodiesel fuel standard, as a biodiesel fuel standard, it is not limited to ONC1191, CSN656507, France Journal Officiel, DIN E51606, UNI10635, SS155436, It may include ASTM PS 121-99, KIS, and the European Standard under consideration, JIS for Biodiesel, and biodiesel fuel standards to be standardized in each country from now on.
  • biodiesel fuel conforming to the NODI Diesel fuel standard for example, density (15 ° C): 0.5 to 0.9 g / cm 3 , kinematic viscosity (40 ° C.): 1.9 to 6.0 mm 2 / s, 95% distillation temperature: 360 ° C. or less, flash point: 100 ° C. or more, clogging point: 0 ° C. or less (pour point: 0 ° C. or less, preferably ⁇ 5 ° C. or less, furthermore) Preferably, -10 ° C or less), sulfur content: 200 ppm or less, residual carbon: 0.05% or less (10./.
  • the oil type used in the present invention is not particularly limited, and, for example, vegetable oils and animal oils may have two or more different types of oils.
  • vegetable oil species for example, rapeseed oil, soybean oil, palm oil, palm kernel oil, sunflower oil, rice oil, sesame oil, corn oil, coconut oil, safflower oil, safflower oil, peanut oil, peanut oil, cottonseed oil, amadian oil, mustard Oil etc. are mentioned.
  • animal oil species for example, beef tallow, pork fat, soy sauce, fish oil and the like can be used.
  • waste food oil obtained from mixed oil species in addition to vegetable oil species or animal oil species, waste food oil obtained from mixed oil species, dark oil obtained in the production process of these oils and fats, monoglycerides, diglycerides, free fatty acids, or these Derivatives of fatty acids of the following can also be used.
  • the biodiesel fuel according to the present invention may contain one or more additives.
  • the additive include pour point depressants, lubricity improvers, etc.
  • pour point depressants acrylic pour point depressants are preferable, and as the lubricity improvers, ethanolamine lubricants are preferable.
  • the biodiesel fuel according to the present invention can be obtained, for example, by esterifying a composition containing at least two oil types.
  • esterifying a composition obtained by mixing at least two types of oil two or more types of fatty acids contained in each type of oil are esterified, and a biodiesel fuel having properties meeting the biodiesel fuel standard You can get
  • the esterification can be carried out according to a method known per se and is preferably carried out using a lower alcohol.
  • a lower alcohol for example, methylanoleconole, ectoleanoleconore, noloremane le pro pinoleanole leconore.
  • Fatty acid is converted to fatty acid methyl ester, fatty acid ketyl ester, fatty acid normal propyl ester, fatty acid isopropyl ester, fatty acid normal butyl ester, fatty acid isobutyl ester using each of them.
  • fatty acid alkyl esters fatty acid methyl ester is preferred because it is synthesized using the least expensive methanol.
  • the biodiesel fuel according to the present invention preferably has an iodine value of 50 or less and an average molecular weight of fatty acid alkyl ester of 275 or less. Both the effects of high cetane number and NOx reduction can be obtained.
  • the method for producing a biodiesel fuel according to the present invention the iodine number (TIV) and the pour point (TPP) determined by the following formulas (1) and (2) are adjusted so as to conform to the biodiesel fuel standard. To do.
  • TIV aIVl + bIV2 + cIV3 + (1)
  • TPP 0.52xMn-0.68xTIV-106 + (40xl)-(2.5xm)-(7.0xn)-(5.5xz) (2)
  • aIVl, bIV2, cIV3 ′ ′ mixing percentage (a, b,%) X oil type 1, 2, 3 ... iodine value, in formula (2),
  • TPP pour point of biodiesel fuel obtained by mixing
  • Mn average molecular weight of fatty acid moiety (RCOOH) in fatty acid alkyl ester (can be replaced by saponification value with a certain function),
  • the method for producing biodiesel fuel according to the present invention may include adjusting the 95% distillation temperature (BP) determined by the following formula (3) to conform to the biodiesel fuel standard. .
  • BP 95% distillation temperature
  • the present invention provides software that can individually or comprehensively evaluate the biodiesel fuel described above and the method for producing the same, and a method of producing a biodiesel fuel conforming to a biodiesel fuel standard using this software. And, using this method, an apparatus for producing biodiesel fuel is provided.
  • fatty acid composition analysis of each different oil type stored in different storage tanks is performed.
  • cavity gas chromatography, liquid chromatography, saponification value measurement and oxygen value measurement are performed.
  • it may be equipped with an apparatus for performing these measurements automatically and in real time. From these data, IV, MN, MT and USV of each oil type are calculated.
  • the quality value of the final product is predicted to determine the mixing ratio of each oil type, taking into consideration whether it will be delivered to the region or to the country, or whether the season is summer or winter.
  • Each oil type is mixed with a mixer equipped with a program that performs these simulations, and used as the feedstock for the reaction.
  • the impurities produced by the above-mentioned manufacturing defects are obtained by methods such as alkali catalysis method, supercritical method, immobilization catalysis method and enzyme method. Are manufactured to be within the standard compliance value.
  • the oil types collected as raw materials are evaluated, and if it is possible only by mixing them, an instruction regarding the mixing ratio is given, and if it is impossible by only these mixings Change the mixing ratio with different alcohol esters.
  • this is not possible or expensive, add pour point depressant. Since the pour point depressant does not work unless the iodine value is high to some extent, for example, even if the pour point depressant is added to palm oil methyl ester, the temperature does not fall below o ° c.
  • Fatty acid alkyl esters were produced from various raw material fats and oils by the following method.
  • Raw materials Fats and oils are heated (120 ° C) under reduced pressure (lOmmHg) for 20 minutes, and after confirming that the moisture value of raw materials fats and oils is 2 OOO ppm or less and the acid value is 0.5 or less, the following conditions
  • the ester exchange reaction was performed below.
  • GC-14A cavity gas chromatograph
  • Fatty acid alkyl esters from various oils and fats synthesized in this way are stirred and mixed at room temperature, and the resulting mixture has a density (15 ° C.), a dynamic viscosity (40 ° C.), a 95% distillation temperature, a flash point Clogging point (pouring point), sulfur content, residual carbon (residue carbon of 10% residual oil), cetane number, iodine number, amount of highly unsaturated fatty acid (C18: 3 or more) amount, and phosphorus amount specified in JIS standards It was measured by the method described above and the usual method.
  • the result of the above measurement is the density of the mixture (15 ° C.): 0.85 to 0.9 g / cm 3 , the kinematic viscosity (40 ° C.): 1.9 to 6. 0 mm 2 / s, 95% distillation temperature: 360 ° C. or less, flash point: 100 ° C. or more, clogging point: 0 ° C. or less (pour point: 0 ° C.
  • the iodine value, the pour point, and the 95% distillation temperature are calculated from the above formulas (1), (2) and (3), and are these conform to the above standards? Whether it was confirmed or not, the example was actually carried out using only those that conformed.
  • the results are shown in Tables 1 to 3.
  • the waste food oil in the table had an iodine value of 80.
  • the example No. and the comparative example No. in the table correspond to the following oil types and mixing ratios.
  • the names of the respective oil types are indicated, but these are, in particular, the methyl, in particular methyl esters.
  • Table 1 1 Properties of Biodiesel Fuel Blend Composition Ratio 1-1 Ratio 1-2 Ratio 1-3 Ratio 1-4 Ratio 1-5 Ratio 1-6 Ratio 1-6 Ratio 1-7 Density (15 : G / cm 3) 0.872 0.874 0.874 0.879 0.875 0.880 0876 Kinematic viscosity (40 ° C .: mm 2 / s) 4.564 2.956 2.501 4.506 4.521 4.882 5.201
  • Residual carbon content (%) 0.025 0.022 0.026 0.023 0.022 0.04
  • Example 1 From the samples in Example 1, Examples 1-18 and Comparative Examples 1-7 and 1-15 were used. Using their 20:80 blended fuel oil of their iodine and cetane number and their samples and light oil, according to “Diesel automobile exhaust gas test method (13 mode) TRIAS 24-5-1993” defined by MLIT Emissions were measured. The results are shown in Table 4 and Table 5 Shown in.
  • Example 1 18 is a biodiesel fuel having a higher iodine value and a higher cetane number than Comparative Examples 1 7 and 1 15, and thus being more excellent in ignition performance and combustion. Force S was confirmed.
  • the blended fuel oil of 20% of Example 1 18 and 80% of the light oil CJIS 2) is a blended fuel oil of Comparative Example 1 7 and a diesel oil, and a blended fuel oil of Comparative Example 1 15 and a diesel oil. It has been confirmed that the occurrence of Nx can be suppressed to a low level as compared with diesel oil and diesel oil.
  • methyl esterification was carried out from waste food oil and palm oil, respectively.
  • the pour point and iodine value of the fuel obtained here were 80 for waste food methyl ester (_3. 5 ° C) and 43 for palm oil methyl ester (+ 10 ° C), respectively.
  • 100 ppm of an acrylic pour point depressant was added, and the pour points of each were measured. The results are shown in the table below.
  • Waste food oil M Palm M Iodine value Before addition (° C) After addition (° C)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Fats And Perfumes (AREA)

Abstract

 本発明は、バイオディーゼル燃料規格に適合したバイオディーゼル燃料およびその製造方法を提供することを目的とする。本発明は、少なくとも2種の異なった油種から得られる脂肪酸アルキルエステルを少なくとも2種含む、バイオディーゼル燃料規格に適合するバイオディーゼル燃料を提供するものである。

Description

明 細 書
バイオディーゼル燃料およびその製造方法
技術分野
[0001] 本発明は、バイオディーゼル燃料規格に適合するバイオディーゼル燃料、および その製造方法に関する。
背景技術
[0002] ノくィォディーゼル燃料とは、一般に植物油をメチルエステル化という化学変換をさ せ、ディーゼル機関用燃料としたものである。化学構造内に酸素を含む含酸素燃料 であり、硫黄分をほとんど含まないことから黒煙等の有害排気ガスの排出が少ない。 また植物由来であることから京都議定書に示された規定上、二酸化炭素の排出がゼ 口カウントとされる。
[0003] このようなことから、環境負荷の少ない軽油代替燃料として注目されており、欧米で は既に規格、法制度も整備され、大豆や菜種油から年間 250万トン以上生産され使 用されている。一方日本では、 5000トン/年程度が廃食油から製造されており地方 自治体等限定されて使用されている。 日本では未だ、規格等が整備されていないが 、本年度から経済産業省を中心に、バイオエタノール、ノ ィォディーゼル燃料の規格 化が検討され始めた。
[0004] 一方、油脂類の主成分であるモノグリセリド、ジグリセリド、トリグリセリドをアルキルァ ルコールとエステル交換反応させることによって、脂肪酸アルキルエステルが得られ ることは以前から知られている。また遊離脂肪酸とアルキルアルコールとのエステル 化反応によって脂肪酸アルキルエステルが得られることも知られている (例えば、非特 許文献 1を参照)。またこの反応を利用して、油脂類からバイオディーゼル燃料油を製 造する技術についてもこれまで様々検討されてきた (例えば、特許文献:!〜 4等を参 照、)。
特許文献 1:特開 2002— 167356号公報
特許文献 2:特開 2002— 294277号公報
特許文献 3:特開 2000— 44984号公報 特許文献 4:特開 2000— 109883号公報
非特許文献 1 :「有機化学ハンドブック」技報堂出版、 1988、 pl407〜pl409 発明の開示
発明が解決しょうとする課題
[0005] し力 ながら、上述の方法においては、エステル化の効率を向上させ、不純物がな るべく残存しなレ、ようにする工夫は試みられてレ、るものの、脂肪酸類の本来の物理的 性質に由来する規格項目については一切触れられていない。例えば、パーム油から 上述の方法によってバイオディーゼル燃料を製造した場合、流動点が高くなりすぎ、 ノ ィオデイーゼルとして好ましくない。またひまわり油から製造されたバイオディーゼ ル燃料は、流動点は規格に適合するが、ヨウ素価が高 酸化安定性が不適合とな る。このように各油種の持つ特性によってバイオディーゼル規格項目に適合しないと レ、う問題が生じている。
[0006] 今後のバイオディーゼル燃料の普及に伴い世界的な需要が増大すると考えられる 力 上述の廃食油、パーム油および動物性油脂を原材料として使用すれば、製造さ れたバイオディーゼル燃料が規格に適合しない場合が頻出することになる。
[0007] そこで、本発明は、バイオディーゼル燃料規格に適合し、バイオディーゼル燃料と して好適に使用することができる燃料、およびその製造方法を提供することを目的と する。
課題を解決するための手段
[0008] 本発明は、少なくとも 2種の異なった油種を一定の基準に沿って混合して得られる、 ノ ィォディーゼル燃料の重要な規格項目に適合した燃料、およびそのバイオディー ゼル燃料の製造方法を提供することにより、前記目的を達成したものである。
[0009] この場合、エステル化反応における低級アルコールをメチルアルコールからェチル アルコール、プロピルアルコールなどに変更したり、あるいは混合物への添加剤の添 加などのよる方法も含まれる。
[0010] 即ち、本発明は、
〔1〕少なくとも 2種の異なった油種から得られる脂肪酸アルキルエステルを少なくとも
2種含む、バイオディーゼル燃料規格に適合するバイオディーゼル燃料; 〔2〕前記少なくとも 2種の異なった油種が、混合油種から得られる廃食油を含む、上 記〔1〕に記載のバイオディーゼル燃料;
〔3〕前記油種が、遊離脂肪酸、モノグリセリドおよびジグリセリドの少なくとも 1種を含 む、上記〔1〕または〔2〕に記載のバイオディーゼル燃料;
〔4〕前記脂肪酸アルキルエステルとして、脂肪酸メチルエステル、脂肪酸ェチルエス テル、脂肪酸ノルマルプロピルエステル、脂肪酸イソプロピルエステル、脂肪酸ノル マルブチルエステルおよび脂肪酸イソブチルエステルからなる群から選択される 2種 以上の脂肪酸アルキルエステルを含む、上記〔1〕から〔3〕のいずれか 1項に記載の バイオディーゼル燃料;
〔5〕前記脂肪酸アルキルエステルとして、少なくとも脂肪酸メチルエステルを含む、上 記〔1〕から〔3〕のレ、ずれ力 1項に記載のバイオディーゼル燃料;
〔6〕一種以上の添加剤をさらに含む、上記〔1〕から〔5〕のいずれ力 1項に記載のバイ ォディーゼル燃料;
〔7〕ヨウ素価が 50以下であり、脂肪酸アルキルエステルの平均分子量が 275以下で ある、上記〔1〕〜〔6〕のいずれか 1項に記載のバイオディーゼル燃料;
〔8〕下記式(1)および(2)により求められるヨウ素価 (TIV)および流動点 (TPP)が、 ノくィォディーゼル燃料規格に適合するように調整することを含む、請求項 1から 7の いずれ力 1項に記載のバイオディーゼル燃料の製造方法、
TIV=aIV 1 +WV2 + cIV3 + ( 1 )
TPP=0.52xMn-0.68xTIV- 106+(40xl)-(2.5xm)-(7.0xn)-(5.5xz) …(2)
[式(1)において、 TIVは混合油ヨウ素価を表し、 aIVl、 bIV2、 cIV3…は混合百分率(a , b, (;· · ·) X油種 1, 2, 3…のヨウ素価を表し、式(2)において、 ΤΡΡは混合して得られ るバイオディーゼル燃料の流動点を表し、 Μηは脂肪酸アルキルエステルにおける脂 肪酸部 (RCOOH)の平均分子量 (一定の関数をもって、ケン化価で置き換えることも可 能)を表し、 1は脂肪酸部位における二重結合トランス体含有率を表し、 mはェチルェ ステル含有率を表し、 nはノルマルおよびイソプロピルエステル含有率を表し、 zはノ
〔9〕下記式 (3)で求められる 95%留出温度 (BP)が、バイオディーゼル燃料規格に 適合するように調整することを含む、上記〔1〕から [7]のいずれか 1項に記載のバイオ ディーゼル燃料の製造方法、
BP=(0.357xMT+243.6)x(l+USV) (3)
[式(3)において、 BPは 95%留出温度を表し、 MTは脂肪酸アルキルエステル (RCOO R)の平均分子量を表し、 USVはリノレン酸以上の高度不飽和脂肪酸アルキルエステ ルの含有率を表す。 ];および
〔10〕上記〔8〕または〔9〕に記載のバイオディーゼル燃料の製造方法を、個別にある いは総合的に評価可能なソフトウェア、を提供する。
発明の効果
[0011] 本発明によれば、少なくとも 2種の異なった油種から得られる脂肪酸アルキルエステ ルを含む構成とすることによって、ノ ィォディーゼル燃料規格に適合し、バイオディ ーゼル燃料として好適に使用される燃料を得ることができた。
発明を実施するための最良の形態
[0012] 本発明に係る「バイオディーゼル燃料」は、少なくとも 2種の異なった油種から得ら れる脂肪酸アルキルエステルを少なくとも 2種含む。このような構成とすることによって 、本発明に係るバイオディーゼル燃料は、バイオディーゼル燃料規格に適合するも のとなる。
[0013] ここで、本明細書にぉレ、て「バイオディーゼル燃料規格に適合する」とは、バイオデ イーゼル燃料として使用可能であることを意味する。従って、特定のバイオディーゼ ル燃料規格に適合することを意味するものではないが、バイオディーゼル燃料規格と して、 ί列え ίま、 ONC1191 , CSN656507, France Journal Officiel, DIN E51606, UNI10635, SS155436, ASTMPS121— 99, KIS、および現 在検討中のヨーロッパ統一規格、 JIS for Biodiesel、および今後各国で規格化さ れるバイオディーゼル燃料規格をなどが挙げてもよい。これらの規格では、例えば、 密度、動粘度、 95%留出温度、引火点、 目詰まり点 (流動点)、硫黄分、残留炭素(1 0%残油の残留炭素)、セタン価、ヨウ素価、高不飽和脂肪酸 (C18 : 3以上)量、リン 量、排気ガスにおける窒素酸化物量などの項目について、ノ ィォディーゼル燃料が 適合すべき数値が決められている。 [0014] ノ ィォディーゼル燃料規格に適合したバイオディーゼル燃料として、例えば、密度 (15°C) : 0. 85〜0. 9g/cm3、動粘度(40°C) : 1. 9〜6.0mm2/s、 95%留出温度 : 360°C以下、引火点: 100°C以上、 目詰まり点: 0°C以下 (流動点: 0°C以下、好まし くは— 5°C以下、さらに好ましくは— 10°C以下)、硫黄分: 200ppm以下、残留炭素: 0 . 05%以下(10。/。残油の残留炭素: 0. 5%以下)、セタン価: 45〜65、ヨウ素価: 12 0以下、高不飽和脂肪酸(C18 : 3以上)量: 15。/。以下、リン量: 20mgZkg、の性状 を有するバイオディーゼル燃料が好ましレ、。
[0015] 本発明で用いられる油種は、特に限定されず、例えば、植物油種、動物油種の中 力も 2種以上の異なる油種を選択して用いることができる。植物油種としては、例えば 、菜種油、大豆油、パーム油、パーム核油、ひまわり油、米油、ごま油、トウモロコシ油 、ココナッツ油、サフラワー油、紅花油、ピーナッツ油、綿実油、アマ二油、マスタード 油などが挙げられる。動物油種としては、例えば、牛脂、豚脂、鯨油、魚油などを用 レ、ることができる。
[0016] さらに、本発明では、植物油種または動物油種のほか、混合油種から得られる廃食 油や、これらの油脂類の製造工程で得られるダーク油、モノグリセリド、ジグリセリド、 遊離脂肪酸、またはこれらの脂肪酸の誘導体類を用いることもできる。
[0017] また、本発明に係るバイオディーゼル燃料には、 1種以上の添加剤を加えてもょレヽ 。添加剤としては、流動点降下剤、潤滑性改良剤等が挙げられ、流動点降下剤とし てはアクリル系流動点降下剤が好まし 潤滑性改良剤としてはエタノールアミン系 潤滑剤が好ましい。
[0018] 本発明にかかるバイオディーゼル燃料は、例えば、少なくとも 2種の油種を含む組 成物をエステルイ匕することによって得ることができる。少なくとも 2種の油種を混合して 得られる組成物をエステル化することにより、それぞれの油種に含まれる 2種以上の 脂肪酸がエステル化され、バイオディーゼル燃料規格を満たす性状を有するバイオ ディーゼル燃料を得ることができる。
[0019] エステル化は、 自体公知の方法に従って行うことができ、低級アルコールを用いて 行うことが好ましレ、。エステル化に使用されるアルコールとしては、例えば、メチルァ ノレコーノレ、ェチノレアノレコーノレ、ノノレマノレプロピノレアノレコーノレ.イソプロピノレアノレコーノレ 、ノルマルブチルアルコール、イソブチルアルコール等が挙げられ、それぞれを用い て、脂肪酸は、脂肪酸メチルエステル、脂肪酸ェチルエステル、脂肪酸ノルマルプロ ピルエステル、脂肪酸イソプロピルエステル、脂肪酸ノルマルブチルエステル、脂肪 酸イソブチルエステルに変換される。これらの脂肪酸アルキルエステルの中では、脂 肪酸メチルエステルが最も安価なメタノールを用いて合成されることから好ましい。
[0020] また、本発明に係るバイオディーゼル燃料は、ヨウ素価が 50以下であり、脂肪酸ァ ルキルエステルの平均分子量が 275以下であることが好ましレ、。高セタン価と N〇x 排出量抑制との両方の効果を得ることができる。
[0021] 本発明に係るバイオディーゼル燃料の製造方法、下記式(1)および(2)により求め られる、ヨウ素価 (TIV)および流動点 (TPP)がバイオディーゼル燃料規格に適合す るように調整することを含む。
[0022] TIV=aIVl +bIV2 + cIV3 + (1)
TPP=0.52xMn-0.68xTIV- 106+(40xl)-(2.5xm)-(7.0xn)-(5.5xz) …(2) ここで、式(1)においては、
TIV:混合油ヨウ素価、
aIVl、bIV2、 cIV3" ' :混合百分率(a, b,。· · ·) X油種 1, 2, 3…のヨウ素価、 式(2)において、
TPP:混合して得られるバイオディーゼル燃料の流動点、
Mn:脂肪酸アルキルエステルにおける脂肪酸部 (RCOOH)の平均分子量 (一定の関 数をもって、ケン化価で置き換えることも可能)、
1:脂肪酸部位における二重結合トランス体含有率、
m:ェチノレエステノレ含有率、 z:ノルマルおよびイソブチルエステル含有率、をそれぞれ表す。
また、本発明に係るバイオディーゼル燃料の製造方法は、下記式(3)により求めら れる 95%留出温度(BP)が、バイオディーゼル燃料規格に適合するように調整するこ とを含んでもよい。
[0023] BP=(0.357xMT+243.6)x(l+USV) (3) ここで式(3)においては、
BP:95%留出温度、
MT:脂肪酸アルキルエステル (RCOOR)の平均分子量、
USV:リノレン酸以上の高度不飽和脂肪酸アルキルエステルの含有率、をそれぞれ 表す。
また、本発明は、上述したバイオディーゼル燃料およびその製造方法を、個別にあ るいは総合的に評価可能なソフトウェア、このソフトウェアを用いてバイオディーゼル 燃料規格に適合するバイオディーゼル燃料を製造する方法、および、この方法を用 レ、てバイオディーゼル燃料を製造する装置を提供する。かかる装置では、異なった 貯蔵タンクに蓄えられた、異なった各油種の、脂肪酸組成分析を実施する。この分析 では、キヤビラリーガスクロマトグラフ法、液体クロマトグラフ法、ケン化価測定およびョ ゥ素価測定が行われる。また簡便化および自動化のため、これらの測定が自動でか つリアルタイムで行われる装置を具備しても良い。これらのデータから各油種の IV、 MN、 MT、 USVを算出する。ついで、その地域へ、あるいは国へ納品するカ また 季節は夏か冬かなどを考慮し、上記データをもとに、最終製品の品質値を予測して 各油種の混合比を決定する。これらのシミュレーションを行うプログラムを備えた混合 機で各油種を混合し、反応用原料油とする。反応用原料が準備されれば、その後は 、アルカリ触媒法、超臨界法、固定化触媒法、および酵素法など、これまで報告され ている方法で、前述している製造上の不備によって生じる不純物が、規格適合値内 になるように製造する。
[0024] また、各油種からおのおの製造した後に、これらの混合を行う方法もある。さらに、 上記の油種を混合してから製造する方法では、規格値内に収まらない状況(油種が 偏っている場合)においては、アルコール種をメタノールから別のアルコール種へ変 換し製造するか、あるいは一部メチルエステル以外を混合させるかをして、規格値内 に収めるように指示が出されるプログラムでもある。さらには、流動点降下剤の機能を 加味してプログラムされる。
[0025] このように、原料として集荷された油種を評価し、これらの混合だけで可能な場合に は、混合比に関する指示を出し、これらの混合だけでは不可能な場合には、アルコ ール種の変更および異種アルコールエステルとの混合比を指示する。さらにこれでも 不可能あるいはコスト的に負担の力かる場合には、流動点降下剤の添加を指示する 。流動点降下剤はある程度ヨウ素価が高くなければ効き目はないので、例えばパー ム油メチルエステルに流動点降下剤を加えても o°c以下にはならない。
[0026] 以下、本発明にかかる種々の油脂類からバイオディーゼル燃料規格に適合したデ イーゼル燃料を製造する方法を実施例で説明する。尚、本発明は、これらの実施例 により何等制限されるものではない。
実施例 1
[0027] 種々の原料油脂類から、以下の方法で脂肪酸アルキルエステルを製造した。原料 油脂類を 20分間、減圧下(lOmmHg)で加熱(120°C)し、原料油脂類の水分値が 2 OOOppm以下および酸価が 0. 5以下であることを確認した後、下記の条件下でエス テル交換反応を行った。
原料油脂: lOOg
アルコール(純度 99. 5%以上):メタノール 13g
:エタノール 19g
: 2—プロパノーノレ 24g
: 1—ブタノール 30g
水酸化カリウム (純度 85%) : 1. 5g
反応温度: 65°C
反応時間:10分
攪拌速度: 300i"pm
反応終了後、反応液を静置、副生したグリセリン (重液層)を分液ロートを用い除去し た。得られた脂肪酸アルキルエステル (軽液層)中の揮発成分を減圧留去し、その後 活性白土を通して石けんなどの不純物を除去した。これをバイオディーゼル燃料サ ンプノレとした。得られたバイオディーゼル燃料はいずれも純度 99%以上であった。バ ィォディーゼル燃料の純度の測定は、キヤビラリーガスクロマトグラフ (GC-14A,TC-1, 025mmID, 15m)を用いて、注入口温度: 280°C、検出温度: 250°C、カラム温度 40°C5 分〜 320°C15分、昇温速度 =10°C/分、サンプル注入量: 5マイクロリットノレで分析を 行レ、、保持時間が 16分から 30分までのピーク面積から求めた。これらのピークにつ いてはあらかじめ、 GC-MSによって構造を確認した。このようにして合成した種々の 油脂類からの脂肪酸アルキルエステルを室温で攪拌混合し、得られた混合物の密度 (15°C)、動粘度 (40°C)、 95%留出温度、引火点、 目詰まり点 (流動点)、硫黄分、残 留炭素 (10%残油の残留炭素)、セタン価、ヨウ素価、高不飽和脂肪酸 (C18 : 3以上) 量、リン量を JIS規格に定められた方法および通常の方法で測定した。
[0028] 尚、本実施例においては、上記測定の結果が、混合物の密度 (15°C):0. 85-0. 9 g/cm3、動粘度 (40°C) : 1. 9〜6. 0mm2/s、 95%留出温度: 360°C以下、引火点: 100°C以上、 目詰まり点: 0°C以下 (流動点: 0°C以下)、硫黄分: 200ppm以下、残留 炭素: 0. 05%以下 (10%残油の残留炭素: 0. 5%以下)、セタン価: 45〜65、ヨウ素価 : 120以下、高不飽和脂肪酸 (C18 : 3以上)量: 15%以下、リン量: 20mg/kg以下の 範囲にあるものを、バイオディーゼル燃料規格に適合するものとした。
[0029] 油種を混合する場合には、上記式(1) (2)および(3)から、ヨウ素価、流動点、 95 %留出温度を算出し、これらが上記規格に適合しているかどうかを確認し、適合する もののみを用いて実際に実施例を行った。
[0030] 結果を表 1〜表 3に示す。また表中の廃食油は、ヨウ素価 80であった。表中の実施 例 No.および比較例 No.は、下記の油種並びに混合割合に対応する。各油種の名 称が表示してあるが、これらは特に記載のなレ、場合メチルエステルである。
比較例 1 — 1 パーム油 100%
比較例 1 - 2 パーム核油 100%
比較例 1 —3 ココナッツ油 100%
比較例 1 —4 ひまわり油 (原種) 100%
比較例 1 - 5 ひまわり油 (ノヽィォレイツク) 100%
比較例 1 —6 大豆油 (原種) 100%
比較例 1 - 7 大豆油 (選択水添油:トランス体 47%) 100
比較例 1 —8 菜種油 (原種) 100%
比較例 1 —9 菜種油 (キャノーラ) 100%
比較例 1 - 10 サフラワー (原種) 100% 比較例 1一 11 サフラワー (ハイ才レイツク) 100% 比較例 1 -12 綿実油 100% 比較例 1一 13 落花生油 100% 比較例 1 -14 豚脂 100% 比較例 1 -15 廃食油 (トランス体 30%) 100% 比較例 1 -16 廃食油 (ェチルエステル: t30%) 100% 比較例 1 -17 廃食油 (2_プロピルエステル: t30%: ) 100% 比較例 1 —18 廃食油 (1一ブチルエステル: t30%) 100% 実施例 1 — 1 パーム油:ココナッツ油 50:50 実施例 1 —2 パーム油:ひまわり油 (原種) 50:50 実施例 1 —3 パーム油:ひまわり油 (ハイォレイツク) 50:50 実施例 1一 4 パーム油:大豆油 (原種) 50:50 実施例 1 —5 パーム油:菜種油 (原種) 50:50 実施例 1 -6 パーム油:菜種油 (キャノーラ) 50:50 実施例 1 —7 パーム油:サフラワー油 (原種) 50:50 実施例 1一 8 パーム油:サフラワー油 (ノヽィォレイツク) 50: 50 実施例 1一 9 パーム油:綿実油 50:50 実施例 1 -10 パーム油:落花生油 50:50 実施例 1一 11 ココナッツ油ノ ーム核油 50:50 実施例 1 —12 ココナッツ油:ひまわり油 (ハイォレイツク) 50:50 実施例 -13 ココナッツ油:大豆油 (原種) 50:50 実施例 -14 ココナッツ油:菜種油 (キャノーラ) 50:50 実施例 Γ -15 ココナッツ油:サフラワー油 (ノヽィォレイツク) 50:50 実施例 Γ -16 ココナッツ油:綿実油 50:50 実施例 Γ -17 ココナッツ油:落花生油 50:50 実施例 -18 ココナッツ油:廃食油 50:50 実施例 -19 ひまわり油 (原種):ひまわり油 (ハイォレイツク) 50: 50 実施例 Γ —20 ひまわり油 (原種):豚脂 50:50 実施例 1— 21 大豆油 (原種):大豆油 (選択水添) 50 : 50 実施例 1一 22 大豆油 (原種):豚脂 50 : 50
実施例 1 _ 23 菜種油 (キャノーラ):豚脂 50 : 50
[0031] [表 1] 表一 1 バイオディーゼル燃料混合組成物の性状 比 1 -1 比 1- 2 比 1- 3 比 1- 4 比 1- 5 比 1-6 比 1-7 密度 (15で: g/cm3) 0.872 0.874 0.874 0.879 0.875 0.880 0876 動粘度 (40°C: mm2/s) 4.564 2.956 2.501 4.506 4.521 4.882 5.201
95%留出温度 (°C) 353.0 322.5 315.0 355.0 345.0 >370 346.0 引火点 ΓΟ 180 110 108. 165 165 159 155 流動点 (°C) +8.0 ;3.4_ -7.5 •49.1 •10.8 ■47.2 +6.4 硫黄分 (ppm) 3.0 1.0 10.0 8.0 8.0 3.0 2.0 残留炭素分 (%) 0.01 0.01 0.002 0.05 0.03 0.1 0.05 セタン価 55.3 58.6 61.8 52.0 53.5 51.0 53.0 ョゥ素価 45 15 10 137 83 132 74 高不飽和脂肪酸量 (%) 0.3 0 0 0.5 0 %Λ 0 リン量 (ms/ks) 8 1 1 5 5 3 3
比 1 -8 比 1-9 比 1-10 比 1-11 比 1-12 比 1-13 it 1-14 密度 (15°C: g/cm3) 0.879 0.875 0.876 0.873 0.873 0.875 0.872 動粘度 0°C: mm2/s) 4.631 4.521 4.688 4.550 4.523 4.500 4.563
95%留出温度 (°C) >370 369.0 351.5 352.0 352.5 355.0 353.0 引火点 (°C) 163 158 148 149 152 148 175 流動点 (°C) -9.9 •41.9 -55.0 ■16.6 ■33.3 -17.6 ■.'2.9— 硫黄分 (ppm) 10 2 3 3 2 2 1 残留炭素分 (%) 0.1 0.05 0,08 0J 5 0.05 0.05 0.02 セタン価 52.5 52.5 50 53.0 53.0 53.5 53.5 ョゥ素価 103 118. 145. 90 ,110 93 61 高不飽和脂肪酸量 (%) 9..1. 9.6 0 0 0.3 0 0 リン量 (mg/kg) 6 5 5 5 4 1 1
[0032] [表 2] 比 1 -15 実 1. 1 実 1-2 実 1-3 実 1-4 実 5 実 1-6 密度 (15。C: g/cm3) 0.875 0.873 0.876 0.874 0.876 0.876 0.874 動粘度 (40°C: mm2/s) 4.500 3.533 4.535 4.543 4.723 4.598 4.543
95%留出温度 (°C) 355.0 336.0 353.0 345.5 353.0 353.0 352.0 引火点 (。C) 140 125 168 166 160.0 165.0 165.0 流動点 (。C) ニ^ •5.0 ■21.4 -7.0 -21.1 -7.0 ■31.9 硫黄分 (ppm) 1 1 5 5 3 7 2 残留炭素分 (%) _0.05 0.005 0.03 0.02 0.04 0.04 0.02 セタン価 53.5 59.0 54.0 54.0 53.5 53.5 53.5 ョゥ素価 80 31 94 67 92 77 85 高不飽和脂肪酸量 (%) 4.0 0.2 0.4 0.2 3.7 4.7 4.9 リン量 (me/ke) 5 4 6 6 5 7 6
実 1 -7 実 1-8 実 1-9 実 1-10 実 1-11 実 1-12 実 1-13 密度 (15°C: g/cm3) 0.874 0.873 0.873 0.874 0.874 0.875 0.877 動粘度 (40°C: mm2/s) 4.626 4.557 4.544 4.532 2.729 3.620 3.692
95%留出温度 (で) 352.0 352.0 353.0 353.0 317.5 325.0 345.0 引火点 (°C). . 152 151 151 151 110 125.0 122.0 流動点 ΓΟ ■21.3 ■5.0 ■12.0 -5.1 ■5.0 ■9.5 -29.5 硫黄分 (ppm) 3 3 3 3 7 9 7 残留炭素分 (%) 0.04 0.02 0.02 0.02 0.005 0.006 0.03 セタン価 53.5 53.5 54.0 54.0 60.5 58.0 56.0 ョゥ素価 95 68 60 69 13 47 71 高不飽和脂肪酸量 (%) 0.1 0.1 0.3 0.1 0 0 3.6 リン量 (m2/ks) 6 6 5 4 1 3 2 ]
実 1 -14 実 1-15 実 1-16 実 1·17 実 1·18 実 1-19 密度 (15°C g/cm3) 0.875 0.874 0.874 0.874 0.875 0.876 動粘度 (40°C 2/s) 3.511 3.526 3.512 3.502 3.500 4.511
95%留出温度 (°C) 345.0 330.0 330.0 335.0 335.0 349.0 引火点 ro 126.5 130.0 129.5 165
流動点 ΓΟ ■26.8 ■10.0 ■22.5 •15.2 -5.2 •31.0 硫黄分 (ppm) 6 6 6 6 5 8
残留炭素分 (%) 0.025 0.022 0.026 0.023 0.022 0.04
セタン価 58.0 59.0 58.5 58.0 58.5 53.0
ョゥ素価 64 50 60 52 45 109
高不飽和脂肪酸量 (%) 4.8 0 0.2 0 2.0 0.3
リン量 (mg/kg) 3 3 2 1 3 5
実 1 -20 実 1-21 実 1-22 実 1-23比 1-16 比 1-17 比 1-18 ο
密度 (15°C g/cm3) 0.875 0.878 0.875 0.874 0.869 0.855 0.853 動粘度 (40で: mm2/s) 4.533 5.026 4.772 4.540 5.869
o o 6,898 5.888
95%留出温度 (°C) 353.0 353.0 354.0 354.0 860.0 o 365;0 36S.0 引火点 (°C) 168 156 160 155.0 160.0 流動点 (°C) •25.5 -20.0 -24.3 ■25.1 -6.5 •12.0 -10.0 硫黄分 ψριη 5 3 2 1 1 1 1 残留炭素分 (%) 0.03 0.05 0.04 0.03 0.04 0.04 0.04 セタン価 53.0 52.0 52.5 53.0 53.0 53.0 52.5 ョゥ素価 98 103 97 90 76 74 70 高不飽和脂肪酸量 (%) 0.3 3.6 3.6 4.8 4.0 4.0 4.0 リン鼉 (me/ke) 3 3 2 3 5 5 5 表中 部は、 規格値範囲外かもしくは、 使用上問題の生じる可能性がある数値を示し ている。 前記表:!〜 3中、下線を付した数値は、規格値範囲外かもしくは、使用上問題の生 じる可能性がある数値を示してレ、る。
実施例 2
実施例 1におけるサンプルから実施例 1— 18と、比較例 1—7および 1— 15とを用 いた。それらのヨウ素価およびセタン価ならびに、それらサンプルと軽油との 20 : 80 混合燃料油を用いて、国土交通省の定める「ディーゼル自動車排ガス試験法(13モ ード) TRIAS24-5-1993」に準じて、 NOxの排出量を測定した。結果を表 4および表 5 に示す。
[0035] [表 4]
Figure imgf000015_0001
[0036] [表 5]
Figure imgf000015_0002
表 4より、実施例 1 18は、比較例 1 7および 1 15に比べてヨウ素価が低い分セ タン価が上昇しており、より着火性および燃焼性に優れたバイオディーゼル燃料であ ること力 S確認、された。
[0037] また表 5より、実施例 1 18を 20%と軽油 CJIS2号)を 80%の混合燃料油は、比較 例 1 7と軽油の混合燃料油、比較例 1 15と軽油の混合燃料油、および軽油と比 ベて、 N〇xの発生を低く抑えられることが確認された。
実施例 3
[0038] 実施例 1と同様の方法で、廃食油およびパーム油からそれぞれメチルエステル化を 行った。ここで得られた燃料の流動点およびヨウ素価はそれぞれ、廃食油メチルエス テル(_3. 5°C)で 80、パーム油メチルエステル( + 10°C)で 43であった。この 2つの メチルエステルを様々な割合で混合した後、アクリル系流動点降下剤を lOOOppm添 加し、それぞれの流動点を測定した。その結果を下表に示す。
[0039] [表 6] 廃食油 M:パーム M ヨウ素価 添加前 (°C) 添加後 (°C)
10 : 0 80 ■3.5 ■21
9: 1 76 ■2.0 ■21
8: 2 +1.0 -21
7: 3 69 +2.0 •20
6: 4 65 +4.5 •20
5: 5 62 +5.0 ■20
4: 6 58 +6.0 •19
3: 7 54 +7.0 ■19
2: 8 50 +8.0 -18
1: 9 47 +9.0 -4
0: 10 43 +10.0 0 表 6より、廃食油メチルエステルが 20%以上含まれる場合しカ 流動点降下剤が有 効に機能せず、廃食油メチルエステル:パーム油が 1 : 9または 0 : 10の場合は流動点 降下剤を添加しても流動点が低下しないことが確認された。

Claims

請求の範囲
少なくとも 2種の異なった油種から得られる脂肪酸アルキルエステルを少なくとも 2 種含む、バイオディーゼル燃料規格に適合するバイオディーゼル燃料。
前記少なくとも 2種の異なった油種が、混合油種から得られる廃食油を含む、請求 項 1に記載のバイオディーゼル燃料。
前記油種が、遊離脂肪酸、モノグリセリドおよびジグリセリドの少なくとも 1種を含む、 請求項 1または 2に記載のバイオディーゼル燃料。
前記脂肪酸アルキルエステルとして、脂肪酸メチルエステル、脂肪酸ェチルエステ ル、脂肪酸ノルマルプロピルエステル、脂肪酸イソプロピルエステル、脂肪酸ノルマ ルブチルエステルおよび脂肪酸イソブチルエステルからなる群から選択される 2種以 上の脂肪酸アルキルエステルを含む、請求項 1から 3のいずれ力 4項に記載のバイオ ディーゼル燃料。
前記脂肪酸アルキルエステルとして、少なくとも脂肪酸メチルエステルを含む、請求 項 1から 3のいずれか 1項に記載のバイオディーゼル燃料。
一種以上の添加剤をさらに含む、請求項 1から 5のいずれ力 1項に記載のバイオデ イーゼル燃料。
ヨウ素価が 50以下であり、脂肪酸アルキルエステルの平均分子量が 275以下であ る、請求項 1〜6のいずれか 1項に記載のバイオディーゼル燃料。
下記式(1)および(2)により求められるヨウ素価 (TIV)および流動点 (TPP)力 バ ィォディーゼル燃料規格に適合するように調整することを含む、請求項 1から 7のい ずれ力 1項に記載のバイオディーゼル燃料の製造方法。
TIV=aIV 1 +WV2 + cIV3 + ( 1 )
TPP=0.52xMn-0.68xTIV- 106+(40xl)-(2.5xm)-(7.Oxn)-(5.5xz) …(2)
[式(1)において、
TIVは混合油ヨウ素価を表し、
aIVl、bIV2、 cIV3…は混合百分率(a, b, · ·) X油種 1, 2, 3…のヨウ素価を表し、 式(2)において、
TPPは混合して得られるバイオディーゼル燃料の流動点を表し、 Mnは脂肪酸アルキルエステルにおける脂肪酸部 (RCOOH)の平均分子量 (一定の 関数をもって、ケン化価で置き換えることも可能)を表し、
1は脂肪酸部位における二重結合トランス体含有率を表し、
mはェチルエステル含有率を表し、
[9] 下記式(3)で求められる 95%留出温度(BP)力 バイオディーゼル燃料規格に適 合するように調整することを含む、請求項 1から 7のいずれ力 1項に記載のバイオディ ーゼル燃料の製造方法。
BP=(0.357xMT+243.6)x(l+USV) (3)
[式(3)において、
BPは 95%留出温度を表し、
MTは脂肪酸アルキルエステル (RCOOR)の平均分子量を表し、
USVはリノレン酸以上の高度不飽和脂肪酸アルキルエステルの含有率を表す。 ]
[10] 請求項 8または 9に記載のバイオディーゼル燃料の製造方法を、個別にあるいは総 合的に評価可能なソフトウェア。
PCT/JP2005/013926 2005-07-29 2005-07-29 バイオディーゼル燃料およびその製造方法 WO2007013166A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013926 WO2007013166A1 (ja) 2005-07-29 2005-07-29 バイオディーゼル燃料およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013926 WO2007013166A1 (ja) 2005-07-29 2005-07-29 バイオディーゼル燃料およびその製造方法

Publications (1)

Publication Number Publication Date
WO2007013166A1 true WO2007013166A1 (ja) 2007-02-01

Family

ID=37683074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013926 WO2007013166A1 (ja) 2005-07-29 2005-07-29 バイオディーゼル燃料およびその製造方法

Country Status (1)

Country Link
WO (1) WO2007013166A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208198A (ja) * 2007-02-26 2008-09-11 Yamaguchi Univ 食用油と牛脂からなるディーゼルエンジン用燃料及びその製法
CN107245378A (zh) * 2017-05-02 2017-10-13 唐山金利海生物柴油股份有限公司 一种精确调节十六烷值的生物柴油生产设备及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220227A (ja) * 2004-02-05 2005-08-18 Dawn Of The World:Kk バイオディーゼル燃料およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220227A (ja) * 2004-02-05 2005-08-18 Dawn Of The World:Kk バイオディーゼル燃料およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Rensai Kikaku.Biomas Jirei Hokoku Kyoto-Shi ni Okeru Bio Diesel Nenryoka Jigyo no Torikumi Hard Setsubi dake dewa naku, Shien.Kyoryoku Taisei no Kakuritsu ga Kadai", JOURNAL OF WATER & SOLID WASTES MANAGEMENT, no. 99, 1 March 2005 (2005-03-01), pages 42 - 51, XP003007390 *
"Shiryo 4 Oshu To ni Okeru BDF no Ryutsu to Hinshitsu Kanri no Jittai ni Tsuite", SOGO SHIGEN ENERGY CHOSAKAI SEKIYU BUNKAKAI SEKIYU BUKAI NENRYO SEISAKU SYOIINKAI (DAI 20 KAI), 7 June 2005 (2005-06-07), XP003007391, Retrieved from the Internet <URL:http://www.meti.go.jp/committee/materials/g50525aj.html> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208198A (ja) * 2007-02-26 2008-09-11 Yamaguchi Univ 食用油と牛脂からなるディーゼルエンジン用燃料及びその製法
CN107245378A (zh) * 2017-05-02 2017-10-13 唐山金利海生物柴油股份有限公司 一种精确调节十六烷值的生物柴油生产设备及方法

Similar Documents

Publication Publication Date Title
Lanjekar et al. A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties
Keera et al. Castor oil biodiesel production and optimization
AU2003258753C1 (en) Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposition fatty acids
Leng et al. Cold flow properties of biodiesel and the improvement methods: A review
Moser Biodiesel production, properties, and feedstocks
Ramos et al. Influence of fatty acid composition of raw materials on biodiesel properties
Giwa et al. Fuel properties and rheological behavior of biodiesel from egusi (Colocynthis citrullus L.) seed kernel oil
El Diwani et al. Modification of thermal and oxidative properties of biodiesel produced from vegetable oils
JP2005220227A (ja) バイオディーゼル燃料およびその製造方法
Jimoh et al. Production and characterization of biofuel from refined groundnut oil
JP2009096855A (ja) 高発熱量燃料油組成物
Hancsók et al. Production of vegetable oil fatty acid methyl esters from used frying oil by combined acidic/alkali transesterification
AU2015205854B2 (en) Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposition fatty acids
WO2007013166A1 (ja) バイオディーゼル燃料およびその製造方法
CN101812331A (zh) 一种低硫酯基复合燃料油
Tekade et al. Green synthesis of biodiesel from various vegetable oil and characterisation by FT-IR spectroscopy
CN102892871B (zh) 从甘油类固态物制造液化物的方法
JP5053797B2 (ja) ディーゼルエンジン用燃料油組成物
JP5744696B2 (ja) 液体燃料の製造方法、その製造方法により製造された液体燃料およびその液体燃料を含んでなるa重油代替燃料組成物
JP2007231119A (ja) 重油組成物
JP2009102561A (ja) ディーゼルエンジン用燃料油組成物
JP5504442B2 (ja) ディーゼルエンジン用燃料油組成物
EP2757140A1 (en) Formulation, preparation and use of a glycerol-based biofuel
JP2008266487A (ja) ディーゼルエンジン用混合燃料及びその流動点降下方法
JP4926954B2 (ja) エンジン燃料用脂肪酸c1〜2アルキルエステルの流動点調整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05767174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP