WO2007010608A1 - Breaker - Google Patents

Breaker Download PDF

Info

Publication number
WO2007010608A1
WO2007010608A1 PCT/JP2005/013396 JP2005013396W WO2007010608A1 WO 2007010608 A1 WO2007010608 A1 WO 2007010608A1 JP 2005013396 W JP2005013396 W JP 2005013396W WO 2007010608 A1 WO2007010608 A1 WO 2007010608A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
circuit breaker
drive shaft
connecting portion
breaker according
Prior art date
Application number
PCT/JP2005/013396
Other languages
French (fr)
Japanese (ja)
Inventor
Yo Makita
Toshie Takeuchi
Kazunori Fukuya
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2005/013396 priority Critical patent/WO2007010608A1/en
Priority to DE112005003632.4T priority patent/DE112005003632B4/en
Priority to KR1020087001068A priority patent/KR100967249B1/en
Priority to CN2005800510291A priority patent/CN101223619B/en
Publication of WO2007010608A1 publication Critical patent/WO2007010608A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/66Power reset mechanisms
    • H01H71/68Power reset mechanisms actuated by electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/50Manual reset mechanisms which may be also used for manual release
    • H01H71/52Manual reset mechanisms which may be also used for manual release actuated by lever
    • H01H71/528Manual reset mechanisms which may be also used for manual release actuated by lever comprising a toggle or collapsible link between handle and contact arm, e.g. sear pin mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/42Driving mechanisms, i.e. for transmitting driving force to the contacts using cam or eccentric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/48Driving mechanisms, i.e. for transmitting driving force to the contacts using lost-motion device

Definitions

  • the present invention relates to a circuit breaker having a fixed contact and a movable contact, and having an electromagnetic operation mechanism for inserting or removing the movable contact with respect to the fixed contact.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-89650 ( Figures 1-5, page 2)
  • Patent Document 2 EP1214727B1 (Fig. L to Fig. 2, pages 2 to 5)
  • the low-voltage circuit breaker disclosed in Patent Document 1 uses a large number of latches and links in the operation mechanism, leading to an increase in the size of the device and a large number of parts to compensate for device reliability. Therefore, maintenance at regular intervals was necessary.
  • the circuit breaker disclosed in Patent Document 2 has a long link provided between the operating shaft that performs the insertion or tripping operation of the movable contact and the fixed contact and the drive shaft of the electromagnetic operation mechanism, and is still As a result, improvements are needed to improve the reliability and miniaturization of equipment.
  • the circuit breaker disclosed in Patent Document 2 has a U-shaped circuit to achieve short-term energization performance of the contact part !, but the shape and dimensions of the U-shaped circuit depend on the current capacity. It is necessary to change each.
  • the short-time energization performance mentioned here is one of the performances required when using the circuit breaker as a main circuit breaker.
  • the protection relay device operates when a large current is energized, such as a short-circuit accident, so that the safe circuit-breaking operation can be performed. This is the ability to keep the short-circuit current flowing until the operation is performed.
  • a large current is applied, a large electromagnetic repulsive force is generated between the contacts, and the movable contact Since a point may float, a structure is required that does not cause the floating contact like the U-shaped electric circuit shown in Patent Document 2 to rise.
  • the present invention has been made in order to solve the problems in such a conventional circuit breaker, and is intended to simplify and reduce the size of the operation mechanism and to improve controllability and reliability.
  • the purpose is to obtain a closed circuit breaker.
  • a circuit breaker includes a fixed conductor having a fixed contact, a mover having a movable contact, and being driven to put the movable contact into or out of the fixed contact, and an axis.
  • a shaft that is pivotally provided as a center, and is pivotally connected to the shaft by a first connecting portion at a first predetermined distance in a direction perpendicular to the axis, and is movable.
  • the operating arm connected to the child by the second connecting portion and the shaft connected to the shaft by the third connecting portion provided at a position different from the first connecting portion in the circumferential direction of the shaft.
  • An electromagnetic operating means having a drive shaft driven so as to move on a straight line orthogonal to the core at a second predetermined distance, and energizing the electromagnetic operating means to drive the drive shaft To rotate the shaft through the operating arm. Is obtained so as to drive the movable element Te.
  • the first connecting portion that connects the shaft and the operating arm is a connecting portion that directly connects the shaft and the operating arm, and the shaft is connected to the shaft via another member. It includes both cases where it is a connecting portion that indirectly connects the operation arm.
  • the second connecting portion that connects the operating arm and the mover may be a connecting portion that directly connects the operating arm and the mover, and the other connection member through the other member. Both are included in the case where the operating arm and the movable element are indirectly connected to each other.
  • the third connecting portion that connects the shaft and the drive shaft is a connecting portion that directly connects the shaft and the drive shaft, and the shaft is connected via another member.
  • a connecting portion that indirectly connects the shaft and the drive shaft In the case of a connecting portion that indirectly connects the shaft and the drive shaft.
  • the first predetermined distance is provided in the direction perpendicular to the axis.
  • An operating arm that is pivotally connected to the shaft by the first connecting portion and is connected to the mover by the second connecting portion, and a position in the circumferential direction of the shaft that is different from the first connecting portion.
  • An electromagnetic operating means having a drive shaft connected to the shaft by a third connecting portion provided on the shaft and driven to move on a straight line perpendicular to the axis at a second predetermined distance. Since the electromagnetic operation means is energized to drive the drive shaft, the shaft is rotated to drive the movable element via the operation arm. In addition to being able to reduce the size, the controllability and reliability of the circuit breaker can be improved.
  • FIG. 1 is a configuration diagram showing a circuit breaker according to Embodiment 1 of the present invention
  • FIGS. 2 and 3 are explanatory diagrams for explaining the operation of the circuit breaker according to Embodiment 1.
  • FIG. 1 is a configuration diagram showing a circuit breaker according to Embodiment 1 of the present invention
  • FIGS. 2 and 3 are explanatory diagrams for explaining the operation of the circuit breaker according to Embodiment 1.
  • FIG. 1 is a configuration diagram showing a circuit breaker according to Embodiment 1 of the present invention
  • FIGS. 2 and 3 are explanatory diagrams for explaining the operation of the circuit breaker according to Embodiment 1.
  • FIG. 1 is a configuration diagram showing a circuit breaker according to Embodiment 1 of the present invention
  • FIGS. 2 and 3 are explanatory diagrams for explaining the operation of the circuit breaker according to Embodiment 1.
  • FIG. 1 is a configuration diagram showing a circuit breaker according to Embodiment 1 of the present invention
  • the insulating housing 1 has space portions 101 and 102 partitioned by an insulating wall 103 inside, and includes a pair of fixed conductors 21 and 22 that penetrate the space portion 101 from the outside.
  • the fixed conductors 21 and 22 are connected to a power supply side conductor and a load side conductor (not shown), respectively.
  • the fixed conductor 21 and the fixed conductor 22 are also referred to as a power supply side terminal and a load side terminal, respectively.
  • a fixed contact 211 is fixed to the end of the fixed conductor 21 exposed in the space 101 of the insulating casing 1.
  • the movable element 3 is rotatably supported by the link pin 4, and the movable contact 311 is fixed at a position facing the fixed contact 211.
  • the contact pressure spring 5 urges the movable element 3 to rotate clockwise about the link pin 4 so that contact pressure is applied between the two contacts when the movable contact 311 is inserted into the fixed contact 211.
  • the movable element 3 and the fixed conductor 22 are electrically connected by a flexible conductor 6 that can be sandwiched.
  • a plate-like connecting plate 8 provided in the space 102 of the insulating housing 1 is fixed to a shaft 9 supported so as to be rotatable around an axis 91.
  • the connecting plate 8 includes a long groove-like connecting hole 81 inclined inward from the outer periphery thereof.
  • the operating arm 7 passes through a through-hole 104 provided in the cutting wall 103 of the insulating housing 1, one end of which is rotatably connected to the movable element 3, and the other end is connected to the connecting plate 8 by a connecting pin 71. It is pivotally connected.
  • the connecting portion between the connecting plate 8 and the other end of the operating arm 7 constitutes a first connecting portion, and this first connecting portion has a radius r that is a first predetermined distance from the axis 91 of the shaft 9. It is provided at the position.
  • the distance m in the y-axis direction of the first connecting portion with respect to the shaft center 91 is equal to the radius r.
  • the distance ra in the y-axis direction decreases depending on the rotation angle of the connecting plate 8 and the shaft 9.
  • a connecting portion between one end of the operation arm 7 and the mover 3 constitutes a second connecting portion.
  • An electromagnetic operation mechanism 10 as an electromagnetic operation means is provided in a space 102 of an insulating casing 1, and includes a yoke 11 formed of a magnetic material, and a first coil fixed inside the yoke 11. 12 and the second coil 13, a permanent magnet 14 fixed between the first coil 12 and the second coil 13, and the first coil 12, the second coil 13 and the permanent magnet 14 inside.
  • the movable iron core 15 that can move in the y-axis direction in FIG. 1 and the drive shaft 16 that is fixed to the movable iron core 15 and reciprocates on a straight line in the y-axis direction as the movable iron core 15 moves. Prepare and speak.
  • the electromagnetic operation mechanism 10 needs to maintain a state in which the movable contact 311 is turned on and off, and has a bistable structure.
  • the movable iron core 15 is attracted to the upper part of the yoke 11 in FIG. 1 by the magnetic force of the permanent magnet 15, and when the coil 13 is energized, the action of the magnetic flux generated by the coil 13
  • the movable iron core 15 is driven downward in FIG. 1 and contacts the lower part of the yoke 11. At this time, the coil 13 is deenergized. Due to the magnetic force of the permanent magnet 14, the movable iron core 15 is stabilized while being adsorbed below the yoke 11.
  • the movable iron core 15 is driven upward in FIG. 1 by the magnetic force of the coil 12 and is attracted to the upper portion of the yoke 11 as shown in FIG.
  • the coil 13 is deenergized, but is stabilized while being attracted to the lower side of the yoke 11 by the magnetic force of the permanent magnet 14.
  • the drive shaft 16 is connected to the connection plate 8 by a connection pin 161 that fits into the connection hole 81 of the connection plate 8.
  • the connecting portion by the connecting pin 161 and the connecting hole 81 constitutes a third connecting portion.
  • the drive shaft 16 moves on a straight line in the y-axis direction that is perpendicular to the shaft center 91 via a distance rb. This distance rb corresponds to the second predetermined distance.
  • the connecting plate 8 rotates around the axis 91 together with the shaft 9. However, since the connecting hole 81 is formed so as to be inclined inward from the outer periphery of the connecting plate 8, the connecting plate 8 rotates.
  • FIG. 1 shows a state in which the movable contact 311 is removed from the fixed contact 211.
  • the movable core 15 of FIG. The drive shaft 16 driven downward and fixed to the movable iron core 15 moves downward on the y-axis.
  • the connecting plate 8 connected to the drive shaft 16 is driven through the third connecting portion including the connecting pin 161 and the connecting hole 81 and rotates counterclockwise. Move.
  • the connecting plate 8 rotates counterclockwise, the operating arm 7 connected to the connecting plate 8 by the connecting pin 71 is driven to the right on the X axis, and the mover 3 is moved to the right in FIG. Drive to.
  • FIG. 2 shows an initial state in which the movable contact 311 starts to contact the fixed contact 211 when the movable element 3 is driven rightward in FIG.
  • contact pressure is applied between the fixed contact 211 and the movable contact 311 by the action of the contact spring 5, and a load force Fa in the direction of the arrow is generated in the operating arm 3.
  • the distance ra between the axis 91 and the connecting pin 71 in the y-axis direction is the position shown in FIG. When it is maximum, it decreases depending on the rotation angle of the connecting plate 8.
  • the distance rb in the X-axis direction between the connecting pin 161 and the shaft center 91 is always constant. Therefore, the load moment Ma decreases depending on the rotation angle of the connecting plate 8 with the position of FIG. 1 as a base point if the load force Fa by the contact pressure spring 5 is constant.
  • the operating moment Mb changes depending only on the driving force Fb of the electromagnetic operating mechanism 10 because the distance rb is constant even when the connecting plate 8 rotates.
  • FIG. 4 shows the relationship between the load force Fa acting on the connecting plate 8 by the contact pressure spring 5 and the load moment Ma.
  • the horizontal axis indicates the stroke [mm] of the operating arm 7 and the vertical axis indicates the force [N].
  • the load force Fa by the contact pressure spring 5 rises at the stroke tl of the operating arm 7, and thereafter, the operating arm 7 passes from the position shown in FIG. 1 to the position shown in FIG. 2 to the position where the movable contact 311 shown in FIG. Until then, the load force Fa increases linearly as shown by the solid line in FIG.
  • the connecting plate 8 and the shaft 9 rotate in response to the operation arm 7 moving from the position shown in FIG. 1 to the position shown in FIG.
  • the axis 91 and the connecting pin 71 are in the y-axis direction as described above.
  • the distance ra decreases depending on the rotation angle of the connecting plate 8 and the shaft 9.
  • the load moment Ma acting on the connecting plate 8 and the shaft 9 changes as shown by the broken line in FIG. 4, and is almost the minimum at the completion position of the movable contact 311 in FIG.
  • the stroke of the operating arm 7 at this closing completion position is indicated by t2 in FIG.
  • a number of links are used to reduce the driving force required for the electromagnetic operation mechanism as in the conventional device, and the link ratio depends on the link ratio.
  • the operating mechanism that does not need to reduce the load force can be simplified and reduced in size, and the controllability and reliability of the circuit breaker can be improved and maintenance-free can be achieved.
  • FIG. 5 is a configuration diagram of a main part of a circuit breaker according to Embodiment 2 of the present invention.
  • the connecting link 17 is rotatably connected to the drive shaft 16 and the connecting plate 8 of the electromagnetic operating mechanism 10 by connecting pins 171 and 172, respectively.
  • the connection between the drive shaft 16 and the connection plate 8 by the connection link 17 constitutes a third connection portion, and the third connection by the connection hole 81 and the connection pin 161 of the connection plate 8 in the first embodiment.
  • the drive shaft 16 is connected to the connecting plate 8 while maintaining the movement of the drive shaft 16 on the straight line in the vertical direction (y-axis direction) in FIG. Is.
  • circuit breaker according to the second embodiment it is not necessary to provide a connection hole, and the manufacture is facilitated.
  • FIG. 6 is a configuration diagram of a main part of a circuit breaker according to Embodiment 3 of the present invention.
  • the stopper pin 801 is fixed to the connecting plate 8.
  • the pin receiver 802 engages with the stopper pin 801 to stop the connecting plate 8 when the connecting plate 8 rotates to the loading completion position (position shown in FIG. 6), and the shaft 91 and the connecting pin 8 Keep 71 and link pin 4 in a straight line.
  • circuit breaker according to the third embodiment it is possible to prevent position displacement in the closing state due to contact wear due to long-term use, variation in assembly, etc., and obtain stable operation performance.
  • FIG. 7 is a configuration diagram of a main part of a circuit breaker according to Embodiment 4 of the present invention.
  • one end of the interlocking shaft 1601 is rotatably connected to the drive shaft 16 of the electromagnetic operating mechanism 10 by a connecting pin 1611.
  • the stopper lever 1602 has one end rotatably supported by a support pin 1613 and a substantially central portion rotatably connected to the other end of the interlocking shaft 1601 by a connecting pin 1612.
  • a stopper pin 8011 is fixed to the other end of the stopper link 1602. As shown in FIG.
  • the stopper pin 8011 engages the notch [not shown] of the connecting plate 8 so as to drive a wedge after the closing operation of the circuit breaker is completed,
  • the positions of the shaft 8 and the shaft 9 are maintained, and the connecting plate 8 is prevented from rotating clockwise and counterclockwise.
  • the stopper pin 801 is mainly intended to prevent the connecting plate 8 and the shaft 9 from rotating further counterclockwise beyond the insertion completion position.
  • the stopper pin 8011 prevents the connecting plate 8 at the completion of the insertion from rotating in either the clockwise direction or the counterclockwise direction, and the rotation angle of the connecting plate 8 at the completion of the insertion is completely set. It is provided for the purpose of maintaining.
  • the shafts 9, the connecting pins 71, and the link pins 4 after the completion of the insertion are not aligned in a straight line, but centered on the shaft 91 of the shaft 9.
  • the connecting pin 71 is at a position advanced in the clockwise direction from the link pin 4. Therefore, a large electromagnetic repulsive force generated when a large current flows between the contacts due to a short circuit or the like, a force that causes a large clockwise rotation force to the connecting plate 8 A stopper that engages the notch of the connecting plate 8 The rotation of the connecting plate 8 and the shaft 9 is prevented by the pins 801 1 and a short-time energization performance is achieved.
  • Other configurations are the same as those in the first embodiment.
  • FIGS. 8 and 9 are configuration diagrams of the main part of the circuit breaker according to Embodiment 5 of the present invention.
  • FIG. 8 shows a trip completion state
  • FIG. 9 shows a closing completion state.
  • the connection hole 810 provided in the connection plate 8 is composed of a first hole 811 and a second hole 812 that are bent and connected in an L shape.
  • the connecting pin 161 provided on the drive shaft 16 is fitted in the second hole of the connecting hole 810, and in the closing completion state shown in FIG. 9, the connecting pin 161 fits into the first hole 811 of the connecting hole 810.
  • the load force Fa acting on the operating arm 7 causes the load component Fb2 to act on the connecting pin 161 via the connecting plate 8 as shown in FIG. To do.
  • Contact surface force of the first hole portion 811 of the connecting hole 810 that engages with the connecting pin 161 If the driving shaft 16 is parallel to the moving direction of the load 6, the load component force Fb2 is only the horizontal component of FIG. In the vertical direction, that is, in the moving direction of the drive shaft 16 of the electromagnetic operating mechanism 10, almost no load component force is generated except for a minute component due to manufacturing variations. Therefore, a large holding force is not required for the electromagnetic operation mechanism 10 to maintain the closing completion state, and the closing completion state can be maintained without increasing the size of the electromagnetic operation mechanism 10.
  • FIG. 10 is a configuration diagram of a main part of a circuit breaker according to Embodiment 6 of the present invention.
  • the connection hole 820 includes a first hole 821 and a second hole 822 that are bent at an angle of about 120 degrees and connected.
  • the connecting pin 161 provided on the drive shaft (not shown) is engaged with the inclined wall portion of the second hole portion 822 of the connecting hole 820! /
  • FIG. 10 shows an engagement state between the connecting pin 161 and the connecting hole 820 in the loading completion state, and a load force Fa (not shown) similar to the load force Fa shown in FIG. Therefore, if the X-axis and y-axis directions are defined as shown in Fig. 10, the load in the same direction as the drive shaft movement direction is applied to the connecting pin 161.
  • a component force Fb3y is generated in the direction of the arrow and acts on the drive shaft of the electromagnetic operating mechanism.
  • the frictional force Fc due to the engagement between the connecting pin 161 and the wall portion of the second hole portion 822 acts along the wall portion of the second hole portion 822, and the component force in the y-axis direction is the drive shaft. Acts as a frictional force Fcy in the direction of movement.
  • is the coefficient of friction
  • This frictional component force Fcy is in the opposite direction to the load component force Fb3y, and reduces the load component force Fb3y that attempts to move the drive shaft in the direction of tripping via the connecting pin 161. Since the frictional force Fc is proportional to the friction coefficient of the side surface of the second hole 822 of the connecting hole 820, the high friction member having a large friction coefficient on the wall of at least the second hole 822 of the connecting hole 820. If the frictional force Fc is applied to the connecting pin 161 positively, a large frictional force Fcy that maintains the circuit breaker is fully generated is generated. It is possible to improve the characteristics.
  • Embodiment 7 is the same as those in the first embodiment.
  • Embodiment 7 is the same as those in the first embodiment.
  • FIG. 11 is a configuration diagram of a main part of a circuit breaker according to Embodiment 7 of the present invention.
  • the load force Fa described above is applied to the connecting pin 161 when the circuit breaker is fully charged, the load component force in the direction parallel to the direction of movement of the drive shaft 16 (y-axis direction) and the direction perpendicular to this (X (Axial direction) load component force acts on the drive shaft 16, and the drive shaft 16 may be deformed by the influence of the load component force in the vertical direction (X direction).
  • the drive shaft 16 of the electromagnetic operating mechanism 10 is lengthened, and this drive shaft 16 is supported by a pair of bearings 171 and 172 on both sides of the connecting plate 8. Yes.
  • the connection pin 161 is provided on the drive shaft 16 between the bearings 171 and 172 and is fitted in the connection hole 810 of the connection plate 8.
  • the drive shaft 16 is supported by the pair of bearings 171 and 172, it is possible to prevent deformation of the drive shaft 7 and to improve the electromagnetic resistance characteristics when a large current is applied. it can.
  • FIG. 12 shows the configuration of the main part of the three-phase circuit breaker according to Embodiment 8 of the present invention, in which each phase is collectively operated by one electromagnetic operation mechanism 10. It is.
  • the shaft 9 fixes three connecting plates 8a, 8b and 8c having the same structure.
  • connecting plates 8a, 8b and 8c are connected to the movable contacts 31la, 311b and 311c, respectively.
  • Each connection plate 8a, 8b, 8c and the movable contact 31la, 311b, 311c are connected in the same manner as the shifting force of the first to seventh embodiments.
  • the movable contacts 311a, 311b, and 311c are inserted into or removed from the fixed contacts 21la, 211b, and 211c connected to the conductors of the three phases, respectively.
  • the drive shaft 16 of the electromagnetic operating mechanism 10 is connected to one connecting plate 8b, and this connecting plate 8b is driven to rotate the shaft 9, so that the three phases can be turned on or off all at once. Do. Connecting plate
  • the connection between 8b and drive shaft 16 is configured in the same manner as in any one of the first to seventh embodiments. According to the eighth embodiment, a three-phase circuit breaker having the same effect as any of the first to seventh embodiments can be obtained.
  • FIG. 13 shows the configuration of the main part of the circuit breaker according to Embodiment 9 of the present invention, in which a connecting plate 8d that connects to the drive shaft 16 of the electromagnetic operating mechanism 10 is provided separately.
  • Other configurations are the same as those in the eighth embodiment.
  • the connecting plates 8a, 8b, 8c connected to the movable contacts 311a, 311b, 311c and the connecting plate 8d connected to the drive shaft 16 are fixed to the shaft 9 at different angles, It is possible to obtain an optimum configuration for each connection.
  • the normal movable contact and the fixed contact are used, but it is needless to say that these contacts may be constituted by a vacuum valve.
  • the circuit breaker according to the present invention can be used as a circuit breaker for opening and closing a low-voltage distribution line or the like.
  • FIG. 1 is a configuration diagram showing a circuit breaker according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram of a main part for explaining the operation of the circuit breaker according to Embodiment 1 of the present invention.
  • FIG. 3 is a configuration diagram of a main part for explaining the operation of the circuit breaker according to Embodiment 1 of the present invention.
  • FIG. 4 is a graph for explaining the operation of the circuit breaker according to Embodiment 1 of the present invention.
  • FIG. 5 is a configuration diagram of a main part of a circuit breaker according to Embodiment 2 of the present invention.
  • FIG. 6 is a configuration diagram of a main part of a circuit breaker according to Embodiment 3 of the present invention.
  • FIG. 7 is a configuration diagram of a main part of a circuit breaker according to Embodiment 4 of the present invention.
  • FIG. 8 is a configuration diagram of a main part of a circuit breaker according to Embodiment 5 of the present invention.
  • FIG. 9 is a configuration diagram of the main part for explaining the operation of the circuit breaker according to Embodiment 5 of the present invention.
  • FIG. 10 is a configuration diagram of a main part of a circuit breaker according to Embodiment 6 of the present invention.
  • FIG. 11 is a configuration diagram of a main part of a circuit breaker according to Embodiment 7 of the present invention.
  • FIG. 12 is a configuration diagram of a main part of a circuit breaker according to Embodiment 8 of the present invention.
  • FIG. 13 is a configuration diagram of a main part of a circuit breaker according to Embodiment 9 of the present invention. Explanation of symbols

Abstract

A breaker having a shaft (9), an operation arm (7), and an electromagnetic operation means (10). The shaft (9) is provided pivotable about an axis (91). The operation arm (7) is pivotally connected by a first connection section to the shaft (9) with a first predetermined distance ra vertically away from the axis (91) and is connected to a movable member by a second connection section. The electromagnetic operation means (10) has a drive shaft (16) that is connected to the shaft (9) by a third connection section provided at a circumferentially different position of the shaft (9) from the first connection section and is driven so as to move on a straight line perpendicularly crossing the axis (91) with a second predetermined distance rb from the axis (91). The electromagnetic operation means (10) is urged to drive a drive shaft (16), which rotates the shaft (9) to drive the movable member via the operation arm (7). An operation mechanism section is simplified and downsized, and controllability and reliability of the breaker are improved.

Description

明 細 書  Specification
遮断器  Breaker
技術分野  Technical field
[0001] この発明は、固定接点及び可動接点を有し、この可動接点を固定接点に対し投入 し又は引外すための電磁操作機構を備えた遮断器に関するものである。  [0001] The present invention relates to a circuit breaker having a fixed contact and a movable contact, and having an electromagnetic operation mechanism for inserting or removing the movable contact with respect to the fixed contact.
背景技術  Background art
[0002] 従来の低電圧遮断器は、蓄勢されたばねが開放された時に放出されるエネルギー を利用して、可動接点の投入又は引外し操作を行うばね操作式の遮断器が主流で あった。(例えば特許文献 1参照)  [0002] Conventional low-voltage circuit breakers have been mainly spring-operated circuit breakers that use the energy released when the stored spring is released to perform the opening or releasing operation of the movable contact. . (For example, see Patent Document 1)
一方、真空スィッチの可動接点を電磁操作機構を用いて投入又は引外しを行うよう にした遮断器も登場して ヽる。(例えば特許文献 2参照)  On the other hand, a circuit breaker has appeared that allows the movable contact of the vacuum switch to be turned on or off using an electromagnetic operating mechanism. (For example, see Patent Document 2)
特許文献 1 :特開平 6— 89650号公報(図 1〜5、第 2頁)  Patent Document 1: Japanese Patent Application Laid-Open No. 6-89650 (Figures 1-5, page 2)
特許文献 2 :EP1214727B1号公報(Fig. l〜Fig. 2、第 2〜5頁)  Patent Document 2: EP1214727B1 (Fig. L to Fig. 2, pages 2 to 5)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 特許文献 1に示された低電圧遮断器は、操作機構に多数のラッチやリンクを使用し ており、機器寸法の大型化に繋がり、また部品点数が多く機器信頼性を補償するた め一定期間毎のメンテナンスが必要であった。  [0003] The low-voltage circuit breaker disclosed in Patent Document 1 uses a large number of latches and links in the operation mechanism, leading to an increase in the size of the device and a large number of parts to compensate for device reliability. Therefore, maintenance at regular intervals was necessary.
[0004] また特許文献 2に示された遮断器は、可動接点と固定接点の投入又は引外し操作 を行う操作軸と電磁操作機構の駆動軸との間に設けられるリンクも長尺となり、依然と して機器の信頼性の向上、及び小型化には改善が必要である。更に、特許文献 2に 示された遮断器は、接点部の短時間通電性能を達成するための U字型電路を備え て!、るが、電流容量に依存して U字形電路の形状及び寸法をそれぞれ変更させる必 要がある。ここで言う短時間通電性能とは、前記遮断器を主幹遮断器として使用する 場合に必要とされる性能のひとつで、短絡事故等の大電流通電時に保護リレー装置 が動作して安全な遮断動作が行われるまでの間、短絡電流を通電しつづける性能の ことである。一般に大電流通電時には接点間に大きな電磁反発力が発生し、可動接 点が浮上る可能性があるため、特許文献 2に示される U字形電路のような可動接点 の浮上りを生じさせな 、構造が要求される。 [0004] In addition, the circuit breaker disclosed in Patent Document 2 has a long link provided between the operating shaft that performs the insertion or tripping operation of the movable contact and the fixed contact and the drive shaft of the electromagnetic operation mechanism, and is still As a result, improvements are needed to improve the reliability and miniaturization of equipment. In addition, the circuit breaker disclosed in Patent Document 2 has a U-shaped circuit to achieve short-term energization performance of the contact part !, but the shape and dimensions of the U-shaped circuit depend on the current capacity. It is necessary to change each. The short-time energization performance mentioned here is one of the performances required when using the circuit breaker as a main circuit breaker. The protection relay device operates when a large current is energized, such as a short-circuit accident, so that the safe circuit-breaking operation can be performed. This is the ability to keep the short-circuit current flowing until the operation is performed. Generally, when a large current is applied, a large electromagnetic repulsive force is generated between the contacts, and the movable contact Since a point may float, a structure is required that does not cause the floating contact like the U-shaped electric circuit shown in Patent Document 2 to rise.
[0005] この発明は、このような従来の遮断器に於ける課題を解決するためになされたもの で、操作機構の簡略ィ匕および小型化を図ると共に、制御性及び信頼性の向上を図 つた遮断器を得ることを目的として ヽる。 [0005] The present invention has been made in order to solve the problems in such a conventional circuit breaker, and is intended to simplify and reduce the size of the operation mechanism and to improve controllability and reliability. The purpose is to obtain a closed circuit breaker.
課題を解決するための手段  Means for solving the problem
[0006] この発明に係る遮断器は、固定接点を有する固定導体と、可動接点を有し該可動 接点を前記固定接点に対して投入し又は引外すよう駆動される可動子と、軸心を中 心として回動可能に設けられたシャフトと、前記軸心に対して垂直方向に第 1の所定 距離を隔てて第 1の連結部により前記シャフトに回動自在に連結されると共に前記可 動子に第 2の連結部により連結された操作アームと、前記第 1の連結部に対し前記シ ャフトの周方向の異なる位置に設けられた第 3の連結部により前記シャフトに連結さ れ前記軸心に対して第 2の所定距離を隔てて直交する直線上で移動するよう駆動さ れる駆動軸を有する電磁操作手段とを備え、該電磁操作手段を付勢して前記駆動 軸を駆動することにより前記シャフトを回転させて前記操作アームを介して前記可動 子を駆動するようにしたものである。 [0006] A circuit breaker according to the present invention includes a fixed conductor having a fixed contact, a mover having a movable contact, and being driven to put the movable contact into or out of the fixed contact, and an axis. A shaft that is pivotally provided as a center, and is pivotally connected to the shaft by a first connecting portion at a first predetermined distance in a direction perpendicular to the axis, and is movable. The operating arm connected to the child by the second connecting portion and the shaft connected to the shaft by the third connecting portion provided at a position different from the first connecting portion in the circumferential direction of the shaft. An electromagnetic operating means having a drive shaft driven so as to move on a straight line orthogonal to the core at a second predetermined distance, and energizing the electromagnetic operating means to drive the drive shaft To rotate the shaft through the operating arm. Is obtained so as to drive the movable element Te.
この発明に於いて、シャフトと操作アームとを連結する第 1の連結部は、前記シャフ トと前記操作アームとを直接連結する連結部である場合と、他の部材を介して前記シ ャフトと前記操作アームとを間接的に連結する連結部である場合の、双方を含む。 また、この発明に於いて、操作アームと可動子とを連結する第 2の連結部は、前記 操作アームと前記可動子とを直接連結する連結部である場合と、他の部材を介して 前記操作アームと前記可動子とを間接的に連結する連結部である場合の、双方を含 む。  In the present invention, the first connecting portion that connects the shaft and the operating arm is a connecting portion that directly connects the shaft and the operating arm, and the shaft is connected to the shaft via another member. It includes both cases where it is a connecting portion that indirectly connects the operation arm. In the present invention, the second connecting portion that connects the operating arm and the mover may be a connecting portion that directly connects the operating arm and the mover, and the other connection member through the other member. Both are included in the case where the operating arm and the movable element are indirectly connected to each other.
更に、この発明に於いて、シャフトと駆動軸とを連結する第 3の連結部は、前記シャ フトと前記駆動軸とを直接連結する連結部である場合と、他の部材を介して前記シャ フトと前記駆動軸とを間接的に連結する連結部である場合の、双方を含む。  Furthermore, in the present invention, the third connecting portion that connects the shaft and the drive shaft is a connecting portion that directly connects the shaft and the drive shaft, and the shaft is connected via another member. In the case of a connecting portion that indirectly connects the shaft and the drive shaft.
発明の効果  The invention's effect
[0007] この発明による遮断器によれば、軸心に対して垂直方向に第 1の所定距離を隔て て第 1の連結部によりシャフトに回動自在に連結されると共に可動子に第 2の連結部 により連結された操作アームと、前記第 1の連結部に対し前記シャフトの周方向の異 なる位置に設けられた第 3の連結部により前記シャフトに連結され前記軸心に対して 第 2の所定距離を隔てて直交する直線上で移動するよう駆動される駆動軸を有する 電磁操作手段とを備え、該電磁操作手段を付勢して前記駆動軸を駆動することによ り前記シャフトを回転させて前記操作アームを介して前記可動子を駆動するようにし たので、操作機構部の簡略ィ匕および小型化ができると共に、遮断器の制御性及び信 頼性を向上することができる。 [0007] According to the circuit breaker according to the present invention, the first predetermined distance is provided in the direction perpendicular to the axis. An operating arm that is pivotally connected to the shaft by the first connecting portion and is connected to the mover by the second connecting portion, and a position in the circumferential direction of the shaft that is different from the first connecting portion. An electromagnetic operating means having a drive shaft connected to the shaft by a third connecting portion provided on the shaft and driven to move on a straight line perpendicular to the axis at a second predetermined distance. Since the electromagnetic operation means is energized to drive the drive shaft, the shaft is rotated to drive the movable element via the operation arm. In addition to being able to reduce the size, the controllability and reliability of the circuit breaker can be improved.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 実施の形態 1 [0008] Embodiment 1
図 1はこの発明の実施の形態 1に係る遮断器を示す構成図、図 2及び図 3は実施の 形態 1に係る遮断器の動作を説明するための説明図である。  FIG. 1 is a configuration diagram showing a circuit breaker according to Embodiment 1 of the present invention, and FIGS. 2 and 3 are explanatory diagrams for explaining the operation of the circuit breaker according to Embodiment 1. FIG.
図 1において、絶縁筐体 1は内部に絶縁壁 103で仕切られた空間部 101、 102を 有し、外部から空間部 101に貫通する一対の固定導体 21、 22を備えている。固定導 体 21、 22はそれぞれ図示しない電源側導体及び負荷側導体に接続される。固定導 体 21及び固定導体 22は、それぞれ電源側端子及び負荷側端子ともいわれる。絶縁 筐体 1の空間部 101に露出する固定導体 21の端部には固定接点 211が固定されて いる。  In FIG. 1, the insulating housing 1 has space portions 101 and 102 partitioned by an insulating wall 103 inside, and includes a pair of fixed conductors 21 and 22 that penetrate the space portion 101 from the outside. The fixed conductors 21 and 22 are connected to a power supply side conductor and a load side conductor (not shown), respectively. The fixed conductor 21 and the fixed conductor 22 are also referred to as a power supply side terminal and a load side terminal, respectively. A fixed contact 211 is fixed to the end of the fixed conductor 21 exposed in the space 101 of the insulating casing 1.
[0009] 可動子 3はリンクピン 4により回動自在に支持され、固定接点 211に対抗する位置 に可動接点 311が固定されている。接圧ばね 5は、可動接点 311が固定接点 211に 投入されたときに両接点間に接触圧力を与えるように、可動子 3をリンクピン 4を中心 として時計方向に回動させる方向に付勢する。可動子 3と固定導体 22とは、橈むこと が可能な可撓導体 6により電気的に接続されている。  The movable element 3 is rotatably supported by the link pin 4, and the movable contact 311 is fixed at a position facing the fixed contact 211. The contact pressure spring 5 urges the movable element 3 to rotate clockwise about the link pin 4 so that contact pressure is applied between the two contacts when the movable contact 311 is inserted into the fixed contact 211. To do. The movable element 3 and the fixed conductor 22 are electrically connected by a flexible conductor 6 that can be sandwiched.
[0010] 絶縁筐体 1の空間部 102内に設けられた板状の連結板 8は、軸心 91の周りに回動 可能に支持されたシャフト 9に固定されている。連結板 8は、その外周部から内側に 向って傾斜した長溝状の連結穴 81を備えている。操作アーム 7は、絶縁筐体 1の仕 切壁 103に設けられた貫通孔 104を貫通し、その一端が可動子 3に回動自在に連結 され、他端が連結ピン 71により連結板 8に回動自在に連結されている。連結ピン 71 による連結板 8と操作アーム 7の他端との連結部は、第 1の連結部を構成し、この第 1 の連結部は、シャフト 9の軸心 91から第 1の所定距離である半径 rの位置に設けられ ている。図 1の場合、軸心 91と連結ピン 71とは y軸上で重なっているので、軸心 91に 対する第 1の連結部の y軸方向の距離 mは半径 rに等しいが、周知の通りこの y軸方 向の距離 raは、連結板 8及びシャフト 9の回転角に依存して減少する。操作アーム 7 の一端と可動子 3との連結部は、第 2の連結部を構成して 、る。 A plate-like connecting plate 8 provided in the space 102 of the insulating housing 1 is fixed to a shaft 9 supported so as to be rotatable around an axis 91. The connecting plate 8 includes a long groove-like connecting hole 81 inclined inward from the outer periphery thereof. The operating arm 7 passes through a through-hole 104 provided in the cutting wall 103 of the insulating housing 1, one end of which is rotatably connected to the movable element 3, and the other end is connected to the connecting plate 8 by a connecting pin 71. It is pivotally connected. Connecting pin 71 The connecting portion between the connecting plate 8 and the other end of the operating arm 7 constitutes a first connecting portion, and this first connecting portion has a radius r that is a first predetermined distance from the axis 91 of the shaft 9. It is provided at the position. In the case of FIG. 1, since the shaft center 91 and the connecting pin 71 overlap on the y-axis, the distance m in the y-axis direction of the first connecting portion with respect to the shaft center 91 is equal to the radius r. The distance ra in the y-axis direction decreases depending on the rotation angle of the connecting plate 8 and the shaft 9. A connecting portion between one end of the operation arm 7 and the mover 3 constitutes a second connecting portion.
[0011] 電磁操作手段としての電磁操作機構 10は、絶縁筐体 1の空間部 102内に設けられ 、磁性体で形成されたヨーク 11と、このヨーク 11の内側に固定された第 1のコイル 12 及び第 2のコイル 13と、第 1のコイル 12と第 2のコイル 13との間に固定された永久磁 石 14と、第 1のコイル 12と第 2のコイル 13及び永久磁石 14の内側を、図 1の y軸の方 向に移動可能な可動鉄心 15と、この可動鉄心 15に固定され、可動鉄心 15の移動に 伴つて y軸方向の直線上で往復移動する駆動軸 16とを備えて ヽる。  [0011] An electromagnetic operation mechanism 10 as an electromagnetic operation means is provided in a space 102 of an insulating casing 1, and includes a yoke 11 formed of a magnetic material, and a first coil fixed inside the yoke 11. 12 and the second coil 13, a permanent magnet 14 fixed between the first coil 12 and the second coil 13, and the first coil 12, the second coil 13 and the permanent magnet 14 inside. The movable iron core 15 that can move in the y-axis direction in FIG. 1 and the drive shaft 16 that is fixed to the movable iron core 15 and reciprocates on a straight line in the y-axis direction as the movable iron core 15 moves. Prepare and speak.
[0012] 電磁操作機構 10は、可動接点 311の投入及び引外しの状態を維持することが必 要であり、双安定型構造に構成されている。図 1では、可動鉄心 15は永久磁石 15の 磁力によりヨーク 11の図 1の上方部に吸着されて安定している力 コイル 13を付勢す ると、コイル 13が発生する磁束の作用により、可動鉄心 15は図 1の下方に駆動され、 ヨーク 11の下方部に当接する。このときコイル 13は消勢される力 永久磁石 14の磁 力により可動鉄心 15はヨーク 11の下方に吸着されたままで安定する。次に、この状 態のときコイル 12を付勢すると、コイル 12の磁力により可動鉄心 15は図 1の上方に 駆動され、図 1に示すようにヨーク 11の上方部に吸着される。このときコイル 13は消 勢されるが、永久磁石 14の磁力によりヨーク 11の下方に吸着されたまま安定する。  [0012] The electromagnetic operation mechanism 10 needs to maintain a state in which the movable contact 311 is turned on and off, and has a bistable structure. In FIG. 1, the movable iron core 15 is attracted to the upper part of the yoke 11 in FIG. 1 by the magnetic force of the permanent magnet 15, and when the coil 13 is energized, the action of the magnetic flux generated by the coil 13 The movable iron core 15 is driven downward in FIG. 1 and contacts the lower part of the yoke 11. At this time, the coil 13 is deenergized. Due to the magnetic force of the permanent magnet 14, the movable iron core 15 is stabilized while being adsorbed below the yoke 11. Next, when the coil 12 is energized in this state, the movable iron core 15 is driven upward in FIG. 1 by the magnetic force of the coil 12 and is attracted to the upper portion of the yoke 11 as shown in FIG. At this time, the coil 13 is deenergized, but is stabilized while being attracted to the lower side of the yoke 11 by the magnetic force of the permanent magnet 14.
[0013] 駆動軸 16は、連結板 8の連結穴 81に嵌合する連結ピン 161により連結板 8に連結 されている。連結ピン 161及び連結穴 81による連結部は、第 3の連結部を構成する。 駆動軸 16は、軸心 91に対して距離 rbを介して直交して ヽる y軸方向の直線上で移 動する。この距離 rbは第 2の所定距離に相当する。連結板 8はシャフト 9と共に軸心 9 1の周りに回転するが、連結穴 81が連結板 8の外周部から内側に向って傾斜する形 状に形成されているので、連結板 8が回転しても、連結ピン 161は、軸心 91との間の X軸方向の距離 rbを常に一定に保ったまま連結穴 81と嵌合する。 [0014] 図 1は、可動接点 311を固定接点 211から引外した状態を示しているが、この状態 に於いて電磁操作機構 10のコイル 13を付勢すると、その可動鉄心 15は図 1の下方 へ駆動され、可動鉄心 15に固定された駆動軸 16は y軸上で下方に移動する。駆動 軸 16が y軸上で下方へ移動することにより、駆動軸 16に連結された連結板 8が連結 ピン 161及び連結穴 81からなる第 3の連結部を介して駆動され反時計方向に回動 する。連結板 8が反時計方向に回動することにより、連結ピン 71により連結板 8に連 結された操作アーム 7は、 X軸上で右方向へ駆動され、可動子 3を図 1の右方向へ駆 動する。 The drive shaft 16 is connected to the connection plate 8 by a connection pin 161 that fits into the connection hole 81 of the connection plate 8. The connecting portion by the connecting pin 161 and the connecting hole 81 constitutes a third connecting portion. The drive shaft 16 moves on a straight line in the y-axis direction that is perpendicular to the shaft center 91 via a distance rb. This distance rb corresponds to the second predetermined distance. The connecting plate 8 rotates around the axis 91 together with the shaft 9. However, since the connecting hole 81 is formed so as to be inclined inward from the outer periphery of the connecting plate 8, the connecting plate 8 rotates. Even so, the connecting pin 161 is fitted in the connecting hole 81 while the distance rb in the X-axis direction between the connecting pin 161 is always kept constant. [0014] FIG. 1 shows a state in which the movable contact 311 is removed from the fixed contact 211. In this state, when the coil 13 of the electromagnetic operating mechanism 10 is energized, the movable core 15 of FIG. The drive shaft 16 driven downward and fixed to the movable iron core 15 moves downward on the y-axis. As the drive shaft 16 moves downward on the y-axis, the connecting plate 8 connected to the drive shaft 16 is driven through the third connecting portion including the connecting pin 161 and the connecting hole 81 and rotates counterclockwise. Move. When the connecting plate 8 rotates counterclockwise, the operating arm 7 connected to the connecting plate 8 by the connecting pin 71 is driven to the right on the X axis, and the mover 3 is moved to the right in FIG. Drive to.
[0015] 図 2は、可動子 3が図 1の右方向へ駆動されることにより、可動接点 311が固定接点 211に接触を開始した投入初期の状態を示している。この投入動作のとき、接圧ば ね 5の作用により固定接点 211及び可動接点 311の間には接触圧力が加わり、操作 アーム 3には矢印方向の負荷力 Faが発生する。一方、電磁操作機構 10の駆動軸 16 には、可動鉄心 15に作用する吸引力に基づく操作力 Fbが矢印方向に発生している 。従って、連結板 8を固定しているシャフト 9に作用する回転モーメントは、シャフト 9を 時計方向に回転させようとする負荷モーメント Ma ( = Fa'ra)と、シャフト 9を反時計方 向に回転させようとする操作モーメント Mb (=Fb -rb)である。 FIG. 2 shows an initial state in which the movable contact 311 starts to contact the fixed contact 211 when the movable element 3 is driven rightward in FIG. During this closing operation, contact pressure is applied between the fixed contact 211 and the movable contact 311 by the action of the contact spring 5, and a load force Fa in the direction of the arrow is generated in the operating arm 3. On the other hand, an operating force Fb based on the attractive force acting on the movable iron core 15 is generated in the direction of the arrow on the drive shaft 16 of the electromagnetic operating mechanism 10. Therefore, the rotational moment acting on the shaft 9 that fixes the connecting plate 8 is the load moment Ma (= Fa'r a ) that attempts to rotate the shaft 9 clockwise and the shaft 9 counterclockwise. Operation moment Mb (= Fb -rb) to rotate.
ここで、  here,
Ma = Fa#ra Ma = Fa # ra
Mb=Fb -rb  Mb = Fb -rb
であり、シャフト 9及び連結板 8を反時計方向に回動させるには、 Mb >Maの関係が 必要がある。  In order to rotate the shaft 9 and the connecting plate 8 counterclockwise, the relationship of Mb> Ma is necessary.
[0016] 負荷モーメント Maに打ち勝つ操作モーメント Mbが連結板 8にカ卩えられることにより 、連結板 8は図 2に位置力 更に反時計方向に回動して、図 3に示す可動接点 311 の投入完了の位置に到達する。この投入完了の状態では、シャフト 9の軸心 91と連 結ピン 71の中心とリンクピン 4の中心とは一直線上に位置し、駆動軸 16、連結板 8、 シャフト 9、操作アーム 7及び可動子 3は、その位置で停止し、可動接点 311の固定 接点 211への投入が継続される。  [0016] When the operating moment Mb that overcomes the load moment Ma is held by the connecting plate 8, the connecting plate 8 rotates in the position force in FIG. 2 and further counterclockwise, and the movable contact 311 shown in FIG. Reach the position where loading has been completed. In the state where the insertion is completed, the axis 91 of the shaft 9 and the center of the connecting pin 71 and the center of the link pin 4 are in a straight line, and the drive shaft 16, the connecting plate 8, the shaft 9, the operating arm 7, and the movable The child 3 stops at that position, and the charging of the movable contact 311 to the fixed contact 211 is continued.
[0017] 前述したとおり、軸心 91と連結ピン 71との y軸方向の距離 raは、図 1に示す位置の とき最大であるが、連結板 8の回転角に依存して減少する。一方、連結ピン 161と軸 心 91との間の X軸方向の距離 rbは、常に一定である。従って、負荷モーメント Maは、 接圧ばね 5による負荷力 Faを一定とすれば、図 1の位置を基点として連結板 8の回転 角に依存して減少する。一方、操作モーメント Mbは、連結板 8が回転しても距離 rb が一定であるので、電磁操作機構 10の駆動力 Fbにのみ依存して変化する。 [0017] As described above, the distance ra between the axis 91 and the connecting pin 71 in the y-axis direction is the position shown in FIG. When it is maximum, it decreases depending on the rotation angle of the connecting plate 8. On the other hand, the distance rb in the X-axis direction between the connecting pin 161 and the shaft center 91 is always constant. Therefore, the load moment Ma decreases depending on the rotation angle of the connecting plate 8 with the position of FIG. 1 as a base point if the load force Fa by the contact pressure spring 5 is constant. On the other hand, the operating moment Mb changes depending only on the driving force Fb of the electromagnetic operating mechanism 10 because the distance rb is constant even when the connecting plate 8 rotates.
[0018] 接圧ばね 5により連結板 8に作用する負荷力 Faと、負荷モーメント Maの関係を図 4 に示す。図 4に於いて、横軸は操作アーム 7のストローク [mm]、縦軸はフォース [N]を 示す。操作アーム 7のストローク tlで接圧ばね 5による負荷力 Faが立ち上がり、以降 、操作アーム 7が図 1示す位置から図 2に示す位置を経て、図 3に示す可動接点 311 の投入完了の位置に至るまで、そのストロークの増大に対応して図 4に実線で示すよ うに負荷力 Faは直線的に増大する。一方、操作アーム 7が図 1の位置から図 3の位 置へ移動することに対応して連結板 8及びシャフト 9は回転するので、前述したとおり 軸心 91と連結ピン 71との y軸方向の距離 raは、連結板 8とシャフト 9の回転角に依存 して減少する。その結果、連結板 8及びシャフト 9に作用する負荷モーメント Maは、 図 4の破線で示すように変化し、図 3の可動接点 311の投入完了位置でほぼ最小と なる。この投入完了位置における操作アーム 7のストロークは図 4の t2で示される。  [0018] FIG. 4 shows the relationship between the load force Fa acting on the connecting plate 8 by the contact pressure spring 5 and the load moment Ma. In Fig. 4, the horizontal axis indicates the stroke [mm] of the operating arm 7 and the vertical axis indicates the force [N]. The load force Fa by the contact pressure spring 5 rises at the stroke tl of the operating arm 7, and thereafter, the operating arm 7 passes from the position shown in FIG. 1 to the position shown in FIG. 2 to the position where the movable contact 311 shown in FIG. Until then, the load force Fa increases linearly as shown by the solid line in FIG. On the other hand, since the connecting plate 8 and the shaft 9 rotate in response to the operation arm 7 moving from the position shown in FIG. 1 to the position shown in FIG. 3, the axis 91 and the connecting pin 71 are in the y-axis direction as described above. The distance ra decreases depending on the rotation angle of the connecting plate 8 and the shaft 9. As a result, the load moment Ma acting on the connecting plate 8 and the shaft 9 changes as shown by the broken line in FIG. 4, and is almost the minimum at the completion position of the movable contact 311 in FIG. The stroke of the operating arm 7 at this closing completion position is indicated by t2 in FIG.
[0019] 可動接点 311を固定接点 211に投入し図 3に示す投入完了状態を維持するため には、負荷モーメント Ma以上の操作モーメント Mbを連結板 8に継続的にカ卩える必要 があるが、前記したように負荷モーメント Maは連結板 8の回転角に依存して減少し投 入完了状態で最小となるので、投入完了を維持する操作モーメント Mbはその最小 時の負荷モーメント Ma以上であればよぐ比較的小型の電磁操作機構 10の永久磁 石 14による可動鉄心 15の吸着力により投入完了状態を維持することが出来る。  [0019] In order to insert the movable contact 311 into the fixed contact 211 and maintain the closing completion state shown in FIG. 3, it is necessary to continuously cover the operation moment Mb of the load moment Ma or higher on the connecting plate 8. As described above, since the load moment Ma decreases depending on the rotation angle of the connecting plate 8 and becomes the minimum when the loading is completed, the operating moment Mb for maintaining the loading completion should be equal to or greater than the minimum load moment Ma. The charging completion state can be maintained by the attractive force of the movable iron core 15 by the permanent magnet 14 of the relatively small electromagnetic operating mechanism 10.
[0020] 次に、図 3に示す投入完了状態力 可動接点 311を引外す場合の動作を説明する 。図 3の投入完了状態にあるとき、電磁操作機構 10の可動鉄心 15は、図 1に示す位 置とは逆の位置、即ちヨーク 11の図 1の下側に吸着されて安定している。このときコィ ル 12を付勢すれば、コイル 12が発生する磁束の作用により可動鉄心 15は図 1の上 方に吸引され、図 2に示す方向とは逆方向の操作力 Fbを操作アーム 16に発生する 。この操作力 Fbに基づく操作モーメント Mb (=Fb 'rb)により、連結板 8はシャフト 9の 軸心 91の周りに時計方向に回動し始める。 [0020] Next, an operation in the case where the closing completion state force movable contact 311 shown in Fig. 3 is tripped will be described. 3, the movable iron core 15 of the electromagnetic operating mechanism 10 is adsorbed to the position opposite to the position shown in FIG. 1, that is, the lower side of the yoke 11 in FIG. If the coil 12 is energized at this time, the movable iron core 15 is attracted upward in FIG. 1 by the action of the magnetic flux generated by the coil 12, and an operating force Fb in the direction opposite to the direction shown in FIG. To occur. Due to the operating moment Mb (= Fb 'rb) based on this operating force Fb, the connecting plate 8 It begins to rotate clockwise around the axis 91.
[0021] 図 3に示す投入完了状態では、軸心 91と、連結ピン 71及びリンクピン 4がー直線上 に整列して静止している力 連結板 8の時計方向の回動によりその整列が崩れ、操 作アーム 7は図 4のストローク t2からストローク tlの方向に移行する。このとき、時計方 向に回転する連結板 8の回転角に依存して、軸心 91と連結ピン 71との y軸方向の距 離 raは増大するので、図 4に示すように負荷モーメント Maは急激に増大する。その 結果、連結板 8は大きな負荷モーメント Maを受けて急激に時計方向に回転し、操作 アーム 7は可動子 3の可動接点 311を固定接点 211から引外し、図 1に示す引外し 状態となって安定する。 [0021] In the loading completion state shown in FIG. 3, the axial center 91, the connecting pin 71 and the link pin 4 are aligned with each other on a straight line and are stationary. The operating arm 7 is broken and moves from the stroke t2 in FIG. 4 to the stroke tl. At this time, the distance ra in the y-axis direction between the shaft center 91 and the connecting pin 71 increases depending on the rotation angle of the connecting plate 8 that rotates in the clockwise direction. Therefore, as shown in FIG. Increases rapidly. As a result, the connecting plate 8 is suddenly rotated clockwise in response to a large load moment Ma, and the operating arm 7 pulls the movable contact 311 of the mover 3 away from the fixed contact 211, resulting in the tripped state shown in FIG. And stable.
[0022] 図 3に示す投入完了状態で固定導体 21、 22の間に接続された外部回路 [図示せ ず]を閉じて通電しているとき、例えば短絡事故等が生じると、固定接点 211と可動 接点 311との間に大電流による大きな電磁反発力が発生するが、図 3に示すように投 入完了の状態では、シャフト 9の軸心 91と連結ピン 71の中心とリンクピン 4の中心とは 一直線上に位置して 、るので、電磁反発力により連結板 8を時計方向に回動させよう とする負荷モーメントは減殺されており連結板 8は回動せず、可動接点 311が固定接 点 211から離反することはない。従って、この遮断器が主幹遮断器として使用されて いても、短時間通電性能を達成することが出来る。  [0022] When the external circuit [not shown] connected between the fixed conductors 21 and 22 is closed and energized when the charging is completed as shown in FIG. A large electromagnetic repulsive force due to a large current is generated between the movable contact 311 and, as shown in Fig. 3, when the injection is completed, the center 91 of the shaft 9, the center of the connecting pin 71, and the center of the link pin 4 Is located on a straight line, the load moment to turn the connecting plate 8 clockwise by the electromagnetic repulsive force is reduced, the connecting plate 8 does not turn, and the movable contact 311 is fixed. There is no separation from contact 211. Therefore, even if this circuit breaker is used as a main circuit breaker, it is possible to achieve short-time energization performance.
[0023] このように、この発明の実施の形態 1に係る遮断器によれば、従来の装置のように 電磁操作機構に要する駆動力を軽減するために多数のリンクを用いそのリンク比に よって負荷力を軽減する必要がなぐ操作機構部を簡単且つ小型化することができる と共に、遮断器の制御性及び信頼性の向上とメンテナンスフリーを図ることができる。  Thus, according to the circuit breaker according to Embodiment 1 of the present invention, a number of links are used to reduce the driving force required for the electromagnetic operation mechanism as in the conventional device, and the link ratio depends on the link ratio. The operating mechanism that does not need to reduce the load force can be simplified and reduced in size, and the controllability and reliability of the circuit breaker can be improved and maintenance-free can be achieved.
[0024] 実施の形態 2  [0024] Embodiment 2
図 5は、この発明の実施の形態 2に係る遮断器の主要部の構成図である。図 5に於 いて、連結リンク 17は、電磁操作機構 10の駆動軸 16と連結板 8とに夫々連結ピン 1 71、 172により回動自在に連結されている。この連結リンク 17による駆動軸 16と連結 板 8の連結は、第 3の連結部を構成しており、実施の形態 1に於ける連結板 8の連結 穴 81と連結ピン 161による第 3の連結部に相当するもので、駆動軸 16の図 5に於け る上下方向(y軸方向)の直線上での移動を保ったまま駆動軸 16と連結板 8を連結す るものである。 FIG. 5 is a configuration diagram of a main part of a circuit breaker according to Embodiment 2 of the present invention. In FIG. 5, the connecting link 17 is rotatably connected to the drive shaft 16 and the connecting plate 8 of the electromagnetic operating mechanism 10 by connecting pins 171 and 172, respectively. The connection between the drive shaft 16 and the connection plate 8 by the connection link 17 constitutes a third connection portion, and the third connection by the connection hole 81 and the connection pin 161 of the connection plate 8 in the first embodiment. The drive shaft 16 is connected to the connecting plate 8 while maintaining the movement of the drive shaft 16 on the straight line in the vertical direction (y-axis direction) in FIG. Is.
その他の構成は、実施の形態 1に係る遮断器と同様である。  Other configurations are the same as those of the circuit breaker according to the first embodiment.
この実施の形態 2に係る遮断器によれば、連結穴を設ける必要がなく製造が容易と 成る。  According to the circuit breaker according to the second embodiment, it is not necessary to provide a connection hole, and the manufacture is facilitated.
[0025] 実施の形態 3  [0025] Embodiment 3
図 6は、この発明の実施の形態 3に係る遮断器の主要部の構成図である。図 6に於 いて、ストッパーピン 801は連結板 8に固定されている。ピン受け 802は、連結板 8が 投入完了位置(図 6に示す位置)まで回動したとき、ストッパーピン 801と係合して連 結板 8を停止させ、シャフト 9の軸心 91と連結ピン 71及びリンクピン 4とを一直線上に 位置させてその状態を維持する。  FIG. 6 is a configuration diagram of a main part of a circuit breaker according to Embodiment 3 of the present invention. In FIG. 6, the stopper pin 801 is fixed to the connecting plate 8. The pin receiver 802 engages with the stopper pin 801 to stop the connecting plate 8 when the connecting plate 8 rotates to the loading completion position (position shown in FIG. 6), and the shaft 91 and the connecting pin 8 Keep 71 and link pin 4 in a straight line.
その他の構成は実施の形態 1と同様である。  Other configurations are the same as those in the first embodiment.
この実施の形態 3に係る遮断器によれば、長期間の使用による接点の磨耗や、組 み立てのばらつき等による投入完了状態での位置ずれを防止し安定した動作性能 を得ることができる。  According to the circuit breaker according to the third embodiment, it is possible to prevent position displacement in the closing state due to contact wear due to long-term use, variation in assembly, etc., and obtain stable operation performance.
[0026] 実施の形態 4  [0026] Embodiment 4
図 7はこの発明の実施の形態 4に係る遮断器の主要部の構成図である。図 7に於い て、連動軸 1601は、その一端が連結ピン 1611により電磁操作機構 10の駆動軸 16 に回動自在に連結されている。ストッパーレバー 1602は、一端が支持ピン 1613によ り回動自在に支持され、ほぼ中央部が連結ピン 1612により連動軸 1601の他端に回 動自在に連結されて 、る。このストッパーリンク 1602の他端にはストッパーピン 8011 が固定されている。ストッパーピン 8011は、図 7に示すように、遮断器の投入動作完 了後、連結板 8の切欠き部 [図示せず]に、くさびを打ち込むように係合し、投入完了 時における連結板 8及びシャフト 9の位置を維持し、連結板 8の時計方向及び反時計 方向の回動を阻止するものである。  FIG. 7 is a configuration diagram of a main part of a circuit breaker according to Embodiment 4 of the present invention. In FIG. 7, one end of the interlocking shaft 1601 is rotatably connected to the drive shaft 16 of the electromagnetic operating mechanism 10 by a connecting pin 1611. The stopper lever 1602 has one end rotatably supported by a support pin 1613 and a substantially central portion rotatably connected to the other end of the interlocking shaft 1601 by a connecting pin 1612. A stopper pin 8011 is fixed to the other end of the stopper link 1602. As shown in FIG. 7, the stopper pin 8011 engages the notch [not shown] of the connecting plate 8 so as to drive a wedge after the closing operation of the circuit breaker is completed, The positions of the shaft 8 and the shaft 9 are maintained, and the connecting plate 8 is prevented from rotating clockwise and counterclockwise.
[0027] 遮断器を引外し動作させるときは、電磁操作機構 10に引外し指令を与えて駆動軸 16を図 7の上方へ駆動させる。これによつて駆動軸 16に連動軸 1601を介して連結さ れたストッパーレバー 1602は、支持ピン 1613を中心として反時計方向に回動され、 ストッパーピン 8011と連結板 8の切欠き部との係合が解除され、連結板 8が時計方向 に回動されて可動接点 311の引外し動作が行われる。 [0027] When the circuit breaker is tripped, a trip command is given to the electromagnetic operating mechanism 10 to drive the drive shaft 16 upward in FIG. As a result, the stopper lever 1602 connected to the drive shaft 16 via the interlocking shaft 1601 is rotated counterclockwise about the support pin 1613, and the stopper pin 8011 and the notch portion of the connecting plate 8 are The engagement is released and the connecting plate 8 is clockwise. And the tripping of the movable contact 311 is performed.
[0028] 実施の形態 3では、ストッパーピン 801は、投入完了位置を通り越して連結板 8及び シャフト 9が更に反時計方向に回転することを防止することが主な目的であったのに 対し、この実施の形態 4では、ストッパーピン 8011は、投入完了時の連結板 8が時計 方向及び反時計方向のいずれにも回動することを防止し、投入完了時の連結板 8の 回転角度を完全に維持することを目的として設けられている。  [0028] In the third embodiment, the stopper pin 801 is mainly intended to prevent the connecting plate 8 and the shaft 9 from rotating further counterclockwise beyond the insertion completion position. In this Embodiment 4, the stopper pin 8011 prevents the connecting plate 8 at the completion of the insertion from rotating in either the clockwise direction or the counterclockwise direction, and the rotation angle of the connecting plate 8 at the completion of the insertion is completely set. It is provided for the purpose of maintaining.
[0029] 実施の形態 4では図 7に示す通り、投入完了後のシャフト 9、連結ピン 71、リンクピン 4のそれぞれの軸心が一直線上に揃っておらず、シャフト 9の軸心 91を中心として、 連結ピン 71が、リンクピン 4より時計方向に進んだ位置にある。従って短絡等で大電 流が接点間に流れた時に発生する大きな電磁反発力により、連結板 8に時計方向の 大きな回転力が作用する力 連結板 8の切欠き部に係合しているストッパーピン 801 1によって連結板 8及びシャフト 9の回転は防止され、短時間通電性能は達成される。 その他の構成は、実施の形態 1と同様である。  In the fourth embodiment, as shown in FIG. 7, the shafts 9, the connecting pins 71, and the link pins 4 after the completion of the insertion are not aligned in a straight line, but centered on the shaft 91 of the shaft 9. As a result, the connecting pin 71 is at a position advanced in the clockwise direction from the link pin 4. Therefore, a large electromagnetic repulsive force generated when a large current flows between the contacts due to a short circuit or the like, a force that causes a large clockwise rotation force to the connecting plate 8 A stopper that engages the notch of the connecting plate 8 The rotation of the connecting plate 8 and the shaft 9 is prevented by the pins 801 1 and a short-time energization performance is achieved. Other configurations are the same as those in the first embodiment.
[0030] 尚、図 7では、連動軸 1601およびストッパーレバー 1602を用いて駆動軸 16とスト ッパーピン 8011を機械的に連動させているが、電磁操作機構 10の動作とストッパー ピン 8011の動作を電気的に連動させる等、他の手段で連動させてもよ!、。  In FIG. 7, the drive shaft 16 and the stopper pin 8011 are mechanically interlocked using the interlocking shaft 1601 and the stopper lever 1602, but the operation of the electromagnetic operating mechanism 10 and the operation of the stopper pin 8011 are electrically connected. You can link them by other means, such as automatically linking them!
[0031] 実施の形態 5  [0031] Embodiment 5
図 8及び図 9は、この発明の実施の形態 5に係る遮断器の主要部の構成図で、図 8 は引外し完了状態、図 9は投入完了状態を示す。図 8、図 9に示すように、連結板 8に 設けられた連結穴 810は、 L字型に屈曲して繋がる第 1の穴部 811と第 2の穴部 812 とから構成されている。図 8に示す引外し完了状態では、駆動軸 16に設けられた連 結ピン 161は連結穴 810の第 2の穴部に嵌合して 、る力 図 9に示す投入完了状態 では、連結ピン 161は連結穴 810の第 1の穴部 811に嵌合する。  8 and 9 are configuration diagrams of the main part of the circuit breaker according to Embodiment 5 of the present invention. FIG. 8 shows a trip completion state, and FIG. 9 shows a closing completion state. As shown in FIGS. 8 and 9, the connection hole 810 provided in the connection plate 8 is composed of a first hole 811 and a second hole 812 that are bent and connected in an L shape. In the tripping complete state shown in FIG. 8, the connecting pin 161 provided on the drive shaft 16 is fitted in the second hole of the connecting hole 810, and in the closing completion state shown in FIG. 9, the connecting pin 161 fits into the first hole 811 of the connecting hole 810.
他の構成は実施の形態 1と同様である。  Other configurations are the same as those in the first embodiment.
[0032] 可動接点 311の投入完了状態では、操作アーム 7に作用する負荷力 Faによって、 図 9に示す通り、連結板 8を介して連結ピン 161に負荷分力 Fb2が矢印の方向に作 用する。連結ピン 161と係合する連結穴 810の第 1の穴部 811の接触面力 駆動軸 1 6の移動方向と平行であれば負荷分力 Fb2は図 9の水平方向成分のみであり、図 9 の上下方向、即ち電磁操作機構 10の駆動軸 16の移動方向には、負荷分力は、製 作のばらつきによる微小成分を除いて殆んど発生しない。従って、電磁操作機構 10 には投入完了状態を維持するのに大きな保持力は要求されず、電磁操作機構 10を 大型化することなく投入完了状態を維持することができる。 [0032] When the movable contact 311 is fully inserted, the load force Fa acting on the operating arm 7 causes the load component Fb2 to act on the connecting pin 161 via the connecting plate 8 as shown in FIG. To do. Contact surface force of the first hole portion 811 of the connecting hole 810 that engages with the connecting pin 161 If the driving shaft 16 is parallel to the moving direction of the load 6, the load component force Fb2 is only the horizontal component of FIG. In the vertical direction, that is, in the moving direction of the drive shaft 16 of the electromagnetic operating mechanism 10, almost no load component force is generated except for a minute component due to manufacturing variations. Therefore, a large holding force is not required for the electromagnetic operation mechanism 10 to maintain the closing completion state, and the closing completion state can be maintained without increasing the size of the electromagnetic operation mechanism 10.
[0033] 実施の形態 6  [0033] Embodiment 6
図 10は、この発明の実施の形態 6に係る遮断器の主要部の構成図である。この実 施の形態 6では、図 10に示すように、連結穴 820は、約 120度の角度で屈曲して繋 力 ¾第 1の穴部 821と第 2の穴部 822を備えている。可動接点の投入完了状態では、 駆動軸(図示せず)に設けられた連結ピン 161は、連結穴 820の第 2の穴部 822の傾 斜した壁部に係合して!/、る。  FIG. 10 is a configuration diagram of a main part of a circuit breaker according to Embodiment 6 of the present invention. In the sixth embodiment, as shown in FIG. 10, the connection hole 820 includes a first hole 821 and a second hole 822 that are bent at an angle of about 120 degrees and connected. When the movable contact is completely inserted, the connecting pin 161 provided on the drive shaft (not shown) is engaged with the inclined wall portion of the second hole portion 822 of the connecting hole 820! /
[0034] 図 10は投入完了状態に於ける、連結ピン 161と連結穴 820との係合状態を示し、 操作アームに作用する図 9に示した負荷力 Faと同様な負荷力 Fa (図示せず)によつ て連結ピン 161には負荷分力 Fb3が矢印の方向に作用する力 図 10に示すように X 軸、 y軸の方向を定義すると、駆動軸の移動方向と同一方向の負荷分力 Fb3yが矢 印方向に生じ、電磁操作機構の駆動軸に作用する。一方、連結ピン 161と第 2の穴 部 822の壁部と係合による摩擦力 Fcが、第 2の穴部 822の壁部に沿って作用し、そ の y軸方向の分力が駆動軸の移動方向に摩擦分力 Fcyとして作用する。  [0034] FIG. 10 shows an engagement state between the connecting pin 161 and the connecting hole 820 in the loading completion state, and a load force Fa (not shown) similar to the load force Fa shown in FIG. Therefore, if the X-axis and y-axis directions are defined as shown in Fig. 10, the load in the same direction as the drive shaft movement direction is applied to the connecting pin 161. A component force Fb3y is generated in the direction of the arrow and acts on the drive shaft of the electromagnetic operating mechanism. On the other hand, the frictional force Fc due to the engagement between the connecting pin 161 and the wall portion of the second hole portion 822 acts along the wall portion of the second hole portion 822, and the component force in the y-axis direction is the drive shaft. Acts as a frictional force Fcy in the direction of movement.
に、  In addition,
Fcy= μ,Fb3  Fcy = μ, Fb3
ただし、 μは摩擦係数である。  Where μ is the coefficient of friction.
[0035] この摩擦分力 Fcyは、負荷分力 Fb3yとは逆方向であり、連結ピン 161を介して駆 動軸を引外し方向に移動させようとする負荷分力 Fb3yを減殺する。摩擦力 Fcは連 結穴 820の第 2の穴部 822の側面の摩擦係数 に比例するので、連結穴 820の少 なくとも第 2の穴部 822の壁部に大きな摩擦係数を有する高摩擦部材を配置して、摩 擦力 Fcを積極的に連結ピン 161に作用させれば、遮断器の投入完了状態を維持す る大きな摩擦分力 Fcyが発生し、大電流通電時の耐電磁反発力特性を向上させるこ とがでさる。 This frictional component force Fcy is in the opposite direction to the load component force Fb3y, and reduces the load component force Fb3y that attempts to move the drive shaft in the direction of tripping via the connecting pin 161. Since the frictional force Fc is proportional to the friction coefficient of the side surface of the second hole 822 of the connecting hole 820, the high friction member having a large friction coefficient on the wall of at least the second hole 822 of the connecting hole 820. If the frictional force Fc is applied to the connecting pin 161 positively, a large frictional force Fcy that maintains the circuit breaker is fully generated is generated. It is possible to improve the characteristics.
尚、その他の構成は実施の形態 1と同様である。 [0036] 実施の形態 7 Other configurations are the same as those in the first embodiment. Embodiment 7
図 11は、この発明の実施の形態 7に係る遮断器の主要部の構成図である。 遮断器の投入完了状態で前記した負荷力 Faが連結ピン 161に作用した場合、駆 動軸 16の移動方向に平行な方向(y軸方向)の負荷分力と、これに垂直な方向(X軸 方向)の負荷分力とが駆動軸 16に作用し、垂直方向 (X方向)の負荷分力の影響で 駆動軸 16が変形する可能性がある。  FIG. 11 is a configuration diagram of a main part of a circuit breaker according to Embodiment 7 of the present invention. When the load force Fa described above is applied to the connecting pin 161 when the circuit breaker is fully charged, the load component force in the direction parallel to the direction of movement of the drive shaft 16 (y-axis direction) and the direction perpendicular to this (X (Axial direction) load component force acts on the drive shaft 16, and the drive shaft 16 may be deformed by the influence of the load component force in the vertical direction (X direction).
[0037] そこで図 11に示す実施の形態 7では、電磁操作機構 10の駆動軸 16を長くし、この 駆動軸 16を、連結板 8の両側で一対の軸受 171、 172により支持するようにしている 。連結ピン 161は、これらの軸受 171、 172の間で駆動軸 16に設けられ、連結板 8の 連結穴 810に嵌合している。 Therefore, in Embodiment 7 shown in FIG. 11, the drive shaft 16 of the electromagnetic operating mechanism 10 is lengthened, and this drive shaft 16 is supported by a pair of bearings 171 and 172 on both sides of the connecting plate 8. Yes. The connection pin 161 is provided on the drive shaft 16 between the bearings 171 and 172 and is fitted in the connection hole 810 of the connection plate 8.
この実施の形態 7によれば、一対の軸受 171、 172により駆動軸 16を支持している ので、駆動軸 7の変形を防止し、大電流通電時の耐電磁力特性の向上を図ることが できる。  According to the seventh embodiment, since the drive shaft 16 is supported by the pair of bearings 171 and 172, it is possible to prevent deformation of the drive shaft 7 and to improve the electromagnetic resistance characteristics when a large current is applied. it can.
[0038] 実施の形態 8 [0038] Embodiment 8
低電圧遮断器は一般に 3相回路に適用されることが多ぐ 3相の各相に対応する固 定接点及び可動接点を備えた 3相用遮断器が普及している。この 3相用遮断器の場 合、電磁操作機構による操作の仕方として、 3相一括して投入及び引外しの操作を 行っても良ぐ或 ヽは各相それぞれ個別に投入及び引外し操作するようにしても良 ヽ 図 12は、この発明の実施の形態 8に係る 3相用遮断器の主要部の構成を示し、各 相を 1個の電磁操作機構 10により一括操作するようにしたものである。図 12に於いて 、シャフト 9は同一構造の 3個の連結板 8a、 8b、 8cを固定している。これらの連結板 8 a、 8b、 8cは、それぞれ可動接点 31 la、 311b, 311cに連結されている。各連結板 8 a、 8b、 8cと可動接点、 31 la、 311b, 311cとの連結は、実施の形態 1〜7の!ヽずれ力 と同様に構成されている。可動接点 311a、 311b, 311cは、それぞれ 3相の各相の 導体に接続される固定接点 21 la、 211b, 211cに対して投入され又は引外される。  Low voltage circuit breakers are often applied to three-phase circuits. Three-phase circuit breakers with fixed and movable contacts corresponding to each of the three phases are widespread. In the case of this three-phase circuit breaker, as the method of operation by the electromagnetic operation mechanism, it is possible to perform the three-phase batching and tripping operations. Alternatively, each phase can be turned on and off individually. However, FIG. 12 shows the configuration of the main part of the three-phase circuit breaker according to Embodiment 8 of the present invention, in which each phase is collectively operated by one electromagnetic operation mechanism 10. It is. In FIG. 12, the shaft 9 fixes three connecting plates 8a, 8b and 8c having the same structure. These connecting plates 8a, 8b and 8c are connected to the movable contacts 31la, 311b and 311c, respectively. Each connection plate 8a, 8b, 8c and the movable contact 31la, 311b, 311c are connected in the same manner as the shifting force of the first to seventh embodiments. The movable contacts 311a, 311b, and 311c are inserted into or removed from the fixed contacts 21la, 211b, and 211c connected to the conductors of the three phases, respectively.
[0039] 電磁操作機構 10の駆動軸 16は 1個の連結板 8bに連結されており、この連結板 8b を駆動してシャフト 9を回動させ、 3相一括して投入または引外し操作を行う。連結板 8bと駆動軸 16の連結は、実施の形態 1〜7のいずれかと同様に構成されている。 この実施の形態 8によれば、実施の形態 1〜7のいずれかと同様の効果を有した 3 相用の遮断器を得ることができる。 [0039] The drive shaft 16 of the electromagnetic operating mechanism 10 is connected to one connecting plate 8b, and this connecting plate 8b is driven to rotate the shaft 9, so that the three phases can be turned on or off all at once. Do. Connecting plate The connection between 8b and drive shaft 16 is configured in the same manner as in any one of the first to seventh embodiments. According to the eighth embodiment, a three-phase circuit breaker having the same effect as any of the first to seventh embodiments can be obtained.
[0040] 実施の形態 9 [0040] Embodiment 9
図 13は、この発明の実施の形態 9に係る遮断器の主要部の構成を示し、電磁操作 機構 10の駆動軸 16と連結する連結板 8dを別個に設けたものである。その他の構成 は実施の形態 8と同様である。  FIG. 13 shows the configuration of the main part of the circuit breaker according to Embodiment 9 of the present invention, in which a connecting plate 8d that connects to the drive shaft 16 of the electromagnetic operating mechanism 10 is provided separately. Other configurations are the same as those in the eighth embodiment.
この実施の形態 9によれば、可動接点 311a、 311b, 311cと連結する連結板 8a、 8 b、 8cと、駆動軸 16と連結する連結板 8dとを、異なる角度でシャフト 9に固定し、それ ぞれの連結に最適の構成とすることができる。  According to this Embodiment 9, the connecting plates 8a, 8b, 8c connected to the movable contacts 311a, 311b, 311c and the connecting plate 8d connected to the drive shaft 16 are fixed to the shaft 9 at different angles, It is possible to obtain an optimum configuration for each connection.
[0041] 以上の各実施の形態 1〜9では、通常の可動接点及び固定接点を用いたが、これ らの接点を真空バルブにより構成しても良いことは勿論である。 In each of the above embodiments 1 to 9, the normal movable contact and the fixed contact are used, but it is needless to say that these contacts may be constituted by a vacuum valve.
産業上の利用可能性  Industrial applicability
[0042] この発明に係る遮断器は、低電圧配電線等を開閉する遮断器として利用すること ができる。 [0042] The circuit breaker according to the present invention can be used as a circuit breaker for opening and closing a low-voltage distribution line or the like.
図面の簡単な説明  Brief Description of Drawings
[0043] [図 1]この発明の実施の形態 1に係る遮断器を示す構成図である。 FIG. 1 is a configuration diagram showing a circuit breaker according to Embodiment 1 of the present invention.
[図 2]この発明の実施の形態 1に係る遮断器の動作を説明するための主要部の構成 図である。  FIG. 2 is a configuration diagram of a main part for explaining the operation of the circuit breaker according to Embodiment 1 of the present invention.
[図 3]この発明の実施の形態 1に係る遮断器の動作を説明するための主要部の構成 図である。  FIG. 3 is a configuration diagram of a main part for explaining the operation of the circuit breaker according to Embodiment 1 of the present invention.
[図 4]この発明の実施の形態 1に係る遮断器の動作を説明するためのグラフである。  FIG. 4 is a graph for explaining the operation of the circuit breaker according to Embodiment 1 of the present invention.
[図 5]この発明の実施の形態 2に係る遮断器の主要部の構成図である。  FIG. 5 is a configuration diagram of a main part of a circuit breaker according to Embodiment 2 of the present invention.
[図 6]この発明の実施の形態 3に係る遮断器の主要部の構成図である。  FIG. 6 is a configuration diagram of a main part of a circuit breaker according to Embodiment 3 of the present invention.
[図 7]この発明の実施の形態 4に係る遮断器の主要部の構成図である。  FIG. 7 is a configuration diagram of a main part of a circuit breaker according to Embodiment 4 of the present invention.
[図 8]この発明の実施の形態 5に係る遮断器の主要部の構成図である。  FIG. 8 is a configuration diagram of a main part of a circuit breaker according to Embodiment 5 of the present invention.
[図 9]この発明の実施の形態 5に係る遮断器の動作を説明するための主要部の構成 図である。 [図 10]この発明の実施の形態 6に係る遮断器の主要部の構成図である。 FIG. 9 is a configuration diagram of the main part for explaining the operation of the circuit breaker according to Embodiment 5 of the present invention. FIG. 10 is a configuration diagram of a main part of a circuit breaker according to Embodiment 6 of the present invention.
[図 11]この発明の実施の形態 7に係る遮断器の主要部の構成図である。 FIG. 11 is a configuration diagram of a main part of a circuit breaker according to Embodiment 7 of the present invention.
[図 12]この発明の実施の形態 8に係る遮断器の主要部の構成図である。 FIG. 12 is a configuration diagram of a main part of a circuit breaker according to Embodiment 8 of the present invention.
[図 13]この発明の実施の形態 9に係る遮断器の主要部の構成図である。 符号の説明 FIG. 13 is a configuration diagram of a main part of a circuit breaker according to Embodiment 9 of the present invention. Explanation of symbols
1 絶縁筐体 1 Insulated housing
101、 102 空間部  101, 102 space
103 絶縁壁  103 Insulating wall
21、 22 固定導体  21, 22 Fixed conductor
211、 211a, 211b, 211c 固定接点  211, 211a, 211b, 211c Fixed contact
3 可動子  3 Mover
311、 311a、 311b、 311c 可動接点  311, 311a, 311b, 311c Movable contact
4 リンクピン 4 Link pin
5 接圧ばね 5 Contact spring
6 可撓導体 6 Flexible conductor
7 操作アーム 7 Operation arm
71、 161、 171、 172、 1611、 1612 連結ピン  71, 161, 171, 172, 1611, 1612 Connecting pin
8、 8a、 8b、 8c、 8d 連結板 8, 8a, 8b, 8c, 8d connecting plate
81、 810、 820 連結穴 81, 810, 820 Connecting hole
811、 821 第 1の穴部  811, 821 1st hole
812、 822 第 2の穴部  812, 822 2nd hole
9 シャフト 9 Shaft
91 軸心  91 axis
10 電磁操作機構  10 Electromagnetic operation mechanism
11 ヨーク  11 York
12 第 1のコイル  12 First coil
13 第 2のコイル 16 駆動軸 13 Second coil 16 Drive shaft
17 連結リンク 801、 8011 ス卜ッノ 802 ピン受け 1601 連動軸 1602 スト、;/ノ ーレノ 1613 支持ピン 171、 172 軸受 17 Link 801, 8011 Snowno 802 Pin holder 1601 Interlock shaft 1602 Stroke ;; / Noreno 1613 Support pin 171, 172 Bearing

Claims

請求の範囲 The scope of the claims
[1] 固定接点を有する固定導体と、可動接点を有し該可動接点を前記固定接点に対し て投入し又は引外すよう駆動される可動子と、軸心を中心として回動可能に設けられ たシャフトと、前記軸心に対して垂直方向に第 1の所定距離を隔てて第 1の連結部に より前記シャフトに回動自在に連結されると共に前記可動子に第 2の連結部により連 結された操作アームと、前記第 1の連結部に対し前記シャフトの周方向の異なる位置 に設けられた第 3の連結部により前記シャフトに連結され前記軸心に対して第 2の所 定距離を隔てて直交する直線上で移動するよう駆動される駆動軸を有する電磁操作 手段とを備え、該電磁操作手段を付勢して前記駆動軸を駆動することにより前記シャ フトを回転させて前記操作アームを介して前記可動子を駆動するようにしたことを特 徴とする遮断器。  [1] A fixed conductor having a fixed contact, a mover having a movable contact, which is driven so as to be inserted into or pulled away from the fixed contact, and a pivotable center. The shaft is pivotally connected to the shaft by a first connecting portion at a first predetermined distance in a direction perpendicular to the axis, and is connected to the movable member by a second connecting portion. A second predetermined distance with respect to the shaft that is connected to the shaft by a connected operating arm and a third connecting portion provided at a different position in the circumferential direction of the shaft with respect to the first connecting portion. An electromagnetic operating means having a drive shaft driven so as to move on a straight line that is orthogonal to each other, and the shaft is rotated by driving the drive shaft by energizing the electromagnetic operating means. The mover is driven through the operation arm. Breaker to feature that it has to.
[2] 前記固定接点と前記可動接点との投入が完了したとき、前記シャフトの軸心と前記 第 1の連結部と前記第 2の連結部とがほぼ一直線上に並ぶよう構成したことを特徴と する請求項 1に記載の遮断器。  [2] The shaft center, the first connecting portion, and the second connecting portion are configured to be aligned substantially in a straight line when the fixed contact and the movable contact are completed. The circuit breaker according to claim 1.
[3] 前記投入が完了したとき、前記シャフトの軸心と前記第 1の連結部と前記第 2の連 結部とを前記一直線上に維持するストッパー手段を設けたことを特徴とする請求項 2 に記載の遮断器。 [3] The stopper means for maintaining the axial center of the shaft, the first connecting portion, and the second connecting portion on the straight line when the charging is completed is provided. Circuit breaker described in 2.
[4] 前記可動接点を前記固定接点から引外すとき、前記ストッパー手段による前記維 持を解除することを特徴とする請求項 3に記載の遮断器。  4. The circuit breaker according to claim 3, wherein when the movable contact is pulled away from the fixed contact, the maintenance by the stopper means is released.
[5] 前記可動子操作アームと前記駆動軸とは、前記シャフトに固定された連結部材を 介して前記シャフトに連結されたことを特徴とする請求項 1に記載の遮断器。 5. The circuit breaker according to claim 1, wherein the mover operating arm and the drive shaft are connected to the shaft via a connecting member fixed to the shaft.
[6] 前記連結部材は板状部材で構成され、前記第 3の連結部は、前記連結部材に設 けた連結穴と前記駆動軸に設けられ前記連結穴に摺動可能に嵌合する連結ピンと により構成されたことを特徴とする請求項 5に記載の遮断器。 [6] The connecting member includes a plate-like member, and the third connecting portion includes a connecting hole provided in the connecting member and a connecting pin provided in the driving shaft and slidably fitted in the connecting hole. The circuit breaker according to claim 5, comprising:
[7] 前記連結穴は、前記固定接点と前記可動接点との投入が完了したとき前記駆動軸 の駆動される方向と平行に延びる内壁を備えた屈曲部を有し、前記投入の完了した ときに前記連結ピンが前記屈曲部の前記内壁に接触することを特徴とする請求項 6 に記載の遮断器。 前記連結穴の屈曲部の内壁に、該内壁の摩擦係数より大きな摩擦係数を有する高 摩擦部材を設けたことを特徴とする請求項 7に記載の遮断器。 [7] The connecting hole has a bent portion having an inner wall extending parallel to a direction in which the drive shaft is driven when the insertion of the fixed contact and the movable contact is completed, and when the insertion is completed The circuit breaker according to claim 6, wherein the connecting pin contacts the inner wall of the bent portion. 8. The circuit breaker according to claim 7, wherein a high friction member having a friction coefficient larger than a friction coefficient of the inner wall is provided on the inner wall of the bent portion of the connection hole.
前記駆動軸は、前記連結ピンが設けらた位置の両側で軸受けにより支持されて 、 る事を特徴とする請求項 6〜8のいずれかに記載の遮断器。  9. The circuit breaker according to claim 6, wherein the drive shaft is supported by bearings on both sides of the position where the connecting pin is provided.
PCT/JP2005/013396 2005-07-21 2005-07-21 Breaker WO2007010608A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2005/013396 WO2007010608A1 (en) 2005-07-21 2005-07-21 Breaker
DE112005003632.4T DE112005003632B4 (en) 2005-07-21 2005-07-21 breakers
KR1020087001068A KR100967249B1 (en) 2005-07-21 2005-07-21 Breaker
CN2005800510291A CN101223619B (en) 2005-07-21 2005-07-21 Breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013396 WO2007010608A1 (en) 2005-07-21 2005-07-21 Breaker

Publications (1)

Publication Number Publication Date
WO2007010608A1 true WO2007010608A1 (en) 2007-01-25

Family

ID=37668497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013396 WO2007010608A1 (en) 2005-07-21 2005-07-21 Breaker

Country Status (4)

Country Link
KR (1) KR100967249B1 (en)
CN (1) CN101223619B (en)
DE (1) DE112005003632B4 (en)
WO (1) WO2007010608A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086670A1 (en) * 2010-01-13 2011-07-21 三菱電機株式会社 Electromagnetically-operated switching device
US20140218139A1 (en) * 2013-02-01 2014-08-07 General Electric Company Electrical operator for circuit breaker and method thereof
US9899177B2 (en) 2015-12-28 2018-02-20 Lsis Co., Ltd. Delay time generation apparatus for air circuit breaker

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052288B (en) * 2017-08-21 2022-02-08 三菱电机株式会社 Circuit breaker

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141473A (en) * 1977-05-17 1978-12-09 Terasaki Denki Sangyo Kk Air circuit breaker
JPS55121233A (en) * 1979-03-14 1980-09-18 Terasaki Denki Sangyo Kk Atmosphere breaker
JPS59182823U (en) * 1983-05-24 1984-12-05 日新電機株式会社 Circuit breaker tripping device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE650810C (en) * 1933-02-12 1937-10-02 Siemens Schuckertwerke Akt Ges Electromagnetic drive for executing two movements in opposite directions, especially for switching electrical switches on and off
IT1313278B1 (en) * 1999-07-30 2002-07-17 Abb Ricerca Spa LOW VOLTAGE POWER SWITCH.
DE10049728C2 (en) * 2000-09-28 2003-01-02 Siemens Ag Drive train for a movable contact of an electrical switch
DE60143410D1 (en) * 2001-08-02 2010-12-16 Mitsubishi Electric Corp AIR BREAKER SWITCH
DE10146899A1 (en) * 2001-09-24 2003-04-10 Abb Patent Gmbh Electromagnetic actuator, in particular electromagnetic drive for a switching device
JP4230246B2 (en) * 2002-08-27 2009-02-25 三菱電機株式会社 Operating device and switchgear using the operating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141473A (en) * 1977-05-17 1978-12-09 Terasaki Denki Sangyo Kk Air circuit breaker
JPS55121233A (en) * 1979-03-14 1980-09-18 Terasaki Denki Sangyo Kk Atmosphere breaker
JPS59182823U (en) * 1983-05-24 1984-12-05 日新電機株式会社 Circuit breaker tripping device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086670A1 (en) * 2010-01-13 2011-07-21 三菱電機株式会社 Electromagnetically-operated switching device
JP5490147B2 (en) * 2010-01-13 2014-05-14 三菱電機株式会社 Electromagnetic operation switchgear
US8754730B2 (en) 2010-01-13 2014-06-17 Mitsubishi Electric Corporation Electromagnetically operated switching device
CN102656655B (en) * 2010-01-13 2015-02-11 三菱电机株式会社 Electromagnetically-operated switching device
US20140218139A1 (en) * 2013-02-01 2014-08-07 General Electric Company Electrical operator for circuit breaker and method thereof
US9184014B2 (en) * 2013-02-01 2015-11-10 General Electric Company Electrical operator for circuit breaker and method thereof
US9899177B2 (en) 2015-12-28 2018-02-20 Lsis Co., Ltd. Delay time generation apparatus for air circuit breaker

Also Published As

Publication number Publication date
DE112005003632T5 (en) 2008-05-29
CN101223619A (en) 2008-07-16
CN101223619B (en) 2012-05-30
KR20080026613A (en) 2008-03-25
DE112005003632B4 (en) 2014-07-24
KR100967249B1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
AU2022203251B2 (en) Dropout recloser
JP4578433B2 (en) Breaker
KR900007274B1 (en) Circuit breaker
KR920006061B1 (en) Molded case circuit breaker with single solenoid operator for rectilinear handle movement
JP5276523B2 (en) Circuit breaker
KR20140004202A (en) Bi-stable electromagnetic relay with x-drive motor
JP2012043540A (en) Air circuit breaker
JP4174495B2 (en) Switchgear switchgear
JP4840356B2 (en) Overcurrent relay
JP5093081B2 (en) Electromagnetic actuator
WO2007010608A1 (en) Breaker
EP2270823A1 (en) Multi-phase medium voltage contactor
CN102299030A (en) Magnetic system and installing switch device with magnetic system
JP4951597B2 (en) Breaker
CN101350257A (en) Bistable permanent magnet mechanism
JP2006332001A (en) Thermal relay
RU2521609C2 (en) Vacuum switch
CN220509924U (en) Switching structure and contactor
CN111599650A (en) Switching-off mechanism, circuit breaker and switching-off reason indication method
WO2013164027A1 (en) Electrical switch and electromagnetic assembly therefor
JPH11185592A (en) Circuit breaker and its voltage trip device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580051029.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050036324

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005003632

Country of ref document: DE

Date of ref document: 20080529

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05766390

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607