WO2007010617A1 - Adsorption sensor, and instrument and method for measuring gas concentration - Google Patents

Adsorption sensor, and instrument and method for measuring gas concentration Download PDF

Info

Publication number
WO2007010617A1
WO2007010617A1 PCT/JP2005/013470 JP2005013470W WO2007010617A1 WO 2007010617 A1 WO2007010617 A1 WO 2007010617A1 JP 2005013470 W JP2005013470 W JP 2005013470W WO 2007010617 A1 WO2007010617 A1 WO 2007010617A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance frequency
adsorbent
light irradiation
gas concentration
adsorption
Prior art date
Application number
PCT/JP2005/013470
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Yamagishi
Ryozo Takasu
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2007525484A priority Critical patent/JP4567735B2/en
Priority to PCT/JP2005/013470 priority patent/WO2007010617A1/en
Publication of WO2007010617A1 publication Critical patent/WO2007010617A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • Adsorption type sensor gas concentration measuring device and measuring method
  • the present invention relates to an adsorption type sensor, a gas concentration measuring apparatus using the same, and a measurement method, and more particularly, a substance to be measured is adsorbed on an adsorbent formed on the surface of the vibrator.
  • the present invention relates to an adsorption-type sensor that utilizes a change in natural frequency of gas, a gas concentration measuring device and a measuring method using the same.
  • the resonance frequency changing force can be directly read by measuring the relationship between the concentration of the odor substance and the resonance frequency in advance.
  • the resonance frequency varies depending on the temperature of the piezoelectric body.
  • the temperature of the environment where the piezoelectric body is arranged is measured with a temperature sensor, and the change in the resonance frequency due to the temperature change is corrected.
  • a gas containing a substance to be measured is circulated through a temperature adjusting device to adjust the temperature, and then brought into contact with an adsorption sensor to adjust the concentration of the substance to be measured. taking measurement.
  • Patent Document 4 listed below discloses a volatile organic compound in a clean room for a semiconductor process.
  • An adsorption type sensor for measuring the concentration of is disclosed.
  • the humidity is controlled with high precision, so there is little need to consider the effects of humidity changes.
  • fluctuations in the resonance frequency due to changes in the concentration of a small amount of substance to be measured are concealed by large fluctuations due to changes in humidity.
  • Patent Document 5 below discloses an adsorption type sensor that is affected by changes in humidity by making the adsorbent hydrophobic.
  • the effect of excluding the influence of humidity change is sufficient if the adsorbent is made hydrophobic.
  • the first is a mode of reversibly adsorbing and desorbing.
  • the first mode includes adsorption in which the relationship between the concentration and the amount of adsorption is almost 1: 1, such as a low molecular weight organic compound captured in a lipid bilayer membrane.
  • the adsorbent force is not easily desorbed even if the concentration of the substance to be adsorbed in the surrounding gas is reduced when adsorbed firmly on the surface of the adsorbent. is there.
  • the second mode is when a highly polar molecule adheres to the metal surface and forms a hydrogen bond with a hydroxyl group on the metal surface.
  • the third is an embodiment in which the adsorbent is fixed by a chemical reaction.
  • gases such as S02, H2S, and HC1 are adsorbed on the metal surface, some of them react with the metal (the metal corrodes) and are fixed semi-permanently.
  • the silicone molecule becomes non-volatile by polymerization reaction on the adsorption surface.
  • Such an aspect of adsorption is an example of the third aspect.
  • a photocatalyst is disposed in the vicinity of the adsorption sensor.
  • the adsorbed substance adsorbed on the adsorption sensor is decomposed and removed by radical groups or ozone generated by irradiating the photocatalyst with light.
  • the adsorption sensor can be reused.
  • the lifetime of oxygen radicals with strong oxidizing power is extremely short. For this reason, many oxygen radicals disappear before reaching the surface of the adsorption sensor.
  • the lifetime of ozone is longer than that of oxygen radicals, but its decomposing ability is extremely small compared to oxygen radicals. For this reason, the ability to decompose an adsorbed substance is small and not practical.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-90152
  • Patent Document 2 JP 2000-304672 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-226177
  • Patent Document 4 JP 2002-333394 A
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-61391
  • Patent Document 6 JP 2001-343315 A
  • a vibrating body that vibrates by application of an alternating voltage, a pair of electrodes that are formed on the surface of the vibrating body and applies a voltage to the vibrating body, and a gas molecule of a substance to be measured
  • an adsorption-type sensor having an adsorbent that adsorbs the substance to be measured and has a photocatalytic function is provided.
  • a vibrating body that vibrates by application of an alternating voltage, a pair of electrodes that are formed on a surface of the vibrating body and applies a voltage to the vibrating body, and a gas to be measured
  • an adsorbent that adsorbs the substance to be measured and has a photocatalytic function
  • an oscillator that forms a resonance circuit together with the vibrator and the pair of electrodes, and the resonance
  • a gas concentration measuring device having a frequency counter for measuring a resonance frequency of a circuit, and light irradiation means for irradiating the adsorbent with light having a wavelength at which the adsorbent exhibits a catalytic function.
  • the gas concentration is measured using an adsorption sensor whose resonance frequency changes depending on the amount of the adsorbent adsorbed on the adsorbent having a photocatalytic function.
  • B irradiating the adsorbent with light after the resonance frequency of the adsorption sensor reaches a steady state; and
  • c irradiating the adsorbent with light.
  • the adsorbed substance adsorbed on the adsorbent can be decomposed and the adsorbent force desorbed.
  • the gas concentration By calculating the gas concentration based on the change in the resonance frequency when the adsorbent is desorbed, the influence of the resonance frequency drift due to humidity and the resonance frequency drift due to the accumulated adsorbent is avoided or reduced. be able to.
  • FIG. 1 is a front view of an adsorption type sensor according to an embodiment.
  • FIG. 2 is a cross-sectional view of the adsorption sensor according to the example.
  • FIG. 3 is a schematic view of a gas concentration measuring apparatus according to an embodiment.
  • FIG. 4 is a schematic diagram of an experimental chamber and a gas introduction system used in an evaluation experiment.
  • FIG. 5A is a graph showing the change over time of the relative humidity of the simulated atmosphere introduced into the experimental chamber
  • FIG. 5B is a graph showing the resonance frequency of the adsorption sensor arranged in the experimental chamber
  • FIG. 5C is a graph showing the time change of the resonance frequency when ultraviolet irradiation is performed from time tl to t4
  • FIG. 5D is the time of the resonance frequency at the time of ultraviolet irradiation. It is a diagram which shows the waveform which expanded the change.
  • Fig. 6A is a graph showing an example of the relationship between the resonance frequency increase ⁇ ⁇ and the concentration of acetonitrile, and Fig. 6 ⁇ shows the relationship between the change in the resonance frequency and the concentration of the gas to be measured. It is a graph which shows an example.
  • Figure 7 shows the resonance frequency when the adsorption sensor is left in a clean room.
  • Fig. 7B is a graph showing the relationship between the amount of displacement and the number of days elapsed.
  • Fig. 7B shows an evaluation experiment in which an adsorption sensor that has been allowed to stand in a clean room for one week and whose resonance frequency has been recovered by ultraviolet irradiation is placed in an experimental chamber. It is a graph which shows the time change of the resonant frequency when performing this.
  • FIG. 1 is a front view of the adsorption sensor according to the embodiment
  • FIG. 2 is a cross-sectional view taken along one-dot chain line A2-A2 in FIG.
  • Electrodes 2A and 2B are formed on both surfaces of a disk-shaped vibrating body 1 made of a piezoelectric material, respectively.
  • the electrodes 2A and 2B are made of, for example, gold, and each has a thickness of, for example, 0.2 ⁇ m.
  • the electrodes 2A and 2B can be formed by sputtering, for example.
  • Adsorbent 3A and 3B forces are formed so as to cover electrodes 2A and 2B, respectively, and are fixed to vibrating body 1.
  • the adsorbents 3A and 3B are made of, for example, titanium apatite, and each has a thickness of 0.2 m.
  • the adsorbents 3A and 3B can be formed, for example, by sputtering using a target obtained by sintering titanium apatite powder. Titanium apatite is one in which one of the calcium atoms of calcium hydroxyapatite (CalO (P04) 6 (OH) 2) is replaced by a titanium atom.
  • the adsorbents 3A and 3B made of titanium apatite have both a function of adsorbing an adsorbed substance such as a volatile organic compound and a photocatalytic function.
  • the outer peripheries of the adsorbers 3A and 3B are located between the outer peripheries of the electrodes 2A and 2B and the outer perimeter of the vibrator 1, respectively. Thus, the electrodes 2A and 2B are completely covered with the adsorbents 3A and 3B, respectively.
  • Lead extraction part 2C force The outer side of the electrode 2A extends outward from the outer periphery of the adsorber 3A. The lead extraction part 2C is formed simultaneously with the electrode 2A.
  • Lead wire 4A is connected to the tip of lead outlet 2C. A similar lead extraction portion extends from the other electrode 2B, and the other lead wire 4B is connected to the tip thereof.
  • the vibrating body 1 vibrates due to the piezoelectric phenomenon of the vibrating body 1.
  • the frequency of the applied AC voltage matches the natural frequency of vibrating body 1, a resonance phenomenon occurs.
  • the thickness of the vibrating body 1 is set so that the resonance frequency is about 25 MHz. Is set.
  • this adsorption type sensor When this adsorption type sensor is arranged in a gas to be measured, an adsorbed substance such as a volatile organic compound contained in the gas is adsorbed on the adsorbents 3A and 3B. This reduces the resonant frequency.
  • FIG. 3 shows a schematic diagram of a gas concentration measuring apparatus according to the embodiment.
  • the adsorption type sensor 10 shown in FIGS. 1 and 2 is housed in the sensor holder 11.
  • the sensor holder 11 includes a cylindrical member l ib and a base 11a that closes one end thereof. A number of through holes are formed in the cylindrical member l ib, and gas freely flows between the inside and the outside of the cylindrical member l ib.
  • the adsorption sensor 10 is supported in the sensor holder 11 by fixing the two lead wires 4A and 4B to the base 11a.
  • the light irradiation device 12 is configured by the light emitting diode 15, the lens 16, and the optical fibers 17A and 17B.
  • the light emitting diode 15 emits light in the ultraviolet region having a peak wavelength of 380 nm, for example.
  • the output is 85 mW, for example.
  • the light force emitted from the light emitting diode 15 is converged by the lens 16, and the incident end force is also incident on the optical fibers 17A and 17B.
  • the optical fibers 17A and 17B are made of, for example, quartz fiber.
  • the emission ends of the optical fibers 17A and 17B are supported so as to face the adsorbing bodies 3A and 3B of the adsorption type sensor 10 accommodated in the sensor holder 11, respectively.
  • the ultraviolet rays that are also emitted from the output end forces of the optical fibers 17A and 17B are irradiated to the adsorbents 3A and 3B, respectively.
  • the adsorbed substances adsorbed by the adsorbents 3A and 3B are decomposed and desorbed from the adsorbents 3A and 3B by the photocatalytic function.
  • a light source that emits light having a wavelength such that the adsorbents 3A and 3B exhibit a photocatalytic function may be employed.
  • the oscillator 20 is connected to the adsorption sensor 10 and constitutes a resonance circuit together with the adsorption sensor 10.
  • the frequency counter 21 measures the resonance frequency of this resonance circuit and transmits the measurement result to the control device 30.
  • the control device 30 is composed of, for example, a personal computer or a dedicated control device. The control device 30 controls the light emission timing of the light emitting diode 15.
  • FIG. 4 shows a schematic diagram of the experimental chamber and gas introduction system used in the evaluation experiment. Nitrogen gas generated from liquid nitrogen and oxygen gas generated from liquid oxygen oxygen are introduced into branch point 45 through valves VI and V2, respectively, with the flow rate adjusted. By adjusting the flow ratio of nitrogen gas and oxygen gas to 4: 1, a simulated atmosphere can be generated.
  • the gas flows into three gas flow paths of the first system 51, the second system 52, and the third system 53.
  • the gas flow paths of the first to third systems 51 to 53 are connected to the experimental chamber 40 after merging at the merging point 46.
  • a bubbling tank 41 filled with a liquid of a volatile organic compound and a valve V3 are inserted.
  • the simulated atmosphere flowing through the first system 51 contains volatile organic compounds and is introduced into the experimental chamber 40.
  • acetaldehyde was used as a volatile organic compound.
  • a publishing tank 42 filled with pure water and a valve V4 are inserted.
  • the simulated atmosphere flowing through the third system is humidified in the publishing tank 42 to a relative humidity of 90% RH.
  • a valve V5 is inserted into the third system 53.
  • the simulated atmosphere flowing through the third system 53 is introduced into the experimental chamber 40 through the valve V5 as it is.
  • the humidity of the simulated atmosphere introduced into the experimental chamber 40 and the concentration of the volatile organic compound are adjusted by adjusting the flow rate of the gas flowing through the first to third systems 51 to 53 by the valves V3 to V5. be able to.
  • the temperature of the simulated atmosphere was 25 ° C.
  • the sensor holder 11 shown in FIG. 3 is inserted into the experimental chamber 40.
  • the adsorption type sensor 10 is accommodated.
  • the simulated atmosphere introduced into the experimental chamber 40 flows out through the insertion port for inserting the sensor holder 11.
  • a simulated atmosphere having a relative humidity of 80% and a cetaldehyde concentration of 1 ppm was introduced into the experimental chamber 40. After 1 hour, the relative humidity of the simulated atmosphere was 20%. The concentration of cetaldehyde remains at lppm.
  • FIG. 5B shows the resonance frequency of the resonance circuit including the adsorption sensor 10 (hereinafter simply referred to as “resonance frequency”). Call it "number”. ) Fluctuations.
  • the resonance frequency fo at the start of measurement depends on the humidity just before that.
  • the resonance frequency decreases because moisture and acetoaldehyde are adsorbed on the adsorbents 3A and 3B of the adsorption sensor 10.
  • the resonance frequency becomes constant.
  • the relative humidity is lowered to 20% after 1 hour has elapsed, a part of the water adsorbed on the adsorbents 3A and 3B is desorbed, and the resonance frequency increases. After a certain time, the resonance frequency becomes constant.
  • Fig. 5C shows the adsorbent when 20 minutes have elapsed (time tl), 40 minutes have elapsed (time t2), 80 minutes have elapsed (time t3), and 100 minutes have elapsed (time t4).
  • This shows the change in resonance frequency when 3A and 3B are irradiated with ultraviolet rays for 3 minutes.
  • Figure 5D shows an enlarged view of the resonance frequency waveform during UV irradiation.
  • the water adsorbed on the adsorbents 3A and 3B is originally an acid oxide and therefore is not decomposed by the photocatalyst.
  • the adsorbed acetaldehyde is probably decomposed into water and carbon dioxide by the photocatalyst and desorbed from the adsorbents 3A and 3B. For this reason, the increase in resonance frequency is thought to be due to the decomposition and elimination of acetoaldehyde.
  • FIG. 6 (b) shows an example of the relationship between the resonance frequency increase ⁇ ⁇ and the concentration of acetoaldehyde.
  • the horizontal axis represents the concentration of acetonitrile, and the vertical axis represents the increase in resonance frequency ⁇ ⁇ .
  • the graph shown in Fig. 6 (b) can be created by measuring the resonance frequency rise ⁇ for a gas with a known concentration of cetaldehyde. Resonance frequency rise ⁇ ⁇ and acetoaldehyde Is stored in the control device 30 shown in FIG.
  • the sensor holder 11 in which the adsorption type sensor 10 shown in FIG. 3 is accommodated is placed in the space where the gas concentration is to be measured. After the resonance frequency reaches a steady state, the adsorption bodies 3 and 3 of the adsorption sensor 10 are irradiated with ultraviolet rays.
  • the resonance frequency is measured even during irradiation with ultraviolet rays. When it is detected that the resonance frequency is almost constant, the ultraviolet irradiation is stopped. For example, it can be determined that the resonance frequency has become constant when the rate of change of the resonance frequency (the time derivative of the resonance frequency) is below a certain reference value. If you know the time until the resonance frequency becomes almost constant, set the UV irradiation time to a fixed value.
  • the substance to be adsorbed is acetaldehyde
  • the substance produced by the decomposition of the substance to be adsorbed is almost entirely desorbed from the adsorbents 3 ⁇ and 3 ⁇ .
  • UV irradiation is stopped, almost the same amount of acetaldehyde as the desorbed acetaldehyde is re-adsorbed on the adsorbents 3 ⁇ and 3 ⁇ .
  • the increase width ⁇ of the resonance frequency at the time of ultraviolet irradiation is equal to the decrease width ⁇ f 2 of the resonance frequency after the ultraviolet irradiation is stopped. Therefore, the gas concentration can also be obtained by measuring the decrease width ⁇ f 2 of the resonance frequency.
  • the non-volatile substance such as S02 is generated after the substance to be adsorbed is decomposed by the action of the photocatalyst, the non-volatile substance remains on the surfaces of the adsorbents 3A and 3B even after ultraviolet irradiation. Remains. Since the adsorption conditions are different before and after UV irradiation, the increase width ⁇ ⁇ of the resonance frequency is not equal to the decrease width ⁇ f 2. In this case, instead of the graph of FIG. 6A, it is necessary to obtain in advance the relationship between the resonance frequency drop ⁇ f 2 and the concentration of the adsorbed substance. There is a point.
  • the concentration of the gas to be measured based on the slope of the change in the resonance frequency after the ultraviolet irradiation is stopped.
  • the relationship between the gradient of the change in the resonance frequency and the concentration of the measurement target gas may be measured in advance.
  • the concentration of the gas to be measured can be calculated more quickly.
  • a moving average of about several seconds to several minutes is generally measured in order to remove extremely short and periodic noise components.
  • the moving average time width it is preferable to set the moving average time width to several seconds.
  • FIG. 7A shows a change in resonance frequency when the adsorption sensor according to the above example is left in a clean room with a humidity of 50% for one week.
  • the initial resonant frequency fO is about 25 MHz. It can be seen that the resonant frequency decreases as the number of days elapses, and decreases by about 1200 Hz in one week. This is because a small amount of contaminants present in the clean room are adsorbed by the adsorption sensor.
  • FIG. 7B shows the result of the same experiment as the evaluation experiment shown in FIG. 5C, using the adsorption sensor whose resonance frequency is recovered to fO ′.
  • the initial resonant frequency is reduced from fO to fO ', and it is shifted downward by fO – fO' as a whole.
  • the increase in resonance frequency ⁇ ⁇ 1 during UV irradiation, the decrease in resonance frequency ⁇ F 2 after UV irradiation is stopped, and the slope of the change in resonance frequency are shown in Fig. 5C and Fig. 7B.
  • the case was almost the same.
  • the gradient of the change in the resonance frequency which are directly measured in the above-described embodiment, are not affected by the resonance frequency drift due to the storage adsorbed substance.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A pair of electrodes are formed on the surface of an oscillation body which oscillates when applied with an AC voltage. The electrodes apply a voltage to the oscillation body. An adsorbent is fixed to the oscillation body. The adsorbent has a photocatalytic function and adsorbs an object to be measured when it comes into contact with the object

Description

明 細 書  Specification
吸着型センサ、ガス濃度測定装置及び測定方法  Adsorption type sensor, gas concentration measuring device and measuring method
技術分野  Technical field
[0001] 本発明は、吸着型センサ、それを用いたガス濃度測定装置及び測定方法に関し、 特に振動体の表面に形成された吸着体に被測定物質が吸着されることによって、そ の振動体の固有振動数が変化することを利用した吸着型センサ、それを用いたガス 濃度測定装置及び測定方法に関する。  TECHNICAL FIELD [0001] The present invention relates to an adsorption type sensor, a gas concentration measuring apparatus using the same, and a measurement method, and more particularly, a substance to be measured is adsorbed on an adsorbent formed on the surface of the vibrator. The present invention relates to an adsorption-type sensor that utilizes a change in natural frequency of gas, a gas concentration measuring device and a measuring method using the same.
背景技術  Background art
[0002] 大気中の揮発性有機化合物や匂い分子の濃度を測定する技術として、水晶振動 子等の圧電体上に有機物が吸着されることに伴う共振周波数の変化力 被測定物 質の濃度を推定する方法が提案されて ヽる。  [0002] As a technique for measuring the concentration of volatile organic compounds and odor molecules in the atmosphere, the change in resonance frequency due to the adsorption of organic matter on a piezoelectric body such as a quartz crystal resonator. An estimation method has been proposed.
[0003] 下記の特許文献 1に開示された方法では、匂い物質の濃度と共振周波数との関係 を予め測定しておくことにより、共振周波数の変化力 匂い物質の濃度を直読するこ とができる。共振周波数は圧電体の温度によって変動する。圧電体の配置された環 境の温度を温度センサで測定し、温度変化による共振周波数の変化が補正される。  [0003] In the method disclosed in Patent Document 1 below, the resonance frequency changing force can be directly read by measuring the relationship between the concentration of the odor substance and the resonance frequency in advance. . The resonance frequency varies depending on the temperature of the piezoelectric body. The temperature of the environment where the piezoelectric body is arranged is measured with a temperature sensor, and the change in the resonance frequency due to the temperature change is corrected.
[0004] 特許文献 2に開示された方法では、被測定物質を含有する気体を、温度調節装置 内を流通させて温度調節を行った後に、吸着型センサに触れさせて被測定物質の 濃度を測定する。  [0004] In the method disclosed in Patent Document 2, a gas containing a substance to be measured is circulated through a temperature adjusting device to adjust the temperature, and then brought into contact with an adsorption sensor to adjust the concentration of the substance to be measured. taking measurement.
[0005] 吸着型センサの共振周波数には、比較的補正しやすい温度変化によるドリフト以外 に、湿度によるドリフト、及び蓄積型吸着物によるドリフトが生じる。  [0005] In addition to drift due to temperature changes that are relatively easy to correct, drift due to humidity and drift due to accumulation-type adsorbate occur in the resonance frequency of the adsorption sensor.
[0006] まず、湿度によるドリフトに関する従来の技術について説明する。大気中には、微量 の被測定物質に比べて多量の水分が含まれる。さらに、水分濃度は、時間及び場所 によって大きく変動する。水分は、殆どの吸着型センサに吸着されるため、その共振 周波数に大きな影響を及ぼす。この共振周波数の変動を積極的に利用した湿度セ ンサが、下記の特許文献 3に開示されている。このことからも、吸着型センサに与える 湿度の影響の大きさが伺える。  [0006] First, a conventional technique relating to humidity drift will be described. The atmosphere contains a large amount of moisture compared to a trace amount of the substance to be measured. Furthermore, the moisture concentration varies greatly with time and place. Since moisture is adsorbed by most adsorption sensors, it has a significant effect on its resonance frequency. A humidity sensor that positively utilizes the fluctuation of the resonance frequency is disclosed in Patent Document 3 below. This also indicates the magnitude of the effect of humidity on the adsorption sensor.
[0007] 下記の特許文献 4に、半導体プロセス用のクリーンルーム内の揮発性有機化合物 の濃度を測定する吸着型センサが開示されている。クリーンルーム内では、湿度が高 精度に制御されているため、湿度変化の影響を考慮する必要は少ない。ところが、一 般の大気中では、微量の被測定物質の濃度変化による共振周波数の変動が、湿度 変化による大きな変動に隠蔽されてしまう。下記の特許文献 5に、吸着体を疎水性と することにより、湿度変化の影響を受けに《した吸着型センサが開示されている。し 力い、極微量の被測定物質の濃度の測定には、吸着体を疎水性とするだけでは湿 度変化の影響を除外する効果が十分であるとは 、えな 、。 [0007] Patent Document 4 listed below discloses a volatile organic compound in a clean room for a semiconductor process. An adsorption type sensor for measuring the concentration of is disclosed. In a clean room, the humidity is controlled with high precision, so there is little need to consider the effects of humidity changes. However, in the general atmosphere, fluctuations in the resonance frequency due to changes in the concentration of a small amount of substance to be measured are concealed by large fluctuations due to changes in humidity. Patent Document 5 below discloses an adsorption type sensor that is affected by changes in humidity by making the adsorbent hydrophobic. However, in measuring the concentration of a very small amount of the substance to be measured, the effect of excluding the influence of humidity change is sufficient if the adsorbent is made hydrophobic.
[0008] 次に、蓄積型吸着物によるドリフトの影響を軽減する従来の技術について説明する 。大気中には、微量の種々の分子が存在する。これらの分子の吸着の態様は、以下 の 3つに分類される。 [0008] Next, a conventional technique for reducing the effect of drift due to the storage-type adsorbate will be described. There are a small amount of various molecules in the atmosphere. The mode of adsorption of these molecules is classified into the following three types.
[0009] 第 1は、可逆的に吸着及び脱離する態様である。例えば、脂質二重膜に捉えられ た低分子有機化合物のように、濃度と吸着量との関係がほぼ 1対 1に定まるような吸 着が第 1の態様に含まれる。  [0009] The first is a mode of reversibly adsorbing and desorbing. For example, the first mode includes adsorption in which the relationship between the concentration and the amount of adsorption is almost 1: 1, such as a low molecular weight organic compound captured in a lipid bilayer membrane.
[0010] 第 2は、吸着体の表面に強固に吸着され、ー且吸着されると、周囲のガス中におけ る被吸着物質の濃度が低下しても吸着体力 脱離しにくいような態様である。極性の 強い分子が金属表面に付着し、金属表面の水酸基と水素結合した場合等が、第 2の 態様に該当する。  [0010] Second, the adsorbent force is not easily desorbed even if the concentration of the substance to be adsorbed in the surrounding gas is reduced when adsorbed firmly on the surface of the adsorbent. is there. The second mode is when a highly polar molecule adheres to the metal surface and forms a hydrogen bond with a hydroxyl group on the metal surface.
[0011] 第 3は、化学反応によって吸着体上に固定される態様である。 S02、 H2S、 HC1等 のガスが金属表面に吸着されると、その一部が金属と反応 (金属が腐食)し、半永久 的に固定される。また、シリコーン分子は、吸着表面上で重合反応し不揮発性になる 。このような吸着の態様が第 3の態様の例として挙げられる。  [0011] The third is an embodiment in which the adsorbent is fixed by a chemical reaction. When gases such as S02, H2S, and HC1 are adsorbed on the metal surface, some of them react with the metal (the metal corrodes) and are fixed semi-permanently. In addition, the silicone molecule becomes non-volatile by polymerization reaction on the adsorption surface. Such an aspect of adsorption is an example of the third aspect.
[0012] 大気中には、上記第 2及び第 3の態様で不可逆的に吸着体に吸着される分子が存 在する。また、吸着体と被吸着分子との組み合わせによって不可逆的な吸着の度合 は異なるが、多かれ少なかれ上記第 2及び第 3の態様の吸着が生じる。このため、吸 着型センサを長期間使用すると、第 2及び第 3の態様の吸着が生じることにより、共振 周波数がドリフトする。また、被測定物質の吸着がある程度進むと、それ以上の吸着 が生じに《なる。これらの影響を回避するために、所定の頻度で吸着型センサを新 LV、ものと取り替える必要がある。 [0013] 下記の特許文献 6に開示された発明では、吸着型センサの近傍に光触媒が配置さ れる。この光触媒に光を照射することにより発生したラジカル基やオゾン等により、吸 着型センサに吸着されている被吸着物質を分解し、除去する。被吸着物質を除去す ることにより、吸着型センサの再利用が可能になる。ところが、酸化力の強い酸素ラジ カルの寿命は極めて短い。このため、多くの酸素ラジカルは、吸着型センサの表面に 到達する前に消滅してしまう。オゾンの寿命は、酸素ラジカルに比べて長いが、その 分解能力は酸素ラジカルに比べて極めて小さい。このため、被吸着物質を分解する 能力が小さぐ実用的ではない。 [0012] In the atmosphere, there are molecules that are irreversibly adsorbed to the adsorbent in the second and third modes. Further, although the degree of irreversible adsorption differs depending on the combination of the adsorbent and the molecule to be adsorbed, the adsorption of the second and third aspects occurs to a greater or lesser extent. For this reason, when the adsorption type sensor is used for a long period of time, the resonance frequency drifts due to the adsorption of the second and third modes. In addition, if adsorption of the substance to be measured proceeds to some extent, further adsorption occurs. In order to avoid these effects, it is necessary to replace the adsorption sensor with a new LV at a specified frequency. [0013] In the invention disclosed in Patent Document 6 below, a photocatalyst is disposed in the vicinity of the adsorption sensor. The adsorbed substance adsorbed on the adsorption sensor is decomposed and removed by radical groups or ozone generated by irradiating the photocatalyst with light. By removing the substance to be adsorbed, the adsorption sensor can be reused. However, the lifetime of oxygen radicals with strong oxidizing power is extremely short. For this reason, many oxygen radicals disappear before reaching the surface of the adsorption sensor. The lifetime of ozone is longer than that of oxygen radicals, but its decomposing ability is extremely small compared to oxygen radicals. For this reason, the ability to decompose an adsorbed substance is small and not practical.
[0014] 特許文献 1 :特開平 10— 90152号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-90152
特許文献 2:特開 2000 - 304672号公報  Patent Document 2: JP 2000-304672 A
特許文献 3:特開 2004 - 226177号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-226177
特許文献 4:特開 2002-333394号公報  Patent Document 4: JP 2002-333394 A
特許文献 5:特開 2004— 61391号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-61391
特許文献 6 :特開 2001- 343315号公報  Patent Document 6: JP 2001-343315 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] 本発明の目的は、湿度や、不可逆的な吸着による共振周波数のドリフトの影響を受 けにくい吸着型センサを提供することである。本発明の他の目的は、この吸着型セン サを用いたガス濃度測定装置及び測定方法を提供することである。 An object of the present invention is to provide an adsorption-type sensor that is not easily affected by humidity or a resonance frequency drift due to irreversible adsorption. Another object of the present invention is to provide a gas concentration measuring apparatus and measuring method using this adsorption type sensor.
課題を解決するための手段  Means for solving the problem
[0016] 本発明の一観点によると交流電圧の印加によって振動する振動体と、前記振動体 の表面に形成され、前記振動体に電圧を印加する一対の電極と、被測定物質の気 体分子が触れると、該被測定物質を吸着し、かつ光触媒機能を持つ吸着体とを有す る吸着型センサが提供される。  According to one aspect of the present invention, a vibrating body that vibrates by application of an alternating voltage, a pair of electrodes that are formed on the surface of the vibrating body and applies a voltage to the vibrating body, and a gas molecule of a substance to be measured When the is touched, an adsorption-type sensor having an adsorbent that adsorbs the substance to be measured and has a photocatalytic function is provided.
[0017] 本発明の他の観点によると、交流電圧の印加によって振動する振動体と、前記振 動体の表面に形成され、前記振動体に電圧を印加する一対の電極と、被測定物質 の気体分子が触れると、該被測定物質を吸着し、かつ光触媒機能を持つ吸着体と、 前記振動体及び前記一対の電極とともに共振回路を構成する発振器と、前記共振 回路の共振周波数を測定する周波数カウンタと、前記吸着体に、該吸着体が触媒機 能を発揮する波長の光を照射する光照射手段とを有するガス濃度測定装置が提供 される。 According to another aspect of the present invention, a vibrating body that vibrates by application of an alternating voltage, a pair of electrodes that are formed on a surface of the vibrating body and applies a voltage to the vibrating body, and a gas to be measured When the molecule touches, an adsorbent that adsorbs the substance to be measured and has a photocatalytic function, an oscillator that forms a resonance circuit together with the vibrator and the pair of electrodes, and the resonance There is provided a gas concentration measuring device having a frequency counter for measuring a resonance frequency of a circuit, and light irradiation means for irradiating the adsorbent with light having a wavelength at which the adsorbent exhibits a catalytic function.
[0018] 本発明のさらに他の観点によると、 (a)光触媒機能を持つ吸着体に吸着された被吸 着体の量に依存して共振周波数が変化する吸着型センサを、ガス濃度を測定すベ き空間内に配置する工程と、(b)前記吸着型センサの共振周波数が定常状態になつ た後、前記吸着体に光を照射する工程と、(c)前記吸着体への光照射による前記吸 着型センサの共振周波数の変化に基づいて、該吸着型センサの配置された空間内 のガス濃度を算出する工程とを有するガス濃度測定方法が提供される。  [0018] According to still another aspect of the present invention, (a) the gas concentration is measured using an adsorption sensor whose resonance frequency changes depending on the amount of the adsorbent adsorbed on the adsorbent having a photocatalytic function. (B) irradiating the adsorbent with light after the resonance frequency of the adsorption sensor reaches a steady state; and (c) irradiating the adsorbent with light. And a step of calculating the gas concentration in the space where the adsorption sensor is arranged based on the change in the resonance frequency of the adsorption sensor.
発明の効果  The invention's effect
[0019] 吸着体の持つ光触媒機能により、吸着体に吸着されている被吸着物質を分解し、 吸着体力 脱離させることができる。被吸着体が脱離する時の共振周波数の変化に 基づいてガス濃度を算出することにより、湿度による共振周波数のドリフトや、蓄積型 の被吸着物による共振周波数のドリフトの影響を回避または軽減することができる。 図面の簡単な説明  [0019] Due to the photocatalytic function of the adsorbent, the adsorbed substance adsorbed on the adsorbent can be decomposed and the adsorbent force desorbed. By calculating the gas concentration based on the change in the resonance frequency when the adsorbent is desorbed, the influence of the resonance frequency drift due to humidity and the resonance frequency drift due to the accumulated adsorbent is avoided or reduced. be able to. Brief Description of Drawings
[0020] [図 1]図 1は、実施例による吸着型センサの正面図である。  FIG. 1 is a front view of an adsorption type sensor according to an embodiment.
[図 2]図 2は、実施例による吸着型センサの断面図である。  FIG. 2 is a cross-sectional view of the adsorption sensor according to the example.
[図 3]図 3は、実施例によるガス濃度測定装置の概略図である。  FIG. 3 is a schematic view of a gas concentration measuring apparatus according to an embodiment.
[図 4]図 4は、評価実験に用いた実験用チャンバとガス導入系の概略図である。  FIG. 4 is a schematic diagram of an experimental chamber and a gas introduction system used in an evaluation experiment.
[図 5]図 5Aは、実験用チャンバ内に導入する模擬大気の相対湿度の時間変化を示 すグラフであり、図 5Bは、実験用チャンバ内に配置された吸着型センサの共振周波 数の時間変化を示すグラフであり、図 5Cは、時刻 tl〜t4の時に紫外線照射を行つ た場合の共振周波数の時間変化を示すグラフであり、図 5Dは、紫外線照射時の共 振周波数の時間変化を拡大した波形を示す線図である。  [FIG. 5] FIG. 5A is a graph showing the change over time of the relative humidity of the simulated atmosphere introduced into the experimental chamber, and FIG. 5B is a graph showing the resonance frequency of the adsorption sensor arranged in the experimental chamber. FIG. 5C is a graph showing the time change of the resonance frequency when ultraviolet irradiation is performed from time tl to t4, and FIG. 5D is the time of the resonance frequency at the time of ultraviolet irradiation. It is a diagram which shows the waveform which expanded the change.
[図 6]図 6Aは、共振周波数の上昇幅 Δ ίΐとァセトアルデヒドの濃度との関係の一例を 示すグラフであり、図 6Βは、共振周波数の変化の傾きと測定対象ガス濃度との関係 の一例を示すグラフである。  [Fig. 6] Fig. 6A is a graph showing an example of the relationship between the resonance frequency increase Δ ίΐ and the concentration of acetonitrile, and Fig. 6Β shows the relationship between the change in the resonance frequency and the concentration of the gas to be measured. It is a graph which shows an example.
[図 7]図 7Αは、吸着型センサをクリーンルーム内に放置した場合の、共振周波数の 変位量と経過日数との関係を示すグラフであり、図 7Bは、クリーンルーム内に 1週間 放置し、紫外線照射によって共振周波数を回復させた吸着型センサを実験用チャン バ内に配置して評価実験を行ったときの共振周波数の時間変化を示すグラフである 発明を実施するための最良の形態 [Figure 7] Figure 7 shows the resonance frequency when the adsorption sensor is left in a clean room. Fig. 7B is a graph showing the relationship between the amount of displacement and the number of days elapsed. Fig. 7B shows an evaluation experiment in which an adsorption sensor that has been allowed to stand in a clean room for one week and whose resonance frequency has been recovered by ultraviolet irradiation is placed in an experimental chamber. It is a graph which shows the time change of the resonant frequency when performing this. BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 図 1に、実施例による吸着型センサの正面図を示し、図 2に、図 1の一点鎖線 A2— A2における断面図を示す。圧電材料からなる円板状の振動体 1の両面に、それぞ れ電極 2A及び 2Bが形成されている。振動体 1として、例えば ATカットされた水晶を 用いる。電極 2A及び 2Bは、例えば金で形成され、その各々の厚さは例えば 0. 2 μ mである。電極 2A及び 2Bは、例えばスパッタリングにより成膜することができる。  FIG. 1 is a front view of the adsorption sensor according to the embodiment, and FIG. 2 is a cross-sectional view taken along one-dot chain line A2-A2 in FIG. Electrodes 2A and 2B are formed on both surfaces of a disk-shaped vibrating body 1 made of a piezoelectric material, respectively. As the vibrator 1, for example, an AT-cut crystal is used. The electrodes 2A and 2B are made of, for example, gold, and each has a thickness of, for example, 0.2 μm. The electrodes 2A and 2B can be formed by sputtering, for example.
[0022] 吸着体 3A及び 3B力 それぞれ電極 2A及び 2Bを覆うように形成され、振動体 1に 固定されている。吸着体 3A及び 3Bは、例えばチタンアパタイトで形成され、その各 々の厚さは 0. 2 mである。吸着体 3A及び 3Bは、例えばチタンアパタイト粉末を焼 結したターゲットを用いたスパッタリングにより成膜することができる。チタンアパタイト は、カルシウムヒドロキシアパタイト(CalO (P04) 6 (OH) 2)のカルシウム原子の 1つ がチタン原子に置き換わったものである。チタンアパタイトからなる吸着体 3A及び 3B は、揮発性有機化合物等の被吸着物質を吸着する機能と、光触媒機能とを併せ持 つ。  Adsorbent 3A and 3B forces are formed so as to cover electrodes 2A and 2B, respectively, and are fixed to vibrating body 1. The adsorbents 3A and 3B are made of, for example, titanium apatite, and each has a thickness of 0.2 m. The adsorbents 3A and 3B can be formed, for example, by sputtering using a target obtained by sintering titanium apatite powder. Titanium apatite is one in which one of the calcium atoms of calcium hydroxyapatite (CalO (P04) 6 (OH) 2) is replaced by a titanium atom. The adsorbents 3A and 3B made of titanium apatite have both a function of adsorbing an adsorbed substance such as a volatile organic compound and a photocatalytic function.
[0023] 吸着体 3A及び 3Bの外周は、それぞれ電極 2A及び 2Bの外周と、振動体 1の外周 との間に位置する。これにより、電極 2A及び 2Bは、それぞれ吸着体 3 A及び 3Bによ り完全に被覆される。リード取出部 2C力 電極 2Aの外周カゝら外側に向カゝつて、吸着 体 3Aの外周よりも外側まで延びている。リード取出部 2Cは、電極 2Aと同時に成膜さ れる。リード取出部 2Cの先端に、リード線 4Aが接続されている。他方の電極 2Bから も、同様のリード取出部が延び、その先端にもう一方のリード線 4Bが接続されている  [0023] The outer peripheries of the adsorbers 3A and 3B are located between the outer peripheries of the electrodes 2A and 2B and the outer perimeter of the vibrator 1, respectively. Thus, the electrodes 2A and 2B are completely covered with the adsorbents 3A and 3B, respectively. Lead extraction part 2C force The outer side of the electrode 2A extends outward from the outer periphery of the adsorber 3A. The lead extraction part 2C is formed simultaneously with the electrode 2A. Lead wire 4A is connected to the tip of lead outlet 2C. A similar lead extraction portion extends from the other electrode 2B, and the other lead wire 4B is connected to the tip thereof.
[0024] 電極 2A及び 2Bに交流電圧を印加すると、振動体 1の圧電現象により振動体 1が振 動する。印加する交流電圧の周波数が、振動体 1の固有振動数に一致すると、共振 現象が生ずる。例えば、この共振周波数が約 25MHzになるように、振動体 1の厚さ が設定されている。 When an AC voltage is applied to the electrodes 2 A and 2 B, the vibrating body 1 vibrates due to the piezoelectric phenomenon of the vibrating body 1. When the frequency of the applied AC voltage matches the natural frequency of vibrating body 1, a resonance phenomenon occurs. For example, the thickness of the vibrating body 1 is set so that the resonance frequency is about 25 MHz. Is set.
[0025] この吸着型センサを、測定対象のガス中に配置すると、そのガスに含まれる揮発性 有機化合物等の被吸着物質が吸着体 3A及び 3Bに吸着される。これにより、共振周 波数が低下する。  When this adsorption type sensor is arranged in a gas to be measured, an adsorbed substance such as a volatile organic compound contained in the gas is adsorbed on the adsorbents 3A and 3B. This reduces the resonant frequency.
[0026] 図 3に、実施例によるガス濃度測定装置の概略図を示す。図 1及び図 2に示した吸 着型センサ 10力 センサホルダ 11内に収納されている。センサホルダ 11は、筒状部 材 l ibと、その一端を塞ぐベース 11aにより構成される。筒状部材 l ibには多数の貫 通孔が形成されており、筒状部材 l ibの内側と外側との間でガスが自由に流通する 。吸着型センサ 10は、その 2本のリード線 4A及び 4Bをベース 11aに固定することに より、センサホルダ 11内に支持されている。  FIG. 3 shows a schematic diagram of a gas concentration measuring apparatus according to the embodiment. The adsorption type sensor 10 shown in FIGS. 1 and 2 is housed in the sensor holder 11. The sensor holder 11 includes a cylindrical member l ib and a base 11a that closes one end thereof. A number of through holes are formed in the cylindrical member l ib, and gas freely flows between the inside and the outside of the cylindrical member l ib. The adsorption sensor 10 is supported in the sensor holder 11 by fixing the two lead wires 4A and 4B to the base 11a.
[0027] 発光ダイオード 15、レンズ 16、光ファイバ 17A及び 17Bにより、光照射装置 12が 構成される。発光ダイオード 15は、例えばピーク波長 380nmの紫外領域の光を出 射する。その出力は、例えば 85mWである。発光ダイオード 15から出射された光力 レンズ 16で収束され、光ファイバ 17A及び 17Bに、その入射端力も入射する。光ファ ィバ 17A及び 17Bは、例えば石英ファイバで構成される。  [0027] The light irradiation device 12 is configured by the light emitting diode 15, the lens 16, and the optical fibers 17A and 17B. The light emitting diode 15 emits light in the ultraviolet region having a peak wavelength of 380 nm, for example. The output is 85 mW, for example. The light force emitted from the light emitting diode 15 is converged by the lens 16, and the incident end force is also incident on the optical fibers 17A and 17B. The optical fibers 17A and 17B are made of, for example, quartz fiber.
[0028] 光ファイバ 17A及び 17Bの出射端は、それぞれ、センサホルダ 11内に収容された 吸着型センサ 10の吸着体 3A及び 3Bに対向するように支持されている。光ファイバ 1 7A及び 17Bの出射端力も出射した紫外線が、それぞれ吸着体 3A及び 3Bに照射さ れる。吸着体 3A及び 3Bに紫外線が照射されると、その光触媒機能により、吸着体 3 A及び 3Bに吸着されて ヽる被吸着物質が分解され、吸着体 3A及び 3Bから脱離さ れる。発光ダイオード 15の代わりに、吸着体 3A及び 3Bが光触媒機能を発揮する波 長の光を出射する光源を採用してもよい。  The emission ends of the optical fibers 17A and 17B are supported so as to face the adsorbing bodies 3A and 3B of the adsorption type sensor 10 accommodated in the sensor holder 11, respectively. The ultraviolet rays that are also emitted from the output end forces of the optical fibers 17A and 17B are irradiated to the adsorbents 3A and 3B, respectively. When the adsorbents 3A and 3B are irradiated with ultraviolet rays, the adsorbed substances adsorbed by the adsorbents 3A and 3B are decomposed and desorbed from the adsorbents 3A and 3B by the photocatalytic function. Instead of the light emitting diode 15, a light source that emits light having a wavelength such that the adsorbents 3A and 3B exhibit a photocatalytic function may be employed.
[0029] 発振器 20が、吸着型センサ 10に接続され、吸着型センサ 10と共に共振回路を構 成している。周波数カウンタ 21が、この共振回路の共振周波数を測定し、測定結果 を制御装置 30に送信する。制御装置 30は、例えばパーソナルコンピュータまたは専 用の制御機器で構成される。また、制御装置 30は、発光ダイオード 15の発光のタイ ミングを制御する。  The oscillator 20 is connected to the adsorption sensor 10 and constitutes a resonance circuit together with the adsorption sensor 10. The frequency counter 21 measures the resonance frequency of this resonance circuit and transmits the measurement result to the control device 30. The control device 30 is composed of, for example, a personal computer or a dedicated control device. The control device 30 controls the light emission timing of the light emitting diode 15.
[0030] 上記実施例によるガス濃度測定装置の特性について評価を行った。以下、その評 価結果について説明する。 [0030] The characteristics of the gas concentration measuring apparatus according to the above example were evaluated. The following The value result will be described.
[0031] 図 4に、評価実験に用いた実験用チャンバ及びガス導入系の概略図を示す。液ィ匕 窒素から生成された窒素ガス、及び液ィ匕酸素カゝら生成された酸素ガスが、それぞれ バルブ VI及び V2を通って流量を調節され、分岐点 45に導入される。窒素ガスと酸 素ガスとの流量比を 4 : 1に調節することにより、模擬大気を生成することができる。  FIG. 4 shows a schematic diagram of the experimental chamber and gas introduction system used in the evaluation experiment. Nitrogen gas generated from liquid nitrogen and oxygen gas generated from liquid oxygen oxygen are introduced into branch point 45 through valves VI and V2, respectively, with the flow rate adjusted. By adjusting the flow ratio of nitrogen gas and oxygen gas to 4: 1, a simulated atmosphere can be generated.
[0032] 分岐点 45から第 1系統 51、第 2系統 52、及び第 3系統 53の 3本のガス流路に分岐 する。第 1〜第 3系統 51〜53のガス流路は、合流点 46で合流した後、実験用チャン バ 40に接続される。第 1系統 51に、揮発性有機化合物の液体が満たされたバブリン グ槽 41及びバルブ V3が挿入されている。第 1系統 51を流れた模擬大気は、揮発性 有機化合物を含有し、実験用チャンバ 40内に導入される。本評価実験においては、 揮発性有機化合物としてァセトアルデヒドを用いた。  [0032] From the branch point 45, the gas flows into three gas flow paths of the first system 51, the second system 52, and the third system 53. The gas flow paths of the first to third systems 51 to 53 are connected to the experimental chamber 40 after merging at the merging point 46. In the first system 51, a bubbling tank 41 filled with a liquid of a volatile organic compound and a valve V3 are inserted. The simulated atmosphere flowing through the first system 51 contains volatile organic compounds and is introduced into the experimental chamber 40. In this evaluation experiment, acetaldehyde was used as a volatile organic compound.
[0033] 第 2系統 52に、純水が満たされたパブリング槽 42、及びバルブ V4が挿入されてい る。第 3系統を流れた模擬大気は、パブリング槽 42で相対湿度 90%RHに加湿され る。  [0033] In the second system 52, a publishing tank 42 filled with pure water and a valve V4 are inserted. The simulated atmosphere flowing through the third system is humidified in the publishing tank 42 to a relative humidity of 90% RH.
[0034] 第 3系統 53に、バルブ V5が挿入されている。第 3系統 53を流れた模擬大気は、そ のままバルブ V5を経て実験用チャンバ 40内に導入される。バルブ V3〜V5によって 、第 1〜第 3系統 51〜53を流れるガスの流量を調節することにより、実験用チャンバ 40内に導入される模擬大気の湿度、及び揮発性有機化合物の濃度を調節すること ができる。なお、模擬大気の温度は 25°Cとした。  [0034] A valve V5 is inserted into the third system 53. The simulated atmosphere flowing through the third system 53 is introduced into the experimental chamber 40 through the valve V5 as it is. The humidity of the simulated atmosphere introduced into the experimental chamber 40 and the concentration of the volatile organic compound are adjusted by adjusting the flow rate of the gas flowing through the first to third systems 51 to 53 by the valves V3 to V5. be able to. The temperature of the simulated atmosphere was 25 ° C.
[0035] 実験用チャンバ 40内に、図 3に示したセンサホルダ 11が挿入される。センサホルダ 11内には、吸着型センサ 10が収納されている。実験用チャンバ 40内に導入された 模擬大気は、センサホルダ 11を挿入するための挿入口を通って外部に流出する。  The sensor holder 11 shown in FIG. 3 is inserted into the experimental chamber 40. In the sensor holder 11, the adsorption type sensor 10 is accommodated. The simulated atmosphere introduced into the experimental chamber 40 flows out through the insertion port for inserting the sensor holder 11.
[0036] 次に、評価実験の手順について説明する。実験用チャンバ 40内に、新品の吸着型 センサ 10を挿入した。  Next, the procedure of the evaluation experiment will be described. A new adsorption sensor 10 was inserted into the experimental chamber 40.
[0037] 図 5Aに示すように、相対湿度 80%、ァセトアルデヒド濃度 lppmの模擬大気を実 験用チャンバ 40内に導入した。 1時間経過した時点で、擬似大気の相対湿度を 20 %にした。ァセトアルデヒドの濃度は lppmのままである。  As shown in FIG. 5A, a simulated atmosphere having a relative humidity of 80% and a cetaldehyde concentration of 1 ppm was introduced into the experimental chamber 40. After 1 hour, the relative humidity of the simulated atmosphere was 20%. The concentration of cetaldehyde remains at lppm.
[0038] 図 5Bに、吸着型センサ 10を含む共振回路の共振周波数 (以下、単に「共振周波 数」と呼ぶ。)の変動を示す。測定開始時点の共振周波数 foは、その直前の湿度に 依存する。相対湿度 80%、ァセトアルデヒド濃度 lppmの模擬大気を導入すると、吸 着型センサ 10の吸着体 3A及び 3Bに水分及びァセトアルデヒドが吸着するため、共 振周波数が低下する。ある時間経過すると定常状態になり、共振周波数は一定にな る。 1時間経過後に相対湿度を 20%に低下させると、吸着体 3A及び 3Bに吸着され ていた水分の一部が脱離するため、共振周波数が上昇する。ある時間経過すると、 共振周波数は一定になる。 FIG. 5B shows the resonance frequency of the resonance circuit including the adsorption sensor 10 (hereinafter simply referred to as “resonance frequency”). Call it "number". ) Fluctuations. The resonance frequency fo at the start of measurement depends on the humidity just before that. When a simulated atmosphere with a relative humidity of 80% and a cetaldehyde concentration of 1 ppm is introduced, the resonance frequency decreases because moisture and acetoaldehyde are adsorbed on the adsorbents 3A and 3B of the adsorption sensor 10. After a certain time, the steady state is reached and the resonance frequency becomes constant. When the relative humidity is lowered to 20% after 1 hour has elapsed, a part of the water adsorbed on the adsorbents 3A and 3B is desorbed, and the resonance frequency increases. After a certain time, the resonance frequency becomes constant.
[0039] このように、湿度によって共振周波数が大きく変動するため、ァセトアルデヒドの濃 度を計測することができない。  As described above, since the resonance frequency greatly varies depending on the humidity, it is impossible to measure the concentration of acetonitrile.
[0040] 図 5Cに、測定開始から 20分経過時(時刻 tl)、 40分経過時(時刻 t2)、 80分経過 時(時刻 t3)、及び 100分経過時(時刻 t4)に、吸着体 3A及び 3Bに 3分間の紫外線 の照射を行った場合の共振周波数の変化を示す。図 5Dに、紫外線照射時の共振 周波数の波形を拡大した図を示す。  [0040] Fig. 5C shows the adsorbent when 20 minutes have elapsed (time tl), 40 minutes have elapsed (time t2), 80 minutes have elapsed (time t3), and 100 minutes have elapsed (time t4). This shows the change in resonance frequency when 3A and 3B are irradiated with ultraviolet rays for 3 minutes. Figure 5D shows an enlarged view of the resonance frequency waveform during UV irradiation.
[0041] 紫外線を照射すると、共振周波数が一時的に上昇していることがわかる。紫外線の 照射を停止させると、共振周波数は、約 10分で紫外線照射直前の値に戻る。  [0041] It can be seen that when the ultraviolet ray is irradiated, the resonance frequency temporarily rises. When UV irradiation is stopped, the resonance frequency returns to the value just before UV irradiation in about 10 minutes.
[0042] 吸着体 3A及び 3Bに吸着されている水分は、元々酸ィ匕物であるため、光触媒によ つて分解されない。吸着されているァセトアルデヒドは、光触媒によって、おそらく水と 二酸化炭素に分解され、吸着体 3A及び 3Bから脱離する。このため、共振周波数の 上昇は、ァセトアルデヒドが分解されて脱離したことに起因すると考えられる。  [0042] The water adsorbed on the adsorbents 3A and 3B is originally an acid oxide and therefore is not decomposed by the photocatalyst. The adsorbed acetaldehyde is probably decomposed into water and carbon dioxide by the photocatalyst and desorbed from the adsorbents 3A and 3B. For this reason, the increase in resonance frequency is thought to be due to the decomposition and elimination of acetoaldehyde.
[0043] 共振周波数の上昇幅 Δ ίΐは、模擬大気の相対湿度が 80%の時も、 20%のときも ほぼ同じであった。この上昇幅 Δ ίΐは、吸着体 3Α及び 3Βに吸着されているァセトァ ルデヒドの量、すなわちァセトアルデヒドの濃度に依存する。  [0043] The increase in resonance frequency Δ ίΐ was almost the same when the relative humidity of the simulated atmosphere was 80% and 20%. This increase width Δ ίΐ depends on the amount of acetate aldehyde adsorbed on the adsorbents 3 and 3, that is, the concentration of acetate aldehyde.
[0044] 図 6Αに、共振周波数の上昇幅 Δ ίΐと、ァセトアルデヒドの濃度との関係の一例を 示す。横軸はァセトアルデヒドの濃度を表し、縦軸は共振周波数の上昇幅 Δ Πを表 す。ァセトアルデヒドの濃度が上昇すると、紫外線照射時に吸着体 3Α及び 3Βから脱 離する量も多くなるため、共振周波数の上昇幅 Δ ίΐが大きくなる。ァセトアルデヒドの 濃度が既知のガスについて共振周波数の上昇幅 Δ ίΐを測定することにより、図 6Αに 示したグラフを作成することができる。共振周波数の上昇幅 Δ ίΐと、ァセトアルデヒド の濃度との関係は、図 3に示した制御装置 30に記憶される。 FIG. 6 (b) shows an example of the relationship between the resonance frequency increase Δ Δ and the concentration of acetoaldehyde. The horizontal axis represents the concentration of acetonitrile, and the vertical axis represents the increase in resonance frequency Δ 共振. When the concentration of cetaldehyde increases, the amount of separation from the adsorbents 3Α and 3Β upon irradiation with ultraviolet light increases, so that the resonance frequency increase Δ ίΐ increases. The graph shown in Fig. 6 (b) can be created by measuring the resonance frequency rise Δ for a gas with a known concentration of cetaldehyde. Resonance frequency rise Δ ίΐ and acetoaldehyde Is stored in the control device 30 shown in FIG.
[0045] 次に、実施例によるァセトアルデヒドの濃度の測定方法について説明する。図 6A に示した上昇幅 Δίΐとァセトアルデヒドの濃度との関係は既知であり、制御装置 30に 記憶されているとする。まず、図 3に示した吸着型センサ 10が収容されているセンサ ホルダ 11を、ガス濃度を測定すべき空間内に配置する。共振周波数が定常状態に なった後、吸着型センサ 10の吸着体 3 Α及び 3Βに紫外線を照射する。  Next, a method for measuring the concentration of acetate aldehyde according to the example will be described. It is assumed that the relationship between the increase width Δίΐ shown in FIG. 6A and the concentration of acetoaldehyde is known and stored in the control device 30. First, the sensor holder 11 in which the adsorption type sensor 10 shown in FIG. 3 is accommodated is placed in the space where the gas concentration is to be measured. After the resonance frequency reaches a steady state, the adsorption bodies 3 and 3 of the adsorption sensor 10 are irradiated with ultraviolet rays.
[0046] 紫外線の照射中にも、共振周波数を計測する。共振周波数がほぼ一定になったこ とを検出すると、紫外線の照射を停止させる。例えば、共振周波数の変化率 (共振周 波数の時間微分値)が、ある基準値以下になったときに、共振周波数が一定になつ たと判定することができる。なお、共振周波数がほぼ一定になるまでの時間がわかつ て ヽる場合には、紫外線の照射時間を固定値にしてもょ ヽ。  [0046] The resonance frequency is measured even during irradiation with ultraviolet rays. When it is detected that the resonance frequency is almost constant, the ultraviolet irradiation is stopped. For example, it can be determined that the resonance frequency has become constant when the rate of change of the resonance frequency (the time derivative of the resonance frequency) is below a certain reference value. If you know the time until the resonance frequency becomes almost constant, set the UV irradiation time to a fixed value.
[0047] 紫外線照射直前の共振周波数と、紫外線照射終了時点の共振周波数との差 Δίΐ を計測する。計測された差 Δίΐと、図 6Αに示した関係に基づいて、ァセトアルデヒド の濃度を求めることができる。  [0047] The difference Δί between the resonance frequency immediately before the ultraviolet irradiation and the resonance frequency at the end of the ultraviolet irradiation is measured. Based on the measured difference Δίΐ and the relationship shown in Fig. 6Α, the concentration of acetonitrile can be obtained.
[0048] 上記実施例では、測定対象のガスがァセトアルデヒドである場合を説明したが、吸 着体に吸着され、光触媒によって分解されるその他のガスの濃度を測定することも可 能である。  [0048] In the above embodiment, the case where the gas to be measured is acetaldehyde has been described, but it is also possible to measure the concentration of other gases that are adsorbed on the adsorbent and decomposed by the photocatalyst. .
[0049] 被吸着物質がァセトアルデヒドの場合には、被吸着物質が分解されることによって 生成された物質が、ほぼ全て吸着体 3Α及び 3Β力ゝら脱離する。紫外線の照射を停止 させると、脱離したァセトアルデヒドとほぼ同量のァセトアルデヒドが吸着体 3Α及び 3 Βに再吸着される。このため、紫外線照射時の共振周波数の上昇幅 Δίΐと、紫外線 照射停止後の共振周波数の低下幅 Δ f 2とは等しい。従って、共振周波数の低下幅 Δ f 2を測定することにより、ガス濃度を求めることも可能である。  [0049] When the substance to be adsorbed is acetaldehyde, the substance produced by the decomposition of the substance to be adsorbed is almost entirely desorbed from the adsorbents 3Α and 3Β. When UV irradiation is stopped, almost the same amount of acetaldehyde as the desorbed acetaldehyde is re-adsorbed on the adsorbents 3Α and 3 吸着. For this reason, the increase width Δί of the resonance frequency at the time of ultraviolet irradiation is equal to the decrease width Δ f 2 of the resonance frequency after the ultraviolet irradiation is stopped. Therefore, the gas concentration can also be obtained by measuring the decrease width Δ f 2 of the resonance frequency.
[0050] 被吸着物質が光触媒の作用によって分解された後に、 S02等の不揮発性の物質 が生成される場合には、紫外線照射後にも、この不揮発性の物質が吸着体 3A及び 3Bの表面に残留する。紫外線照射の前後で吸着条件が異なるため、共振周波数の 上昇幅 Δίΐと、低下幅 Δ f 2とは等しくならない。この場合には、図 6Aのグラフに代え て、共振周波数の低下幅 Δ f 2と、被吸着物質の濃度との関係を、予め求めておく必 要がある。 [0050] When a non-volatile substance such as S02 is generated after the substance to be adsorbed is decomposed by the action of the photocatalyst, the non-volatile substance remains on the surfaces of the adsorbents 3A and 3B even after ultraviolet irradiation. Remains. Since the adsorption conditions are different before and after UV irradiation, the increase width Δί Δ of the resonance frequency is not equal to the decrease width Δ f 2. In this case, instead of the graph of FIG. 6A, it is necessary to obtain in advance the relationship between the resonance frequency drop Δf 2 and the concentration of the adsorbed substance. There is a point.
[0051] また、紫外線照射停止後の共振周波数の変化の傾きに基づいて、測定対象ガスの 濃度を求めることも可能である。この場合には、図 6Aのグラフに代えて、図 6Bに示す ように、共振周波数の変化の傾きと、測定対象ガスの濃度との関係を予め測定してお けばよい。共振周波数の変化の傾きを測定する方法では、共振周波数が定常状態 に達するまで測定を待つ必要がない。このため、より迅速に測定対象ガスの濃度を 算出することができる。  [0051] It is also possible to obtain the concentration of the gas to be measured based on the slope of the change in the resonance frequency after the ultraviolet irradiation is stopped. In this case, instead of the graph of FIG. 6A, as shown in FIG. 6B, the relationship between the gradient of the change in the resonance frequency and the concentration of the measurement target gas may be measured in advance. In the method of measuring the slope of the change in resonance frequency, there is no need to wait for the measurement until the resonance frequency reaches a steady state. For this reason, the concentration of the gas to be measured can be calculated more quickly.
[0052] 共振周波数の測定にあたっては、極短 、周期のノイズ成分を除去するために、一 般的には、数秒から数分程度の移動平均が計測される。上記実施例において、共振 周波数の変化の傾きを求める場合に、移動平均の幅を長くしすぎると、変化を検出 することができなくなる。共振周波数の急激な変化を検出するために、移動平均の時 間幅を数秒程度にすることが好まし 、。  [0052] In measuring the resonance frequency, a moving average of about several seconds to several minutes is generally measured in order to remove extremely short and periodic noise components. In the above embodiment, when the inclination of the change in the resonance frequency is obtained, if the moving average is made too long, the change cannot be detected. In order to detect a sudden change in resonance frequency, it is preferable to set the moving average time width to several seconds.
[0053] 次に、図 7A及び図 7Bを参照して、蓄積型の被吸着物による共振周波数のドリフト の影響について説明する。  Next, with reference to FIG. 7A and FIG. 7B, the influence of the resonance frequency drift due to the storage-type adsorbent will be described.
[0054] 図 7Aに、上記実施例による吸着型センサを湿度 50%のクリーンルーム内に 1週間 放置したときの共振周波数の変化を示す。初期の共振周波数は fOは、約 25MHzで ある。 日数が経過するにつれて、共振周波数が低下し、 1週間で約 1200Hz低下し ていることがわかる。これは、クリーンルーム内に存在する微量の汚染物質が吸着型 センサに吸着されたためである。  FIG. 7A shows a change in resonance frequency when the adsorption sensor according to the above example is left in a clean room with a humidity of 50% for one week. The initial resonant frequency fO is about 25 MHz. It can be seen that the resonant frequency decreases as the number of days elapses, and decreases by about 1200 Hz in one week. This is because a small amount of contaminants present in the clean room are adsorbed by the adsorption sensor.
[0055] クリーンルーム内に 1週間放置した吸着型センサの吸着体 3A及び 3Bに紫外線を 2 0分間照射すると、共振周波数が、初期の共振周波数より約 300Hz低い周波数 f0, まで回復した。この共振周波数の低下分 300Hzは、無機ガス由来の不揮発性酸ィ匕 物が吸着体 3A及び 3Bの表面上に残留しているためと考えられる。  [0055] When the adsorbents 3A and 3B of the adsorptive sensor left in a clean room for 1 week were irradiated with ultraviolet light for 20 minutes, the resonance frequency was recovered to a frequency f0 that was approximately 300 Hz lower than the initial resonance frequency. This decrease in resonance frequency of 300 Hz is considered to be because non-volatile oxides derived from inorganic gas remain on the surfaces of the adsorbents 3A and 3B.
[0056] 図 7Bに、共振周波数が fO'まで回復した吸着型センサを用いて、図 5Cに示した評 価実験と同じ実験を行った結果を示す。図 7Bのグラフを図 5Cのグラフと比較すると、 初期の共振周波数が fOから fO'に低下しており、全体的に fO— fO'分だけ下方にシ フトしている。紫外線照射時の共振周波数の上昇幅 Δ ί1、紫外線照射停止後の共 振周波数の低下幅 Δ f 2、及び共振周波数の変化の傾きは、図 5Cの場合と図 7Bの 場合とで、ほぼ同一であった。すなわち、上記実施例で直接測定される共振周波数 の上昇幅 Δί1、共振周波数の低下幅 Δί2、及び共振周波数の変化の傾きは、蓄積 性の被吸着物質による共振周波数のドリフトの影響を受けない。 [0056] FIG. 7B shows the result of the same experiment as the evaluation experiment shown in FIG. 5C, using the adsorption sensor whose resonance frequency is recovered to fO ′. Comparing the graph in Fig. 7B with the graph in Fig. 5C, the initial resonant frequency is reduced from fO to fO ', and it is shifted downward by fO – fO' as a whole. The increase in resonance frequency Δ ί1 during UV irradiation, the decrease in resonance frequency Δ F 2 after UV irradiation is stopped, and the slope of the change in resonance frequency are shown in Fig. 5C and Fig. 7B. The case was almost the same. In other words, the resonance frequency rise ΔΔ1, the resonance frequency fall ΔΔ2, and the gradient of the change in the resonance frequency, which are directly measured in the above-described embodiment, are not affected by the resonance frequency drift due to the storage adsorbed substance.
[0057] 従って、蓄積性の被吸着物質による共振周波数のドリフトの影響を排除し、測定対 象ガスの濃度を測定することが可能である。 [0057] Therefore, it is possible to eliminate the influence of the resonance frequency drift due to the storage substance to be adsorbed and to measure the concentration of the measurement target gas.
[0058] 以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものでは ない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であ ろう。 [0058] Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

Claims

請求の範囲 The scope of the claims
[1] 交流電圧の印加によって振動する振動体と、  [1] a vibrating body that vibrates by application of an alternating voltage;
前記振動体の表面に形成され、前記振動体に電圧を印加する一対の電極と、 被測定物質の気体分子が触れると、該被測定物質を吸着し、かつ光触媒機能を持 つ吸着体と  A pair of electrodes formed on the surface of the vibrating body, for applying a voltage to the vibrating body; and an adsorbing body that adsorbs the measured substance when the gas molecule of the measured substance is touched and has a photocatalytic function;
を有する吸着型センサ。  An adsorption type sensor.
[2] 前記吸着体が、チタンアパタイトを含む請求項 1に記載の吸着型センサ。  [2] The adsorption sensor according to [1], wherein the adsorbent contains titanium apatite.
[3] 前記振動体が、 ATカットされた水晶振動子である請求項 1に記載の吸着型センサ  [3] The adsorption sensor according to [1], wherein the vibrator is an AT-cut quartz crystal unit
[4] 交流電圧の印加によって振動する振動体と、 [4] a vibrating body that vibrates by application of an alternating voltage;
前記振動体の表面に形成され、前記振動体に電圧を印加する一対の電極と、 被測定物質の気体分子が触れると、該被測定物質を吸着し、かつ光触媒機能を持 つ吸着体と、  A pair of electrodes that are formed on the surface of the vibrating body and apply a voltage to the vibrating body; and an adsorbing body that adsorbs the measured substance and has a photocatalytic function when a gas molecule of the measured substance is touched;
前記振動体及び前記一対の電極とともに共振回路を構成する発振器と、 前記共振回路の共振周波数を測定する周波数カウンタと、  An oscillator constituting a resonance circuit together with the vibrating body and the pair of electrodes; a frequency counter for measuring a resonance frequency of the resonance circuit;
前記吸着体に、該吸着体が触媒機能を発揮する波長の光を照射する光照射手段 と  A light irradiation means for irradiating the adsorbent with light having a wavelength at which the adsorbent exhibits a catalytic function;
を有するガス濃度測定装置。  A gas concentration measuring device.
[5] 前記光照射装置を制御して前記吸着体に光を照射させると共に、前記周波数カウ ンタにより測定された共振周波数を読み取る制御装置を有し、該制御装置は、該吸 着体への光照射による該共振周波数の変化に基づいて、前記吸着体の配置された 環境のガス濃度を算出する請求項 4に記載のガス濃度測定装置。  [5] The light irradiation device is controlled to irradiate the adsorbent with light, and has a control device that reads the resonance frequency measured by the frequency counter, and the control device applies to the adsorbent. 5. The gas concentration measuring apparatus according to claim 4, wherein a gas concentration in an environment where the adsorbent is disposed is calculated based on a change in the resonance frequency due to light irradiation.
[6] 前記制御装置は、前記吸着体への光照射終了時点の前記共振周波数と、光照射 直前の前記共振周波数との差、または、前記吸着体への光照射終了時点の前記共 振周波数と、光照射後に該共振周波数が定常状態に達した時点における該共振周 波数との差に基づいて前記ガス濃度を算出する請求項 5に記載のガス濃度測定装 置。  [6] The control device may be configured such that a difference between the resonance frequency at the end of light irradiation on the adsorbent and the resonance frequency immediately before the light irradiation, or the resonance frequency at the end of light irradiation on the adsorbent. 6. The gas concentration measuring device according to claim 5, wherein the gas concentration is calculated based on a difference between the resonance frequency at the time when the resonance frequency reaches a steady state after light irradiation.
[7] 前記制御装置は、前記吸着体への光照射終了直後力 の前記共振周波数の変化 率に基づいて前記ガス濃度を算出する請求項 5に記載のガス濃度測定装置。 [7] The control device may change the resonance frequency of the force immediately after the light irradiation to the adsorbent is completed. 6. The gas concentration measuring apparatus according to claim 5, wherein the gas concentration is calculated based on a rate.
[8] 前記制御装置は、前記吸着体への光照射開始後、前記共振周波数の変化率が基 準値以下になったことを検出すると、該吸着体への光照射を停止させる請求項 4に 記載のガス濃度測定装置。 [8] The control device may stop the light irradiation to the adsorbent when it detects that the rate of change of the resonance frequency is equal to or lower than a reference value after the light irradiation to the adsorbent is started. The gas concentration measuring device described in 1.
[9] (a)光触媒機能を持つ吸着体に吸着された被吸着体の量に依存して共振周波数 が変化する吸着型センサを、ガス濃度を測定すべき空間内に配置する工程と、[9] (a) a step of arranging an adsorption type sensor whose resonance frequency changes depending on the amount of the adsorbent adsorbed on the adsorbent having a photocatalytic function in a space where the gas concentration is to be measured;
(b)前記吸着型センサの共振周波数が定常状態になった後、前記吸着体に光を 照射する工程と、 (b) irradiating the adsorbent with light after the resonance frequency of the adsorption sensor has reached a steady state;
(c)前記吸着体への光照射による前記吸着型センサの共振周波数の変化に基づ いて、該吸着型センサの配置された空間内のガス濃度を算出する工程と を有するガス濃度測定方法。  (c) calculating a gas concentration in a space in which the adsorption type sensor is arranged based on a change in a resonance frequency of the adsorption type sensor due to light irradiation on the adsorbent.
[10] 前記工程 cにおいて、前記吸着体への光照射終了時点の前記共振周波数と、光照 射直前の前記共振周波数との差、または、前記吸着体への光照射終了時点の前記 共振周波数と、光照射後に該共振周波数が定常状態に達した時点における該共振 周波数との差に基づいて前記ガス濃度を算出する請求項 9に記載のガス濃度測定 方法。 [10] In the step c, the difference between the resonance frequency at the time when the light irradiation to the adsorbent ends and the resonance frequency immediately before the light irradiation, or the resonance frequency at the time when the light irradiation to the adsorbent ends 10. The gas concentration measuring method according to claim 9, wherein the gas concentration is calculated based on a difference from the resonance frequency when the resonance frequency reaches a steady state after light irradiation.
[11] 前記工程 cにおいて、前記吸着体への光照射終了直後からの前記共振周波数の 変化率に基づいて前記ガス濃度を算出する請求項 9に記載のガス濃度測定方法。  11. The gas concentration measuring method according to claim 9, wherein, in the step c, the gas concentration is calculated based on a change rate of the resonance frequency immediately after completion of light irradiation to the adsorbent.
[12] 前記工程 が、前記吸着体への光照射開始後、前記共振周波数の変化率が基準 値以下になったことを検出すると、該吸着体への光照射を停止させる工程を含む請 求項 9に記載のガス濃度測定方法。  [12] The request includes a step of stopping the light irradiation to the adsorbent when detecting that the change rate of the resonance frequency has become a reference value or less after the light irradiation to the adsorbent is started. Item 10. The gas concentration measurement method according to Item 9.
PCT/JP2005/013470 2005-07-22 2005-07-22 Adsorption sensor, and instrument and method for measuring gas concentration WO2007010617A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007525484A JP4567735B2 (en) 2005-07-22 2005-07-22 Gas concentration measuring device and measuring method
PCT/JP2005/013470 WO2007010617A1 (en) 2005-07-22 2005-07-22 Adsorption sensor, and instrument and method for measuring gas concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013470 WO2007010617A1 (en) 2005-07-22 2005-07-22 Adsorption sensor, and instrument and method for measuring gas concentration

Publications (1)

Publication Number Publication Date
WO2007010617A1 true WO2007010617A1 (en) 2007-01-25

Family

ID=37668506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013470 WO2007010617A1 (en) 2005-07-22 2005-07-22 Adsorption sensor, and instrument and method for measuring gas concentration

Country Status (2)

Country Link
JP (1) JP4567735B2 (en)
WO (1) WO2007010617A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150747A (en) * 2007-12-20 2009-07-09 Fujitsu Ltd Sensor unit for atmospheric analysis, atmosphere analyzer and method of analyzing atmosphere
JP2010271285A (en) * 2009-05-25 2010-12-02 Shimizu Corp Gas monitoring device and method
JP2011038979A (en) * 2009-08-18 2011-02-24 Fujitsu Ltd Ion sensor, ion analysis device and ion analysis method
JP2011117972A (en) * 2011-02-14 2011-06-16 Seiko Epson Corp Vibrator, vibrator array, and electronic apparatus
JP2013531795A (en) * 2010-06-18 2013-08-08 エンパイア テクノロジー ディベロップメント エルエルシー Sensor containing photocatalyst
WO2022091391A1 (en) * 2020-10-30 2022-05-05 太陽誘電株式会社 Odor measurement device, control device, and odor identification method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165933A (en) * 1992-09-29 1994-06-14 Mitsubishi Electric Corp Nitrogen oxide selectively adsorbing material reaction control method therefor and device for detecting, adsorption-removing and decomposing gas using them
JP2000055853A (en) * 1998-08-05 2000-02-25 Toyota Motor Corp Gas sensor and gas measurement method
JP2005043123A (en) * 2003-07-24 2005-02-17 Seiko Epson Corp Liquid drop weight measuring instrument, and liquid drop delivery device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165933A (en) * 1992-09-29 1994-06-14 Mitsubishi Electric Corp Nitrogen oxide selectively adsorbing material reaction control method therefor and device for detecting, adsorption-removing and decomposing gas using them
JP2000055853A (en) * 1998-08-05 2000-02-25 Toyota Motor Corp Gas sensor and gas measurement method
JP2005043123A (en) * 2003-07-24 2005-02-17 Seiko Epson Corp Liquid drop weight measuring instrument, and liquid drop delivery device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150747A (en) * 2007-12-20 2009-07-09 Fujitsu Ltd Sensor unit for atmospheric analysis, atmosphere analyzer and method of analyzing atmosphere
JP2010271285A (en) * 2009-05-25 2010-12-02 Shimizu Corp Gas monitoring device and method
JP2011038979A (en) * 2009-08-18 2011-02-24 Fujitsu Ltd Ion sensor, ion analysis device and ion analysis method
JP2013531795A (en) * 2010-06-18 2013-08-08 エンパイア テクノロジー ディベロップメント エルエルシー Sensor containing photocatalyst
JP2011117972A (en) * 2011-02-14 2011-06-16 Seiko Epson Corp Vibrator, vibrator array, and electronic apparatus
WO2022091391A1 (en) * 2020-10-30 2022-05-05 太陽誘電株式会社 Odor measurement device, control device, and odor identification method

Also Published As

Publication number Publication date
JP4567735B2 (en) 2010-10-20
JPWO2007010617A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4567735B2 (en) Gas concentration measuring device and measuring method
TW201135225A (en) Gas sensor
WO2020218179A1 (en) Arithmetic device, arithmetic method, and gas detection system
US20120297860A1 (en) Gas detection apparatus and gas detection method
AU2004280879B2 (en) Sensor for determining concentration of fluid sterilant
JPH11504424A (en) Method and apparatus for continuously detecting at least one substance in a gaseous or liquid mixture by a sensor electrode
Meulendyk et al. Hydrogen fluoride gas detection mechanism on quartz using SAW sensors
JP3653113B2 (en) Piezoelectric gas sensor
JP6879091B2 (en) Gas sensor system and gas detection method
WO2008078832A1 (en) Sensor
JP2006098387A (en) Apparatus and method for analysis of siloxane in siloxane-containing gas
JP4973441B2 (en) Atmosphere analyzer and atmosphere analysis method
JP6390119B2 (en) Sensor unit, analyzer, and analysis method
JP2009125606A (en) Adsorbent regenerator used by being incorporated in waste gas treatment apparatus, waste gas treatment apparatus, and adsorbent regeneration method
JP2007012422A (en) Ion generator
US20230266206A1 (en) Odor measurement device, control device, and odor determination method
US10228338B2 (en) Gas sensor
Spassov et al. Piezoelectric sorption sensor for mercury vapors in air using a quartz resonator
WO2010044394A1 (en) Alcohol concentration detecting element, alcohol concentration detector, and alcohol concentration detection method
JP2000055853A (en) Gas sensor and gas measurement method
JP2009222413A (en) Measurement device
JP2001343315A (en) Adsorption type sensor
WO2024024306A1 (en) Detection device
KR20150094399A (en) Sterilizer and method of controlling thereof
WO2024090156A1 (en) Smell identification method and smell identification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007525484

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05766280

Country of ref document: EP

Kind code of ref document: A1