WO2007011281A1 - Adaptive radio channel switching - Google Patents

Adaptive radio channel switching Download PDF

Info

Publication number
WO2007011281A1
WO2007011281A1 PCT/SE2006/000868 SE2006000868W WO2007011281A1 WO 2007011281 A1 WO2007011281 A1 WO 2007011281A1 SE 2006000868 W SE2006000868 W SE 2006000868W WO 2007011281 A1 WO2007011281 A1 WO 2007011281A1
Authority
WO
WIPO (PCT)
Prior art keywords
throughput
buffer
channel
radio
threshold value
Prior art date
Application number
PCT/SE2006/000868
Other languages
French (fr)
Inventor
Magnus Sommer
Ralf Schuh
Original Assignee
Teliasonera Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teliasonera Ab filed Critical Teliasonera Ab
Priority to EP06758050A priority Critical patent/EP1908228A4/en
Publication of WO2007011281A1 publication Critical patent/WO2007011281A1/en
Priority to NO20076175A priority patent/NO20076175L/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • the present invention relates to adaptive radio channel switching in a radio network in order to optimise the overall radio network capacity. Especially, the present invention relates to adaptive down and up switching between dedicated channels .
  • Data traffic speeds using packet switched transmission over cellular systems like WCDMA can differ due to various reasons like: a) round trip delay and error rate in the radio network; b) slow or no radio bearer change when having bursty traffic in the radio downlink or uplink.
  • the throughput for these cases can be improved using radio adapted TCP software and/or proxy servers or using HSDPA/HSUPA which reduces the round trip delay and radio bearer switching time.
  • the speed can also be limited due to the remote FTP server speed/access limitations.
  • the maximum access speed per user may be limited at these servers as many users may try to access this server at the same time, e.g. during some broadcasting or in general the maximum access speed may be limited.
  • the same low speeds have been noticed.
  • the allocated dedicated channel DCH supported 384 kbps although the average throughput was approximately 100 kbps and a 128 kbps DCH would have been sufficient in order to achieve the same average download speed. Allocating the wrong dedicated channel DCH for such medium data speeds results in: 1) Unnecessary digital line (Iub) capacity occupation.
  • DCH digital line capacity is reserved for this dedicated channel and cannot be given to other users.
  • RNC Radio Network Controller
  • the patent application US 2004/0097191 describes a method of switching, by monitoring the traffic, from a current common channel to a dedicated channel for a user equipment.
  • the method is used in a UMTS Terrestrial Radio Access Network (UTRAN) .
  • UTRAN UMTS Terrestrial Radio Access Network
  • the patent application US 2003/0012217 Al describes channel-type switching to a common channel based on common channel load and considers mainly optimized channel switching between common and control channels.
  • the prior art documents relate to switching algorithms for switching between control and dedicated channels and between dedicated and shared channels, wherein the switching is made in dependence of throughput, buffer load, etc. Further, these applications relate to bursty traffic and describe how to avoid ping pong effects in the switching between common and dedicated channels.
  • An object with the present invention is to provide down and up switching between dedicated channels (WCDMA) using e.g. measured data throughput and buffer load in e.g. the RNC as switching parameters .
  • WCDMA dedicated channels
  • Another object of the invention is to provide a down and up switching between shared dedicated channels as a function of the data throughput and buffer load in e.g. the RNC or Node B.
  • Yet another object of the invention is to provide digital line capacity allocation/reservation switching depending on the dedicated channel and therefore also depending on the user throughput and buffer load.
  • the present invention relates to adaptive radio channel switching between dedicated channels for WCDMA and shared channels for HSDPA/HSUPA radio systems in order to adapt to the user end-to-end packet switched data traffic requirements and with this to optimise the overall radio network capacity.
  • the inventive switching method adds new functionalities in the radio and transport network resource managements by monitoring the user/users buffer and throughput information as available in the Radio Network Controller, RNC, and/or Node B.
  • the invention optimises the overall network capacity as unnecessary reserved codes and digital line capacity, Iub and Iur, can get free for other users .
  • the present invention allows adapting the channel bit rate allocation to the user's experienced end-to-end PS data throughput by monitoring the data throughput and buffer condition in the RNC and/or node B and applying the appropriate radio channel configuration and Iub reservetions for this user.
  • This will be beneficial to all users in the radio network as the total radio resource, i.e. available codes, and digital line capacity will be optimised and the total achieved network throughput will be higher.
  • the present invention relates to a method and a Radio Network Controller for adaptive radio channel switching between dedicated channels in an UMTS network.
  • Figure 1 schematically illustrates a UMTS network, according to prior art, comprising a core network and a
  • FIG. 2 schematically shows an embodiment of a radio resource management with an adaptive channel switching (ACS) algorithm implemented in the RNC;
  • ACS adaptive channel switching
  • Figure 3 schematically illustrates a possible adaptive channel switching, ACS, implementation for WCDMA
  • Figure 4 schematically shows how the buffer and throughput values vary over time for WCDMA
  • Figure 5 schematically illustrates a possible adaptive channel switching, ACS, implementation for HSDPA
  • Figure 6 schematically shows how the buffer and throughput values vary over time for HSDPA.
  • Node B Base Transceiver Station BTS.
  • Logical node in the 3GPP RNS responsible for radio transmission/ reception in one or more cells to and from the UE. Terminates the Iub interface towards the RNC.
  • UE • User Equipment e.g. mobile terminal, phone and all peripherals
  • channel is applied to both DCH configurations and HSDPA/HSUPA (HS-DSCH/HS- USCH) configurations.
  • FIG. 1 illustrates schematically a Universal Mobile Telecommunications System, UMTS, network 10 according to prior art.
  • the UMTS network 10 comprises a core network 20 and a UMTS Terrestrial radio Access Network, UTRAN, 30.
  • the UTRAN 30 comprises a number of Radio Network Controllers, RNCs, 32 each of which is coupled to a set of neighbouring Base Transceiver Stations, BTSs, 34, also called Node Bs.
  • BTSs Base Transceiver Stations
  • Each Node B 34 is responsible for a given cell and the controlling RNC 32 is responsible for routing user and signal data between that Node B 34 and the core network 20. All of the RNCs 32 are coupled to one another.
  • FIG. 1 also illustrates a mobile terminal or a user equipment 40.
  • the core network 20 comprises a serving GPRS Support node, SGSN, 22 and a GPRS Gateway Support Node, GGSN, 24.
  • the SGSN 22 and the GGSN 24 provide packet switched data services to the user equipment 40 via the UTRAN 30.
  • the invention relates to adaptive channel switching for WCDMA and HSDPA/HSUPA.
  • WCDMA is a 3G technology that increases data transmission rates compared to GSM systems by using the CDMA air interface instead of TDMA.
  • the HSDPA/HSUPA is an enhancement to the WCDMA 3G technology that increases the downlink/uplink speed by applying different modulation and coding techniques as well as multiple antennas .
  • Figure 2 schematically shows an embodiment of a radio resource management with an adaptive channel switching
  • the adaptive channel switching, ACS is an additional function that complements existing channel switching features within the serving RNC, SRNC.
  • FIG. 2 illustrates a radio network controller, RNC, 32 comprised in a radio and transport network, such as a UTRAN 30.
  • the RNC 32 comprises a congestion control means 50 communicatively connected to a radio admission control means 52, means for adaptive channel switching, ACS, 54.
  • the ACS means 54 is communicatively connected to the radio admission control means 52 and an Iub admission control means 56.
  • the congestion means 50, the radio admission control means 52, the ACS means 54 and the admission control means 56 are communicatively connected to a monitoring means 58.
  • An Iub 60 is provided as an interface between the RNC 32 and a Node B 34, whereby a channel set up request can be sent from the Node B 34 to the RNC 32.
  • the monitoring means is configured to monitor e.g. DL codes, throughput, buffer load, radio load, transmit power etc.
  • the congestion means is configured to imitate a channel switching from a dedicated channel to a common channel if congestion exists, i.e. if not enough bandwidth to support the current traffic load is available.
  • the admission control means is configured to estimate the load and fill up the system to its load limits. If, for example, the downlink or uplink limit threshold. is exceeded, a new RAB may not be admitted.
  • the function can be located in radio resource control in the RNC.
  • the admission control can be configured to decide on the RAB during setup and can also switch user/users in case resources need to be released for new users.
  • Embodiments of the invention may comprise means 62 for other dependencies, which means 62 can be communicatively connected to the Iub admission control means 56. All of the admission controls run in parallel.
  • the ACS channel switch is approved by the radio/digital admission control.
  • the ACS IuB admission control 56 although connected with the arrow "B" to the ACS 54 is or could be also connected directly to the Congestion Control 50 and/or Admission Control 52. For the present invention it is of importance that the ACS connects to 50, 52 and 56 directly in order to invoke channel switching in the radio and digital domain if necessary.
  • Iub admission control means 56 could be also seen as some other future/existing function which allows channel switching after getting some channel switch request/indication from the ACS.
  • the radio resource management can further comprise means for soft and softer handover, and means for coverage triggered channel switching.
  • the means for handover can be configured to imitate a channel switching if otherwise a link cannot be established.
  • the means for coverage triggered channel can be configured to reconfigure the radio bearer when the coverage limit for the current bearer is reached.
  • the ACS means 54 decides the best channel configuration depending on the monitored throughput and buffer condition for each PS connection.
  • the decision can be supported by monitored measurements at the mobile terminal 40, e.g. through measurements at the mobile terminal 40. For example, throughput values at the mobile terminal 40 can be measured. If the throughput and buffer is below/above a predetermined threshold value, the ACS 54 indicates that down/up switching is required.
  • Every channel switch is approved by the radio/digital transport-network admission control means 52 and 56 before carried out, as indicated by the arrows B in figure 2.
  • the threshold values for switching the channel preferably include some hysteresis in order to avoid the so called ping pong effect, i.e. in order to avoid too early switches due to short bursty fluctuations. Moving averaging can be applied to the measured throughput and buffer values.
  • the ACS means 54 and the ACS algorithm are configured to operate in parallel to other radio resource management- means and algorithms which for example handles new packet transmission, handover control, power control, congestion control, etc.
  • the actual switching of the channel is done by carrying out a radio bearer reconfiguration as described in 3GPP TS25.331, Technical Specification Group Radio Access Network; Radio Resource Control (RRC) ; Protocol Specification, and will therefore not be described in more detail .
  • RRC Radio Resource Control
  • the present invention applies to UMTS networks, WCDMA, where different radio channels can be assigned in order to deliver different bit-rates to the user.
  • WCDMA Wideband Code Division Multiple Access
  • this considers mobiles which allow data rates larger than 64 kbps .
  • the invention includes updates to HSDPA and HSUPA.
  • Figure 3 schematically illustrates how an embodiment of the inventive ACS algorithm may be implemented in order to switch the data rate between dedicated channels, e.g. 384 kbps DCH » 128 kbps DCH • 64 kbps DCH, and down to lower bit rate common channels, Random Access Channel RACH /
  • the physical channel and the transport channel parameters of the radio bearer are reconfigured using the standardised Radio Resource Control, RRC, procedure.
  • RRC Radio Resource Control
  • AAL2 allocated / reserved digital line
  • Transport network switching is possible with ATM AAL2 layer.
  • the ACS algorithms for the downlink and uplink are independent of each other. For mobile terminals which only support 64 kbps in the uplink, the uplink uses a fixed Radio Access Bearer, RAB, configuration.
  • RAB Radio Access Bearer
  • the upper and lower threshold values also, like for the buffer, depend on the currently allocated DCH (throughput) .
  • a moving average may be applied to the monitored throughput and buffer values in order not to switch too early due to some short bursty fluctuation in the traffic, whereby the so called ping pong effect can be avoided.
  • the threshold values may be set relative to the upper throughput values of the current channel, e.g. upper threshold value 90% of maximum throughput value of current channel. If the highest / fastest channel has been reached no switching will occur.
  • An embodiment of the inventive method implemented for WCDMA comprises the steps of (cf . figure 3) :
  • RNC RNC, SRNC) ;
  • step 102 checking if buffer and throughput value is below a lower threshold value; 104 if buffer and throughput value is below a lower threshold value, increasing the channel and repeating from step 102;
  • step 108 if buffer and throughput is above an upper threshold value, decreasing the channel and repeating from step 106;
  • step 110 if buffer and throughput is not above an upper threshold value, repeating from step 102; and 112 terminating or releasing the PS connection.
  • Fig 4 schematically shows how the buffer and throughput values vary over time for WCDMA.
  • HSDPA/HSUPA the users in a cell can get allocated a HS-PDSC (high Speed Physical Downlink Shared Channel) at the Controlling RNC, CRNC.
  • the Medium Access Control-high speed, MAC-hs, scheduler (not shown) is located in the Node B, which serves the corresponding cell. This allows fast resource sharing in the code domain and time domain for the users accessing the same HS-DPSCs. This allows users with bursty/constant, high or medium throughputs to get the correct high average throughput with optimised radio resource sharing.
  • the CRNC has to decide which HS-PDSCH has to be setup as there are 12 different classes, modulation schemes and maximum numbers of codes, available. Applying a too high HS-PDSCH class would block unnecessary codes and digital line capacity which could be used for other users.
  • Figure 5 schematically illustrates how an embodiment of the inventive ACS algorithm may be implemented in order to switch the HS-PDSCH to different classes, e.g. Class 1 • Class 5 • Class 12, and down to WCDMA transmission rate.
  • the allocated/reserved digital line capacity for his connection will depend on the allocated HS-PDSCH.
  • the threshold values for the buffer and throughput, moving average, etc., in order to activate HS-PDSCH down or up switching should consider, like for WCDMA, the actual speed of the HS-PDSCH but also the individual speed and buffer size usage of the individual users within the shared channel. This information may be available in the RNC and/or Node B and/or reported from the mobile terminals. In order to activate the switching, the algorithm will have to consider more input parameters than for WCDMA as users with different profiles in their throughputs are sharing the same channel .
  • An embodiment of the inventive method implemented for HSDPA comprises the steps of (cf . figure 5) :
  • step 202 checking if buffer and throughput value is below a lower threshold value; 204 if buffer and throughput value is below a lower threshold value, increasing the HS-PDSCH and repeating from step 202;
  • step 210 if buffer and throughput is not above an upper threshold value, repeating from step 202; and 212 terminating or releasing the PS connection.
  • Figure 6 schematically shows how the buffer and throughput vary over time for HSDPA.

Abstract

A method and a Radio Network Controller for adaptive radio channel switching between dedicated channels in an UMTS network. The method comprises the steps of initiating and admitting a new Packet Switched connection (100); checking if buffer and throughput value is below a lower threshold value (102); if buffer and throughput value is below a lower threshold value, increasing the channel and repeating from step (102, 104); if buffer and throughput value is not below a lower threshold value, checking if buffer and throughput is above an upper threshold value (106); if buffer and throughput is above an upper threshold value, decreasing the channel and repeating from step (106, 108); if buffer and throughput is not above an upper threshold value, repeating from step (102, 110); and terminating or releasing the Packet Switched connection (112).

Description

ADAPTIVE RADIO CHANNEL SWITCHING
FIELD OF THE INVENTION
The present invention relates to adaptive radio channel switching in a radio network in order to optimise the overall radio network capacity. Especially, the present invention relates to adaptive down and up switching between dedicated channels .
BACKGROUND
Data traffic speeds using packet switched transmission over cellular systems like WCDMA can differ due to various reasons like: a) round trip delay and error rate in the radio network; b) slow or no radio bearer change when having bursty traffic in the radio downlink or uplink.
The throughput for these cases can be improved using radio adapted TCP software and/or proxy servers or using HSDPA/HSUPA which reduces the round trip delay and radio bearer switching time.
From data download tests to various data servers on the Internet, the present inventors have discovered that the speed can also be limited due to the remote FTP server speed/access limitations. The maximum access speed per user may be limited at these servers as many users may try to access this server at the same time, e.g. during some broadcasting or in general the maximum access speed may be limited. When accessing these servers over LAN, the same low speeds have been noticed. For these cases the allocated dedicated channel DCH supported 384 kbps although the average throughput was approximately 100 kbps and a 128 kbps DCH would have been sufficient in order to achieve the same average download speed. Allocating the wrong dedicated channel DCH for such medium data speeds results in: 1) Unnecessary digital line (Iub) capacity occupation. Depending on the allocated dedicated channel, DCH, digital line capacity is reserved for this dedicated channel and cannot be given to other users. Currently, most Node B's are connected via one El line to the Radio Network Controller, RNC. The rent and fee for El lines are an expensive part of the network.
2) Unnecessary lower spreading factor code occupations or higher bit rate DCH' s. From indoor load tests using a dedicated indoor Node B, code and digital line limitations have been seen. Dedicated indoor WCDMA systems can show good code orthogonality and high loads can be achieved.
Due to the unnecessary radio and digital line capacity occupation some Packet Switched, PS, users may get dropped or new users may not get granted admission or the bit rate of all PS users may get downgraded. Furthermore, for such PS users in soft-handover condition the code usage at the Node B's and required digital line capacity between Node B's and RNCs, i.e. Iub, and RNCs to RNCs, i.e. Iur, can get reduced.
The patent application US 2004/0097191 describes a method of switching, by monitoring the traffic, from a current common channel to a dedicated channel for a user equipment. The method is used in a UMTS Terrestrial Radio Access Network (UTRAN) .
The patent application US 2003/0012217 Al describes channel-type switching to a common channel based on common channel load and considers mainly optimized channel switching between common and control channels. The prior art documents relate to switching algorithms for switching between control and dedicated channels and between dedicated and shared channels, wherein the switching is made in dependence of throughput, buffer load, etc. Further, these applications relate to bursty traffic and describe how to avoid ping pong effects in the switching between common and dedicated channels.
An object with the present invention is to provide down and up switching between dedicated channels (WCDMA) using e.g. measured data throughput and buffer load in e.g. the RNC as switching parameters .
Another object of the invention is to provide a down and up switching between shared dedicated channels as a function of the data throughput and buffer load in e.g. the RNC or Node B.
Yet another object of the invention is to provide digital line capacity allocation/reservation switching depending on the dedicated channel and therefore also depending on the user throughput and buffer load.
SUMMARY OF THE INVENTION The present invention relates to adaptive radio channel switching between dedicated channels for WCDMA and shared channels for HSDPA/HSUPA radio systems in order to adapt to the user end-to-end packet switched data traffic requirements and with this to optimise the overall radio network capacity. The inventive switching method adds new functionalities in the radio and transport network resource managements by monitoring the user/users buffer and throughput information as available in the Radio Network Controller, RNC, and/or Node B. The invention optimises the overall network capacity as unnecessary reserved codes and digital line capacity, Iub and Iur, can get free for other users .
The present invention allows adapting the channel bit rate allocation to the user's experienced end-to-end PS data throughput by monitoring the data throughput and buffer condition in the RNC and/or node B and applying the appropriate radio channel configuration and Iub reservetions for this user. This will be beneficial to all users in the radio network as the total radio resource, i.e. available codes, and digital line capacity will be optimised and the total achieved network throughput will be higher.
The present invention relates to a method and a Radio Network Controller for adaptive radio channel switching between dedicated channels in an UMTS network.
The invention is defined in the independent claims and preferred embodiments are set out in the dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be described in more detail with reference to the drawings, in which: Figure 1 schematically illustrates a UMTS network, according to prior art, comprising a core network and a
UTRAN;
Figure 2 schematically shows an embodiment of a radio resource management with an adaptive channel switching (ACS) algorithm implemented in the RNC;
Figure 3 schematically illustrates a possible adaptive channel switching, ACS, implementation for WCDMA;
Figure 4 schematically shows how the buffer and throughput values vary over time for WCDMA; Figure 5 schematically illustrates a possible adaptive channel switching, ACS, implementation for HSDPA; and Figure 6 schematically shows how the buffer and throughput values vary over time for HSDPA.
DETAILED DESCRIPTION
The following abbreviates and acronyms will be used in the description of the present invention.
AAL2 ATM Adaptation Layer 2
ACS Adaptive Channel Switching
ATM Asynchronous Transfer Mode
CRNC Controlling RNC, role an RNC can take with respect to a specific set of Node B's
DCH Dedicated CHannel
FACH Forward Access CHannel
FTP File Transfer Protocol
HSDPA High Speed Downlink Packet Access
HS-DSCH High Speed-Downlink Shared CHannel
HS-USCH High Speed-Uplink Shared CHannel
HSUPA High Speed Uplink Packet Access
IP Internet Protocol
Iub Interface between the RNC and the Node B
Iur Interface between two RNCs
LAN Local Area Network
MAC-hs Medium Access Control-high speed
Node B Base Transceiver Station, BTS. Logical node in the 3GPP RNS responsible for radio transmission/ reception in one or more cells to and from the UE. Terminates the Iub interface towards the RNC.
PS Packet Switched
RAB Radio Access Bearer
RACH Random Access CHannel
RAN Radio Access Network
RLC Radio Link Control (throughput = data channel + control channels
RNC Radio Network Controller SF Spreading Factor
SRNC Serving RMC
TCP Transmission Control Protocol
UE User Equipment, e.g. mobile terminal, phone and all peripherals
UMTS Universal Mobile Telecommunications System UTRAN Universal Terrestrial RAN. The Base Station, Base
Transceiver System etc. for WCDMA/UMTS WCDMA Wideband Code Division Multiplex Access
Further, in this specification, the term channel is applied to both DCH configurations and HSDPA/HSUPA (HS-DSCH/HS- USCH) configurations.
Figure 1 illustrates schematically a Universal Mobile Telecommunications System, UMTS, network 10 according to prior art. The UMTS network 10 comprises a core network 20 and a UMTS Terrestrial radio Access Network, UTRAN, 30. The UTRAN 30 comprises a number of Radio Network Controllers, RNCs, 32 each of which is coupled to a set of neighbouring Base Transceiver Stations, BTSs, 34, also called Node Bs. Each Node B 34 is responsible for a given cell and the controlling RNC 32 is responsible for routing user and signal data between that Node B 34 and the core network 20. All of the RNCs 32 are coupled to one another. In another case the RNCs can be all connected to each other but they do not have to be and normally they are not all directly connected to each other. Figure 1 also illustrates a mobile terminal or a user equipment 40. The core network 20 comprises a serving GPRS Support node, SGSN, 22 and a GPRS Gateway Support Node, GGSN, 24. The SGSN 22 and the GGSN 24 provide packet switched data services to the user equipment 40 via the UTRAN 30.
The invention relates to adaptive channel switching for WCDMA and HSDPA/HSUPA. WCDMA is a 3G technology that increases data transmission rates compared to GSM systems by using the CDMA air interface instead of TDMA. The HSDPA/HSUPA is an enhancement to the WCDMA 3G technology that increases the downlink/uplink speed by applying different modulation and coding techniques as well as multiple antennas .
Figure 2 schematically shows an embodiment of a radio resource management with an adaptive channel switching,
ACS, algorithm implemented in the RNC. The adaptive channel switching, ACS, is an additional function that complements existing channel switching features within the serving RNC, SRNC.
Figure 2 illustrates a radio network controller, RNC, 32 comprised in a radio and transport network, such as a UTRAN 30. The RNC 32 comprises a congestion control means 50 communicatively connected to a radio admission control means 52, means for adaptive channel switching, ACS, 54.
The ACS means 54 is communicatively connected to the radio admission control means 52 and an Iub admission control means 56.
The congestion means 50, the radio admission control means 52, the ACS means 54 and the admission control means 56 are communicatively connected to a monitoring means 58.
An Iub 60 is provided as an interface between the RNC 32 and a Node B 34, whereby a channel set up request can be sent from the Node B 34 to the RNC 32.
The monitoring means is configured to monitor e.g. DL codes, throughput, buffer load, radio load, transmit power etc. The congestion means is configured to imitate a channel switching from a dedicated channel to a common channel if congestion exists, i.e. if not enough bandwidth to support the current traffic load is available.
The admission control means is configured to estimate the load and fill up the system to its load limits. If, for example, the downlink or uplink limit threshold. is exceeded, a new RAB may not be admitted. The function can be located in radio resource control in the RNC. The admission control can be configured to decide on the RAB during setup and can also switch user/users in case resources need to be released for new users.
Embodiments of the invention may comprise means 62 for other dependencies, which means 62 can be communicatively connected to the Iub admission control means 56. All of the admission controls run in parallel. The ACS channel switch is approved by the radio/digital admission control. The ACS IuB admission control 56 although connected with the arrow "B" to the ACS 54 is or could be also connected directly to the Congestion Control 50 and/or Admission Control 52. For the present invention it is of importance that the ACS connects to 50, 52 and 56 directly in order to invoke channel switching in the radio and digital domain if necessary. Iub admission control means 56 could be also seen as some other future/existing function which allows channel switching after getting some channel switch request/indication from the ACS.
The radio resource management can further comprise means for soft and softer handover, and means for coverage triggered channel switching. The means for handover can be configured to imitate a channel switching if otherwise a link cannot be established. The means for coverage triggered channel can be configured to reconfigure the radio bearer when the coverage limit for the current bearer is reached.
As indicated by the arrow A in figure 2, the ACS means 54 decides the best channel configuration depending on the monitored throughput and buffer condition for each PS connection. The decision can be supported by monitored measurements at the mobile terminal 40, e.g. through measurements at the mobile terminal 40. For example, throughput values at the mobile terminal 40 can be measured. If the throughput and buffer is below/above a predetermined threshold value, the ACS 54 indicates that down/up switching is required.
Every channel switch is approved by the radio/digital transport-network admission control means 52 and 56 before carried out, as indicated by the arrows B in figure 2.
The threshold values for switching the channel preferably include some hysteresis in order to avoid the so called ping pong effect, i.e. in order to avoid too early switches due to short bursty fluctuations. Moving averaging can be applied to the measured throughput and buffer values.
The ACS means 54 and the ACS algorithm are configured to operate in parallel to other radio resource management- means and algorithms which for example handles new packet transmission, handover control, power control, congestion control, etc. The actual switching of the channel is done by carrying out a radio bearer reconfiguration as described in 3GPP TS25.331, Technical Specification Group Radio Access Network; Radio Resource Control (RRC) ; Protocol Specification, and will therefore not be described in more detail .
The present invention applies to UMTS networks, WCDMA, where different radio channels can be assigned in order to deliver different bit-rates to the user. In the uplink this considers mobiles which allow data rates larger than 64 kbps . Furthermore, the invention includes updates to HSDPA and HSUPA.
ACS implementation for WCDMA
Figure 3 schematically illustrates how an embodiment of the inventive ACS algorithm may be implemented in order to switch the data rate between dedicated channels, e.g. 384 kbps DCH » 128 kbps DCH • 64 kbps DCH, and down to lower bit rate common channels, Random Access Channel RACH /
Forward Access Channel FACH, during an active data session. The physical channel and the transport channel parameters of the radio bearer are reconfigured using the standardised Radio Resource Control, RRC, procedure. The allocated / reserved digital line (AAL2) capacity for this connection is also reconfigured. Transport network switching is possible with ATM AAL2 layer. The ACS algorithms for the downlink and uplink are independent of each other. For mobile terminals which only support 64 kbps in the uplink, the uplink uses a fixed Radio Access Bearer, RAB, configuration. The threshold values for the buffer and throughput in order to activate channel down or up switching should consider:
- higher and upper threshold values for the buffer depending on the actual channel configuration. If the buffer size would be fixed, the buffer will reach faster the full condition for higher throughputs and this has to be considered with a larger safety margin in the buffer threshold values. - For the throughput, the upper and lower threshold values also, like for the buffer, depend on the currently allocated DCH (throughput) .
In general, a moving average may be applied to the monitored throughput and buffer values in order not to switch too early due to some short bursty fluctuation in the traffic, whereby the so called ping pong effect can be avoided. The threshold values may be set relative to the upper throughput values of the current channel, e.g. upper threshold value 90% of maximum throughput value of current channel. If the highest / fastest channel has been reached no switching will occur.
An embodiment of the inventive method implemented for WCDMA comprises the steps of (cf . figure 3) :
100 initiating and admitting a new PS connection (Serving
RNC, SRNC) ;
102 checking if buffer and throughput value is below a lower threshold value; 104 if buffer and throughput value is below a lower threshold value, increasing the channel and repeating from step 102;
106 if buffer and throughput value is not below a lower threshold value, checking if buffer and throughput is above an upper threshold value,-
108 if buffer and throughput is above an upper threshold value, decreasing the channel and repeating from step 106;
110 if buffer and throughput is not above an upper threshold value, repeating from step 102; and 112 terminating or releasing the PS connection.
Fig 4 schematically shows how the buffer and throughput values vary over time for WCDMA.
ACS implementation for HSDPA/HSUPA For HSDPA/HSUPA, the users in a cell can get allocated a HS-PDSC (high Speed Physical Downlink Shared Channel) at the Controlling RNC, CRNC. The Medium Access Control-high speed, MAC-hs, scheduler (not shown) is located in the Node B, which serves the corresponding cell. This allows fast resource sharing in the code domain and time domain for the users accessing the same HS-DPSCs. This allows users with bursty/constant, high or medium throughputs to get the correct high average throughput with optimised radio resource sharing. However, for example for HSDPA, the CRNC has to decide which HS-PDSCH has to be setup as there are 12 different classes, modulation schemes and maximum numbers of codes, available. Applying a too high HS-PDSCH class would block unnecessary codes and digital line capacity which could be used for other users.
Figure 5 schematically illustrates how an embodiment of the inventive ACS algorithm may be implemented in order to switch the HS-PDSCH to different classes, e.g. Class 1 • Class 5 • Class 12, and down to WCDMA transmission rate. The allocated/reserved digital line capacity for his connection will depend on the allocated HS-PDSCH. The threshold values for the buffer and throughput, moving average, etc., in order to activate HS-PDSCH down or up switching should consider, like for WCDMA, the actual speed of the HS-PDSCH but also the individual speed and buffer size usage of the individual users within the shared channel. This information may be available in the RNC and/or Node B and/or reported from the mobile terminals. In order to activate the switching, the algorithm will have to consider more input parameters than for WCDMA as users with different profiles in their throughputs are sharing the same channel .
An embodiment of the inventive method implemented for HSDPA comprises the steps of (cf . figure 5) :
200 initiating and admitting a new PS connection (SRNC) ;
202 checking if buffer and throughput value is below a lower threshold value; 204 if buffer and throughput value is below a lower threshold value, increasing the HS-PDSCH and repeating from step 202;
206 if buffer and throughput value is not below a lower threshold value, checking if buffer and throughput is above an upper threshold value;
208 if buffer and throughput is above an upper threshold value, decreasing the HS-PDSCH and repeating from step 206;
210 if buffer and throughput is not above an upper threshold value, repeating from step 202; and 212 terminating or releasing the PS connection.
Figure 6 Figure 6 schematically shows how the buffer and throughput vary over time for HSDPA.
The present invention has been described with exemplifying embodiments. However it should be understood that modifications can be made without departing from the scope of the invention.

Claims

1. A method for adaptive radio channel switching between dedicated channels in an UMTS network, comprising the steps of:
- initiating and admitting a new Packet Switched connection (100, 200) ;
- checking if buffer and throughput value is below a lower threshold value (102, 202); - if buffer and throughput value is below a lower threshold value, switching down from a dedicated channel to a channel with a lower capacity and repeating from step 102 or 202 (104, 204) ;
- if buffer and throughput value is not below a lower threshold value, checking if buffer and throughput is above an upper threshold value (106, 206) ;
- if buffer and throughput is above an upper threshold value, switching up from a channel to a dedicated channel with a higher capacity and repeating from step 106 or 206 (108, 208) ;
- if buffer and throughput is not above an upper threshold value, repeating from step 102 or 202 (110, 210) ;and
- terminating or releasing the Packet Switched connection (112, 212) .
2. A method according to claim 1, further comprising the step of monitoring the throughput and buffer values for each Packet Switched connection.
3. A method according to any preceding claim, further comprising the step of approving the channel switch.
4. A method according to any preceding claim, further comprising the step of performing the channel switch by carrying out a radio bearer reconfiguration.
5. A method according to any preceding claim, further comprising the step of monitoring throughput values at the mobile terminal.
6. A Radio Network Controller (32) for adaptive radio channel switching between dedicated channels in an UMTS network, comprising a congestion control means (50) communicatively connected to a radio admission control means (52) , and an Iub admission control means (56) ; the congestion means (50), the radio admission control means (52) , the Iub admission control means (56) are communicatively connected to a monitoring means (58) , characterised by means for adaptive channel switching ACS (54) communicatively connected to the radio admission control means (52), the Iub admission control means (56), and the monitoring means (58) ; the ACS means (54) is configured to decide the best channel configuration depending on the monitored throughput and buffer condition for each Packet Switched connection and configured to indicate that down switching to a channel with lower capacity is required if the monitored throughput and the monitored buffer values are below the threshold values and that up switching to a channel with higher capacity is required if the monitored throughput and the monitored buffer values are above the threshold values .
7. A Radio Network Controller (32) according to claim 6, wherein the monitoring means (58) is configured to check if buffer and throughput value is below a lower threshold value and configured to check if buffer and throughput is above an upper threshold value .
8. A Radio Network Controller according to any of claim 6 - 7, wherein the monitoring means (58) is configured to monitor throughput and buffer values for each Packet Switched connection.
9. A Radio Network Controller (32) according to any of claim 6 - 8, further comprising means (52, 56) for approving the channel switch.
10. A Radio Network Controller (32) according to any of claim 6 - 9, further comprising means for performing the channel switch by carrying out a radio bearer reconfiguration .
11. A Radio Network Controller (32) according to any of claim 6 - 10, further comprising means for monitoring throughput values at a mobile terminal (40) .
12. A UMTS system comprising a Radio Network Controller (32) according to any of claim 6 - 11.
PCT/SE2006/000868 2005-07-15 2006-07-07 Adaptive radio channel switching WO2007011281A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06758050A EP1908228A4 (en) 2005-07-15 2006-07-07 Adaptive radio channel switching
NO20076175A NO20076175L (en) 2005-07-15 2007-11-30 Adaptive switching of radio channels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0501683A SE529757C2 (en) 2005-07-15 2005-07-15 Method and radio network controller for adaptive radio channel switching
SESE0501683-7 2005-07-15

Publications (1)

Publication Number Publication Date
WO2007011281A1 true WO2007011281A1 (en) 2007-01-25

Family

ID=37669076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2006/000868 WO2007011281A1 (en) 2005-07-15 2006-07-07 Adaptive radio channel switching

Country Status (4)

Country Link
EP (1) EP1908228A4 (en)
NO (1) NO20076175L (en)
SE (1) SE529757C2 (en)
WO (1) WO2007011281A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107631A1 (en) * 2006-03-17 2007-09-27 Nokia Corporation Data transmission
CN101500265B (en) * 2008-01-28 2010-12-08 中兴通讯股份有限公司 Throughput evaluation method
CN102301808A (en) * 2009-01-30 2011-12-28 株式会社Ntt都科摩 Wireless control apparatus and mobile communication method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036146A1 (en) * 1995-05-09 1996-11-14 Nokia Telecommunications Oy Non-transparent data transmission in a digital telecommunications system
WO2002039775A1 (en) * 2000-11-07 2002-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Channel switching in umts
US6519461B1 (en) * 1999-10-29 2003-02-11 Telefonaktiebolaget Lm Ericsson (Publ) Channel-type switching from a common channel to a dedicated channel based on common channel load
EP1343343A1 (en) * 2002-03-06 2003-09-10 Lucent Technologies Inc. Method and apparatus for channel-type switching based on a packet data transmission parameter
US20040097191A1 (en) * 2000-11-21 2004-05-20 Michael Meyer Controlling channel switching in a umts network
WO2004047379A2 (en) * 2002-11-20 2004-06-03 Telecom Italia S.P.A. Method, system and computer program product for managing the transmission of information packets in a telecommunication network
US6751193B1 (en) * 1998-06-26 2004-06-15 Qualcomm Incorporated Method and apparatus for controlling data transfer between two stations
US6760303B1 (en) * 2000-03-29 2004-07-06 Telefonaktiebolaget Lm Ericsson (Publ) Channel-type switching based on cell load
WO2004064441A1 (en) * 2003-01-14 2004-07-29 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation management
GB2404528A (en) * 2003-07-28 2005-02-02 Hutchison Whampoa Three G Ip Efficient channel capacity switching
US20050053081A1 (en) * 1999-11-17 2005-03-10 Telefonaktiebolaget Lm Ericsson (Publ) Acceleration dependent channel switching in mobile telecommunications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030012217A1 (en) * 1999-10-29 2003-01-16 Christoffer Andersson Channel-type switching to a common channel based on common channel load

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036146A1 (en) * 1995-05-09 1996-11-14 Nokia Telecommunications Oy Non-transparent data transmission in a digital telecommunications system
US6751193B1 (en) * 1998-06-26 2004-06-15 Qualcomm Incorporated Method and apparatus for controlling data transfer between two stations
US6519461B1 (en) * 1999-10-29 2003-02-11 Telefonaktiebolaget Lm Ericsson (Publ) Channel-type switching from a common channel to a dedicated channel based on common channel load
US20050053081A1 (en) * 1999-11-17 2005-03-10 Telefonaktiebolaget Lm Ericsson (Publ) Acceleration dependent channel switching in mobile telecommunications
US6760303B1 (en) * 2000-03-29 2004-07-06 Telefonaktiebolaget Lm Ericsson (Publ) Channel-type switching based on cell load
WO2002039775A1 (en) * 2000-11-07 2002-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Channel switching in umts
US20040097191A1 (en) * 2000-11-21 2004-05-20 Michael Meyer Controlling channel switching in a umts network
EP1343343A1 (en) * 2002-03-06 2003-09-10 Lucent Technologies Inc. Method and apparatus for channel-type switching based on a packet data transmission parameter
WO2004047379A2 (en) * 2002-11-20 2004-06-03 Telecom Italia S.P.A. Method, system and computer program product for managing the transmission of information packets in a telecommunication network
WO2004064441A1 (en) * 2003-01-14 2004-07-29 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation management
GB2404528A (en) * 2003-07-28 2005-02-02 Hutchison Whampoa Three G Ip Efficient channel capacity switching

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1908228A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107631A1 (en) * 2006-03-17 2007-09-27 Nokia Corporation Data transmission
CN101500265B (en) * 2008-01-28 2010-12-08 中兴通讯股份有限公司 Throughput evaluation method
CN102301808A (en) * 2009-01-30 2011-12-28 株式会社Ntt都科摩 Wireless control apparatus and mobile communication method
US8817654B2 (en) 2009-01-30 2014-08-26 Ntt Docomo, Inc. Radio controller and mobile communication method

Also Published As

Publication number Publication date
SE529757C2 (en) 2007-11-20
EP1908228A4 (en) 2011-12-28
EP1908228A1 (en) 2008-04-09
SE0501683L (en) 2007-01-16
NO20076175L (en) 2008-03-07

Similar Documents

Publication Publication Date Title
US8223758B2 (en) System and method of load dependent rate policing
EP1243146B1 (en) Channel-type switching from a common channel to a dedicated channel based on common channel load
EP1787436B1 (en) Method and system for managing radio resources in mobile communication networks, related network and computer program product therefor
EP1336314B1 (en) Method, apparatus and radio access network for establishing a connection between an external network to a user equipment
US20030012217A1 (en) Channel-type switching to a common channel based on common channel load
EP1796330B1 (en) Call admission control device and call admission control method
US20090005053A1 (en) Data Flow Control Device and Method for Congestion Avoidance Into Lub and Lur Interfaces of a Radio Access Network of a Mobile Communication Network
CA2404523C (en) Transmitting packet data
US20040097191A1 (en) Controlling channel switching in a umts network
US20120188957A1 (en) Flow control in umts using information in ubs field
MX2007015722A (en) Scheduling information at serving cell change.
EP2375658B1 (en) Traffic congestion in radio network controllers
US20070053288A1 (en) Wireless communication method and apparatus for selecting a channel type for a call
US20040213165A1 (en) Port number based radio resource management of packet data
WO2007011281A1 (en) Adaptive radio channel switching
CN101111039A (en) Business measuring control method used for high speed descending grouping access system
EP2030459B1 (en) Managing quality-of-service profiles in a mobile telecommunications system
EP1816879A1 (en) Method for congestion control with macro diversity
EP2192805B1 (en) Method of cell assignment in cellular communications networks using macrodiversity
JP4468991B2 (en) Congestion control in wireless mobile systems
CN101128058B (en) A method, system and device for establishing service downlink and uplink transmission channel
Li et al. HSUPA backhaul bandwidth dimensioning
EP1928196A1 (en) A method for radio flow control in a mobile communication system
Li et al. Optimization of bit rate adaptation in UMTS radio access network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006758050

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE