WO2007007575A1 - Humidification apparatus - Google Patents

Humidification apparatus Download PDF

Info

Publication number
WO2007007575A1
WO2007007575A1 PCT/JP2006/313215 JP2006313215W WO2007007575A1 WO 2007007575 A1 WO2007007575 A1 WO 2007007575A1 JP 2006313215 W JP2006313215 W JP 2006313215W WO 2007007575 A1 WO2007007575 A1 WO 2007007575A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
infrared
filter
passage
humidifier
Prior art date
Application number
PCT/JP2006/313215
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Inagaki
Mio Oribe
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005237171A external-priority patent/JP4774860B2/en
Priority claimed from JP2005264962A external-priority patent/JP2007078222A/en
Priority claimed from JP2006137567A external-priority patent/JP4725410B2/en
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007007575A1 publication Critical patent/WO2007007575A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/025Air-humidification, e.g. cooling by humidification by evaporation of water in the air using electrical heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
    • F24F6/10Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements heated electrically
    • F24F6/105Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements heated electrically using the heat of lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a humidifying device that atomizes water and humidifies air, and relates to a humidifying device that efficiently sterilizes microorganisms contained in water and air and exhibits humidification performance with energy saving.
  • a germicidal lamp is incorporated in the main body, and water particles are irradiated with the germicidal lamp.
  • a conventional humidifier as shown in FIG. 13, water particles 102 finely sized by an ultrasonic vibrator 101 are irradiated with light from a germicidal lamp 103 to kill bacteria and fungi in the water particles 102.
  • the method is known.
  • Such a conventional humidifier is disclosed in, for example, Japanese Utility Model Publication No. 61-76230.
  • microorganisms propagated in a water tank are ejected together with humidified air in a humidifier using ultrasonic waves.
  • a method of attaching a heater to the water tank, heating the water, and suppressing the growth of microorganisms in the water tank has been taken.
  • a heater 107 is provided inside the water tank of the ultrasonic humidifier 106 and the temperature sensor 108 is used to maintain a temperature at which microorganisms do not grow in the water tank.
  • Such a conventional humidifier is disclosed in, for example, Japanese Patent Laid-Open No. 63-306338.
  • insoluble ions in tap water used as humidified water are dissolved in water particles and ejected together with the humidified air, and the water is vaporized, and then furniture and electrical appliances are used. Precipitates as white powder on the surface.
  • a method of separating inorganic ions by placing a ceramic heater in humidified air is used.
  • the water particles 112 finely pulverized by the ultrasonic vibrator 111 are passed through a ceramic heater 113 having a large number of fine ports provided at the ejection port. .
  • a method for filtering impurities in the water particles 112 is known. like this
  • Such a conventional humidifier is disclosed, for example, in Japanese Utility Model Publication No. 59-184021.
  • a method of irradiating the water with infrared rays, heating and evaporating the water, and the like are taken.
  • a conventional humidifier as shown in FIG. 16, the water film 127 generated from the water jet nozzle 121 by the action of the water pipe 122 and the circulation pump 123 is irradiated with infrared rays from the infrared lamp 126 to heat the water.
  • Such a conventional humidifier is disclosed in, for example, Japanese Patent Application Laid-Open No. 56-82330.
  • a heating medium installed in water with a halogen lamp is heated to evaporate water.
  • a heating medium installed in water with a halogen lamp is heated to evaporate water.
  • a conventional humidifier as shown in FIG. 17, a light absorber 133 is installed inside a water vapor generating water storage tank 132 formed by an evaporating dish 131 made of stone glass, and the light absorber 133 is attached by a halogen lamp 134. It has a structure to heat.
  • a method is known in which the light absorber 133 installed below the water level 135 is heated to evaporate the surrounding water and is discharged from the steam hood 136.
  • Such a conventional humidifier is disclosed in, for example, Japanese Patent Laid-Open No. 10-281505.
  • the humidifying device of the present invention has a atomizing device for atomizing water, a passage, an infrared ray generating device, and a filter, the passage allows water particles atomized by the fine particle device to pass through,
  • the infrared generator generates infrared rays to form a high temperature region in the passage, and water particles that have passed through the high temperature region pass through the filter.
  • FIG. 1 is a schematic cross-sectional view showing a humidifier according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a humidifying device according to another aspect of Embodiment 1 of the present invention.
  • FIG. 3 is a schematic perspective view showing a filter used in the humidifying device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a humidifying device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a humidifier according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a humidifying device according to another aspect of Embodiment 3 of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a humidifier according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic perspective view showing a humidifying device according to Embodiment 5 of the present invention.
  • FIG. 9 is a characteristic diagram showing the humidifying performance of the humidifying device shown in FIG.
  • FIG. 10 is a characteristic diagram showing the sterilization performance of the humidifier shown in FIG.
  • FIG. 11 is a schematic cross-sectional view showing a humidifier according to Embodiment 6 of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing a humidifying device according to Embodiment 7 of the present invention.
  • FIG. 13 is a schematic cross-sectional view of a conventional humidifier.
  • FIG. 14 is a schematic perspective view of a conventional humidifier.
  • FIG. 15 is a schematic sectional view of a conventional humidifier.
  • FIG. 16 is a schematic cross-sectional view of a conventional humidifier.
  • FIG. 17 is a schematic cross-sectional view of a conventional humidifier.
  • FIG. 18 is a schematic cross-sectional view of a conventional humidifier.
  • FIG. 1 shows a schematic cross-sectional view of a humidifier according to Embodiment 1 of the present invention.
  • a humidifier 10 includes a main body 50 and fine particles stored in the main body 50, respectively.
  • a device 60, a passage 14, an infrared heat source 15 constituting an infrared generator, and a filter 17 are provided.
  • the ultrasonic transducer 12 constitutes a atomization device 60 that atomizes the water 43.
  • the water 43 supplied from the water storage tank 11 is atomized by the ultrasonic vibrator 12, and water particles 13 are generated to humidify the air.
  • the water particles 13 travel through the passage 14 and pass through the high temperature region 16 created by the infrared heat source 15.
  • a filter 17 is installed after the infrared heat source 15. High temperature region 16 and water particles 13 passing through high temperature region 16 are heated by infrared irradiation.
  • the water particles 13 that have passed through the filter 17 become humidified air 53 and are discharged to the outside of the humidifier 10.
  • the water storage tank 11 and the water tank 31 constitute a water supply device that supplies water 43.
  • the humidifier 10 sterilizes the water particles 13 by passing the water particles 13 through a high temperature region 16 created by the infrared heat source 15. Since the water particles 13 are atomized and have a large contact area with the air, the water particles 13 are effectively heated. Further, since the infrared rays are directly irradiated on the surface of the water constituting the water particles 13, the water itself has a high infrared absorptance, so that the heating is performed efficiently. As a result, compared to heating using an air heater such as a sheathed heater, heat energy is efficiently applied to water with lower input energy, and microorganisms such as bacteria and fungi contained in water 43 or water particles 13 are removed. Can be killed. The temperature sufficient for killing microorganisms is 50 ° C or higher, and if it is 75 ° C or higher, sterilization can be performed in a shorter time.
  • the temperature of the high temperature region 16 is not higher than the soft temperature of the resin.
  • the soft temperature is about 120 ° C, so the temperature of the high temperature region 16 is preferably 75 ° C to 120 ° C.
  • the temperature of the high temperature region 16 is preferably 75 ° C to 130 ° C.
  • the temperature of the high temperature region 16 may be higher because the heat-resistant temperature of the material is high.
  • the temperature of the high temperature region 16 is determined in consideration of the temperature characteristics of the heat resistant material used. If the passage 14 is made of a resin material, the passage Fourteen shapes can be freely selected, and molding is easy. As a result, an inexpensive humidifier 10 can be obtained.
  • the light absorption wavelength of water is about 1 to: L0 m.
  • a halogen heater or a carbon heater having a peak wavelength of 1 to 2 ⁇ m can be used.
  • a ceramic heater using a far infrared ray emitting material having a peak wavelength of 5 to 7 / ⁇ ⁇ can also be used.
  • a halogen heater or carbon heater is used as the infrared heat source 15, it can be heated to a higher temperature in a shorter time than a ceramic heater.
  • the high temperature region 16 reaches a stable temperature region within 10 seconds.
  • the temperature may continue to rise even after 60 seconds. Therefore, when a halogen heater or a carbon heater is used as the infrared heat source 15, it is easy to shorten the time until the humidifying operation of the humidifying device 10 is started.
  • the carbon heater has a feature that the output is higher than that of the halogen heater.
  • ceramic heaters are characterized by excellent impact resistance because they do not use glass on their surfaces.
  • an arbitrary heat source is selected according to the usage characteristics of the humidifier 10. If you can.
  • Filter 17 is The shape is not particularly limited as long as humidified air can pass through and white powder particles can be collected by filtration.
  • a filter such as foamed polyurethane or nonwoven fabric is used as the shape of the filter 17.
  • the filter 17 has a net shape, the size of the water particles 13 that can pass through and the size of the white powder particles that are collected by filtration can be easily selected by selecting the roughness of the mesh. Further, if the filter 17 has a shape in which the plates are laminated, the thickness of the filter 17, that is, the moisture containing the water particles 13, can be moistened even in a limited space by arranging the plates diagonally or bending the plates. The passing distance of air can be adjusted. If the passing distance of the filter 17 is long, the effect that the impurities are easily trapped by the filter 17 during the passage can be obtained even when the water particles 13 contain the impurities. Further, if the filter 17 has a Hercam shape or a shape in which plates are laminated, the filter 17 with a small pressure loss with respect to the air passing through the filter 17 is also effective as an air rectifying plate.
  • the white powder deposited on the surface of the infrared heat source 15 has a function of blocking the emission of infrared rays and a function of absorbing heat and lowering the surface temperature of the infrared heat source 15. For this reason, it is desirable to periodically clean the surface of the infrared heat source 15.
  • a ceramic heater is used for the infrared heat source 15
  • cleaning is difficult because there are fine irregularities on the ceramic surface.
  • a halogen heater or a carbon heater is used as the infrared heat source 15
  • the surface of the infrared heat source 15 can be easily cleaned because the heater surface is made of smooth glass.
  • an ultrasonic vibrator 12 can be used as the fine particle squeezing device 60 for finely scouring the water 43.
  • the ultrasonic transducer 12 is used as the fine particle device 60, the water particles 13 having a continuously stable size can be obtained with low power consumption.
  • the fine particle device 60 is not limited to the ultrasonic transducer 12.
  • a method of ejecting water with a fine nozzle force, a method of smashing water droplets against a rotating fan, and a method of electrostatic atomization can be used.
  • the fine particle device 60 is not particularly limited as long as the diameter of the water particles 13 is fine particles having a diameter of about 1 to 60 m and fine water droplets.
  • infrared rays irradiated to water are converted into heat by absorbing the surface force of water up to an area of several tens of meters. Therefore, water particles with a particle size of 60 / zm or more are not preferred because the temperature rise takes too much time. In addition, 1 ⁇ There is a mixture of fine particles of water below m!
  • the water 43 supplied from the water storage tank 11 is atomized by the ultrasonic vibrator 12 that oscillates at a frequency of 1.6 MHz.
  • the ultrasonic vibration generated by the ultrasonic transducer 12 is transmitted as the vibration wave 52 in the water 43 acting as a vibration transmitting body, and the water particles 13 with fine water surface force are generated.
  • the average particle diameter of the atomized water particles 13 is about 4 m.
  • the water particles 13 pass through a high temperature region 16 created by a halogen heater as an infrared ray heat source 15. Halogen heaters can easily create a high-temperature region 16 of up to about 2000 ° C when condensed.
  • the high temperature zone 16 gives the water particles 13 a temperature above 50 ° C sufficient for the microorganisms to die.
  • a halogen heater as the infrared heat source 15 is placed behind the halogen heater as a filter 17 by laminating an aluminum plate with a punch hole of a round hole having a diameter of about 2 mm.
  • the surface of the filter 17 is coated with a black heat-resistant paint containing copper having antibacterial action.
  • the filter 17 is hotter than the air temperature in the high temperature region 16 due to the absorption of infrared rays and the combined action of the high temperature region 16.
  • the water particles 13 are heated by the high temperature region 16 and the surface of the filter 17. As a result, vaporization of the water particles 13 is promoted, and fine humidified air 53 is released outside the humidifier 10.
  • a drying device 46 is provided for controlling heating or blowing operation when the humidifying operation of the humidifying device 10 is stopped, and drying the inside of the main body 50.
  • the drying device 46 may control heating and air blowing operation. By operating the drying device 46, the residual water in the main body 50 is effectively dried. This keeps the humidifier 10 hygienic.
  • FIG. 2 shows a schematic cross-sectional view of a humidifying device of another aspect according to Embodiment 1 of the present invention.
  • the passage 14 is divided into a passage front stage 14a and a passage rear stage 14b by a portion where the infrared heat source 15 is disposed.
  • the opening cross-sectional area Sb of the passage rear stage 14b is larger than the opening cross-sectional area Sa of the passage front stage 14a.
  • the passage 14 by configuring the passage 14 with heat-resistant grease, the vicinity of the passage 14 is heated. Therefore, the deformation of the passage 14 is prevented.
  • An example of a heat-resistant resin used in the passage 14 is polycarbonate or polypropylene.
  • the passage 14 is made of a metal material, so that the passage 14 is provided with heat resistance.
  • the metal material constituting the passage 14 has an infrared reflecting function, the infrared rays are diffusely reflected to promote heating of the water particles 13.
  • path 14 has an infrared reflective effect
  • the metal material having an infrared reflecting action include aluminum, iron, and stainless steel, and may be subjected to gold plating or oxidation prevention processing. Further, a force may be applied to the wall surface of the passage 14 with a white material such as acid titanium or acid zinc.
  • the passage 14 contains at least one antibacterial metal of which copper, silver, zinc, nickel power is also selected, when water particles 13 containing bacteria, fungi, or the like are present in the passage 14, Bacteria or fungi can be sterilized in the passage 14. This keeps the passage 14 hygienic.
  • the passage 14 includes two or more kinds of materials selected from copper, silver, zinc, nickel, aluminum, and carbon force, and these materials are electrically connected, electrical sterilization is performed.
  • Electrical sterilization means that charged bacteria are collected electrically. For example, negatively-charged bacteria are electrically attracted to the positively-charged passage 14 and electrically collected. Further, when the water particles 13 contain calcium ions, magnesium ions, etc., these ions are collected electrically. In this way, the passage 14 is kept hygienic.
  • the filter 17 installed in the passage 14 has an action of filtering evaporation residues such as inorganic ions contained in the water particles 13 or impurities such as microorganisms such as bacteria and fungi.
  • the shape of the filter 17 may be a Hercam shape, a laminated plate shape, a punching shape, a net shape, a foamed shape, or a shape with strong fibers.
  • the filter 17 is not limited as long as it has a shape that allows humidified air to pass through and allows filtration and collection of evaporation residues such as white powder and impurities such as microorganisms.
  • a filter such as foamed polyurethane or non-woven fabric is used as the shape of the filter 17.
  • the filter 17 has a mesh shape, the size of the water particles 13 that can pass through can be easily selected by changing the roughness of the mesh.
  • the filter 17 has a shape in which plates are laminated, the passing distance of the filter 17 can be adjusted even in a limited space by arranging the plates diagonally or bending the plates. If the passage distance of the filter 17 is long, the effect that the impurities are easily trapped by the filter 17 during passage can be obtained even when the water particles 13 contain the impurity. Further, if the filter 17 has a Hercam shape or a shape in which plates are laminated, the filter 17 having a small pressure loss with respect to the air passing through the filter 17 is also effective as an air rectifying plate.
  • the filter 17 is irradiated with infrared rays, the filter 17 is heated, and the vaporization promotion of the attached water particles 13 and the sterilizing effect of bacteria and fungi can be expected. It is preferable that the filter 17 contains a metal material because the temperature increases more easily as the heat capacity is better and the heat capacity is smaller. Examples of the metal material used for the filter 17 include aluminum, iron, and stainless steel. Furthermore, if the metal material used for the filter 17 has a dark color with a high infrared absorption rate, the temperature of the filter 17 is more likely to rise.
  • a method for imparting a dark color characteristic to the surface of the filter 17 for example, a method of baking the metal material constituting the filter 17 at a high temperature to form an acid film can be used. Further, a method of coating the metal material constituting the filter 17 with a dark heat-resistant material, a method of coating the surface of the filter 17 with a black heat-resistant paint, and the like can be used. The same effect can be obtained even when the filter 17 is not dark or formed by applying an infrared absorbing material to the filter 17.
  • An example of the infrared absorbing material is, for example, copper, iron, mangan, a composite oxide thereof, carbon, or the like.
  • the filter 17 contains at least one antibacterial metal of which copper, silver, zinc, and nickel power are also selected.
  • the infrared heat source 15 is stopped and the filter 17 adheres to the surface even when the temperature of the filter 17 is low. Growth of microorganisms such as bacteria and fungi can be suppressed.
  • the filter 17 includes two or more materials selected from copper, silver, zinc, nickel, aluminum, and carbon force, and the materials are electrically connected, the filter 17 is electrically Sterile action works. That is, even if the water particles 13 collected on the filter 17 contain microorganisms such as bacteria and fungi, the microorganisms such as bacteria and fungi are electrically sterilized and the filter 17 is kept hygienic. .
  • the place where the filter 17 is arranged may be any place. However, by disposing the infrared heat source 15 at the subsequent stage, the function of a light shielding plate that prevents the infrared rays emitted from the infrared heat source 15 from being irradiated outside the humidifier 10 can be achieved.
  • the filter 17 acts as a light shielding plate, infrared rays are irradiated to the outside of the humidifying device 10 to prevent the user of the humidifying device 10 from feeling glare.
  • the distance between the infrared heat source 15 and the filter 17 should be as close as possible. Therefore, it is desirable that the distance between the infrared heat source 15 and the filter 17 be within 30 mm.
  • the filter 17 is formed in a wire mesh or a fiber shape and is arranged so as to cover the infrared heat source 15 around the infrared ray heat source 15, the filter 17 is efficient in absorbing infrared rays. . Further, the distance from the surface of the infrared heat source 15 to the filter 17 is shorter than that of the filter 17 arranged in a plane. This further improves the heating efficiency of the filter 17.
  • the surface of the filter 17 has hydrophilic characteristics, when the water particles 13 adhere to the filter 17, the contact area with the air increases, and the vaporization of the water particles 13 is promoted.
  • a method for imparting hydrophilicity to the surface of the filter 17 a method using a ceramic honeycomb such as alumina mullite, or a method for coating the surface of a metal material constituting the filter 17 with a hydrophilic material such as silica, zeolite or kaolin. Is mentioned.
  • a zeolite containing silver or copper an antibacterial action can also be imparted.
  • the surface of the filter 17 is hydrophilic, the contact angle of water decreases, and the fineness of the eye increases. Even in the case of using water, the water particles 13 are likely to permeate into the filter 17, and the reduction of the humidifying ability due to clogging is prevented.
  • a reflector 18 that prevents direct irradiation of infrared rays to the ultrasonic transducer 12 may be provided in front of the infrared heat source 15.
  • the reflection plate 18 direct infrared rays, which are heat rays, are shielded, and the temperature of the ultrasonic transducer 12 is prevented from rising. As a result, a highly reliable humidifying device 10 can be obtained.
  • the reflector 18 by configuring the reflector 18 using a metal material having an infrared reflecting function, it is possible to reflect the infrared rays and actively irradiate the filter 17 with the infrared rays. Even if the water particles 13 are mixed with dust or dust, the water particles 13 collide with the reflector 18 first, and the passing speed decreases. For this reason, generation
  • the reflecting plate 18 may have a slit shape or be provided with a fine opening hole so as not to block the entire opening cross section of the passage 14. Since the reflecting plate 18 has a cross-sectional area smaller than the opening area of the passage 14, it is possible to appropriately control the flow rates of the water particles 13 and the air and obtain a necessary humidification amount.
  • the filter 17 When the filter 17 is disposed in the main body 50 or the passage 14, it is desirable that the filter 17 has a detachable structure. In the filter 17, sterilized bacteria or evaporation residue deposited by vaporization of water is filtered, collected, and deposited on the filter 17. Therefore, the collection performance of the filter 17 can be maintained because the user of the humidifier 10 can easily remove and clean the filter 17. Furthermore, since the filter 17 is configured to be detachable, the filter 17 can be easily replaced even if a defect such as a loss of the filter 17 occurs. As a result, when a failure occurs in the filter 17, the user can easily replace only the filter 17 without requiring repair of the humidifying device 10. As a result, it is possible to provide a humidifier 10 that can easily solve the problems and always realizes a stable operation.
  • the operation of the humidifier 10 shown in FIG. 2 is as follows.
  • the water 43 supplied from the water storage tank 11 is atomized by the ultrasonic vibrator 12 that oscillates at a frequency of 1.6 MHz.
  • the average particle size of the finely divided water particles 13 is about 4 / zm.
  • the water particles 13 pass through a high temperature region 16 created by a halogen heater as an infrared heat source 15.
  • the high temperature region 16 is a temperature of about 50 ° C to 200 ° C.
  • the high temperature zone 16 gives the water particles 13 a temperature above 50 ° C sufficient for the microorganisms to die.
  • the passage 14 is made of aluminum, and has an opening area that increases from the periphery of the halogen heater as the infrared heat source 15.
  • the filter 17 is made of a metal fiber such as steel wool, and is disposed so as to cover a halogen heater as the infrared heat source 15.
  • the surface of the filter 17 is coated with a black heat resistant paint containing copper having antibacterial action.
  • an aluminum reflector 18 with a part of the opening is placed in front of the halogen heater as the infrared heat source 15, and the infrared rays irradiated downward from the halogen heater are reflected to form a high temperature region 16. To do.
  • the filter 17 has a higher temperature than the air temperature in the high temperature region 16 due to the combined action of infrared absorption and the high temperature region 16.
  • the water particles 13 rise in temperature due to heating of the high temperature region 16, the surface of the filter 17, and the reflector 18, and are discharged to the outside of the humidifier 10 as fine humidified air 53.
  • FIG. 3 shows an example of an arrangement configuration of the filter 17 that is detachable from the passage 14.
  • Four protrusions 19 are provided in the passage 14 so as to face inward. Further, a wire mesh-like stainless steel filter 17 is placed on the protrusion 19 and held. The filter 17 is inserted from the upper part of the passage 14 and is fixed on the protrusion 19. With such a structure, the filter 17 can be easily removed by lifting the filter 17 with the upper force of the passage 14. For example, if evaporation residue accumulates on the filter 17 and cleaning becomes necessary, the filter 17 can be easily removed by placing a finger on the attachment / detachment protrusion (not shown) of the filter 17 and pulling it upward. To be removed.
  • Impurities adhering to the surface of the filter 17 may be cleaned. For example, impurities attached to the surface of the filter 17 are scraped off in water. Alternatively, the filter 17 is exposed to running water such as tap water and cleaned, so that impurities attached to the surface of the filter 17 are peeled off and cleaned. Further, when the surface of the filter 17 is very dirty, it is easy to immerse the filter 17 in citrate or the like and then scrape off the deposits. For example, if the filter 17 has a shape in which plates are laminated, a brush or the like can be easily inserted, so that the filter 17 can be easily cleaned. In this way, the filter 17 can be cleaned. Therefore, the humidifying device 10 that always realizes a clean humidifying function can be obtained.
  • Table 1 shows the bacteria removal rate (%) which is the antibacterial performance of each material.
  • the passage 14 or the filter 17 includes two or more kinds of materials selected from copper, silver, zinc, nickel, aluminum, and carbon force, and represents an advantage when the respective materials are electrically connected.
  • test materials used were copper powder having an average particle diameter of 75 to 150 ⁇ m, zinc powder having an average particle diameter of 50 m, and carbon paint.
  • the carbon paint was prepared by dispersing commercially available conductive carbon and commercially available polyester resin in a solvent.
  • Copper + zinc + carbon described in Table 1 is a mixture of copper powder, zinc powder, and carbon paint in a ratio of 10: 1: 5, and spreads on a PET film. It was prepared by drying at ° C for 1 hour. This produced a "copper + zinc + carbon" film.
  • the “copper + zinc + carbon” film and the “copper + carbon” film were cut into a circle having a diameter of 85 mm and placed on the bottom surface of a plastic petri dish having the same diameter.
  • a bacterial solution was prepared by adding Escherichia coli (IF03972) to 10 6 (cfuZml) in a normal bouillon medium diluted 400 times with purified water. 20 ml of the prepared bacterial solution was placed in each plastic petri dish, and 0.1 ml of liquid was collected at regular intervals and cultured to measure the number of bacteria and compare the change in the number of bacteria. In order to prevent the effect of bactericidal action due to ultraviolet rays, the experiment was conducted with the plastic petri dish shielded from light.
  • the time required to pass through the passage 14 is very short, so that the antibacterial action in the passage 14 is desired to be exhibited in as short a time as possible.
  • Table 1 when comparing the case where copper is arranged alone and the case where copper and carbon are mixed, it is clear that bacteria are mixed in a shorter time when copper and carbon are mixed. It was confirmed that it was removed. Similarly, comparing copper alone with copper, zinc, and carbon mixed, it is clear that copper, zinc, and carbon are mixed in a shorter time. It was confirmed that the fungus was removed. That is, copper, silver, zinc or the like has an antibacterial effect on itself. However, when two or more materials selected from copper, silver, zinc, nickel, aluminum, and carbon are combined, it can be said that the antibacterial performance is higher than that of a single material.
  • FIG. 4 is a schematic cross-sectional view of a humidifier according to Embodiment 2 of the present invention. Note that components similar to those described in Embodiment 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ultrasonic transducer 12 is covered with a vibration transmitting body 42 that is a medium for transmitting vibration.
  • the vibration transmitter 42 has a function of efficiently transmitting the vibration generated by the ultrasonic vibrator 12.
  • the vibration transmitting body 42 is sealed.
  • the water 43 is vibrated on the actual vibration surface 44 formed on the upper part of the vibration transmitting body 42 and is finely divided into water particles 13 which are water fine particles.
  • a halogen heater 47 constituting an infrared ray generator is disposed in the passage 14 of the water particles 13.
  • a rotary filter 48 is provided after the halogen heater 47.
  • the rotary filter 48 is rotationally driven in the passage 14 around a rotary shaft 49 that constitutes a rotary device for rotating the rotary filter 48.
  • the rotating device is a rotating shaft.
  • a rotation motor not shown
  • a drive transmission unit not shown
  • a rotation control unit not shown, etc.
  • the atomizer 60 When the atomizer 60 includes the ultrasonic vibrator 12, it is usually required to always form a certain amount of water 43 on the ultrasonic vibrator 12. For example, when the water 43 runs out on the ultrasonic transducer 12 and becomes empty, the ultrasonic transducer 12 may generate heat abnormally and deteriorate. However, in the humidifying device 10 of FIG. 4, a certain amount of vibration transmitting body 42 is always formed on the ultrasonic transducer 12. As a result, the ultrasonic transducer 12 is protected by the vibration transmitting body 42 even when the water 43 on the fine particle device 60 is lost as a result of the operation of the humidifier 10 being continued. For this reason, an empty state is prevented, and deterioration or destruction of the ultrasonic transducer 12 is prevented.
  • the propagation of bacteria or fungi in the staying water 43 that does not require the staying of the water 43 on the ultrasonic vibrator 12 is suppressed. Therefore, in order to generate the humidified air 53, the amount of water 43 that should stay in the humidifier 10 can be reduced to the limit. This suppresses the growth of microorganisms such as bacteria and fungi in the main body 50.
  • non-volatile means that there is little weight loss after a certain period of time in an atmosphere of 40 ° C. or lower, which is assumed as the usage environment of the humidifier 10.
  • a non-volatile vibration transmitting body 42 for example, a mixed liquid of water and propylene glycol can be used.
  • the vibration transmission body 42 is preferably an antifreeze liquid that is an antifreeze material.
  • the humidifying device 10 When the humidifying device 10 is continuously used for a long time, if a volatile material is used for the vibration transmitting body 42, the weight is reduced and stable vibration transmission is not realized. Therefore, for example, if non-volatile materials with a weight reduction rate of 5% or less for one year are used, fluctuations in vibration transmission performance can be kept low.
  • the vibration transmitting body 42 is sealed, it is possible to prevent the ultrasonic vibrator 12 from being inadvertently touched during user maintenance. Furthermore, since the vibration transmission body 42 is sealed, weight reduction or denaturation of the vibration transmission body 42 is also suppressed.
  • the vibration transmitting body 42 is sealed by a container 45.
  • the material of container 45 is easy to mold and Even if the vibration transmitting body 42 is volatilized, it is possible to use a resin that does not easily pass volatile components. As a resin having low gas permeability, for example, PPS resin is suitable as a material for the container 45.
  • the atomization device 60 includes a container 45, an ultrasonic transducer 12, a vibration transmission body 42, and an actual vibration surface 44.
  • the fine particle device 60 also has a function as a water tank 31 that is a water supply device for supplying water 43. Further, in order to transmit the ultrasonic vibration from the ultrasonic vibrator 12 to the water 43 of the water tank 31 without reducing the efficiency, it is preferable to suppress the reflection of vibration on the actual vibration surface 44.
  • the reflection of vibration depends on the density and speed of sound between the vibration transmitting body 42 and the actual vibration surface 44. Therefore, for example, when 40 wt% propylene glycol aqueous solution is used as the vibration transmission body 42 and sealed with PPS resin as the container 45, the actual vibration surface 44 that is the vibration surface of the PPS resin is By setting the thickness to 0.5 mm, vibration reflection is efficiently suppressed.
  • the ultrasonic transducer 12 When the ultrasonic transducer 12 is covered with the vibration transmission body 42, vibration is generated on the actual vibration surface 44 disposed on the vibration transmission body 42. As a result, the water 43 is atomized on the actual vibration surface 44.
  • the actual vibration surface 44 is made of a metal foil, the actual vibration surface 44 is excellent in heat resistance, so that thermal degradation of the ultrasonic transducer 12 due to infrared rays is suppressed.
  • the metal foil used for the actual vibration surface 44 aluminum foil or copper foil can be used.
  • the actual vibration surface 44 is made of an antibacterial material, the bacteria are prevented from propagating in the water 43 retained on the actual vibration surface 44.
  • the actual vibration surface 44 when the actual vibration surface 44 is made of a metal material such as copper, silver, zinc, or nickel as an antibacterial material, it suppresses thermal deterioration of the ultrasonic transducer 12 and bacterial growth. Both effects can be achieved.
  • the material used for the rotary filter 48 the material used for the filter 17 described above can be used.
  • the rotary filter 48 has a dark color characteristic with high infrared absorption, the temperature rise of the rotary filter 48 can be easily obtained. This promotes the vaporization of the water particles 13 adhering to the filter and improves the humidification performance. Even if microorganisms such as bacteria and fungi adhere to the rotary filter 48, microorganisms such as bacteria and fungi are killed by the temperature of the rotary filter 48 becoming high.
  • the rotary filter 48 is not dark, but the same effect can be obtained even if an infrared absorbing material is applied. Examples of infrared absorbing materials include copper, iron, manganese, complex oxides of these, power One Bon.
  • Impurities contained in the large water particles 13 and dead bodies of microorganisms such as bacteria and fungi also adhere to the rotary filter 48.
  • the eyes of the rotary filter 48 should be fine.
  • the eye force S of the rotary filter 48 is too thin, the water particles 13 or impurities are clogged and the humidification performance is significantly reduced.
  • the rotary filter 48 rotates about the rotary shaft 49. As a result, even if a coarse rotary filter 48 that is not easily clogged is used, the collection performance of impurities or microorganisms can be maintained.
  • the rotating filter 48 when the large water particles 13 pass through the rotating filter 48, the rotating filter 48 is rotating, so that the large water particles 13 collide with the rotating filter 48 and are separated. Even if impurities are attached to the rotary filter 48, if the rotary filter 48 is rough, it can be easily removed by washing or the like. Furthermore, after the operation of the humidifier 10 is stopped, the rotating filter 48 continues to rotate for a fixed time, so that the residual water remaining in the rotating filter 48 is shaken off. Further, when the rotary filter 48 is rotated at a speed higher than the rotational speed when the humidifier 10 is normally used, the residual water remaining in the rotary filter 48 is more effectively shaken off. As a result, new propagation of microorganisms such as bacteria and fungi on the rotary filter 48 is suppressed. And the rotary filter 48 is kept hygienic.
  • a drying device 46 that controls heating or blowing operation when the humidifying operation of the humidifying device 10 is stopped to dry the inside of the main body 50.
  • the drying device 46 may control heating and air blowing operation. By operating the drying device 46, the residual water in the main body 50 is effectively dried. This keeps the humidifier 10 hygienic.
  • FIG. 5 is a schematic cross-sectional view showing a humidifying device according to Embodiment 3 of the present invention. Note that components similar to those described in Embodiment 1 or 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the humidifier 10 includes a main body 50, a passage 14, a fan 20, a water tank 31, a atomizer 60, and an infrared heat source 15 provided in the main body 50, respectively.
  • the fan 20 is arranged in front of the infrared heat source 15 and constitutes a blowing device for flowing air through the passage 14.
  • the water tank 31 constitutes a water supply device that supplies water 43.
  • Water 43 fine
  • the fine particle device 60 that includes the ultrasonic transducer 12 that generates ultrasonic vibrations.
  • the infrared heat source 15 constitutes an infrared generator that generates infrared rays and forms a high-temperature region 16.
  • a temperature sensor 24 is provided in the water tank 31.
  • the fine particle device 60 also has the function of the water tank 31!
  • the water column 32 which is water 43a immediately before atomization (hereinafter referred to as water 43a), is irradiated with infrared rays generated from the infrared heat source 15.
  • the water 43 in the water tank 31 is finely divided by the fine particle device 60.
  • the water 43 is vibrated on the actual vibration surface 44 formed on the upper part of the vibration transmitting body 42 to become the water column 32.
  • the ultrasonic transducer 12 is covered with a vibration transmission body 42, and the periphery of the vibration transmission body 42 is sealed with a resin container 45 to constitute a fine particle device 60.
  • As the vibration transmitting body 42 for example, a 40 wt% propylene dallic acid aqueous solution is used.
  • the fine particle device 60 also has a function as a water tank 31 that is a water supply device for supplying water 43.
  • the ultrasonic vibrator 12 When the ultrasonic vibrator 12 is used as the fine particle device 60, the water 43 just before atomization rises like the water column 32 and has a certain thickness. Infrared rays generated from the infrared heat source 15 are intensively applied to the water column 32. After being irradiated with infrared rays, it becomes water particles 13 which are fine water particles, and becomes the humidified air 53 together with the air flowing by the fan 20 and is discharged out of the main body 50 through the passage 14.
  • the passage 14 is made of stainless steel, which is a heat resistant material.
  • the infrared rays are absorbed into water more efficiently, and the water 43 is heated with more energy saving than an air heater such as a sheathed heater.
  • an air heater such as a sheathed heater.
  • microorganisms contained in the water 43 can be killed.
  • infrared light is light, it can be concentrated by a mirror or lens to heat water. Therefore, it is easier to heat by irradiating infrared rays intensively at one point toward the target water column 32 than an air heater such as a sheathed heater that emits little light.
  • the light absorption wavelength of water is about 1 to: LO m.
  • Infrared heat As the source 15, a halogen heater or a carbon heater having a peak wavelength of 1 to 2 ⁇ m can be used. A ceramic heater using a far infrared ray emitting material having a peak wavelength of 5 to 7 / ⁇ ⁇ can also be used.
  • a halogen heater or carbon heater When a halogen heater or carbon heater is used as the infrared heat source 15, it can be heated to a higher temperature in a shorter time than a ceramic heater.
  • the high temperature region 16 reaches a stable temperature region within 10 seconds.
  • the temperature may continue to rise even after 60 seconds. Therefore, when a halogen heater or a carbon heater is used as the infrared heat source 15, it is easy to shorten the time until the humidifying operation of the humidifying device 10 is started.
  • the configuration described in Embodiment 2 can be used as the configuration of the vibration transmitting body 42, the container 45, and the actual vibration surface 44.
  • the vibration transmitting body 42 the configuration described in Embodiment 2
  • the container 45 the actual vibration surface 44.
  • the actual vibration surface 44 which is the vibration surface of the PPS resin, is 0.5 mm in thickness. Therefore, the reflection of vibration is efficiently suppressed.
  • the humidifier 10 heats the water column 32 immediately before being atomized by the water 43 stored in the water tank 31. As a result, the temperature of the water column 32 rises quickly in a short time. For this reason, microorganisms contained in water 43 or air can be sterilized efficiently at the initial operation force. In addition, the humidifier 10 starts up quickly, and the humidifier 10 that exhibits the humidification performance with less energy is provided.
  • the infrared heat source 15 provides the water column 32 with sufficient heat energy to kill the microorganisms. This demonstrates the bactericidal effect on water 43 and microorganisms contained in the air. Further, infrared rays generated from the infrared heat source 15 are applied to the water column 32 just before atomization. This increases the amount of water 43 vaporized. The temperature sufficient for killing microorganisms is 50 ° C or higher, and if it is 75 ° C or higher, sterilization can be performed in a shorter time. In general, a water film with a thickness of 1 mm or more absorbs almost 100% of the wavelength in the infrared region.
  • the water Since water spreads into the atmosphere when it is fine, it is desirable that the water has a thickness of 1 mm or more in order to irradiate more infrared rays.
  • the humidifier 10 irradiates the water column 32 having a thickness of 1 mm or more with infrared rays. Therefore, since the infrared ray is irradiated to the water 43a just before the fine particles, the thickness of the water film The infrared absorption efficiency is high. As a result, the temperature of the water column 32 effectively rises and the amount of humidification per unit time increases.
  • the humidifying device 10 has a configuration in which the fine particle device 60 uses the ultrasonic transducer 12.
  • the vibration is transmitted from the actual vibration surface 44 to the water 43 through the vibration transmission body 42 by the ultrasonic vibration generated by the ultrasonic vibrator 12. For this reason, vibration energy concentrates on the water surface of the water 43 in the water tank 31, and a water column 32 having a raised water surface is formed. At the tip of the water column 32, water particles 13 finely divided to a thickness of 1 mm or less are also generated.
  • the water 43a is efficiently heated.
  • the heating energy of the infrared rays can be concentrated on a small amount of the water column 32. For this reason, a higher sterilizing effect is exerted in a short time against water 43 and the microorganisms contained in the air, which have a short time until the water column 32 is given sufficient heat energy to kill the microorganisms.
  • the humidifier 10 can efficiently and rapidly increase the temperature of the water 43 as compared with the conventional heating by heat convection when the entire water 43 in the water tank 31 is irradiated with infrared rays. This makes it easy to shorten the time until the humidifying operation of the humidifying device 10 starts.
  • the ultrasonic transducer 12 is covered with a vibration transmitting body 42.
  • the ultrasonic transducer 12 finely mists the water 43 through the vibration transmitting body 42.
  • the water 43a just before atomization exists near the water surface in the water tank 31.
  • Part of the infrared rays is absorbed by the water 43 stored in the aquarium 31.
  • even the water 43 that has absorbed infrared rays may return to the water tank 31 without being pulverized.
  • the water temperature in the water tank 31 rises little by little.
  • the heat resistance temperature of the ultrasonic transducer 12 is about 50 ° C when used in water.
  • the ultrasonic transducer 12 is covered by the vibration transmitting body 42, for example, even if the water temperature of the water 43 in the water tank 31 exceeds 50 ° C, the ultrasonic transducer 12 is directly at 50 ° C. Not heated up to. For this reason, the ultrasonic vibrator 12 is covered with the vibration transmitting body 42 to prevent the ultrasonic vibrator 12 from being damaged. It is.
  • the water 43 when the water 43 is finely dispersed by ultrasonic vibration, the water 43 is required to have a water depth of a certain depth or more. That is, it is desirable that the distance between the ultrasonic transducer 12 and the water surface of the water 43 to be finely divided is a distance determined based on the wavelength of the ultrasonic vibration used.
  • the vibration transmitting body 42 having a required depth (distance) is easily disposed around the ultrasonic transducer 12. Accordingly, the water 43 held on the atomizer 60 that is the water tank 31 may hold the water 43 having the amount of water to be used for humidification. For this reason, the amount of water that should be retained for atomization of water 43 is reduced. As a result, the retention of the water 43 in the aquarium 31 can be made substantially equal to zero at the time of the shutdown when the microorganisms are most proliferating.
  • the ultrasonic vibrator 12 is covered with the vibration transmitting body 42, the ultrasonic vibrator by idle operation is used. 12 damage is suppressed.
  • the vibration transmitting body 42 can also use water 43.
  • a 40 wt% propylene glycol aqueous solution can be used as the vibration transmitting body 42 and a PPS resin can be used as the container 45. With such a configuration, it is possible to obtain a humidifier 10 that maintains its performance over a long period of time and has high reliability and high V stability.
  • infrared rays are applied to the water column 32 formed by ultrasonic vibration.
  • Water 43 convects due to the temperature difference and tries to reach a uniform temperature naturally.
  • thermal convection of the water 43 occurs and the temperature of the entire water 43 in the water tank 31 gradually increases. Therefore, it takes a lot of time for the water temperature of water 43 to rise and become more volatile.
  • an extremely small amount of water 43a may be heated as compared with the entire water 43 stored in the water tank 31. For this reason, the water 43 is heated efficiently.
  • the intensity of infrared rays has a property of being attenuated in proportion to the square of the distance away. For this reason, it is preferable that the infrared rays generated from the infrared heat source 15 are irradiated to the water 43a, which is the object, at the shortest possible distance.
  • the water column 32 generated from the ultrasonic transducer 12 rises in a substantially vertical direction with respect to the water surface of the water 43 in the water tank 31. For this reason, the water column 32 If infrared light is also applied to the transverse force that is perpendicular to the rising direction, the infrared heat source 15 can be irradiated through a short distance without contacting the water column 32. As a result, it is possible to obtain a highly reliable humidifier 10 while preventing the infrared heat source 15 from being wetted by the water 43 and being damaged.
  • a temperature sensor 24 is provided in the water tank 31.
  • a temperature control unit 21 is provided in the main body 50. As a result, when the temperature in the water tank 31 exceeds a preset temperature, the operation of the infrared heat source 15 or the atomizer 60 is controlled by the temperature control unit 21 and stopped. Furthermore, if the temperature in the water tank 31 rises abnormally, the temperature control unit 21 forcibly drives the fan 20 to excessively increase the temperature in the water tank 31 or the temperature in the main body 50. Suppresses the rise. In this way, it has an effect of preventing the water temperature in the water tank 31 from rising excessively.
  • the water column 32 immediately before being pulverized is present near the water surface in the water tank 31.
  • the ultrasonic transducer 12 has a heat resistant temperature of about 50 ° C when used underwater due to its structure. For example, when the ultrasonic vibrator 12 is used in the atomizer 60, if the temperature in the water tank 31 is detected by the temperature sensor 24 and the infrared heat source 15 is turned off before reaching 50 ° C, the ultrasonic vibration Damage to the child 12 is suppressed.
  • the humidifier 10 has the temperature sensor 24 and the temperature control unit 21, detects the temperature in the water tank 31, and controls the infrared heat source 15 to operate intermittently based on the detected temperature. Further, the control is not limited to the infrared heat source 15, and the fine particle device 60 or the fan 20 may be controlled to operate intermittently.
  • the temperature in the water tank 31 is detected and the infrared heat source 15 is turned off, the temperature can be set so that the user does not get burned. In this case, for example, even when the humidifying device 10 falls, even if the water 43 staying in the water tank 31 flows out of the humidifying device 10, the hot water is prevented from flowing out, and safety is ensured. A humidifying device 10 excellent in the above can be obtained.
  • the infrared heat source 15 and the fan 20 are driven, it is preferable that the fan 20 as the blower is stopped after the operation of the infrared heat source 15 is stopped. Because of this Therefore, excessive temperature rise around the infrared heat source 15 is suppressed. As a result, the infrared heat source 15 and the material constituting the members around the infrared heat source 15 are prevented from being deteriorated, and the humidifying device 10 having high reliability is provided.
  • a temperature sensor 24 and a temperature control unit 21 are used to control driving of the infrared heat source 15 and the fan 20.
  • the drying device 46 may control the heating or the air blowing operation when the humidifying device 10 stops the humidifying operation. The drying device 46 may control heating and air blowing operation.
  • the drying device 46 When controlled by the drying device 46, the temperature rise around the infrared heat source 15 is suppressed at the same time as the inside of the main body 50 is dried. As a result, the inside of the humidifying device 10 is kept hygienic and a highly reliable humidifying device 10 is provided.
  • the infrared heat source 15 When a halogen heater or a carbon heater is used as the infrared heat source 15, the temperature rises faster than a ceramic heater using a far infrared ray emitting material. This makes it possible to obtain a high temperature region 16 that becomes high temperature in a short time. Sarako, temperature drop when infrared heat source 15 is turned off is also fast. Therefore, delicate temperature control by ONZOFF of the infrared heat source 15 is easily realized. As a result, the control response of the humidifying operation of the humidifying device 10 is accelerated, and the humidifying device 10 with high controllability is provided.
  • FIG. 6 is a schematic cross-sectional view showing a humidifying device according to another aspect of the third embodiment.
  • a filter 17 is installed in the passage 14, and the water particles 13 atomized by infrared irradiation pass through the filter 17 and are released to the outside of the humidifier 10.
  • the humidifying device 10 shown in FIG. 6 is provided with a reflector 18 having a mirror surface on the surface around the infrared heat source 15. Infrared rays generated from the infrared heat source 15 are concentrated and applied to the water column 32 by the reflector 18.
  • the reflecting plate 18 having an infrared reflecting action on the surface can also be used as the reflecting plate 18 only having a mirror surface portion on the surface.
  • water is provided by providing the reflector 18. The efficiency of heating the pillar 32 is further improved.
  • FIG. 7 shows a schematic cross-sectional view of a humidifying device according to Embodiment 4 of the present invention. Note that the same reference numerals are given to the same components as those shown in the first to third embodiments, and a detailed description thereof will be omitted.
  • the water 43 in the water tank 31 is pulverized by the pulverizer device 60.
  • the fine particle device 60 includes a nozzle 19 for atomizing the water 43 and a pump 20 for supplying the water 43 to the nozzle 19.
  • Infrared rays generated from the infrared heat source 15 are intensively applied to the water 43a immediately before being sprayed from the nozzle 19 immediately before being sprayed.
  • Infrared rays generated from the infrared heat source 15 are concentrated and applied to the water 43 a by the reflector 18 and the lens 23 provided around the infrared heat source 15.
  • the reflector 18 has a mirror surface portion on the surface on the infrared heat source 15 side, and reflects the infrared rays generated by the infrared heat source 15.
  • the lens 23 functions as an infrared transmission part that transmits infrared rays.
  • the reflector 18 and the lens 23 constitute a concentrating unit 62 that concentrates the infrared rays generated by the infrared heat source 15.
  • Water 43a becomes water particles 13 after being irradiated with infrared rays. Then, the water particles 13 become humidified air 53 together with the air flowing by the fan 20 constituting the air blower, and are discharged to the outside of the main body 50 through the passage 14.
  • a temperature sensor 24 is provided in the water tank 31.
  • the humidifier 10 achieves efficient infrared irradiation with the reflector 18 and the lens 23 in a form suitable for the shape or state of the water 43a.
  • the target water 43a is directed toward the target water 43a to irradiate the infrared rays in a concentrated manner in the form of a line, dot, circle, or ellipse.
  • the water 43a stands like a water column, it is effective for heating the water 43a to concentrate in a vertical line along the shape of the rising water column.
  • the water 43a is round like a droplet, it is effective to concentrate in a dot shape according to the size of the droplet.
  • the water 43a is heated by concentrating and irradiating the water 43a with infrared rays generated from the infrared heat source 15. This makes it possible to raise the water temperature of the water 43a in a short time by concentrating infrared thermal energy in a narrow range, and to significantly shorten the start-up time of the humidifying operation of the humidifier 10.
  • the lens 23 is used as a method of concentrating infrared rays. And a method of changing the direction of infrared rays using the reflector 18. However, not only this method but also a method of installing a plurality of infrared heat sources 15 around the water 43a may be used.
  • infrared light Since infrared light is light, it can be concentrated by the reflector 18 or the lens 23 having a mirror surface. Therefore, the water 43a can be efficiently heated. As a result, it is easier to intensively heat toward the target water 43a than when using an air heater such as a sheath or a heater.
  • the reflection plate 18 having an infrared reflecting function on the surface can be used as the reflecting plate 18.
  • the atomization device 60 includes a nozzle 19. At the moment of ejection from the nozzle 19, the water 43a immediately before being sprayed is in a droplet state. Then, the tip of the nozzle 19 where the droplet-shaped water 43a is generated is irradiated with infrared rays, and the infrared rays are intensively irradiated onto the water 43a having a relatively large diameter. This effectively heats the water 43a.
  • the water 43a may be in a state immediately before being ejected away from the nozzle 19, that is, the water 43a existing inside the nozzle 19.
  • the nozzle 19 is made of, for example, an infrared transmitting material such as quartz glass that transmits infrared rays
  • the external force of the nozzle 19 also transmits infrared light to the water 43a immediately before being ejected from the nozzle 19.
  • Can be irradiated This enhances the sterilizing effect of sterilizing microorganisms contained in water 43 and air.
  • the passage 14 includes an infrared transmission part, and the infrared rays generated from the infrared heat source 15 are irradiated to the water 43a through the infrared transmission part. For this reason, the infrared heat source 15 does not directly touch the water 43, 43a. For this reason, special water-proof measures for the infrared heat source 15 are not required. As a result, a humidifier 10 having a humidification mechanism configured at low cost is obtained.
  • the infrared heat source 15 has an integrated shape in which a main body and a lead wire (not shown) are connected to energize. However, it is not required that the lens 23 which is an infrared transmission part is integrated with the main body of the infrared ray heat source 15.
  • the lens 23 which is an infrared ray transmitting portion has a detachable configuration, it can be removed and washed when the evaporation residue adheres. Furthermore, when the lens 23, which is an infrared transmitting part, is severely contaminated, the humidifier 10 itself can be easily restored to a clean state by replacing only the lens 23.
  • the configuration using the lens 23 is described for the infrared ray transmitting portion in FIG.
  • the infrared transmission part is not necessarily limited to the lens 23.
  • the infrared transmitting portion may be formed of a configuration or material that can efficiently transmit infrared rays generated by the infrared heat source 15.
  • the infrared transmitting part may be made of glass such as quartz glass.
  • the infrared transmitting portion is the lens 23, infrared rays are collected and efficiently irradiated onto the water 43a.
  • the infrared heat source 15 for example, a rod-shaped heater is used. However, it is not necessarily limited to a heater having a shape that matches the size or shape of the passage 14.
  • the infrared transmitting portion By configuring the infrared transmitting portion with the lens 23, the water 43a is efficiently focused by focusing on the water 43a, and the versatile infrared heat source 15 can be used. As a result, it is effective to easily obtain the parts constituting the humidifying device 10 and to reduce the cost.
  • a reflector 18 having a mirror surface portion that reflects infrared rays is provided around the infrared heat source 15.
  • the infrared rays are reflected by the reflecting plate 18, and the infrared rays are concentrated on the target water 43a. For this reason, it is possible to irradiate the water 43a without leaking infrared rays that spread in a direction other than the target, and to use infrared rays without waste.
  • the reflecting plate 18 has a parabolic shape, the concentration position of infrared rays, that is, the focal position can be changed by changing the inclination of the reflecting plate 18.
  • the concentrating part 62 constituted by the projecting plate 18 and the lens 23 can use an optimum configuration as appropriate in accordance with the position or shape of the water 43a, which is a target for concentrating infrared rays.
  • the reflector 18 can be made of glass mirror surface, aluminum, iron, stainless steel, or an alloy thereof, titanium, copper, nickel, or the like.
  • the effect is that the hardness is high and the scratch is difficult to be damaged, and the resistance to corrosion such as acid or alkali is high.
  • a metal material is used for the reflector 18, it has an effect that the temperature of the reflector 18 is likely to rise because the heat conductivity is high and the heat capacity is small. Further, when a metal material is used for the reflector 18, since the metal material has ductility and malleability, there is an effect that the degree of freedom in shape processing of the reflector 18 is high.
  • the passage 14 is provided with a mirror surface that reflects infrared rays.
  • the infrared rays that have passed through the water 43a and the infrared rays that are not absorbed without being irradiated to the water 43a are reflected by the mirror surface.
  • the reflected infrared light is again directed toward the water 43a.
  • the infrared rays generated by the infrared heat source 15 are used without waste and are applied to the target water 43a.
  • the passage 14 is made of a heat-resistant material.
  • the main body 50 and the passage 14 of the humidifying device 10 are usually made of a resin material or a metal material.
  • the vicinity of the infrared heat source 15 or the portion irradiated with infrared rays is very hot.
  • the constituent material of the portion irradiated with infrared rays is likely to be thermally deteriorated. Therefore, if the passage 14 is made of a material having heat resistance, even if the passage 14 is heated by infrared rays, deterioration of the material constituting the passage 14 is suppressed.
  • the materials described in the first to third embodiments can be used.
  • a temperature sensor 24 is provided in the water tank 31.
  • a temperature control unit 21 is provided in the main body 50.
  • the temperature control unit 21 forcibly drives the fan 20 to excessively increase the temperature in the water tank 31 or the temperature in the main body 50. Suppresses the rise. In this way, it has an effect of preventing the water temperature in the water tank 31 from rising excessively.
  • FIG. 8 shows a schematic perspective view of a humidifying device according to Embodiment 5 of the present invention. Note that the same reference numerals are given to the same components as those shown in the first to fourth embodiments, and detailed description thereof will be omitted.
  • the humidifier 10 includes a atomizer 60, a halogen heater as the infrared heat source 15, and a fan 20 as a blower.
  • the fine particle device 60 includes an ultrasonic transducer 12.
  • the passage 14 is made of an aluminum plate having an infrared reflecting function. Infrared rays are irradiated through the glass 25 to the water column 32 immediately before the water is finely divided.
  • the glass 25 constitutes an infrared transmission part using quartz glass as a material.
  • the halogen heater as the infrared heat source 15 is surrounded by the glass 25 and the reflector 18 and is disposed at a position where infrared rays are concentrated and irradiated on the water column 32.
  • the reflector 18 and the glass 25 constitute a concentrating part 62 for concentrating infrared rays generated by the infrared heat source 15.
  • FIG. 9 is a characteristic diagram showing the humidifying performance of the humidifying device 10 shown in FIG. 8, in which the heater input indicating the power input to the halogen heater as the infrared heat source 15 and the wind speed are changed. Shows the amount of humidification per unit time (mlZh).
  • the wind speed represents the speed of the humidified air 53 passing through the passage 14, and the humidification amount relatively indicates the amount of moisture in the humidified air 53. That is, the amount of moisture contained in the humidified air 53 increases as the amount of humidification increases.
  • mist mist-like water
  • mist mist-like water
  • the amount of humidification is greater when the water column 32 just before the water is atomized is irradiated. This is because when the infrared rays are applied to the mist, the water particles 13 that are finely dispersed water are dispersed in the air, and the thermal energy obtained by the infrared rays is taken away by the air around the water particles 13. it is conceivable that.
  • the sterilization performance is not necessarily improved because the temperature of the water particles 13 itself hardly rises.
  • the water column 32 when the water column 32 is irradiated with infrared rays, the water column 32 itself absorbs infrared rays efficiently, and evaporation due to temperature rise is promoted. As a result, the amount of humidification is considered to increase. The As a result, high sterilization performance can be obtained.
  • FIG. 10 shows the sterilization performance of the humidifier 10 shown in FIG. 8, and the survival rate of the bacteria when the heater input indicating the power input to the halogen heater as the infrared heat source 15 and the wind speed are changed. (%).
  • the heating part is a part where the temperature of the area irradiated with the infrared ray generated by the halogen heater as the infrared heat source 15 and the surrounding temperature is high. It can also be seen that the irradiation position of the infrared ray has a higher effect of sterilizing the force applied to the water column 32 immediately before the water is atomized than when the water is atomized and the fog is atomized.
  • the infrared transmitting portion is made of glass 25.
  • Glass 25 represented by quartz glass has high infrared transmittance.
  • quartz glass transmits 95% of the radiation emitted from the infrared heat source 15. This effectively heats the water column 32.
  • the temperature of the glass 25 itself also rises due to the influence of radiant heat or the like.
  • glass since glass has a high hardness and a smooth surface, the evaporation residue adhering to the surface of glass 25 can be easily cleaned. Further, the thinner the glass 25, the higher the infrared transmittance.
  • Glass A material suitable for the use condition of the humidifying device 10 may be appropriately selected depending on the strength of 25 or the ease of manufacture.
  • FIG. 11 shows a schematic cross-sectional view of a humidifying device according to Embodiment 6 of the present invention. Note that the same reference numerals are given to the same components as those shown in the first to fifth embodiments, and a detailed description thereof will be omitted.
  • the water 43 supplied from the water storage tank 11 to the water tank 31 is atomized by the atomizer 60.
  • the average particle diameter of the water particles 13 finely divided by the fine particle device 60 is about 4 m.
  • the fine particle device 60 is composed of an ultrasonic vibrator 12 oscillating at a frequency of 1.6 MHz!
  • the water storage tank 11 and the water tank 31 constitute a water supply device.
  • Infrared rays radiated from a halogen heater as an infrared heat source 15 constituting the infrared ray generator forms a high temperature region 16 in the passage 14 through the glass 25.
  • quartz glass is used as a constituent material, and constitutes an infrared transmission part.
  • the fan 20 as a blower provided in the main body 50 sends air into the main body 50 to form wind.
  • the sent air passes through the high-temperature region 16 together with the water particles 13 after being warmed by passing around the infrared heat source 15 provided in the front stage of the fine particle device 60. Mixing of water particles 13 and air
  • the halogen heater as the infrared heat source 15 can easily create a high temperature range of up to about 2000 ° C by condensing infrared rays.
  • the humidifier 10 if the high temperature region 16 having a temperature of about 50 ° C to 200 ° C is formed, a sufficient effect can be obtained.
  • the high temperature zone 16 gives the water particles 13 a temperature above 50 ° C. sufficient for the microorganisms to die.
  • the water particles 13 are sterilized by heating when passing through the high temperature region 16. Further, the vaporization of the water particles 13 is promoted, and the fine humidified air 53 is released outside the humidifier 10.
  • the humidifier 10 is configured such that the infrared heat source 15 heats the water particles 13 generated by the fine particle device 60, thereby allowing the air around the water particles 13 and the water particles 13 to be heated. And the vaporization of water particles 13 is promoted.
  • This provides efficient humidification.
  • the light absorption wavelength of water is about 1 to 10 m.
  • the absorption wavelength of water falls in the infrared region, and heats water directly using infrared rays. Heating is performed more efficiently than an air heater such as a sheathed heater.
  • the evaporation of the water particles 13 is promoted by heating, whereby the large water particles 13 are converted into smaller water particles 13. For this reason, indoor humidification is performed while water wetting around the humidifier 13 caused by the large water particles 13 falling is suppressed.
  • the heating power of the water particles 13 using infrared rays is carried out through the glass 25 which is an infrared transmitting portion. For this reason, the water 43 or the water particles 13 do not directly touch the infrared heat source 15 which is an infrared generator. Therefore, a special waterproofing measure for the infrared heat source 15 is not required, and the humidifier 10 having a low-cost structure can be easily obtained.
  • the blower is not particularly limited as long as it has a function of feeding air into the passage 14 and discharging it.
  • a blower fan such as sirocco, turbo, or cross flow or a decompression pump, or an ion wind by discharge can be used.
  • the passage 14 is made of a heat-resistant material.
  • the passage 14 is heated by infrared rays. Furthermore, heat is exchanged with the air around the passage 14, and the temperature of the surrounding air can be raised.
  • the heat-resistant material used for the passage 14 aluminum, iron, stainless steel, alloys thereof, metal materials such as titanium, copper, nickel, heat-resistant resin, and the like can be used. Further, the surface of the resin may be coated with a heat resistant resin such as silicone or fluorine.
  • a metal material since the heat conductivity is good and the heat capacity is small, the temperature of the passage 14 is likely to rise, and the high temperature region 16 is formed instantaneously. Also, since the metal material has ductility and malleability, the shape of the passage 14 can be processed. It is easy to obtain an inexpensive passage 14 with a high degree of freedom.
  • the heat resistance of the material used for the passage 14 is a range in which the temperature of the air can be raised by exchanging heat with the air around the passage 14 that is at least higher than the air temperature in the passage 14. It is. Therefore, the heat resistance required for the material used for the passage 14 is appropriately set within a range in which the deformation of the main body 50 and the functional failure of the humidifying device 10 do not occur.
  • a fan 20, which is a blower that allows air to flow through the passage 14, is arranged in front of the infrared heat source 15.
  • the air blown by the blower is heated by the infrared heat source 15.
  • the fan 20 that is a blower is not required to have a heat resistant configuration.
  • only the member used in the subsequent stage from the infrared heat source 15 may have a heat resistance.
  • an inexpensive and highly reliable humidifier 10 can be obtained.
  • the infrared heat source 15 is arranged in front of the fine particle device 60. For this reason, the air heated by the infrared heat source 15 is supplied to the atomizer 60. In general, the higher the temperature, the greater the amount of water that can be contained. Therefore, by supplying warm air preliminarily heated by the infrared heat source 15 to the atomizing device 60, more moisture-containing air is supplied in the vicinity of the atomizing device 60. As a result, more water is vaporized than when air at room temperature is supplied as it is. Furthermore, when hot air of 70 ° C. or higher is supplied in the vicinity of the atomizer 60, vaporization of the water particles 13 is further promoted. In addition, the activities of bacteria and fungi contained in the air or water 43 are suppressed, and antibacterial and bactericidal actions are also obtained.
  • FIG. 12 shows a schematic cross-sectional view of a humidifying device according to Embodiment 7 of the present invention. Note that the same reference numerals are given to the same components as those shown in the first to sixth embodiments, and detailed description thereof will be omitted.
  • the water 43 supplied from the water storage tank 11 to the water tank 31 is atomized by the atomizer 60.
  • the average particle diameter of the water particles 13 finely divided by the fine particle device 60 is about 4 m.
  • the fine particle device 60 is composed of an ultrasonic vibrator 12 oscillating at a frequency of 1.6 MHz!
  • the water supply device is composed of the water storage tank 11 and the water tank 31. Is done.
  • the infrared rays emitted from the infrared heat source 15 pass through the lens 23 and form a high temperature region 16 in the passage 14.
  • a halogen heater is used for the infrared heat source 15 and constitutes an infrared generator.
  • the lens 23 has a convex curved surface made of quartz glass and has a function of concentrating infrared rays.
  • an aluminum reflector 18 that has a parabolic shape and reflects infrared rays is installed.
  • the reflecting plate 18 reflects the infrared ray irradiated to the opposite side of the lens 23 and condenses the infrared ray on the lens 23.
  • the infrared rays that have passed through the lens 23 are collected by the lens 23 and reflected by the aluminum passage 14 that has heat resistance and infrared reflection action. As a result, the air in the passage 14 and the water particles 13 are heated so as to be diffusely reflected in the entire passage.
  • the lens 23 and the reflecting plate 18 constitute a concentrating part 62. Further, the high temperature region 16 is formed by the light collecting action of the concentrated portion 62 and the reflection action of the wall surface of the passage 14.
  • the wall surface of the passage 14 having the reflection action can obtain the same action / effect and force S as the reflection plate is provided on the wall surface of the passage 14.
  • the fan 20 as a blower provided in the main body 50 sends air into the main body 50 to form wind.
  • the air heated by passing around the halogen heater as the infrared heat source 15 and the reflector 18 passes through the high temperature region 16 together with the water particles 13. It is further heated by the action of infrared rays.
  • the halogen heater as the infrared heat source 15 can easily create a high temperature range of up to about 2000 ° C because it is focused.
  • the humidifier 10 shown in FIG. 12 if the high temperature region 16 having a temperature of about 50 ° C. to 200 ° C. is formed, the effect of the high temperature region 16 can be sufficiently obtained.
  • the high temperature region 16 gives the water particles 13 a temperature of 50 ° C or higher sufficient for the microorganisms to die.
  • the water particles 13 are heated and sterilized by passing through the high temperature region 16. Further, the water particles 13 are promoted to vaporize and become fine humidified air 53 to be discharged to the outside of the humidifier 10.
  • the water particles 13 and the air pass through the filter 17 having a mesh shape before being released to the outside of the humidifier 10. As a result, bacteria or inorganic ions are separated from the water particles 13 and collected by filtration. For this reason, clean humid air 53 is supplied downstream of the filter 17.
  • the surface of the filter 17 is coated with a heat-resistant paint containing silver having antibacterial action. Yes. For this reason, the germs contained in the water particles 13 colliding with the filter 17 are surely sterilized. Further, even when the operation of the humidifier 10 is stopped, the growth of bacteria on the surface of the filter 17 is suppressed.
  • the humidifier 10 When the room where the humidifier 10 is used is dry, the humidifier 10 is driven rapidly. That is, the halogen heater as the infrared heat source 15 is continuously driven to promote the vaporization of the water particles 13 that are atomized by the ultrasonic vibrator 12. This quickly humidifies the dry room. Furthermore, after the indoor humidity has moderate humidity and the humidifier 10 is in a steady operation state, the humidifier 10 is intermittently operated. This allows the humidifier 10 to operate economically.
  • the air volume of the fan 20, the input to the ultrasonic vibrator 12, and the input to the infrared heat source 15 can be kept low. . This allows the humidifier 10 to operate economically.
  • the temperature of the infrared heat source 15 does not increase more than necessary by stopping the fan 20 that is the blower after the infrared heat source 15 is stopped. For this reason, damage to the infrared heat source 15 or the equipment around the infrared heat source 15 is prevented. As a result, a highly reliable humidifier 10 can be obtained. Industrial applicability
  • the humidifying device of the present invention is a humidifying device that atomizes water and humidifies the air! Since jetting of microorganisms or inorganic ions is suppressed and excellent humidifying performance is exhibited from the beginning of operation, the humidifying device such as a sauna is used. It can also be used for health equipment such as hairdressing and beauty equipment or nebulizer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Air Humidification (AREA)

Abstract

A humidification apparatus comprising an atomization unit for water atomization, a passage, an infrared emitter and a filter, wherein the passage allows any water particles atomized by the atomization unit to pass therethrough, and wherein the infrared emitter emits infrared rays so as to form a high-temperature zone in the passage, and wherein any water particles having passed through the high-temperature zone pass through the filter. By this construction, any microbes contained in water or air can be efficiently sterilized from the initial stage of driving of the humidification apparatus. Further, the startup thereof can be quick, and the humidification apparatus realizes energy saving and high humidification performance.

Description

明 細 書  Specification
加湿装置  Humidifier
技術分野  Technical field
[0001] 本発明は、水を微粒化して空気を加湿する加湿装置において、水や空気に含まれ る微生物を効率よく殺菌し、省エネルギーで加湿性能を発揮する加湿装置に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a humidifying device that atomizes water and humidifies air, and relates to a humidifying device that efficiently sterilizes microorganisms contained in water and air and exhibits humidification performance with energy saving.
[0002] 従来、超音波を用いた加湿装置においては、水槽で繁殖した細菌や真菌などの微 生物が、加湿空気とともに噴出する。このことを解決するために、本体内に殺菌灯を 組み込み、水粒子に殺菌灯を照射するなどの方法が取られている。たとえば、従来 の加湿装置では、図 13に示すように、超音波振動子 101により微粒ィ匕された水粒子 102に殺菌灯 103の光を照射し、水粒子 102中の細菌や真菌を死滅させる方法が 知られている。このような従来の加湿装置は、たとえば、実開昭 61— 76230号公報 に開示されている。  Conventionally, in a humidifier using ultrasonic waves, microorganisms such as bacteria and fungi that have propagated in a water tank are ejected together with humidified air. In order to solve this problem, a germicidal lamp is incorporated in the main body, and water particles are irradiated with the germicidal lamp. For example, in a conventional humidifier, as shown in FIG. 13, water particles 102 finely sized by an ultrasonic vibrator 101 are irradiated with light from a germicidal lamp 103 to kill bacteria and fungi in the water particles 102. The method is known. Such a conventional humidifier is disclosed in, for example, Japanese Utility Model Publication No. 61-76230.
[0003] また、超音波を用いた加湿装置にお!、て、水槽で繁殖した微生物が、加湿空気とと もに噴出する。このことを解決するために、水槽にヒータを取り付け、水を加熱し、水 槽での微生物の繁殖を抑制するなどの方法が取られている。たとえば図 14に示すよ うに、超音波加湿機 106の水槽内側にヒータ 107を備え、温度センサ 108によって水 槽内に微生物が増殖しない温度に保つ方法が知られている。このような従来の加湿 装置は、たとえば、特開昭 63— 306338号公報に開示されている。  [0003] In addition, microorganisms propagated in a water tank are ejected together with humidified air in a humidifier using ultrasonic waves. In order to solve this problem, a method of attaching a heater to the water tank, heating the water, and suppressing the growth of microorganisms in the water tank has been taken. For example, as shown in FIG. 14, a method is known in which a heater 107 is provided inside the water tank of the ultrasonic humidifier 106 and the temperature sensor 108 is used to maintain a temperature at which microorganisms do not grow in the water tank. Such a conventional humidifier is disclosed in, for example, Japanese Patent Laid-Open No. 63-306338.
[0004] また、超音波を用いた加湿装置において、加湿水として用いられる水道水中の無 機イオンが水粒子に溶け込んで加湿空気と一緒に噴出し、水が気化した後に家具や 電ィ匕製品の表面に白い粉となって析出する。このことを解決するために、加湿空気中 にセラミックヒータを配置して無機イオンを分離するなどの方法が取られて 、る。たと えば、従来の加湿装置では、図 15に示すように、超音波振動子 111により微粒ィ匕さ れた水粒子 112を、噴出口に備えた多数の微細口を有するセラミックヒータ 113に通 す。このことにより、水粒子 112中の不純物をろ過する方法が知られている。このよう な従来の加湿装置は、たとえば、実開昭 59— 184021号公報に開示されている。 [0004] In addition, in a humidifier using ultrasonic waves, insoluble ions in tap water used as humidified water are dissolved in water particles and ejected together with the humidified air, and the water is vaporized, and then furniture and electrical appliances are used. Precipitates as white powder on the surface. In order to solve this problem, a method of separating inorganic ions by placing a ceramic heater in humidified air is used. For example, in the conventional humidifier, as shown in FIG. 15, the water particles 112 finely pulverized by the ultrasonic vibrator 111 are passed through a ceramic heater 113 having a large number of fine ports provided at the ejection port. . Thus, a method for filtering impurities in the water particles 112 is known. like this Such a conventional humidifier is disclosed, for example, in Japanese Utility Model Publication No. 59-184021.
[0005] また、ノズル力も発生させた水を効率的に加熱するために、水に赤外線を照射して 加熱蒸発させて加湿するなどの方法が取られている。たとえば、従来の加湿装置で は、図 16に示すように、水配管 122と循環ポンプ 123の作用によって水噴出ノズル 1 21から発生した水膜 127に赤外線ランプ 126から赤外線を照射して水を加熱する方 法が知られている。このような従来の加湿装置は、たとえば、特開昭 56— 82330号 公報に開示されている。 [0005] Further, in order to efficiently heat the water in which the nozzle force is also generated, a method of irradiating the water with infrared rays, heating and evaporating the water, and the like are taken. For example, in a conventional humidifier, as shown in FIG. 16, the water film 127 generated from the water jet nozzle 121 by the action of the water pipe 122 and the circulation pump 123 is irradiated with infrared rays from the infrared lamp 126 to heat the water. How to do is known. Such a conventional humidifier is disclosed in, for example, Japanese Patent Application Laid-Open No. 56-82330.
[0006] また、別の方法として、ハロゲンランプで水中に設置した加熱媒体を加熱して水を 蒸発させる方法がとられている。たとえば、従来の加湿機では、図 17に示すように石 英ガラス製の蒸発皿 131で形成した水蒸気発生貯水槽 132の内部に光吸収体 133 を設置し、ハロゲンランプ 134で光吸収体 133を加熱する構造となっている。そして、 水位 135よりも下に設置された光吸収体 133が加熱されることによって周囲の水を蒸 発させ、蒸気フード 136より排出される方法が知られている。このような従来の加湿装 置は、たとえば、特開平 10— 281505号公報に開示されている。 [0006] As another method, a heating medium installed in water with a halogen lamp is heated to evaporate water. For example, in a conventional humidifier, as shown in FIG. 17, a light absorber 133 is installed inside a water vapor generating water storage tank 132 formed by an evaporating dish 131 made of stone glass, and the light absorber 133 is attached by a halogen lamp 134. It has a structure to heat. A method is known in which the light absorber 133 installed below the water level 135 is heated to evaporate the surrounding water and is discharged from the steam hood 136. Such a conventional humidifier is disclosed in, for example, Japanese Patent Laid-Open No. 10-281505.
[0007] また、水槽に貯められた水を蒸発して加湿するために、貯水に赤外線を照射するな どの方法もある。たとえば、図 18に示すように、水槽 141の上方に設けられた赤外線 ランプ 142が、水槽 141に貯められた水に対して赤外線を照射する方法が知られて いる。このような従来の加湿装置は、たとえば、実開平 3— 107636号公報に開示さ れている。 [0007] In addition, in order to evaporate and humidify the water stored in the water tank, there is a method of irradiating the stored water with infrared rays. For example, as shown in FIG. 18, a method is known in which an infrared lamp 142 provided above a water tank 141 irradiates water stored in the water tank 141 with infrared light. Such a conventional humidifier is disclosed in, for example, Japanese Utility Model Publication No. 3-107636.
発明の開示  Disclosure of the invention
[0008] 本発明の加湿装置は、水を微粒化する微粒化装置と通路と赤外線発生装置とフィ ルタとを有し、通路は、微粒ィ匕装置によって微粒化された水粒子を通過させ、赤外線 発生装置は、赤外線を発生することによって、通路に高温域を形成し、高温域を通 過した水粒子がフィルタを通過する。このような構成を有することによって、水または 空気に含まれる微生物が加湿装置の運転初期から効率よく殺菌され、さらに、立ち 上がりが早ぐ省エネルギーで加湿性能を発揮する加湿装置が提供される。  [0008] The humidifying device of the present invention has a atomizing device for atomizing water, a passage, an infrared ray generating device, and a filter, the passage allows water particles atomized by the fine particle device to pass through, The infrared generator generates infrared rays to form a high temperature region in the passage, and water particles that have passed through the high temperature region pass through the filter. By having such a configuration, there is provided a humidifier capable of efficiently sterilizing microorganisms contained in water or air from the beginning of operation of the humidifier, and exhibiting humidification performance with energy saving that is quick to start.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は本発明の実施の形態 1における加湿装置を示す概略断面図である。 圆 2]図 2は本発明の実施の形態 1における別の態様の加湿装置を示す概略断面図 である。 FIG. 1 is a schematic cross-sectional view showing a humidifier according to Embodiment 1 of the present invention. 2] FIG. 2 is a schematic cross-sectional view showing a humidifying device according to another aspect of Embodiment 1 of the present invention.
圆 3]図 3は本発明の実施の形態 1における加湿装置に用いられるフィルタを示す概 略斜視図である。 3] FIG. 3 is a schematic perspective view showing a filter used in the humidifying device according to Embodiment 1 of the present invention.
圆 4]図 4は本発明の実施の形態 2における加湿装置を示す概略断面図である。 圆 5]図 5は本発明の実施の形態 3における加湿装置を示す概略断面図である。 圆 6]図 6は本発明の実施の形態 3における別の態様の加湿装置を示す概略断面図 である。 [4] FIG. 4 is a schematic cross-sectional view showing a humidifying device according to Embodiment 2 of the present invention. [5] FIG. 5 is a schematic cross-sectional view showing a humidifier according to Embodiment 3 of the present invention. 6] FIG. 6 is a schematic cross-sectional view showing a humidifying device according to another aspect of Embodiment 3 of the present invention.
圆 7]図 7は本発明の実施の形態 4における加湿装置を示す概略断面図である。 圆 8]図 8は本発明の実施の形態 5における加湿装置を示す概略斜視図である。 [7] FIG. 7 is a schematic cross-sectional view showing a humidifier according to Embodiment 4 of the present invention. 8] FIG. 8 is a schematic perspective view showing a humidifying device according to Embodiment 5 of the present invention.
[図 9]図 9は図 8に示す加湿装置の加湿性能を示す特性図である。  FIG. 9 is a characteristic diagram showing the humidifying performance of the humidifying device shown in FIG.
圆 10]図 10は図 8に示す加湿装置の殺菌性能を示す特性図である。 [10] FIG. 10 is a characteristic diagram showing the sterilization performance of the humidifier shown in FIG.
圆 11]図 11は本発明の実施の形態 6における加湿装置を示す概略断面図である。 圆 12]図 12は本発明の実施の形態 7における加湿装置を示す概略断面図である。 [11] FIG. 11 is a schematic cross-sectional view showing a humidifier according to Embodiment 6 of the present invention. [12] FIG. 12 is a schematic cross-sectional view showing a humidifying device according to Embodiment 7 of the present invention.
[図 13]図 13は従来の加湿装置の概略断面図である。  FIG. 13 is a schematic cross-sectional view of a conventional humidifier.
[図 14]図 14は従来の加湿装置の概略斜視図である。  FIG. 14 is a schematic perspective view of a conventional humidifier.
[図 15]図 15は従来の加湿装置の概略断面図である。  FIG. 15 is a schematic sectional view of a conventional humidifier.
[図 16]図 16は従来の加湿装置の概略断面図である。  FIG. 16 is a schematic cross-sectional view of a conventional humidifier.
[図 17]図 17は従来の加湿装置の概略断面図である。  FIG. 17 is a schematic cross-sectional view of a conventional humidifier.
[図 18]図 18は従来の加湿装置の概略断面図である。  FIG. 18 is a schematic cross-sectional view of a conventional humidifier.
符号の説明 Explanation of symbols
10 加湿装置 10 Humidifier
11 貯水タンク 11 Water storage tank
12 超音波振動子 12 Ultrasonic transducer
13 水粒子 13 water particles
14 通路 14 Passage
14a 通路前段 14a Passage front
14b 通路後段 15 赤外線熱源 14b Rear passage 15 Infrared heat source
16 高温域  16 High temperature range
17 フィ/レタ  17 Fi / Letter
18 反射板  18 Reflector
19 突起部  19 Protrusion
23 レンズ  23 Lens
24 温度センサ  24 Temperature sensor
25 ガラス  25 glass
31 水槽  31 aquarium
32 水柱  32 water columns
42 動 達体  42 Moving object
43 水  43 water
43a 微粒化される  43a atomized
44 δ¾到面  44 δ¾ surface
45 容器  45 containers
46 乾燥装置  46 Drying equipment
47 ノヽロゲンヒータ  47 Norogen heater
48 回転フィルタ  48 Rotation filter
49 回転軸  49 Rotation axis
50 本体  50 body
53 加湿空気  53 Humidified air
60 微粒化装置  60 Atomizer
62 集中部  62 Concentration
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の実施の形態について、図面を用いて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012] (実施の形態 1) [0012] (Embodiment 1)
図 1は、本発明の実施の形態 1による加湿装置の概略断面図を示す。  FIG. 1 shows a schematic cross-sectional view of a humidifier according to Embodiment 1 of the present invention.
[0013] 図 1において、加湿装置 10は、本体 50と、それぞれ本体 50に収納される、微粒ィ匕 装置 60と、通路 14と、赤外線発生装置を構成する赤外線熱源 15と、フィルタ 17とを 有する。超音波振動子 12は、水 43を微粒化する微粒化装置 60を構成する。貯水タ ンク 11から供給された水 43は、超音波振動子 12によって微粒化され、水粒子 13が 発生して空気が加湿される。水粒子 13は通路 14を移動して、赤外線熱源 15によつ て作られた高温域 16を通過する。赤外線熱源 15の後段にはフィルタ 17が設置され ている。赤外線の照射によって高温域 16と高温域 16を通過する水粒子 13とが加熱 される。フィルタ 17を通過した水粒子 13は、加湿空気 53となって、加湿装置 10の外 部へ放出される。また、貯水タンク 11と水槽 31とは、水 43を供給する水供給装置を 構成する。 In FIG. 1, a humidifier 10 includes a main body 50 and fine particles stored in the main body 50, respectively. A device 60, a passage 14, an infrared heat source 15 constituting an infrared generator, and a filter 17 are provided. The ultrasonic transducer 12 constitutes a atomization device 60 that atomizes the water 43. The water 43 supplied from the water storage tank 11 is atomized by the ultrasonic vibrator 12, and water particles 13 are generated to humidify the air. The water particles 13 travel through the passage 14 and pass through the high temperature region 16 created by the infrared heat source 15. A filter 17 is installed after the infrared heat source 15. High temperature region 16 and water particles 13 passing through high temperature region 16 are heated by infrared irradiation. The water particles 13 that have passed through the filter 17 become humidified air 53 and are discharged to the outside of the humidifier 10. In addition, the water storage tank 11 and the water tank 31 constitute a water supply device that supplies water 43.
[0014] 加湿装置 10は、赤外線熱源 15が作る高温域 16に水粒子 13を通すことにより、水 粒子 13を殺菌処理する。水粒子 13は、微粒化されて空気との接触面積が大きくなつ ているため、有効に水粒子 13の加熱が行なわれる。さらに、水粒子 13を構成する水 の表面に直接赤外線が照射されており、水自体の赤外線吸収率が高いため、効率よ く加熱が行われる。この結果、シーズヒータなどの空気加熱ヒータを用いて加熱する 場合に比べて、より低い入力エネルギーで効率よく水に熱エネルギーを与え、水 43 または水粒子 13に含まれる細菌や真菌などの微生物を死滅させることができる。微 生物が死滅するのに充分な温度は 50°C以上であり、 75°C以上であれば、より短時 間で殺菌を行うことができる。  The humidifier 10 sterilizes the water particles 13 by passing the water particles 13 through a high temperature region 16 created by the infrared heat source 15. Since the water particles 13 are atomized and have a large contact area with the air, the water particles 13 are effectively heated. Further, since the infrared rays are directly irradiated on the surface of the water constituting the water particles 13, the water itself has a high infrared absorptance, so that the heating is performed efficiently. As a result, compared to heating using an air heater such as a sheathed heater, heat energy is efficiently applied to water with lower input energy, and microorganisms such as bacteria and fungi contained in water 43 or water particles 13 are removed. Can be killed. The temperature sufficient for killing microorganisms is 50 ° C or higher, and if it is 75 ° C or higher, sterilization can be performed in a shorter time.
[0015] なお、水粒子 13の温度は高いほど殺菌効果が高いが、温度が高すぎると通路 14 を構成する榭脂が軟化して変形する恐れがある。このため、高温域 16の温度は、榭 脂の軟ィ匕温度以下にすることが好ましい。通路 14を構成する榭脂として、ポリプロピ レンを使用した場合は、軟ィ匕温度が約 120°Cであるので、高温域 16の温度が 75°C 〜120°Cであることが好ましい。また、通路 14を構成する榭脂として、ポリカーボネー トを使用した場合は、高温域 16の温度が 75°C〜130°Cであることが好ましい。さらに 、通路 14を金属などの耐熱材料で構成した場合には、材料の耐熱温度が高いため 、高温域 16の温度はさらに高い温度であってもよい。なお、通路 14を金属などの耐 熱性の高い材料で構成した場合には、高温域 16の温度は、用いられる耐熱材料の 温度特性を考慮して決定される。また、通路 14が榭脂材料で構成される場合、通路 14の形状を自由に選択可能であり、また、成形が容易である。このことによって、安 価な加湿装置 10が得られる。 [0015] Note that the higher the temperature of the water particles 13, the higher the sterilizing effect. However, if the temperature is too high, there is a risk that the fat constituting the passage 14 is softened and deformed. For this reason, it is preferable that the temperature of the high temperature region 16 is not higher than the soft temperature of the resin. When polypropylene is used as the resin constituting the passage 14, the soft temperature is about 120 ° C, so the temperature of the high temperature region 16 is preferably 75 ° C to 120 ° C. Further, when polycarbonate is used as the resin constituting the passage 14, the temperature of the high temperature region 16 is preferably 75 ° C to 130 ° C. Furthermore, when the passage 14 is made of a heat-resistant material such as metal, the temperature of the high temperature region 16 may be higher because the heat-resistant temperature of the material is high. When the passage 14 is made of a material having high heat resistance such as metal, the temperature of the high temperature region 16 is determined in consideration of the temperature characteristics of the heat resistant material used. If the passage 14 is made of a resin material, the passage Fourteen shapes can be freely selected, and molding is easy. As a result, an inexpensive humidifier 10 can be obtained.
[0016] 一般に、水の光吸収波長は、 1〜: L0 m程度であることが知られている。赤外線熱 源 15としては、 1〜2 μ mのピーク波長を有するハロゲンヒータまたはカーボンヒータ を用いることができる。また、 5〜7 /ζ πιのピーク波長を有する遠赤外線放出材料を用 いたセラミックヒータなども利用することができる。ハロゲンヒータまたはカーボンヒータ が赤外線熱源 15として用いられた場合、セラミックヒータに比べて、より短時間で高温 まで加熱することができる。たとえば、ハロゲンヒータまたはカーボンヒータが赤外線 熱源 15として用いられた場合、高温域 16が、 10秒以内に安定的な温度域に達する 。し力しながら、セラミックヒータを用いた場合、 60秒以上経っても温度上昇が続くこと もある。したがって、ハロゲンヒータまたはカーボンヒータが赤外線熱源 15として用い られた場合、加湿装置 10の加湿動作開始までの時間の短縮が容易である。  In general, it is known that the light absorption wavelength of water is about 1 to: L0 m. As the infrared heat source 15, a halogen heater or a carbon heater having a peak wavelength of 1 to 2 μm can be used. A ceramic heater using a far infrared ray emitting material having a peak wavelength of 5 to 7 / ζ πι can also be used. When a halogen heater or carbon heater is used as the infrared heat source 15, it can be heated to a higher temperature in a shorter time than a ceramic heater. For example, when a halogen heater or a carbon heater is used as the infrared heat source 15, the high temperature region 16 reaches a stable temperature region within 10 seconds. However, when a ceramic heater is used, the temperature may continue to rise even after 60 seconds. Therefore, when a halogen heater or a carbon heater is used as the infrared heat source 15, it is easy to shorten the time until the humidifying operation of the humidifying device 10 is started.
[0017] また、赤外線熱源 15、または高温域 16、フィルタ 17の加熱によって水粒子 13の蒸 発が促進され、大きな水粒子 13がさらに小さな水粒子 13に変換される。このことによ つて、加湿装置 10外部に加湿空気 53が放出された後の、大きな水粒子 13の落下に よる加湿装置 10周辺の水濡れが抑制され、室内を効果的に加湿する。  [0017] Further, evaporation of the water particles 13 is accelerated by heating the infrared heat source 15, or the high temperature region 16, and the filter 17, and the large water particles 13 are converted into smaller water particles 13. As a result, after the humidified air 53 is released to the outside of the humidifier 10, wetting around the humidifier 10 due to the drop of the large water particles 13 is suppressed, and the room is effectively humidified.
[0018] また、カーボンヒータは、ハロゲンヒータに比べて出力は高いという特徴を有してい る。また、セラミックヒータは、表面にガラスを用いないため、耐衝撃性に優れるという 特徴を有しており、赤外線熱源 15としては、加湿装置 10の使用特性に合わせて、任 意の熱源が選択されればょ 、。  [0018] In addition, the carbon heater has a feature that the output is higher than that of the halogen heater. In addition, ceramic heaters are characterized by excellent impact resistance because they do not use glass on their surfaces. As the infrared heat source 15, an arbitrary heat source is selected according to the usage characteristics of the humidifier 10. If you can.
[0019] 無機イオンなどの蒸発残留物(図示せず)を含む水粒子 13が、高温域 16を通過し て蒸発すると、蒸発残留物は白粉 (図示せず)となって浮遊する。大きな白粉は自重 によって落下する。比較的小さな粒子、すなわち、比較的小さな白粉粒子(図示せず )は、フィルタ 17によってろ過され、捕集される。高温域 16で蒸発しなかった水滴で ある水粒子 13でも、表面が高温となつた赤外線熱源 15またはフィルタ 17表面に衝 突すると、衝突したときに蒸発して蒸発残留物である白粉を生じることもある。  When water particles 13 containing evaporation residues (not shown) such as inorganic ions pass through high temperature region 16 and evaporate, the evaporation residues float as white powder (not shown). Large white powder falls by its own weight. Relatively small particles, that is, relatively small white powder particles (not shown) are filtered by the filter 17 and collected. Even water particles 13 which are water droplets that did not evaporate in the high temperature region 16 will collide with the surface of the infrared heat source 15 or filter 17 whose surface has become high temperature, and when they collide, they will evaporate to produce white powder that is an evaporation residue. There is also.
[0020] フィルタ 17の形状としては、ハ-カム形状または板を積層した形状、パンチング形 状、網形状、発泡形状、繊維をからめた形状などが用いられる。なお、フィルタ 17は 、加湿された空気が通過でき、かつ、白粉粒子のろ過捕集ができる形状であれば、な んら限定されない。たとえば、フィルタ 17の形状として、発泡ポリウレタン、不織布など のフィルタが用いられる。 [0020] As the shape of the filter 17, a Hercam shape, a laminated plate shape, a punching shape, a net shape, a foam shape, a shape entwined with fibers, or the like is used. Filter 17 is The shape is not particularly limited as long as humidified air can pass through and white powder particles can be collected by filtration. For example, a filter such as foamed polyurethane or nonwoven fabric is used as the shape of the filter 17.
[0021] さらに、フィルタ 17が網形状であれば、網目の粗さの選択により、通過可能な水粒 子 13の大きさ、ならびに、ろ過捕集する白粉粒子の大きさを容易に選択できる。また 、フィルタ 17が板を積層した形状であれば、板を斜めに配置したり、板を折り曲げたり することで、限られた空間スペースでもフィルタ 17の厚み、つまり水粒子 13を含むカロ 湿された空気の通過距離を調整することができる。フィルタ 17通過距離が長ければ、 水粒子 13が不純物を含んでいた場合にも、通過中に不純物がフィルタ 17にトラップ され易いという効果が得られる。また、フィルタ 17がハ-カム形状または板を積層した 形状であれば、フィルタ 17を通過する空気に対する圧力損失が小さぐフィルタ 17は 空気の整流板としても有効である。  [0021] Further, if the filter 17 has a net shape, the size of the water particles 13 that can pass through and the size of the white powder particles that are collected by filtration can be easily selected by selecting the roughness of the mesh. Further, if the filter 17 has a shape in which the plates are laminated, the thickness of the filter 17, that is, the moisture containing the water particles 13, can be moistened even in a limited space by arranging the plates diagonally or bending the plates. The passing distance of air can be adjusted. If the passing distance of the filter 17 is long, the effect that the impurities are easily trapped by the filter 17 during the passage can be obtained even when the water particles 13 contain the impurities. Further, if the filter 17 has a Hercam shape or a shape in which plates are laminated, the filter 17 with a small pressure loss with respect to the air passing through the filter 17 is also effective as an air rectifying plate.
[0022] 赤外線熱源 15の表面に析出した白粉は、赤外線の放出をさえぎる働きと、熱を吸 収して赤外線熱源 15の表面温度をさげる作用とを有する。このため、赤外線熱源 15 の表面を定期的に清掃することが望ましい。赤外線熱源 15にセラミックヒータを用い た場合には、セラミック表面に微細な凹凸があるため清掃が難しい。し力しながら、赤 外線熱源 15に、ハロゲンヒータまたはカーボンヒータが用いられた場合、ヒータ表面 は平滑なガラスを用いているため、赤外線熱源 15の表面の清掃は容易である。  The white powder deposited on the surface of the infrared heat source 15 has a function of blocking the emission of infrared rays and a function of absorbing heat and lowering the surface temperature of the infrared heat source 15. For this reason, it is desirable to periodically clean the surface of the infrared heat source 15. When a ceramic heater is used for the infrared heat source 15, cleaning is difficult because there are fine irregularities on the ceramic surface. However, when a halogen heater or a carbon heater is used as the infrared heat source 15, the surface of the infrared heat source 15 can be easily cleaned because the heater surface is made of smooth glass.
[0023] 水 43を微粒ィ匕する微粒ィ匕装置 60としては、図 1に示すように、超音波振動子 12を 用いることができる。微粒ィ匕装置 60として、超音波振動子 12が用いられると、少ない 消費電力で、連続的に安定した大きさの水粒子 13が得られる。し力しながら、微粒ィ匕 装置 60は、超音波振動子 12に限定されない。たとえば、微細なノズル力も水を噴出 する方法、回転するファンに水滴をぶつけて破砕する方法、静電霧化などの方法が 利用可能である。微粒ィ匕装置 60は、水粒子 13の直径を 1〜60 m程度の微粒子、 微細水滴にすればよぐ特に限定されない。  [0023] As shown in FIG. 1, an ultrasonic vibrator 12 can be used as the fine particle squeezing device 60 for finely scouring the water 43. When the ultrasonic transducer 12 is used as the fine particle device 60, the water particles 13 having a continuously stable size can be obtained with low power consumption. However, the fine particle device 60 is not limited to the ultrasonic transducer 12. For example, a method of ejecting water with a fine nozzle force, a method of smashing water droplets against a rotating fan, and a method of electrostatic atomization can be used. The fine particle device 60 is not particularly limited as long as the diameter of the water particles 13 is fine particles having a diameter of about 1 to 60 m and fine water droplets.
[0024] また、水に照射された赤外線は、水の表層力も数 10 mの領域までに吸収される ことによって、熱に変換されると考えられている。したがって、 60 /z m以上の水粒子で は温度上昇に時間が力かりすぎるため、あまり好ましくない。なお、水粒子 13に、 1 μ m以下の水の微粒子が混在して!/ヽても問題はな!/ヽ。 [0024] Further, it is considered that infrared rays irradiated to water are converted into heat by absorbing the surface force of water up to an area of several tens of meters. Therefore, water particles with a particle size of 60 / zm or more are not preferred because the temperature rise takes too much time. In addition, 1 μ There is a mixture of fine particles of water below m!
[0025] 次に、図 1に示す加湿装置 10の動作について説明する。貯水タンク 11から供給さ れた水 43は、 1. 6MHzの周波数で発振する超音波振動子 12によって微粒化され る。超音波振動子 12が生成した超音波振動は、振動伝達体として作用する水 43の 中を振動波 52のように伝達され、水面力も微粒ィ匕された水粒子 13が生成される。な お、微粒化された水粒子 13の平均粒子直径は約 4 mである。水粒子 13は、赤外 線熱源 15としてのハロゲンヒータによって作られた高温域 16を通過する。ハロゲンヒ ータは、集光すれば最高で約 2000°Cもの高温域 16を容易に作ることができる。しか しながら、図 1に示す加湿装置 10では、 50°C〜200°C程度の温度で充分に効果が 得られる。高温域 16は微生物が死滅するのに充分な 50°C以上の温度を水粒子 13 に与える。赤外線熱源 15としてのハロゲンヒータの後段には、フィルタ 17として、直 径 2mm程度の丸穴のパンチンダカ卩ェがされたアルミ板を積層して配置して 、る。フ ィルタ 17の表面には、抗菌作用をもつ銅を含有する黒色の耐熱塗料が被覆されてい る。フィルタ 17は赤外線の吸収と高温域 16の複合作用とによって、高温域 16におけ る空気温度よりも高温となっている。水粒子 13は、高温域 16とフィルタ 17表面とによ つて加熱される。このこと〖こよって、水粒子 13の気化が促進され、微細な加湿空気 53 となって加湿装置 10の外部に放出される。  Next, the operation of the humidifier 10 shown in FIG. 1 will be described. The water 43 supplied from the water storage tank 11 is atomized by the ultrasonic vibrator 12 that oscillates at a frequency of 1.6 MHz. The ultrasonic vibration generated by the ultrasonic transducer 12 is transmitted as the vibration wave 52 in the water 43 acting as a vibration transmitting body, and the water particles 13 with fine water surface force are generated. The average particle diameter of the atomized water particles 13 is about 4 m. The water particles 13 pass through a high temperature region 16 created by a halogen heater as an infrared ray heat source 15. Halogen heaters can easily create a high-temperature region 16 of up to about 2000 ° C when condensed. However, the humidifier 10 shown in FIG. 1 is sufficiently effective at a temperature of about 50 ° C. to 200 ° C. The high temperature zone 16 gives the water particles 13 a temperature above 50 ° C sufficient for the microorganisms to die. A halogen heater as the infrared heat source 15 is placed behind the halogen heater as a filter 17 by laminating an aluminum plate with a punch hole of a round hole having a diameter of about 2 mm. The surface of the filter 17 is coated with a black heat-resistant paint containing copper having antibacterial action. The filter 17 is hotter than the air temperature in the high temperature region 16 due to the absorption of infrared rays and the combined action of the high temperature region 16. The water particles 13 are heated by the high temperature region 16 and the surface of the filter 17. As a result, vaporization of the water particles 13 is promoted, and fine humidified air 53 is released outside the humidifier 10.
[0026] また、加湿装置 10の加湿運転停止時に加熱または送風運転の制御を行 、、本体 5 0内を乾燥させる乾燥装置 46が設けられている。乾燥装置 46は、加熱と送風運転と の制御を行うこともある。乾燥装置 46が作動することによって、本体 50内の残留水が 効果的に乾燥される。このことにより、加湿装置 10が衛生的に保たれる。  [0026] Further, a drying device 46 is provided for controlling heating or blowing operation when the humidifying operation of the humidifying device 10 is stopped, and drying the inside of the main body 50. The drying device 46 may control heating and air blowing operation. By operating the drying device 46, the residual water in the main body 50 is effectively dried. This keeps the humidifier 10 hygienic.
[0027] また、図 2は、本発明の実施の形態 1による別の態様の加湿装置の概略断面図を 示す。図 2に示すように、通路 14は、赤外線熱源 15が配置されている部分によって、 通路前段 14aと通路後段 14bとに区分されている。さらに、通路後段 14bの開口断面 積 Sbは通路前段 14aの開口断面積 Saよりも大きい。このことによって、通路 14を通 過する空気と水粒子 13との流速が低下する。この結果、赤外線が照射される時間を 長くして水粒子 13の温度上昇を促進する。  [0027] Fig. 2 shows a schematic cross-sectional view of a humidifying device of another aspect according to Embodiment 1 of the present invention. As shown in FIG. 2, the passage 14 is divided into a passage front stage 14a and a passage rear stage 14b by a portion where the infrared heat source 15 is disposed. Furthermore, the opening cross-sectional area Sb of the passage rear stage 14b is larger than the opening cross-sectional area Sa of the passage front stage 14a. As a result, the flow velocity of the air and water particles 13 passing through the passage 14 decreases. As a result, the time during which infrared rays are irradiated is lengthened to promote the temperature rise of the water particles 13.
[0028] また、通路 14を耐熱性の榭脂で構成することにより、通路 14の近くが加熱されるこ とによる、通路 14の変形が防止される。通路 14に用いられる耐熱性の榭脂の一例と しては、ポリカーボネートまたはポリプロピレンなどが挙げられる。また、通路 14が金 属材料で構成されることによって、通路 14に耐熱性が付与される。 [0028] In addition, by configuring the passage 14 with heat-resistant grease, the vicinity of the passage 14 is heated. Therefore, the deformation of the passage 14 is prevented. An example of a heat-resistant resin used in the passage 14 is polycarbonate or polypropylene. Further, the passage 14 is made of a metal material, so that the passage 14 is provided with heat resistance.
[0029] さらに、通路 14を構成する金属材料が、赤外線反射作用を有していれば、赤外線 を乱反射させて水粒子 13の加熱を促進する。なお、通路 14を構成する金属材料が 、赤外線反射作用を有している場合、反射板が通路 14の壁面に設けられていること と同等の作用'効果とを発揮する。赤外線反射作用のある金属材料としては、アルミ ユウム、鉄、ステンレスなどが挙げられ、金メッキまたは酸ィ匕防止加工を施しても良い 。また、酸ィ匕チタンまたは酸ィ匕亜鉛のような白色の材料で通路 14の壁面に力卩ェを施 しても良い。 [0029] Further, if the metal material constituting the passage 14 has an infrared reflecting function, the infrared rays are diffusely reflected to promote heating of the water particles 13. In addition, when the metal material which comprises the channel | path 14 has an infrared reflective effect | action, the effect | action 'effect equivalent to having provided the reflecting plate in the wall surface of the channel | path 14 is exhibited. Examples of the metal material having an infrared reflecting action include aluminum, iron, and stainless steel, and may be subjected to gold plating or oxidation prevention processing. Further, a force may be applied to the wall surface of the passage 14 with a white material such as acid titanium or acid zinc.
[0030] また、通路 14が、銅、銀、亜鉛、ニッケル力も選ばれる少なくとも一種類の抗菌性金 属を含んでいれば、通路 14に細菌または真菌等を含む水粒子 13が存在した場合、 細菌または真菌等を通路 14内で除菌できる。このことによって、通路 14内が衛生的 に保たれる。  [0030] If the passage 14 contains at least one antibacterial metal of which copper, silver, zinc, nickel power is also selected, when water particles 13 containing bacteria, fungi, or the like are present in the passage 14, Bacteria or fungi can be sterilized in the passage 14. This keeps the passage 14 hygienic.
[0031] また、通路 14が、銅、銀、亜鉛、ニッケル、アルミニウム、カーボン力 選ばれる 2種 類以上の材料を含み、これらの材料が電気的に接続されている場合、電気的な除菌 作用が作用する。電気的な除菌作用とは、電荷を帯びた菌が電気的に捕集されるこ とを意味する。たとえば、マイナス電荷を帯びた菌が、プラス電荷を帯びた通路 14に 電気的に吸引され、電気的に捕集される。また、水粒子 13がカルシウムイオン、マグ ネシゥムイオンなどを含む場合、これらのイオンが電気的に捕集される。このように、 通路 14内が衛生的に保たれる。  [0031] In addition, when the passage 14 includes two or more kinds of materials selected from copper, silver, zinc, nickel, aluminum, and carbon force, and these materials are electrically connected, electrical sterilization is performed. The action works. Electrical sterilization means that charged bacteria are collected electrically. For example, negatively-charged bacteria are electrically attracted to the positively-charged passage 14 and electrically collected. Further, when the water particles 13 contain calcium ions, magnesium ions, etc., these ions are collected electrically. In this way, the passage 14 is kept hygienic.
[0032] 通路 14内に設置されたフィルタ 17は、水粒子 13が含む無機イオンなどの蒸発残 留物または細菌や真菌などの微生物などの不純物をろ過する作用を有する。  [0032] The filter 17 installed in the passage 14 has an action of filtering evaporation residues such as inorganic ions contained in the water particles 13 or impurities such as microorganisms such as bacteria and fungi.
[0033] フィルタ 17の形状としては、ハ-カム形状または板を積層した形状、パンチング形 状、網形状、発泡形状、繊維を力もめた形状などが考えられる。なお、フィルタ 17は、 加湿された空気が通過でき、かつ、白粉などの蒸発残留物、微生物などの不純物が ろ過捕集できる形状であれば、なんら限定されない。たとえば、フィルタ 17の形状とし て、発泡ポリウレタン、不織布などのフィルタが用いられる。 [0034] さらに、フィルタ 17が網形状であれば、網目の粗さを変更することにより、通過可能 な水粒子 13の大きさが容易に選別される。また、フィルタ 17が板を積層した形状であ れば、板を斜めに配置したり、板を折り曲げたりすることで、限られた空間スペースで もフィルタ 17の通過距離が調整される。フィルタ 17通過距離が長ければ、水粒子 13 が不純物を含んで 、た場合にも、通過中に不純物がフィルタ 17にトラップされ易 、と いう効果が得られる。また、フィルタ 17がハ-カム形状または板を積層した形状であ れば、フィルタ 17を通過する空気に対する圧力損失が小さぐフィルタ 17は空気の 整流板としても有効である。 [0033] The shape of the filter 17 may be a Hercam shape, a laminated plate shape, a punching shape, a net shape, a foamed shape, or a shape with strong fibers. The filter 17 is not limited as long as it has a shape that allows humidified air to pass through and allows filtration and collection of evaporation residues such as white powder and impurities such as microorganisms. For example, a filter such as foamed polyurethane or non-woven fabric is used as the shape of the filter 17. [0034] Furthermore, if the filter 17 has a mesh shape, the size of the water particles 13 that can pass through can be easily selected by changing the roughness of the mesh. Further, if the filter 17 has a shape in which plates are laminated, the passing distance of the filter 17 can be adjusted even in a limited space by arranging the plates diagonally or bending the plates. If the passage distance of the filter 17 is long, the effect that the impurities are easily trapped by the filter 17 during passage can be obtained even when the water particles 13 contain the impurity. Further, if the filter 17 has a Hercam shape or a shape in which plates are laminated, the filter 17 having a small pressure loss with respect to the air passing through the filter 17 is also effective as an air rectifying plate.
[0035] また、フィルタ 17に赤外線を照射すれば、フィルタ 17を加熱し、付着した水粒子 13 の気化促進と細菌や真菌の殺菌効果が期待できる。熱伝導性がよぐ熱容量が小さ いほど温度が上がりやすいことから、フィルタ 17が金属材料を含むことが好ましい。フ ィルタ 17に用いられる金属材料の例としては、アルミニウムまたは鉄、ステンレスなど が挙げられる。さらに、フィルタ 17に用いられる金属材料が赤外線吸収率の高い暗 色を有すると、フィルタ 17の温度がさらに上がりやすくなる。フィルタ 17の表面に暗色 の特性を付与する方法は、たとえば、フィルタ 17を構成する金属材料を高温で焼成 して、酸ィ匕皮膜を作る方法が利用可能である。また、フィルタ 17を構成する金属材料 に暗色の耐熱材料を被覆する方法、黒色で耐熱性のある塗料によりフィルタ 17の表 面をコーティングする方法なども利用可能である。また、フィルタ 17が暗色でない場 合であっても、赤外線吸収材料がフィルタ 17に塗布されるなどして形成されても、同 様の効果が得られる。赤外線吸収材料の一例としては、たとえば、銅、または、鉄、マ ンガン、これらの複合酸化物、カーボンなどである。  [0035] If the filter 17 is irradiated with infrared rays, the filter 17 is heated, and the vaporization promotion of the attached water particles 13 and the sterilizing effect of bacteria and fungi can be expected. It is preferable that the filter 17 contains a metal material because the temperature increases more easily as the heat capacity is better and the heat capacity is smaller. Examples of the metal material used for the filter 17 include aluminum, iron, and stainless steel. Furthermore, if the metal material used for the filter 17 has a dark color with a high infrared absorption rate, the temperature of the filter 17 is more likely to rise. As a method for imparting a dark color characteristic to the surface of the filter 17, for example, a method of baking the metal material constituting the filter 17 at a high temperature to form an acid film can be used. Further, a method of coating the metal material constituting the filter 17 with a dark heat-resistant material, a method of coating the surface of the filter 17 with a black heat-resistant paint, and the like can be used. The same effect can be obtained even when the filter 17 is not dark or formed by applying an infrared absorbing material to the filter 17. An example of the infrared absorbing material is, for example, copper, iron, mangan, a composite oxide thereof, carbon, or the like.
[0036] また、フィルタ 17に赤外線が照射されると、赤外線熱源 15の空気加熱効果に加え て輻射熱によって、フィルタ 17自身の温度上昇効果が得られる。このことによって、 水粒子 13の加熱を促進することができる。また、フィルタ 17を高温の状態に保つこと によって、フィルタ 17に衝突した水粒子 13を気化させる。このことによって、水粒子 1 3に含まれる細菌や真菌等の蒸発残留物がフィルタ 17表面に析出されて、捕集され る。この結果、フィルタ 17の下流側に清潔な加湿空気 53を送り出すことができる。つ まり、加湿装置 10の外に、清浄な加湿空気 53を送風できる。 [0037] また、フィルタ 17が、銅、銀、亜鉛、ニッケル力も選ばれる少なくとも一種類の抗菌 性金属を含むことにより、赤外線熱源 15が停止してフィルタ 17の温度が低い時でも 表面に付着した細菌や真菌等の微生物の増殖を抑制することができる。 [0036] When the filter 17 is irradiated with infrared rays, an effect of increasing the temperature of the filter 17 itself is obtained by radiant heat in addition to the air heating effect of the infrared heat source 15. As a result, heating of the water particles 13 can be promoted. Further, the water particles 13 colliding with the filter 17 are vaporized by keeping the filter 17 at a high temperature. As a result, evaporation residues such as bacteria and fungi contained in the water particles 13 are deposited on the surface of the filter 17 and collected. As a result, clean humidified air 53 can be sent to the downstream side of the filter 17. That is, clean humidified air 53 can be blown out of the humidifier 10. [0037] Further, since the filter 17 contains at least one antibacterial metal of which copper, silver, zinc, and nickel power are also selected, the infrared heat source 15 is stopped and the filter 17 adheres to the surface even when the temperature of the filter 17 is low. Growth of microorganisms such as bacteria and fungi can be suppressed.
[0038] またフィルタ 17が、銅、銀、亜鉛、ニッケル、アルミニウム、カーボン力も選ばれる 2 種類以上の材料を含み、前記材料が電気的に接続されていれば、通路 14と同様に 、電気的な除菌作用が働く。つまり、フィルタ 17上に捕集された水粒子 13が細菌や 真菌等の微生物を含んでいたとしても、細菌や真菌等の微生物が電気的に除菌され 、フィルタ 17が衛生的に保たれる。  [0038] In addition, if the filter 17 includes two or more materials selected from copper, silver, zinc, nickel, aluminum, and carbon force, and the materials are electrically connected, the filter 17 is electrically Sterile action works. That is, even if the water particles 13 collected on the filter 17 contain microorganisms such as bacteria and fungi, the microorganisms such as bacteria and fungi are electrically sterilized and the filter 17 is kept hygienic. .
[0039] フィルタ 17の配置される場所は、いずれの場所でよい。し力しながら、赤外線熱源 1 5の後段に配置することにより、赤外線熱源 15の発する赤外線が加湿装置 10の外部 に照射されるのを防ぐ遮光板の作用を果たすことができる。フィルタ 17が、遮光板と して作用する場合、赤外線が、加湿装置 10の外部に照射され、加湿装置 10の使用 者がまぶしさを感じることを防止する。  [0039] The place where the filter 17 is arranged may be any place. However, by disposing the infrared heat source 15 at the subsequent stage, the function of a light shielding plate that prevents the infrared rays emitted from the infrared heat source 15 from being irradiated outside the humidifier 10 can be achieved. When the filter 17 acts as a light shielding plate, infrared rays are irradiated to the outside of the humidifying device 10 to prevent the user of the humidifying device 10 from feeling glare.
[0040] また、放射エネルギー強度が光源力もの距離の二乗に反比例する原理を考慮して 、赤外線熱源 15とフィルタ 17との間の距離は、できるだけ近いほうがよい。したがつ て、赤外線熱源 15とフィルタ 17との間の距離は、 30mm以内の距離にすることが望 ましい。なお、図 2に示すように、フィルタ 17が金網あるいは繊維状に形成され、赤外 線熱源 15の周囲に、赤外線熱源 15を覆いかぶせるように配置すると、フィルタ 17が 赤外線を吸収する効率がよい。さらに、平面的に配置されたフィルタ 17に比べて、赤 外線熱源 15の表面からフィルタ 17まで間の距離が短くなる。このことによって、さらに 、フィルタ 17の加熱効率がよくなる。  [0040] Considering the principle that the radiant energy intensity is inversely proportional to the square of the distance of the light source power, the distance between the infrared heat source 15 and the filter 17 should be as close as possible. Therefore, it is desirable that the distance between the infrared heat source 15 and the filter 17 be within 30 mm. As shown in FIG. 2, when the filter 17 is formed in a wire mesh or a fiber shape and is arranged so as to cover the infrared heat source 15 around the infrared ray heat source 15, the filter 17 is efficient in absorbing infrared rays. . Further, the distance from the surface of the infrared heat source 15 to the filter 17 is shorter than that of the filter 17 arranged in a plane. This further improves the heating efficiency of the filter 17.
[0041] また、フィルタ 17の表面が親水性の特性を有するようにすれば、フィルタ 17に水粒 子 13が付着した際に、空気との接触面積が広がって水粒子 13の気化が促進される 。フィルタ 17の表面に親水性を付与する方法として、アルミナ 'ムライトなどのセラミツ クハニカムを使用する方法や、フィルタ 17を構成する金属材料の表面をシリカまたは ゼォライト、カオリンなどの親水性材料で被覆する方法が挙げられる。たとえば、銀や 銅を含有するゼオライトを利用すると抗菌作用も併せて付与することができる。また、 フィルタ 17表面が親水性であれば、水の接触角が低下して、目の細力 、フィルタ 17 を用いた場合であっても、フィルタ 17内部に水粒子 13が浸透しやすくなり、目詰まり による加湿能力の低下が防止される。 [0041] Further, if the surface of the filter 17 has hydrophilic characteristics, when the water particles 13 adhere to the filter 17, the contact area with the air increases, and the vaporization of the water particles 13 is promoted. The As a method for imparting hydrophilicity to the surface of the filter 17, a method using a ceramic honeycomb such as alumina mullite, or a method for coating the surface of a metal material constituting the filter 17 with a hydrophilic material such as silica, zeolite or kaolin. Is mentioned. For example, when a zeolite containing silver or copper is used, an antibacterial action can also be imparted. In addition, if the surface of the filter 17 is hydrophilic, the contact angle of water decreases, and the fineness of the eye increases. Even in the case of using water, the water particles 13 are likely to permeate into the filter 17, and the reduction of the humidifying ability due to clogging is prevented.
[0042] また、図 2または図 3に示すように、赤外線熱源 15の前段に超音波振動子 12に直 接赤外線が照射されるのを防ぐ反射板 18を設けることもできる。反射板 18を設けるこ とにより、熱線である赤外線の直射を遮蔽し、超音波振動子 12の温度上昇が防止さ れる。このこと〖こよって、信頼性の高い加湿装置 10が得られる。  In addition, as shown in FIG. 2 or FIG. 3, a reflector 18 that prevents direct irradiation of infrared rays to the ultrasonic transducer 12 may be provided in front of the infrared heat source 15. By providing the reflection plate 18, direct infrared rays, which are heat rays, are shielded, and the temperature of the ultrasonic transducer 12 is prevented from rising. As a result, a highly reliable humidifying device 10 can be obtained.
[0043] また、反射板 18に赤外線反射作用を有する金属材料を用いて構成することにより、 赤外線を反射させて、積極的にフィルタ 17に赤外線を照射することができる。さら〖こ 、水粒子 13に、ほこりや粉塵などが混在している場合であっても、水粒子 13が先に 反射板 18に衝突して通過速度が低下する。このため、水粒子 13が赤外線熱源 15へ 直接衝突することによって起こりうる、赤外線熱源 15の傷またはよごれなどの発生が 抑制される。  In addition, by configuring the reflector 18 using a metal material having an infrared reflecting function, it is possible to reflect the infrared rays and actively irradiate the filter 17 with the infrared rays. Even if the water particles 13 are mixed with dust or dust, the water particles 13 collide with the reflector 18 first, and the passing speed decreases. For this reason, generation | occurrence | production of the damage | wound or dirt of the infrared heat source 15 which may occur when the water particle 13 collides directly with the infrared heat source 15 is suppressed.
[0044] また、反射板 18は、通路 14の開口断面の全てを塞がないようにするために、スリツ ト形状を有するか、あるいは、微細な開口穴が設けられるとよい。反射板 18が、通路 14の開口面積よりも小さな断面積を有することによって、水粒子 13と空気の流速を 適度に制御して、必要な加湿量を得ることができる。  [0044] Further, the reflecting plate 18 may have a slit shape or be provided with a fine opening hole so as not to block the entire opening cross section of the passage 14. Since the reflecting plate 18 has a cross-sectional area smaller than the opening area of the passage 14, it is possible to appropriately control the flow rates of the water particles 13 and the air and obtain a necessary humidification amount.
[0045] フィルタ 17は、本体 50または通路 14に配置される場合、着脱が自在な構造を有す ることが望ましい。フィルタ 17には、殺菌された菌、または、水の気化により析出した 蒸発残留物などがろ過され、捕集されて、フィルタ 17に堆積している。したがって、加 湿装置 10の使用者が、フィルタ 17を容易に取り外し、洗浄できる構造であることによ つて、フィルタ 17の捕集性能を維持することができる。さらに、フィルタ 17が着脱自在 で構成されることによって、フィルタ 17の欠損などの不具合が生じた場合であっても、 フィルタ 17の交換が容易である。このことによって、フィルタ 17に不具合が生じた場 合に、加湿装置 10の修理を必要とせず、使用者がフィルタ 17のみを容易に交換で きる。この結果、簡便に不具合が解消され、常に安定した動作を実現する加湿装置 1 0が提供される。  [0045] When the filter 17 is disposed in the main body 50 or the passage 14, it is desirable that the filter 17 has a detachable structure. In the filter 17, sterilized bacteria or evaporation residue deposited by vaporization of water is filtered, collected, and deposited on the filter 17. Therefore, the collection performance of the filter 17 can be maintained because the user of the humidifier 10 can easily remove and clean the filter 17. Furthermore, since the filter 17 is configured to be detachable, the filter 17 can be easily replaced even if a defect such as a loss of the filter 17 occurs. As a result, when a failure occurs in the filter 17, the user can easily replace only the filter 17 without requiring repair of the humidifying device 10. As a result, it is possible to provide a humidifier 10 that can easily solve the problems and always realizes a stable operation.
[0046] なお、図 2に示す加湿装置 10の動作は以下のようになる。貯水タンク 11から供給さ れた水 43は、 1. 6MHzの周波数で発振する超音波振動子 12によって微粒化され る。微粒ィ匕された水粒子 13の平均粒子径は約 4 /z mである。水粒子 13は赤外線熱 源 15としてのハロゲンヒータによって作られた高温域 16を通過する。高温域 16は、 5 0°C〜200°C程度の温度である。高温域 16は微生物が死滅するのに充分な 50°C以 上の温度を水粒子 13に与える。通路 14はアルミニウムで構成され、赤外線熱源 15と してのハロゲンヒータの周囲から開口面積が大きくなつている。フィルタ 17は、スチー ルウールなどの金属繊維が用いられ、赤外線熱源 15としてのハロゲンヒータにかぶ せるように配置される。フィルタ 17の表面には、抗菌作用をもつ銅を含有する黒色の 耐熱塗料が被覆されている。また、赤外線熱源 15としてのハロゲンヒータの前段には 一部に開口部を設けたアルミニウム製の反射板 18が配置され、ハロゲンヒータより下 方へ照射された赤外線を反射して高温域 16を形成する。フィルタ 17は赤外線の吸 収と高温域 16との複合作用によって、高温域 16の空気温度よりも高温である。水粒 子 13は、高温域 16とフィルタ 17表面と反射板 18との加熱によって温度が上昇し、微 細な加湿空気 53となって加湿装置 10外部に放出される。 [0046] The operation of the humidifier 10 shown in FIG. 2 is as follows. The water 43 supplied from the water storage tank 11 is atomized by the ultrasonic vibrator 12 that oscillates at a frequency of 1.6 MHz. The The average particle size of the finely divided water particles 13 is about 4 / zm. The water particles 13 pass through a high temperature region 16 created by a halogen heater as an infrared heat source 15. The high temperature region 16 is a temperature of about 50 ° C to 200 ° C. The high temperature zone 16 gives the water particles 13 a temperature above 50 ° C sufficient for the microorganisms to die. The passage 14 is made of aluminum, and has an opening area that increases from the periphery of the halogen heater as the infrared heat source 15. The filter 17 is made of a metal fiber such as steel wool, and is disposed so as to cover a halogen heater as the infrared heat source 15. The surface of the filter 17 is coated with a black heat resistant paint containing copper having antibacterial action. In addition, an aluminum reflector 18 with a part of the opening is placed in front of the halogen heater as the infrared heat source 15, and the infrared rays irradiated downward from the halogen heater are reflected to form a high temperature region 16. To do. The filter 17 has a higher temperature than the air temperature in the high temperature region 16 due to the combined action of infrared absorption and the high temperature region 16. The water particles 13 rise in temperature due to heating of the high temperature region 16, the surface of the filter 17, and the reflector 18, and are discharged to the outside of the humidifier 10 as fine humidified air 53.
[0047] 図 3に、通路 14から着脱自在なフィルタ 17の配置構成の一例を示す。通路 14には 4つの突起部 19が内側に向けられて設けられている。さらに、金網状のステンレス製 のフィルタ 17が突起部 19に載せられて保持される構造である。フィルタ 17は、通路 1 4の上部から挿入され、突起部 19上に固定されている。このような構造であれば、通 路 14の上部力もフィルタ 17を持ち上げることによって、容易にフィルタ 17が取り外さ れる。たとえば、フィルタ 17に蒸発残留物が堆積し、洗浄が必要になった場合には、 フィルタ 17の着脱用突起部(図示せず)に指をかけて、上方に引き上げることにより、 フィルタ 17は容易に取り外される。  FIG. 3 shows an example of an arrangement configuration of the filter 17 that is detachable from the passage 14. Four protrusions 19 are provided in the passage 14 so as to face inward. Further, a wire mesh-like stainless steel filter 17 is placed on the protrusion 19 and held. The filter 17 is inserted from the upper part of the passage 14 and is fixed on the protrusion 19. With such a structure, the filter 17 can be easily removed by lifting the filter 17 with the upper force of the passage 14. For example, if evaporation residue accumulates on the filter 17 and cleaning becomes necessary, the filter 17 can be easily removed by placing a finger on the attachment / detachment protrusion (not shown) of the filter 17 and pulling it upward. To be removed.
[0048] また、フィルタ 17表面に付着した不純物は、フィルタ 17を洗浄すればよい。たとえ ば、フィルタ 17表面に付着した不純物が水中でこすり落とされる。または、フィルタ 17 が水道などの流水にさらされて洗浄されることによって、フィルタ 17の表面に付着し た不純物は、剥離され、洗浄される。さらに、フィルタ 17表面の汚れがひどいときは、 クェン酸などにフィルタ 17を浸漬し、その後、付着物をこすり落とすことが容易である 。たとえば、フィルタ 17が板を積層した形状であれば、ブラシなどを容易に挿入する ことができるため、フィルタ 17の洗浄が容易である。このように、フィルタ 17が洗浄可 能な構成を有することによって、常に清潔な加湿機能を実現する加湿装置 10が得ら れる。 [0048] Impurities adhering to the surface of the filter 17 may be cleaned. For example, impurities attached to the surface of the filter 17 are scraped off in water. Alternatively, the filter 17 is exposed to running water such as tap water and cleaned, so that impurities attached to the surface of the filter 17 are peeled off and cleaned. Further, when the surface of the filter 17 is very dirty, it is easy to immerse the filter 17 in citrate or the like and then scrape off the deposits. For example, if the filter 17 has a shape in which plates are laminated, a brush or the like can be easily inserted, so that the filter 17 can be easily cleaned. In this way, the filter 17 can be cleaned. Therefore, the humidifying device 10 that always realizes a clean humidifying function can be obtained.
[0049] また、表 1は、それぞれの材料の抗菌性能である菌の除去率 (%)を示す。通路 14 またはフィルタ 17が、銅、銀、亜鉛、ニッケル、アルミニウム、カーボン力も選ばれる 2 種類以上の材料を含み、それぞれの材料が電気的に接続されている場合の優位性 を表す。  [0049] Table 1 shows the bacteria removal rate (%) which is the antibacterial performance of each material. The passage 14 or the filter 17 includes two or more kinds of materials selected from copper, silver, zinc, nickel, aluminum, and carbon force, and represents an advantage when the respective materials are electrically connected.
[0050] [表 1] 菌の除去率. ( % )  [0050] [Table 1] Bacteria removal rate. (%)
Figure imgf000016_0001
Figure imgf000016_0001
[0051] 使用したテスト材料には、平均粒子直径 75〜150 μ mの銅粉末と、平均粒子直径 50 mの亜鉛粉末と、カーボン塗料と、を用いた。カーボン塗料は、市販の導電性 のカーボンと市販のポリエステル榭脂とを溶剤に分散させて作成した。 [0051] The test materials used were copper powder having an average particle diameter of 75 to 150 μm, zinc powder having an average particle diameter of 50 m, and carbon paint. The carbon paint was prepared by dispersing commercially available conductive carbon and commercially available polyester resin in a solvent.
[0052] 表 1中に記載の「銅 +亜鉛 +カーボン」は、銅粉末と亜鉛粉末とカーボン塗料とを 1 0 : 1 : 5の割合でよく混練し、 PETフィルム上に塗り拡げて、 100°Cで 1時間乾燥させ て作成した。このことによって「銅 +亜鉛 +カーボン」フィルムを作成した。  [0052] "Copper + zinc + carbon" described in Table 1 is a mixture of copper powder, zinc powder, and carbon paint in a ratio of 10: 1: 5, and spreads on a PET film. It was prepared by drying at ° C for 1 hour. This produced a "copper + zinc + carbon" film.
[0053] 表 1中に記載の「銅 +カーボン」は、銅粉末とカーボン塗料とを 3 : 2の割合でよく混 鍊し、「銅 +亜鉛 +カーボン」フィルム作成と同じ方法で作成した。このこと〖こよって「 銅 +カーボン」フイノレムを作成した。  [0053] "Copper + carbon" listed in Table 1 was prepared in the same manner as the "copper + zinc + carbon" film was prepared by thoroughly mixing copper powder and carbon paint in a ratio of 3: 2. This is why we created a “copper + carbon” Finolem.
[0054] さらに、「銅 +亜鉛 +カーボン」フィルムと「銅 +カーボン」フィルムとを直径 85mm の円形にカットし、同じ直径のプラスチックシャーレの底面にそれぞれ配置した。  Further, the “copper + zinc + carbon” film and the “copper + carbon” film were cut into a circle having a diameter of 85 mm and placed on the bottom surface of a plastic petri dish having the same diameter.
[0055] また、表 1中に記載の「銅」は、銅粉末のみを直径 85mmのプラスチックシャーレ底 面に配置した。  [0055] For "copper" listed in Table 1, only copper powder was placed on the bottom of a plastic petri dish having a diameter of 85 mm.
[0056] また、比較品として、表 1中に記載の「未処理」は、上記のそれぞれの材料を含まな い未処理品の直径 85mmのプラスチックシャーレを用意した。 [0056] As a comparative product, "untreated" listed in Table 1 does not include the above-mentioned materials. An untreated plastic petri dish with a diameter of 85 mm was prepared.
[0057] 次に、精製水で 400倍に希釈した普通ブイヨン培地に、大腸菌(Esherichia coli , IF03972)が 106 (cfuZml)になるように添カ卩した菌液を作成した。作成した菌液 を、 20mlずつ、それぞれのプラスチックシャーレに入れ、一定時間ごとに 0. 1mlの 液を採取して培養することによって、菌数を測定し、菌数の変化を比較した。なお、紫 外線による殺菌作用の影響を防ぐため、実験はプラスチックシャーレを遮光して行つ た。 [0057] Next, a bacterial solution was prepared by adding Escherichia coli (IF03972) to 10 6 (cfuZml) in a normal bouillon medium diluted 400 times with purified water. 20 ml of the prepared bacterial solution was placed in each plastic petri dish, and 0.1 ml of liquid was collected at regular intervals and cultured to measure the number of bacteria and compare the change in the number of bacteria. In order to prevent the effect of bactericidal action due to ultraviolet rays, the experiment was conducted with the plastic petri dish shielded from light.
[0058] 水粒子 13が細菌や真菌等を含んでいる場合、通路 14を通過する時間はわずかで あるため、通路 14での抗菌作用は、できるかぎり短時間で発揮されることが望まれる 。表 1に示すように、銅が単独で配置された場合と銅とカーボンとが混合された場合と を比較すると、明らかに、銅とカーボンとが混合された場合の方が短時間で菌が除去 されることが確認された。同様に、銅が単独で配置された場合と銅と亜鉛とカーボンと が混合された場合とを比較すると、明らかに、銅と亜鉛とカーボンとが混合された場 合の方が、より短時間で菌が除去されることが確認された。すなわち、銅または銀、亜 鉛などは、これ自体に抗菌作用を有する。しかしながら、銅、銀、亜鉛、ニッケル、ァ ルミ-ゥム、カーボンから選ばれる 2種類以上の材料を組み合わせた場合、単体で存 在するよりもさらに高い抗菌性能を示すと言える。  [0058] When the water particles 13 contain bacteria, fungi, or the like, the time required to pass through the passage 14 is very short, so that the antibacterial action in the passage 14 is desired to be exhibited in as short a time as possible. As shown in Table 1, when comparing the case where copper is arranged alone and the case where copper and carbon are mixed, it is clear that bacteria are mixed in a shorter time when copper and carbon are mixed. It was confirmed that it was removed. Similarly, comparing copper alone with copper, zinc, and carbon mixed, it is clear that copper, zinc, and carbon are mixed in a shorter time. It was confirmed that the fungus was removed. That is, copper, silver, zinc or the like has an antibacterial effect on itself. However, when two or more materials selected from copper, silver, zinc, nickel, aluminum, and carbon are combined, it can be said that the antibacterial performance is higher than that of a single material.
[0059] (実施の形態 2)  [Embodiment 2]
図 4は、本発明の実施の形態 2による加湿装置の概略断面図を示す。なお、実施の 形態 1で示した構成と同様の構成には、同じ符号を付し、詳細な説明を省略する。  FIG. 4 is a schematic cross-sectional view of a humidifier according to Embodiment 2 of the present invention. Note that components similar to those described in Embodiment 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0060] 図 4に示すように、超音波振動子 12が、振動を伝える媒体である振動伝達体 42で 覆われている。振動伝達体 42は、超音波振動子 12が発生する振動を効率よく伝達 する機能を有している。振動伝達体 42は密封されている。水 43は、振動伝達体 42 の上部に形成された実振動面 44において振動されて、微粒ィ匕され、水の微粒子で ある水粒子 13となる。水粒子 13の通路 14には赤外線発生装置を構成するハロゲン ヒータ 47が配置されている。ハロゲンヒータ 47の後段には、回転フィルタ 48が設けら れている。回転フィルタ 48は、回転フィルタ 48を回転するための回転装置を構成す る回転軸 49を中心にして、通路 14内で回転駆動される。なお、回転装置は、回転軸 49のほかに、回転モータ(図示せず)、または、駆動伝達部(図示せず)、回転制御 部(図示せず)などを含んで 、ても良!、。 As shown in FIG. 4, the ultrasonic transducer 12 is covered with a vibration transmitting body 42 that is a medium for transmitting vibration. The vibration transmitter 42 has a function of efficiently transmitting the vibration generated by the ultrasonic vibrator 12. The vibration transmitting body 42 is sealed. The water 43 is vibrated on the actual vibration surface 44 formed on the upper part of the vibration transmitting body 42 and is finely divided into water particles 13 which are water fine particles. A halogen heater 47 constituting an infrared ray generator is disposed in the passage 14 of the water particles 13. A rotary filter 48 is provided after the halogen heater 47. The rotary filter 48 is rotationally driven in the passage 14 around a rotary shaft 49 that constitutes a rotary device for rotating the rotary filter 48. The rotating device is a rotating shaft. In addition to 49, a rotation motor (not shown), a drive transmission unit (not shown), a rotation control unit (not shown), etc. may be included.
[0061] 微粒化装置 60が超音波振動子 12を含む場合、通常、一定量の水 43を常に超音 波振動子 12の上に形成することが求められる。たとえば、超音波振動子 12の上に水 43がなくなり、空焚き状態となると、超音波振動子 12が異常発熱し、劣化することが ある。しかしながら、図 4の加湿装置 10においては、常に一定量の振動伝達体 42が 超音波振動子 12の上に形成されている。このことによって、加湿装置 10の運転が継 続された結果、微粒ィ匕装置 60上の水 43がなくなった場合であっても、振動伝達体 4 2によって超音波振動子 12が保護される。このため、空焚き状態が防止され、超音波 振動子 12の劣化または破壊が防止される。  When the atomizer 60 includes the ultrasonic vibrator 12, it is usually required to always form a certain amount of water 43 on the ultrasonic vibrator 12. For example, when the water 43 runs out on the ultrasonic transducer 12 and becomes empty, the ultrasonic transducer 12 may generate heat abnormally and deteriorate. However, in the humidifying device 10 of FIG. 4, a certain amount of vibration transmitting body 42 is always formed on the ultrasonic transducer 12. As a result, the ultrasonic transducer 12 is protected by the vibration transmitting body 42 even when the water 43 on the fine particle device 60 is lost as a result of the operation of the humidifier 10 being continued. For this reason, an empty state is prevented, and deterioration or destruction of the ultrasonic transducer 12 is prevented.
[0062] また、超音波振動子 12の上の水 43の滞留の必要がなぐ滞留する水 43の中で細 菌または真菌等の繁殖が抑制される。したがって、加湿空気 53を生成するために、 加湿装置 10内に滞留するべき水 43の量を、限界まで減らすことができる。このことに よって、本体 50内での細菌や真菌等の微生物の繁殖を抑制する。  [0062] In addition, the propagation of bacteria or fungi in the staying water 43 that does not require the staying of the water 43 on the ultrasonic vibrator 12 is suppressed. Therefore, in order to generate the humidified air 53, the amount of water 43 that should stay in the humidifier 10 can be reduced to the limit. This suppresses the growth of microorganisms such as bacteria and fungi in the main body 50.
[0063] さらに、振動伝達体 42としては、不揮発性の材料が用いられることが望ましい。ここ で、不揮発性とは、加湿装置 10の使用環境として想定される 40°C以下の雰囲気に おける一定時間経過後の重量減少が少な 、ことを意味する。不揮発性の振動伝達 体 42としては、たとえば、水とプロピレングリコールとの混合液などが利用できる。また 、加湿装置 10が冬場の氷点下などの低温環境で使用されることを想定すれば、振動 伝達体 42は不凍性の材料である不凍液であることが好ましい。長期に亘つて、加湿 装置 10が使用され続けた場合、振動伝達体 42に揮発性の材料が用いられると、重 量が減少し、安定した振動伝達が実現されない。そこで、たとえば、 1年間の間の重 量減少率が 5%以下の不揮発性材料が使用されれば、振動伝達性能の変動が低く 抑えられる。  [0063] Further, it is desirable to use a non-volatile material for the vibration transmitting body 42. Here, non-volatile means that there is little weight loss after a certain period of time in an atmosphere of 40 ° C. or lower, which is assumed as the usage environment of the humidifier 10. As the non-volatile vibration transmitting body 42, for example, a mixed liquid of water and propylene glycol can be used. In addition, assuming that the humidifier 10 is used in a low temperature environment such as below freezing in winter, the vibration transmission body 42 is preferably an antifreeze liquid that is an antifreeze material. When the humidifying device 10 is continuously used for a long time, if a volatile material is used for the vibration transmitting body 42, the weight is reduced and stable vibration transmission is not realized. Therefore, for example, if non-volatile materials with a weight reduction rate of 5% or less for one year are used, fluctuations in vibration transmission performance can be kept low.
[0064] また、振動伝達体 42が密封されていれば、使用者カ ンテナンスする際などに、不 用意に超音波振動子 12に触れることを防止できる。さらに、振動伝達体 42が密封さ れること〖こよって、振動伝達体 42の重量減量または変性も抑制される。振動伝達体 4 2は、容器 45によって密封されている。容器 45の材料は、成形加工が容易で、かつ 、振動伝達体 42が揮発したとしても、揮発成分が通過しにくい榭脂などが利用できる 。ガス透過性の低い榭脂として、たとえば、 PPS榭脂などが容器 45の材料として適し ている。なお、微粒化装置 60は、容器 45と超音波振動子 12と振動伝達体 42と実振 動面 44とを含んでいる。また、微粒ィ匕装置 60は、水 43を供給する水供給装置である 水槽 31としての機能も有する。さらに、超音波振動子 12からの超音波振動の効率を 低下させることなぐ水槽 31の水 43に伝えるためには、実振動面 44での振動の反射 を抑制することが好ましい。振動の反射は、振動伝達体 42と実振動面 44との密度と 音速とに依存する。そこで、たとえば、振動伝達体 42として 40wt%プロピレングリコ ール水溶液を用いて、さら〖こ、容器 45として PPS榭脂を用いて封入した場合、 PPS 榭脂の振動面である実振動面 44は厚さ 0. 5mmとすることによって、振動の反射が 効率よく抑制される。 [0064] In addition, if the vibration transmitting body 42 is sealed, it is possible to prevent the ultrasonic vibrator 12 from being inadvertently touched during user maintenance. Furthermore, since the vibration transmission body 42 is sealed, weight reduction or denaturation of the vibration transmission body 42 is also suppressed. The vibration transmitting body 42 is sealed by a container 45. The material of container 45 is easy to mold and Even if the vibration transmitting body 42 is volatilized, it is possible to use a resin that does not easily pass volatile components. As a resin having low gas permeability, for example, PPS resin is suitable as a material for the container 45. The atomization device 60 includes a container 45, an ultrasonic transducer 12, a vibration transmission body 42, and an actual vibration surface 44. The fine particle device 60 also has a function as a water tank 31 that is a water supply device for supplying water 43. Further, in order to transmit the ultrasonic vibration from the ultrasonic vibrator 12 to the water 43 of the water tank 31 without reducing the efficiency, it is preferable to suppress the reflection of vibration on the actual vibration surface 44. The reflection of vibration depends on the density and speed of sound between the vibration transmitting body 42 and the actual vibration surface 44. Therefore, for example, when 40 wt% propylene glycol aqueous solution is used as the vibration transmission body 42 and sealed with PPS resin as the container 45, the actual vibration surface 44 that is the vibration surface of the PPS resin is By setting the thickness to 0.5 mm, vibration reflection is efficiently suppressed.
[0065] 超音波振動子 12が、振動伝達体 42で覆われている場合、振動伝達体 42の上部 に配された実振動面 44で振動が生じる。このことによって、実振動面 44の上で、水 4 3が微粒ィ匕される。実振動面 44が金属箔によって構成されていれば、実振動面 44が 耐熱性に優れるため、赤外線による超音波振動子 12の熱劣化が抑制される。実振 動面 44に用いられる金属箔の一例としては、アルミ箔ゃ銅箔などが利用可能である 。また、実振動面 44が抗菌性材料によって構成されれば、実振動面 44に滞留する 水 43に菌が繁殖するのを抑制する。たとえば、抗菌性を有する材料として、銅、また は銀、亜鉛、ニッケルなどの金属材料を用いて実振動面 44が構成される場合、超音 波振動子 12の熱劣化抑制と菌の繁殖抑制との効果が両立できる。  When the ultrasonic transducer 12 is covered with the vibration transmission body 42, vibration is generated on the actual vibration surface 44 disposed on the vibration transmission body 42. As a result, the water 43 is atomized on the actual vibration surface 44. If the actual vibration surface 44 is made of a metal foil, the actual vibration surface 44 is excellent in heat resistance, so that thermal degradation of the ultrasonic transducer 12 due to infrared rays is suppressed. As an example of the metal foil used for the actual vibration surface 44, aluminum foil or copper foil can be used. In addition, if the actual vibration surface 44 is made of an antibacterial material, the bacteria are prevented from propagating in the water 43 retained on the actual vibration surface 44. For example, when the actual vibration surface 44 is made of a metal material such as copper, silver, zinc, or nickel as an antibacterial material, it suppresses thermal deterioration of the ultrasonic transducer 12 and bacterial growth. Both effects can be achieved.
[0066] また、回転フィルタ 48に用いられる材料は、上述のフィルタ 17に用いられる材料を 利用可能である。たとえば、回転フィルタ 48が赤外線吸収率の高い暗色の特性を有 していれば、回転フィルタ 48の温度上昇が容易に得られる。このことによって、フィル タ上に付着した水粒子 13の気化が促進され、加湿性能が向上する。また、回転フィ ルタ 48に細菌や真菌等の微生物が付着したとしても、回転フィルタ 48の温度が高く なることによって、細菌や真菌等の微生物が死滅する。回転フィルタ 48は暗色でなく とも、赤外線吸収材料が塗布されるなどしても、同様の効果が得られる。赤外線吸収 材料の一例としては、たとえば、銅、または、鉄、マンガン、これらの複合酸化物、力 一ボンなどである。 [0066] As the material used for the rotary filter 48, the material used for the filter 17 described above can be used. For example, if the rotary filter 48 has a dark color characteristic with high infrared absorption, the temperature rise of the rotary filter 48 can be easily obtained. This promotes the vaporization of the water particles 13 adhering to the filter and improves the humidification performance. Even if microorganisms such as bacteria and fungi adhere to the rotary filter 48, microorganisms such as bacteria and fungi are killed by the temperature of the rotary filter 48 becoming high. The rotary filter 48 is not dark, but the same effect can be obtained even if an infrared absorbing material is applied. Examples of infrared absorbing materials include copper, iron, manganese, complex oxides of these, power One Bon.
[0067] 回転フィルタ 48には、大きい水粒子 13が含む不純物や、細菌や真菌等の微生物 の死骸も付着する。これらを捕集するために、回転フィルタ 48の目は細力 、ほうが良 い。しかしながら、回転フィルタ 48の目力 Sあまりに細力いと、水粒子 13または不純物 が詰まりやすぐ加湿性能が著しく低下する。し力しながら、回転フィルタ 48は、回転 軸 49を中心に回転する。このことによって、目が詰まりにくい粗い回転フィルタ 48を 使用したとしても、不純物、または、微生物等の捕集性能を維持することができる。た とえば、大きい水粒子 13が回転フィルタ 48を通過する場合、回転フィルタ 48が回転 しているので、大きい水粒子 13が回転フィルタ 48に衝突して分離される。また、回転 フィルタ 48に不純物が付着した場合であっても、回転フィルタ 48の目が粗ければ、 洗浄などによる除去が容易である。さらに、加湿装置 10の運転が停止した後に、回 転フィルタ 48がー定時間回転され続けることによって、回転フィルタ 48に残留する残 留水が振り飛ばされる。また、加湿装置 10が通常使用される際の、回転速度よりも速 い速度で回転フィルタ 48が回転されると、さらに効果的に、回転フィルタ 48に残留す る残留水が振り飛ばされる。この結果、回転フィルタ 48上の細菌や真菌等の微生物 の新たな繁殖を抑制する。そして、回転フィルタ 48が衛生的に保たれる。  [0067] Impurities contained in the large water particles 13 and dead bodies of microorganisms such as bacteria and fungi also adhere to the rotary filter 48. In order to collect these, the eyes of the rotary filter 48 should be fine. However, if the eye force S of the rotary filter 48 is too thin, the water particles 13 or impurities are clogged and the humidification performance is significantly reduced. While rotating, the rotary filter 48 rotates about the rotary shaft 49. As a result, even if a coarse rotary filter 48 that is not easily clogged is used, the collection performance of impurities or microorganisms can be maintained. For example, when the large water particles 13 pass through the rotating filter 48, the rotating filter 48 is rotating, so that the large water particles 13 collide with the rotating filter 48 and are separated. Even if impurities are attached to the rotary filter 48, if the rotary filter 48 is rough, it can be easily removed by washing or the like. Furthermore, after the operation of the humidifier 10 is stopped, the rotating filter 48 continues to rotate for a fixed time, so that the residual water remaining in the rotating filter 48 is shaken off. Further, when the rotary filter 48 is rotated at a speed higher than the rotational speed when the humidifier 10 is normally used, the residual water remaining in the rotary filter 48 is more effectively shaken off. As a result, new propagation of microorganisms such as bacteria and fungi on the rotary filter 48 is suppressed. And the rotary filter 48 is kept hygienic.
[0068] また、加湿装置 10の加湿運転停止時に加熱または送風運転の制御を行 、、本体 5 0内を乾燥させる乾燥装置 46が設けられている。乾燥装置 46は、加熱と送風運転と の制御を行うこともある。乾燥装置 46が作動することによって、本体 50内の残留水が 効果的に乾燥される。このことにより、加湿装置 10が衛生的に保たれる。  [0068] In addition, a drying device 46 is provided that controls heating or blowing operation when the humidifying operation of the humidifying device 10 is stopped to dry the inside of the main body 50. The drying device 46 may control heating and air blowing operation. By operating the drying device 46, the residual water in the main body 50 is effectively dried. This keeps the humidifier 10 hygienic.
[0069] (実施の形態 3)  [Embodiment 3]
図 5は、本発明の実施の形態 3における加湿装置を示す概略断面図である。なお、 実施の形態 1または 2で示した構成と同様の構成には、同じ符号を付し、詳細な説明 を省略する。  FIG. 5 is a schematic cross-sectional view showing a humidifying device according to Embodiment 3 of the present invention. Note that components similar to those described in Embodiment 1 or 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0070] 図 5に示すように、加湿装置 10は、本体 50と、本体 50にそれぞれ設けられている、 通路 14と、ファン 20と、水槽 31と、微粒化装置 60と、赤外線熱源 15とを有している。 ファン 20は、赤外線熱源 15の前段に配置され、通路 14に空気を流すための送風装 置を構成する。水槽 31は、水 43を供給する水供給装置を構成する。水 43を微粒ィ匕 する微粒ィ匕装置 60は、超音波振動を発生させる超音波振動子 12を含む。赤外線熱 源 15は、赤外線を発生させ、高温域 16を形成する赤外線発生装置を構成する。ま た、水槽 31内には、温度センサ 24が設けられている。なお、微粒ィ匕装置 60は、水槽 31の機能を兼ね備えて!/、る。 As shown in FIG. 5, the humidifier 10 includes a main body 50, a passage 14, a fan 20, a water tank 31, a atomizer 60, and an infrared heat source 15 provided in the main body 50, respectively. have. The fan 20 is arranged in front of the infrared heat source 15 and constitutes a blowing device for flowing air through the passage 14. The water tank 31 constitutes a water supply device that supplies water 43. Water 43 fine The fine particle device 60 that includes the ultrasonic transducer 12 that generates ultrasonic vibrations. The infrared heat source 15 constitutes an infrared generator that generates infrared rays and forms a high-temperature region 16. A temperature sensor 24 is provided in the water tank 31. The fine particle device 60 also has the function of the water tank 31!
[0071] 加湿装置 10において、微粒化される直前の水 43a (以下、水 43aと呼ぶ)である水 柱 32に対して、赤外線熱源 15から発生する赤外線が照射される。水槽 31内の水 43 は、微粒ィ匕装置 60によって微粒ィ匕される。水 43は、振動伝達体 42の上部に形成さ れた実振動面 44において振動されて、水柱 32となる。超音波振動子 12は、振動伝 達体 42によって覆われており、振動伝達体 42の周囲は榭脂製の容器 45で密封され て、微粒ィ匕装置 60を構成する。振動伝達体 42は、たとえば、 40wt%プロピレンダリ コール水溶液が用いられる。微粒ィ匕装置 60は、水 43を供給する水供給装置である 水槽 31としての機能も有する。  In the humidifier 10, the water column 32, which is water 43a immediately before atomization (hereinafter referred to as water 43a), is irradiated with infrared rays generated from the infrared heat source 15. The water 43 in the water tank 31 is finely divided by the fine particle device 60. The water 43 is vibrated on the actual vibration surface 44 formed on the upper part of the vibration transmitting body 42 to become the water column 32. The ultrasonic transducer 12 is covered with a vibration transmission body 42, and the periphery of the vibration transmission body 42 is sealed with a resin container 45 to constitute a fine particle device 60. As the vibration transmitting body 42, for example, a 40 wt% propylene dallic acid aqueous solution is used. The fine particle device 60 also has a function as a water tank 31 that is a water supply device for supplying water 43.
[0072] 微粒ィ匕装置 60として超音波振動子 12が用いられる場合、微粒化される直前の水 4 3は、水柱 32のように立ち上がり、ある程度の厚さを有している。赤外線熱源 15から 発生する赤外線は、水柱 32に対して集中的に照射される。赤外線が照射された後、 水の微粒子である水粒子 13となり、ファン 20によって流される空気とともに、加湿空 気 53となって、通路 14を通って本体 50外へ排出される。なお、通路 14は耐熱性の 材料であるステンレスによって構成されて 、る。  When the ultrasonic vibrator 12 is used as the fine particle device 60, the water 43 just before atomization rises like the water column 32 and has a certain thickness. Infrared rays generated from the infrared heat source 15 are intensively applied to the water column 32. After being irradiated with infrared rays, it becomes water particles 13 which are fine water particles, and becomes the humidified air 53 together with the air flowing by the fan 20 and is discharged out of the main body 50 through the passage 14. The passage 14 is made of stainless steel, which is a heat resistant material.
[0073] 加湿装置 10において、赤外線はより効率的に水に吸収され、シーズヒータなどの 空気加熱ヒータに比べて、より省エネルギーによって水 43が加熱される。このことによ つて、水 43に含まれる微生物を死滅させることができる。さらに、赤外線は光であるた めに、鏡面やレンズによって集中させて水を加熱することができる。したがって、ほと んど発光しないシーズヒータなどの空気加熱ヒータに比べ、対象である水柱 32に向 けて、一点集中的に赤外線を照射して加熱することが容易である。また、赤外線が効 率的に水に吸収されれば、超音波振動による水 43の微粒子化による加湿にカ卩えて、 水 43の温度上昇にともなう蒸発による加湿効果が同時に期待できる。このために、単 位時間あたりの加湿量が向上する。  [0073] In the humidifier 10, the infrared rays are absorbed into water more efficiently, and the water 43 is heated with more energy saving than an air heater such as a sheathed heater. As a result, microorganisms contained in the water 43 can be killed. In addition, since infrared light is light, it can be concentrated by a mirror or lens to heat water. Therefore, it is easier to heat by irradiating infrared rays intensively at one point toward the target water column 32 than an air heater such as a sheathed heater that emits little light. In addition, if infrared rays are efficiently absorbed by water, the humidification effect due to evaporation accompanying the temperature rise of water 43 can be expected at the same time, in addition to the humidification by micronization of water 43 by ultrasonic vibration. For this reason, the amount of humidification per unit time is improved.
[0074] 一般に、水の光吸収波長は、 1〜: LO m程度であることが知られている。赤外線熱 源 15としては、 1〜2 μ mのピーク波長を有するハロゲンヒータまたはカーボンヒータ を用いることができる。また、 5〜7 /ζ πιのピーク波長を有する遠赤外線放出材料を用 いたセラミックヒータなども利用することができる。ハロゲンヒータまたはカーボンヒータ が赤外線熱源 15として用いられた場合、セラミックヒータに比べて、より短時間で高温 まで加熱することができる。たとえば、ハロゲンヒータまたはカーボンヒータが赤外線 熱源 15として用いられた場合、高温域 16が、 10秒以内に安定的な温度域に達する 。し力しながら、セラミックヒータを用いた場合、 60秒以上経っても温度上昇が続くこと もある。したがって、ハロゲンヒータまたはカーボンヒータが赤外線熱源 15として用い られた場合、加湿装置 10の加湿動作開始までの時間の短縮が容易である。 In general, it is known that the light absorption wavelength of water is about 1 to: LO m. Infrared heat As the source 15, a halogen heater or a carbon heater having a peak wavelength of 1 to 2 μm can be used. A ceramic heater using a far infrared ray emitting material having a peak wavelength of 5 to 7 / ζ πι can also be used. When a halogen heater or carbon heater is used as the infrared heat source 15, it can be heated to a higher temperature in a shorter time than a ceramic heater. For example, when a halogen heater or a carbon heater is used as the infrared heat source 15, the high temperature region 16 reaches a stable temperature region within 10 seconds. However, when a ceramic heater is used, the temperature may continue to rise even after 60 seconds. Therefore, when a halogen heater or a carbon heater is used as the infrared heat source 15, it is easy to shorten the time until the humidifying operation of the humidifying device 10 is started.
[0075] また、振動伝達体 42と容器 45と実振動面 44との構成は、実施の形態 2に記載の構 成を利用できる。たとえば、振動伝達体 42として 40wt%プロピレングリコール水溶液 を用いて、容器 45として PPS榭脂を用いて封入した場合、 PPS榭脂の振動面である 実振動面 44は厚さ 0. 5mmとすることによって、振動の反射が効率よく抑制される。  Further, the configuration described in Embodiment 2 can be used as the configuration of the vibration transmitting body 42, the container 45, and the actual vibration surface 44. For example, when 40 wt% propylene glycol aqueous solution is used as the vibration transmitter 42 and PPS resin is used as the container 45, the actual vibration surface 44, which is the vibration surface of the PPS resin, is 0.5 mm in thickness. Therefore, the reflection of vibration is efficiently suppressed.
[0076] また、加湿装置 10は、水槽 31中に蓄えられている水 43ではなぐ微粒化される直 前の水柱 32を加熱する。このことによって、短時間のうちに素早く水柱 32の温度が 上昇する。このため、水 43または空気中に含まれる微生物を運転初期力 効率よく 殺菌できる。なおかつ、加湿装置 10の立ち上がりが早くなり、より少ないエネルギー によって、加湿性能を発揮する加湿装置 10が提供される。  In addition, the humidifier 10 heats the water column 32 immediately before being atomized by the water 43 stored in the water tank 31. As a result, the temperature of the water column 32 rises quickly in a short time. For this reason, microorganisms contained in water 43 or air can be sterilized efficiently at the initial operation force. In addition, the humidifier 10 starts up quickly, and the humidifier 10 that exhibits the humidification performance with less energy is provided.
[0077] また、赤外線熱源 15が、微生物が死滅するのに充分な熱エネルギーを水柱 32に 与えている。このことによって、水 43や空気中に含まれる微生物に対する殺菌効果を 発揮する。さらに、赤外線熱源 15から発生する赤外線を、微粒化される直前の水柱 3 2に対して照射している。このことによって、水 43の気化量を増カロさせている。微生物 が死滅するのに充分な温度は 50°C以上であり、 75°C以上であれば、より短時間で殺 菌を行うことができる。一般に、 1mm以上の厚さを持つ水膜は、赤外線領域の波長 をほぼ 100%吸収する。水は、微粒ィ匕すると雰囲気中に広がるために、より多くの赤 外線を集中的に照射するためには、水が lmm以上の厚さをもっていることが望まし い。加湿装置 10は、 lmm以上の厚さを有する水柱 32に赤外線を照射している。し たがって、微粒ィ匕する直前の水 43aに対して赤外線を照射しているため、水膜の厚 みが厚ぐ赤外線吸収効率が高い。この結果、効果的に水柱 32の温度が上昇し、単 位時間あたりの加湿量が増加する。 [0077] In addition, the infrared heat source 15 provides the water column 32 with sufficient heat energy to kill the microorganisms. This demonstrates the bactericidal effect on water 43 and microorganisms contained in the air. Further, infrared rays generated from the infrared heat source 15 are applied to the water column 32 just before atomization. This increases the amount of water 43 vaporized. The temperature sufficient for killing microorganisms is 50 ° C or higher, and if it is 75 ° C or higher, sterilization can be performed in a shorter time. In general, a water film with a thickness of 1 mm or more absorbs almost 100% of the wavelength in the infrared region. Since water spreads into the atmosphere when it is fine, it is desirable that the water has a thickness of 1 mm or more in order to irradiate more infrared rays. The humidifier 10 irradiates the water column 32 having a thickness of 1 mm or more with infrared rays. Therefore, since the infrared ray is irradiated to the water 43a just before the fine particles, the thickness of the water film The infrared absorption efficiency is high. As a result, the temperature of the water column 32 effectively rises and the amount of humidification per unit time increases.
[0078] また、加湿装置 10は、微粒ィ匕装置 60が超音波振動子 12を用いた構成である。超 音波振動子 12が発生させる超音波振動によって、振動伝達体 42を介して、実振動 面 44から水 43に対して振動が伝えられている。このため、水槽 31中の水 43の水面 に振動エネルギーが集中し、水面が隆起した水柱 32が形成される。水柱 32の先端 では、厚さ lmm以下に微粒ィ匕された水粒子 13も発生している。微粒化される直前の 水 43aに赤外線を照射することにより、効率的に水 43aが加熱される。  In addition, the humidifying device 10 has a configuration in which the fine particle device 60 uses the ultrasonic transducer 12. The vibration is transmitted from the actual vibration surface 44 to the water 43 through the vibration transmission body 42 by the ultrasonic vibration generated by the ultrasonic vibrator 12. For this reason, vibration energy concentrates on the water surface of the water 43 in the water tank 31, and a water column 32 having a raised water surface is formed. At the tip of the water column 32, water particles 13 finely divided to a thickness of 1 mm or less are also generated. By irradiating the water 43a immediately before atomization with infrared rays, the water 43a is efficiently heated.
[0079] また、水槽 31中の水 43全体に対して、赤外線が照射される場合に比べて、赤外線 の加熱エネルギーを少量の水柱 32に集中させることができる。このため、微生物が 死滅するのに充分な熱エネルギーを水柱 32に与えるまでの時間が短ぐ水 43や空 気中に含まれる微生物に対して、より高い殺菌効果が短時間で発揮される。  [0079] Further, compared with the case where infrared rays are irradiated to the entire water 43 in the water tank 31, the heating energy of the infrared rays can be concentrated on a small amount of the water column 32. For this reason, a higher sterilizing effect is exerted in a short time against water 43 and the microorganisms contained in the air, which have a short time until the water column 32 is given sufficient heat energy to kill the microorganisms.
[0080] また、超音波振動を利用した水 43の微粒ィ匕による加湿効果に加えて、水 43の温度 上昇にともなう蒸発による加湿効果が同時に得られる。このため、単位時間あたりの 加湿量が向上する。したがって、加湿装置 10は、従来の、水槽 31中の水 43全体に 赤外線を照射した場合の熱対流による加熱に比べ、効率的かつ急激な水 43の温度 上昇が得られる。このことによって、加湿装置 10の加湿動作開始までの時間の短縮 が容易である。  [0080] In addition to the humidification effect due to the fine particles of water 43 using ultrasonic vibration, the humidification effect due to evaporation accompanying the temperature rise of water 43 can be obtained at the same time. For this reason, the humidification amount per unit time is improved. Therefore, the humidifier 10 can efficiently and rapidly increase the temperature of the water 43 as compared with the conventional heating by heat convection when the entire water 43 in the water tank 31 is irradiated with infrared rays. This makes it easy to shorten the time until the humidifying operation of the humidifying device 10 starts.
[0081] また、超音波振動子 12が、振動伝達体 42で覆われている。このこと〖こよって、超音 波振動子 12が振動伝達体 42を介して、水 43を微粒ィ匕する。微粒化される直前の水 43aは、水槽 31内の水面に近いところに存在する。水槽 31内に貯められた水 43に 対して赤外線の一部が吸収される。また、赤外線を吸収した水 43であっても微粒ィ匕 されずに水槽 31に戻ることもある。このことによって、水槽 31内の水温は少しずつ上 昇する。一般に、超音波振動子 12の構造上の観点から、超音波振動子 12の耐熱温 度は、水中使用において約 50°Cとされている。超音波振動子 12が、振動伝達体 42 によって覆われていれば、たとえば、水槽 31内の水 43の水温が 50°Cを超えたとして も、超音波振動子 12は直接的に 50°Cにまで加熱されない。このため、超音波振動 子 12が、振動伝達体 42で覆われることによって、超音波振動子 12の破損が防止さ れる。 In addition, the ultrasonic transducer 12 is covered with a vibration transmitting body 42. As a result, the ultrasonic transducer 12 finely mists the water 43 through the vibration transmitting body 42. The water 43a just before atomization exists near the water surface in the water tank 31. Part of the infrared rays is absorbed by the water 43 stored in the aquarium 31. In addition, even the water 43 that has absorbed infrared rays may return to the water tank 31 without being pulverized. As a result, the water temperature in the water tank 31 rises little by little. Generally, from the viewpoint of the structure of the ultrasonic transducer 12, the heat resistance temperature of the ultrasonic transducer 12 is about 50 ° C when used in water. If the ultrasonic transducer 12 is covered by the vibration transmitting body 42, for example, even if the water temperature of the water 43 in the water tank 31 exceeds 50 ° C, the ultrasonic transducer 12 is directly at 50 ° C. Not heated up to. For this reason, the ultrasonic vibrator 12 is covered with the vibration transmitting body 42 to prevent the ultrasonic vibrator 12 from being damaged. It is.
[0082] さらに、超音波振動によって水 43が微粒ィ匕される際に、水 43には一定深さ以上の 水深が要求される。つまり、超音波振動子 12と微粒ィ匕される水 43の水面との間の距 離が、用いられる超音波振動の波長に基づいて決められる距離であることが望ましい 。し力しながら、微粒ィ匕装置 60は、超音波振動子 12の周囲に、要求される深さ(距離 )を有する振動伝達体 42が容易に配置される。このこと〖こよって、水槽 31である微粒 化装置 60の上に保持される水 43は、加湿に用いるための水量を有する水 43を保持 していればよい。このため、水 43の微粒化のために保持しておくべき水量は減少す る。この結果、最も微生物の繁殖が盛んな運転停止時には、水槽 31中の水 43の滞 留をほぼゼロに等しくすることもできる。  [0082] Further, when the water 43 is finely dispersed by ultrasonic vibration, the water 43 is required to have a water depth of a certain depth or more. That is, it is desirable that the distance between the ultrasonic transducer 12 and the water surface of the water 43 to be finely divided is a distance determined based on the wavelength of the ultrasonic vibration used. However, in the fine particle device 60, the vibration transmitting body 42 having a required depth (distance) is easily disposed around the ultrasonic transducer 12. Accordingly, the water 43 held on the atomizer 60 that is the water tank 31 may hold the water 43 having the amount of water to be used for humidification. For this reason, the amount of water that should be retained for atomization of water 43 is reduced. As a result, the retention of the water 43 in the aquarium 31 can be made substantially equal to zero at the time of the shutdown when the microorganisms are most proliferating.
[0083] さらに、微粒ィ匕装置 60上の水 43の滞留がほとんどない場合であっても、超音波振 動子 12が振動伝達体 42で覆われていれば、空運転による超音波振動子 12の破損 が抑制される。なお、振動伝達体 42は水 43を利用することもできる。しかしながら、 環境性、長期安定性などを考慮するならば、たとえば、振動伝達体 42として 40wt% プロピレングリコール水溶液を用いて、容器 45として PPS榭脂を用いて封入すること もできる。このような構成によって、長期間に亘つて性能が維持され、高い信頼性と高 Vヽ安定性とを有する加湿装置 10が得られる。  [0083] Further, even when there is almost no retention of water 43 on the fine particle device 60, if the ultrasonic vibrator 12 is covered with the vibration transmitting body 42, the ultrasonic vibrator by idle operation is used. 12 damage is suppressed. The vibration transmitting body 42 can also use water 43. However, if environmental characteristics and long-term stability are taken into account, for example, a 40 wt% propylene glycol aqueous solution can be used as the vibration transmitting body 42 and a PPS resin can be used as the container 45. With such a configuration, it is possible to obtain a humidifier 10 that maintains its performance over a long period of time and has high reliability and high V stability.
[0084] また、超音波振動によって作られる水柱 32に対して赤外線が照射される。水 43は 、温度差によって対流が発生し、自然に均一な温度になろうとする。赤外線を水槽 3 1中の水 43に対して照射した場合、水 43の熱対流が発生して水槽 31内の水 43全 体が徐々に温度上昇する。したがって、水 43の水温が上昇し、揮発しやすくなるまで に多くの時間を要する。一方、水柱 32に対して赤外線を照射した場合、水槽 31に蓄 えられている水 43全体に比べて、極めて少量の水 43aを加熱すればよい。このため 、効率がよく水 43が加熱される。  [0084] In addition, infrared rays are applied to the water column 32 formed by ultrasonic vibration. Water 43 convects due to the temperature difference and tries to reach a uniform temperature naturally. When the water 43 in the water tank 31 is irradiated with infrared rays, thermal convection of the water 43 occurs and the temperature of the entire water 43 in the water tank 31 gradually increases. Therefore, it takes a lot of time for the water temperature of water 43 to rise and become more volatile. On the other hand, when the water column 32 is irradiated with infrared rays, an extremely small amount of water 43a may be heated as compared with the entire water 43 stored in the water tank 31. For this reason, the water 43 is heated efficiently.
[0085] また、赤外線の強度は、離れる距離の 2乗に比例して減衰するという性質を有する 。このため、赤外線熱源 15から発生する赤外線が可能な限り短い距離で、対象物で ある水 43aに照射されることが好ましい。超音波振動子 12から発生する水柱 32は、 水槽 31内の水 43の水面に対してほぼ垂直方向に立ち上がる。このため、水柱 32が 立ち上がる方向に対して直角方向である、横方向力も赤外線が照射されれば、赤外 線熱源 15が水柱 32と接触することなぐかつ、短い距離を介して照射することができ る。この結果、赤外線熱源 15が水 43で濡らされ、破損することを抑制しつつ、信頼性 の高い加湿装置 10が得られる。 [0085] Further, the intensity of infrared rays has a property of being attenuated in proportion to the square of the distance away. For this reason, it is preferable that the infrared rays generated from the infrared heat source 15 are irradiated to the water 43a, which is the object, at the shortest possible distance. The water column 32 generated from the ultrasonic transducer 12 rises in a substantially vertical direction with respect to the water surface of the water 43 in the water tank 31. For this reason, the water column 32 If infrared light is also applied to the transverse force that is perpendicular to the rising direction, the infrared heat source 15 can be irradiated through a short distance without contacting the water column 32. As a result, it is possible to obtain a highly reliable humidifier 10 while preventing the infrared heat source 15 from being wetted by the water 43 and being damaged.
[0086] また、水槽 31に、温度センサ 24が設けられている。さらに、温度制御部 21が本体 5 0に設けられている。このことによって、水槽 31内の温度が予め設定された温度を超 えた場合に、温度制御部 21によって、赤外線熱源 15または微粒化装置 60などの運 転が制御され、停止される。さらに、水槽 31内の温度が異常に上昇した場合には、 温度制御部 21によって、ファン 20を強制的に駆動するなどして、水槽 31内の温度ま たは本体 50内の温度の過剰な上昇を抑制する。このようにして、水槽 31内の水温が 過剰に上昇するのを防止する効果を有する。  Further, a temperature sensor 24 is provided in the water tank 31. Further, a temperature control unit 21 is provided in the main body 50. As a result, when the temperature in the water tank 31 exceeds a preset temperature, the operation of the infrared heat source 15 or the atomizer 60 is controlled by the temperature control unit 21 and stopped. Furthermore, if the temperature in the water tank 31 rises abnormally, the temperature control unit 21 forcibly drives the fan 20 to excessively increase the temperature in the water tank 31 or the temperature in the main body 50. Suppresses the rise. In this way, it has an effect of preventing the water temperature in the water tank 31 from rising excessively.
[0087] また、微粒ィ匕される直前の水柱 32は、水槽 31内の水面に近いところに存在する。  In addition, the water column 32 immediately before being pulverized is present near the water surface in the water tank 31.
水槽内に貯められた水 43にも赤外線の一部が吸収される。さらに、赤外線を吸収し た水柱 32であっても、微粒ィ匕されずに水槽 31に戻ることもある。このことによって、水 槽 31内の水温は少しずつ上昇する。一般に、超音波振動子 12は、構造上、水中使 用における耐熱温度が約 50°Cとされている。たとえば、微粒化装置 60に超音波振動 子 12が用いられた場合、温度センサ 24によって水槽 31内の温度が検知され、 50°C に達する前に赤外線熱源 15を OFFにすれば、超音波振動子 12の破損が抑制され る。したがって、加湿装置 10は、温度センサ 24と温度制御部 21とを有し、水槽 31内 の温度を検知し、検知温度に基づいて、赤外線熱源 15を間欠的に動作するように制 御する。また、赤外線熱源 15の制御に限らず、微粒ィ匕装置 60またはファン 20が間 欠的に動作するように制御してもよ 、。  Some of the infrared rays are also absorbed by the water 43 stored in the tank. Furthermore, even the water column 32 that has absorbed infrared rays may return to the water tank 31 without being crushed. As a result, the water temperature in the tank 31 gradually increases. In general, the ultrasonic transducer 12 has a heat resistant temperature of about 50 ° C when used underwater due to its structure. For example, when the ultrasonic vibrator 12 is used in the atomizer 60, if the temperature in the water tank 31 is detected by the temperature sensor 24 and the infrared heat source 15 is turned off before reaching 50 ° C, the ultrasonic vibration Damage to the child 12 is suppressed. Therefore, the humidifier 10 has the temperature sensor 24 and the temperature control unit 21, detects the temperature in the water tank 31, and controls the infrared heat source 15 to operate intermittently based on the detected temperature. Further, the control is not limited to the infrared heat source 15, and the fine particle device 60 or the fan 20 may be controlled to operate intermittently.
[0088] また、水槽 31内の温度を検知して、赤外線熱源 15を OFFする場合、使用者がや けどなどをしない温度に設定することもできる。この場合、たとえば、加湿装置 10が転 倒した場合であっても、水槽 31内に滞留する水 43が加湿装置 10の外部に流出した としても、熱水が流出することが抑制され、安全性に優れた加湿装置 10が得られる。  [0088] When the temperature in the water tank 31 is detected and the infrared heat source 15 is turned off, the temperature can be set so that the user does not get burned. In this case, for example, even when the humidifying device 10 falls, even if the water 43 staying in the water tank 31 flows out of the humidifying device 10, the hot water is prevented from flowing out, and safety is ensured. A humidifying device 10 excellent in the above can be obtained.
[0089] また、赤外線熱源 15とファン 20とが駆動されている場合、赤外線熱源 15の動作を 停止させた後に送風装置としてのファン 20が停止されることが好ましい。このことによ つて、赤外線熱源 15の周囲の過剰な昇温が抑制される。この結果、赤外線熱源 15と 赤外線熱源 15の周囲の部材を構成する材料との劣化が防止され、信頼性の高い加 湿装置 10が提供される。赤外線熱源 15とファン 20との駆動の制御には、温度センサ 24と温度制御部 21とが用いられる。また、乾燥装置 46によって、加湿装置 10の加 湿運転停止時に加熱または送風運転の制御が行われてもよい。乾燥装置 46は、加 熱と送風運転との制御を行うこともある。乾燥装置 46によって制御される場合、本体 5 0内を乾燥させることと同時に、赤外線熱源 15の周囲の過剰な昇温が抑制される。こ のことによって、加湿装置 10の内部が衛生的に保たれると共に、信頼性の高い加湿 装置 10が提供される。 [0089] When the infrared heat source 15 and the fan 20 are driven, it is preferable that the fan 20 as the blower is stopped after the operation of the infrared heat source 15 is stopped. Because of this Therefore, excessive temperature rise around the infrared heat source 15 is suppressed. As a result, the infrared heat source 15 and the material constituting the members around the infrared heat source 15 are prevented from being deteriorated, and the humidifying device 10 having high reliability is provided. A temperature sensor 24 and a temperature control unit 21 are used to control driving of the infrared heat source 15 and the fan 20. Further, the drying device 46 may control the heating or the air blowing operation when the humidifying device 10 stops the humidifying operation. The drying device 46 may control heating and air blowing operation. When controlled by the drying device 46, the temperature rise around the infrared heat source 15 is suppressed at the same time as the inside of the main body 50 is dried. As a result, the inside of the humidifying device 10 is kept hygienic and a highly reliable humidifying device 10 is provided.
[0090] また、赤外線熱源 15として、ハロゲンヒータまたはカーボンヒータが用いられる場合 、遠赤外線放出材料を用いたセラミックヒータなどに比べて温度の立ち上がりが早い 。このこと〖こよって、短時間で高温となる高温域 16が得られる。さら〖こ、赤外線熱源 1 5が OFFされた際の温度低下も早い。このため、赤外線熱源 15の ONZOFFによる 微妙な温度制御が容易に実現される。この結果、加湿装置 10の加湿運転の制御の レスポンスが早くなり、制御性の高い加湿装置 10が提供される。  [0090] When a halogen heater or a carbon heater is used as the infrared heat source 15, the temperature rises faster than a ceramic heater using a far infrared ray emitting material. This makes it possible to obtain a high temperature region 16 that becomes high temperature in a short time. Sarako, temperature drop when infrared heat source 15 is turned off is also fast. Therefore, delicate temperature control by ONZOFF of the infrared heat source 15 is easily realized. As a result, the control response of the humidifying operation of the humidifying device 10 is accelerated, and the humidifying device 10 with high controllability is provided.
[0091] また、図 6は、実施の形態 3における別の態様の加湿装置を示す概略断面図である 。加湿装置 10は、通路 14内にフィルタ 17が設置され、赤外線の照射によって微粒 化された水粒子 13が、フィルタ 17を通過して、加湿装置 10の外部へ放出される。  FIG. 6 is a schematic cross-sectional view showing a humidifying device according to another aspect of the third embodiment. In the humidifier 10, a filter 17 is installed in the passage 14, and the water particles 13 atomized by infrared irradiation pass through the filter 17 and are released to the outside of the humidifier 10.
[0092] 無機イオンなどの蒸発残留物(図示せず)を含む水柱 32が、高温域 16を通過して 蒸発する際に生成される、比較的小さな白粉粒子(図示せず)が、フィルタ 17によつ てろ過され、捕集される。さらに、フィルタ 17は、水粒子 13が含む細菌や真菌などの 微生物などの不純物をろ過し、捕集する作用を有する。なお、フィルタ 17に用いられ る材料、形状などは実施の形態 1または 2にて、説明した構成が用いられる。  [0092] Relatively small white powder particles (not shown) generated when the water column 32 containing evaporation residues (not shown) such as inorganic ions pass through the high temperature region 16 and evaporate are filtered out. Filtered and collected. Further, the filter 17 has an action of filtering and collecting impurities such as microorganisms such as bacteria and fungi contained in the water particles 13. The materials, shapes, and the like used for the filter 17 are the same as those described in the first or second embodiment.
[0093] さらに、図 6に示す加湿装置 10は、表面に鏡面部を有する反射板 18が、赤外線熱 源 15の周囲に設けられている。赤外線熱源 15から発生する赤外線は、反射板 18に よって水柱 32に対して集中して照射される。なお、反射板 18は、表面に鏡面部を有 するだけでなぐ実施の形態 1または 2で説明したように、表面に赤外線反射作用を 有する反射板 18を用いることもできる。なお、反射板 18が設けられることによって、水 柱 32を加熱する効率がさらに向上する。 Furthermore, the humidifying device 10 shown in FIG. 6 is provided with a reflector 18 having a mirror surface on the surface around the infrared heat source 15. Infrared rays generated from the infrared heat source 15 are concentrated and applied to the water column 32 by the reflector 18. In addition, as described in the first or second embodiment, the reflecting plate 18 having an infrared reflecting action on the surface can also be used as the reflecting plate 18 only having a mirror surface portion on the surface. In addition, water is provided by providing the reflector 18. The efficiency of heating the pillar 32 is further improved.
[0094] (実施の形態 4) [0094] (Embodiment 4)
図 7は、本発明の実施の形態 4における加湿装置の概略断面図を示す。なお、実 施の形態 1から 3で示した構成と同様の構成には、同じ符号を付し、詳細な説明を省 略する。  FIG. 7 shows a schematic cross-sectional view of a humidifying device according to Embodiment 4 of the present invention. Note that the same reference numerals are given to the same components as those shown in the first to third embodiments, and a detailed description thereof will be omitted.
[0095] 図 7において、水槽 31内の水 43は、微粒ィ匕装置 60によって微粒ィ匕される。微粒ィ匕 装置 60は、水 43を微粒化するノズル 19とノズル 19へ水 43を供給するポンプ 20とに よって構成されている。赤外線熱源 15から発生する赤外線は、ノズル 19から噴出す る瞬間、微粒ィ匕される直前の水 43aに対して集中的に照射される。赤外線熱源 15か ら発生する赤外線は、赤外線熱源 15の周囲に設けられた反射板 18とレンズ 23と〖こ よって、水 43aに対して集中して照射される。反射板 18は、赤外線熱源 15側の表面 に鏡面部を有し、赤外線熱源 15が発生する赤外線を反射する。レンズ 23は、赤外 線を透過する赤外線透過部として機能する。さらに、反射板 18とレンズ 23とによって 、赤外線熱源 15が発生する赤外線を集中させる集中部 62を構成する。水 43aは、 赤外線が照射された後、水粒子 13となる。そして、水粒子 13は、送風装置を構成す るファン 20によって流される空気とともに、加湿空気 53となって、通路 14を通って本 体 50の外部へ放出される。また、水槽 31内には、温度センサ 24が設けられている。  In FIG. 7, the water 43 in the water tank 31 is pulverized by the pulverizer device 60. The fine particle device 60 includes a nozzle 19 for atomizing the water 43 and a pump 20 for supplying the water 43 to the nozzle 19. Infrared rays generated from the infrared heat source 15 are intensively applied to the water 43a immediately before being sprayed from the nozzle 19 immediately before being sprayed. Infrared rays generated from the infrared heat source 15 are concentrated and applied to the water 43 a by the reflector 18 and the lens 23 provided around the infrared heat source 15. The reflector 18 has a mirror surface portion on the surface on the infrared heat source 15 side, and reflects the infrared rays generated by the infrared heat source 15. The lens 23 functions as an infrared transmission part that transmits infrared rays. Further, the reflector 18 and the lens 23 constitute a concentrating unit 62 that concentrates the infrared rays generated by the infrared heat source 15. Water 43a becomes water particles 13 after being irradiated with infrared rays. Then, the water particles 13 become humidified air 53 together with the air flowing by the fan 20 constituting the air blower, and are discharged to the outside of the main body 50 through the passage 14. A temperature sensor 24 is provided in the water tank 31.
[0096] 加湿装置 10は、反射板 18とレンズ 23とによって、水 43aの形状または状態などに 適した形態で、効率的な赤外線照射を実現する。反射板 18とレンズ 23との組み合わ せが種々工夫されると、対象である水 43aに向力つて、線状、または、点状、円状、楕 円状に、赤外線を集中して照射することもできる。たとえば、水 43aが水柱のように立 つている場合には、立ち上がった水柱の形状に沿って、縦線状に集中することが、水 43aを加熱するには効果的である。また、水 43aが液滴のように丸い場合、液滴の大 きさに合わせて点状に集中することが、効果的である。  The humidifier 10 achieves efficient infrared irradiation with the reflector 18 and the lens 23 in a form suitable for the shape or state of the water 43a. When various combinations of the reflector 18 and the lens 23 are devised, the target water 43a is directed toward the target water 43a to irradiate the infrared rays in a concentrated manner in the form of a line, dot, circle, or ellipse. You can also. For example, when the water 43a stands like a water column, it is effective for heating the water 43a to concentrate in a vertical line along the shape of the rising water column. In addition, when the water 43a is round like a droplet, it is effective to concentrate in a dot shape according to the size of the droplet.
[0097] なお、水 43aに、赤外線熱源 15から発生する赤外線を集中させて照射することによ つて、水 43aを加熱する。このことによって、狭い範囲に赤外線の熱エネルギー^^ めることにより、水 43aの水温を短時間で上昇させ、加湿装置 10の加湿動作の立ち 上がり時間を大幅に短縮する。図 7では、赤外線を集中させる方法として、レンズ 23 と反射板 18とを利用して赤外線の方向を変化させる方法を用いている。し力しながら 、この方法に限らず、水 43aの周囲に複数の赤外線熱源 15を設置する方法を用い てもよい。赤外線は光であるために、鏡面部を有する反射板 18またはレンズ 23など によって集中させることができる。したがって、効率よく水 43aの加熱が可能である。こ の結果、シース、ヒータなどの空気加熱ヒータを用いる場合に比べ、対象である水 43a に向かって一点集中的に加熱することが容易である。 [0097] The water 43a is heated by concentrating and irradiating the water 43a with infrared rays generated from the infrared heat source 15. This makes it possible to raise the water temperature of the water 43a in a short time by concentrating infrared thermal energy in a narrow range, and to significantly shorten the start-up time of the humidifying operation of the humidifier 10. In Figure 7, the lens 23 is used as a method of concentrating infrared rays. And a method of changing the direction of infrared rays using the reflector 18. However, not only this method but also a method of installing a plurality of infrared heat sources 15 around the water 43a may be used. Since infrared light is light, it can be concentrated by the reflector 18 or the lens 23 having a mirror surface. Therefore, the water 43a can be efficiently heated. As a result, it is easier to intensively heat toward the target water 43a than when using an air heater such as a sheath or a heater.
[0098] また、反射板 18は、表面に鏡面部を有するだけでなぐ実施の形態 1または 2で説 明したように、表面に赤外線反射作用を有する反射板 18を用いることもできる。  [0098] As described in the first or second embodiment, in which only the mirror surface portion is provided on the surface, the reflection plate 18 having an infrared reflecting function on the surface can be used as the reflecting plate 18.
[0099] また、微粒化装置 60がノズル 19を含んでいる。ノズル 19から噴出する瞬間に、微 粒ィ匕される直前の水 43aは液滴の状態になっている。そして、液滴状の水 43aが発 生しているノズル 19の先端部に赤外線を照射し、比較的、径の大きな水 43aに赤外 線を集中的に照射する。このことによって、効率的に水 43aを加熱する。  In addition, the atomization device 60 includes a nozzle 19. At the moment of ejection from the nozzle 19, the water 43a immediately before being sprayed is in a droplet state. Then, the tip of the nozzle 19 where the droplet-shaped water 43a is generated is irradiated with infrared rays, and the infrared rays are intensively irradiated onto the water 43a having a relatively large diameter. This effectively heats the water 43a.
[0100] また、水 43aは、ノズル 19から離れて噴出する直前の状態でも、すなわち、ノズル 1 9の内部に存在している水 43aであってもよい。この場合、ノズル 19が、たとえば、赤 外線を透過する石英ガラスなどの赤外線透過物質によって構成されて ヽれば、ノズ ル 19から噴出する直前の水 43aに対して、ノズル 19の外部力も赤外線を照射できる 。このことによって、水 43や空気に含まれる微生物を殺菌する、殺菌効果が高められ る。  [0100] Further, the water 43a may be in a state immediately before being ejected away from the nozzle 19, that is, the water 43a existing inside the nozzle 19. In this case, if the nozzle 19 is made of, for example, an infrared transmitting material such as quartz glass that transmits infrared rays, the external force of the nozzle 19 also transmits infrared light to the water 43a immediately before being ejected from the nozzle 19. Can be irradiated. This enhances the sterilizing effect of sterilizing microorganisms contained in water 43 and air.
[0101] さらに、ノズル 19から噴出する水 43aの機械的な微粒ィ匕による加湿に加えて、水 43 aの温度上昇に伴う蒸発による熱的な加湿効果も同時に得られる。このため、単位時 間あたりの加湿量が向上する。この結果、効果的に加湿空気 53を放出する加湿装 置 10が容易に得られる。  [0101] Further, in addition to the humidification of the water 43a ejected from the nozzle 19 by the mechanical fine particles, a thermal humidification effect by evaporation accompanying the temperature rise of the water 43a can be obtained at the same time. For this reason, the humidification amount per unit time is improved. As a result, the humidifying device 10 that effectively releases the humidified air 53 can be easily obtained.
[0102] また、少なくとも通路 14の一部が赤外線透過部からなり、赤外線熱源 15から発生 する赤外線が、赤外線透過部を介して水 43aに照射される。このこと〖こよって、赤外 線熱源 15が直接的に水 43、 43aに触れない。このため、赤外線熱源 15の特別な防 水対策が不要である。この結果、低コストで構成される加湿機構を有する加湿装置 1 0が得られる。  [0102] Further, at least a part of the passage 14 includes an infrared transmission part, and the infrared rays generated from the infrared heat source 15 are irradiated to the water 43a through the infrared transmission part. For this reason, the infrared heat source 15 does not directly touch the water 43, 43a. For this reason, special water-proof measures for the infrared heat source 15 are not required. As a result, a humidifier 10 having a humidification mechanism configured at low cost is obtained.
[0103] また、水 43、 43aが気化する際に、カルシウムまたはマグネシウムなどの蒸発残留 物が通路 14内に堆積する。水 43、 43aの加熱が赤外線によって行われ、かつ、赤外 線透過部であるレンズ 23を介しているため、赤外線熱源 15に、直接、蒸発残留物が 付着することが抑制される。このこと〖こよって、信頼性に優れた加湿装置 10が容易に 得られる。赤外線熱源 15は、通電するために本体とリード線(図示せず)とが接続さ れた一体化形状を有している。しカゝしながら、赤外線透過部であるレンズ 23は、赤外 線熱源 15の本体と一体ィ匕することは要求されない。このため、たとえば、赤外線透過 部であるレンズ 23が着脱可能な構成を有して 、れば、蒸発残留物が付着した際に は取り外して、洗浄することも可能である。さらに、赤外線透過部であるレンズ 23の汚 染がひどい場合に、レンズ 23のみを交換することによって、加湿装置 10自体を修理 することなぐ容易に清浄な状態に回復される。 [0103] Further, when water 43, 43a is vaporized, residual evaporation of calcium, magnesium, etc. Objects accumulate in the passage 14. Since the water 43 and 43a are heated by infrared rays and through the lens 23 which is an infrared ray transmitting portion, it is possible to suppress the evaporation residue from adhering directly to the infrared heat source 15. As a result, the humidifying device 10 having excellent reliability can be easily obtained. The infrared heat source 15 has an integrated shape in which a main body and a lead wire (not shown) are connected to energize. However, it is not required that the lens 23 which is an infrared transmission part is integrated with the main body of the infrared ray heat source 15. For this reason, for example, if the lens 23 which is an infrared ray transmitting portion has a detachable configuration, it can be removed and washed when the evaporation residue adheres. Furthermore, when the lens 23, which is an infrared transmitting part, is severely contaminated, the humidifier 10 itself can be easily restored to a clean state by replacing only the lens 23.
[0104] なお、図 7における赤外線透過部は、レンズ 23を用いている構成について説明して いる。し力しながら、赤外線透過部は、必ずしもレンズ 23に限ることはない。赤外線透 過部は、赤外線熱源 15が発生する赤外線を効率よく透過できる構成または材料によ つて形成されればよい。赤外線透過部は、レンズ 23以外に、たとえば、石英ガラスな どのガラスが用いられてもよ 、。  [0104] The configuration using the lens 23 is described for the infrared ray transmitting portion in FIG. However, the infrared transmission part is not necessarily limited to the lens 23. The infrared transmitting portion may be formed of a configuration or material that can efficiently transmit infrared rays generated by the infrared heat source 15. In addition to the lens 23, the infrared transmitting part may be made of glass such as quartz glass.
[0105] さらに、赤外線透過部がレンズ 23であることによって、赤外線が集光されて、水 43a に対して効率的に照射される。赤外線熱源 15は、例えば、棒状のヒータが用いられ る。し力しながら、必ずしも、通路 14の大きさ、または、形状と一致した形状のヒータに 限定されない。赤外線透過部がレンズ 23で構成されることによって、水 43aに焦点を 絞って、効率的に水 43aが加熱され、汎用性のある赤外線熱源 15が利用可能となる 。この結果、加湿装置 10を構成する部品の入手の容易性、低コスト化に効果が発揮 される。  [0105] Further, since the infrared transmitting portion is the lens 23, infrared rays are collected and efficiently irradiated onto the water 43a. As the infrared heat source 15, for example, a rod-shaped heater is used. However, it is not necessarily limited to a heater having a shape that matches the size or shape of the passage 14. By configuring the infrared transmitting portion with the lens 23, the water 43a is efficiently focused by focusing on the water 43a, and the versatile infrared heat source 15 can be used. As a result, it is effective to easily obtain the parts constituting the humidifying device 10 and to reduce the cost.
[0106] また、赤外線熱源 15の周辺に、赤外線を反射する鏡面部を有する反射板 18が設 けられている。このことによって、反射板 18によって赤外線が反射され、対象である 水 43aに対して集中して赤外線が照射される。このため、対象以外の方向に向かつ て広がる赤外線を漏らすことなく水 43aに照射し、無駄のない赤外線利用が可能で ある。反射板 18が放物線形状を有していれば、反射板 18の傾きを変化させることに よって、赤外線の集中位置、すなわち焦点位置を変化させることができる。また、反 射板 18とレンズ 23とによって構成される集中部 62は、赤外線を集中する対象物であ る水 43aの位置または形状に併せて、適宜最適な構成を用いることができる。なお、 反射板 18は、ガラス製の鏡面、アルミニウム、鉄、ステンレスまたはこれらの合金、チ タン、銅、ニッケルなどが利用可能である。たとえば、反射板 18にガラスが用いられた 場合、硬度が高く傷が付きにくいという効果と、酸またはアルカリなどの腐食に対する 耐性が高いという効果を奏する。反射板 18に金属材料が用いられた場合、熱伝導性 力 く熱容量が小さいため、反射板 18の温度が上がりやすいという効果を奏する。ま た、反射板 18に金属材料が用いられた場合、金属材料は延性と展性とを有するため 、反射板 18の形状加工の自由度が高いという効果を奏する。 In addition, a reflector 18 having a mirror surface portion that reflects infrared rays is provided around the infrared heat source 15. As a result, the infrared rays are reflected by the reflecting plate 18, and the infrared rays are concentrated on the target water 43a. For this reason, it is possible to irradiate the water 43a without leaking infrared rays that spread in a direction other than the target, and to use infrared rays without waste. If the reflecting plate 18 has a parabolic shape, the concentration position of infrared rays, that is, the focal position can be changed by changing the inclination of the reflecting plate 18. Also anti The concentrating part 62 constituted by the projecting plate 18 and the lens 23 can use an optimum configuration as appropriate in accordance with the position or shape of the water 43a, which is a target for concentrating infrared rays. The reflector 18 can be made of glass mirror surface, aluminum, iron, stainless steel, or an alloy thereof, titanium, copper, nickel, or the like. For example, when glass is used for the reflector 18, the effect is that the hardness is high and the scratch is difficult to be damaged, and the resistance to corrosion such as acid or alkali is high. When a metal material is used for the reflector 18, it has an effect that the temperature of the reflector 18 is likely to rise because the heat conductivity is high and the heat capacity is small. Further, when a metal material is used for the reflector 18, since the metal material has ductility and malleability, there is an effect that the degree of freedom in shape processing of the reflector 18 is high.
[0107] また、通路 14に赤外線を反射する鏡面が設けられている。このこと〖こよって、水 43a を透過した赤外線や、水 43aに照射されずに、吸収されなカゝつた赤外線が鏡面によ つて反射される。このことによって、反射された赤外線が、再度、水 43aに向力つて照 射される。このため、赤外線熱源 15が発生する赤外線がムダなく利用され、対象であ る水 43aに照射される。 [0107] Further, the passage 14 is provided with a mirror surface that reflects infrared rays. As a result, the infrared rays that have passed through the water 43a and the infrared rays that are not absorbed without being irradiated to the water 43a are reflected by the mirror surface. As a result, the reflected infrared light is again directed toward the water 43a. For this reason, the infrared rays generated by the infrared heat source 15 are used without waste and are applied to the target water 43a.
[0108] また、通路 14は耐熱性を有する材料を用いて構成されて 、る。加湿装置 10の本体 50と通路 14とは、通常、榭脂材料または金属材料によって構成される。しかしながら 、赤外線熱源 15の近傍、または、赤外線が照射される部位は非常に高温になる。こ のことによって、赤外線が照射される部位の構成材料は熱的に劣化しやすい。そこで 、通路 14が耐熱性を有する材料で構成されていれば、赤外線によって通路 14が加 熱されても、通路 14を構成する材料の劣化が抑制される。通路 14に用いられる材料 の具体例は、実施の形態 1から 3にて説明した材料が使用可能である。  [0108] The passage 14 is made of a heat-resistant material. The main body 50 and the passage 14 of the humidifying device 10 are usually made of a resin material or a metal material. However, the vicinity of the infrared heat source 15 or the portion irradiated with infrared rays is very hot. As a result, the constituent material of the portion irradiated with infrared rays is likely to be thermally deteriorated. Therefore, if the passage 14 is made of a material having heat resistance, even if the passage 14 is heated by infrared rays, deterioration of the material constituting the passage 14 is suppressed. As a specific example of the material used for the passage 14, the materials described in the first to third embodiments can be used.
[0109] また、水槽 31に、温度センサ 24が設けられている。さらに、温度制御部 21が本体 5 0に設けられている。このことによって、水槽 31内の温度が予め設定された温度を超 えた場合に、温度制御部 21によって、赤外線熱源 15または微粒化装置 60などの運 転が制御され、停止される。さらに、水槽 31内の温度が異常に上昇した場合には、 温度制御部 21によって、ファン 20を強制的に駆動するなどして、水槽 31内の温度ま たは本体 50内の温度の過剰な上昇を抑制する。このようにして、水槽 31内の水温が 過剰に上昇するのを防止する効果を有する。 [0110] (実施の形態 5) Further, a temperature sensor 24 is provided in the water tank 31. Further, a temperature control unit 21 is provided in the main body 50. As a result, when the temperature in the water tank 31 exceeds a preset temperature, the operation of the infrared heat source 15 or the atomizer 60 is controlled by the temperature control unit 21 and stopped. Furthermore, if the temperature in the water tank 31 rises abnormally, the temperature control unit 21 forcibly drives the fan 20 to excessively increase the temperature in the water tank 31 or the temperature in the main body 50. Suppresses the rise. In this way, it has an effect of preventing the water temperature in the water tank 31 from rising excessively. [0110] (Embodiment 5)
図 8は、本発明の実施の形態 5における加湿装置の概略斜視図を示す。なお、実 施の形態 1から 4で示した構成と同様の構成には、同じ符号を付し、詳細な説明を省 略する。  FIG. 8 shows a schematic perspective view of a humidifying device according to Embodiment 5 of the present invention. Note that the same reference numerals are given to the same components as those shown in the first to fourth embodiments, and detailed description thereof will be omitted.
[0111] 図 8に示すように、加湿装置 10は、微粒化装置 60と、赤外線熱源 15としてのハロ ゲンヒータと、送風装置としてのファン 20とを有している。微粒ィ匕装置 60は、超音波 振動子 12を含んでいる。通路 14は、赤外線反射作用を有するアルミニウム板にて構 成されている。水が微粒ィ匕される直前の水柱 32に対し、ガラス 25を介して、赤外線 が照射されている。ガラス 25は、石英ガラスを材料として赤外線透過部を構成してい る。赤外線熱源 15としてのハロゲンヒータは、ガラス 25と反射板 18とに囲まれ、水柱 32に赤外線が集中して照射される位置に配置されている。なお、反射板 18とガラス 25とによって、赤外線熱源 15が発生する赤外線を集中する集中部 62が構成されて いる。  As shown in FIG. 8, the humidifier 10 includes a atomizer 60, a halogen heater as the infrared heat source 15, and a fan 20 as a blower. The fine particle device 60 includes an ultrasonic transducer 12. The passage 14 is made of an aluminum plate having an infrared reflecting function. Infrared rays are irradiated through the glass 25 to the water column 32 immediately before the water is finely divided. The glass 25 constitutes an infrared transmission part using quartz glass as a material. The halogen heater as the infrared heat source 15 is surrounded by the glass 25 and the reflector 18 and is disposed at a position where infrared rays are concentrated and irradiated on the water column 32. The reflector 18 and the glass 25 constitute a concentrating part 62 for concentrating infrared rays generated by the infrared heat source 15.
[0112] また、図 9に、図 8に示す加湿装置 10の加湿性能を示す特性図であり、赤外線熱 源 15としてのハロゲンヒータに入力される電力を示すヒータ入力と風速とを変化させ たときの、単位時間あたりの加湿量 (mlZh)を示す。風速は、通路 14を通過する加 湿空気 53の速度を表し、加湿量は、加湿空気 53中の水分量を相対的に示している 。つまり、加湿量が多くなるにしたがって、加湿空気 53中に含まれる水分量が増加す ることを意味する。  FIG. 9 is a characteristic diagram showing the humidifying performance of the humidifying device 10 shown in FIG. 8, in which the heater input indicating the power input to the halogen heater as the infrared heat source 15 and the wind speed are changed. Shows the amount of humidification per unit time (mlZh). The wind speed represents the speed of the humidified air 53 passing through the passage 14, and the humidification amount relatively indicates the amount of moisture in the humidified air 53. That is, the amount of moisture contained in the humidified air 53 increases as the amount of humidification increases.
[0113] 図 9において、ヒータ入力と風速とに関わらず、赤外線は、水が微粒化された後形 成される霧状の水(以下、霧と呼ぶ)に対して照射されるよりも、水が微粒化される直 前の水柱 32に対して照射されるほうが、加湿量が多いことがわかる。赤外線が霧に 照射されたときは、微粒ィ匕された水である水粒子 13が空気中に分散し、赤外線によ つて得られる熱エネルギーが水粒子 13の周囲の空気に奪われるためであると考えら れる。この結果、水粒子 13の周囲の空気の温度は上昇するものの、水粒子 13自身 の温度が上昇し難いために、殺菌性能が必ずしも高くならないと考えられる。それに 対して、水柱 32に対して赤外線が照射される場合、水柱 32自身が赤外線を効率よく 吸収し、温度上昇による蒸発が促進される。この結果、加湿量が増加すると考えられ る。この結果、高い殺菌性能が得られる。 [0113] In FIG. 9, regardless of the heater input and the wind speed, infrared light is applied to mist-like water (hereinafter referred to as mist) formed after water is atomized. It can be seen that the amount of humidification is greater when the water column 32 just before the water is atomized is irradiated. This is because when the infrared rays are applied to the mist, the water particles 13 that are finely dispersed water are dispersed in the air, and the thermal energy obtained by the infrared rays is taken away by the air around the water particles 13. it is conceivable that. As a result, although the temperature of the air around the water particles 13 rises, the sterilization performance is not necessarily improved because the temperature of the water particles 13 itself hardly rises. On the other hand, when the water column 32 is irradiated with infrared rays, the water column 32 itself absorbs infrared rays efficiently, and evaporation due to temperature rise is promoted. As a result, the amount of humidification is considered to increase. The As a result, high sterilization performance can be obtained.
[0114] また、図 8に示す水槽 31に、菌を混入し、加湿装置 10から放出される加湿空気 53 中に混入される、菌数を調べる試験を実施した。水槽 31に、混入した菌は、供試菌( 黄色ブドウ球菌 NBRC. 12732)を生理食塩水で 500000CFUZmlに希釈した菌 液を用いた。この菌液を水槽 31に入れ、加湿装置 10を運転した。加湿装置 10の運 転中に、加湿空気 53を空中浮遊菌測定装置 (GSIクレオス社製のエアーサンプラー )にて 20秒間サンプリングし、加湿空気 53に含まれる菌数をカウントした。  [0114] In addition, a test was conducted to check the number of bacteria mixed in the humidified air 53 discharged from the humidifier 10 into the water tank 31 shown in FIG. The bacteria mixed in the aquarium 31 was obtained by diluting the test bacteria (S. aureus NBRC. 12732) with physiological saline to 500,000 CFUZml. This bacterial solution was placed in the water tank 31 and the humidifier 10 was operated. During the operation of the humidifier 10, the humidified air 53 was sampled for 20 seconds with an airborne bacteria measuring device (air sampler manufactured by GSI Creos), and the number of bacteria contained in the humidified air 53 was counted.
[0115] 図 10は、図 8に示す加湿装置 10の殺菌性能を示し、赤外線熱源 15としてのハロゲ ンヒータに入力される電力を示すヒータ入力と風速とを変化させたときの、菌の生存 率 (%)を示す。  FIG. 10 shows the sterilization performance of the humidifier 10 shown in FIG. 8, and the survival rate of the bacteria when the heater input indicating the power input to the halogen heater as the infrared heat source 15 and the wind speed are changed. (%).
[0116] 図 10において、風速が遅くなれば、菌が加熱部に滞留する時間が長くなるため、 殺菌効果は高くなる。加熱部は、赤外線熱源 15としてのハロゲンヒータが発生する赤 外線が照射される領域とその周辺の温度が高くなつた部分のことである。また、赤外 線の照射位置は、水が微粒化された後の霧に照射するよりも、水が微粒化される直 前の水柱 32に照射される方力 殺菌効果が高いことがわかる。これは、赤外線が霧 に照射されたときは、微粒ィ匕された水である水粒子 13が空気中に分散し、赤外線に よって得られる熱エネルギーが水粒子 13の周囲の空気に奪われるためであると考え られる。この結果、水粒子 13の周囲の空気の温度は上昇するものの、水粒子 13自 身の温度が上昇し難いために、加湿量が必ずしも高くならないと考えられる。それに 対して、水柱 32に対して赤外線が照射される場合、水柱 32自身が赤外線を効率よく 吸収し、温度上昇することによって、菌への加熱が充分になされると考えられる。  [0116] In FIG. 10, if the wind speed is slow, the sterilization effect is enhanced because the time for the bacteria to stay in the heating section becomes longer. The heating part is a part where the temperature of the area irradiated with the infrared ray generated by the halogen heater as the infrared heat source 15 and the surrounding temperature is high. It can also be seen that the irradiation position of the infrared ray has a higher effect of sterilizing the force applied to the water column 32 immediately before the water is atomized than when the water is atomized and the fog is atomized. This is because when the infrared rays are irradiated to the mist, the water particles 13 which are finely dispersed water are dispersed in the air, and the thermal energy obtained by the infrared rays is taken away by the air around the water particles 13. It is thought that. As a result, although the temperature of the air around the water particles 13 rises, it is considered that the humidification amount does not necessarily increase because the temperature of the water particles 13 itself hardly rises. On the other hand, when the water column 32 is irradiated with infrared rays, the water column 32 itself absorbs infrared rays efficiently, and the temperature rises, so that the bacteria are sufficiently heated.
[0117] なお、赤外線透過部がガラス 25で構成されている。石英ガラスに代表されるガラス 25は、赤外線の透過率が高い。たとえば、石英ガラスは赤外線熱源 15から放射され た放射光の 95%を透過させる。このこと〖こよって、水柱 32を効果的に加熱する。なお 、このとき、ガラス 25自体も輻射熱等の影響で温度が上がる。このため、十分な耐熱 性をもったガラス 25が用いられることが望ましい。また、ガラスは、硬度が高く表面が 平滑であるため、ガラス 25の表面に付着した蒸発残留物の清掃が容易である。また 、ガラス 25の厚みは薄いほど赤外線の透過率が高ぐ好ましい。し力しながら、ガラス 25の強度または製造の容易さなどによって、加湿装置 10の使用条件に適した材料 が適宜選択されればよい。 [0117] The infrared transmitting portion is made of glass 25. Glass 25 represented by quartz glass has high infrared transmittance. For example, quartz glass transmits 95% of the radiation emitted from the infrared heat source 15. This effectively heats the water column 32. At this time, the temperature of the glass 25 itself also rises due to the influence of radiant heat or the like. For this reason, it is desirable to use glass 25 having sufficient heat resistance. Further, since glass has a high hardness and a smooth surface, the evaporation residue adhering to the surface of glass 25 can be easily cleaned. Further, the thinner the glass 25, the higher the infrared transmittance. Glass A material suitable for the use condition of the humidifying device 10 may be appropriately selected depending on the strength of 25 or the ease of manufacture.
[0118] (実施の形態 6) [0118] (Embodiment 6)
図 11は、本発明の実施の形態 6における加湿装置の概略断面図を示す。なお、実 施の形態 1から 5で示した構成と同様の構成には、同じ符号を付し、詳細な説明を省 略する。  FIG. 11 shows a schematic cross-sectional view of a humidifying device according to Embodiment 6 of the present invention. Note that the same reference numerals are given to the same components as those shown in the first to fifth embodiments, and a detailed description thereof will be omitted.
[0119] 図 11に示すように、貯水タンク 11から水槽 31へ供給された水 43は、微粒化装置 6 0によって微粒ィ匕される。微粒ィ匕装置 60によって微粒ィ匕された水粒子 13の平均粒子 径は約 4 mである。微粒ィ匕装置 60は、 1. 6MHzの周波数で発振する超音波振動 子 12によって構成されて!、る。貯水タンク 11と水槽 31とによって水供給装置が構成 される。赤外線発生装置を構成する赤外線熱源 15としてのハロゲンヒータから放射さ れた赤外線は、ガラス 25を通って通路 14内に高温域 16を形成する。ガラス 25は、 石英ガラスが構成材料として用いられ、赤外線透過部を構成する。本体 50に設けら れた送風装置としてのファン 20は、本体 50内に空気を送り込み、風を形成する。送り 込まれた空気は、微粒ィ匕装置 60の前段に設けられた赤外線熱源 15の周囲を通過し て温められた後、水粒子 13とともに高温域 16を通過する。水粒子 13と空気との混合 気体が高温域 16を通過する際、赤外線の作用によって、空気はさらに加熱される。 赤外線熱源 15としてのハロゲンヒータは、赤外線の集光によって、最高で約 2000°C もの高温域が容易に作成可能である。し力しながら、加湿装置 10においては、 50°C 〜200°C程度の温度の高温域 16が形成されれば、充分な効果が得られる。高温域 16は、微生物が死滅するのに充分な 50°C以上の温度を水粒子 13に与える。水粒 子 13は、高温域 16を通過する際の加熱によって殺菌される。さらに、水粒子 13の気 化が促進され、微細な加湿空気 53となって加湿装置 10の外部に放出される。  As shown in FIG. 11, the water 43 supplied from the water storage tank 11 to the water tank 31 is atomized by the atomizer 60. The average particle diameter of the water particles 13 finely divided by the fine particle device 60 is about 4 m. The fine particle device 60 is composed of an ultrasonic vibrator 12 oscillating at a frequency of 1.6 MHz! The water storage tank 11 and the water tank 31 constitute a water supply device. Infrared rays radiated from a halogen heater as an infrared heat source 15 constituting the infrared ray generator forms a high temperature region 16 in the passage 14 through the glass 25. As for the glass 25, quartz glass is used as a constituent material, and constitutes an infrared transmission part. The fan 20 as a blower provided in the main body 50 sends air into the main body 50 to form wind. The sent air passes through the high-temperature region 16 together with the water particles 13 after being warmed by passing around the infrared heat source 15 provided in the front stage of the fine particle device 60. Mixing of water particles 13 and air When the gas passes through the high temperature region 16, the air is further heated by the action of infrared rays. The halogen heater as the infrared heat source 15 can easily create a high temperature range of up to about 2000 ° C by condensing infrared rays. However, in the humidifier 10, if the high temperature region 16 having a temperature of about 50 ° C to 200 ° C is formed, a sufficient effect can be obtained. The high temperature zone 16 gives the water particles 13 a temperature above 50 ° C. sufficient for the microorganisms to die. The water particles 13 are sterilized by heating when passing through the high temperature region 16. Further, the vaporization of the water particles 13 is promoted, and the fine humidified air 53 is released outside the humidifier 10.
[0120] 図 11に示すように、加湿装置 10は、赤外線熱源 15が、微粒ィ匕装置 60によって生 成された水粒子 13を加熱することによって、水粒子 13と水粒子 13の周囲の空気との 温度が上昇し、水粒子 13の気化が促進される。このことによって、効率的な加湿が成 される。水の光吸収波長は 1〜10 m程度であることが広く知られている。水の吸収 波長は、赤外線領域にあたり、赤外線を利用して水を直接的に加熱することによって 、シーズヒータなどの空気加熱ヒータに比べて効率よく加熱が行われる。また、加熱 によって水粒子 13の蒸発が促進されることによって、大きな水粒子 13がさらに小さな 水粒子 13に変換される。このため、大きな水粒子 13が落下して起こる、加湿装置 13 周辺の水濡れが抑制されながら室内の加湿が行われる。 [0120] As shown in FIG. 11, the humidifier 10 is configured such that the infrared heat source 15 heats the water particles 13 generated by the fine particle device 60, thereby allowing the air around the water particles 13 and the water particles 13 to be heated. And the vaporization of water particles 13 is promoted. This provides efficient humidification. It is widely known that the light absorption wavelength of water is about 1 to 10 m. The absorption wavelength of water falls in the infrared region, and heats water directly using infrared rays. Heating is performed more efficiently than an air heater such as a sheathed heater. Further, the evaporation of the water particles 13 is promoted by heating, whereby the large water particles 13 are converted into smaller water particles 13. For this reason, indoor humidification is performed while water wetting around the humidifier 13 caused by the large water particles 13 falling is suppressed.
[0121] また、微粒ィ匕した少量の水粒子 13を加熱するので、加熱に必要なエネルギーが少 なぐかつ、素早く温度上昇させることができる。このことによって、加湿装置 10の立 ち上がり時間が短縮され、立ち上がり動作の早い優れた加湿装置 10が得られる。  [0121] Further, since a small amount of finely divided water particles 13 are heated, the energy required for heating is small and the temperature can be raised quickly. As a result, the rising time of the humidifying device 10 is shortened, and an excellent humidifying device 10 having a quick rising operation can be obtained.
[0122] また、赤外線を利用した水粒子 13の加熱力 赤外線透過部であるガラス 25を介し て行われる。このため、赤外線発生装置である赤外線熱源 15に直接的に水 43また は水粒子 13が触れることがない。したがって、赤外線熱源 15に対する特別な防水対 策が不要であり、低コストの構造を有する加湿装置 10が容易に得られる。  [0122] Further, the heating power of the water particles 13 using infrared rays is carried out through the glass 25 which is an infrared transmitting portion. For this reason, the water 43 or the water particles 13 do not directly touch the infrared heat source 15 which is an infrared generator. Therefore, a special waterproofing measure for the infrared heat source 15 is not required, and the humidifier 10 having a low-cost structure can be easily obtained.
[0123] また、水粒子 13が気化する際に、カルシウムやマグネシウムなどの蒸発残留物が 通路 14内に堆積する。し力しながら、水粒子 13の加熱が赤外線を用いて行なわれ、 さら〖こ、赤外線透過部であるガラス 25を介する。このため、赤外線熱源 15に直接的 に蒸発残留物が付着することが抑制される。この結果、信頼性に優れた加湿装置 10 が得られる。  [0123] Further, when the water particles 13 are vaporized, evaporation residues such as calcium and magnesium are accumulated in the passage 14. While pressing, the water particles 13 are heated by using infrared rays, and are passed through the glass 25 which is the infrared ray transmitting portion. For this reason, it is suppressed that the evaporation residue adheres directly to the infrared heat source 15. As a result, the humidifier 10 having excellent reliability can be obtained.
[0124] また、送風装置としてファン 20を用いた構成について説明した。し力しながら、通路 14内に空気を送り込み、排出する機能を有する送風装置であれば、特に限定されな い。たとえば、シロッコ、ターボ、クロスフローなどの送風ファンまたは減圧ポンプ、放 電によるイオン風などが利用できる。  [0124] Further, the configuration using the fan 20 as the blower has been described. However, the blower is not particularly limited as long as it has a function of feeding air into the passage 14 and discharging it. For example, a blower fan such as sirocco, turbo, or cross flow or a decompression pump, or an ion wind by discharge can be used.
[0125] また、通路 14が耐熱性を有する材料で構成されている。通路 14は、赤外線によつ て加熱される。さらに、通路 14の周囲の空気と熱交換が行なわれ、周囲の空気の温 度を上げることができる。通路 14に用いられる、耐熱性の材料としては、アルミニウム 、鉄、ステンレス、または、これらの合金、チタン、銅、ニッケルなどの金属材料類、耐 熱性を有する榭脂などが利用可能である。さらに、榭脂の表面にシリコーンまたはフ ッ素などの耐熱性榭脂が被覆されてもよい。通路 14に金属材料が用いられた場合、 熱伝導性がよく熱容量が小さいため、通路 14の温度が上がりやすく瞬時に高温域 1 6が形成される。また、金属材料は延性と展性とを有するため、通路 14の形状加工の 自由度が高ぐ安価な通路 14が得られやすい。 [0125] Further, the passage 14 is made of a heat-resistant material. The passage 14 is heated by infrared rays. Furthermore, heat is exchanged with the air around the passage 14, and the temperature of the surrounding air can be raised. As the heat-resistant material used for the passage 14, aluminum, iron, stainless steel, alloys thereof, metal materials such as titanium, copper, nickel, heat-resistant resin, and the like can be used. Further, the surface of the resin may be coated with a heat resistant resin such as silicone or fluorine. When a metal material is used for the passage 14, since the heat conductivity is good and the heat capacity is small, the temperature of the passage 14 is likely to rise, and the high temperature region 16 is formed instantaneously. Also, since the metal material has ductility and malleability, the shape of the passage 14 can be processed. It is easy to obtain an inexpensive passage 14 with a high degree of freedom.
[0126] なお、通路 14に用いられる材料の耐熱性とは、少なくとも通路 14内の空気温度より も高ぐ通路 14の周囲の空気と熱交換を行い空気の温度を上げることができる範囲 のことである。したがって、通路 14に用いられる材料に求められる耐熱性は、本体 50 の変形や加湿装置 10の機能障害が起こらない範囲で適宜設定される。  [0126] The heat resistance of the material used for the passage 14 is a range in which the temperature of the air can be raised by exchanging heat with the air around the passage 14 that is at least higher than the air temperature in the passage 14. It is. Therefore, the heat resistance required for the material used for the passage 14 is appropriately set within a range in which the deformation of the main body 50 and the functional failure of the humidifying device 10 do not occur.
[0127] また、通路 14に空気を流す送風装置であるファン 20が、赤外線熱源 15より前段に 配置されている。このこと〖こよって、送風装置が送風する空気が赤外線熱源 15によつ て加熱される。このことによって、送風装置であるファン 20に耐熱性を有する構成が 要求されない。このため、加湿装置 10を構成する各部材のうち、赤外線熱源 15より 後段に用いられる部材のみが耐熱性を有する構成であればよい。この結果、安価で 、信頼性の高い加湿装置 10が得られる。  In addition, a fan 20, which is a blower that allows air to flow through the passage 14, is arranged in front of the infrared heat source 15. As a result, the air blown by the blower is heated by the infrared heat source 15. As a result, the fan 20 that is a blower is not required to have a heat resistant configuration. For this reason, among the members constituting the humidifier 10, only the member used in the subsequent stage from the infrared heat source 15 may have a heat resistance. As a result, an inexpensive and highly reliable humidifier 10 can be obtained.
[0128] また、赤外線熱源 15が、微粒ィ匕装置 60よりも前段に配置されている。このこと〖こよ つて、赤外線熱源 15によって暖められた空気が、微粒化装置 60に供給される。一般 に、温度が高い空気ほど、多量の水を含むことができる。したがって、微粒化装置 60 に赤外線熱源 15によって事前に暖められた温風を供給することによって、さらに多く の水分を含んだ空気が微粒ィ匕装置 60近傍に供給される。このこと〖こよって、室温の 空気をそのまま供給する場合に比べ、さらに多くの水分が気化される。さらに、 70°C 以上の温風が微粒化装置 60近傍に供給される場合、水粒子 13の気化がさらに促進 される。さらに、空気または水 43に含まれている細菌や真菌等の活動が抑制され、 制菌,殺菌作用も得られる。  [0128] The infrared heat source 15 is arranged in front of the fine particle device 60. For this reason, the air heated by the infrared heat source 15 is supplied to the atomizer 60. In general, the higher the temperature, the greater the amount of water that can be contained. Therefore, by supplying warm air preliminarily heated by the infrared heat source 15 to the atomizing device 60, more moisture-containing air is supplied in the vicinity of the atomizing device 60. As a result, more water is vaporized than when air at room temperature is supplied as it is. Furthermore, when hot air of 70 ° C. or higher is supplied in the vicinity of the atomizer 60, vaporization of the water particles 13 is further promoted. In addition, the activities of bacteria and fungi contained in the air or water 43 are suppressed, and antibacterial and bactericidal actions are also obtained.
[0129] (実施の形態 7)  [Embodiment 7]
図 12は、本発明の実施の形態 7における加湿装置の概略断面図を示す。なお、実 施の形態 1から 6で示した構成と同様の構成には、同じ符号を付し、詳細な説明を省 略する。  FIG. 12 shows a schematic cross-sectional view of a humidifying device according to Embodiment 7 of the present invention. Note that the same reference numerals are given to the same components as those shown in the first to sixth embodiments, and detailed description thereof will be omitted.
[0130] 図 12に示すように、貯水タンク 11から水槽 31へ供給された水 43は、微粒化装置 6 0によって微粒ィ匕される。微粒ィ匕装置 60によって微粒ィ匕された水粒子 13の平均粒子 径は約 4 mである。微粒ィ匕装置 60は、 1. 6MHzの周波数で発振する超音波振動 子 12によって構成されて!、る。貯水タンク 11と水槽 31とによって水供給装置が構成 される。赤外線熱源 15から放射された赤外線は、レンズ 23を通って、通路 14内に高 温域 16を形成する。赤外線熱源 15には、ハロゲンヒータが用いられ、赤外線発生装 置を構成する。レンズ 23は、石英ガラスカゝらなる凸形状の曲面を有し、赤外線を集中 させる機能を有する。赤外線熱源 15としてのハロゲンヒータの周囲には、放物面形状 を有し、赤外線を反射させるアルミニウム製の反射板 18が設置されている。反射板 1 8は、レンズ 23の反対側に照射される赤外線を反射して、レンズ 23に赤外線を集光 する。レンズ 23を通過した赤外線は、レンズ 23によって集光され、耐熱性と赤外線反 射作用とを有するアルミニウム製の通路 14に反射する。このこと〖こよって、通路全体 に乱反射するようにして、通路 14内の空気と水粒子 13とを加熱する。なお、レンズ 2 3と反射板 18とによって集中部 62が構成されている。また、集中部 62の集光作用と 通路 14の壁面の反射作用とによって、高温域 16が形成されている。反射作用を有 する通路 14の壁面は、通路 14の壁面に反射板が設けられたことと同様の作用 ·効果 と力 S得られる。 As shown in FIG. 12, the water 43 supplied from the water storage tank 11 to the water tank 31 is atomized by the atomizer 60. The average particle diameter of the water particles 13 finely divided by the fine particle device 60 is about 4 m. The fine particle device 60 is composed of an ultrasonic vibrator 12 oscillating at a frequency of 1.6 MHz! The water supply device is composed of the water storage tank 11 and the water tank 31. Is done. The infrared rays emitted from the infrared heat source 15 pass through the lens 23 and form a high temperature region 16 in the passage 14. A halogen heater is used for the infrared heat source 15 and constitutes an infrared generator. The lens 23 has a convex curved surface made of quartz glass and has a function of concentrating infrared rays. Around the halogen heater as the infrared heat source 15, an aluminum reflector 18 that has a parabolic shape and reflects infrared rays is installed. The reflecting plate 18 reflects the infrared ray irradiated to the opposite side of the lens 23 and condenses the infrared ray on the lens 23. The infrared rays that have passed through the lens 23 are collected by the lens 23 and reflected by the aluminum passage 14 that has heat resistance and infrared reflection action. As a result, the air in the passage 14 and the water particles 13 are heated so as to be diffusely reflected in the entire passage. The lens 23 and the reflecting plate 18 constitute a concentrating part 62. Further, the high temperature region 16 is formed by the light collecting action of the concentrated portion 62 and the reflection action of the wall surface of the passage 14. The wall surface of the passage 14 having the reflection action can obtain the same action / effect and force S as the reflection plate is provided on the wall surface of the passage 14.
[0131] 本体 50に設けられた送風装置としてのファン 20は、本体 50内に空気を送り込み、 風を形成する。赤外線熱源 15としてのハロゲンヒータの周囲と反射板 18の周囲とを 通過して温められた空気は、水粒子 13とともに高温域 16を通過する。そして、赤外 線の作用によってさらに加熱される。赤外線熱源 15としてのハロゲンヒータは、集光 されること〖こよって、最高で約 2000°Cもの高温域を容易に作成可能である。しかしな がら、図 12に示す加湿装置 10においては、 50°C〜200°C程度の温度の高温域 16 が形成されれば、高温域 16の効果が充分に得られる。  [0131] The fan 20 as a blower provided in the main body 50 sends air into the main body 50 to form wind. The air heated by passing around the halogen heater as the infrared heat source 15 and the reflector 18 passes through the high temperature region 16 together with the water particles 13. It is further heated by the action of infrared rays. The halogen heater as the infrared heat source 15 can easily create a high temperature range of up to about 2000 ° C because it is focused. However, in the humidifier 10 shown in FIG. 12, if the high temperature region 16 having a temperature of about 50 ° C. to 200 ° C. is formed, the effect of the high temperature region 16 can be sufficiently obtained.
[0132] また、高温域 16は、微生物が死滅するのに充分な 50°C以上の温度を水粒子 13に 与える。水粒子 13は、高温域 16を通過することによって加熱されて、殺菌される。さ らに、水粒子 13は、気化が促進され、微細な加湿空気 53となって加湿装置 10の外 部に放出される。水粒子 13と空気とは、加湿装置 10の外部に放出される前段で、金 網形状を有するフィルタ 17を通過する。このこと〖こよって、菌または無機イオンが水 粒子 13から分離され、ろ過捕集される。このため、フィルタ 17の下流側に、清潔な加 湿空気 53が供給される。  [0132] In addition, the high temperature region 16 gives the water particles 13 a temperature of 50 ° C or higher sufficient for the microorganisms to die. The water particles 13 are heated and sterilized by passing through the high temperature region 16. Further, the water particles 13 are promoted to vaporize and become fine humidified air 53 to be discharged to the outside of the humidifier 10. The water particles 13 and the air pass through the filter 17 having a mesh shape before being released to the outside of the humidifier 10. As a result, bacteria or inorganic ions are separated from the water particles 13 and collected by filtration. For this reason, clean humid air 53 is supplied downstream of the filter 17.
[0133] また、フィルタ 17の表面には、抗菌作用をもつ銀を含有する耐熱塗料が被覆されて いる。このため、フィルタ 17に衝突した水粒子 13に含まれる雑菌は確実に殺菌され る。さらに、加湿装置 10の運転が停止された時であっても、フィルタ 17の表面には雑 菌の繁殖が抑制される。 [0133] Further, the surface of the filter 17 is coated with a heat-resistant paint containing silver having antibacterial action. Yes. For this reason, the germs contained in the water particles 13 colliding with the filter 17 are surely sterilized. Further, even when the operation of the humidifier 10 is stopped, the growth of bacteria on the surface of the filter 17 is suppressed.
[0134] 加湿装置 10が使用される室内が乾燥している場合、加湿装置 10は急速駆動され る。つまり、赤外線熱源 15としてのハロゲンヒータが連続的に駆動され、超音波振動 子 12によって微粒ィ匕された水粒子 13の気化を促進する。このことによって、乾燥した 室内が、すばやく加湿される。さらに、室内の湿度が、適度の湿気を有し、加湿装置 10が定常運転状態になった後は、加湿装置 10が間欠運転される。このことによって 、加湿装置 10が経済的に運転される。  [0134] When the room where the humidifier 10 is used is dry, the humidifier 10 is driven rapidly. That is, the halogen heater as the infrared heat source 15 is continuously driven to promote the vaporization of the water particles 13 that are atomized by the ultrasonic vibrator 12. This quickly humidifies the dry room. Furthermore, after the indoor humidity has moderate humidity and the humidifier 10 is in a steady operation state, the humidifier 10 is intermittently operated. This allows the humidifier 10 to operate economically.
[0135] また、加湿装置 10の外部へ放出される加湿量が少量でよい場合、ファン 20の風量 と超音波振動子 12への入力と赤外線熱源 15への入力とが、それぞれ低く抑えられ る。このことによって、加湿装置 10が経済的に運転される。  [0135] When the amount of humidification released to the outside of the humidifier 10 is small, the air volume of the fan 20, the input to the ultrasonic vibrator 12, and the input to the infrared heat source 15 can be kept low. . This allows the humidifier 10 to operate economically.
[0136] 加湿装置 10の運転を停止する際に、先に、赤外線熱源 15としてのハロゲンヒータ の駆動が停止される。続いて、超音波振動子 12の運転が停止される。さらに、本体 5 0内部が十分に冷えた後にファン 20の運転が停止される。このことによって、本体 60 内部の局所的な温度上昇によって、本体 50を構成する榭脂材料の熱変形が防止さ れる。さらに、通路 14に結露する水滴が気化されて、通路 14壁面へのカビなどの繁 殖が抑えられる。この結果、加湿装置 10内部が常に清潔な状態に保たれ、加湿装 置 10から雑菌などが放出されることを抑制する。  [0136] When the operation of the humidifier 10 is stopped, the drive of the halogen heater as the infrared heat source 15 is stopped first. Subsequently, the operation of the ultrasonic transducer 12 is stopped. Furthermore, the operation of the fan 20 is stopped after the inside of the main body 50 has cooled sufficiently. This prevents thermal deformation of the resin material constituting the main body 50 due to a local temperature rise inside the main body 60. Furthermore, water droplets condensing in the passage 14 are vaporized, and the growth of mold and the like on the wall surface of the passage 14 is suppressed. As a result, the inside of the humidifying device 10 is always kept clean and suppresses the release of germs and the like from the humidifying device 10.
[0137] また、水や空気に細菌や真菌が多く含まれることが予想されるときは、一時的に 70 °C以上の温風を発生させて、空気や水に含まれている細菌や真菌等の活動を抑制 し、制菌、殺菌作用を得ることができる。細菌や真菌が多く含まれることが予想される ときとは、たとえば、加湿装置 10が長期に運転されていなかった場合であるとか、室 温が高い場合、水槽 31中の水温が高い場合など、種々の条件が設定可能である。  [0137] In addition, when it is expected that water or air will contain a lot of bacteria or fungi, temporarily generate warm air of 70 ° C or higher so that the bacteria and fungi contained in the air or water It is possible to obtain antibacterial and bactericidal effects. When a lot of bacteria and fungi are expected, for example, when the humidifier 10 has not been operated for a long time, when the room temperature is high, or when the water temperature in the aquarium 31 is high, Various conditions can be set.
[0138] また、赤外線熱源 15が停止された後に送風装置であるファン 20が停止されること によって、赤外線熱源 15が必要以上に温度上昇しない。このため、赤外線熱源 15ま たは赤外線熱源 15の周囲の機器の損傷が防止される。このこと〖こよって、信頼性の 高い加湿装置 10が得られる。 産業上の利用可能性 [0138] Further, the temperature of the infrared heat source 15 does not increase more than necessary by stopping the fan 20 that is the blower after the infrared heat source 15 is stopped. For this reason, damage to the infrared heat source 15 or the equipment around the infrared heat source 15 is prevented. As a result, a highly reliable humidifier 10 can be obtained. Industrial applicability
本発明の加湿装置は、水を微粒化して空気を加湿する加湿装置にお!、て、微生物 または無機イオンなどの噴出が抑制され、運転初期から優れた加湿性能を発揮する ため、サウナなどの理美容機器またはネブライザ一などの健康機器の用途などにも 利用できる。  The humidifying device of the present invention is a humidifying device that atomizes water and humidifies the air! Since jetting of microorganisms or inorganic ions is suppressed and excellent humidifying performance is exhibited from the beginning of operation, the humidifying device such as a sauna is used. It can also be used for health equipment such as hairdressing and beauty equipment or nebulizer.

Claims

請求の範囲 The scope of the claims
[1] 水を微粒化する微粒化装置と、  [1] a atomizer for atomizing water;
前記微粒ィ匕装置によって微粒化された水粒子が通過する通路と、  A passage through which water particles atomized by the fine particle device pass,
赤外線を発生し、前記通路に高温域を形成する赤外線発生装置と、  An infrared generator that generates infrared rays and forms a high-temperature region in the passage;
前記高温域を通過した前記水粒子が通過するフィルタと、を備える  A filter through which the water particles that have passed through the high temperature region pass.
加湿装置。  Humidifier.
[2] 前記赤外線発生装置は、微粒化する直前の水に対して前記赤外線を照射する、 請求項 1記載の加湿装置。  2. The humidifier according to claim 1, wherein the infrared ray generator irradiates water just before atomization with the infrared ray.
[3] 前記通路の少なくとも一部が赤外線透過部を含み、 [3] At least a part of the passage includes an infrared transmission part,
前記赤外線発生装置が前記赤外線透過部を介して、前記微粒化装置によって微粒 化された前記水粒子に対して前記赤外線を照射する、  The infrared ray generator irradiates the water particles atomized by the atomizer via the infrared ray transmitting unit, with the infrared rays.
請求項 1記載の加湿装置。  The humidifier according to claim 1.
[4] 前記微粒化装置によって微粒化された前記水粒子の直径が 1 μ m〜60 μ mである、 請求項 1から請求項 3のいずれか 1項に記載の加湿装置。 [4] The humidifier according to any one of claims 1 to 3, wherein a diameter of the water particles atomized by the atomizer is 1 μm to 60 μm.
[5] 前記微粒化装置は、超音波振動子を含む、 [5] The atomization device includes an ultrasonic transducer,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[6] 前記超音波振動子が発生する振動を伝える振動伝達体を、さらに備える、 [6] A vibration transmission body that transmits vibrations generated by the ultrasonic vibrator is further provided.
請求項 5記載の加湿装置。  The humidifier according to claim 5.
[7] 前記振動伝達体が、不揮発性物質である、 [7] The vibration transmitting body is a non-volatile substance.
請求項 6記載の加湿装置。  The humidifier according to claim 6.
[8] 前記振動伝達体は、密封されて!ヽる、 [8] The vibration transmitting body is sealed!
請求項 6に記載の加湿装置。  The humidifier according to claim 6.
[9] 前記微粒化装置は、 [9] The atomization device comprises:
超音波振動子と、  An ultrasonic transducer,
前記超音波振動子を覆う振動伝達体と、  A vibration transmitter covering the ultrasonic transducer;
前記振動伝達体の上部に設けられた実振動面と、を有する、  An actual vibration surface provided on an upper portion of the vibration transmission body,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[10] 前記実振動面が金属箔で構成されて!、る、 請求項 9に記載の加湿装置。 [10] The actual vibration surface is made of metal foil! The humidifier according to claim 9.
[11] 前記実振動面が抗菌性材料を含む、 [11] The actual vibration surface includes an antibacterial material,
請求項 9に記載の加湿装置。  The humidifier according to claim 9.
[12] 前記微粒化装置は、ノズルである、 [12] The atomizer is a nozzle.
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[13] 前記赤外線発生装置が、少なくとも、ハロゲンヒータとカーボンヒータとのいずれかで ある、 [13] The infrared ray generator is at least one of a halogen heater and a carbon heater,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[14] 前記赤外線発生装置は、微生物を死滅させるのに充分な熱エネルギーを前記水に 与える、 [14] The infrared ray generator provides the water with sufficient heat energy to kill microorganisms.
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[15] 前記赤外線発生装置は、間欠的に動作する、 [15] The infrared ray generator operates intermittently.
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[16] 前記赤外線発生装置は、前記微粒化装置の前段に配置され、前記赤外線発生装置 が発生する赤外線で空気を暖め、 [16] The infrared generation device is arranged in a stage preceding the atomization device, and warms the air with infrared rays generated by the infrared generation device,
前記赤外線発生装置によって暖められた前記空気が、前記微粒化装置に供給され る、  The air heated by the infrared generator is supplied to the atomizer;
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[17] 前記赤外線発生装置が発生する前記赤外線を照射することにより、前記水の気化量 を増加させる、 [17] Increasing the amount of water vaporized by irradiating the infrared ray generated by the infrared ray generator;
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[18] 前記赤外線発生装置が発生する前記赤外線^^中させる集中部を、さらに備えた、 請求項 1から請求項 3のいずれか 1項に記載の加湿装置。 [18] The humidifying device according to any one of claims 1 to 3, further comprising a concentrating portion that causes the infrared ray generating device to generate the infrared ray.
[19] 前記超音波振動子は、前記水に超音波振動を加えることによって水柱を形成し、 前記赤外線発生装置が前記水柱に対して赤外線を照射する、 [19] The ultrasonic vibrator forms a water column by applying ultrasonic vibration to the water, and the infrared generator irradiates the water column with infrared rays.
請求項 5に記載の加湿装置。  The humidifier according to claim 5.
[20] 前記赤外線発生装置は、前記フィルタに赤外線を照射する [20] The infrared ray generator irradiates the filter with infrared rays.
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。 The humidification device according to any one of claims 1 to 3.
[21] 前記赤外線発生装置が発生する前記赤外線を透過させる赤外線透過部を、さらに 備えた、 [21] The apparatus further comprises an infrared transmission part that transmits the infrared rays generated by the infrared generation device,
請求項 1または請求項 2のいずれか 1項に記載の加湿装置。  The humidification device according to claim 1 or claim 2.
[22] 前記赤外線透過部が、ガラスで構成された、 [22] The infrared transmission part is made of glass,
請求項 3または請求項 21のいずれか 1項に記載の加湿装置。  The humidifying device according to any one of claims 3 and 21.
[23] 前記赤外線透過部が、レンズを含む、 [23] The infrared transmission part includes a lens,
請求項 3または請求項 21のいずれか 1項に記載の加湿装置。  The humidifying device according to any one of claims 3 and 21.
[24] 前記赤外線発生装置が発生する前記赤外線を反射する反射板を、さらに備えた、 請求項 1から請求項 3のいずれか 1項に記載の加湿装置。 24. The humidifier according to any one of claims 1 to 3, further comprising a reflector that reflects the infrared rays generated by the infrared ray generator.
[25] 前記反射板は、金属材料で構成された、 [25] The reflector is made of a metal material,
請求項 24記載の加湿装置。  The humidifying device according to claim 24.
[26] 前記反射板は、表面に鏡面部を有する、 [26] The reflector has a mirror surface portion on the surface,
請求項 24に記載の加湿装置。  The humidifying device according to claim 24.
[27] 前記反射板は、前記通路の壁面に設けられた、 [27] The reflector is provided on a wall surface of the passage.
請求項 24に記載の加湿装置。  The humidifying device according to claim 24.
[28] 前記微粒化装置は、超音波振動子を含み、 [28] The atomization device includes an ultrasonic vibrator,
前記反射板は、前記赤外線発生装置の前段に設けられ、  The reflector is provided in the front stage of the infrared ray generator,
前記反射板は、前記超音波振動子に照射される前記赤外線を遮蔽する、 請求項 24に記載の加湿装置。  25. The humidifier according to claim 24, wherein the reflecting plate shields the infrared rays that are irradiated to the ultrasonic transducer.
[29] 前記赤外線発生装置は、前記通路に設けられ、 [29] The infrared generator is provided in the passage,
前記通路は、前記赤外線発生装置によって、通路前段と通路後段とに区分され、 前記通路後段は、前記通路前段に対して、開口断面積が大きい、  The passage is divided into a passage front stage and a passage rear stage by the infrared generator, and the passage rear stage has a larger opening cross-sectional area than the passage front stage,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[30] 前記通路は、耐熱性材料で構成された、 [30] The passage is made of a heat-resistant material,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[31] 前記通路は、榭脂材料で構成された、 [31] The passage is made of a resin material,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[32] 前記通路は、金属材料で構成された、 請求項 1から請求項 3のいずれか 1項に記載の加湿装置。 [32] The passage is made of a metal material, The humidification device according to any one of claims 1 to 3.
[33] 前記通路が、銅、銀、亜鉛、ニッケルカゝら選ばれる少なくとも一種類の抗菌性金属材 料を含む、 [33] The passage includes at least one antibacterial metal material selected from copper, silver, zinc, nickel nickel,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[34] 前記通路が、銅、銀、亜鉛、ニッケル、アルミニウム、カーボン力も選ばれる少なくとも[34] The passage is at least selected from copper, silver, zinc, nickel, aluminum, and carbon force
2種類以上の材料を含み、 Including two or more materials,
前記材料が相互に電気的に接続された、  The materials are electrically connected to each other;
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[35] 前記フィルタが、前記水粒子に含まれる少なくとも蒸発残留物と微生物とのいずれか を捕集する、 [35] The filter collects at least any evaporation residue and microorganisms contained in the water particles.
請求項 1から請求項 3のいずれかに記載の加湿装置。  The humidifier according to any one of claims 1 to 3.
[36] 前記フィルタ力 金属材料を含む、 [36] the filter force including a metal material,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[37] 前記フィルタが、銅、銀、亜鉛、ニッケルカゝら選ばれる少なくとも一種類の抗菌性金属 を含む、 [37] The filter includes at least one antibacterial metal selected from copper, silver, zinc, and nickel.
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[38] 前記フィルタ力 銅、銀、亜鉛、ニッケル、アルミニウム、カーボンから選ばれる 2種類 以上の材料を含み、 [38] The filter force includes two or more materials selected from copper, silver, zinc, nickel, aluminum, and carbon,
前記材料が相互に電気的に接続された、  The materials are electrically connected to each other;
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[39] 前記フィルタが、赤外線を吸収する暗色を有する、 [39] The filter has a dark color that absorbs infrared rays,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[40] 前記フィルタが、赤外線吸収材料を含む、 [40] The filter includes an infrared absorbing material,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[41] 前記フィルタは、前記微粒化装置の後段に配置された、 [41] The filter is disposed in a subsequent stage of the atomization device,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[42] 前記フィルタは、前記赤外線発生装置の後段に配置された、 [42] The filter is disposed in a subsequent stage of the infrared generator,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。 The humidification device according to any one of claims 1 to 3.
[43] 前記フィルタは、前記赤外線発生装置の周囲に配置された [43] The filter is disposed around the infrared generator.
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[44] 前記フィルタは、表面に親水性を有する、 [44] The filter has a hydrophilic surface.
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[45] 前記フィルタは、着脱自在に形成された、 [45] The filter is detachably formed.
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[46] 前記フィルタは、洗浄可能に構成された、 [46] The filter is configured to be washable.
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[47] 前記フィルタを回転する回転装置を、さらに備えた、 [47] The apparatus further comprises a rotating device for rotating the filter,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[48] 前記赤外線発生装置の前段に配置され、前記通路に空気を流す送風装置を、さら に備えた、 [48] The apparatus further comprises a blower device that is arranged in front of the infrared ray generator and that allows air to flow through the passage.
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
[49] 前記赤外線発生装置は、間欠的に動作し、 [49] The infrared generator operates intermittently,
前記送風装置は、前記赤外線発生装置が停止した後に停止する、  The air blower stops after the infrared ray generator stops.
請求項 48に記載の加湿装置。  49. A humidifier according to claim 48.
[50] 前記微粒化装置と前記通路と前記赤外線発生装置と前記フィルタとを収納する本体 を、さらに備え、 [50] A main body that houses the atomization device, the passage, the infrared ray generation device, and the filter,
加湿運転停止時に、少なくとも加熱と送風とのいずれかを行い、前記本体内を乾燥 する、  When the humidification operation is stopped, at least either heating or blowing is performed to dry the inside of the main body.
請求項 48に記載の加湿装置。  49. A humidifier according to claim 48.
[51] 水槽と、 [51] Aquarium,
前記水槽に設けられた温度センサと、をさらに備えた、  A temperature sensor provided in the water tank,
請求項 1から請求項 3のいずれか 1項に記載の加湿装置。  The humidification device according to any one of claims 1 to 3.
PCT/JP2006/313215 2005-07-07 2006-07-03 Humidification apparatus WO2007007575A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-198311 2005-07-07
JP2005198311 2005-07-07
JP2005237171A JP4774860B2 (en) 2005-08-18 2005-08-18 Humidifier
JP2005-237171 2005-08-18
JP2005264962A JP2007078222A (en) 2005-09-13 2005-09-13 Humidifier
JP2005-264962 2005-09-13
JP2006137567A JP4725410B2 (en) 2005-07-07 2006-05-17 Humidifier
JP2006-137567 2006-05-17

Publications (1)

Publication Number Publication Date
WO2007007575A1 true WO2007007575A1 (en) 2007-01-18

Family

ID=37636971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313215 WO2007007575A1 (en) 2005-07-07 2006-07-03 Humidification apparatus

Country Status (1)

Country Link
WO (1) WO2007007575A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291483A (en) * 2008-06-06 2009-12-17 Noritz Corp Mist generator and bathroom air-conditioner with the same
CN104633822A (en) * 2015-03-16 2015-05-20 珠海格力电器股份有限公司 Infrared humidifying device and control method thereof
CN106765806A (en) * 2016-12-13 2017-05-31 珠海格力电器股份有限公司 humidifying device, control method and air conditioner
CN106813346A (en) * 2017-04-10 2017-06-09 中山市大毅电器科技有限公司 On add water humidifier
WO2019121025A1 (en) * 2017-12-21 2019-06-27 Shl Medical Ag Spray nozzle chip and a medicament delivery device comprising the same
JP2019120420A (en) * 2017-12-28 2019-07-22 ダイキン工業株式会社 Air conditioner
CN112797532A (en) * 2021-04-15 2021-05-14 湖南京木德机械有限公司 Indoor humidifier for emergency room

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196026U (en) * 1987-06-08 1988-12-16
JPS63198933U (en) * 1987-06-12 1988-12-21
JPH01107032A (en) * 1987-10-19 1989-04-24 Matsushita Seiko Co Ltd Ultrasonic moistening device
JPH02225925A (en) * 1989-02-28 1990-09-07 Matsushita Seiko Co Ltd Humidifier
JPH03107636U (en) * 1990-02-14 1991-11-06
JPH04103936A (en) * 1990-08-20 1992-04-06 Daikin Plant Kk Humidifier for high humidity
JPH0821642A (en) * 1994-07-06 1996-01-23 Toyo Netsu Kogyo Kk Drying-sterilizing device of filter for air conditioning
JPH0823960A (en) * 1994-07-18 1996-01-30 Tabai Espec Corp Device for testing environment
JP2000220873A (en) * 1999-01-29 2000-08-08 Magu Suehiro Kogyo Kk Minus ion manufacture, and minus ion generator using the same, and air cleaner, and air humidifier
JP2002048377A (en) * 2000-08-03 2002-02-15 Mitsubishi Electric Corp Controller for vaporizing humidifier
JP2003322369A (en) * 2002-04-30 2003-11-14 Fukoku Co Ltd Method and apparatus for generating minus ion
JP2005049045A (en) * 2003-07-30 2005-02-24 Zojirushi Corp Humidifier

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196026U (en) * 1987-06-08 1988-12-16
JPS63198933U (en) * 1987-06-12 1988-12-21
JPH01107032A (en) * 1987-10-19 1989-04-24 Matsushita Seiko Co Ltd Ultrasonic moistening device
JPH02225925A (en) * 1989-02-28 1990-09-07 Matsushita Seiko Co Ltd Humidifier
JPH03107636U (en) * 1990-02-14 1991-11-06
JPH04103936A (en) * 1990-08-20 1992-04-06 Daikin Plant Kk Humidifier for high humidity
JPH0821642A (en) * 1994-07-06 1996-01-23 Toyo Netsu Kogyo Kk Drying-sterilizing device of filter for air conditioning
JPH0823960A (en) * 1994-07-18 1996-01-30 Tabai Espec Corp Device for testing environment
JP2000220873A (en) * 1999-01-29 2000-08-08 Magu Suehiro Kogyo Kk Minus ion manufacture, and minus ion generator using the same, and air cleaner, and air humidifier
JP2002048377A (en) * 2000-08-03 2002-02-15 Mitsubishi Electric Corp Controller for vaporizing humidifier
JP2003322369A (en) * 2002-04-30 2003-11-14 Fukoku Co Ltd Method and apparatus for generating minus ion
JP2005049045A (en) * 2003-07-30 2005-02-24 Zojirushi Corp Humidifier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291483A (en) * 2008-06-06 2009-12-17 Noritz Corp Mist generator and bathroom air-conditioner with the same
CN104633822A (en) * 2015-03-16 2015-05-20 珠海格力电器股份有限公司 Infrared humidifying device and control method thereof
CN106765806A (en) * 2016-12-13 2017-05-31 珠海格力电器股份有限公司 humidifying device, control method and air conditioner
CN106813346A (en) * 2017-04-10 2017-06-09 中山市大毅电器科技有限公司 On add water humidifier
WO2019121025A1 (en) * 2017-12-21 2019-06-27 Shl Medical Ag Spray nozzle chip and a medicament delivery device comprising the same
US11254488B2 (en) 2017-12-21 2022-02-22 Shl Medical Ag Spray nozzle chip and a medicament delivery device comprising the same
JP2019120420A (en) * 2017-12-28 2019-07-22 ダイキン工業株式会社 Air conditioner
CN112797532A (en) * 2021-04-15 2021-05-14 湖南京木德机械有限公司 Indoor humidifier for emergency room
CN112797532B (en) * 2021-04-15 2021-08-13 青岛市精神卫生中心(青岛市第七人民医院、青岛市心理咨询中心) Indoor humidifier for emergency room

Similar Documents

Publication Publication Date Title
WO2007007575A1 (en) Humidification apparatus
US7712249B1 (en) Ultrasonic humidifier for repelling insects
JP4774860B2 (en) Humidifier
JPH09119685A (en) Heater type ultrasonic humidifier
KR101389823B1 (en) sterilization and air cleaning function having humidifier
CN110345578A (en) Utilize the air cleaning unit of ultraviolet light
JP6370185B2 (en) Mist generator
EP3900748A1 (en) Device for cleaning and sterilizing air and object surface
JP2014057952A (en) Mist generator
KR101004555B1 (en) Humidifier combined an air cleaner
JP2016528467A (en) Self-cleaning humidification mechanism based on droplet evaporation
JP4725410B2 (en) Humidifier
CN112717439A (en) Volcanic lava fluid diffuser
KR20160038653A (en) Sterilizing humidifier using ultraviolet
JP2005111328A (en) Portable ultrasonic atomizing apparatus
JP6465614B2 (en) Mist generator
JP4923453B2 (en) Humidifier
JP4155487B2 (en) Humidifier with ultrasonic transducer
JP4797629B2 (en) Humidifier
JP2007078222A (en) Humidifier
JP2018183777A (en) Mist generator
JP6968348B2 (en) humidifier
CN102679488A (en) High-enthalpy petrofer
CN202613664U (en) High-enthalpy moisturizing device
JPH08110069A (en) Humidifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780719

Country of ref document: EP

Kind code of ref document: A1