WO2007002808A1 - Anti-nonmelanoma carcinoma compounds, compositions, and methods of use thereof - Google Patents
Anti-nonmelanoma carcinoma compounds, compositions, and methods of use thereof Download PDFInfo
- Publication number
- WO2007002808A1 WO2007002808A1 PCT/US2006/025311 US2006025311W WO2007002808A1 WO 2007002808 A1 WO2007002808 A1 WO 2007002808A1 US 2006025311 W US2006025311 W US 2006025311W WO 2007002808 A1 WO2007002808 A1 WO 2007002808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- mmol
- formula
- substituted
- carbon atoms
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 497
- 239000000203 mixture Substances 0.000 title claims abstract description 197
- 201000009030 Carcinoma Diseases 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title description 62
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 64
- 150000003839 salts Chemical class 0.000 claims abstract description 33
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 30
- 125000006239 protecting group Chemical group 0.000 claims abstract description 26
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 15
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- 125000000304 alkynyl group Chemical group 0.000 claims abstract description 12
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 11
- 125000005842 heteroatom Chemical group 0.000 claims abstract description 10
- 125000004450 alkenylene group Chemical group 0.000 claims abstract description 7
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 7
- 125000004419 alkynylene group Chemical group 0.000 claims abstract description 7
- 210000004027 cell Anatomy 0.000 claims description 127
- -1 /-propyl Chemical group 0.000 claims description 75
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 23
- 208000009621 actinic keratosis Diseases 0.000 claims description 20
- 239000008194 pharmaceutical composition Substances 0.000 claims description 19
- 239000003814 drug Substances 0.000 claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 13
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 13
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 11
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 10
- 239000002674 ointment Substances 0.000 claims description 10
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 10
- 238000011282 treatment Methods 0.000 claims description 10
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 8
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 7
- 230000000699 topical effect Effects 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 4
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 claims description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 8
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims 3
- 210000000270 basal cell Anatomy 0.000 claims 1
- FVIZARNDLVOMSU-UHFFFAOYSA-N ginsenoside K Natural products C1CC(C2(CCC3C(C)(C)C(O)CCC3(C)C2CC2O)C)(C)C2C1C(C)(CCC=C(C)C)OC1OC(CO)C(O)C(O)C1O FVIZARNDLVOMSU-UHFFFAOYSA-N 0.000 claims 1
- 230000001028 anti-proliverative effect Effects 0.000 abstract description 52
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 256
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 186
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 141
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 128
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 128
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 122
- 239000000047 product Substances 0.000 description 100
- 238000006243 chemical reaction Methods 0.000 description 89
- 239000011541 reaction mixture Substances 0.000 description 81
- 239000000243 solution Substances 0.000 description 80
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 76
- 230000002829 reductive effect Effects 0.000 description 76
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 67
- 239000012043 crude product Substances 0.000 description 67
- 239000012267 brine Substances 0.000 description 66
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 66
- 235000019439 ethyl acetate Nutrition 0.000 description 64
- 239000012074 organic phase Substances 0.000 description 63
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 60
- 239000006260 foam Substances 0.000 description 60
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 59
- 238000004679 31P NMR spectroscopy Methods 0.000 description 51
- 239000007832 Na2SO4 Substances 0.000 description 51
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 51
- 229910052938 sodium sulfate Inorganic materials 0.000 description 51
- 235000011152 sodium sulphate Nutrition 0.000 description 51
- 238000005160 1H NMR spectroscopy Methods 0.000 description 50
- 239000000651 prodrug Substances 0.000 description 50
- 229940002612 prodrug Drugs 0.000 description 50
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 48
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 40
- 238000004587 chromatography analysis Methods 0.000 description 38
- 239000000741 silica gel Substances 0.000 description 38
- 229910002027 silica gel Inorganic materials 0.000 description 38
- 208000022361 Human papillomavirus infectious disease Diseases 0.000 description 36
- 239000004480 active ingredient Substances 0.000 description 35
- 238000004440 column chromatography Methods 0.000 description 35
- 238000009472 formulation Methods 0.000 description 35
- 241001465754 Metazoa Species 0.000 description 28
- 230000000694 effects Effects 0.000 description 27
- 238000003556 assay Methods 0.000 description 26
- 239000007787 solid Substances 0.000 description 26
- 229960004592 isopropanol Drugs 0.000 description 24
- 206010041823 squamous cell carcinoma Diseases 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 239000000126 substance Substances 0.000 description 22
- 239000002253 acid Substances 0.000 description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 18
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 18
- 125000000524 functional group Chemical group 0.000 description 17
- 210000002510 keratinocyte Anatomy 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 206010004146 Basal cell carcinoma Diseases 0.000 description 16
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 15
- 210000002950 fibroblast Anatomy 0.000 description 14
- 230000002163 immunogen Effects 0.000 description 14
- 239000007788 liquid Substances 0.000 description 14
- 239000003921 oil Substances 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 14
- 210000003491 skin Anatomy 0.000 description 14
- 230000006907 apoptotic process Effects 0.000 description 13
- 239000000499 gel Substances 0.000 description 13
- 230000035755 proliferation Effects 0.000 description 13
- NZVORGQIEFTOQZ-UHFFFAOYSA-N 9-[2-(phosphonomethoxy)ethyl]guanine Chemical compound N1C(N)=NC(=O)C2=C1N(CCOCP(O)(O)=O)C=N2 NZVORGQIEFTOQZ-UHFFFAOYSA-N 0.000 description 12
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 12
- 229940079593 drug Drugs 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 12
- 239000003981 vehicle Substances 0.000 description 12
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 238000001727 in vivo Methods 0.000 description 11
- 230000003902 lesion Effects 0.000 description 11
- BJLZAAWLLPMZQR-UHFFFAOYSA-N oxo-di(propan-2-yloxy)phosphanium Chemical compound CC(C)O[P+](=O)OC(C)C BJLZAAWLLPMZQR-UHFFFAOYSA-N 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 108090000623 proteins and genes Proteins 0.000 description 11
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000002503 metabolic effect Effects 0.000 description 10
- 239000013641 positive control Substances 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 241000341655 Human papillomavirus type 16 Species 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 230000037396 body weight Effects 0.000 description 9
- ODMDNPRWFGSQHZ-RGMNGODLSA-N butyl (2s)-2-aminopropanoate;hydrochloride Chemical compound Cl.CCCCOC(=O)[C@H](C)N ODMDNPRWFGSQHZ-RGMNGODLSA-N 0.000 description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 239000004615 ingredient Substances 0.000 description 9
- 239000000543 intermediate Substances 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 102000011727 Caspases Human genes 0.000 description 8
- 108010076667 Caspases Proteins 0.000 description 8
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 description 8
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 8
- 230000007062 hydrolysis Effects 0.000 description 8
- 238000006460 hydrolysis reaction Methods 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229920006395 saturated elastomer Polymers 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 7
- 229940059260 amidate Drugs 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- 239000006071 cream Substances 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 6
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- 0 CCCCO*(C(CC)NP(COCCN1C2=NC(N)=IC(NC3CC3)=C2N=C1)(NC(CC)C(OCCC=C)=O)=O)O Chemical compound CCCCO*(C(CC)NP(COCCN1C2=NC(N)=IC(NC3CC3)=C2N=C1)(NC(CC)C(OCCC=C)=O)=O)O 0.000 description 6
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical group C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 6
- 229930182555 Penicillin Natural products 0.000 description 6
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical group C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 6
- 125000003710 aryl alkyl group Chemical group 0.000 description 6
- 150000001721 carbon Chemical group 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 239000002207 metabolite Substances 0.000 description 6
- 229910052757 nitrogen Chemical group 0.000 description 6
- 229940049954 penicillin Drugs 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- YAQKNCSWDMGPOY-JEDNCBNOSA-N propan-2-yl (2s)-2-aminopropanoate;hydrochloride Chemical compound Cl.CC(C)OC(=O)[C@H](C)N YAQKNCSWDMGPOY-JEDNCBNOSA-N 0.000 description 6
- 229960005322 streptomycin Drugs 0.000 description 6
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 6
- XHXFQGAZAVKMFF-UHFFFAOYSA-N 2-(2,6-diaminopurin-9-yl)ethoxymethylphosphonic acid Chemical compound NC1=NC(N)=C2N=CN(CCOCP(O)(O)=O)C2=N1 XHXFQGAZAVKMFF-UHFFFAOYSA-N 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical group CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 150000001413 amino acids Chemical group 0.000 description 5
- 230000001640 apoptogenic effect Effects 0.000 description 5
- 238000003782 apoptosis assay Methods 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- IYYIVELXUANFED-UHFFFAOYSA-N bromo(trimethyl)silane Chemical compound C[Si](C)(C)Br IYYIVELXUANFED-UHFFFAOYSA-N 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 230000032823 cell division Effects 0.000 description 5
- 208000019065 cervical carcinoma Diseases 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- ZRNCXSSLMGCNID-JEDNCBNOSA-N cyclobutyl (2s)-2-aminopropanoate;hydrochloride Chemical compound Cl.C[C@H](N)C(=O)OC1CCC1 ZRNCXSSLMGCNID-JEDNCBNOSA-N 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- FPFQPLFYTKMCHN-PPHPATTJSA-N ethyl (2s)-2-amino-3-phenylpropanoate;hydron;chloride Chemical compound Cl.CCOC(=O)[C@@H](N)CC1=CC=CC=C1 FPFQPLFYTKMCHN-PPHPATTJSA-N 0.000 description 5
- 239000003925 fat Substances 0.000 description 5
- 235000019197 fats Nutrition 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 230000003389 potentiating effect Effects 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- PDHWTDJKKJYOGD-UHFFFAOYSA-N 2-[2-amino-6-(cyclopropylamino)purin-9-yl]ethoxymethylphosphonic acid Chemical compound C=12N=CN(CCOCP(O)(O)=O)C2=NC(N)=NC=1NC1CC1 PDHWTDJKKJYOGD-UHFFFAOYSA-N 0.000 description 4
- IOOMXAQUNPWDLL-UHFFFAOYSA-N 2-[6-(diethylamino)-3-(diethyliminiumyl)-3h-xanthen-9-yl]-5-sulfobenzene-1-sulfonate Chemical compound C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S(O)(=O)=O)C=C1S([O-])(=O)=O IOOMXAQUNPWDLL-UHFFFAOYSA-N 0.000 description 4
- UKMSDKKSWOLCJM-YDALLXLXSA-N 2-methylpropyl (2s)-2-amino-3-phenylpropanoate;hydrochloride Chemical compound Cl.CC(C)COC(=O)[C@@H](N)CC1=CC=CC=C1 UKMSDKKSWOLCJM-YDALLXLXSA-N 0.000 description 4
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 4
- 206010015548 Euthanasia Diseases 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 229960003767 alanine Drugs 0.000 description 4
- 235000004279 alanine Nutrition 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- QKAOIPLOEFZOSK-FJXQXJEOSA-N butyl (2s)-2-aminobutanoate;hydrochloride Chemical compound Cl.CCCCOC(=O)[C@@H](N)CC QKAOIPLOEFZOSK-FJXQXJEOSA-N 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 238000001516 cell proliferation assay Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 210000002615 epidermis Anatomy 0.000 description 4
- JCXLZWMDXJFOOI-WCCKRBBISA-N ethyl (2s)-2-aminopropanoate;hydrochloride Chemical compound Cl.CCOC(=O)[C@H](C)N JCXLZWMDXJFOOI-WCCKRBBISA-N 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000006882 induction of apoptosis Effects 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 230000007794 irritation Effects 0.000 description 4
- 125000005647 linker group Chemical group 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 125000006413 ring segment Chemical group 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000013207 serial dilution Methods 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 229940100615 topical ointment Drugs 0.000 description 4
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 4
- 210000003462 vein Anatomy 0.000 description 4
- 239000003039 volatile agent Substances 0.000 description 4
- 108090000672 Annexin A5 Proteins 0.000 description 3
- 102000004121 Annexin A5 Human genes 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical group C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- PRXGMEURJXGKOP-UHFFFAOYSA-N NP(N)=O Chemical class NP(N)=O PRXGMEURJXGKOP-UHFFFAOYSA-N 0.000 description 3
- 238000011887 Necropsy Methods 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 3
- 108090000631 Trypsin Proteins 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 150000001412 amines Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- XHOFZUILKVVMBK-YDALLXLXSA-N butyl (2s)-2-amino-3-phenylpropanoate;hydrochloride Chemical compound Cl.CCCCOC(=O)[C@@H](N)CC1=CC=CC=C1 XHOFZUILKVVMBK-YDALLXLXSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 210000003679 cervix uteri Anatomy 0.000 description 3
- 238000001311 chemical methods and process Methods 0.000 description 3
- 229960001338 colchicine Drugs 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000009260 cross reactivity Effects 0.000 description 3
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- 230000005522 programmed cell death Effects 0.000 description 3
- 230000002062 proliferating effect Effects 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 230000036556 skin irritation Effects 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 3
- 229940042129 topical gel Drugs 0.000 description 3
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 2
- KIPSRYDSZQRPEA-UHFFFAOYSA-N 2,2,2-trifluoroethanamine Chemical compound NCC(F)(F)F KIPSRYDSZQRPEA-UHFFFAOYSA-N 0.000 description 2
- 125000004398 2-methyl-2-butyl group Chemical group CC(C)(CC)* 0.000 description 2
- 125000004918 2-methyl-2-pentyl group Chemical group CC(C)(CCC)* 0.000 description 2
- 125000004922 2-methyl-3-pentyl group Chemical group CC(C)C(CC)* 0.000 description 2
- 125000004917 3-methyl-2-butyl group Chemical group CC(C(C)*)C 0.000 description 2
- 125000004920 4-methyl-2-pentyl group Chemical group CC(CC(C)*)C 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102000003952 Caspase 3 Human genes 0.000 description 2
- 108090000397 Caspase 3 Proteins 0.000 description 2
- VWFCHDSQECPREK-LURJTMIESA-N Cidofovir Chemical compound NC=1C=CN(C[C@@H](CO)OCP(O)(O)=O)C(=O)N=1 VWFCHDSQECPREK-LURJTMIESA-N 0.000 description 2
- RDVLKFWQJDSWBB-UHFFFAOYSA-N Cl.OP(O)=O Chemical compound Cl.OP(O)=O RDVLKFWQJDSWBB-UHFFFAOYSA-N 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- 229940123014 DNA polymerase inhibitor Drugs 0.000 description 2
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 102400001368 Epidermal growth factor Human genes 0.000 description 2
- 101800003838 Epidermal growth factor Proteins 0.000 description 2
- 206010015150 Erythema Diseases 0.000 description 2
- 108090000371 Esterases Proteins 0.000 description 2
- 206010015719 Exsanguination Diseases 0.000 description 2
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N Guanine Natural products O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 108010093096 Immobilized Enzymes Proteins 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- BVMWIXWOIGJRGE-UHFFFAOYSA-N NP(O)=O Chemical compound NP(O)=O BVMWIXWOIGJRGE-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical class C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical group C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical group C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- QWCKQJZIFLGMSD-UHFFFAOYSA-N alpha-aminobutyric acid Chemical compound CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 229940035676 analgesics Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000000730 antalgic agent Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical class C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000001754 anti-pyretic effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000002221 antipyretic Substances 0.000 description 2
- 229940125716 antipyretic agent Drugs 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical compound C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 description 2
- 125000004069 aziridinyl group Chemical group 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- 125000001743 benzylic group Chemical group 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229960001631 carbomer Drugs 0.000 description 2
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- QAAIVZIJMCEVEK-UHFFFAOYSA-N carboxyoxymethyl 2-methylpropanoate Chemical compound CC(C)C(=O)OCOC(O)=O QAAIVZIJMCEVEK-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 108091092356 cellular DNA Proteins 0.000 description 2
- 229960000541 cetyl alcohol Drugs 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 150000005829 chemical entities Chemical class 0.000 description 2
- 229960000724 cidofovir Drugs 0.000 description 2
- 239000012084 conversion product Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 239000006184 cosolvent Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 231100000409 cytocidal Toxicity 0.000 description 2
- 230000000445 cytocidal effect Effects 0.000 description 2
- 239000000824 cytostatic agent Substances 0.000 description 2
- 230000001085 cytostatic effect Effects 0.000 description 2
- 230000036576 dermal application Effects 0.000 description 2
- 210000004207 dermis Anatomy 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 2
- IPZJQDSFZGZEOY-UHFFFAOYSA-N dimethylmethylene Chemical compound C[C]C IPZJQDSFZGZEOY-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical class C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- CTSPAMFJBXKSOY-UHFFFAOYSA-N ellipticine Chemical compound N1=CC=C2C(C)=C(NC=3C4=CC=CC=3)C4=C(C)C2=C1 CTSPAMFJBXKSOY-UHFFFAOYSA-N 0.000 description 2
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 2
- 229940116977 epidermal growth factor Drugs 0.000 description 2
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 2
- 231100000321 erythema Toxicity 0.000 description 2
- SWNBPYRQCHSZSE-JEDNCBNOSA-N ethyl (2s)-2-aminobutanoate;hydrochloride Chemical compound Cl.CCOC(=O)[C@@H](N)CC SWNBPYRQCHSZSE-JEDNCBNOSA-N 0.000 description 2
- 239000003172 expectorant agent Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 239000001087 glyceryl triacetate Substances 0.000 description 2
- 235000013773 glyceryl triacetate Nutrition 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- WRRQZXPKOYFVLZ-QRPNPIFTSA-N hexyl (2s)-2-aminopropanoate;hydrochloride Chemical compound Cl.CCCCCCOC(=O)[C@H](C)N WRRQZXPKOYFVLZ-QRPNPIFTSA-N 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 231100000021 irritant Toxicity 0.000 description 2
- 239000002085 irritant Substances 0.000 description 2
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 2
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 2
- 125000000842 isoxazolyl group Chemical group 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- IYUKFAFDFHZKPI-DFWYDOINSA-N methyl (2s)-2-aminopropanoate;hydrochloride Chemical compound Cl.COC(=O)[C@H](C)N IYUKFAFDFHZKPI-DFWYDOINSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 125000001620 monocyclic carbocycle group Chemical group 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- BMMXETSEPWNPEM-MERQFXBCSA-N octyl (2s)-2-aminobutanoate;hydrochloride Chemical compound Cl.CCCCCCCCOC(=O)[C@@H](N)CC BMMXETSEPWNPEM-MERQFXBCSA-N 0.000 description 2
- 239000003883 ointment base Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 239000003961 penetration enhancing agent Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000001817 pituitary effect Effects 0.000 description 2
- 229940068585 podofilox Drugs 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- JKANAVGODYYCQF-UHFFFAOYSA-N prop-2-yn-1-amine Chemical group NCC#C JKANAVGODYYCQF-UHFFFAOYSA-N 0.000 description 2
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 2
- OUVGTEGRZQSNTH-JEDNCBNOSA-N propyl (2s)-2-aminopropanoate;hydrochloride Chemical compound Cl.CCCOC(=O)[C@H](C)N OUVGTEGRZQSNTH-JEDNCBNOSA-N 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 201000000849 skin cancer Diseases 0.000 description 2
- 231100000130 skin irritation / corrosion testing Toxicity 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 239000012312 sodium hydride Substances 0.000 description 2
- 229910000104 sodium hydride Inorganic materials 0.000 description 2
- 238000007447 staining method Methods 0.000 description 2
- 239000003351 stiffener Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- 125000003507 tetrahydrothiofenyl group Chemical group 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- 125000004149 thio group Chemical group *S* 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 229960002622 triacetin Drugs 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 238000010626 work up procedure Methods 0.000 description 2
- AIFRHYZBTHREPW-UHFFFAOYSA-N β-carboline Chemical compound N1=CC=C2C3=CC=CC=C3NC2=C1 AIFRHYZBTHREPW-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- KJTPWUVVLPCPJD-AUWJEWJLSA-N (2z)-7-amino-2-[(4-hydroxy-3,5-dimethylphenyl)methylidene]-5,6-dimethoxy-3h-inden-1-one Chemical compound O=C1C=2C(N)=C(OC)C(OC)=CC=2C\C1=C\C1=CC(C)=C(O)C(C)=C1 KJTPWUVVLPCPJD-AUWJEWJLSA-N 0.000 description 1
- OMJKFYKNWZZKTK-POHAHGRESA-N (5z)-5-(dimethylaminohydrazinylidene)imidazole-4-carboxamide Chemical compound CN(C)N\N=C1/N=CN=C1C(N)=O OMJKFYKNWZZKTK-POHAHGRESA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000006736 (C6-C20) aryl group Chemical group 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- UBCHPRBFMUDMNC-UHFFFAOYSA-N 1-(1-adamantyl)ethanamine Chemical compound C1C(C2)CC3CC2CC1(C(N)C)C3 UBCHPRBFMUDMNC-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- 125000001462 1-pyrrolyl group Chemical group [*]N1C([H])=C([H])C([H])=C1[H] 0.000 description 1
- LGEZTMRIZWCDLW-UHFFFAOYSA-N 14-methylpentadecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC(C)C LGEZTMRIZWCDLW-UHFFFAOYSA-N 0.000 description 1
- KEQTWHPMSVAFDA-UHFFFAOYSA-N 2,3-dihydro-1h-pyrazole Chemical group C1NNC=C1 KEQTWHPMSVAFDA-UHFFFAOYSA-N 0.000 description 1
- FFMBYMANYCDCMK-UHFFFAOYSA-N 2,5-dihydro-1h-imidazole Chemical group C1NCN=C1 FFMBYMANYCDCMK-UHFFFAOYSA-N 0.000 description 1
- WIQKIFHQKGWZBQ-UHFFFAOYSA-N 2-(2-amino-6-oxo-3h-purin-9-yl)ethoxymethyl-[hydroxy(phosphonooxy)phosphoryl]oxyphosphinic acid Chemical compound N1C(N)=NC(=O)C2=C1N(CCOCP(O)(=O)OP(O)(=O)OP(O)(O)=O)C=N2 WIQKIFHQKGWZBQ-UHFFFAOYSA-N 0.000 description 1
- QEVGZEDELICMKH-UHFFFAOYSA-L 2-(carboxylatomethoxy)acetate Chemical compound [O-]C(=O)COCC([O-])=O QEVGZEDELICMKH-UHFFFAOYSA-L 0.000 description 1
- PAHCSXMDRKCMGY-UHFFFAOYSA-N 2-(chloromethoxy)ethyl acetate Chemical compound CC(=O)OCCOCCl PAHCSXMDRKCMGY-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- SCVJRXQHFJXZFZ-KVQBGUIXSA-N 2-amino-9-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-3h-purine-6-thione Chemical compound C1=2NC(N)=NC(=S)C=2N=CN1[C@H]1C[C@H](O)[C@@H](CO)O1 SCVJRXQHFJXZFZ-KVQBGUIXSA-N 0.000 description 1
- SFAAOBGYWOUHLU-UHFFFAOYSA-N 2-ethylhexyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(CC)CCCC SFAAOBGYWOUHLU-UHFFFAOYSA-N 0.000 description 1
- ASUDFOJKTJLAIK-UHFFFAOYSA-N 2-methoxyethanamine Chemical compound COCCN ASUDFOJKTJLAIK-UHFFFAOYSA-N 0.000 description 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical group C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 description 1
- 125000004919 3-methyl-2-pentyl group Chemical group CC(C(C)*)CC 0.000 description 1
- 125000004921 3-methyl-3-pentyl group Chemical group CC(CC)(CC)* 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- JVQIKJMSUIMUDI-UHFFFAOYSA-N 3-pyrroline Chemical group C1NCC=C1 JVQIKJMSUIMUDI-UHFFFAOYSA-N 0.000 description 1
- MCGBIXXDQFWVDW-UHFFFAOYSA-N 4,5-dihydro-1h-pyrazole Chemical group C1CC=NN1 MCGBIXXDQFWVDW-UHFFFAOYSA-N 0.000 description 1
- BFWYZZPDZZGSLJ-UHFFFAOYSA-N 4-(aminomethyl)aniline Chemical compound NCC1=CC=C(N)C=C1 BFWYZZPDZZGSLJ-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- 125000005986 4-piperidonyl group Chemical group 0.000 description 1
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- KDDQRKBRJSGMQE-UHFFFAOYSA-N 4-thiazolyl Chemical group [C]1=CSC=N1 KDDQRKBRJSGMQE-UHFFFAOYSA-N 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- 125000004938 5-pyridyl group Chemical group N1=CC=CC(=C1)* 0.000 description 1
- CWDWFSXUQODZGW-UHFFFAOYSA-N 5-thiazolyl Chemical group [C]1=CN=CS1 CWDWFSXUQODZGW-UHFFFAOYSA-N 0.000 description 1
- ZKBQDFAWXLTYKS-UHFFFAOYSA-N 6-Chloro-1H-purine Chemical compound ClC1=NC=NC2=C1NC=N2 ZKBQDFAWXLTYKS-UHFFFAOYSA-N 0.000 description 1
- 125000004939 6-pyridyl group Chemical group N1=CC=CC=C1* 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108090000531 Amidohydrolases Proteins 0.000 description 1
- 102000004092 Amidohydrolases Human genes 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 102000000412 Annexin Human genes 0.000 description 1
- 108050008874 Annexin Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 239000004358 Butane-1, 3-diol Substances 0.000 description 1
- DJBWYWDKHVKANE-UHFFFAOYSA-N CC(C(O)=O)NN(C)C Chemical compound CC(C(O)=O)NN(C)C DJBWYWDKHVKANE-UHFFFAOYSA-N 0.000 description 1
- RYFMTLJZLXFKQD-UHFFFAOYSA-N CC(C)COC(C(Cc1ccccc1)NP(COCC[n]1c2nc(N)cc(NCC=C)c2nc1)(NC(Cc1ccccc1)C(OCC(C)C)=O)=O)=O Chemical compound CC(C)COC(C(Cc1ccccc1)NP(COCC[n]1c2nc(N)cc(NCC=C)c2nc1)(NC(Cc1ccccc1)C(OCC(C)C)=O)=O)=O RYFMTLJZLXFKQD-UHFFFAOYSA-N 0.000 description 1
- YPEMFKHBIAOSGN-UHFFFAOYSA-N CC(C)OP(COCC[n]1c(nc(N)nc2NCC=C)c2nc1)(OC(C)C)=O Chemical compound CC(C)OP(COCC[n]1c(nc(N)nc2NCC=C)c2nc1)(OC(C)C)=O YPEMFKHBIAOSGN-UHFFFAOYSA-N 0.000 description 1
- IUVCZSIDKZOABC-UHFFFAOYSA-N CCCCOC(C(CC)NP(COCC[n]1c2nc(N)nc(NC3CC3)c2nc1)(NC(CC)C(OCCCC)=O)=O)=O Chemical compound CCCCOC(C(CC)NP(COCC[n]1c2nc(N)nc(NC3CC3)c2nc1)(NC(CC)C(OCCCC)=O)=O)=O IUVCZSIDKZOABC-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102000003914 Cholinesterases Human genes 0.000 description 1
- 108090000322 Cholinesterases Proteins 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- HTJDQJBWANPRPF-UHFFFAOYSA-N Cyclopropylamine Chemical compound NC1CC1 HTJDQJBWANPRPF-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229940127399 DNA Polymerase Inhibitors Drugs 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- ZIXGXMMUKPLXBB-UHFFFAOYSA-N Guatambuinine Natural products N1C2=CC=CC=C2C2=C1C(C)=C1C=CN=C(C)C1=C2 ZIXGXMMUKPLXBB-UHFFFAOYSA-N 0.000 description 1
- 229940124686 HPV inhibitor Drugs 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 101001093139 Homo sapiens MAU2 chromatid cohesion factor homolog Proteins 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical group C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102100036309 MAU2 chromatid cohesion factor homolog Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 238000003820 Medium-pressure liquid chromatography Methods 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- MJYOCMVUBKQQJZ-UHFFFAOYSA-N N(CCO)CCO.C1(CCCCCCC1)N Chemical compound N(CCO)CCO.C1(CCCCCCC1)N MJYOCMVUBKQQJZ-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- HCELUSUERLIHAD-UHFFFAOYSA-N NNC(Cc1ccccc1)C(ON)=O Chemical compound NNC(Cc1ccccc1)C(ON)=O HCELUSUERLIHAD-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 229910004749 OS(O)2 Inorganic materials 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium on carbon Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 208000009608 Papillomavirus Infections Diseases 0.000 description 1
- 102000015731 Peptide Hormones Human genes 0.000 description 1
- 108010038988 Peptide Hormones Proteins 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical compound NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 101100055332 Pseudomonas oleovorans alkN gene Proteins 0.000 description 1
- KDCGOANMDULRCW-UHFFFAOYSA-N Purine Natural products N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 1
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Natural products C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 1
- SUYXJDLXGFPMCQ-INIZCTEOSA-N SJ000287331 Natural products CC1=c2cnccc2=C(C)C2=Nc3ccccc3[C@H]12 SUYXJDLXGFPMCQ-INIZCTEOSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 208000000260 Warts Diseases 0.000 description 1
- IYUKFAFDFHZKPI-AENDTGMFSA-N [(2r)-1-methoxy-1-oxopropan-2-yl]azanium;chloride Chemical compound Cl.COC(=O)[C@@H](C)N IYUKFAFDFHZKPI-AENDTGMFSA-N 0.000 description 1
- WIQIWPPQGWGVHD-JEDNCBNOSA-N [(2s)-1-[(2-methylpropan-2-yl)oxy]-1-oxopropan-2-yl]azanium;chloride Chemical compound Cl.C[C@H](N)C(=O)OC(C)(C)C WIQIWPPQGWGVHD-JEDNCBNOSA-N 0.000 description 1
- KPCZJLGGXRGYIE-UHFFFAOYSA-N [C]1=CC=CN=C1 Chemical group [C]1=CC=CN=C1 KPCZJLGGXRGYIE-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000005042 acyloxymethyl group Chemical group 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229940024546 aluminum hydroxide gel Drugs 0.000 description 1
- SMYKVLBUSSNXMV-UHFFFAOYSA-K aluminum;trihydroxide;hydrate Chemical compound O.[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-K 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- SMWDFEZZVXVKRB-UHFFFAOYSA-N anhydrous quinoline Natural products N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- NOFOAYPPHIUXJR-APNQCZIXSA-N aphidicolin Chemical compound C1[C@@]23[C@@]4(C)CC[C@@H](O)[C@@](C)(CO)[C@@H]4CC[C@H]3C[C@H]1[C@](CO)(O)CC2 NOFOAYPPHIUXJR-APNQCZIXSA-N 0.000 description 1
- SEKZNWAQALMJNH-YZUCACDQSA-N aphidicolin Natural products C[C@]1(CO)CC[C@]23C[C@H]1C[C@@H]2CC[C@H]4[C@](C)(CO)[C@H](O)CC[C@]34C SEKZNWAQALMJNH-YZUCACDQSA-N 0.000 description 1
- 230000005775 apoptotic pathway Effects 0.000 description 1
- 239000013011 aqueous formulation Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 150000007860 aryl ester derivatives Chemical class 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 125000004931 azocinyl group Chemical group N1=C(C=CC=CC=C1)* 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000003373 basosquamous carcinoma Diseases 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000004603 benzisoxazolyl group Chemical group O1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000004935 benzoxazolinyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 239000004305 biphenyl Chemical class 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- HRQGCQVOJVTVLU-UHFFFAOYSA-N bis(chloromethyl) ether Chemical compound ClCOCCl HRQGCQVOJVTVLU-UHFFFAOYSA-N 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- FGNFSLAGDCBRDW-UHFFFAOYSA-N butan-1-amine;n-methylethanamine;n-methylmethanamine Chemical compound CNC.CCNC.CCCCN FGNFSLAGDCBRDW-UHFFFAOYSA-N 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical compound NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000006243 carbonyl protecting group Chemical group 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 229940082500 cetostearyl alcohol Drugs 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- WBLIXGSTEMXDSM-UHFFFAOYSA-N chloromethane Chemical compound Cl[CH2] WBLIXGSTEMXDSM-UHFFFAOYSA-N 0.000 description 1
- 125000003016 chromanyl group Chemical group O1C(CCC2=CC=CC=C12)* 0.000 description 1
- 125000004230 chromenyl group Chemical group O1C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229940088030 condylox Drugs 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 238000000315 cryotherapy Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- RACTWZDKLMVBBI-YDALLXLXSA-N cyclobutyl (2s)-2-amino-3-phenylpropanoate;hydrochloride Chemical compound Cl.C([C@H](N)C(=O)OC1CCC1)C1=CC=CC=C1 RACTWZDKLMVBBI-YDALLXLXSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- QGLPWWNULTZBHA-RGMNGODLSA-N cyclopentyl (2s)-2-aminopropanoate;hydrochloride Chemical compound Cl.C[C@H](N)C(=O)OC1CCCC1 QGLPWWNULTZBHA-RGMNGODLSA-N 0.000 description 1
- LYMLRLCBRAJZPL-UHFFFAOYSA-N cyclopropanamine;cyclopropylmethanamine Chemical compound NC1CC1.NCC1CC1 LYMLRLCBRAJZPL-UHFFFAOYSA-N 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 125000004856 decahydroquinolinyl group Chemical group N1(CCCC2CCCCC12)* 0.000 description 1
- SASYSVUEVMOWPL-NXVVXOECSA-N decyl oleate Chemical compound CCCCCCCCCCOC(=O)CCCCCCC\C=C/CCCCCCCC SASYSVUEVMOWPL-NXVVXOECSA-N 0.000 description 1
- 238000007257 deesterification reaction Methods 0.000 description 1
- 231100000223 dermal penetration Toxicity 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical group 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- QLBHNVFOQLIYTH-UHFFFAOYSA-L dipotassium;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [K+].[K+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O QLBHNVFOQLIYTH-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000012137 double-staining Methods 0.000 description 1
- ZWAOHEXOSAUJHY-ZIYNGMLESA-N doxifluridine Chemical compound O[C@@H]1[C@H](O)[C@@H](C)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ZWAOHEXOSAUJHY-ZIYNGMLESA-N 0.000 description 1
- 229950005454 doxifluridine Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000008387 emulsifying waxe Substances 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003419 expectorant effect Effects 0.000 description 1
- 229940066493 expectorants Drugs 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- IVSXFFJGASXYCL-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=NC=N[C]21 IVSXFFJGASXYCL-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- ALBYIUDWACNRRB-UHFFFAOYSA-N hexanamide Chemical compound CCCCCC(N)=O ALBYIUDWACNRRB-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000008309 hydrophilic cream Substances 0.000 description 1
- DOUHZFSGSXMPIE-UHFFFAOYSA-N hydroxidooxidosulfur(.) Chemical compound [O]SO DOUHZFSGSXMPIE-UHFFFAOYSA-N 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- OBOQHTIMTMKUGY-UHFFFAOYSA-N hydroxymethyl propan-2-yl carbonate Chemical compound CC(C)OC(=O)OCO OBOQHTIMTMKUGY-UHFFFAOYSA-N 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical group C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Chemical group CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Chemical group C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 125000004926 indolenyl group Chemical group 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 208000037797 influenza A Diseases 0.000 description 1
- 208000037798 influenza B Diseases 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000012500 ion exchange media Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000004936 isatinoyl group Chemical group N1(C(=O)C(=O)C2=CC=CC=C12)C(=O)* 0.000 description 1
- AWJUIBRHMBBTKR-UHFFFAOYSA-N iso-quinoline Natural products C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229940078545 isocetyl stearate Drugs 0.000 description 1
- 125000003384 isochromanyl group Chemical group C1(OCCC2=CC=CC=C12)* 0.000 description 1
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical group C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 description 1
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- ULYZAYCEDJDHCC-UHFFFAOYSA-N isopropyl chloride Chemical compound CC(C)Cl ULYZAYCEDJDHCC-UHFFFAOYSA-N 0.000 description 1
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical group C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 238000003819 low-pressure liquid chromatography Methods 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- LGRLWUINFJPLSH-UHFFFAOYSA-N methanide Chemical compound [CH3-] LGRLWUINFJPLSH-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 231100000067 mild irritant Toxicity 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 230000000510 mucolytic effect Effects 0.000 description 1
- 229940066491 mucolytics Drugs 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- ZEVDRJUYRNUCDH-UHFFFAOYSA-N n-methyl-1-phenylmethanamine;phenylmethanamine Chemical compound NCC1=CC=CC=C1.CNCC1=CC=CC=C1 ZEVDRJUYRNUCDH-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000017095 negative regulation of cell growth Effects 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000004930 octahydroisoquinolinyl group Chemical group C1(NCCC2CCCC=C12)* 0.000 description 1
- ZYIFDYRHXMFYPP-PPHPATTJSA-N octyl (2s)-2-aminopropanoate;hydrochloride Chemical compound Cl.CCCCCCCCOC(=O)[C@H](C)N ZYIFDYRHXMFYPP-PPHPATTJSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004095 oxindolyl group Chemical group N1(C(CC2=CC=CC=C12)=O)* 0.000 description 1
- 125000005489 p-toluenesulfonic acid group Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- NXJCBFBQEVOTOW-UHFFFAOYSA-L palladium(2+);dihydroxide Chemical compound O[Pd]O NXJCBFBQEVOTOW-UHFFFAOYSA-L 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 1
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 1
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 125000004932 phenoxathinyl group Chemical group 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 102000036213 phospholipid binding proteins Human genes 0.000 description 1
- 108091011000 phospholipid binding proteins Proteins 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- FUWGSUOSJRCEIV-UHFFFAOYSA-N phosphonothioic O,O-acid Chemical group OP(O)=S FUWGSUOSJRCEIV-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 125000002743 phosphorus functional group Chemical group 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 125000004307 pyrazin-2-yl group Chemical group [H]C1=C([H])N=C(*)C([H])=N1 0.000 description 1
- 125000004944 pyrazin-3-yl group Chemical group [H]C1=C([H])N=C(*)C([H])=N1 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical group C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- 125000002755 pyrazolinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002206 pyridazin-3-yl group Chemical group [H]C1=C([H])C([H])=C(*)N=N1 0.000 description 1
- 125000004940 pyridazin-4-yl group Chemical group N1=NC=C(C=C1)* 0.000 description 1
- 125000004941 pyridazin-5-yl group Chemical group N1=NC=CC(=C1)* 0.000 description 1
- 125000004942 pyridazin-6-yl group Chemical group N1=NC=CC=C1* 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000246 pyrimidin-2-yl group Chemical group [H]C1=NC(*)=NC([H])=C1[H] 0.000 description 1
- 125000004527 pyrimidin-4-yl group Chemical group N1=CN=C(C=C1)* 0.000 description 1
- 125000004528 pyrimidin-5-yl group Chemical group N1=CN=CC(=C1)* 0.000 description 1
- 125000004943 pyrimidin-6-yl group Chemical group N1=CN=CC=C1* 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229960000329 ribavirin Drugs 0.000 description 1
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 1
- 229960000888 rimantadine Drugs 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 201000008261 skin carcinoma Diseases 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 201000010153 skin papilloma Diseases 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000011044 succinic acid Nutrition 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid group Chemical class S(N)(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000003039 tetrahydroisoquinolinyl group Chemical group C1(NCCC2=CC=CC=C12)* 0.000 description 1
- 125000005942 tetrahydropyridyl group Chemical group 0.000 description 1
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 1
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000004927 thianaphthalenyl group Chemical group S1C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000004627 thianthrenyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3SC12)* 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000003553 thiiranes Chemical class 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 229940100611 topical cream Drugs 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 231100000440 toxicity profile Toxicity 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 1
- SJHCUXCOGGKFAI-UHFFFAOYSA-N tripropan-2-yl phosphite Chemical compound CC(C)OP(OC(C)C)OC(C)C SJHCUXCOGGKFAI-UHFFFAOYSA-N 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- 125000004933 β-carbolinyl group Chemical group C1(=NC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6561—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
- C07F9/65616—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings containing the ring system having three or more than three double bonds between ring members or between ring members and non-ring members, e.g. purine or analogs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to compounds and compositions and methods of use thereof, useful for treating non-melanoma skin cancers, in particular basal cell carcinoma, squamous cell carcinoma and actinic keratosis.
- BCC basal cell carcinoma
- SCC squamous cell carcinoma
- AK Actinic keratosis
- AK, BCC, and SCC are characterized by abnormal proliferation of cells in skin epidermis. Such cells lose normal cell cycle control and show altered gene expression, because of mutations in cell cycle regulating gene(s) caused by UV- induced DNA damages after excessive exposure to sunlight.
- AK and early stages of BCC and SCC can be treated by topical cytotoxic agent 5-f luorouracil cream or topical immune modulatory agent imiquimod.
- cryotherapy or various methods of minor surgery is used to remove the proliferative lesion from the skin.
- Y 1A and Y ⁇ B are independently Y 1 ;
- R X1 and W 2 are independently R x ;
- R x is independently R 1 , R 2 , R 4 , W 3 , or a protecting group
- R 1 is independently -H or alkyl of 1 to 18 carbon atoms
- R 2 is independently R 3 or R 4 wherein each R 4 is independently substituted with 0 to 3 R 3 groups or taken together at a carbon atom, two R 2 groups form a ring of 3 to 8 carbons and the ring may be substituted with 0 to 3 R 3 groups;
- R 3 is R 3a , R 3b , R 3c or R 3d , provided that when R 3 is bound to a heteroatom, then R 3 is R 3c or R 3d ;
- R 3a is -H, -F, -Cl, -Br, -I, -CFs, -CN 7 Ns, -NCX or -OR 4 ;
- R 3c is -R 4 , -N(R 4 )(R 4 ), -SR 4 , -S(O)R 4 , -S(O) 2 R 4 , -S(O)(OR 4 ), -S(O) 2 (OR 4 ), -OC(R 3b )R 4 , -OC(R 3b )OR 4 , -OC(R 3b )(N(R 4 )(R 4 )), -SC(R 3b )R 4 , -SC(R Sb )OR 4 , -SC(R 3b )(N(R 4 )(R 4 )), -N(R 4 )C(R 3b )R 4 , -N(R 4 )C(R 3b )OR 4 , -N(R 4 )C(R 3b )(N(R 4 )(R 4 )), W 3 or -R 5 W 3 ; R 3d is -C(
- R 4 is -H, or an alkyl of 1 to 18 carbon atoms, alkenyl of 2 to 18 carbon atoms, or alkynyl of 2 to 18 carbon atoms;
- R 5 is alkylene of 1 to 18 carbon atoms, alkenylene of 2 to 18 carbon atoms, or alkynylene of 2 to 18 carbon atoms;
- W 3 is W 4 or W 5 ;
- W 4 is R 6 , -C(R 3b )R 6 , -C(R 3b )W 5 , -SOrf, or -SO M2 W 5 , wherein R 6 is R 4 wherein each R 4 is substituted with O to 3 R 3 groups; W 5 is carbocycle or heterocycle wherein W 5 is independently substituted with 0 to 3 R 2 groups; and
- M2 is 0, 1 or 2; and pharmaceutically acceptable salts thereof.
- the present invention provides a compound of the formula,
- A is S ⁇ > ' ⁇ > or ' ⁇ ⁇
- Y 1A and Y 1B are independently Y 1 ;
- R X1 and R X2 are independently R x ;
- R x is independently R 1 , R 2 , R 4 , W 3 , or a protecting group;
- R 1 is independently -H or alkyl of 1 to 18 carbon atoms;
- R 2 is independently R 3 or R 4 wherein each R 4 is independently substituted with 0 to 3 R 3 groups or taken together at a carbon atom, two R 2 groups form a ring of 3 to 8 carbons and the ring may be substituted with 0 to 3 R 3 groups;
- R 3 is R 3a , R 3b , R 3c or R 3d , provided that when R 3 is bound to a heteroatom, then R 3 is R 3c or R 3d ;
- R 3a is -H, -F 7 -Cl, -Br, -I, -CFa, -CN 7 Ns, -NQ 2 , or -OR 4 ;
- R 3c is -R 4 , -N(R 4 XR 4 ), -SR 4 , -S(O)R 4 , -S(O) 2 R 4 , -S(O)(OR 4 ), -S(O) 2 (OR 4 ), -OC(R 3b )R 4 , -OC(R 3b )OR 4 , -OC(R 3b )(N(R 4 )(R 4 )), -SC(R 3b )R 4 , -SC(R 3b )OR 4 , -SC(R 3b )(N(R 4 )(R 4 )), -N(R 4 )C(R 3b )R 4 , -N(R 4 )C(R 3b )OR 4 , -N(R 4 )C(R 3b )(N(R 4 )(R 4 )), W 3 or -R 5 W 3 ; R 3d is -C(R
- R 4 is -H, or an alkyl of 1 to 18 carbon atoms, alkenyl of 2 to 18 carbon atoms, or alkynyl of 2 to 18 carbon atoms;
- R 5 is alkylene of 1 to 18 carbon atoms, alkenylene of 2 to 18 carbon atoms, or alkynylene of 2 to 18 carbon atoms;
- W 3 is W 4 or W 5 ;
- W 4 is R 6 , -C(R 3b )R 6 , -C(R 3b )W 5 , -SO M2 R 6 , or -SO M2 W 5 , wherein R 6 is R 4 wherein each R 4 is substituted with 0 to 3 R 3 groups;
- W 5 is carbocycle or heterocycle wherein W 5 is independently substituted with 0 to 3 R 2 groups; and M2 is 0, 1 or 2; and pharmaceutically acceptable salts thereof.
- An embodiment of the present invention provides a compound of Formula I,
- Y 1A and Y 1B are independently Y 1 ;
- R X1 and R* 2 are independently R x ;
- R x is independently R 1 , R 2 , R 4 , W 3 , or a protecting group
- R 1 is independently -H or alkyl of 1 to 18 carbon atoms
- R 2 is independently R 3 or R 4 wherein each R 4 is independently substituted with 0 to 3 R 3 groups or taken together at a carbon atom, two R 2 groups form a ring of 3 to 8 carbons and the ring may be substituted with 0 to 3 R 3 groups;
- R 3 is R 3a , R 3b , R 3c or R 3d , provided that when R 3 is bound to a heteroatom, then R 3 is R 3c or R 3d ;
- R 3a is -H, -F, -Cl, -Br, -I, -CF 3 , -CN, N 3 , -NO 2 , or -OR 4 ;
- R 3 C is _R 4 7 -N(R 4 )(R 4 ), -SR 4 , -S(O)R 4 , -S(O) 2 R 4 , -S(O)(OR 4 ), -S(O) 2 (OR 4 ), -OC(R 3b )R 4 , -OC(R 3b )OR 4 , -OC(R 3b )(N(R 4 )(R 4 )), -SC(R 3b )R 4 , -SC(R 3b )OR 4 , -SC(R 3b )(N(R 4 )(R 4 )), -N(R 4 )C(R 3b )R 4 , -N(R 4 )C(R 3b )OR 4 , -N(R 4 )C(R 3b )(N(R 4 )(R 4 )), W 3 or -R 5 W 3 ;
- R 3d is -C(R 3b )R 4 , -C(R 3b )OR 4 , -C(R 3b )W 3 , -C(R 3b )OW 3 or -C(R 3b )(N(R 4 )(R 4 ));
- R 4 is -H, or an alkyl of 1 to 18 carbon atoms, alkenyl of 2 to 18 carbon atoms, or alkynyl of 2 to 18 carbon atoms;
- R 5 is alkylene of 1 to 18 carbon atoms, alkenylene of 2 to 18 carbon atoms, or alkynylene of 2 to 18 carbon atoms;
- W 3 is W 4 or W 5 ;
- W 4 is R 6 , -C(R 3b )R 6 , -C(R 31 OW 5 , -SO M2 R 6 / or -SO M2 W 5 , wherein R 6 is R 4 wherein each R 4 is substituted with 0 to 3 R 3 groups;
- W 5 is carbocycle or heterocycle wherein W 5 is independently substituted with 0 to 3 R 2 groups;
- M2 is 0, 1 or 2; and pharmaceutically acceptable salts thereof.
- An embodiment of the present invention provides a compound of the
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula . ,
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula, l
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula /
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- An embodiment of the present invention provides a compound of the formula
- the present invention provides the 2-propenyl (allyl) and 2-propynyl (propargyl) compounds in Table 1-1 below.
- the alkyl groups of Y 1A and Y 1B have 1 to 18 carbon atoms. In other embodiments the alkyl groups have 1 to 6 carbon atoms.
- An embodiment of the present invention provides a compound useful as an antiproliferative agent.
- An embodiment of the present invention provides a compound useful as an apoptotic agent.
- An embodiment of the present invention provides a compound useful as an anti-nonmelanoma carcinoma agent.
- An embodiment of the present invention provides a compound useful as an anti-AK, anti-BCC or anti-SCC agents.
- An aspect of the present embodiment provides a compound useful as a topical anti-AK, anti-BCC or anti-SCC agent.
- An embodiment of the present invention provides a pharmaceutical composition comprising an effective amount of a compound of Formula 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- An aspect of the present embodiment provides a pharmaceutical composition, where the composition is a gel composition.
- compositions where the composition is an ointment composition.
- An embodiment of the present invention provides a pharmaceutical composition comprising an effective amount of a compound of Formula 1 or a pharmaceutically acceptable salt thereof, and an effective amount of at least one antiviral agent, and a pharmaceutically acceptable carrier.
- An aspect of the present embodiment provides a pharmaceutical composition, where the composition is a gel composition.
- compositions where the composition is an ointment composition.
- PMEG refers to the compound 9 ⁇ (2- phosphonylmethoxyethyl)guanine
- PMEDAP refers to the compound 9-(2- phosphonylmethoxyethyl)-2,6-diaminopurine
- cprPMEDAP refers to the compound 9-(2- phosphonylrnethoxyethyl)-2-amino-6-(cyclopropyl)purine /
- Bioavailability is the degree to which the pharmaceutically active agent becomes available to the target tissue after the agent's introduction into the body. Enhancement of the bioavailability of a pharmaceutically active agent can provide a more efficient and effective treatment for patients because, for a given dose, more of the pharmaceutically active agent will be available at the targeted tissue sites.
- phosphonate and phosphonate group include functional groups or moieties within a molecule that comprises a phosphorous that is 1) single-bonded to a carbon, 2) double-bonded to a heteroatom , 3) single-bonded to a heteroatom, and 4) single-bonded to another heteroatom, wherein each heteroatom can be the same or different.
- phosphonate and phosphonate group also include functional groups or moieties that comprise a phosphorous in the same oxidation state as the phosphorous described above, as well as functional groups or moieties that comprise a prodrug moiety that can separate from a compound so that the compound retains a phosphorous having the characteristics described above.
- the terms “phosphonate” and “phosphonate group” include phosphonic acid, phosphonic monoester, phosphonic diester, phosphonamidate, and phosphonthioate functional groups.
- the terms "phosphonate” and “phosphonate group” include functional groups or moieties within a molecule that comprises a phosphorous that is 1) single-bonded to a carbon, 2) double- bonded to an oxygen, 3) single-bonded to an oxygen, and 4) single-bonded to another oxygen, as well as functional groups or moieties that comprise a prodrug moiety that can separate from a compound so that the compound retains a phosphorous having such characteristics.
- the terms "phosphonate” and “phosphonate group” include functional groups or moieties within a molecule that comprises a phosphorous that is 1) single-bonded to a carbon, 2) double-bonded to an oxygen, 3) single-bonded to an oxygen or nitrogen, and 4) single-bonded to another oxygen or nitrogen, as well as functional groups or moieties that comprise a prodrug moiety that can separate from a compound so that the compound retains a phosphorous having such characteristics.
- prodrug refers to any compound that when administered to a biological system generates the drug substance, i.e. active ingredient, as a result of spontaneous chemical reaction(s); enzyme catalyzed chemical reaction(s), photolysis, and/or metabolic chemical reaction(s).
- a prodrug is thus a covalently modified analog or latent form of a therapeutically-active compound.
- Prodrug moiety refers to a labile functional group which separates from the active inhibitory compound during metabolism, systemically, inside a cell, by hydrolysis / enzymatic cleavage, or by some other process (Bundgaard, Hans, “Design and Application of Prodrugs” in A Textbook of Drug Design and Development (1991), P. Krogsgaard-Larsen and H. Bundgaard, Eds. Harwood Academic Publishers, pp. 113-191).
- Enzymes which are capable of an enzymatic activation mechanism with the phosphonate prodrug compounds of the invention include, but are not limited to, amidases, esterases, microbial enzymes, phospholipases, cholinesterases, and phosphases.
- Prodrug moieties can serve to enhance solubility, absorption and lipophilicity to optimize drug delivery, bioavailability and efficacy.
- a prodrug moiety may include an active metabolite or drug itself.
- the acyloxyalkyl ester was first used as a prodrug strategy for carboxylic acids and then applied to phosphates and phosphonates by Farquhar et al. (1983) /. Pharm. Sd 72: 324; also US Patent Nos. 4816570, 4968788, 5663159 and 5792756.
- acyloxyalkyl ester was used to deliver phosphonic acids across cell membranes and to enhance oral bioavailability.
- a close variant of the acyloxyalkyl ester, the alkoxycarbonyloxyalkyl ester (carbonate), may also enhance oral bioavailability as a prodrug moiety in the compounds of the combinations of the invention.
- the phosphonate group may be a phosphonate prodrug moiety.
- the prodrug moiety may be sensitive to hydrolysis, such as, but not limited to a isopropylcarbonyl-oxymethoxy or isopropylcarbonyloxymethyl carbonate group.
- the prodrug moiety may be sensitive to enzymatic potentiated cleavage, such as a lactate ester or a phosphonamidate-ester group.
- Aryl esters of phosphorus groups are reported to enhance oral bioavailability (De Lombaert et al. (1994) /. Med. Chem. 37:498). Phenyl esters containing a carboxylic ester ortho to the phosphate have also been described (Khamnei and Torrence, (1996) /. Med. Chem. 39:4109-4115). Benzyl esters are reported to generate the parent phosphonic acid. In some cases, substituents at the ortho-ox p ⁇ ra-position may accelerate the hydrolysis.
- Benzyl analogs with an acylated phenol or an alkylated phenol may generate the phenolic compound through the action of enzymes, e.g., esterases, oxidases, etc., which in turn undergoes cleavage at the benzylic C-O bond to generate the phosphoric acid and the quinone methide intermediate.
- enzymes e.g., esterases, oxidases, etc.
- this class of prodrugs are described by Mitchell et al. (1992) /. Chem. Soc. Perkin Trans. IT 2345; Glazier WO 91/19721.
- Still other benzylic prodrugs have been described containing a carboxylic ester-containing group attached to the benzylic methylene (Glazier WO 91/19721).
- Thio-containing prodrugs are reported to be useful for the intracellular delivery of phosphonate drugs.
- These proesters contain an ethylthio group in which the thiol group is either esterified with an acyl group or combined with another thiol group to form, a disulfide. Deesterification or reduction of the disulfide generates the free thio intermediate which subsequently breaks down to the phosphoric acid and episulfide (Puech et al. (1993) Antiviral Res., 22: 155-174; Benzaria et al. (1996) /. Med. Chem. 39: 4958).
- Cyclic phosphonate esters have also been described as prodrugs of phosphorus-containing compounds (Erion et al., US Patent No. 6312662).
- Protecting group refers to a moiety of a compound that masks or alters the properties of a functional group or the properties of the compound as a whole.
- Chemical protecting groups and strategies for protection/deprotection are well known in the art. See e.g., Protective Groups in Organic Chemistry, Theodora W. Greene, John Wiley & Sons, Inc., New York, 1991. Protecting groups are often utilized to mask the reactivity of certain functional groups, to assist in the efficiency of desired chemical reactions, e.g., making and breaking chemical bonds in an ordered and planned fashion.
- Protection of functional groups of a compound alters other physical properties besides the reactivity of the protected functional group, such as the polarity, lipophilicity (hydrophobicity), and other properties which can be measured by common analytical tools.
- Chemically protected intermediates may themselves be biologically active or inactive.
- Protected compounds may also exhibit altered, and in some cases, optimized properties in vitro and in vivo, such as passage through cellular membranes and resistance to enzymatic degradation or sequestration. In this role, protected compounds with intended therapeutic effects may be referred to as prodrugs.
- Another function of a protecting group is to convert the parental drug into a prodrug, whereby the parental drug is released upon conversion of the prodrug in vivo.
- active prodrugs may be absorbed more effectively than the parental drug
- prodrugs may possess greater potency in vivo than the parental drug.
- Protecting groups are removed either in vitro, in the instance of chemical intermediates, or in vivo, in the case of prodrugs. With chemical intermediates, it is not particularly important that the resulting products after deprotection, e.g., alcohols, be physiologically acceptable, although in general it is more desirable if the products are pharmacologically innocuous.
- any reference to any of the compounds of the invention also includes a reference to a physiologically acceptable salt thereof.
- physiologically acceptable salts of the compounds of the invention include salts derived from an appropriate base, such as an alkali metal (for example, sodium), an alkaline earth (for example, magnesium), ammonium and NX4 + (wherein X is C1-C4 alkyl).
- Physiologically acceptable salts of an hydrogen atom or an amino group include salts of organic carboxylic acids such as acetic, benzoic, lactic, fumaric, tartaric, maleic, malonic, malic, isethionic, lactobionic and succinic acids; organic sulfonic acids, such as methanesulfonic, ethanesulfonic, benzenesulfonic and p- toluenesulfonic acids; and inorganic acids, such as hydrochloric, sulfuric, phosphoric and sulfamic acids.
- Physiologically acceptable salts of a compound of a hydroxy group include the anion of said compound in combination with a suitable cation such as Na + and NX4 + (wherein X is independently selected from H or a Ci-Q alkyl group).
- the term "gel” refers to semisolid systems consisting of either suspensions made up of small inorganic particles or large organic molecules enclosing and interpenetrated by a liquid. Where the gel mass consists of floccules of small particles, the gel is classified as a two-phase system and is t sometimes called a ma'gma. Aluminum Hydroxide Gel and Bentonite Magma are examples of two-phase systems. Single-phase gels consist of organic macromolecules uniformly distributed throughout a liquid in such a manner that no apparent boundaries exist between the dispersed macromolecules and the liquid. Examples of such gels are Carboxymethylcellulose Sodium and Tragacanth. Although gels are commonly aqueous, alcohols and oils may be used as a continuous phase.
- the term "ointment” refers to a semisolid preparation for external application of such consistency that they may be readily applied to skin by inunction. They should be of such composition that they soften but not necessarily melt when applied to the body. They serve as vehicles for the topical application of medicinal substances and also function as protectives and emollients for the skin.
- salts of active ingredients of the compounds of the invention will be physiologically acceptable, i.e. they will be salts derived from a physiologically acceptable acid or base.
- salts of acids or bases which are not physiologically acceptable may also find use, for example, in the preparation or purification of a physiologically acceptable compound. All salts, whether or not derived form a physiologically acceptable acid or base, are within the scope of the present invention.
- Alkyl is Ci-CiS hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms.
- Examples are methyl (Me, -CH3), ethyl (Et, -CH2CH3), 1- propyl (n-Pr, n-propyl, -CH2CH2CH3), 2-propyl (i-Pr, i-propyl, -CH(CH3)2), 1- butyl (n-Bu, n-butyl, -CH2CH2CH2CH3), 2-methyl-l-propyl (1-Bu, i-butyl, - CH2CH(CH3)2), 2-butyl (s-Bu, s-butyl, -CH(CH3)CH2CH3), 2-methyl-2-propyl (t- Bu, t-butyl, -C(CH3)3), cBu (cyclobutyl), cPentyl (cyclopentyl), 1-pentyl (n-pentyl, -CH2CH2CH2CH3), 2-pentyl (-CH(CH3)CH2CH2CH2
- CH(CH 3 )CH(CH3)CH2CH3) 4-methyl-2-pentyl (-CH(CH3)CH2CH(CH 3 ) 2 ), 3- methyl-3- ⁇ entyl (-C(CH3)(CH2CH3)2), 2-methyl-3-pentyl (- CH(CH2CH3)CH(CH3)2), 2,3-dimethyl-2-butyl (-C(CH3)2CH(CH 3 ) 2 ), 3,3- dimethyl-2-butyl (-CH(CH3)C(CH3)3, and octyl (-(CH2)7CH3).
- Alkynyl is C2-C18 hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp triple bond.
- Preferred alkynyl groups are C2-C6. Examples include, but are not limited to, acetylenic (-C ⁇ CH) and propargyl (-CHzC ⁇ CH).
- Alkylene refers to a saturated, branched or straight chain or cyclic hydrocarbon radical of 1-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkane.
- Typical alkylene radicals include, but are not limited to, methylene (-CH 2 -) 1,2-ethyl (-CH 2 CH 2 -), 1,3-pro ⁇ yl (-CH 2 CH 2 CH 2 -), 1,4-butyl (-CH 2 CH 2 CH 2 CH 2 -), and the like.
- Alkenylene refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical of 2-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkene.
- Alkynylene refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical of 2-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkyne.
- Aryl means a monovalent aromatic hydrocarbon radical of 6-20 carbon atoms derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. Typical aryl groups include, but are not limited to, radicals derived from benzene, substituted benzene, naphthalene, anthracene, biphenyl, and the like.
- Arylalkyl refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with an aryl radical.
- Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-l-yl, naphthylmethyl, 2-naphthylethan-l-yl, naphthobenzyl, 2-naphthophenylethan-l-yl and the like.
- the arylalkyl group comprises 6 to 20 carbon atoms, e.g., the alkyl moiety, including alkyl, alkenyl or alkynyl groups, of the arylalkyl group is 1 to 6 carbon atoms and the aryl moiety is 5 to 14 carbon atoms.
- Substituted alkyl mean alkyl, aryl, and arylalkyl respectively, in which one or more hydrogen atoms are each independently replaced with a non-hydrogen substituent.
- Heterocycle as used herein includes by way of example and not limitation these heterocycles described in Paquette, Leo A.; Principles of Modern Heterocyclic Chemistry (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; The Chemistry of Heterocyclic Compounds, A Series of Monographs” (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; and /. Am. Chem. Soc. (1960) 82:5566.
- “heterocycle” includes a "carbocycle” as defined herein, wherein one or more (e.g. 1, 2, 3, or 4) carbon atoms have been replaced with a heteroatom (e.g. O, N, or S).
- heterocycles include by way of example and not limitation pyridyl, ⁇ h ⁇ royp ⁇ d ⁇ l, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, sulfur oxidized tetrahydrothiophenyl, pyrimidinyL furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl
- carbon bonded heterocycles are bonded at position 2, 3, 4, 5, or 6 of a pyridine, position 3, 4, 5, or 6 of a pyridazine, position 2, 4, 5, or 6 of a pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a fura ⁇ , tetrahydrofuran, thiofuran, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5 of an oxazole, imidazole or thiazole, position 3, 4, or 5 of an isoxazole, pyrazole, or isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine, position 2, 3, 4, 5, 6, 7, or 8 of a quinoline or position 1, 3, 4, 5, 6, 7, or 8 of an isoquinoline.
- carbon bonded heterocycles include 2- ⁇ yridyl, 3-pyridyl, 4-pyridyl, 5-pyridyl, 6-pyridyl, 3- pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl, 2-pyrimidinyl, 4- pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl, 2-pyrazinyl, 3-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-thiazolyl, 4-thiazolyl, or 5-thiazolyl.
- nitrogen bonded heterocycles are bonded at position 1 of an aziridine, azetidine, pyrrole, pyrrolidine, 2-pyrroline, 3- pyrroline, imidazole, imidazolidine, 2-imidazoline, 3-imidazoline, pyrazole, pyrazoline, 2-pyrazoline, 3-pyrazoline, piperidine, piperazine, indole, indoline, lH-indazole, position 2 of a isoindole, or isoindoline, position 4 of a morpholine, and position 9 of a carbazole, or ⁇ -carboline.
- nitrogen bonded heterocycles include 1-aziridyl, 1-azetedyl, 1-pyrrolyl, 1-imidazolyl, 1-pyrazolyl, and 1-piperidinyl.
- Carbocycle refers to a saturated, unsaturated or aromatic ring having 3 to 7 carbon atoms as a monocycle, 7 to 12 carbon atoms as a bicycle, and up to about 20 carbon atoms as a polycycle.
- Monocyclic carbocycles have 3 to 6 ring atoms, still more typically 5 or 6 ring atoms.
- Bicyclic carbocycles have 7 to 12 ring atoms, e.g., arranged as a bicyclo [4,5], [5,5], [5,6] or [6,6] system, or 9 or 10 ring atoms arranged as a bicyclo [5,6] or [6,6] system.
- Examples of monocyclic carbocycles include cyclopropyl (cPropyl), cyclobutyl (cButyl), cyclopentyl (cPentyl), 1- cyclopent-1-enyl, l-cyclopent-2-enyl, l-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-l- enyl, l-cyclohex-2-enyl, l-cyclohex-3-enyl, phenyl, spiryl and naphthyl.
- Linker refers to a chemical moiety comprising a covalent bond or a chain or group of atoms that covalently attaches a phosphonate group to a drug.
- Linkers include moieties such as: repeating units of alkyloxy ⁇ e.g., polyethyleneoxy, PEG, polymethyleneoxy) and alkylamino ⁇ e.g., polyethyleneamino, JeffamineTM); and diacid ester and amides including succinate, succinamide, diglycolate, malonate, and caproamide.
- the term “Aba” refers to a divalent moiety of 2-aminobutanoic acid
- Al refers to a divalent moiety of alanine
- Al refers to a divalent moiety of alanine
- POC hydroxymethyl isopropyl carbonate
- Substitutent groups Y 1A and Y 1B can be described using nomenclature that incorporates the aforementioned divalent amino acid moieties and alkyl moieties, such as in Table 80-3.
- said compound can be described, as in Table 80-3, as Formula I, where Y 1A and Y 1B are "Ala-nPr", which describes the moiety (where the " * " indicates the point of attachment),
- chiral refers to molecules which have the property of non-superimposability of the mirror image partner, while the term “achiral” refers to molecules which are superimposable on their mirror image partner.
- stereoisomers refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
- Diastereomer refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g., melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography. “Enantiomers” refer to two stereoisomers of a compound which are non- superimposable mirror images of one another.
- treatment or “treating,” to the extent it relates to a disease or condition includes preventing the disease or condition irom. occurring, inhibiting the disease or condition, eliminating the disease or condition, and/or relieving one or more symptoms of the disease or condition.
- antiproliferative refers to activities used to, or tending to inhibit cell growth, such as antiproliferative effects on tumor cells, or antiproliferative effects on virally infected cells.
- apoptosis refers to one of the main types of programmed cell death. As such, it is a process of deliberate suicide by an unwanted cell in a multicellular organism. In contrast to necrosis, which is a form of cell death that results from acute tissue injury, apoptosis is carried out in an ordered process that generally confers advantages during an organism's life cycle.
- Apoptosis is a type of cell death in which the cell uses specialized cellular machinery to kill itself; a cell suicide mechanism that enables metazoans to control cell number and eliminate cells that threaten the animal's survival. Apoptosis can occur, for instance, when a cell is damaged beyond repair, or infected with a virus.
- the stimuli for apoptosis can come from the cell itself, from its surrounding tissue or from a cell that is part of the immune system, it can be chemical, biological or physical.
- the related term "apoptitic" refers to the process of apoptosis.
- d and 1 or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (- ) or 1 meaning that the compound is levorotatory.
- a compound prefixed with (+) or d is dextrorotatory.
- these stereoisomers are identical except that they are mirror images of one another.
- a specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture.
- a 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process.
- racemic mixture and racemate refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
- protecting groups include prodrug moieties and chemical protecting groups.
- Protecting groups are available, commonly known and used, and are optionally used to prevent side reactions with the protected group during synthetic procedures, i.e. routes or methods to prepare the compounds of the invention.
- the decision as to which groups to protect, when to do so, and the nature of the chemical protecting group TG" will be dependent upon the chemistry of the reaction to be protected against (e.g., acidic, basic, oxidative, reductive or other conditions) and the intended direction of the synthesis.
- the PG groups do not need to be, and generally are not, the same if the compound is substituted with multiple PG.
- PG will be used to protect functional groups such as carboxyl, hydroxyl, thio, or amino groups and to thus prevent side reactions or to otherwise facilitate the synthetic efficiency.
- the order of deprotection to yield free, deprotected groups is dependent upon the intended direction of the synthesis and the reaction conditions to be encountered, and may occur in any order as determined by the artisan.
- protecting groups for -OH groups include "ether- or ester- forming groups".
- Ether- or ester-forming groups are capable of functioning as chemical protecting groups in the synthetic schemes set forth herein.
- some hydroxyl and thio protecting groups are neither ether- nor ester-forming groups, as will be understood by those skilled in the art, and are included with amides, discussed below.
- a very large number of hydroxyl protecting groups and amide-forming groups and corresponding chemical cleavage reactions are described in Protective Groups in Organic Synthesis, Theodora W.
- Protecting Groups An Overview, pages 1-20, Chapter 2, Hydroxyl Protecting Groups, pages 21-94, Chapter 3, Diol Protecting Groups, pages 95-117, Chapter 4, Carboxyl Protecting Groups, pages 118-154, Chapter 5, Carbonyl Protecting Groups, pages 155-184.
- protecting groups for carboxylic acid, phosphonic acid, phosphonate, sulfonic acid and other protecting groups for acids see Greene as set forth below.
- Such groups include by way of example and not limitation, esters, amides, hydrazides, and the like.
- Ester-forming groups include: (1) phosphonate ester-forming groups, such as phosphonamidate esters, phosphorothioate esters, phosphonate esters, and phosphon-bis-amidates; (2) carboxyl ester-forming groups, and (3) sulphur ester- forming groups, such as sulphonate, sulfate, and sulfinate.
- the phosphonate moieties of the compounds of the invention may or may not be prodrug moieties, i.e. they may or may be susceptible to hydrolytic or enzymatic cleavage or modification. Certain phosphonate moieties are stable under most or nearly all metabolic conditions. For example, a dialkylphosphonate, where the alkyl groups are two or more carbons, may have appreciable stability in vivo due to a slow rate of hydrolysis.
- compositions of this invention optionally comprise salts of the compounds herein, especially pharmaceutically acceptable non-toxic salts containing, for example, Na + , Li + , K + / Ca +"1" and Mg + ⁇
- Such salts may include those derived by combination of appropriate cations such as alkali and alkaline earth metal ions or ammonium and quaternary amino ions with an acid anion moiety.
- Monovalent salts are preferred if a water soluble salt is desired.
- Metal salts typically are prepared by reacting a compound of this invention with a metal hydroxide. Examples of metal salts which are prepared in this way are salts containing Li + , Na + , and K + .
- a less soluble metal salt can be precipitated from the solution of a more soluble salt by addition of the suitable metal compound.
- salts may be formed from acid addition of certain organic and inorganic acids, e.g., HCl, HBr, ⁇ SO ⁇ or organic sulfonic acids, to basic centers, or to acidic groups.
- the compositions herein comprise compounds of the invention in their un-ionized, as well as zwitterionic form, and combinations with stoichiometric amounts of water as in hydrates. Also included within the scope of this invention are the salts of the parental compounds with one or more amino acids.
- amino acids described above are suitable, especially the naturally-occurring amino acids found as protein components, although the amino acid typically is one bearing a side chain with a basic or acidic group, e.g., lysine, arginine or glutamic acid, or a neutral group such as glycine, serine, threonine, alanine, isoleucine, or leucine.
- a basic or acidic group e.g., lysine, arginine or glutamic acid
- a neutral group such as glycine, serine, threonine, alanine, isoleucine, or leucine.
- Methods of Inhibition of AK, BCC or SCC Another aspect of the invention relates to methods of inhibiting the activity of AK, BCC or SCC comprising the step of treating a sample suspected of having AK, BCC or SCC with a compound of the invention.
- compositions of the invention act as inhibitors of AK, BCC or SCC, as intermediates for such inhibitors or have other utilities as described below.
- the treating step of the invention comprises adding the composition of the invention to the sample or it comprises adding a precursor of the composition to the sample.
- the addition step comprises any method of administration as described above.
- the activity of AK, BCC or SCC after application of the composition can be observed by any method including direct and indirect methods of detecting AK, BCC or SCC activity. Quantitative, qualitative, and semi quantitative methods of determining AK, BCC or SCC activity are all contemplated. Typically one of the screening methods described above are applied, however, any other method such as observation of the physiological properties of a living organism are also applicable.
- Compounds and compositions of the invention are screened for therapeutic utility by measuring the EC 50 , that is the concentration of compound that achieves 50% inhibition of cell growth.
- the ratio of ECso in HPV-uninfected and infected cells provides a measure of the selectivity of the compound for the virus infected cells. The protocols used to obtain these measures are taught in the Examples. Pharmaceutical Formulations and Routes of Administration.
- the compounds of this invention are formulated with conventional carriers and excipients, which will be selected in accord with ordinary practice.
- Tablets will contain excipients, glidants, fillers, binders and the like.
- Aqueous formulations are prepared in sterile form, and when intended for delivery by other than oral administration generally will be isotonic. All formulations will optionally contain excipients such as those set forth in the "Handbook of Pharmaceutical Excipients" (1986). Excipients include ascorbic acid and other antioxidants, chelating agents such as EDTA, carbohydrates such as dextrin, hydroxyalkylcellulose, hydroxyalkylmethylcellulose, stearic acid and the like.
- the pH of the formulations ranges from about 3 to about 11, but is ordinarily about 7 to 10.
- One or more compounds of the invention are administered by any route appropriate to the condition to be treated. Suitable routes include oral, rectal, nasal, topical (including buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural), and the like. It will be appreciated that the preferred route may vary with the condition of the recipient.
- An advantage of the compounds of this invention is that they are orally bioavailable and can be dosed orally.
- the formulations, both for veterinary and for human use, of the invention comprise at least one active ingredient, as above defined, together with one or more acceptable carriers therefore and optionally other therapeutic ingredients.
- the carrier(s) must be "acceptable” in the sense of being compatible with the other ingredients of the formulation and physiologically innocuous to the recipient thereof.
- the formulations include those suitable for the foregoing administration routes.
- the formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.
- Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients.
- the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
- Formulations of the invention suitable for oral administration are prepared as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion.
- the active ingredient may also be presented as a bolus, electuary or paste.
- a tablet is made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent.
- Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent.
- the tablets may optionally be coated or scored and optionally are formulated so as to provide slow or controlled release of the active ingredient there from.
- For infections of the eye or other external tissues e.g.
- the formulations are preferably applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to 20% w/w (including active ingredient(s) in a range between 0.1% and 20% in increments of 0.1% w/w such as 0.6% w/w, 0.7% w/w, etc.), preferably 0.2 to 15% w/w and most preferably 0.5 to 10% w/w.
- the active ingredients may be employed with either a paraffinic or a water-miscible ointment base.
- the active ingredients may be formulated in a cream with an oil-in- water cream base.
- the aqueous phase of the cream base may include, for example, at least 30% w/w of a polyhydric alcohol, i.e. an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG 400) and mixtures thereof.
- the topical formulations may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulphoxide and related analogs.
- the oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier (otherwise known as an emulgent), it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat.
- Emulgents a ⁇ id emulsion stabilizers suitable for use in the formulation of the invention include Tween® 60, Span® 80, cetostearyl alcohol, benzyl alcohol, myristyl alcohol, glyceryl mono-stearate and sodium lauryl sulfate.
- the choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties.
- the cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers.
- Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters known as Crodamol CAP may be used, the last three being preferred esters.
- Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the active ingredient.
- the active ingredient is preferably present in such formulations in a concentration of 0.5 to 20%, advantageously 0.5 to 10% particularly about 1.5% w/w.
- Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
- Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.
- Formulations suitable for intrapulmonary or nasal administration have a particle size for example in the range of 0.1 to 500 microns (including particle sizes in a range between 0.1 and 500 microns in increments microns such as 0.5, 1, 30 microns, 35 microns, etc.), which is administered by rapid inhalation through the nasal passage or by inhalation through the mouth so as to reach the alveolar sacs.
- Suitable formulations include aqueous or oily solutions of the active ingredient.
- Formulations suitable for aerosol or dry powder administration may be prepared according to conventional methods and may be delivered with other therapeutic agents such as compounds heretofore used in the treatment or prophylaxis of influenza A or B infections as described below.
- Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient, such carriers are as known in the art to be appropriate.
- Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations are presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use.
- sterile liquid carrier for example water for injection
- Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described.
- Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.
- formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
- the invention further provides veterinary compositions comprising at least one active ingredient as above defined together with a veterinary carrier therefore.
- Veterinary carriers are materials useful for the purpose of administering the composition and may be solid, liquid or gaseous materials which are otherwise inert or acceptable in the veterinary art and are compatible with the active ingredient. These veterinary compositions may be administered orally, parenterally or by any other desired route.
- controlled release formulations in which the release of the active ingredient are controlled and regulated to allow less frequency dosing or to improve the pharmacokinetic or toxicity profile of a given active ingredient.
- Effective dose of active ingredient depends at least on the nature of the condition being treated, toxicity, whether the compound is being used prophylactically (lower doses) or against an active influenza infection, the method of delivery, and the pharmaceutical formulation, and will be determined by the clinician using conventional dose escalation studies. It can be expected to be from about 0.0001 to about 100 mg/kg body weight per day; typically, from about 0.01 to about 10 mg/kg body weight per day; more typically, from about 0.01 to about 5 mg/kg body weight per day; most typically, from about 0.05 to about 0.5 mg/kg body weight per day.
- the daily candidate dose for an adult human of approximately 70 kg body weight will range from 1 mg to 1000 mg, preferably between 5 mg and 500 mg, and may take the form of single or multiple doses.
- Active ingredients of the invention are also used in combination with other active ingredients. Such combinations are selected based on the condition to be treated, cross-reactivities of ingredients and pharmaco-properties of the combination.
- the compositions of the invention are combined with antivirals (such as amantidine, rimantadine and ribavirin), mucolytics, expectorants, bronchialdilators, antibiotics, antipyretics, or analgesics. Ordinarily, antibiotics, antipyretics, and analgesics are administered together with the compounds of this invention.
- the present invention also provides the in vivo metabolic products of the compounds described herein, to the extent such products are novel and unobvious over the prior art. Such products may result for example from the oxidation, reduction, hydrolysis, amidation, esterification and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes novel and unobvious compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof. Such products typically are identified by preparing a radiolabeled (e.g. C 14 or H 3 ) compound of the invention, administering it parenterally in a detectable dose (e.g.
- a radiolabeled e.g. C 14 or H 3
- the metabolite structures are determined in conventional fashion, e.g. by MS or NMR analysis. In general, analysis of metabolites is done in the same way as conventional drug metabolism studies well-known to those skilled in the art.
- the conversion products so long as they are not otherwise found in vivo, are useful in diagnostic assays for therapeutic dosing of the compounds of the invention even if they possess no neuraminidase inhibitory activity of their own.
- the compounds of this invention are used as immunogens or for conjugation to proteins, whereby they serve as components of immunogenic compositions to prepare antibodies capable of binding specifically to the protein, to the compounds or to their metabolic products which retain immunologically recognized epitopes (sites of antibody binding).
- the immunogenic compositions therefore are useful as intermediates in the preparation of antibodies for use in diagnostic, quality control, or the like, methods or in assays for the compounds or their novel metabolic products.
- the compounds are useful for raising antibodies against otherwise non-immunogenic polypeptides, in that the compounds serve as haptenic sites stimulating an immune response that cross-reacts with the unmodified conjugated protein.
- the hydrolysis products of interest include products of the hydrolysis of the protected acidic and basic groups discussed above.
- the acidic or basic amides comprising immunogenic polypeptides such as albumin or keyhole limpet hemocyanin generally are useful as immunogens.
- the metabolic products described above may retain a substantial degree of immunological cross reactivity with the compounds of the invention.
- the antibodies of this invention will be capable of binding to the unprotected compounds of the invention without binding to the protected compounds; alternatively the metabolic products, will be capable of binding to the protected compounds and/or the metabolic products without binding to the protected compounds of the invention, or will be capable of binding specifically to any one or all three.
- the antibodies desirably will not substantially cross-react with naturally-occurring materials.
- Substantial cross-reactivity is reactivity under specific assay conditions for specific analytes sufficient to interfere with the assay results.
- the immunogens of this invention contain the compound of this invention presenting the desired epitope in association with an immunogenic substance.
- association means covalent bonding to form an immunogenic conjugate (when applicable) or a mixture of non-covalently bonded materials, or a combination of the above.
- Immunogenic substances include adjuvants such as Freund's adjuvant, immunogenic proteins such as viral, bacterial, yeast, plant and animal polypeptides, in particular keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin or soybean trypsin inhibitor, and immunogenic polysaccharides.
- the compound having the structure of the desired epitope is covalently conjugated to an immunogenic polypeptide or polysaccharide by the use of a polyfunctional (ordinarily bifunctional) cross-linking agent.
- a polyfunctional (ordinarily bifunctional) cross-linking agent for the manufacture of hapten immunogens are conventional per se, and any of the methods used heretofore for conjugating haptens to immunogenic polypeptides or the like are suitably employed here as well, taking into account the functional groups on the precursors or hydrolytic products which are available for cross-linking and the likelihood of producing antibodies specific to the epitope in question as opposed to the immunogenic substance.
- polypeptide is conjugated to a site on the compound of the invention distant from the epitope to be recognized.
- the conjugates are prepared in conventional fashion.
- the conjugates comprise a compound of the invention attached by a bond or a linking group of 1-100, typically, 1-25, more typically 1-10 carbon atoms to the immunogenic substance.
- the conjugates are separated from starting materials and by products using chromatography or the like, and then are sterile filtered and vialed for storage. Animals are typically immunized against the immunogenic conjugates or derivatives and antisera or monoclonal antibodies prepared in conventional fashion.
- the compounds of this invention are useful as linkers or spacers in preparing affinity absorption matrices, immobilized enzymes for process control, or immunoassay reagents.
- the compounds herein contain a multiplicity of functional groups that are suitable as sites for cross-linking desired substances.
- affinity reagents such as hormones, peptides, antibodies, drugs, and the like to insoluble substrates.
- insoluble substrates are employed in known fashion to absorb binding partners for the affinity reagents from manufactured preparations, diagnostic samples and other impure mixtures.
- immobilized enzymes are used to perform catalytic conversions with facile recovery of enzyme.
- Bifunctional compounds are commonly used to link analytes to detectable groups in preparing diagnostic reagents. Screening assays preferably use cells from particular tissues that are susceptible to HPV infection. Assays known in the art are suitable for determining in vivo bioavailability including intestinal lumen stability, cell permeation, liver homogenate stability and plasma stability assays. However, even if the ester, amide or other protected derivatives are not converted in vivo to the free carboxyl, amino or hydroxyl groups, they remain useful as chemical intermediates.
- Antiproliferation assays measure effect of compounds on proliferation of cultured cells. Cells are cultured for 7 days in the presence of various concentrations of compounds. On the 7 th day, cells are stained with dye, and intensity of staining (proportional to cell number) is measured by spectrophotometer. Data are plotted against compound concentrations, fitted to the sigmoid dose response curve, from which the compound concentration that reduces cell proliferation rate by 50% (50% effective concentration or ECso) is determined. Active compounds in antiproliferation assays may be cytostatic (inhibit cell division) and/or cytocidal (kill cells).
- Nonmelanoma carcinomas such as AK, BCC or SCC can be treated by administration of topical antiproliferative agents onto the proliferative lesion of the skin.
- Transformed cells will stop replicating and eventually undergo apoptosis, while many of surrounding normal cells (differentiated keratinocytes that no longer replicate) will not be affected, causing minimal damage to the skin structure, leaving no scar.
- the invention also relates to methods of making the compositions of the invention.
- the compositions are prepared by any of the applicable techniques of organic synthesis. Many such techniques are well known in the art. However, many of the known techniques are elaborated in "Compendium of Organic
- reaction conditions such as temperature, reaction time, solvents, workup procedures, and the like, will be those common in the art for the particular reaction to be performed.
- the cited reference material, together with material cited therein, contains detailed descriptions of such conditions.
- temperatures will be -100°C to 200°C
- solvents will be aprotic or protic
- reaction times will be 10 seconds to 10 days.
- Workup typically consists of quenching any unreacted reagents followed by partition between a water/organic layer system (extraction) and separating the layer containing the product.
- Oxidation and reduction reactions are typically carried out at temperatures near room temperature (about 20 0 C), although for metal hydride reductions frequently the temperature is reduced to 0°C to -100 0 C, solvents are typically aprotic for reductions and may be either protic or aprotic for oxidations. Reaction times are adjusted to achieve desired conversions.
- Condensation reactions are typically carried out at temperatures near room temperature, although for non-equilibrating, kinetically controlled condensations reduced temperatures (0°C to -100°C) are also common.
- Solvents can be either protic (common in equilibrating reactions) or aprotic (common in kinetically controlled reactions).
- Standard synthetic techniques such as azeotropic removal of reaction byproducts and use of anhydrous reaction conditions (e.g. inert gas environments) are common in the art and will be applied when applicable.
- R ⁇ is alkynyl
- R ⁇ is alkynyl
- treated when used in the context of a chemical process, protocol, or preparation mean contacting, mixing, reacting, allowing to react, bringing into contact, and other terms common in the art for indicating that one or more chemical entities is treated in such a manner as to convert it to one or more other chemical entities.
- This means that "treating compound one with compound two” is synonymous with “allowing compound one to react with compound two", “contacting compound one with compound two”, “reacting compound one with compound two”, and other expressions common in the art of organic synthesis for reasonably indicating that compound one was “treated”, “reacted”, “allowed to react", etc., with compound two.
- "treating" indicates the reasonable and usual manner in which organic chemicals are allowed to react. Normal concentrations (0.01M to 1OM, typically 0.1M to IM), temperatures (-100 0 C to 250 0 C, typically -78 0 C to 150 0 C, more typically -78°C to 100 0 C, still more typically 0 0 C to 100 0 C), reaction vessels (typically glass, plastic, metal), solvents, pressures, atmospheres (typically air for oxygen and water insensitive reactions or nitrogen or argon for oxygen or water sensitive reactions), etc., are intended unless otherwise indicated.
- the knowledge of similar reactions known in the art of organic synthesis is used in selecting the conditions and apparatus for "treating" in a given process. In particular, one of ordinary skill in the art of organic synthesis selects conditions and apparatus reasonably expected to successfully carry out the chemical reactions of the described processes based on the knowledge in the art.
- Chromatography can involve any number of methods including, for example, size exclusion or ion exchange chromatography, high, medium, or low pressure liquid chromatography, small scale and preparative thin or thick layer chromatography, as well as techniques of small scale thin layer and flash chromatography.
- reagents selected to bind to or render otherwise separable a desired product, unreacted starting material, reaction by product, or the like.
- reagents include adsorbents or absorbents such as activated carbon, molecular sieves, ion exchange media, or the like.
- the reagents can be acids in the case of a basic material, bases in the case of an acidic material, binding reagents such as antibodies, binding proteins, selective chelators such as crown ethers, liquid/liquid ion extraction reagents (LIX) 7 or the like.
- Acetoxyethyloxymethylchloride 1 A 5 L three-neck flask was fitted with mechanical stirrer, thermometer, 500 mL additional funnel and argon purged. 1,3-DioxaIane (140 mL, 2.00 mol) in anhydrous EtaO (800 mL) and 1.0 M ZnCVEt 2 O (7.5 mL, 0.007 mol) were added. A solution of acetyl chloride (157 mL, 2.20 mol) in EtaO (200 mL) was added dropwise through an additional funnel over 20 min. A cold water bath was used to maintain temperature between 19 - 27 0 C throughout.
- Diisopropyl Phosphonate 2 A 500 mL three-neck flask was charged with the crude chloromethylether 1 (317 g, 2.00 mol). Triisopropylphosphite (494 mL) was added dropwise through an additional funnel while heating in a 125°C oil bath and stirring vigorously. Collect 2-chloropropane distillate via short-path head in a dry ice cooled receiver, argon blanket, collected 140 g distillate (theoretical 157 g). Phosphite blanched reaction to yellow, continue heating another 2 h at 125°C oil bath, then arrange for vacuum distillation using a vacuum pump.
- Example 3 Alcohol 3 A solution of 2 (125 g, 0.443 mol) in absolute MeOH (440 mL) was treated with concentrated HCl (11.2 mL, 0.112 mol) and heated to reflux for 6 h under Argon. Strip MeOH on rotavap (water aspirator) to 55°C leaving 115 g of a clear oil which was co-evaporated with toluene (2 x 200 mL). The crude product was dried under vacuum to give an oil (102 g, 96%).
- Diisopropyl Phosphonate 4 A solution of triphenylphosphine (25.57 g, 97.5 mmol) and alcohol 3 (18 g, 75 mmol) in DMF (120 mL) was treated with 6- chloropurine (12.72 g, 75 mmoL) and cooled to -15°C. A solution of diisopropyl azodicarboxylate (16.68 g, 82.5 mmol) in DMF (50 mL) was added dropwise through an additional funnel over 80 min. The reaction mixture was kept at -15°C for 2 h and then warmed to room temperature and stirred for an additional 2 h. A cloudy reaction mixture turned to be a bright yellow solution.
- Diisopropyl Phosphonate 5 A mixture of 4 (11.00 g, 28.08 mmol) and cyclopropylamine (4.86 g, 85.16 mmol) in CH3CN (80 mL) was placed in a reaction bomb and heated to 100°C for 4 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The product was partitioned between 15% MeOH/CHzCb (3 x) and brine, dried with NaiSCu, filtered, and concentrated.
- Example 6 cPrPMEDAP 6: A solution of 5 (11.00 g, 26.67 mmol) in anhydrous CHsCN (120 mL) was treated with bromotrimethylsilane (21.1 mL, 160.02 mmol ). The reaction was protected from light by wrapping the flask with aluminum foil. The reaction mixture was stirred at room temperature overnight. The volatiles were evaporated under reduced pressure. The residue was dissolved in H2O (250 mL) and pH was adjusted to 9 with ammonium hydroxide. The reaction mixture was concentrated and a yellow solid was obtained. The solid was dissolved in H2O (30 mL) and pH was adjusted to 2 with 10% HCl. Fine solid was collected and dried under vacuum to give 6 (7.88 g, 90%) as a white solid.
- Example 7 Monophosphonic Acid Hydrochloride 7: A mixture of acid 6 (3.00 g, 9.15 mmol) and DMF (0.1 mL) in sulfolane (9.2 mL) was heated to 7O 0 C. Thionylchloride (1.66 mL, 22.76 mmol) was added dropwise over a period of 1 h. The temperature was increased to 90°C and TMSOPh (1.74 mL, 9.61 mmol) was added and stirred for 1 h. The reaction mixture was cooled to room temperature overnight. The reaction mixture was added dropwise to well-stirred, ice-cold acetone (100 mL). The product was precipitated out. The solid was filtered under Ar, washed with cold acetone (100 mL), dried under vacuum to give the monophosphonic acid hydrochloride (3.70 g, 92%) as a solid.
- Monophosphonamidate 8 A mixture of monophosphonic acid 7 (0.22 g, 0.50 mmol), L-alanine methyl ester hydrochloride (0.14 g, 1.00 mmol), and triethylamine (0.21 mL, 1.50 mmol) in pyridine (3 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.39 g, 1.75 mmol) and triphenylphosphine (0.46 g, 1.75 mmol) in pyridine (2 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3.
- Monophosphonamidate 9 A mixture of monophosphonic acid 7 (0.88 g, 2.00 mmol), D-alanine methyl ester hydrochloride (0.84 g, 6.00 mmol), and triethylamine (0.84 mL, 6.00 mmol) in pyridine (8 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (1.56 g, 7.00 mmol) and triphenylphosphine (1.84 g, 7.00 mmol) in pyridine (8 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3.
- Monophosphonamidate 10 A mixture of monophosphonic acid 7 (0.88 g, 2.00 mmol), L-alanine tert-butyl ester hydrochloride (1.31 g, 6.00 mmol), and triethylamine (0.84 mL, 6.00 mmol) in pyridine (8 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (1.54 g, 7.00 mmol) and triphenylphosphine (1.84 g, 7.00 mmol) in pyridine (8 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Monophosphonamidate 11 A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L-alanine ethyl ester hydrochloride (94 mg, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
- Monophosphonamidate 12 A mixture of phosphonic acid 6 (1.50 g, 4.56 mmol), L-alanine n-propyl ester hydrochloride (1.59 g, 9.49 mmol), phenol (2.25 g, 22.80 mmol) and triethylamine (10.50 mL, 54.72 mmol) in pyridine (8.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (6.54 g, 31.92 mmol) and triphenylphosphine (7.32 g, 31.92 mmol) in pyridine (8.0 mL) was added to the above reaction mixture.
- Monophosphonamidate 13 A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol),
- L-alanine isopropyl ester hydrochloride (0.10 g, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 6O 0 C for 5 min.
- a freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
- the reaction was stirred at 6O 0 C overnight, cooled to room temperature, and concentrated.
- the product was partitioned between EtOAc and saturated NaHCO3.
- Example 14 Monophosphonamidate 14: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L-alanine n-butyl ester hydrochloride (0.11 g, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
- Monophosphonamidate 15 A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L-alanine n-hexyl ester hydrochloride (0.13 g, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
- Monophosphonamidate 16 A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L-alanine n-octanyl ester hydrochloride (0.15 g, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
- the reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- the product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure.
- Example 17 Monophosphonamidate 17: A mixture of phosphonic acid 6 (70 mg, 0.21 mmol), L-2-aminobutyric acid ethyl ester hydrochloride (72 mg, 0.42 mmol), phenol (0.10 g, 1.05 mmol) and triethylamine (0.36 mL, 2.52 mmol) in pyridine (1.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.33 g, 1.47 mmol) and triphenylphosphine (0.39 g, 1.47 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
- the reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- the product was partitioned between EtOAc and saturated NaHCO 3 .
- the organic phase was washed with brine, dried with Na.S ⁇ 4, filtered, and evaporated under reduced pressure.
- Monophosphonamidate 18 A mixture of phosphonic acid 6 (1.00 g, 3.05 mmol), L-2-aminobutyric acid n-butyl ester hydrochloride (1.19 g 7 6.09 mmol), phenol
- Monophosphonamidate 19 A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol) 7 L-2-aminobutyric acid n-octanyl ester hydrochloride (0.15 g, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
- Example 20 Monophosphonamidate 20: A mixture of phosphonic acid 6 (1.5 g, 4.57 mmol), L- phenylalanine ethyl ester hydrochloride (2.10 g, 9.14 mmol), phenol (2.15 g, 22.85 mmol) and triethylamine (7.64 mL, 54.84 mmol) in pyridine (8.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (7.05 g, 31.99 mmol) and triphenylphosphine (8.39 g, 31.99 mmol) in pyridine (7.0 mL) was added to the above reaction mixture.
- the reaction was stirred at 6O 0 C overnight, cooled to room temperature, and concentrated.
- the product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure.
- the crude product was purified by column chromatography on silica gel (5% MeOH/CHiCh) to give a pale yellow solid 1.32 g containing about 10% impurity.
- the yellow solid (1.32 g, 2.28 mmol) was dissolved in iPrOH (10 mL) and transferred to a hot iPrOH (30 mL) solution of fumaric acid (0.27 g, 2.28 mmol) and stirred at 8O 0 C for 30 min.
- the reaction mixture was gradually cooled to room temperature and the fumarate salt was collected at 0 0 C.
- the resulting fumarate salt was neutralized by partition from NaHCU3 (2 x) and EtOAc.
- the organic phase was washed with brine, H2O, dried with Na2SO4, filtered, and concentrated.
- Monophosphonamidate 21 A mixture of phosphonic acid 6 (70 mg 7 0.21 mmol) 7 L-phenylalanine n-butyl ester hydrochloride (0.11 g 7 0.42 mmol) 7 phenol (0.10 g, 1.05 mmol) and triethylamine (0.36 mL 7 2.52 mmol) in pyridine (1.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.33 g 7 1.47 mmol) and triphenylphosphine (0.39 g, 1.47 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
- Example 22 Monophosphonamidate 22: A mixture of phosphonic acid 6 (70 mg, 0.21 mmol), L-phenylalanine isobutyl ester hydrochloride (0.11 g, 0.42 mmol), phenol (0.10 g, 1.05 mmol) and triethylamine (0.36 mL, 2.52 mmol) in pyridine (1.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.33 g, 1.47 mmol) and triphenylphosphine (0.39 g, 1.47 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
- Bisphosphonamidate 23 A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L- alanine ethyl ester hydrochloride (0.28 g, 1.80 mmol), and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.10 mmol) and triphenylphosphine (0.56 g, 2.10 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphonamidate 24 A mixture of phosphonic acid 6 (1.00 g, 3.05 mmol), L- alanine n-propyl ester hydrochloride (3.06 g, 18.30 mmol), and triethylamine (5.10 mL, 36.50 mmol) in pyridine (5.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (4.70 g, 21.32 mmol) and triphenylphosphine (5.59 g, 21.32 mmol) in pyridine (5.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10%
- Bisphosphonamidate 25 A mixture of phosphonic acid 6 (0.60 g, 1.83 mmol), L- alanine isopropyl ester hydrochloride (1.84 g, 10.98 mmol), and triethylamine (3.06 mL, 21.96 mmol) in pyridine (3.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (2.82 g, 12.80 mmol) and triphenylphosphine (3.36 g, 12.80 mmol) in pyridine (3.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphonamidate 26 A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L- alanine n-butyl ester hydrochloride (0.33 g, 1.82 mmol), and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.10 mmol) and triphenylphosphine (0.56 g, 2.10 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O 0 C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO 3 . The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10%
- Bisphosphonamidate 27 A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L- alanine w-hexyl ester hydrochloride (0.38 g, 1.80 mmol), and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 60°C for 5 min. A freshly- prepared bright yellow solution of aldrithiol (0.47 g, 2.10 mmol) and triphenyiphosphine (0.56 g, 2.10 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated. The product was partitioned between
- Example 28 Bisphosphonamidate 28: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L- alanine 7?-octanyl ester hydrochloride (0.43 g, 1.80 mmol), and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.10 mmol) and triphenyiphosphine (0.56 g, 2.10 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphonamidate 29 A mixture of phosphonic acid 6 (0.70 g, 2.13 mmol), L-2- aminobutyric acid ethyl ester hydrochloride (2.15 g, 12.80 mmol), and triethylamine (3.57 mL, 25.56 mmol) in pyridine (3.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (3.29 g, 14.91 mmol) and triphenylphosphine (3.92 g, 14.91 mmol) in pyridine (3.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphonamidate 30 A mixture of phosphonic acid 6 (0.70 g, 21.32 mmol), L- 2-aminobutyric acid n-butyl ester hydrochloride (2.50 g, 12.80 mmol), and triethylamine (3.57 mL, 25.56 mmol) in pyridine (3.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (3.29 g, 14.91 mmol) and triphenylphosphine (3.92 g, 14.91 mmol) in pyridine (3.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated. The product was partitioned between
- Bisphosphonamidate 31 A mixture of phosphoric acid 6 (0.10 g, 0.30 mmol), L-2- aminobutyric acid n-octanyl ester hydrochloride (0.33 g, 1.82 mmol), and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.10 mmol) and triphenylphosphine (0.56 g, 2.10 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphonamidate 32 A mixture of phosphonic acid 6 (0.60 g, 1.82 mmol), L- phenylalanine ethyl ester hydrochloride (2.51 g, 10.96 mmol), and triethylamine (3.06 mL, 21.84 mmol) in pyridine (3.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (2.82 g, 12.74 mmol) and triphenylphosphine (3.36 g, 12.74 mmol) in pyridine (3.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated.
- Bisphosphonamidate 33 A mixture of phosphonic acid 6 (70 mg, 0.21 mmol), L- phenylalanine n-butyl ester hydrochloride (0.33 g, 1.26 mmol), and triethylamine (0.36 mL, 2.52 mmol) in pyridine (1.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.33 g, 1.47 mmol) and triphenylphosphine (0.39 g, 1.47 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Example 34 Bisphosphonamidate 34: A mixture of phosphonic acid 6 (70 mg, 0.21 mmol), L- phenylalanine isobutyl ester hydrochloride (0.33 g, 1.26 mmol), and triethylamine (0.36 mL, 2.52 mmol) in pyridine (1.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldri thiol (0.33 g, 1.47 mmol) and triphenylphosphine (0.39 g, 1.47 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O 0 C overnight, cooled to room temperature / and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10%
- BisPOC of cPrPMEDAP 35 A mixture of phosphonic acid 6 (0.20 g, 0.61 mmol) and triethylamine (0.42 mL, 3.01 mmol) in l-methyl-2-pyrrolidinone (2.0 mL) was heated to 60 0 C for 30 min. POCCl (0.45 g, 2.92 mmol) was added. The reaction mixture was stirred at 60 0 C for 3 h, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO 3 . The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure.
- Bisphosphonamidate 37 A mixture of phosphonic acid 36 (0.32 g, 1.00 mmo ⁇ ), L- alanine butyl ester hydrochloride (0.47 g, 2.60 mmol), and triethylamine (0.27 g, 2.60 mmol) in pyridine (5.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.77 g, 3.50 mmol) and triphenylphosphine (0.92 g, 3.50 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated
- Monophosphonic Acid 38 A mixture of diadd 36 (1.30 g, 4.10 mmol) and DMF (0.1 mL) in sulfolane (35 mL) was heated to 70 0 C. Thionylchloride (0.54 mL, 7.38 mmol) was added dropwise over a period of 1 h. The temperature was increased to 90°C and TMSOPh (0.75 g, 4.51 mmol) was added and stirred for 1 h. The reaction mixture was cooled to room temperature overnight. The reaction mixture was added dropwise to well-stirred, ice-cold acetone (100 mL). The product was precipitated out.
- Monophosphonamidate 39 A mixture of monophosphonic acid 38 (0.20 g, 0.50 mmol), L-alanine isopropyl ester hydrochloride (0.17 g, 1.00 mmol) and triethylamine (0.10 g, 1.00 mmol) in pyridine (2.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.39 g, 1.75 mmol) and triphenylphosphine (0.46 g, 1.75 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Example 39 refers to Scheme 11 Example 39
- Bisphosphonamidate 41 A mixture of phosphonic acid 40 (0.36 g, 1.00 mmol), L- alanine n-butyl ester hydrochloride (0.47 g, 2.60 mmol), and triethylamine (0.27 g, 2.60 mmol) in pyridine (5.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.77 g, 3.50 mmol) and triphenylphosphine (0.92 g, 3.50 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphonamidate 43 A mixture of phosphonic acid 42 (0.37 g, 1.00 mmol), L- alanine 7z-butyl ester hydrochloride (0.47 g, 2.60 mmol), and triethylamine (0.27 g, 2.60 mmol) in pyridine (5.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.77 g, 3.50 mmol) and triphenylphosphine (0.92 g, 3.50 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphonamidate 45 A mixture of phosphonic add 44 (0.55 g, 2.00 mmol), L- alanine butyl ester hydrochloride (0.94 g, 5.20 mmol), and triethylamine (0.54 g, 5.20 mmol) in pyridine (5.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (1.54 g, 7.00 mmol) and triphenylphosphine (1.84 g, 7.00 mmol) in pyridine (5.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Example 42 Monophosphonic Acid 46: A mixture of diacid 44 (10.00 g, 36.30 mmol) and DMF (0.2 mL) in sulfolane (50 mL) was heated to 70°C. Thionylchloride (4.72 mL, 64.70 mmol) was added dropwise over a period of 1 h. The temperature was increased to 90 0 C and TMSOPh (6.65 g, 40.00 mmol) was added and stirred for 1 h. The reaction mixture was cooled to room temperature overnight. The reaction mixture was added dropwise to well-stirred, ice-cold acetone (100 mL). The product was precipitated out. The solid was filtered and dissolved in MeOH (40 mL) and pH was adjusted to 3 with 45% KOH. Solid was collected by filtration and dried under vacuum to give the monophosphonic acid (12.40 g, 97%) as a solid.
- Monophosphonamidate 47 A mixture of monophosphonic acid 46 (1.00 g, 2.86 mmol), L-alanine methyl ester hydrochloride (0.80 g, 5.73 mmol) and triethylamine (0.58 g, 5.73 mmol) in pyridine (5.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (2.21 g, 10.00 mmol) and triphenylphosphine (2.63 g, 10.00 mmol) in pyridine (5.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Monophosphonamidate 48 A mixture of monophosphonic acid 46 (0.35 g, 1.00 mmol), L-alanine isopropyl ester hydrochloride (0.34 g, 2.00 mmol) and triethylamine (0.20 g, 2.00 mmol) in pyridine (2.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.77 g, 3.50 mmol) and triphenylphosphine (0.92 g, 3.5O 1 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated. The product was partitioned between
- Benzyl Ether of PMEG 50 A mixture of diacid 49 (0.62 g, 2.00 mmol) and benzyl alcohol (10 mL) was cooled to 0°C with stirring. Sodium hydride (0.24 g, 10.00 mmol) was added portion wise and the reaction mixture was heated to 100 0 C over 1 h. Additional benzyl alcohol (20 mL) and sodium hydride (0.12 g, 5.00 mmol) were added. The reaction was stirred at 140 0 C for 1 h and cooled to room temperature. The volatiles were evaporated under reduced pressure, water (50 mL) was added, and the pH was adjusted to 11 with NaOH.
- the product was partitioned between toluene (3 x) and H2O.
- the product was collected and dried under vacuum to give the benzyl ether (0.18 g, 22%) as a tan solid.
- Example 46 Monophosphonamidate 51: A mixture of phosphonic acid 50 (0.13 g , 0.34 mmol), L-alanine isopropyl ester hydrochloride (0.11 g, 0.68 mmol), phenol (0.16 g, 1.69 mmol) and triethylamine (0.28 mL, 2.03 mmol) in pyridine (2.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.52 g, 2.37 mmol) and triphenylphosphine (0.62 g, 2.37 mmol) in pyridine (2.0 mL) was added to the above reaction mixture.
- Example 47 Monophosphonamidate 52: A mixture of monophosphonamidate 51 (50 mg, 0.09 mmol) and Pd(OH)2/C (50 mg) in iPrOH (3 mL) was stirred at room temperature under 1 atm of H2 (balloon) overnight. The reaction mixture was filtered through a plug of celite and the solvent was removed on rotavap under reduced pressure. The crude product was purified by column chromatography on silica gel (5-15% MeOH/CHCls) to give the monophosphonamidate (40 mg, 95%, 1:1 diastereomeric mixture) as an off-white foam.
- Bisphosphonamidate 54 A mixture of phosphonic acid 53 (0.10 g, 0.35 mmol), L- alanine butyl ester hydrochloride (0.38 g, 2.10 mmol), and triethylamine (0.58 mL, 4.20 mmol) in pyridine (1.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.53 g, 2.45 mmol) and triphenylphosphine (0.64 g, 2.45 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated.
- Diisopropyl Phosphonate 55 A mixture of 4 (3.00 g, 7.66 mmol) and 10% Pd/C (0.60 g) in MeOH (30 mL) was stirred at room temperature under 1 atm of H2 (balloon) overnight. The reaction mixture was filtered through a plug of celite and the solvent was removed on rotavap.
- Phosphonic Acid 56 Diisopropyl phosphonate 55 (0.10 g, 0.28 mmol) was dissolved in CHsCN (1.5 mL) and cooled to 0 0 C. Bromotrimethylsilane (0.18 mL, 1.40 mmol) was added. The reaction mixture was stirred at O 0 C for 2 h and warmed to room temperature overnight. DMF (0.5 mL) was added to form a solution and stirred for 2 h. MeOH was added and stirred for 2 h. Volatiles were evaporated under reduced pressure. The remaining DMF solution was added slowly to ice-cold CH3CN and the product precipitated out. The solid was collected and dried under vacuum to give the phosphonic acid (74 mg, 95%) as a white solid.
- Example 51 Bisphosphonamidate 57: A mixture of phosphonic acid 56 (23 mg, 0.08 mmol), L- alanine n-butyl ester hydrochloride (91 mg, 0.50 mmol), and triethylamine (0.14 mL, 0.96 mmol) in pyridine (0.5 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.11 g, 0.56 mmol) and triphenylphosphine (0.12 g, 0.56 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated.
- Monophosphonamidate 58 A mixture of phosphonic acid 56 (20 mg, 0.07 mmol), L-phenylalanine ethyl ester hydrochloride (33 mg, 0.14 mmol), phenol (33 mg, 0.35 mmol) and triethylamine (0.12 mL, 0.84 mmol) in pyridine (0.5 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.11 g, 0.56 mmol) and triphenylphosphine (0.12 g, 0.56 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Example 53 Diisopropyl Phosphonate 59: A mixture of compound 4 (1.00 g, 2.56 mmol) and allylamine (3 mL) in CH3CN (3.0 mL) was placed in a scintillation vial and heated to 65°C for 5 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The product was partitioned between EtOAc and brine, dried with Na2SO4, filtered, and concentrated. The product was dissolved in minimal CH3CN and H2O was added and lyophilized to give the diisopropyl phosphonate (1.00 g, 95%).
- Phosphonic Acid 60 Diisopropyl phosphonate 59 (1.00 g, 2.43 mmol) was dissolved in CHsCN (1.5 mL) and cooled to 0°C. Bromotrimethylsilane (0.31 mL, 12.15 mmol) was added. The reaction mixture was stirred at O 0 C for 2 h and warmed to room temperature overnight. DMF (0.5 mL) was added to form a solution and stirred for 2 h. MeOH was added and stirred for 2 h. Volatiles were evaporated under reduced pressure. The remaining DMF solution was added slowly to ice-cold CH3CN and the product precipitated out. The solid was collected and dried under vacuum to give the phosphonic acid (0.48 g, 60%) as a white solid.
- Example 55 Diisopropyl phosphonate 59 (1.00 g, 2.43 mmol) was dissolved in CHsCN (1.5 mL) and cooled to 0°C. Bromotrimethylsilane
- Monophosphonamidate 61 and Bisphosphonamidate 62 A mixture of diacid 60 (0.40 g, 1.20 mmol), L-alanine isopropyl ester hydrochloride (0.49 g, 2.40 mmol), phenol (0.68 g, 7.20 mmol), and triethylamine (1.0 mL, 7.20 mmol) in pyridine (3.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (1.84 g, 8.40 mmol) and triphenylphosphine (2.20 g, 8.40 mmol) in pyridine (3.0 mL) was added to the above reaction mixture.
- Bisphosphonamidate 63 A mixture of phosphonic acid 60 (0.33 g, 1.00 mmol), L- alanine butyl ester hydrochloride (0.47 g, 2.60 mmol), and triethylamine (0.27 g, 2.60 mmol) in pyridine (5.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.77 g, 3.50 mmol) and triphenylphosphine (0.92 g, 3.50 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated.
- Example 57 relates to Scheme 17.
- Example 57 BisPOC of 6-allylPMEDAP 64 A mixture of phosphonic acid 60 (0.20 g, 0.61 mmol) and triethylamine (0.42 mL, 3.01 mmol) in l-methyl-2-pyrrolidinone (2.0 mL) was heated to 60 0 C for 30 nun. POCCl (0.45 g, 2.92 mmol) was added. The reaction mixture was stirred at 60 0 C for 3 h, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated
- Examples 58 to 61 relate to Scheme 18.
- Example 58 Bisphosphoamidate 65 A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L- alanine ethyl ester hydrochloride (0.1 g, 0.65 mmol), and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphoamidate 66 A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L- alanine cyclobutyl ester hydrochloride (0.33 g, 0.91 mmol), and triethylamine (0.50 mL, 3.59 mmol) in pyridine (2.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphoamidate 67 A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L- alanine w-hexyl ester hydrochloride (0.25 g, 1.21 mmol), and triethylamine (0.7 mL, 5.02 mmol) in pyridine (2.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated. The product was partitioned between
- Bisphosphoamidate 68 A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L-2- aminobutyric acid n-butyl ester hydrochloride (0.13 g, 0.64 mmol), and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphoamidate 69 A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L- phenylalanine ethyl ester hydrochloride (0.15 g, 0.65 mmol), and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphoamidate 70 A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L- phenylalanine n-butyl ester hydrochloride (0.15 g, 0.58 mmol), and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Example 64 Bisphosphoamidate 71: A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L- phenylalanine isobutyl ester hydrochloride (0.31 g, 1.20 mmol), and triethylamine (0.7 mL, 5.02 mmol) in pyridine (2.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithi ⁇ l (0.44 g, 2.00 mmol) and triphenylphosphine (0.53 g, 2.00 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Monophosphoamidate 72 A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L-alanine ethyl ester hydrochloride (32 mg, 0.20 mmol), phenol (50 mg, 0.53 mmol) and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Example 66 Monophosphoamidate 73: A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L-alanine n-butyl ester hydrochloride (39 mg, 0.21 mmol), phenol (50 mg, 0.53 mmol) and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Monophosphoamidate 74 A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L-alanine cyclobutyl ester hydrochloride (0.11 g, 0.61 mmol), phenol (0.13 g, 1.39 mmol) and triethylamine (0.5 mL, 3.59 mmol) in pyridine (2.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
- the reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- the product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure.
- Monophosphoamidate 75 A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L-alanine n-hexyl ester hydrochloride (0.13 g, 0.61 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.7 mL, 5.02 mmol) in pyridine (2.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0 mL) was . added to the above reaction mixture.
- the reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- the product was partitioned between EtOAc and saturated NaHCO 3 .
- the organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure.
- Examples 69 to 72 relate to Scheme 21.
- Example 69 Monophosphoamidate 76 A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L-2-aminobutyric acid n-butyl ester hydrochloride (42 mg, 0.21 mmol), phenol (50 mg, 0.53 mmol) and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture.
- Monophosphoamidate 77 A mixture of phosphonic acid 60 (35 mg, 0.11 mmol),
- Monophosphoamidate 78 A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L-phenylalanine w-butyl ester hydrochloride (55 mg, 0.21 mmol), phenol (50 mg, 0.53 mmol) and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Monophosphoamidate 79 A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L-phenylalanine isobutyl ester hydrochloride (0.16 g, 0.61 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.7 mL, 5.02 mmol) in pyridine (2.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
- the reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- the product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure.
- Monophosphoamidate 80 A mixture of monophosphonic acid 6 (0.10 g, 0.30 mmol), L-alanine cyclobutyl ester hydrochloride (0.11 g, 0.61 mmol), phenol (0.13 g, 1.4 mmol), and triethylamine (0.51 mL, 3.67 mmol) in pyridine (2 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0 mL) -was added to the above reaction mixture.
- the reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- the product was partitioned between EtOAc and saturated NaHCO 3 .
- the organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure.
- Example 74 Bisphosphoamidate 81: A mixture of phosphonic acid 6 (60 mg, 0.18 mmol), L- alanine cyclobutyl ester hydrochloride (0.13 g, 0.72 mmol), and triethylamine (0.31 mL, 2.16 mmol) in pyridine (1.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.28 g, 1.26 mmol) and triphenylphosphine (0.34 g, 1.26 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Bisphosphoamidate 82 A mixture of phosphonic acid 6 (60 mg, 0.18 mmol), L- alanine cyclopentyl ester hydrochloride (0.13 g, 0.72 mmol), and triethylamine (0.31 mL, 2.16 mmol) in pyridine (1.0 mL) was heated to 6O 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.28 g, 1.26 mmol) and triphenylphosphine (0.34 g, 1.26 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Example 76 Bisphosphoamidate 83: A mixture of phosphonic acid 6 (40 mg, 0.12 mmol), L- phenylalanine cyclobutyl ester hydrochloride (0.13 g, 0.48 mmol), and triethylamine (0.20 mL, 1.44 mmol) in pyridine (0.5 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.19 g, 0.85 mmol) and triphenylphosphine (0.22 g, 0.85 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated.
- Examples 77 and 78 relate to Scheme 23.
- Diisopropyl Phosphonate 84 A mixture of 4 (5.0 g, 12.82 mmol) and trifluoroethylamine (6.35 g, 64.10 mmol) in CH3CN (40 mL) was placed in a reaction bomb and heated to 80 0 C for 4 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The product was partitioned between 15% MeOH/CH-Cb. (3 x) and brine, dried with Na 2 SCk 7 filtered, and concentrated. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cl 2 ) followed by Gilson HPLC purification (CH3CN/H2O) to give 84 (3.26 g, 56%) as a pale yellow foam.
- Bisphosphoamidate 85 A mixture of phosphonic acid 42 (0.11 g, 0.29 mmol), L- alanine cyclobutyl ester hydrochloride (0.31 g, 1.75 mmol), and triethylamine (0.52 mL, 3.67 mmol) in pyridine (2.0 mL) was heated to 60 0 C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.12 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0 C overnight, cooled to room temperature, and concentrated. The product was partitioned between
- Example 79 This example teaches assays used to demonstrate antiproliferation activity.
- Human cancer cell lines used in anti-proliferation assays included six cervical carcinoma cell lines with three types of HPV (HFV-16, HPV-18, HPV-39), one HPV negative cervical carcinoma cell line, and two keratinocyte-like carcinoma from tongue.
- Normal human cells tested included skin keratinocytes, cervical keratinocytes, and lung fibroblasts. Skin keratinocytes and cervical keratinocytes were obtained from Cambrex (East Rutherford, NJ) and all other cells were obtained from American Type Culture Collection (Manassas, VA). Table 79-1 summarizes characteristics of each cell type and culture conditions.
- Anti-proliferation assay procedure 1 Cell culture
- sigmoidal dose-response curve was generated and 50% effective concentration (ECso) was calculated using GraphPad Prism version 4.01 for Windows (GraphPad Software, San Diego California USA).
- Medium for culture maintenance Eagle MEM with Earle's BSS (Cambrex, East Rutherford, NJ), supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 units/mL penicillin, and 100 ⁇ g/mL streptomycin.
- A2 Medium for antiproliferation assays: Eagle MEM with Earle's BSS, supplemented with 5% fetal bovine serum, 2 mM glutamine, 100 units/mL penicillin, and 100 ⁇ g/mL streptomycin.
- Bl Medium for culture maintenance: Keratinocyte-SFM (Invitrogen, Carlsbad, CA), supplemented with 0.01 mg/mL bovine pituitary extract, 0.001 ⁇ g/mL recombinant epidermal growth factor, 100 units/mL penicillin, and 100 ⁇ g/mL streptomycin.
- B2 Medium for antiproliferation assays: 4:1 mixture of Bl and A2.
- cprPMED AP is further metabolized to PMEG [Compton et al v 1999; Haste et al., 1999]. Antiproliferation ECso of these compounds in
- SiHa cells were much higher than those of the prodrugs (Table 79-2), indicating that attachment of amidate moieties improved potency. Furthermore, HEL/SiHa selectivity indices of cprPMED AP and PMEG were 17 and 4.1, respectively (Table 79-2), indicating that the prodrugs have better selectivity than cprPMED AP and cprPMEDAP has better selectivity than PMEG.
- PMEG is known to be phosphorylated to PMEGpp that acts as a chain-terminating inhibitor of cellular DNA polymerase [Compton et al., 1999; Haste et al., 1999].
- DNA polymerase inhibitors Four known DNA polymerase inhibitors
- Sidofovir Ara C, doxifluridine, and Aphidicolin
- other anticancer drugs with different mechanisms of action, including DNA topoisomarase inhibitors (Dacarbazine, Ellipticine), DNA alkylaters (Doxorubicin, Mitoxantrone, Bleomycin, Mechlorethanmine), and tublin inhibitors (Vincristine, Vinblastine, Etoposide, and Indanocine) were tested in SiHa and HEL cells (Table 79-2). Antiproliferation ECsoof these compounds in SiHa cells varied, and some were equally or more potent than the seven amidate prodrugs.
- anti-proliferation assays were performed using primary human keratinocytes, isolated from skin (PHK) and cervix (CK).
- Antiproliferation EC50 values obtained with the seven prodrugs in PHK and CK were lower than those in HEL, indicating that keratinocytes are more susceptible than fibroblasts (Table 79-2 and 79-3). Nonetheless, PHK/SiHa and CK/SiHa selectivity indices of these prodrugs and cprPMEDAP were still better than I the control compounds PMEG and a DNA polymerase inhibitor AraC (Table 79-3).
- the prodrugs preferentially inhibited proliferation of HPV-16 positive SiHa cells, compared with normal keratinocytes from skin and cervix.
- the seven prodrugs were then tested in five additional cell lines derived from HPV-induced cervical carcinoma (listed in Table 79-1) in antiproliferation assays and data are shown in Table 4 along with SiHa data.
- SiHa, C-4I, and MS751 cells all compounds except Compound C showed sub-low nM antiproliferation ECso.
- CaSki, HeLa, and ME-180 all compounds were significantly less potent, with ECso ranging 7.8 - 410 nM.
- the control compound AraC DNA polymerase inhibitor
- Antiproliferation assays measure effect of compounds on proliferation of cultured cells. Active compounds in antiproliferation assays may be cytostatic (inhibit cell division) and/or cytocidal (kill cells). By performing antiproliferation assays using HPV positive carcinoma cells and normal cells, we identify compounds that selectively inhibit proliferation of HPV positive carcinoma cells compared with cells from normal human tissues. Table 80-1 summarizes characteristics of each cell type, including six cervical carcinoma cell lines transformed by HPV, normal human skin keratinocytes (PHK), and normal lung fibroblasts (HEL). Skin keratinocytes were obtained from Cambrex (East Rutherford, NJ). All other cells were obtained from American Type Culture Collection (Manassas, VA).
- Intensity of the color was quantified by measuring the absorbance at 510 nm wavelength, using spectrophotometer.
- GraphPad Prism version 4.00 for Windows GraphPad Software, San Diego California USA
- caspase activity can be quantitatively detected using fluorescent substrate.
- Compounds that directly act on the apoptotic pathway may induce caspase in a relatively short incubation period ( ⁇ 24 hrs).
- Compounds that disturb other cell physiology, which eventually causes apoptosis may require longer incubation period (>48 hrs) for induction of caspase.
- Translocation of phosphatidylserine from the inner of the cell membrane to the outside is one of the early / intermediate events associated with apoptosis or programmed cell death.
- Translocated phosphatidylserine can be detected by incubating cells with FITC-labelled Annexin V, which is a Ca++ dependent phospholipid-binding protein.
- Annexin V is a Ca++ dependent phospholipid-binding protein.
- HPV-16 SiHa cells were cultured with three different concentrations of compounds for 3 or 7 days and simultaneously stained with Annexin-FITC and propidium iodide. Staining of each individual cell was examined by flow cytometry.
- Representative compounds of the present invention showed detectable levels of antiproliferation activity in SiHa cells, with 50% effective concentration (ECso) less than 25,000 nM. Active compounds were also tested in HEL cells. In all cases, ECso in HEL cells were higher than ECso in SiHa cells, indicating that the active compounds inhibited proliferation of SiHa cells more efficiently than HEL cells.
- Other nucleotide/nucleoside analogs such as PMEG (2-phosphonomethoxyethyl guanine), Ara-C (cytarabine, CAS# 147-94- 4), and gemcitabine (CAS# 95058-81-4) did not show such selectivity.
- Podofilox (CAS# 518-28-5), the active ingredient of the anti-wart drug Condylox, also showed no selectivity.
- prodrug compounds of the present invention such as those listed in Table 80-3 show activities. In most cases, the prodrugs were more potent and in some cases, more selective than their respective parent compounds. The majority of phosphoamidate prodrugs were more active and selective than podofilox.
- Selected compounds were also tested in five additional cell lines derived from HPV-induced cervical carcinoma (see Example 79 and Table 80-4). Each compound showed different levels of activities in the six HPV+ cell lines, regardless the type of HPV present. In general, compounds were more potent in SiHa (HPV-16), C-4I (HPV-18), and MS751 (HPV-18) cells than in CaSki (HPV-16), HeLa (HPV-18), and ME-180 (HPV-39) cells.
- a representative compound of the present invention was tested for induction of apoptosis in SiHa cells.
- cells were incubated for 72 hrs (solid bars), significant dose responsive induction of caspase was observed, indicating that the compound induced apoptosis (Figure 80-1).
- Induction of caspase was less obvious with 48 hr incubation (shaded bars) and was not observed with 24 hr incubation (data not shown).
- PMEG, N6-cyclopropyl PMEDAP, and a representative compound of the present invention were tested at three different concentrations, for induction of apoptosis in SiHa cells, using Annexin V-Propidium iodide double staining method. With all three compounds, a greater percentage of apoptotic cells were observed on day 7 than day 3.
- the aforementioned representative compound of the present invention was the most active in inducing apoptosis; on day 7, 63.8% of cells in the culture treated with 0.2 ⁇ g/m of this compound were apoptotic. In contrast, cultures treated with 0.2 ⁇ g/mL PMEG and 0.5 ⁇ g/mL N6-cyclopropyl PMEDAP only had 1.2 % and 15.9 % of apoptotic cells, respectively.
- A1 Medium for culture maintenance: Eagle MEM with Earle's BSS (Cambrex, East Rutherford, NJ), supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 units/mL penicillin, and 100 ug/mL streptomycin.
- A2 Medium for antiproliferation assays: Eagle MEM with Earle's BSS, supplemented with 5% fetal bovine serum, 2 mM glutamine, 100 units/mL penicillin, and 100 ⁇ g/mL streptomycin.
- B1 Medium for culture maintenance: Keratinocyte-SFM (Invitrogen, Carlsbad, CA), supplemented with 0.01 mg/mL bovine pituitary extract, 0.001 ⁇ g/mL recombinant epidermal growth factor, 100 units/mL penicillin, and 100 ⁇ g/mL streptomycin.
- B2 Medium for antiproliferation assays: 4:1 mixture of B1 and A2.
- R X1 is hydrogen
- R* 2 is one of the following substituents, except in the indicated instances (*), where R XI and R* 2 together forms a N-heterocyclic ring.
- AIa-Bu AIa-Bu Table 80-4 Antiproliferation activities of N6-cycloprolyl PMEDAP and its phosphoamidate prodrugs in six different HPV positive cells
- the vehicle, positive control articles, and test articles were administered dermally once daily for seven days during the study.
- the test articles were administered at concentrations of 0.01, 0.03, and 0.1%.
- the positive control articles were administered at concentrations of 0.1% (PMEG) or 1% (Cidofovir®).
- the dose volume for all formulations was a fixed volume of lOO ⁇ L.
- test sites for each animal were shaved prior to the initial administration and as needed during the study. Two sites were clipped on the left dorsal side, and three were clipped on the right dorsal side. The outline of each dosing (approximately 1 square inch each) was marked with indelible ink. The total clipped area comprised no less than 10% of the total body surface of each animal.
- vehicle and appropriate positive control and test article were administered to each animal within a dosing site of approximately 1 square inch. Vehicle was administered on the left rostral site (Dose Site 1), and the appropriate positive control article was administered to the left caudal site (Dose Site 2).
- test article was administered as follows: 0.01% to the right rostral site (Dose Site 3), 0.03% to the right middle site (Dose Site 4), and 0.1% to the right caudal site (Dose Site 5). Collars were placed on the animals immediately following dosing for 1 to 2 hours.
- the sites were evaluated for erythema and edema prior to dosing on Day 1 and daily thereafter, approximately 24 hours following each dose and prior to the next dose.
- Each site was assigned an irritation score based upon the Draize scale for scoring skin irritation (Draize JH, Woodard G, Calvery HO, Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 1944;82:377-90). Observations for mortality, morbidity, and the availability of food and water were conducted twice daily for all animals. Detailed clinical examinations were conducted prior to randomization, prior to dosing on Day 1, and daily thereafter. Body weights were measured and recorded the day after arrival, prior to randomization, and prior to dosing on Days 1, 3, and 7.
- Euthanasia was by intravenous anesthesia overdose with sodium pentobarbital- based euthanasia solution and exsanguinations by severing the femoral vessels.
- the animals were examined carefully for external abnormalities including masses.
- the skin was reflected from a ventral midline incision and any abnormalities were identified and correlated with ante-mortem findings.
- the abdominal, thoracic, and cranial cavities were examined for abnormalities and the organs removed, examined, and, where required, placed in neutral buffered formalin.
- the dosing sites, kidneys, and any gross lesions of each animal were collected and preserved. Microscopic examination of fixed hematoxylin and eosin-stained paraffin sections were performed for each dosing site for all animals.
- the slides were examined by a veterinary pathologist.
- a four-step grading system was utilized to define gradable lesions for comparison between dose groups.
- the two test articles did not produce notable clinical findings, dermal irritation, changes in body weight or macroscopic and microscopic observations at any dose concentrations.
- One of the positive controls was associated with clinical findings and slight to moderate macroscopic and microscopic observations.
- the test and control articles were administered dermally once per day for 7 consecutive days during the study.
- the dose levels for Compound B were 0.03, 0.1, and 0.3%.
- the dose levels for Compound H were 0.03, 0.1, and 0.3%.
- the dose level for PMEG positive control
- the dose level for cPrPMEDAP positive control
- the dose level for the vehicle control was 0.0% (this was dosed as both gel and ointment formulations).
- the dose volume for all sites was a constant lOO ⁇ L. Less than 24 hours prior to the first administration, the hair was clipped from the back of the animal. This clipped area comprised no less than 10% of the total body surface area. Care was taken to avoid abrading the skin.
- the test, positive control, and vehicle control articles were administered within a dosing site of approximately 1" x 1". Two dosing sites were placed along the left dorsal surface. The vehicle or positive control article was administered to the rostral site, and the low dose of the test article was administered to the caudal site. Two dosing sites were placed along the right dorsal surface. The mid-dose of the test article was administered to the rostral site, and the high dose of the test article was administered to the caudal site. Collars were placed on the animals for approximately two hours immediately following dosing. The duration of collaring was documented in the raw data.
- Observations for mortality, morbidity, and the availability of food and water were conducted twice daily for all animals.
- the test sites were evaluated for erythema and edema prior to the first administration and at approximately 24 hours following each administration (prior to the next scheduled dosing) and daily during the 7- day recovery period.
- Observations for clinical signs were conducted daily during the study at the same time as the dermal observations.
- Body weights were measured and recorded the day after receipt, prior to randomization, prior to test article administration on Day 1, and on Days 7 and 14, and at necropsy (Days 8 and 15). Body weights taken at receipt and prior to random are not reported, but maintained in the study file.
- Blood samples (4-6 mL) will be collected from 6 animals/group at termination and 3 animals/group at recovery from the jugular or other suitable vein for evaluation of clinical pathology- parameters.
- Additional blood samples (approximately ImL) were taken from all animals from the jugular or other suitable vein for determination of the plasma concentrations of the test article at approximately 2 hours postdose on Day 7. Samples were placed in tubes containing potassium EDTA and stored on an ice block until centrifuged. Animals were not fasted before blood collection. Samples were stored at -70° until examination.
- the skin was reflected from a ventral midline incision and any abnormalities were identified and correlated with antemortem findings.
- the abdominal, thoracic, and cranial cavities were examined for abnormalities and the organs removed, examined, and, where required, placed in neutral buffered formalin. Microscopic examination of fixed hematoxylin and eosin-stained paraffin sections was performed on sections of tissues from the dosing sites (4 per animal), kidneys, and any gross lesions.
- the order of dose site removal was vehicle or positive control site, low dose site, mid-dose site, and high dose site.
- a 1 cm 2 tissue was excised from each dose site.
- the tissue sample was weighted and recorded.
- the skin punches were minced with clean scissors in individual appropriately sized scintillation vials.
- Cold phosphate-buffered saline (5mL) was added to the scintillation vial.
- the tissue was then homogenized with 20 second pulses using a mechanical homogenizer. The homogenates were quickly frozen at approximately -2O 0 C.
- test articles were non-irritating in the vehicle gel, but was a mild to moderate irritant in the vehicle ointment.
- the second test article was a very slight irritant in the vehicle gel and a mild irritant when formulated in the vehicle ointment.
- a topical gel composition is prepared having the following composition:
- a topical ointment composition is prepared having the following composition:
- Isopropyl mysritate (solvent/cosolvent/penetration enhancer), Polyethylene glycols, Triacetin (solvents),
- Representative compounds of the present invention were screened for antiproliferative activity of compounds in three HPV negative SCC cell lines. All compounds showed antiproliferative activity, suggesting that the compounds may also be useful for non-HPV proliferative lesions, such as AK, BCC, and SCC.
- Intensity of the color was quantified by measuring the absorbance at 510 nm wavelength, using spectrophotometer.
- GraphPad Prism version 4.00 for Windows GraphPad Software, San Diego California USA
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Compounds and compositions of Formula (I) are described, useful as anti- proliferative agents, and in particular anti-nonmelanoma carcinoma agents, wherein: Y1A and Y1B are independently Y1; RX1 and RX2 are independently RX; Y1 is =O, -O(RX), =S, -N(RX), -N(O)(RX), -N(ORX), -N(O)(ORX), or -N(N(RX)( RX)); RX is independently R1, R2, R4, W3, or a protecting group; R1 is independently -H or alkyl of 1 to 18 carbon atoms; R2 is independently R3 or R4 wherein each R4 is independently substituted with 0 to 3 R3 groups or taken together at a carbon atom, two R2 groups form a ring of 3 to 8 carbons and the ring may be substituted with 0 to 3 R3 groups; R3 is R3a, R3b, R3c or R3d, provided that when R3 is bound to a heteroatom, then R3 is R3c or R3d; R3a is -H, -F, -CI, -Br, -I, -CF3, -CN, N3, -NO2, or -OR4; R3b is =O, -O(R4), =S, -N(R4), -N(O)(R4), -N(OR4), -N(O)(OR4), or -N(N(R4) (R4)); R3c is - R4, -N(R4)(R4), -SR4, -S(O)R4, -S(O)2R4, -S(O)(OR4), -S(O)2(OR4), - OC(R3b)R4, OC(R3b)OR4, -OC(R3b)(N(R4)(R4)), -SC(R3b)R4, -SC(R3b)OR4, - SC(R3b)(N(R4)(R4)), -N(R4)C(R3b)R4, -N(R4)C(R3b)OR4, -N(R4)C(R3b)(N(R4)(R4)), W3 -or R5W3 ; R3d is -C(R3b)R4, -C(R3b)OR4, -C(R3b)W3, -C(R3b)OW3 or -C(R3b)(N(R4)(R4)); R4 is -H, or an alkyl of 1 to 18 carbon atoms, alkenyl of 2 to 18 carbon atoms, or alkynyl of 2 to 18 carbon atoms; R5 is alkylene of 1 to 18 carbon atoms, alkenylene of 2 to 18 carbon atoms, or alkynylene of 2 to 18 carbon atoms; W3 is W4 or W5; W4 is R6, -C(R3b)R6, -C(R3b)W5, -SOM2R6, or -SOM2W5, wherein R6 is R4 wherein each R4 is substituted with 0 to 3 R3 groups; W5 is carbocycle or heterocycle wherein W5 is independently substituted with 0 to 3 R2 groups; and M2 is 0, 1 or 2; and pharmaceutically acceptable salts thereof.
Description
ANTI-NONMELANOMA CARCINOMA COMPOUNDS, COMPOSITIONS, AND
METHODS OF USE THEREOF
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to compounds and compositions and methods of use thereof, useful for treating non-melanoma skin cancers, in particular basal cell carcinoma, squamous cell carcinoma and actinic keratosis.
Background
Incidence of skin cancer is increasing world-wide. About 79% of the new skin cancer cases will be basal cell carcinoma (BCC), 15% are squamous cell carcinoma (SCC), and 5% are invasive melanoma. BCC and SCC are curable diseases, if detected and treated early. Actinic keratosis (AK) is the earliest identifiable lesion that can develop into squamous cell carcinoma. AK is one of
the most frequently diagnosed diseases by dermatologists, consisting of 14% of all patient visits. In various Northern hemisphere populations, 11-25% of adults have at least one AK lesion.
AK, BCC, and SCC are characterized by abnormal proliferation of cells in skin epidermis. Such cells lose normal cell cycle control and show altered gene expression, because of mutations in cell cycle regulating gene(s) caused by UV- induced DNA damages after excessive exposure to sunlight. AK and early stages of BCC and SCC can be treated by topical cytotoxic agent 5-f luorouracil cream or topical immune modulatory agent imiquimod. Alternatively, cryotherapy or various methods of minor surgery is used to remove the proliferative lesion from the skin.
However, despite these methods of therapy, there remains a large unmet need for more effective treatment of AK, BCC or SCC. It has now been surprisingly discovered compounds that meet this need, and provide other benefits as well.
SUMMARY OF THE INVENTION
A compound of formula I,
Y1A and YαB are independently Y1;
RX1 and W2 are independently Rx;
Y1 is O, -O(RX), =S, ~N(RX), -N(O)(RX), ~N(ORX), -N(O)(ORX)/ or -N(N(RX) (R*));
Rx is independently R1, R2, R4, W3, or a protecting group;
R1 is independently -H or alkyl of 1 to 18 carbon atoms;
R2 is independently R3 or R4 wherein each R4 is independently substituted with 0 to 3 R3 groups or taken together at a carbon atom, two R2 groups form a ring of 3 to 8 carbons and the ring may be substituted with 0 to 3 R3 groups;
R3 is R3a, R3b, R3c or R3d, provided that when R3 is bound to a heteroatom, then R3 is R3c or R3d;
R3a is -H, -F, -Cl, -Br, -I, -CFs, -CN7 Ns, -NCX or -OR4;
R3b is =O, -O(R4), =S, -N(R4), -N(O)(R4), -N(OR4), -N(O)(OR*), or -N(N(R4) ( R4));
R3c is -R4, -N(R4)(R4), -SR4, -S(O)R4, -S(O)2R4, -S(O)(OR4), -S(O)2(OR4), -OC(R3b)R4, -OC(R3b)OR4, -OC(R3b)(N(R4)(R4)), -SC(R3b)R4, -SC(RSb)OR4, -SC(R3b)(N(R4)(R4)), -N(R4)C(R3b)R4, -N(R4)C(R3b)OR4, -N(R4)C(R3b)(N(R4)(R4)), W3 or -R5W3 ; R3d is -C(R3b)R4, -C(R3b)OR4, -C(R3b)W3, -C(R3b)OW3 or -C(R3b)(N(R4)(R4));
R4 is -H, or an alkyl of 1 to 18 carbon atoms, alkenyl of 2 to 18 carbon atoms, or alkynyl of 2 to 18 carbon atoms;
R5 is alkylene of 1 to 18 carbon atoms, alkenylene of 2 to 18 carbon atoms, or alkynylene of 2 to 18 carbon atoms; W3 is W4 or W5;
W4 is R6, -C(R3b)R6, -C(R3b)W5, -SOrf, or -SOM2W5, wherein R6 is R4 wherein each R4 is substituted with O to 3 R3 groups;
W5 is carbocycle or heterocycle wherein W5 is independently substituted with 0 to 3 R2 groups; and
M2 is 0, 1 or 2; and pharmaceutically acceptable salts thereof.
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a compound of the formula,
wherein:
RX1 ^ RX2
P ^N'
A is S ^ > ' ^ > or '^ ^
Y1A and Y1B are independently Y1; RX1 and RX2 are independently Rx;
Y1 is O, -O(RX), =S, -N(RX), -N(O)(RX), -N(ORX)7 -N(O)(ORx)r or -N(N(RX)( Rx));
Rx is independently R1, R2, R4, W3, or a protecting group; R1 is independently -H or alkyl of 1 to 18 carbon atoms; R2 is independently R3 or R4 wherein each R4 is independently substituted with 0 to 3 R3 groups or taken together at a carbon atom, two R2 groups form a ring of 3 to 8 carbons and the ring may be substituted with 0 to 3 R3 groups;
R3 is R3a, R3b, R3c or R3d, provided that when R3 is bound to a heteroatom, then R3 is R3c or R3d;
R3a is -H, -F7 -Cl, -Br, -I, -CFa, -CN7 Ns, -NQ2, or -OR4;
R3b is =O/ -O(R4)7 =S, -N(R4), -N(O)(R4), -N(OR4)7 -N(O)(OR4)7 or -N(N(R4) ( R4));
R3c is -R4, -N(R4XR4), -SR4, -S(O)R4, -S(O)2R4, -S(O)(OR4), -S(O)2(OR4), -OC(R3b)R4, -OC(R3b)OR4, -OC(R3b)(N(R4)(R4)), -SC(R3b)R4, -SC(R3b)OR4, -SC(R3b)(N(R4)(R4)), -N(R4)C(R3b)R4, -N(R4)C(R3b)OR4, -N(R4)C(R3b)(N(R4)(R4)), W3 or -R5W3 ; R3d is -C(R3b)R4, -C(R3b)OR4, -C(R3b)W3, -C(R3b)OW3 or -C(R3b)(N(R4)(R4));
R4 is -H, or an alkyl of 1 to 18 carbon atoms, alkenyl of 2 to 18 carbon atoms, or alkynyl of 2 to 18 carbon atoms;
R5 is alkylene of 1 to 18 carbon atoms, alkenylene of 2 to 18 carbon atoms, or alkynylene of 2 to 18 carbon atoms; W3 is W4 or W5;
W4 is R6, -C(R3b)R6, -C(R3b)W5, -SOM2R6, or -SOM2W5, wherein R6 is R4 wherein each R4 is substituted with 0 to 3 R3 groups;
W5 is carbocycle or heterocycle wherein W5 is independently substituted with 0 to 3 R2 groups; and M2 is 0, 1 or 2; and pharmaceutically acceptable salts thereof.
I wherein:
Y1A and Y1B are independently Y1; RX1 and R*2 are independently Rx;
Y1 is O7 -O(RX), =S, -N(RX), -N(O)(RX), -N(ORX), -N(O)(OR*), or -N(N(RX)( Rx));
Rx is independently R1, R2, R4, W3, or a protecting group;
R1 is independently -H or alkyl of 1 to 18 carbon atoms; R2 is independently R3 or R4 wherein each R4 is independently substituted with 0 to 3 R3 groups or taken together at a carbon atom, two R2 groups form a ring of 3 to 8 carbons and the ring may be substituted with 0 to 3 R3 groups;
R3 is R3a, R3b, R3c or R3d, provided that when R3 is bound to a heteroatom, then R3 is R3c or R3d; R3a is -H, -F, -Cl, -Br, -I, -CF3, -CN, N3, -NO2, or -OR4;
Ra is =o, -O(R4), =S, -N(R4), -N(O)(R4), -N(OR4), -N(O)(OR4), or -N(N(R4X R4));
R3 C is _R4 7 -N(R4)(R4), -SR4, -S(O)R4, -S(O)2R4, -S(O)(OR4), -S(O)2(OR4), -OC(R3b)R4, -OC(R3b)OR4, -OC(R3b)(N(R4)(R4)), -SC(R3b)R4, -SC(R3b)OR4, -SC(R3b)(N(R4)(R4)), -N(R4)C(R3b)R4, -N(R4)C(R3b)OR4, -N(R4)C(R3b)(N(R4)(R4)), W3 or -R5W3 ;
R3d is -C(R3b)R4, -C(R3b)OR4, -C(R3b)W3, -C(R3b)OW3 or -C(R3b)(N(R4)(R4));
R4 is -H, or an alkyl of 1 to 18 carbon atoms, alkenyl of 2 to 18 carbon atoms, or alkynyl of 2 to 18 carbon atoms;
R5 is alkylene of 1 to 18 carbon atoms, alkenylene of 2 to 18 carbon atoms, or alkynylene of 2 to 18 carbon atoms;
W3 is W4 or W5;
W4 is R6, -C(R3b)R6, -C(R31OW5, -SOM2R6/ or -SOM2W5, wherein R6 is R4 wherein each R4 is substituted with 0 to 3 R3 groups;
W5 is carbocycle or heterocycle wherein W5 is independently substituted with 0 to 3 R2 groups; and
M2 is 0, 1 or 2; and pharmaceutically acceptable salts thereof. An embodiment of the present invention provides a compound of the
Formula IA,
An embodiment of the present invention provides a compound of the
Formula IB,
where Y1A and Y1B are as defined above.
An embodiment of the present invention provides a compound of the Formula IQ
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula.,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula, l
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
An embodiment of the present invention provides a compound of the formula,
In other embodiments, the present invention provides the 2-propenyl (allyl) and 2-propynyl (propargyl) compounds in Table 1-1 below.
Table 1-1
In some embodiments of the present invention the alkyl groups of Y1A and Y1B have 1 to 18 carbon atoms. In other embodiments the alkyl groups have 1 to 6 carbon atoms. An embodiment of the present invention provides a compound useful as an antiproliferative agent.
An embodiment of the present invention provides a compound useful as an apoptotic agent.
An embodiment of the present invention provides a compound useful as an anti-nonmelanoma carcinoma agent.
An embodiment of the present invention provides a compound useful as an anti-AK, anti-BCC or anti-SCC agents.
An aspect of the present embodiment provides a compound useful as a topical anti-AK, anti-BCC or anti-SCC agent. An embodiment of the present invention provides a pharmaceutical composition comprising an effective amount of a compound of Formula 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
An aspect of the present embodiment provides a pharmaceutical composition, where the composition is a gel composition.
Another aspect of the present embodiment provides a pharmaceutical composition, where the composition is an ointment composition. , An embodiment of the present invention provides a pharmaceutical composition comprising an effective amount of a compound of Formula 1 or a pharmaceutically acceptable salt thereof, and an effective amount of at least one antiviral agent, and a pharmaceutically acceptable carrier.
An aspect of the present embodiment provides a pharmaceutical composition, where the composition is a gel composition.
Another aspect of the present embodiment provides a pharmaceutical composition, where the composition is an ointment composition.
Definitions The term "PMEG" refers to the compound 9~(2- phosphonylmethoxyethyl)guanine,
The term "PMEDAP" refers to the compound 9-(2- phosphonylmethoxyethyl)-2,6-diaminopurine,
The term "cprPMEDAP" refers to the compound 9-(2- phosphonylrnethoxyethyl)-2-amino-6-(cyclopropyl)purine/
"Bioavailability" is the degree to which the pharmaceutically active agent becomes available to the target tissue after the agent's introduction into the body. Enhancement of the bioavailability of a pharmaceutically active agent can provide a more efficient and effective treatment for patients because, for a given dose, more of the pharmaceutically active agent will be available at the targeted tissue sites. The terms "phosphonate" and "phosphonate group" include functional groups or moieties within a molecule that comprises a phosphorous that is 1) single-bonded to a carbon, 2) double-bonded to a heteroatom , 3) single-bonded to a heteroatom, and 4) single-bonded to another heteroatom, wherein each heteroatom can be the same or different. The terms "phosphonate" and "phosphonate group" also include functional groups or moieties that comprise a phosphorous in the same oxidation state as the phosphorous described above, as well as functional groups or moieties that comprise a prodrug moiety that can separate from a compound so that the compound retains a phosphorous having the characteristics described above. For example, the terms "phosphonate" and "phosphonate group" include phosphonic acid, phosphonic monoester, phosphonic diester, phosphonamidate, and phosphonthioate functional groups. In one specific embodiment of the invention, the terms "phosphonate" and "phosphonate group" include functional groups or moieties within a molecule
that comprises a phosphorous that is 1) single-bonded to a carbon, 2) double- bonded to an oxygen, 3) single-bonded to an oxygen, and 4) single-bonded to another oxygen, as well as functional groups or moieties that comprise a prodrug moiety that can separate from a compound so that the compound retains a phosphorous having such characteristics. In another specific embodiment of the invention, the terms "phosphonate" and "phosphonate group" include functional groups or moieties within a molecule that comprises a phosphorous that is 1) single-bonded to a carbon, 2) double-bonded to an oxygen, 3) single-bonded to an oxygen or nitrogen, and 4) single-bonded to another oxygen or nitrogen, as well as functional groups or moieties that comprise a prodrug moiety that can separate from a compound so that the compound retains a phosphorous having such characteristics.
Recipes and methods for determining stability of compounds in surrogate gastrointestinal secretions are known. Compounds are defined herein as stable in the gastrointestinal tract where less than about 50 mole percent of the protected groups are deprotected in surrogate intestinal or gastric juice upon incubation for 1 hour at 37°C. Such compounds are suitable for use in tills embodiment. Note that simply because the compounds are stable to the gastrointestinal tract does not mean that they cannot be hydrolyzed in vivo. Prodrugs typically will be stable in the digestive system but are substantially hydrolyzed to the parental drug in the digestive lumen, liver or other metabolic organ, or within cells in general. The compounds of the invention can also exist as tautomeric isomers in certain cases. For example, ene-amine tautomers can exist for imidazole, guanidine, amidine, and tetrazole systems and all their possible tautomeric forms are within the scope of the invention.
The term "prodrug" as used herein refers to any compound that when administered to a biological system generates the drug substance, i.e. active ingredient, as a result of spontaneous chemical reaction(s); enzyme catalyzed
chemical reaction(s), photolysis, and/or metabolic chemical reaction(s). A prodrug is thus a covalently modified analog or latent form of a therapeutically-active compound.
"Prodrug moiety" refers to a labile functional group which separates from the active inhibitory compound during metabolism, systemically, inside a cell, by hydrolysis/ enzymatic cleavage, or by some other process (Bundgaard, Hans, "Design and Application of Prodrugs" in A Textbook of Drug Design and Development (1991), P. Krogsgaard-Larsen and H. Bundgaard, Eds. Harwood Academic Publishers, pp. 113-191). Enzymes which are capable of an enzymatic activation mechanism with the phosphonate prodrug compounds of the invention include, but are not limited to, amidases, esterases, microbial enzymes, phospholipases, cholinesterases, and phosphases. Prodrug moieties can serve to enhance solubility, absorption and lipophilicity to optimize drug delivery, bioavailability and efficacy. A prodrug moiety may include an active metabolite or drug itself.
Exemplary prodrug moieties include the hydrolytically sensitive or labile acyloxymethyl esters -CH2OC(=O)R and acyloxymethyl carbonates -CH2OQ=O)OR where R in this instance is Ci-Ce alkyl, Ci-Ce substituted alkyl, C6-C20 aryl or C6-C20 substituted aryl. The acyloxyalkyl ester was first used as a prodrug strategy for carboxylic acids and then applied to phosphates and phosphonates by Farquhar et al. (1983) /. Pharm. Sd 72: 324; also US Patent Nos. 4816570, 4968788, 5663159 and 5792756. Subsequently, the acyloxyalkyl ester was used to deliver phosphonic acids across cell membranes and to enhance oral bioavailability. A close variant of the acyloxyalkyl ester, the alkoxycarbonyloxyalkyl ester (carbonate), may also enhance oral bioavailability as a prodrug moiety in the compounds of the combinations of the invention. An exemplary acyloxymethyl ester is isopropylcarbonyloxymethoxy, -OCH2OC(=O)C(CH3)2. An exemplary acyloxymethyl carbonate prodrug moiety
is isopropylcarbonyloxymethyl carbonate, HOC(=O)OCH2θC(=O)C(CH3)2.
The phosphonate group may be a phosphonate prodrug moiety. The prodrug moiety may be sensitive to hydrolysis, such as, but not limited to a isopropylcarbonyl-oxymethoxy or isopropylcarbonyloxymethyl carbonate group. Alternatively, the prodrug moiety may be sensitive to enzymatic potentiated cleavage, such as a lactate ester or a phosphonamidate-ester group.
Aryl esters of phosphorus groups, especially phenyl esters, are reported to enhance oral bioavailability (De Lombaert et al. (1994) /. Med. Chem. 37:498). Phenyl esters containing a carboxylic ester ortho to the phosphate have also been described (Khamnei and Torrence, (1996) /. Med. Chem. 39:4109-4115). Benzyl esters are reported to generate the parent phosphonic acid. In some cases, substituents at the ortho-ox pαra-position may accelerate the hydrolysis. Benzyl analogs with an acylated phenol or an alkylated phenol may generate the phenolic compound through the action of enzymes, e.g., esterases, oxidases, etc., which in turn undergoes cleavage at the benzylic C-O bond to generate the phosphoric acid and the quinone methide intermediate. Examples of this class of prodrugs are described by Mitchell et al. (1992) /. Chem. Soc. Perkin Trans. IT 2345; Glazier WO 91/19721. Still other benzylic prodrugs have been described containing a carboxylic ester-containing group attached to the benzylic methylene (Glazier WO 91/19721). Thio-containing prodrugs are reported to be useful for the intracellular delivery of phosphonate drugs. These proesters contain an ethylthio group in which the thiol group is either esterified with an acyl group or combined with another thiol group to form, a disulfide. Deesterification or reduction of the disulfide generates the free thio intermediate which subsequently breaks down to the phosphoric acid and episulfide (Puech et al. (1993) Antiviral Res., 22: 155-174; Benzaria et al. (1996) /. Med. Chem. 39: 4958). Cyclic phosphonate esters have also been described as prodrugs of phosphorus-containing compounds (Erion et al., US Patent No. 6312662).
"Protecting group" refers to a moiety of a compound that masks or alters the properties of a functional group or the properties of the compound as a whole. Chemical protecting groups and strategies for protection/deprotection are well known in the art. See e.g., Protective Groups in Organic Chemistry, Theodora W. Greene, John Wiley & Sons, Inc., New York, 1991. Protecting groups are often utilized to mask the reactivity of certain functional groups, to assist in the efficiency of desired chemical reactions, e.g., making and breaking chemical bonds in an ordered and planned fashion. Protection of functional groups of a compound alters other physical properties besides the reactivity of the protected functional group, such as the polarity, lipophilicity (hydrophobicity), and other properties which can be measured by common analytical tools. Chemically protected intermediates may themselves be biologically active or inactive. Protected compounds may also exhibit altered, and in some cases, optimized properties in vitro and in vivo, such as passage through cellular membranes and resistance to enzymatic degradation or sequestration. In this role, protected compounds with intended therapeutic effects may be referred to as prodrugs.
Another function of a protecting group is to convert the parental drug into a prodrug, whereby the parental drug is released upon conversion of the prodrug in vivo. Because active prodrugs may be absorbed more effectively than the parental drug, prodrugs may possess greater potency in vivo than the parental drug. Protecting groups are removed either in vitro, in the instance of chemical intermediates, or in vivo, in the case of prodrugs. With chemical intermediates, it is not particularly important that the resulting products after deprotection, e.g., alcohols, be physiologically acceptable, although in general it is more desirable if the products are pharmacologically innocuous.
Any reference to any of the compounds of the invention also includes a reference to a physiologically acceptable salt thereof. Examples of physiologically
acceptable salts of the compounds of the invention include salts derived from an appropriate base, such as an alkali metal (for example, sodium), an alkaline earth (for example, magnesium), ammonium and NX4+ (wherein X is C1-C4 alkyl). Physiologically acceptable salts of an hydrogen atom or an amino group include salts of organic carboxylic acids such as acetic, benzoic, lactic, fumaric, tartaric, maleic, malonic, malic, isethionic, lactobionic and succinic acids; organic sulfonic acids, such as methanesulfonic, ethanesulfonic, benzenesulfonic and p- toluenesulfonic acids; and inorganic acids, such as hydrochloric, sulfuric, phosphoric and sulfamic acids. Physiologically acceptable salts of a compound of a hydroxy group include the anion of said compound in combination with a suitable cation such as Na+ and NX4+ (wherein X is independently selected from H or a Ci-Q alkyl group).
As used herein, the term "gel" refers to semisolid systems consisting of either suspensions made up of small inorganic particles or large organic molecules enclosing and interpenetrated by a liquid. Where the gel mass consists of floccules of small particles, the gel is classified as a two-phase system and is t sometimes called a ma'gma. Aluminum Hydroxide Gel and Bentonite Magma are examples of two-phase systems. Single-phase gels consist of organic macromolecules uniformly distributed throughout a liquid in such a manner that no apparent boundaries exist between the dispersed macromolecules and the liquid. Examples of such gels are Carboxymethylcellulose Sodium and Tragacanth. Although gels are commonly aqueous, alcohols and oils may be used as a continuous phase.
As used herein the term "ointment" refers to a semisolid preparation for external application of such consistency that they may be readily applied to skin by inunction. They should be of such composition that they soften but not necessarily melt when applied to the body. They serve as vehicles for the topical
application of medicinal substances and also function as protectives and emollients for the skin.
For therapeutic use, salts of active ingredients of the compounds of the invention will be physiologically acceptable, i.e. they will be salts derived from a physiologically acceptable acid or base. However, salts of acids or bases which are not physiologically acceptable may also find use, for example, in the preparation or purification of a physiologically acceptable compound. All salts, whether or not derived form a physiologically acceptable acid or base, are within the scope of the present invention. "Alkyl" is Ci-CiS hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms. Examples are methyl (Me, -CH3), ethyl (Et, -CH2CH3), 1- propyl (n-Pr, n-propyl, -CH2CH2CH3), 2-propyl (i-Pr, i-propyl, -CH(CH3)2), 1- butyl (n-Bu, n-butyl, -CH2CH2CH2CH3), 2-methyl-l-propyl (1-Bu, i-butyl, - CH2CH(CH3)2), 2-butyl (s-Bu, s-butyl, -CH(CH3)CH2CH3), 2-methyl-2-propyl (t- Bu, t-butyl, -C(CH3)3), cBu (cyclobutyl), cPentyl (cyclopentyl), 1-pentyl (n-pentyl, -CH2CH2CH2CH2CH3), 2-pentyl (-CH(CH3)CH2CH2CH3), 3-pentyl (- CH(CH2CH3)2), 2-methyl-2-butyl (-C(CH3)2CH2CH3), 3-methyl-2-butyl (- CH(CH3)CH(CH3)2), 3-methyl-l-butyl (-CH2CH2CH(CH3)2), 2-methyl-l-butyl (- CH2CH(CH3)CH2CH3), 1-hexyl (-CH2CH2CH2CH2CH2CH3), 2-hexyl (- CH(CH3)CH2CH2CH2CH3), 3-hexyl (-CH(CH2CH3)(CH2CH2CH3)), 2-methyl- 2-pentyl (-C(CH3)2CH2CH2CH3), 3-methyl-2-pentyl (-
CH(CH3)CH(CH3)CH2CH3), 4-methyl-2-pentyl (-CH(CH3)CH2CH(CH3)2), 3- methyl-3-ρentyl (-C(CH3)(CH2CH3)2), 2-methyl-3-pentyl (- CH(CH2CH3)CH(CH3)2), 2,3-dimethyl-2-butyl (-C(CH3)2CH(CH3)2), 3,3- dimethyl-2-butyl (-CH(CH3)C(CH3)3, and octyl (-(CH2)7CH3).
"Alkenyl" is C2-C18 hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sγ1
double bond. Examples include, but are not limited to, ethylene or vinyl (-CH=CH2), allyl (-CH2CH=CH2), cyclopentenyl (-CsH7), and 5-hexenyl (-CHi CH2CH2CH2CH=CH2). Preferred alkenyl groups are C2-C6 and allyl.
"Alkynyl" is C2-C18 hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp triple bond. Preferred alkynyl groups are C2-C6. Examples include, but are not limited to, acetylenic (-C≡CH) and propargyl (-CHzC≡CH).
"Alkylene" refers to a saturated, branched or straight chain or cyclic hydrocarbon radical of 1-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkane. Typical alkylene radicals include, but are not limited to, methylene (-CH2-) 1,2-ethyl (-CH2CH2-), 1,3-proρyl (-CH2CH2CH2-), 1,4-butyl (-CH2CH2CH2CH2-), and the like.
" Alkenylene" refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical of 2-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkene. Typical alkenylene radicals include, but are not limited to, 1,2-ethylene (-CH=CH-).
"Alkynylene" refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical of 2-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkyne. Typical alkynylene radicals include, but are not limited to, acetylene (-C≡C-), propargyl (-CH∑G≡C-), and 4-pentynyl (-CH2CH2CH2C=CH-). " Aryl" means a monovalent aromatic hydrocarbon radical of 6-20 carbon atoms derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. Typical aryl groups include, but are not limited to,
radicals derived from benzene, substituted benzene, naphthalene, anthracene, biphenyl, and the like.
"Arylalkyl" refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with an aryl radical. Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-l-yl, naphthylmethyl, 2-naphthylethan-l-yl, naphthobenzyl, 2-naphthophenylethan-l-yl and the like. The arylalkyl group comprises 6 to 20 carbon atoms, e.g., the alkyl moiety, including alkyl, alkenyl or alkynyl groups, of the arylalkyl group is 1 to 6 carbon atoms and the aryl moiety is 5 to 14 carbon atoms.
"Substituted alkyl", "substituted aryl", and "substituted arylalkyl" mean alkyl, aryl, and arylalkyl respectively, in which one or more hydrogen atoms are each independently replaced with a non-hydrogen substituent. Typical substituents include, but are not limited to, -X, -R, -O; -OR, -SR, -S", -NR2, -NRs, =NR, -CX3, -CN, -OCN, -SCN, -N=C=O, -NCS, -NO, -NOi, =N2, -N3, NC(O)R, -C(O)R, -C(O)NRR -S(O)2O-, -S(O)2OH, -S(O)2R, -OS(O)2OR, -S(O)2NHR, -S(O)R, -OP(O)O2RR7-P(O)O2RR -P(0)(0")2, -P(O)(OH)2, -C(O)R, -C(O)X, -C(S)R, -C(O)OR, -C(O)O", -C(S)OR7 -C(O)SR, -C(S)SR, -C(O)NRR, -C(S)NRR, -C(NR)NRR, where each X is independently a halogen: F, Cl, Br, or I; and each R is independently -H, alkyl, aryl, heterocycle, protecting group or prodrug moiety. Alkylene, alkenylene, and alkynylene groups may also be similarly substituted.
"Heterocycle" as used herein includes by way of example and not limitation these heterocycles described in Paquette, Leo A.; Principles of Modern Heterocyclic Chemistry (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; The Chemistry of Heterocyclic Compounds, A Series of Monographs" (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; and /. Am. Chem. Soc. (1960) 82:5566. In one specific
embodiment of the invention "heterocycle" includes a "carbocycle" as defined herein, wherein one or more (e.g. 1, 2, 3, or 4) carbon atoms have been replaced with a heteroatom (e.g. O, N, or S).
Examples of heterocycles include by way of example and not limitation pyridyl, άϊhγάroypγήdγl, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, sulfur oxidized tetrahydrothiophenyl, pyrimidinyL furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, azocinyl, triazinyl, όH-1,2,5- thiadiazinyl, 2H/6H-l/5/2-dithiazinyl/ thienyl, thianthrenyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathinyl, 2H-pyrrolyl, isothiazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, IH- indazoly, purinyl, 4H-quinolizinyl/ phthalazinyl, naphthyridinyl, quinσxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-carbazolyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, furazanyl, phenoxazinyt isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, oxazolidinyl, benzotriazolyl/ benzisoxazolyl, oxindolyl, benzoxazolinyl, isatinoyl, and bis-tetrahydrofuranyl.
By way of example and not limitation, carbon bonded heterocycles are bonded at position 2, 3, 4, 5, or 6 of a pyridine, position 3, 4, 5, or 6 of a pyridazine, position 2, 4, 5, or 6 of a pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a furaη, tetrahydrofuran, thiofuran, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5 of an oxazole, imidazole or thiazole, position 3, 4, or 5 of an isoxazole, pyrazole, or isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine, position 2, 3, 4, 5, 6, 7, or 8 of a quinoline or
position 1, 3, 4, 5, 6, 7, or 8 of an isoquinoline. Still more typically, carbon bonded heterocycles include 2-ρyridyl, 3-pyridyl, 4-pyridyl, 5-pyridyl, 6-pyridyl, 3- pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl, 2-pyrimidinyl, 4- pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl, 2-pyrazinyl, 3-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-thiazolyl, 4-thiazolyl, or 5-thiazolyl.
By way of example and not limitation, nitrogen bonded heterocycles are bonded at position 1 of an aziridine, azetidine, pyrrole, pyrrolidine, 2-pyrroline, 3- pyrroline, imidazole, imidazolidine, 2-imidazoline, 3-imidazoline, pyrazole, pyrazoline, 2-pyrazoline, 3-pyrazoline, piperidine, piperazine, indole, indoline, lH-indazole, position 2 of a isoindole, or isoindoline, position 4 of a morpholine, and position 9 of a carbazole, or β-carboline. Still more typically, nitrogen bonded heterocycles include 1-aziridyl, 1-azetedyl, 1-pyrrolyl, 1-imidazolyl, 1-pyrazolyl, and 1-piperidinyl.
"Carbocycle" refers to a saturated, unsaturated or aromatic ring having 3 to 7 carbon atoms as a monocycle, 7 to 12 carbon atoms as a bicycle, and up to about 20 carbon atoms as a polycycle. Monocyclic carbocycles have 3 to 6 ring atoms, still more typically 5 or 6 ring atoms. Bicyclic carbocycles have 7 to 12 ring atoms, e.g., arranged as a bicyclo [4,5], [5,5], [5,6] or [6,6] system, or 9 or 10 ring atoms arranged as a bicyclo [5,6] or [6,6] system. Examples of monocyclic carbocycles include cyclopropyl (cPropyl), cyclobutyl (cButyl), cyclopentyl (cPentyl), 1- cyclopent-1-enyl, l-cyclopent-2-enyl, l-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-l- enyl, l-cyclohex-2-enyl, l-cyclohex-3-enyl, phenyl, spiryl and naphthyl.
"Linker" or "link" refers to a chemical moiety comprising a covalent bond or a chain or group of atoms that covalently attaches a phosphonate group to a drug. Linkers include moieties such as: repeating units of alkyloxy {e.g., polyethyleneoxy, PEG, polymethyleneoxy) and alkylamino {e.g., polyethyleneamino, Jeffamine™); and diacid ester and amides including succinate, succinamide, diglycolate, malonate, and caproamide.
As used herein the term "Aba" refers to a divalent moiety of 2-aminobutanoic acid,
where the points of attachment are designated by the " * ". As used herein the term "Ala" refers to a divalent moiety of alanine,
As used herein the term "Phe" refers to a divalent moiety of alanine,
As used herein the term "Ala" refers to a divalent moiety of alanine,
As used herein the term "POC" refers to the divalent moiety of hydroxymethyl isopropyl carbonate,
where the point of attachment is designated by the " * ".
Substitutent groups Y1A and Y1B can be described using nomenclature that incorporates the aforementioned divalent amino acid moieties and alkyl moieties, such as in Table 80-3.
For example, the compound of the formula,
can be described using the nomenclature of Formula I, where Y1A and Y1B are -N(RX), where Rx is R2, where R2 is R4 substituted with R3d, where R4 is ethyl substituted with R3d further where R3d is -C(R3b)OW3, where R3b is =O, where W3 is W5, where W5 is a carbocycle, where R4 is propyl substituted with R3d, where R3d is -C(R3b)OR4, where R3b is =O, and where R4 is ethyl. Alternatively, said compound can be described, as in Table 80-3, as Formula I, where Y1A and Y1B are "Aba-Et", which describes the moiety (where the " * " indicates the point of attachment),
For example, the compound of the formula,
can be described using the nomenclature of Formula I, where Y1A and Y1B are
-N(RX), where Rx is R2, where R2 is R4 substituted with R3d, where R4 is is ethyl substituted with R3d, where R3d is -C(R3b)OR4, where R3b is =O, and where R4 is n- propyl. Alternatively, said compound can be described, as in Table 80-3, as Formula I, where Y1A and Y1B are "Ala-nPr", which describes the moiety (where the " * " indicates the point of attachment),
The term "chiral" refers to molecules which have the property of non- superimposability of the mirror image partner, while the term "achiral" refers to molecules which are superimposable on their mirror image partner.
The term "stereoisomers" refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
"Diastereomer" refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g., melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.
"Enantiomers" refer to two stereoisomers of a compound which are non- superimposable mirror images of one another.
The term, "treatment" or "treating," to the extent it relates to a disease or condition includes preventing the disease or condition irom. occurring, inhibiting the disease or condition, eliminating the disease or condition, and/or relieving one or more symptoms of the disease or condition.
The term "antiproliferative" refers to activities used to, or tending to inhibit cell growth, such as antiproliferative effects on tumor cells, or antiproliferative effects on virally infected cells. The terms "apoptosis" refers to one of the main types of programmed cell death. As such, it is a process of deliberate suicide by an unwanted cell in a multicellular organism. In contrast to necrosis, which is a form of cell death that results from acute tissue injury, apoptosis is carried out in an ordered process that generally confers advantages during an organism's life cycle. Apoptosis is a type of cell death in which the cell uses specialized cellular machinery to kill itself; a cell suicide mechanism that enables metazoans to control cell number and eliminate cells that threaten the animal's survival. Apoptosis can occur, for instance, when a cell is damaged beyond repair, or infected with a virus. The stimuli for apoptosis can come from the cell itself, from its surrounding tissue or from a cell that is part of the immune system, it can be chemical, biological or physical. The related term "apoptitic" refers to the process of apoptosis.
Stereochemical definitions and conventions used herein generally follow S. P. Parker, Ed., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York; and Eliel, E. and Wilen, S., Stereochemistry of Organic Compounds (1994) John Wiley & Sons, Inc., New York. Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes D and L or R and S are used to denote the absolute configuration of the
molecule about its chiral center (s). The prefixes d and 1 or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (- ) or 1 meaning that the compound is levorotatory. A compound prefixed with (+) or d is dextrorotatory. For a given chemical structure, these stereoisomers are identical except that they are mirror images of one another. A specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture. A 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process. The terms "racemic mixture" and "racemate" refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
Protecting Groups
In the context of the present invention, protecting groups include prodrug moieties and chemical protecting groups. Protecting groups are available, commonly known and used, and are optionally used to prevent side reactions with the protected group during synthetic procedures, i.e. routes or methods to prepare the compounds of the invention. For the most part the decision as to which groups to protect, when to do so, and the nature of the chemical protecting group TG" will be dependent upon the chemistry of the reaction to be protected against (e.g., acidic, basic, oxidative, reductive or other conditions) and the intended direction of the synthesis. The PG groups do not need to be, and generally are not, the same if the compound is substituted with multiple PG. In general, PG will be used to protect functional groups such as carboxyl, hydroxyl, thio, or amino groups and to thus prevent side reactions or to otherwise facilitate the synthetic efficiency. The order of deprotection to yield free, deprotected groups is dependent upon the intended direction of the synthesis and the reaction conditions to be encountered, and may
occur in any order as determined by the artisan.
Various functional groups of the compounds of the invention may be protected. For example, protecting groups for -OH groups (whether hydroxyl, carboxylic acid, phosphonic acid, or other functions) include "ether- or ester- forming groups". Ether- or ester-forming groups are capable of functioning as chemical protecting groups in the synthetic schemes set forth herein. However, some hydroxyl and thio protecting groups are neither ether- nor ester-forming groups, as will be understood by those skilled in the art, and are included with amides, discussed below. A very large number of hydroxyl protecting groups and amide-forming groups and corresponding chemical cleavage reactions are described in Protective Groups in Organic Synthesis, Theodora W. Greene (John Wiley & Sons, Inc., New York, 1991, ISBN 0-471-62301-6) ("Greene"). See also Kocienski, Philip J.; Protecting Groups (Georg Thierne Verlag Stuttgart, New York, 1994), which is incorporated by reference in its entirety herein. In particular Chapter 1,
Protecting Groups: An Overview, pages 1-20, Chapter 2, Hydroxyl Protecting Groups, pages 21-94, Chapter 3, Diol Protecting Groups, pages 95-117, Chapter 4, Carboxyl Protecting Groups, pages 118-154, Chapter 5, Carbonyl Protecting Groups, pages 155-184. For protecting groups for carboxylic acid, phosphonic acid, phosphonate, sulfonic acid and other protecting groups for acids see Greene as set forth below. Such groups include by way of example and not limitation, esters, amides, hydrazides, and the like.
Ether- and Ester-Forming Protecting Groups Ester-forming groups include: (1) phosphonate ester-forming groups, such as phosphonamidate esters, phosphorothioate esters, phosphonate esters, and phosphon-bis-amidates; (2) carboxyl ester-forming groups, and (3) sulphur ester- forming groups, such as sulphonate, sulfate, and sulfinate.
The phosphonate moieties of the compounds of the invention may or may not be prodrug moieties, i.e. they may or may be susceptible to hydrolytic or enzymatic cleavage or modification. Certain phosphonate moieties are stable under most or nearly all metabolic conditions. For example, a dialkylphosphonate, where the alkyl groups are two or more carbons, may have appreciable stability in vivo due to a slow rate of hydrolysis.
Salts and Hydrates
The compositions of this invention optionally comprise salts of the compounds herein, especially pharmaceutically acceptable non-toxic salts containing, for example, Na+, Li+, K+/ Ca+"1" and Mg+^ Such salts may include those derived by combination of appropriate cations such as alkali and alkaline earth metal ions or ammonium and quaternary amino ions with an acid anion moiety. Monovalent salts are preferred if a water soluble salt is desired. Metal salts typically are prepared by reacting a compound of this invention with a metal hydroxide. Examples of metal salts which are prepared in this way are salts containing Li+, Na+, and K+. A less soluble metal salt can be precipitated from the solution of a more soluble salt by addition of the suitable metal compound. In addition, salts may be formed from acid addition of certain organic and inorganic acids, e.g., HCl, HBr, ^SO^ or organic sulfonic acids, to basic centers, or to acidic groups. Finally, it is to be understood that the compositions herein comprise compounds of the invention in their un-ionized, as well as zwitterionic form, and combinations with stoichiometric amounts of water as in hydrates. Also included within the scope of this invention are the salts of the parental compounds with one or more amino acids. Any of the amino acids described above are suitable, especially the naturally-occurring amino acids found as protein components, although the amino acid typically is one bearing a side chain
with a basic or acidic group, e.g., lysine, arginine or glutamic acid, or a neutral group such as glycine, serine, threonine, alanine, isoleucine, or leucine.
Methods of Inhibition of AK, BCC or SCC Another aspect of the invention relates to methods of inhibiting the activity of AK, BCC or SCC comprising the step of treating a sample suspected of having AK, BCC or SCC with a compound of the invention.
Compositions of the invention act as inhibitors of AK, BCC or SCC, as intermediates for such inhibitors or have other utilities as described below. The treating step of the invention comprises adding the composition of the invention to the sample or it comprises adding a precursor of the composition to the sample. The addition step comprises any method of administration as described above.
If desired, the activity of AK, BCC or SCC after application of the composition can be observed by any method including direct and indirect methods of detecting AK, BCC or SCC activity. Quantitative, qualitative, and semi quantitative methods of determining AK, BCC or SCC activity are all contemplated. Typically one of the screening methods described above are applied, however, any other method such as observation of the physiological properties of a living organism are also applicable.
Screens for HPV Inhibitors
Compounds and compositions of the invention are screened for therapeutic utility by measuring the EC50, that is the concentration of compound that achieves 50% inhibition of cell growth. The ratio of ECso in HPV-uninfected and infected cells provides a measure of the selectivity of the compound for the virus infected cells. The protocols used to obtain these measures are taught in the Examples.
Pharmaceutical Formulations and Routes of Administration.
The compounds of this invention are formulated with conventional carriers and excipients, which will be selected in accord with ordinary practice. Tablets will contain excipients, glidants, fillers, binders and the like. Aqueous formulations are prepared in sterile form, and when intended for delivery by other than oral administration generally will be isotonic. All formulations will optionally contain excipients such as those set forth in the "Handbook of Pharmaceutical Excipients" (1986). Excipients include ascorbic acid and other antioxidants, chelating agents such as EDTA, carbohydrates such as dextrin, hydroxyalkylcellulose, hydroxyalkylmethylcellulose, stearic acid and the like. The pH of the formulations ranges from about 3 to about 11, but is ordinarily about 7 to 10.
One or more compounds of the invention (herein referred to in this context as the active ingredients) are administered by any route appropriate to the condition to be treated. Suitable routes include oral, rectal, nasal, topical (including buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural), and the like. It will be appreciated that the preferred route may vary with the condition of the recipient. An advantage of the compounds of this invention is that they are orally bioavailable and can be dosed orally.
While it is possible for the active ingredients to be administered alone it may be preferable to present them as pharmaceutical formulations. The formulations, both for veterinary and for human use, of the invention comprise at least one active ingredient, as above defined, together with one or more acceptable carriers therefore and optionally other therapeutic ingredients. The carrier(s) must be "acceptable" in the sense of being compatible with the other
ingredients of the formulation and physiologically innocuous to the recipient thereof.
The formulations include those suitable for the foregoing administration routes. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.
Techniques and formulations generally are found in Remington's Pharmaceutical Sciences (Mack Publishing Co., Easton, PA). Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
Formulations of the invention suitable for oral administration are prepared as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.
A tablet is made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent. The tablets may optionally be coated or scored and optionally are formulated so as to provide slow or controlled release of the active ingredient there from.
For infections of the eye or other external tissues e.g. mouth and skin, the formulations are preferably applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to 20% w/w (including active ingredient(s) in a range between 0.1% and 20% in increments of 0.1% w/w such as 0.6% w/w, 0.7% w/w, etc.), preferably 0.2 to 15% w/w and most preferably 0.5 to 10% w/w. When formulated in an ointment, the active ingredients may be employed with either a paraffinic or a water-miscible ointment base. Alternatively, the active ingredients may be formulated in a cream with an oil-in- water cream base. If desired, the aqueous phase of the cream base may include, for example, at least 30% w/w of a polyhydric alcohol, i.e. an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG 400) and mixtures thereof. The topical formulations may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulphoxide and related analogs.
The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier (otherwise known as an emulgent), it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations.
Emulgents aϊid emulsion stabilizers suitable for use in the formulation of the invention include Tween® 60, Span® 80, cetostearyl alcohol, benzyl alcohol, myristyl alcohol, glyceryl mono-stearate and sodium lauryl sulfate.
The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties. The cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters known as Crodamol CAP may be used, the last three being preferred esters. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils are used. Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the active ingredient. The active ingredient is preferably present in such formulations in a concentration of 0.5 to 20%, advantageously 0.5 to 10% particularly about 1.5% w/w. Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier. Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.
Formulations suitable for intrapulmonary or nasal administration have a particle size for example in the range of 0.1 to 500 microns (including particle sizes
in a range between 0.1 and 500 microns in increments microns such as 0.5, 1, 30 microns, 35 microns, etc.), which is administered by rapid inhalation through the nasal passage or by inhalation through the mouth so as to reach the alveolar sacs. Suitable formulations include aqueous or oily solutions of the active ingredient. Formulations suitable for aerosol or dry powder administration may be prepared according to conventional methods and may be delivered with other therapeutic agents such as compounds heretofore used in the treatment or prophylaxis of influenza A or B infections as described below.
Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient, such carriers are as known in the art to be appropriate.
Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
The formulations are presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use. Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described. Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.
It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents
conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
The invention further provides veterinary compositions comprising at least one active ingredient as above defined together with a veterinary carrier therefore.
Veterinary carriers are materials useful for the purpose of administering the composition and may be solid, liquid or gaseous materials which are otherwise inert or acceptable in the veterinary art and are compatible with the active ingredient. These veterinary compositions may be administered orally, parenterally or by any other desired route.
Compounds of the invention are used to provide controlled release pharmaceutical formulations containing as active ingredient one or more compounds of the invention ("controlled release formulations") in which the release of the active ingredient are controlled and regulated to allow less frequency dosing or to improve the pharmacokinetic or toxicity profile of a given active ingredient.
Effective dose of active ingredient depends at least on the nature of the condition being treated, toxicity, whether the compound is being used prophylactically (lower doses) or against an active influenza infection, the method of delivery, and the pharmaceutical formulation, and will be determined by the clinician using conventional dose escalation studies. It can be expected to be from about 0.0001 to about 100 mg/kg body weight per day; typically, from about 0.01 to about 10 mg/kg body weight per day; more typically, from about 0.01 to about 5 mg/kg body weight per day; most typically, from about 0.05 to about 0.5 mg/kg body weight per day. For example, for inhalation the daily candidate dose for an adult human of approximately 70 kg body weight will range from 1 mg to 1000 mg, preferably between 5 mg and 500 mg, and may take the form of single or multiple doses.
Active ingredients of the invention are also used in combination with other active ingredients. Such combinations are selected based on the condition to be treated, cross-reactivities of ingredients and pharmaco-properties of the combination. For example, when treating viral infections of the respiratory system, in particular influenza infection, the compositions of the invention are combined with antivirals (such as amantidine, rimantadine and ribavirin), mucolytics, expectorants, bronchialdilators, antibiotics, antipyretics, or analgesics. Ordinarily, antibiotics, antipyretics, and analgesics are administered together with the compounds of this invention.
Metabolites of the Compounds of the Invention
The present invention also provides the in vivo metabolic products of the compounds described herein, to the extent such products are novel and unobvious over the prior art. Such products may result for example from the oxidation, reduction, hydrolysis, amidation, esterification and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes novel and unobvious compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof. Such products typically are identified by preparing a radiolabeled (e.g. C14 or H3) compound of the invention, administering it parenterally in a detectable dose (e.g. greater than about 0.5 mg/kg) to an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time for metabolism to occur (typically about 30 seconds to 30 hours) and isolating its conversion products from the urine, blood or other biological samples. These products are easily isolated since they are labeled
(others are isolated by the use of antibodies capable of binding epitopes surviving in the metabolite). The metabolite structures are determined in conventional fashion, e.g. by MS or NMR analysis. In general, analysis of metabolites is done in
the same way as conventional drug metabolism studies well-known to those skilled in the art. The conversion products, so long as they are not otherwise found in vivo, are useful in diagnostic assays for therapeutic dosing of the compounds of the invention even if they possess no neuraminidase inhibitory activity of their own.
Additional Uses for the Compounds of This Invention.
The compounds of this invention, or the biologically active substances produced from these compounds by hydrolysis or metabolism in vivo, are used as immunogens or for conjugation to proteins, whereby they serve as components of immunogenic compositions to prepare antibodies capable of binding specifically to the protein, to the compounds or to their metabolic products which retain immunologically recognized epitopes (sites of antibody binding). The immunogenic compositions therefore are useful as intermediates in the preparation of antibodies for use in diagnostic, quality control, or the like, methods or in assays for the compounds or their novel metabolic products. The compounds are useful for raising antibodies against otherwise non-immunogenic polypeptides, in that the compounds serve as haptenic sites stimulating an immune response that cross-reacts with the unmodified conjugated protein. The hydrolysis products of interest include products of the hydrolysis of the protected acidic and basic groups discussed above. As noted above, the acidic or basic amides comprising immunogenic polypeptides such as albumin or keyhole limpet hemocyanin generally are useful as immunogens. The metabolic products described above may retain a substantial degree of immunological cross reactivity with the compounds of the invention. Thus, the antibodies of this invention will be capable of binding to the unprotected compounds of the invention without binding to the protected compounds; alternatively the metabolic products, will be capable of binding to the protected compounds and/or
the metabolic products without binding to the protected compounds of the invention, or will be capable of binding specifically to any one or all three. The antibodies desirably will not substantially cross-react with naturally-occurring materials. Substantial cross-reactivity is reactivity under specific assay conditions for specific analytes sufficient to interfere with the assay results.
The immunogens of this invention contain the compound of this invention presenting the desired epitope in association with an immunogenic substance. Within the context of the invention such association means covalent bonding to form an immunogenic conjugate (when applicable) or a mixture of non-covalently bonded materials, or a combination of the above. Immunogenic substances include adjuvants such as Freund's adjuvant, immunogenic proteins such as viral, bacterial, yeast, plant and animal polypeptides, in particular keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin or soybean trypsin inhibitor, and immunogenic polysaccharides. Typically, the compound having the structure of the desired epitope is covalently conjugated to an immunogenic polypeptide or polysaccharide by the use of a polyfunctional (ordinarily bifunctional) cross-linking agent. Methods for the manufacture of hapten immunogens are conventional per se, and any of the methods used heretofore for conjugating haptens to immunogenic polypeptides or the like are suitably employed here as well, taking into account the functional groups on the precursors or hydrolytic products which are available for cross-linking and the likelihood of producing antibodies specific to the epitope in question as opposed to the immunogenic substance.
Typically the polypeptide is conjugated to a site on the compound of the invention distant from the epitope to be recognized.
The conjugates are prepared in conventional fashion. For example, the cross-linking agents N-hydroxysuccinimide, succinic anhydride or alkN=C=Nalk are useful in preparing the conjugates of this invention. The conjugates comprise
a compound of the invention attached by a bond or a linking group of 1-100, typically, 1-25, more typically 1-10 carbon atoms to the immunogenic substance. The conjugates are separated from starting materials and by products using chromatography or the like, and then are sterile filtered and vialed for storage. Animals are typically immunized against the immunogenic conjugates or derivatives and antisera or monoclonal antibodies prepared in conventional fashion.
The compounds of this invention are useful as linkers or spacers in preparing affinity absorption matrices, immobilized enzymes for process control, or immunoassay reagents. The compounds herein contain a multiplicity of functional groups that are suitable as sites for cross-linking desired substances. For example, it is conventional to link affinity reagents such as hormones, peptides, antibodies, drugs, and the like to insoluble substrates. These insolublized reagents are employed in known fashion to absorb binding partners for the affinity reagents from manufactured preparations, diagnostic samples and other impure mixtures. Similarly, immobilized enzymes are used to perform catalytic conversions with facile recovery of enzyme. Bifunctional compounds are commonly used to link analytes to detectable groups in preparing diagnostic reagents. Screening assays preferably use cells from particular tissues that are susceptible to HPV infection. Assays known in the art are suitable for determining in vivo bioavailability including intestinal lumen stability, cell permeation, liver homogenate stability and plasma stability assays. However, even if the ester, amide or other protected derivatives are not converted in vivo to the free carboxyl, amino or hydroxyl groups, they remain useful as chemical intermediates.
Utility for the present invention was taught using antiproliferation assays. Antiproliferation assays measure effect of compounds on proliferation of cultured
cells. Cells are cultured for 7 days in the presence of various concentrations of compounds. On the 7th day, cells are stained with dye, and intensity of staining (proportional to cell number) is measured by spectrophotometer. Data are plotted against compound concentrations, fitted to the sigmoid dose response curve, from which the compound concentration that reduces cell proliferation rate by 50% (50% effective concentration or ECso) is determined. Active compounds in antiproliferation assays may be cytostatic (inhibit cell division) and/or cytocidal (kill cells).
Nonmelanoma carcinomas, such as AK, BCC or SCC can be treated by administration of topical antiproliferative agents onto the proliferative lesion of the skin. Transformed cells will stop replicating and eventually undergo apoptosis, while many of surrounding normal cells (differentiated keratinocytes that no longer replicate) will not be affected, causing minimal damage to the skin structure, leaving no scar.
Exemplary Methods of Making the Compounds of the Invention. '
The invention also relates to methods of making the compositions of the invention. The compositions are prepared by any of the applicable techniques of organic synthesis. Many such techniques are well known in the art. However, many of the known techniques are elaborated in "Compendium of Organic
Synthetic Methods" (John Wiley & Sons, New York), Vol. 1, Ian T. Harrison and Shuyen Harrison, 1971; Vol. 2, Ian T. Harrison and Shuyen Harrison, 1974; Vol. 3, Louis S. Hegedus and Leroy Wade, 1977; Vol. 4, Leroy G. Wade, jr., 1980; Vol. 5, Leroy G. Wade, Jr., 1984; and Vol. 6, Michael B. Smith; as well as March, J., "Advanced Organic Chemistry, Third Edition", (John Wiley & Sons, New York, 1985), "Comprehensive Organic Synthesis. Selectivity, Strategy & Efficiency in Modern Organic Chemistry. In 9 Volumes", Barry M. Trost, Editor-in-Chief (Pergamon Press, New York, 1993 printing).
A number of exemplary methods for the preparation of the compositions of the invention are provided below. These methods are intended to illustrate the nature of such preparations are not intended to limit the scope of applicable methods. Generally, the reaction conditions such as temperature, reaction time, solvents, workup procedures, and the like, will be those common in the art for the particular reaction to be performed. The cited reference material, together with material cited therein, contains detailed descriptions of such conditions. Typically the temperatures will be -100°C to 200°C, solvents will be aprotic or protic, and reaction times will be 10 seconds to 10 days. Workup typically consists of quenching any unreacted reagents followed by partition between a water/organic layer system (extraction) and separating the layer containing the product.
Oxidation and reduction reactions are typically carried out at temperatures near room temperature (about 200C), although for metal hydride reductions frequently the temperature is reduced to 0°C to -1000C, solvents are typically aprotic for reductions and may be either protic or aprotic for oxidations. Reaction times are adjusted to achieve desired conversions.
Condensation reactions are typically carried out at temperatures near room temperature, although for non-equilibrating, kinetically controlled condensations reduced temperatures (0°C to -100°C) are also common. Solvents can be either protic (common in equilibrating reactions) or aprotic (common in kinetically controlled reactions).
Standard synthetic techniques such as azeotropic removal of reaction byproducts and use of anhydrous reaction conditions (e.g. inert gas environments) are common in the art and will be applied when applicable.
Exemplary methods of preparing the compounds of the invention are shown in the schemes below. Detailed descriptions of the methods are found in the Experimental section below, and are referenced to the specific schemes.
Schemes Scheme 1
0C0 AcCI, ZnCI2-Et2O P(OiPr)3, Heat Et2O, r.t. AcO'
Aldrithiol™-
Scheme 10
Scheme 11
Scheme 12
Scheme 13
44
56 ri.hiol™.2/PPh3 ""
TMSBr, CH3CN
Scheme 18
Pyridine, 60 0C
Pyridine, 60 0C
Scheme 20
Pyridine, 60 0C
Pyridine, 60 0C
Pyridine, 60 0C
Compounds of the invention wherein R^ is alkynyl can be made in an analogous manner to the synthesis of allyl R^ compounds by substituting propargyl amine or an amine containing an alkynyl substitutent for allyl amine. Each of the products of the following processes is optionally separated, isolated, and/or purified prior to its use in subsequent processes.
The terms "treated", "treating", "treatment", and the like, when used in the context of a chemical process, protocol, or preparation mean contacting, mixing, reacting, allowing to react, bringing into contact, and other terms common in the art for indicating that one or more chemical entities is treated in such a manner as to convert it to one or more other chemical entities. This means that "treating compound one with compound two" is synonymous with "allowing compound one to react with compound two", "contacting compound one with compound two", "reacting compound one with compound two", and other expressions
common in the art of organic synthesis for reasonably indicating that compound one was "treated", "reacted", "allowed to react", etc., with compound two.
In the context of a chemical process, protocol, or preparation, "treating" indicates the reasonable and usual manner in which organic chemicals are allowed to react. Normal concentrations (0.01M to 1OM, typically 0.1M to IM), temperatures (-1000C to 2500C, typically -780C to 1500C, more typically -78°C to 1000C, still more typically 00C to 1000C), reaction vessels (typically glass, plastic, metal), solvents, pressures, atmospheres (typically air for oxygen and water insensitive reactions or nitrogen or argon for oxygen or water sensitive reactions), etc., are intended unless otherwise indicated. The knowledge of similar reactions known in the art of organic synthesis is used in selecting the conditions and apparatus for "treating" in a given process. In particular, one of ordinary skill in the art of organic synthesis selects conditions and apparatus reasonably expected to successfully carry out the chemical reactions of the described processes based on the knowledge in the art.
Modifications of each of the above scheme(s) leads to various analogs of the specific exemplary materials produced above. The above cited citations describing suitable methods of organic synthesis are applicable to such modifications. In each of the above exemplary schemes it may be advantageous to separate reaction products from one another and/or from starting materials. The desired products of each step or series of steps is separated and/or purified (hereinafter separated) to the desired degree of homogeneity by the techniques common in the art. Typically such separations involve multiphase extraction, crystallization from a solvent or solvent mixture, distillation, sublimation, or chromatography. Chromatography can involve any number of methods including, for example, size exclusion or ion exchange chromatography, high, medium, or low pressure liquid chromatography, small scale and preparative thin
or thick layer chromatography, as well as techniques of small scale thin layer and flash chromatography.
Another class of separation methods involves treatment of a mixture with a reagent selected to bind to or render otherwise separable a desired product, unreacted starting material, reaction by product, or the like. Such reagents include adsorbents or absorbents such as activated carbon, molecular sieves, ion exchange media, or the like. Alternatively, the reagents can be acids in the case of a basic material, bases in the case of an acidic material, binding reagents such as antibodies, binding proteins, selective chelators such as crown ethers, liquid/liquid ion extraction reagents (LIX)7 or the like.
Selection of appropriate methods of separation depends on the nature of the materials involved, for example, boiling point, and molecular weight in distillation and sublimation, presence or absence of polar functional groups in chromatography, stability of materials in acidic and basic media in multiphase extraction, and the like. One skilled in the art will apply techniques most likely to achieve the desired separation.
All literature and patent citations above are hereby expressly incorporated by reference at the locations of their citation. Specifically cited sections or pages of the above cited works are incorporated by reference with specificity. The invention has been described in detail sufficient to allow one of ordinary skill in the art to make and use the subject matter of the following claims. It is apparent that certain modifications of the methods and compositions of the following claims can be made within the scope and spirit of the invention. The following Examples are provided to exemplify the present invention, and in no means can be construed to limit the present invention.
EXAMPLES General
Some Examples have been performed multiple times. In repeated Examples, reaction conditions such as time, temperature, concentration and the like, and yields were within normal experimental ranges. In repeated Examples where significant modifications were made, these have been noted where the results varied significantly from those described. In Examples where different . starting materials were used, these are noted. When the repeated Examples refer to a "corresponding" analog of a (compound, such as a "corresponding ethyl ester", this intends that an otherwise present group, in this case typically a methyl ester, is taken to be the same group modified as indicated.
Examples 1 to 35 refer to Schemes 1 to 9 above.
Example 1
Acetoxyethyloxymethylchloride 1: A 5 L three-neck flask was fitted with mechanical stirrer, thermometer, 500 mL additional funnel and argon purged. 1,3-DioxaIane (140 mL, 2.00 mol) in anhydrous EtaO (800 mL) and 1.0 M ZnCVEt2O (7.5 mL, 0.007 mol) were added. A solution of acetyl chloride (157 mL, 2.20 mol) in EtaO (200 mL) was added dropwise through an additional funnel over 20 min. A cold water bath was used to maintain temperature between 19 - 270C throughout. Continue stirring without external cooling for 4 h, reaction self heating at 20 - 250C for about 1 h. A clear, colorless solution retained under argon overnight. Stood for 3 days and formed an orange solution. Strip Et2θ on rotavap (water aspirator) until no more distilled at 350C bath. A quantitative yield of product 318 g (theoretical yield 306 g) was obtained.
Example 2
Diisopropyl Phosphonate 2: A 500 mL three-neck flask was charged with the crude chloromethylether 1 (317 g, 2.00 mol). Triisopropylphosphite (494 mL) was added dropwise through an additional funnel while heating in a 125°C oil bath and stirring vigorously. Collect 2-chloropropane distillate via short-path head in a dry ice cooled receiver, argon blanket, collected 140 g distillate (theoretical 157 g). Phosphite blanched reaction to yellow, continue heating another 2 h at 125°C oil bath, then arrange for vacuum distillation using a vacuum pump. Distilled a yellow front cut (140 g, head to 135°C, bottom to 19O0C), then changed to clean receiver. Main fraction was collected at head temperature of 178 - 187°C (mostly 185 - 187°C) with vacuum unknown at bath temperature of 222 - 228°C. 258 g of the product 2 was given (47% yield from 1,3-dioxolane).
Example 3 Alcohol 3: A solution of 2 (125 g, 0.443 mol) in absolute MeOH (440 mL) was treated with concentrated HCl (11.2 mL, 0.112 mol) and heated to reflux for 6 h under Argon. Strip MeOH on rotavap (water aspirator) to 55°C leaving 115 g of a clear oil which was co-evaporated with toluene (2 x 200 mL). The crude product was dried under vacuum to give an oil (102 g, 96%).
Example 4
Diisopropyl Phosphonate 4: A solution of triphenylphosphine (25.57 g, 97.5 mmol) and alcohol 3 (18 g, 75 mmol) in DMF (120 mL) was treated with 6- chloropurine (12.72 g, 75 mmoL) and cooled to -15°C. A solution of diisopropyl azodicarboxylate (16.68 g, 82.5 mmol) in DMF (50 mL) was added dropwise through an additional funnel over 80 min. The reaction mixture was kept at -15°C for 2 h and then warmed to room temperature and stirred for an additional 2 h. A cloudy reaction mixture turned to be a bright yellow solution. The reaction
solvent was evaporated under reduced pressure, co-evaporated with toluene (3 x), and dried under vacuum overnight prior to purification. The crude product was purified by column chromatography on silica gel (5% MeOH/CH-Cb) to give the diisopropyl phosphonate (18.52 g, 63%) as a white solid: 1H NMR (CDCIs) δ 7.95 (s, IH), 4.70 (m, 2H), 4.31 (m, 2H), 3.93 (m, 2H), 3.73 (m, 2H), 1.29 (m, 12H); 31P NMR (CDCl3) δ 18.42.
Example 5
Diisopropyl Phosphonate 5: A mixture of 4 (11.00 g, 28.08 mmol) and cyclopropylamine (4.86 g, 85.16 mmol) in CH3CN (80 mL) was placed in a reaction bomb and heated to 100°C for 4 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The product was partitioned between 15% MeOH/CHzCb (3 x) and brine, dried with NaiSCu, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (5% MeOH/CHiCh) to give 5 (10.42 g, 90%) as a pale yellow foam: 1H NMR (CDCl3) δ 7.59 (s, IH), 5.83 (broad, s, IH), 4.88 (broad, s, 2H), 4.70 (m, 2H), 4.21 (m, 2H), 3.88 (m, 2H), 3.72 (d, J = 8.4 Hz, 2H), 3.03 (broad, s, IH), 1.28 (m, 12H), 0.84 (m, 2H), 0.60 (m, 2H); 31P NMR (CDCl3) δ 18.63.
Example 6 cPrPMEDAP 6: A solution of 5 (11.00 g, 26.67 mmol) in anhydrous CHsCN (120 mL) was treated with bromotrimethylsilane (21.1 mL, 160.02 mmol ). The reaction was protected from light by wrapping the flask with aluminum foil. The reaction mixture was stirred at room temperature overnight. The volatiles were evaporated under reduced pressure. The residue was dissolved in H2O (250 mL) and pH was adjusted to 9 with ammonium hydroxide. The reaction mixture was concentrated and a yellow solid was obtained. The solid was dissolved in H2O (30
mL) and pH was adjusted to 2 with 10% HCl. Fine solid was collected and dried under vacuum to give 6 (7.88 g, 90%) as a white solid.
Example 7 Monophosphonic Acid Hydrochloride 7: A mixture of acid 6 (3.00 g, 9.15 mmol) and DMF (0.1 mL) in sulfolane (9.2 mL) was heated to 7O0C. Thionylchloride (1.66 mL, 22.76 mmol) was added dropwise over a period of 1 h. The temperature was increased to 90°C and TMSOPh (1.74 mL, 9.61 mmol) was added and stirred for 1 h. The reaction mixture was cooled to room temperature overnight. The reaction mixture was added dropwise to well-stirred, ice-cold acetone (100 mL). The product was precipitated out. The solid was filtered under Ar, washed with cold acetone (100 mL), dried under vacuum to give the monophosphonic acid hydrochloride (3.70 g, 92%) as a solid.
Example 8
Monophosphonamidate 8: A mixture of monophosphonic acid 7 (0.22 g, 0.50 mmol), L-alanine methyl ester hydrochloride (0.14 g, 1.00 mmol), and triethylamine (0.21 mL, 1.50 mmol) in pyridine (3 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.39 g, 1.75 mmol) and triphenylphosphine (0.46 g, 1.75 mmol) in pyridine (2 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CKfeCk) to give the monophosphonamidate (97 mg, 39%, 1:1 diastereomeric mixture) as an off-white foam.
Example 9
Monophosphonamidate 9: A mixture of monophosphonic acid 7 (0.88 g, 2.00 mmol), D-alanine methyl ester hydrochloride (0.84 g, 6.00 mmol), and triethylamine (0.84 mL, 6.00 mmol) in pyridine (8 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (1.56 g, 7.00 mmol) and triphenylphosphine (1.84 g, 7.00 mmol) in pyridine (8 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CHzCh) to give the monophosphonamidate (0.40 g, 41%, 1:1 diastereomeric mixture) as an off-white foam.
Example 10
Monophosphonamidate 10: A mixture of monophosphonic acid 7 (0.88 g, 2.00 mmol), L-alanine tert-butyl ester hydrochloride (1.31 g, 6.00 mmol), and triethylamine (0.84 mL, 6.00 mmol) in pyridine (8 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (1.54 g, 7.00 mmol) and triphenylphosphine (1.84 g, 7.00 mmol) in pyridine (8 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CKbCk) to give the monophosphonamidate (0.38 g, 36%, 1:1 diastereomeric mixture) as a light orange foam.
Example 11
Monophosphonamidate 11: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L-alanine ethyl ester hydrochloride (94 mg, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCU3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CHzClz) to give the monophosphonamidate (74 mg, 48%, 1:1 diastereomeric mixture) as a pale yellow foam: 1H NMR (CDCb) δ 7.61 (d, J = 4.2 Hz, IH), 7.26-7.08 (m, 5H), 4.23 (m, 2H), 4.13 (m, 2H), 4.09 (m, IH), 3.92-3.85 (m, 4H), 3.03 (broad, s, IH), 1.30-1.26 (m, 3H), 1.24 (m, 3H), 0.88 (m, 2H), 0.63 (m, 2H); 31P NMR (CDCl3) δ 21.94, 20.68.
Example 12
Monophosphonamidate 12: A mixture of phosphonic acid 6 (1.50 g, 4.56 mmol), L-alanine n-propyl ester hydrochloride (1.59 g, 9.49 mmol), phenol (2.25 g, 22.80 mmol) and triethylamine (10.50 mL, 54.72 mmol) in pyridine (8.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (6.54 g, 31.92 mmol) and triphenylphosphine (7.32 g, 31.92 mmol) in pyridine (8.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica
gel (7% MeOH/CHtClz) to give the monophosphonamidate (0.43 g, 18%, Compound E, 1:1 diastereomeric mixture) as a pale yellow foam: 1H NMR (CDCk) δ 7.61 (d, J = 5.1 Hz, IH), 7.27-7.09 (m, 5H), 4.27-4.20 (m, 2H), 4.16-4.00 (m, 3H), 3.93-3.82 (m, 4H), 3.04 (broad, s, IH), 1.63 (m, 2H), 1.30 (dd, 3H), 0.92 (m, 3H), 0.89 (m, 2H), 0.63 (m, 2H); 31P NMR (CDCl3) δ 21.89, 20.66.
Example 13
Monophosphonamidate 13: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol),
L-alanine isopropyl ester hydrochloride (0.10 g, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CHzCb) to give the monophosphonamidate (87 mg, 55%, 1:1 diastereomeric mixture) as a yellow foam: 1H NMR (CDCk) δ 7.60 (d, J = 2.1 Hz, IH), 7.26-7.09 (m, 5H), 4.98 (m, IH), 4.23 (m, 2H), 4.06 (m, IH), 3.91-3.83 (m, 4H), 3.04 (broad, s, IH), 1.29-1.21 (m, 9H), 0.89 (m, 2H), 0.63 (m, 2H); 31P NMR (CDCl3) δ 21.85, 20.68.
Example 14 Monophosphonamidate 14: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L-alanine n-butyl ester hydrochloride (0.11 g, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g,
2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCOθ. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CBkCh) to give the monophosphonamidate (80 mg, 50%, 1:1 diastereomeric mixture) as a pale yellow foam: 1H NMR (CDCb) δ 7.61 (d, J = 4.20 Hz, IH), 7.27-7.08 (m, 5H); 5.93 (broad, s, IH), 4.97 (broad, s, 2H), 4.23 (m, 2H), 4.10-4.08 (m, 3H), 3.91-3.84 (m, 4H), 3.03 (broad, s, IH), 1.58 (m, 2H), 1.34-1.27 (m, 5H), 0.92-0.89 (m, 5H), 0.63 (m, 2H); 31P NMR (CDCIs) δ 21.94, 20.68.
Example 15
Monophosphonamidate 15: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L-alanine n-hexyl ester hydrochloride (0.13 g, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Ch) to give the monophosphonamidate (0.10 g, 59%, 1:1 diastereomeric mixture) as a pale yellow foam: 1H NMR (CDCl3) δ 7.59 (d, J = 4.20 Hz, IH), 7.26-7.08 (m, 5H), 4.22 (m, 2H), 4.11 (m, IH), 4.06 (m, 2H), 3.91-3.84 (m, 4H), 3.01 (broad, s, IH), 1.59 (m, 2H), 1.31-1.27 (m, 9H), 0.89 (m, 3H), 0.86 (m, 2H), 0.62 (m, 2H); 31P NMR (CDCl3) δ 21.94, 20.68.
Example 16
Monophosphonamidate 16: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L-alanine n-octanyl ester hydrochloride (0.15 g, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 600C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cb) to give the monophosphonamidate (0.13 g, 73%, 1:1 diastereomeric mixture) as a pale yellow foam: Η NMR (CDCl3) δ 7.59 (d, J = 4.2 Hz, IH), 7.25-7.07 (m, 5H), 4.22 (m, 2H), 4.10 (m, IH), 4.07 (m, 2H), 3.90-3.84 (m, 4H), 3.02 (broad, s, IH), 1.59 (m, 2H), 1.29-1.26 (m, 13H), 0.88 (m, 3H), 0.85 (m, 2H), 0.60 (m, 2H); 31P NMR (CDCl3) 621.96, 20.69.
Example 17 Monophosphonamidate 17: A mixture of phosphonic acid 6 (70 mg, 0.21 mmol), L-2-aminobutyric acid ethyl ester hydrochloride (72 mg, 0.42 mmol), phenol (0.10 g, 1.05 mmol) and triethylamine (0.36 mL, 2.52 mmol) in pyridine (1.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.33 g, 1.47 mmol) and triphenylphosphine (0.39 g, 1.47 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na.Sθ4, filtered, and evaporated under reduced
pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CHaCL*) to give the monophosphonamidate (66 mg, 60%, 1:1 diastereomeric mixture) as a pale yellow foam: 1H NMR (CDCIs) δ 7.61 (d, J = 7.2 Hz7 IH)7 7.26-7.08 (m, 5H)7 5.91 (broad, S7 IH)7 4.97 (broad, s, 2H)7 4.22-4.12 (m, 4H)74.01-3.81 (m7 5H)7 3.03 (broad, s, IH), 1.71-1.60 (m, 2H), 1.24 (m, 3H)7 0.89 (m7 2H), 0.84-0.76 (m, 3H), 0.63 (m, 2H); 31P NMR (CDCl3) δ 22.15, 20.93.
Example 18
Monophosphonamidate 18: A mixture of phosphonic acid 6 (1.00 g, 3.05 mmol), L-2-aminobutyric acid n-butyl ester hydrochloride (1.19 g7 6.09 mmol), phenol
(1.43 g7 15.23 mmol) and triethylamine (5.10 mL7 36.60 mmol) in pyridine (5.0 mL) was heated to 600C for 5 min. A freshly prepared bright yellow solution of aldrithiol (4.70 g, 21.32 mmol) and triphenylphosphine (5.59 g, 21.32 mmol) in pyridine (5.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (5% MeOH/CH-Ck) to give the monophosphonamidate (0.7 g, 42%, Compound G, 1:1 diastereomeric mixture) as an off-white foam: 1H NMR (CDCk) δ 7.60 (d, J = 6.60 Hz, IH), 7.27-7.04 (m, 5H), 5.89 (broad, s, IH), 4.94 (broad, s, 2H), 4.22 (m, 2H), 4.07-3.99 (m, 3H), 3.91-3.84 (m, 4H), 3.03 (broad, s, IH)7 1.70-1.57 (m7 4H)7 1.35 (m7 2H)7 0.92-0.75 (m7 8H)7 0.63 (m7 2H); 31P NMR (CDCl3) δ 22.2I7 20.95.
Example 19
Monophosphonamidate 19: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol)7 L-2-aminobutyric acid n-octanyl ester hydrochloride (0.15 g, 0.60 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL)
was heated to 600C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.13 mmol) and triphenylphosphine (0.56 g, 2.13 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol /CH2CI2) to give the monophosphonamidate (0.12 g, 64%, 1:1 diastereomeric mixture) as a pale yellow foam: 1H NMR (CDCb) δ 7.62 (d, J = 6.60 Hz, IH), 7.25-7.08 (m, 5H), 4.24-4.21 (m 2H), 4.09-4.04 (m, 2H), 4.00 (m, IH), 3.91- 3.83 (m, 4H), 3.01 (broad, s, IH), 1.70-1.58 (m, 4H), 1.27 (m, 10H), 0.89-0.76 (m, 8H), 0.62 (m, 2H); 31P NMR (CDCIs) δ 22.22, 20.92.
Example 20 Monophosphonamidate 20: A mixture of phosphonic acid 6 (1.5 g, 4.57 mmol), L- phenylalanine ethyl ester hydrochloride (2.10 g, 9.14 mmol), phenol (2.15 g, 22.85 mmol) and triethylamine (7.64 mL, 54.84 mmol) in pyridine (8.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (7.05 g, 31.99 mmol) and triphenylphosphine (8.39 g, 31.99 mmol) in pyridine (7.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (5% MeOH/CHiCh) to give a pale yellow solid 1.32 g containing about 10% impurity. The yellow solid (1.32 g, 2.28 mmol) was dissolved in iPrOH (10 mL) and transferred to a hot iPrOH (30 mL) solution of fumaric acid (0.27 g, 2.28 mmol) and stirred at 8O0C for 30 min. The reaction mixture was gradually cooled
to room temperature and the fumarate salt was collected at 00C. The resulting fumarate salt was neutralized by partition from NaHCU3 (2 x) and EtOAc. The organic phase was washed with brine, H2O, dried with Na2SO4, filtered, and concentrated. The product was dried under vacuum to give the monophosphonamidate (0.70 g, 26%, Compound A, 1:1 diastereomeric mixture) as a white foam: 1H NMR (CDCb) δ 7.54 (d, J = 2.4 Hz7 IH), 7.27-6.98 (m7 10H)7 4.35 (m7 IH)7 4.16 (m, 2H)7 4.08 (m7 2H)7 3.84-3.61 (m7 3H)7 3.33 (m7 IH)7 3.02 (broad, S7 IH)7 2.95-2.87 (m7 2H)7 1.17 (m7 3H)7 0.87 (m7 2H)7 0.61 (m7 2H); 3Ψ NMR (CDCl3) δ 21.88, 21.07.
Example 21
Monophosphonamidate 21: A mixture of phosphonic acid 6 (70 mg7 0.21 mmol)7 L-phenylalanine n-butyl ester hydrochloride (0.11 g7 0.42 mmol)7 phenol (0.10 g, 1.05 mmol) and triethylamine (0.36 mL7 2.52 mmol) in pyridine (1.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.33 g7 1.47 mmol) and triphenylphosphine (0.39 g, 1.47 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled. to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CHiCh) to give the monophosphonamidate (30 mg, 23%, 1:1 diastereomeric mixture) as a pale yellow foam: 1H NMR (CDGb) δ 7.55 (d, J = 2.7 Hz, IH), 7.25-6.98 (m, 10H), 4.36 (m7 IH), 4.17 (m, 2H), 4.02 (m, 2H)7 3.83-3.35 (m7 4H)7 3.02 (broad, s, IH), 2.94-2.86 (m, 2H), 1.52 (m, 2H)7 1.29 (m7 2H)7 0.90 (m, 3H), 0.88 (m, 2H), 0.62 (m, 2H); 31P NMR (CDCls) δ 21.85, 21.05.
Example 22
Monophosphonamidate 22: A mixture of phosphonic acid 6 (70 mg, 0.21 mmol), L-phenylalanine isobutyl ester hydrochloride (0.11 g, 0.42 mmol), phenol (0.10 g, 1.05 mmol) and triethylamine (0.36 mL, 2.52 mmol) in pyridine (1.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.33 g, 1.47 mmol) and triphenylphosphine (0.39 g, 1.47 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCOe. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CHiCh) to give the monophosphonamidate (65 mg, 50%, 1:1 diastereomeric mixture) as a pale yellow foam: 1H NMR (CDCI3) δ 7.56 (d, J = 3.6 Hz, IH), 7.26-6.98 (m, 10H), 4.40 (m, IH), 4.17 (m, 2H), 3.82 (m, 2H), 3.75-3.62 (m, 3H), 3.35 (m, IH), 3.04 (broad, s, IH), 2.96-2.87 (m, 2H), 1.83 (m, IH), 0.90 (m, 2H), 0.86 (m, 6H), 0.63 (m, 2H); 31P NMR (CDCl3) δ 21.82, 21.03.
Example 23
Bisphosphonamidate 23: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L- alanine ethyl ester hydrochloride (0.28 g, 1.80 mmol), and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.10 mmol) and triphenylphosphine (0.56 g, 2.10 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10% MeOH/CH-Ck) to give the bisphosphonamidate (80 mg, 50%,) as a pale yellow foam: 1H NMR (CDCl3) δ 7.63
(s, IH), 5.88 (broad, s, IH), 4.96 (broad, s, 2H), 4.24-4.16 (m, 6H), 4.00 (m, 2H), 3.86 (m, 2H), 3.72 (m, 2H), 3.01 (broad, s, IH), 1.36 (m, 6H), 1.26 (m, 6H), 0.86 (m, 2H), 0.61 (m, 2H); 31P NMR (CDCIs) δ 20.63.
Example 24
Bisphosphonamidate 24: A mixture of phosphonic acid 6 (1.00 g, 3.05 mmol), L- alanine n-propyl ester hydrochloride (3.06 g, 18.30 mmol), and triethylamine (5.10 mL, 36.50 mmol) in pyridine (5.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (4.70 g, 21.32 mmol) and triphenylphosphine (5.59 g, 21.32 mmol) in pyridine (5.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10%
MeOH/CHaCb) to give the bisphosphonamidate (1.13 g, 71%, Compound F) as a pale yellow foam: 1H NMR (CDCb) δ 7.65 (s, IH), 5.92 (broad, s, IH), 5.03 (broad, s, 2H), 4.24 (m, 2H), 4.10-4.02 (m, 6H), 3.87 (m, 2H), 3.73 (m, 2H), 3.03 (broad, s, IH), 1.65 (m, 4H), 1.37 (m, 6H), 0.93 (m, 6H), 0.88 (m, 2H), 0.63 (m, 2H); 31P NMR (CDCl3) δ 20.61.
Example 25
Bisphosphonamidate 25: A mixture of phosphonic acid 6 (0.60 g, 1.83 mmol), L- alanine isopropyl ester hydrochloride (1.84 g, 10.98 mmol), and triethylamine (3.06 mL, 21.96 mmol) in pyridine (3.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (2.82 g, 12.80 mmol) and triphenylphosphine (3.36 g, 12.80 mmol) in pyridine (3.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to
room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10% MeOHyCHj-Ck) to give the bisphosphonamidate (0.53 g, 52%, Compound B) as a pale yellow foam: 1H NMR (CDCl3) δ 7.65 (s, IH), 5.00 (m, 2H), 4.24 (m, 2H), 3.97 (m, 2H), 3.87 (m, 2H), 3.71 (m, 2H), 3.01 (broad, s, IH), 1.34 (m, 6H), 1.23 (m, 12H), 0.86 (m, 2H), 0.62 (m, 2H); 31P NMR (CDCl3) δ 20.59.
Example 26
Bisphosphonamidate 26: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L- alanine n-butyl ester hydrochloride (0.33 g, 1.82 mmol), and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.10 mmol) and triphenylphosphine (0.56 g, 2.10 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10%
MeOH/CHϊCh) to give the bisphosphonamidate (97 mg, 55%) as a pale yellow foam: 1H NMR (CDCl3) δ 7.63 (s, IH), 4.24 (m, 2H), 4.09 (m, 4H), 4.01 (m, 2H), 3.86 (m, 2H), 3.72 (m, 2H), 3.01 (broad, s, IH), 1.61 (m, 4H), 1.37 (m, 10H), 0.93 (m, 6H), 0.88 (m, 2H), 0.61 (m, 2H); 31P NMR (CDCIs) δ 20.59.
Example 27
Bisphosphonamidate 27: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L- alanine w-hexyl ester hydrochloride (0.38 g, 1.80 mmol), and triethylamine (0.51
mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 60°C for 5 min. A freshly- prepared bright yellow solution of aldrithiol (0.47 g, 2.10 mmol) and triphenyiphosphine (0.56 g, 2.10 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between
EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na_SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO ^-propanol/CHbCb) to give the bisphosphonamidate (0.13 g, 65%) as a pale yellow foam: 1H NMR (CDCIs) δ 7.62 (s, IH), 4.23 (m, 2H), 4.09 (m, 4H), 4.01 (m, 2H), 3.86 (m, 2H), 3.72 (m, 2H),
2.99 (broad, s, IH), 1.61 (m, 4H), 1.36-1.29 (m, 18H), 0.88 (m, 6H), 0.84 (m, 2H), 0.60 (m, 2H); 31P NMR (CDCb) δ 20.61.
Example 28 Bisphosphonamidate 28: A mixture of phosphonic acid 6 (0.10 g, 0.30 mmol), L- alanine 7?-octanyl ester hydrochloride (0.43 g, 1.80 mmol), and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 600C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.10 mmol) and triphenyiphosphine (0.56 g, 2.10 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na_SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO β-propanol/CHϊCk) to give the bisphosphonamidate (0.13 g, 61%) as a pale yellow foam: 1H NMR (CDCb) δ 7.61 (s, IH), 4.21 (m, 2H), 4.07-4.00 (m, 6H), 3.84-3.70 (m, 4H), 2.98 (broad, s, IH), 1.60 (m, 4H), 1.34 (m, 6H), 1.27 (m, 20H), 0.87 (m, 6H), 0.83 (m, 2H), 0.58 (m, 2H); 31P NMR (CDCIs) δ 20.63.
Example 29
Bisphosphonamidate 29: A mixture of phosphonic acid 6 (0.70 g, 2.13 mmol), L-2- aminobutyric acid ethyl ester hydrochloride (2.15 g, 12.80 mmol), and triethylamine (3.57 mL, 25.56 mmol) in pyridine (3.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (3.29 g, 14.91 mmol) and triphenylphosphine (3.92 g, 14.91 mmol) in pyridine (3.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO<4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10% MeOH/CHzCh) to give the bisphosphonamidate (0.71 g, 60%, Compound D) as a pale yellow foam: 1H NMR (CDCIs) δ 7.64 (s, IH), 4.24 (m, 2H), 4.16 (m, 4H), 3.89- 3.87 (m, 4H), 3.72 (d, J = 9.0 Hz, 2H), 3.01 (broad, s, IH), 1.78-1.64 (m, 4H), 1.26 (m, 6H), 0.91 (m, 6H), 0.87 (m, 2H), 0.61 (m, 2H); 31P NMR (CDCIs) δ 21.23.
Example 30
Bisphosphonamidate 30: A mixture of phosphonic acid 6 (0.70 g, 21.32 mmol), L- 2-aminobutyric acid n-butyl ester hydrochloride (2.50 g, 12.80 mmol), and triethylamine (3.57 mL, 25.56 mmol) in pyridine (3.0 mL) was heated to 600C for 5 min. A freshly prepared bright yellow solution of aldrithiol (3.29 g, 14.91 mmol) and triphenylphosphine (3.92 g, 14.91 mmol) in pyridine (3.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between
EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SOv filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10%
MeOH/CHzCk) to give the bisphosphonamidate (0.40 g, 31%, Compound C) as a pale yellow foam: 1H NMR (CDCl3) δ 7.64 (s, IH), 4.24 (m, 2H), 4.11 (m, 4H), 3.91 (m, 2H), 3.87 (m, 2H), 3.71 (d, J = 9.0 Hz, 2H), 3.03 (broad, s, IH), 1.79-1.64 (m, 4H), 1.60 (m, 4H), 1.37 (m, 4H), 0.94 (m, 6H), 0.90 (m, 6H), 0.86 (m, 2H), 0.62 (m, 2H); 31P NMR (CDCl3) δ 21.25.
Example 31
Bisphosphonamidate 31: A mixture of phosphoric acid 6 (0.10 g, 0.30 mmol), L-2- aminobutyric acid n-octanyl ester hydrochloride (0.33 g, 1.82 mmol), and triethylamine (0.51 mL, 3.60 mmol) in pyridine (1.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.10 mmol) and triphenylphosphine (0.56 g, 2.10 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol /CH2CI2) to give the bisphosphonamidate (0.12 g, 55%) as a pale yellow foam: 1H NMR (CDCIs) δ 7.64 (s, IH)7 4.24 (m, 2H), 4.13-4.05 (m, 4H), 3.91 (m, 2H), 3.87-3.72 (m, 4H), 3.01 (broad, s, IH), 1.78-1.65 (m, 4H), 1.61-1.29 (m, 24H), 0.91 (m, 6H), 0.89 (m, 6H), 0.86 (m, 2H), 0.62 (m, 2H); 31P NMR (CDCl3) δ 21.20.
Example 32
Bisphosphonamidate 32: A mixture of phosphonic acid 6 (0.60 g, 1.82 mmol), L- phenylalanine ethyl ester hydrochloride (2.51 g, 10.96 mmol), and triethylamine (3.06 mL, 21.84 mmol) in pyridine (3.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (2.82 g, 12.74 mmol) and triphenylphosphine (3.36 g, 12.74 mmol) in pyridine (3.0 mL) was added to the
above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cl.) to give the bisphosphonamidate (0.53 g, 43%) as a pale yellow foam: 1H NMR (CDCb) δ 7.48 (s, IH), 7.22-7.06 (m, 10H), 4.20 (m, IH), 4.12 (m, 4H), 4.09 (m, 2H), 4.04 (m, IH), 3.63 (m, 2H), 3.33-3.21 (m, 2H), 3.04-2.78 (m, 5H), 1.20 (m, 6H), 0.83 (m, 2H), 0.58 (m, 2H); 31P NMR (CDCl3) δ 20.38.
Example 33
Bisphosphonamidate 33: A mixture of phosphonic acid 6 (70 mg, 0.21 mmol), L- phenylalanine n-butyl ester hydrochloride (0.33 g, 1.26 mmol), and triethylamine (0.36 mL, 2.52 mmol) in pyridine (1.0 mL) was heated to 600C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.33 g, 1.47 mmol) and triphenylphosphine (0.39 g, 1.47 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10% MeOH/GrbCk) to give the bisphosphonamidate (0.11 g, 70%) as a pale yellow foam: 1H NMR (CDCl3) δ 7.51 (s, IH), 7.23-7.06 (m, 10H), 4.23 (m, IH), 4.11-4.05 (m, 7H), 3.65 (m, 2H), 3.35-3.23 (m, 2H), 3.01 (m, IH), 3.04-2.78 (m, 4H), 1.57 (m, 4H), 1.33 (m, 4H), 0.92 (m, 6H), 0.86 (m, 2H), 0.61 (m, 2H); 31P NMR (CDCl3) δ 20.35.
Example 34
Bisphosphonamidate 34: A mixture of phosphonic acid 6 (70 mg, 0.21 mmol), L- phenylalanine isobutyl ester hydrochloride (0.33 g, 1.26 mmol), and triethylamine (0.36 mL, 2.52 mmol) in pyridine (1.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldri thiol (0.33 g, 1.47 mmol) and triphenylphosphine (0.39 g, 1.47 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature/ and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10%
MeOH/CHbCb) to give the bisphosphonamidate (78 mg, 50%) as a pale yellow foam: 1H NMR (CDCl3) δ 7.52 (s, IH), 7.24-7.07 (m, 10H), 4.26 (m, IH), 4.11 (m, , 2H), 4.01 (m, IH), 3.85 (m, 4H), 3.66 (m, 2H), 3.35-3.25 (m, 2H), 3.07-2.85 (m, 3H), 2.97-2.79 (m, 2H), 1.89 (m, 2H), 0.90 (m, 12H), 0.89 (m, 2H), 0.62 (m, 2H); 31P NMR (CDCl3) δ 20.31.
Example 35
BisPOC of cPrPMEDAP 35: A mixture of phosphonic acid 6 (0.20 g, 0.61 mmol) and triethylamine (0.42 mL, 3.01 mmol) in l-methyl-2-pyrrolidinone (2.0 mL) was heated to 600C for 30 min. POCCl (0.45 g, 2.92 mmol) was added. The reaction mixture was stirred at 600C for 3 h, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cb) to give the bisPOC of cPrPMEDAP (0.13 g, 39%) as a solid: 1H NMR (CDCl3) δ 7.58 (s, IH), 5.66 (m, 4H), 4.92 (m, 2H), 4.22 (m, 2H), 3.90-3.88 (m, 4H), 3.01 (broad, s, IH), 1.81 (m, 12H), 0.86 (m, 2H), 0.62 (m, 2H); 31P NMR (CDCl3) b 20.93.
Examples 36 to 38 refer to Scheme 10. Example 36
Bisphosphonamidate 37: A mixture of phosphonic acid 36 (0.32 g, 1.00 mmoϊ), L- alanine butyl ester hydrochloride (0.47 g, 2.60 mmol), and triethylamine (0.27 g, 2.60 mmol) in pyridine (5.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.77 g, 3.50 mmol) and triphenylphosphine (0.92 g, 3.50 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated
NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10% MeOH/CH∑Ck) to give the bisphosphonamidate (0.43 g, 75%) as a pale yellow foam.
Example 37
Monophosphonic Acid 38: A mixture of diadd 36 (1.30 g, 4.10 mmol) and DMF (0.1 mL) in sulfolane (35 mL) was heated to 700C. Thionylchloride (0.54 mL, 7.38 mmol) was added dropwise over a period of 1 h. The temperature was increased to 90°C and TMSOPh (0.75 g, 4.51 mmol) was added and stirred for 1 h. The reaction mixture was cooled to room temperature overnight. The reaction mixture was added dropwise to well-stirred, ice-cold acetone (100 mL). The product was precipitated out. The solid was filtered and dissolved in MeOH (40 mL) and pH was adjusted to 3 with 45% KOH. Solid was collected by filtration. The product was further purified by dissolving in MeOH, adjusting pH to 6 with 45% KOH, and crystallizing from ice-cold acetone to give the monophosphonic acid (0.20 g, 12%) as an off-white solid.
Example 38
Monophosphonamidate 39: A mixture of monophosphonic acid 38 (0.20 g, 0.50 mmol), L-alanine isopropyl ester hydrochloride (0.17 g, 1.00 mmol) and triethylamine (0.10 g, 1.00 mmol) in pyridine (2.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.39 g, 1.75 mmol) and triphenylphosphine (0.46 g, 1.75 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na∑SOi, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CHzCb) to give the monophosphonamidate (0.14 g, 54%, 1:1 diastereomeric mixture) as a pale yellow foam.
Example 39 refers to Scheme 11 Example 39
Bisphosphonamidate 41: A mixture of phosphonic acid 40 (0.36 g, 1.00 mmol), L- alanine n-butyl ester hydrochloride (0.47 g, 2.60 mmol), and triethylamine (0.27 g, 2.60 mmol) in pyridine (5.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.77 g, 3.50 mmol) and triphenylphosphine (0.92 g, 3.50 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10% MeOH/CHbCk) to give the bisphosphonamidate (0.32 g, 35%) as a pale yellow foam.
Examples 40 to 56 refer to Schemes 12 to 16. Example 40
Bisphosphonamidate 43: A mixture of phosphonic acid 42 (0.37 g, 1.00 mmol), L- alanine 7z-butyl ester hydrochloride (0.47 g, 2.60 mmol), and triethylamine (0.27 g, 2.60 mmol) in pyridine (5.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.77 g, 3.50 mmol) and triphenylphosphine (0.92 g, 3.50 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10% MeOH/CϋCh) to give the bisphosphonamidate (0.53 g, 85%) as a pale yellow foam.
Example 41
Bisphosphonamidate 45: A mixture of phosphonic add 44 (0.55 g, 2.00 mmol), L- alanine butyl ester hydrochloride (0.94 g, 5.20 mmol), and triethylamine (0.54 g, 5.20 mmol) in pyridine (5.0 mL) was heated to 600C for 5 min. A freshly prepared bright yellow solution of aldrithiol (1.54 g, 7.00 mmol) and triphenylphosphine (1.84 g, 7.00 mmol) in pyridine (5.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10% MeOH/QHbCL) to give the bisphosphonamidate (0.48 g, 45%) as a pale yellow foam.
Example 42
Monophosphonic Acid 46: A mixture of diacid 44 (10.00 g, 36.30 mmol) and DMF (0.2 mL) in sulfolane (50 mL) was heated to 70°C. Thionylchloride (4.72 mL, 64.70 mmol) was added dropwise over a period of 1 h. The temperature was increased to 900C and TMSOPh (6.65 g, 40.00 mmol) was added and stirred for 1 h. The reaction mixture was cooled to room temperature overnight. The reaction mixture was added dropwise to well-stirred, ice-cold acetone (100 mL). The product was precipitated out. The solid was filtered and dissolved in MeOH (40 mL) and pH was adjusted to 3 with 45% KOH. Solid was collected by filtration and dried under vacuum to give the monophosphonic acid (12.40 g, 97%) as a solid.
Example 43
Monophosphonamidate 47: A mixture of monophosphonic acid 46 (1.00 g, 2.86 mmol), L-alanine methyl ester hydrochloride (0.80 g, 5.73 mmol) and triethylamine (0.58 g, 5.73 mmol) in pyridine (5.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (2.21 g, 10.00 mmol) and triphenylphosphine (2.63 g, 10.00 mmol) in pyridine (5.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CHaCh) to give the monophosphonamidate (0.80 g, 64%, 1:1 diastereomeric mixture) as a pale yellow oil.
Example 44
Monophosphonamidate 48: A mixture of monophosphonic acid 46 (0.35 g, 1.00 mmol), L-alanine isopropyl ester hydrochloride (0.34 g, 2.00 mmol) and
triethylamine (0.20 g, 2.00 mmol) in pyridine (2.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.77 g, 3.50 mmol) and triphenylphosphine (0.92 g, 3.5O1 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between
EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (7% MeOH/CH-Ck) to give the monophosphonamidate containing some impurity. The resulting compound was treated with fumaric acid (77 mg) in hot CH3CN (10 mL) and cooled to room temperature. The product was precipitated out and dried under vacuum to give the fumarate salt of monophosphonamidate (0.13 g, 22%, 1:1 diastereomeric mixture) as a solid.
Example 45
Benzyl Ether of PMEG 50: A mixture of diacid 49 (0.62 g, 2.00 mmol) and benzyl alcohol (10 mL) was cooled to 0°C with stirring. Sodium hydride (0.24 g, 10.00 mmol) was added portion wise and the reaction mixture was heated to 1000C over 1 h. Additional benzyl alcohol (20 mL) and sodium hydride (0.12 g, 5.00 mmol) were added. The reaction was stirred at 1400C for 1 h and cooled to room temperature. The volatiles were evaporated under reduced pressure, water (50 mL) was added, and the pH was adjusted to 11 with NaOH. The product was partitioned between toluene (3 x) and H2O. The aqueous phase was acidified with HCl to pH = 3 and kept at O0C overnight. The product was collected and dried under vacuum to give the benzyl ether (0.18 g, 22%) as a tan solid.
Example 46 .
Monophosphonamidate 51: A mixture of phosphonic acid 50 (0.13 g , 0.34 mmol), L-alanine isopropyl ester hydrochloride (0.11 g, 0.68 mmol), phenol (0.16 g, 1.69 mmol) and triethylamine (0.28 mL, 2.03 mmol) in pyridine (2.0 mL) was heated to 600C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.52 g, 2.37 mmol) and triphenylphosphine (0.62 g, 2.37 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 6O0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (5% MeOH/CKbCh) to give the monophosphonamidate (50 mg, 26%, 1:1 diastereomeric mixture) as a thick oil.
Example 47 Monophosphonamidate 52: A mixture of monophosphonamidate 51 (50 mg, 0.09 mmol) and Pd(OH)2/C (50 mg) in iPrOH (3 mL) was stirred at room temperature under 1 atm of H2 (balloon) overnight. The reaction mixture was filtered through a plug of celite and the solvent was removed on rotavap under reduced pressure. The crude product was purified by column chromatography on silica gel (5-15% MeOH/CHCls) to give the monophosphonamidate (40 mg, 95%, 1:1 diastereomeric mixture) as an off-white foam.
Example 48
Bisphosphonamidate 54: A mixture of phosphonic acid 53 (0.10 g, 0.35 mmol), L- alanine butyl ester hydrochloride (0.38 g, 2.10 mmol), and triethylamine (0.58 mL, 4.20 mmol) in pyridine (1.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.53 g, 2.45 mmol) and triphenylphosphine (0.64 g, 2.45 mmol) in pyridine (1.0 mL) was added to the above reaction mixture.
The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (15% MeOH/CHbCk) to give the bisphosphonamidate (25 mg, 13%) as a pale yellow foam: 1H NMR (CD3OD) δ 7.82 (s, IH), 4.26 (m, 2H), 4.11 (m, 4H), 3.94 (m, 2H), 3.88 (m, 2H), 3.78 (m, 2H), 1.61 (m, 4H), 1.39 (m, 4H), 1.34 (m, 6H), 0.95 (m, 6H); 31P NMR (CDCl3) δ 23.39.
Example 49
Diisopropyl Phosphonate 55: A mixture of 4 (3.00 g, 7.66 mmol) and 10% Pd/C (0.60 g) in MeOH (30 mL) was stirred at room temperature under 1 atm of H2 (balloon) overnight. The reaction mixture was filtered through a plug of celite and the solvent was removed on rotavap. The crude product was purified by column chromatography on silica gel (5% MeOH/CHCk) to give the diisopropyl phosphonate (2.08 g, 76%) as a thick oil which was solidified upon standing: 1H NMR (CDCl3) δ 8.72 (s, IH), 7.94 (s, IH), 4.73 (m, 2H), 4.33 (m, 2H), 3.97 (m, 2H), 3.73 (d, J = 8.1 Hz, 2H), 1.31 (m, 12H); 31P NMR (CDCl3) δ 18.47.
Example 50
Phosphonic Acid 56: Diisopropyl phosphonate 55 (0.10 g, 0.28 mmol) was dissolved in CHsCN (1.5 mL) and cooled to 00C. Bromotrimethylsilane (0.18 mL, 1.40 mmol) was added. The reaction mixture was stirred at O0C for 2 h and warmed to room temperature overnight. DMF (0.5 mL) was added to form a solution and stirred for 2 h. MeOH was added and stirred for 2 h. Volatiles were evaporated under reduced pressure. The remaining DMF solution was added slowly to ice-cold CH3CN and the product precipitated out. The solid was
collected and dried under vacuum to give the phosphonic acid (74 mg, 95%) as a white solid.
Example 51 Bisphosphonamidate 57: A mixture of phosphonic acid 56 (23 mg, 0.08 mmol), L- alanine n-butyl ester hydrochloride (91 mg, 0.50 mmol), and triethylamine (0.14 mL, 0.96 mmol) in pyridine (0.5 mL) was heated to 600C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.11 g, 0.56 mmol) and triphenylphosphine (0.12 g, 0.56 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cl2) to give the bisphosphonamidate (17 mg, 38%) as a pale yellow foam: 1H NMR (CDCl3) δ 8.65 (s, IH), 7.94 (s, IH), 5.20 (s, broad, 2H), 4.35 (m, 2H), 4.20-3.92 (m, 6H), 3.89 (m, 2H), 3.72 (m, 2H), 3.42-3.19 (m, 2H), 1.61 (m, 4H), 1.32 (m, 8H), 0.96 (m, 6H); 31P NMR (CDCl3) δ 20.70.
Example 52
Monophosphonamidate 58: A mixture of phosphonic acid 56 (20 mg, 0.07 mmol), L-phenylalanine ethyl ester hydrochloride (33 mg, 0.14 mmol), phenol (33 mg, 0.35 mmol) and triethylamine (0.12 mL, 0.84 mmol) in pyridine (0.5 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.11 g, 0.56 mmol) and triphenylphosphine (0.12 g, 0.56 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was
washed with brine, dried with Na-SCk, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2- propanol/CEkCb) to give the monophosphonamidate (13 mg, 34%, 1:1 diastereomeric mixture) as an off-white foam: 1H NMR (CDCIs) δ 8.69 (d, J = 15.0 Hz, IH), 7.84 (d, J = 4.2 Hz, IH), 7.25-6.97 (m, 10H), 4.35 (m, IH), 4.23 (m, 2H), 4.08 (m, 2H), 3.85 (m, IH), 3.72 (m, IH), 3.73-3.62 (m, IH), 3.38 (m, IH), 2.95-2.86 (m, 2H), 1.17 (m, 3H); 31P NMR (CDCl3) δ 21.67, 20.84.
Example 53 Diisopropyl Phosphonate 59: A mixture of compound 4 (1.00 g, 2.56 mmol) and allylamine (3 mL) in CH3CN (3.0 mL) was placed in a scintillation vial and heated to 65°C for 5 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The product was partitioned between EtOAc and brine, dried with Na2SO4, filtered, and concentrated. The product was dissolved in minimal CH3CN and H2O was added and lyophilized to give the diisopropyl phosphonate (1.00 g, 95%).
Example 54
Phosphonic Acid 60: Diisopropyl phosphonate 59 (1.00 g, 2.43 mmol) was dissolved in CHsCN (1.5 mL) and cooled to 0°C. Bromotrimethylsilane (0.31 mL, 12.15 mmol) was added. The reaction mixture was stirred at O0C for 2 h and warmed to room temperature overnight. DMF (0.5 mL) was added to form a solution and stirred for 2 h. MeOH was added and stirred for 2 h. Volatiles were evaporated under reduced pressure. The remaining DMF solution was added slowly to ice-cold CH3CN and the product precipitated out. The solid was collected and dried under vacuum to give the phosphonic acid (0.48 g, 60%) as a white solid.
Example 55
Monophosphonamidate 61 and Bisphosphonamidate 62: A mixture of diacid 60 (0.40 g, 1.20 mmol), L-alanine isopropyl ester hydrochloride (0.49 g, 2.40 mmol), phenol (0.68 g, 7.20 mmol), and triethylamine (1.0 mL, 7.20 mmol) in pyridine (3.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (1.84 g, 8.40 mmol) and triphenylphosphine (2.20 g, 8.40 mmol) in pyridine (3.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SU4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (5-10% MeOH/CHiCh) to give monophosphonamidate 61 (0.52 g, 37%, 1:1 diastereomeric mixture) and bisphosphonamidate 62 (0.13 g, 20%).
Example 56
Bisphosphonamidate 63: A mixture of phosphonic acid 60 (0.33 g, 1.00 mmol), L- alanine butyl ester hydrochloride (0.47 g, 2.60 mmol), and triethylamine (0.27 g, 2.60 mmol) in pyridine (5.0 mL) was heated to 60°C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.77 g, 3.50 mmol) and triphenylphosphine (0.92 g, 3.50 mmol) in pyridine (2.0 mL) was added to the above reaction mixture. The reaction was stirred at 60°C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel (10% MeOH/CEbCh) to give the bisphosphonamidate (0.32 g, 55%) as a pale yellow foam. Example 57 relates to Scheme 17. Example 57
BisPOC of 6-allylPMEDAP 64: A mixture of phosphonic acid 60 (0.20 g, 0.61 mmol) and triethylamine (0.42 mL, 3.01 mmol) in l-methyl-2-pyrrolidinone (2.0 mL) was heated to 600C for 30 nun. POCCl (0.45 g, 2.92 mmol) was added. The reaction mixture was stirred at 60 0C for 3 h, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated
NaHCO3. The organic phase was washed with brine, dried with Na-SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cl2) to give the bisPOC of 6- allylPMEDAP 64 (0.11 g, 32%, GS 192727) as a solid: 1H NMR (CDCl3) δ 7.60 (s, IH), 6.00 (m, IH), 5.66 (m, 4H), 5.30 (dd, IH), 5.17 (dd, IH), 4.92 (m, 2H), 4.80 (s, 2H), 4.22 (m, 4H), 3.95 (m, 4H), 1.35 (m, 12H); 31P NMR (CDCl3) δ 20.94.
Examples 58 to 61 relate to Scheme 18. Example 58 Bisphosphoamidate 65: A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L- alanine ethyl ester hydrochloride (0.1 g, 0.65 mmol), and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na.SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cl2) to give the bisphosphoamidate (23 mg, 41%) as a pale yellow foam: 1H NMR (CDCIs) δ 7.70 (s, IH), 6.00 (m, IH), 5.30 (dd, IH), 5.17 (dd, IH), 4.30 (m, 4H), 4.20-4.00 (m, 6H), 3.89 (m, 2H), 3.72 (m, 2H), 3.42 (m, IH), 3.22 (m, IH), 1.45-1.25 (m, 12H); 31P NMR (CDCIs) δ 20.77.
Example 59
Bisphosphoamidate 66: A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L- alanine cyclobutyl ester hydrochloride (0.33 g, 0.91 mmol), and triethylamine (0.50 mL, 3.59 mmol) in pyridine (2.0 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO ^-propanol/CH-Ch) to give the bisphosphoamidate (45 mg, 26%) as a pale yellow foam: 1H NMR (CDCk) δ 7.60 (s, IH), 6.00 (m, IH), 5.30 (dd, IH), 5.18 (dd, IH), 5.00 (m, 2H), 4.78 (s, 2H), 4.30 (m, 4H), 4.00 (m, 2H), 3.89 (m, 2H), 3.72 (m, 2H), 3.38 (m, IH), 3.19 (m, IH), 2.38 (m, 4H), 2.10 (m, 4H), 1.85-1.60 (m, 4H), 1.45 (m, 6H); 31P NMR (CDCl3) δ 20.61.
Example 60
Bisphosphoamidate 67: A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L- alanine w-hexyl ester hydrochloride (0.25 g, 1.21 mmol), and triethylamine (0.7 mL, 5.02 mmol) in pyridine (2.0 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between
EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO ^-propanol/CH∑Ch) to give
the bisphosphoamidate (80 mg, 41%) as a pale yellow foam: 1H NMR (CDCk) δ 7.65 (s, IH), 6.00 (m, IH), 5.30 (dd, IH), 5.17 (dd, IH), 4.80 (s, 2H), 4.25 (m, 4H), 4.20-4.00 (m, 6H), 3.85 (m, 2H), 3.72 (m, 2H), 3.42 (m, IH), 3.20 (m, IH), 1.70 (m, 4H), 1.32 (m, 18H), 0.96 (m, 6H); 31P NMR (CDCls) δ 20.61.
Example 61
Bisphosphoamidate 68: A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L-2- aminobutyric acid n-butyl ester hydrochloride (0.13 g, 0.64 mmol), and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 600C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cl2) to give the bisphosphoamidate (32 mg, 49%) as a pale yellow foam: 1H NMR (CDCls) δ 7.68 (s, IH), 6.00 (m, IH), 5.70 (s, broad, IH), 5.30 (dd, IH), 5.18 (dd, IH), 4.80 (s, 2H), 4.25 (m, 4H), 4.20-4.05 (m, 6H), 3.89 (m, 2H), 3.72 (m, 2H), 3.35 (m, IH), 3.15 (m, IH), 1.86-1.60 (m, 8H), 1.40 (m, 4H), 0.96 (m, 12H); 31P NMR (CDCls) δ 21.25.
Examples 62 to 71 related to Scheme 19. Example 62
Bisphosphoamidate 69: A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L- phenylalanine ethyl ester hydrochloride (0.15 g, 0.65 mmol), and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the
above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cb) to give the bisphosphoamidate (28 mg, 39%) as a pale yellow foam: 1H NMR (CDCIs) δ 7.58 (s, IH), 7.28-7.03 (m, 10H), 6.00 (m, IH), 5.30 (dd, IH), 5.17 (dd, IH), 4.25-4.00 (m, 8H), 3.65 (m, 2H), 3.42-3.19 (m, 2H), 3.15-2.77 (m, 6H), 1.23 (m, 6H); 31P NMR (CDCl3) δ 20.34.
Example 63
Bisphosphoamidate 70: A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L- phenylalanine n-butyl ester hydrochloride (0.15 g, 0.58 mmol), and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cl2) to give the bisphosphoamidate (49 mg, 63%) as a pale yellow foam: 1H NMR (CDCb) δ 7.58 (s, IH), 7.28-7.03 (m, 10H), 6.00 (m, IH), 5.70 (s, broad, IH), 5.30 (dd, IH), 5.17 (dd, IH), 4.78 (s, 2H), 4.25-4.03 (m, 8H), 3.65 (m, 2H), 3.42-3.19 (m, 2H), 3.17-2.78 (m, 6H), 1.61 (m, 4H), 1.32 (m, 4H), 0.96 (m, 6H); 31P NMR (CDCb) δ 20.35.
Example 64
Bisphosphoamidate 71: A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L- phenylalanine isobutyl ester hydrochloride (0.31 g, 1.20 mmol), and triethylamine (0.7 mL, 5.02 mmol) in pyridine (2.0 mL) was heated to 600C for 5 min. A freshly prepared bright yellow solution of aldrithiόl (0.44 g, 2.00 mmol) and triphenylphosphine (0.53 g, 2.00 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude procfuct was purified by chromatography on ISCO (2-propanol/CH2Cl2) to give the bisphosphoamidate (94 mg, 42-%) as a pale yellow foam: 1H NMR (CDCIs) δ 7.55 (s7 IH), 7.27-7.03 (m, 10H), 6.00 (m, IH), 5.70 (s, broad, IH), 5.25 (dd, IH), 5.17 (dd, IH), 4.78 (s, 2H), 4.25-4.08 (m, 4H), 3.87 (m, 4H), 3.65 (m, 2H), 3.42-3.19 (m, 2H), 3.17-2.78 (m, 6H), 1.97 (m, 2H), 0.96 (m, 12H); 31P NMR (CDCl3) δ 20.31.
Example 65
Monophosphoamidate 72: A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L-alanine ethyl ester hydrochloride (32 mg, 0.20 mmol), phenol (50 mg, 0.53 mmol) and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO ^-propanol/CH-Ck) to give the monophosphoamidate (12 mg, 22%, 1:1 diastereomeric mixture) as an off- white foam: 1H NMR (CDCIs) δ 7.62 (d, IH), 7.30-7.04 (m, 5H), 6.00 (m, IH), 5.30
(dd, IH)7 5.18 (dd, IH), 4.30-4.05 (m, 7H), 3.90-3.80 (m, 4H), 1.23 (m, 6H); 31P NMR (CDCl3) δ 21.89, 20.65.
Example 66 Monophosphoamidate 73: A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L-alanine n-butyl ester hydrochloride (39 mg, 0.21 mmol), phenol (50 mg, 0.53 mmol) and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na-SO^ filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Ch) to give the monophosphoamidate (16 mg, 28%, 1:1 diastereomeric mixture) as an off- white foam: 1H NMR (CDCls) δ 7.61 (d, IH), 7.32-7.06 (m, 5H), 6.00 (m, IH), 5.80 (s, broad, IH), 5.30 (dd, IH), 5.20 (dd, IH), 4.80 (m, 2H), 4.30-4.05 (m7 7H), 3.90- 3.80 (m7 4H)7 3.90-3.60 (m7 2H)7 1.60 (m7 2H)7 1.32 (m7 5H)7 0.96 (m, 3H); 31P NMR (CDCl3) δ 21.96, 20.70.
Example 67
Monophosphoamidate 74: A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L-alanine cyclobutyl ester hydrochloride (0.11 g, 0.61 mmol), phenol (0.13 g, 1.39 mmol) and triethylamine (0.5 mL, 3.59 mmol) in pyridine (2.0 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned
between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO ^-propanol/CH-Ck) to give the monophosphoamidate (28 mg, 17%, 1:1 diastereomeric mixture) as an off- white foam: 1H NMR (CDCb) δ 7.60 (d, IH), 7.25-7.03 (m, 5H), 6.00 (m, IH), 5.30 (dd, IH), 5.18 (dd, IH), 5.00 (m, 2H), 4.79 (d, 2H), 4.28-4.05 (m, 4H), 3.90 (m, 4H), 3.70 (m, IH), 3.57 (m, IH), 2.30 (m, 2H), 2.00-1.60 (m, 4H), 1.25 (m, 3H); 31P NMR (CDCl3) 521.91, 20.64.
Example 68
Monophosphoamidate 75: A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L-alanine n-hexyl ester hydrochloride (0.13 g, 0.61 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.7 mL, 5.02 mmol) in pyridine (2.0 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0 mL) was . added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cb) to give the monophosphoamidate (28 mg, 16%, 1:1 diastereomeric mixture) as an off- white foam: 1H NMR (CDCl3) δ 7.60 (d, IH), 7.25-7.03 (m, 5H), 6.00 (m, IH), 5.85 (s, IH), 5.30 (dd, IH), 5.17 (dd, IH), 4.78 (d, 2H), 4.35-4.05 (m, 7H), 3.90 (m, 4H), 3.70 (m, IH), 1.60 (m, 2H), 1.30 (m, 9H), 0.96 (m, 3H); 31P NMR (CDCIs) δ 21.97, 20.69.
Examples 69 to 72 relate to Scheme 21. Example 69
Monophosphoamidate 76: A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L-2-aminobutyric acid n-butyl ester hydrochloride (42 mg, 0.21 mmol), phenol (50 mg, 0.53 mmol) and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCOe. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2- propanol/CH-Ch) to give the monophosphoamidate (17 mg, 29%, 1:1 diastereomeric mixture) as an off-white foam: 1H NMR (CDCIs) δ 7.60 (d, IH), 7.25-7.03 (m, 5H), 6.00 (m, IH), 5.30 (dd, IH), 5.17 (dd, IH), 4.78 (d, 2H), 4.30-4.03 (m, 7H), 3.95-3.80 (m, 4H), 3.62 (m, IH), 3.40 (m, IH), 1.80-1.60 (m, 4H), 1.38 (m, 2H), 0.98-0.75 (m, 6H); 31P NMR (CDCIs) δ 22.26, 20.95.
Example 70
Monophosphoamidate 77: A mixture of phosphonic acid 60 (35 mg, 0.11 mmol),
L-phenylalanine ethyl ester hydrochloride (48 mg, 0.21 mmol), phenol (50 mg, 0.53 mmol) and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2- propanol/CH2Cl2) to give the monophosphoamidate (14 mg, 23%, 1:1
diastereomeric mixture) as an off-white foam: 1H NMR (CDCIs) δ 7.60 (d, IH), 7.25-7.03 K 10H), 6.00 (m, IH), 5.30 (dd, IH), 5.17 (dd, IH), 4.80 (m, 2H), 4.40- 4.08 (m, 7H), 3.85-3.65 (m, 4H), 3.38-3.25 (m, 2H), 2.95-2.86 (m, 2H), 1.20 (m, 3H); 31P NMR (CDCh) δ 21.86, 21.06.
Example 71
Monophosphoamidate 78: A mixture of phosphonic acid 60 (35 mg, 0.11 mmol), L-phenylalanine w-butyl ester hydrochloride (55 mg, 0.21 mmol), phenol (50 mg, 0.53 mmol) and triethylamine (0.2 mL, 1.43 mmol) in pyridine (0.5 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.16 g, 0.74 mmol) and triphenylphosphine (0.20 g, 0.75 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO<t, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2- propanol/CH-Cb) to give the monophosphoamidate (18 mg, 28%, 1:1 diastereomeric mixture) as an off-white foam: 1H NMR (CDCk) δ 7.60 (d, IH), 7.25-6.97 (m, 10H), 6.00 (m, IH), 5.80 (s, broad, IH), 5.30 (dd, IH), 5.17 (dd, IH), 4.78 (d, 2H), 4.40-4.03 (m, 7H), 3.85-3.65 (m, 4H), 3.45-3.25 (m, 2H), 2.95-2.86 (m, 2H), 1.57 (m, 2H), 1.30 (m, 2H), 0.96 (m, 3H); 31P NMR (CDCk) δ 21.89, 21.09.
Example 72
Monophosphoamidate 79: A mixture of phosphonic acid 60 (0.10 g, 0.30 mmol), L-phenylalanine isobutyl ester hydrochloride (0.16 g, 0.61 mmol), phenol (0.14 g, 1.52 mmol) and triethylamine (0.7 mL, 5.02 mmol) in pyridine (2.0 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0
mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2- propanol/CHzCh) to give the monophosphoamidate (19 mg, 10%, 1:1 diastereomeric mixture) as an off-white foam: 1H NMR (CDCIs) δ 7.60 (d, IH), 7.25-7.03 (m, 10H), 6.00 (m, IH), 5.30 (dd, IH), 5.17 (dd, IH), 4.78 (d, 2H), 4.45 (m, IH), 4.35-4.18 (m, 4H), 3.95-3.60 (m, 5H), 3.35 (m, IH), 3.00-2.83 (m, 2H), 1.85 (m, IH), 0.96 (m, 6H); 31P NMR (CDCl3) δ 21.90, 21.07.
Examples 73 to 76 related to Scheme 22.
Example 73
Monophosphoamidate 80: A mixture of monophosphonic acid 6 (0.10 g, 0.30 mmol), L-alanine cyclobutyl ester hydrochloride (0.11 g, 0.61 mmol), phenol (0.13 g, 1.4 mmol), and triethylamine (0.51 mL, 3.67 mmol) in pyridine (2 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.14 mmol) in pyridine (1.0 mL) -was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2- propanol/CHzCL) followed by Gilson HPLC purification (CHsCN/HaO) to give the monophosphoamidate (33 mg, 20%, 1:1 diastereomeric mixture) as an off-white foam: 1H NMR (CDCl3) δ 7.60 (s, IH), 7.30-7.03 (m, 5H), 5.80 (s, broad, IH), 5.00 (m, IH), 4.80 (d, 2H), 4.28-4.05 (m, 3H), 3.90 (m, 4H), 3.03 (s, broad, IH), 2.35 (m,
2H)7 2.05 (m, 2H), 1.80 (m, 2H), 1.30 (m, 3H), 0.90 (m, 2H), 0.62 (m, 2H); 31P NMR (CDCl3) 521.91, 20.61.
Example 74 Bisphosphoamidate 81: A mixture of phosphonic acid 6 (60 mg, 0.18 mmol), L- alanine cyclobutyl ester hydrochloride (0.13 g, 0.72 mmol), and triethylamine (0.31 mL, 2.16 mmol) in pyridine (1.0 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.28 g, 1.26 mmol) and triphenylphosphine (0.34 g, 1.26 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on silica gel (5% MeOH/CHiCk) to give the bisphosphoamidate (30 mg, 28%) as a pale yellow foam: 3H NMR (CDCl3) δ 7.60 (s, IH), 5.70 (s, IH), 5.00 (m, 2H), 4.90 (s, 2H), 4.25 (m, 2H), 4.00 (m, 2H), 3.90 (m, 2H), 3.78 (m, 2H), 3.40 (m, IH), 3.21 (m, IH), 3.03 (s, broad, IH), 2.35 (m, 4H), 2.05 (m, 4H), 1.90-1.65 (m, 4H), 1.32 (m, 6H), 0.90 (m, 2H), 0.60 (m, 2H); 31P NMR (CDCl3) δ 20.70.
Example 75
Bisphosphoamidate 82: A mixture of phosphonic acid 6 (60 mg, 0.18 mmol), L- alanine cyclopentyl ester hydrochloride (0.13 g, 0.72 mmol), and triethylamine (0.31 mL, 2.16 mmol) in pyridine (1.0 mL) was heated to 6O0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.28 g, 1.26 mmol) and triphenylphosphine (0.34 g, 1.26 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between
EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na.Sθ4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on silica gel (5% MeOH/CEbCb) to give the bisphosphoamidate (30 mg, 27%) as a pale yellow foam: 1H NMR (CDCk) δ 7.62 (s, IH), 5.72 (s, IH), 5.20 (m, 2H), 4.80 (s, 2H), 4.25 (m, 2H), 4.04-3.88 (m, 4H), 3.74 (m, 2H), 3.40 ( m, IH), 3.23 (m, IH), 3.03 (s, broad, IH), 1.95-1.58 (m, 16H), 1.37 (m, 6H), 0.90 (m, 2H), 0.60 (m, 2H); 31P NMR (CDCIa) δ 20.64.
Example 76 Bisphosphoamidate 83: A mixture of phosphonic acid 6 (40 mg, 0.12 mmol), L- phenylalanine cyclobutyl ester hydrochloride (0.13 g, 0.48 mmol), and triethylamine (0.20 mL, 1.44 mmol) in pyridine (0.5 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.19 g, 0.85 mmol) and triphenylphosphine (0.22 g, 0.85 mmol) in pyridine (0.5 mL) was added to the above reaction mixture. The reaction was stirred at 600C overnight, cooled to room temperature, and concentrated. The product was partitioned between EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on silica gel (5% MeOH/QHbCb) to give the bisphosphoamidate (20 mg, 22%) as a pale yellow foam: 1H NMR (CDCIs) δ 7.50 (s, IH), 7.28-7.05 (m, 10H), 5.72 (s, IH), 5.00 (m, 2H), 4.90 (s, 2H), 4.23-4.03 (m, 4H), 3.68 (m, 2H), 3.42-3.19 (m, 2H), 3.15-2.82 ( m, 7H), 2.38 (m, 4H), 2.00 (m, 4H), 1.85-1.55 (m, 4H), 0.90 (m, 2H), 0.60 (m, 2H); 31P NMR (CDCl3) δ 20.31.
Examples 77 and 78 relate to Scheme 23. Example 77
Diisopropyl Phosphonate 84: A mixture of 4 (5.0 g, 12.82 mmol) and trifluoroethylamine (6.35 g, 64.10 mmol) in CH3CN (40 mL) was placed in a
reaction bomb and heated to 80 0C for 4 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The product was partitioned between 15% MeOH/CH-Cb. (3 x) and brine, dried with Na2SCk7 filtered, and concentrated. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cl2) followed by Gilson HPLC purification (CH3CN/H2O) to give 84 (3.26 g, 56%) as a pale yellow foam.
Example 78
Bisphosphoamidate 85: A mixture of phosphonic acid 42 (0.11 g, 0.29 mmol), L- alanine cyclobutyl ester hydrochloride (0.31 g, 1.75 mmol), and triethylamine (0.52 mL, 3.67 mmol) in pyridine (2.0 mL) was heated to 60 0C for 5 min. A freshly prepared bright yellow solution of aldrithiol (0.47 g, 2.12 mmol) and triphenylphosphine (0.56 g, 2.12 mmol) in pyridine (1.0 mL) was added to the above reaction mixture. The reaction was stirred at 60 0C overnight, cooled to room temperature, and concentrated. The product was partitioned between
EtOAc and saturated NaHCO3. The organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated under reduced pressure. The crude product was purified by chromatography on ISCO (2-propanol/CH2Cl2) to give the bisphosphoamidate (97 mg, 54%) as a pale yellow foam: 1H NMR (CDCb) δ 7.65 (s, IH), 5.90 (s, broad, IH), 5.00 (m, 2H), 4.80 (s, 2H), 4.35-4.20 (m, 4H), 4.00 (m, 2H), 3.87 (m, 2H), 3.70 (d, 2H), 3.38 (m, IH), 3.20 (m, IH), 2.30 (m, 4H), 2.00 (m, 4H), 1.90-1.60 (m, 4H), 1.35 (m, 6H); 31P NMR (CDCb) δ 20.61.
Example 79 This example teaches assays used to demonstrate antiproliferation activity.
Cell types used for anti-proliferation assays
Human cancer cell lines used in anti-proliferation assays included six cervical carcinoma cell lines with three types of HPV (HFV-16, HPV-18, HPV-39), one HPV negative cervical carcinoma cell line, and two keratinocyte-like carcinoma from tongue. Normal human cells tested included skin keratinocytes, cervical keratinocytes, and lung fibroblasts. Skin keratinocytes and cervical keratinocytes were obtained from Cambrex (East Rutherford, NJ) and all other cells were obtained from American Type Culture Collection (Manassas, VA). Table 79-1 summarizes characteristics of each cell type and culture conditions. Anti-proliferation assay procedure 1. Cell culture
Cells were detached from culture flasks using trypsin, counted, and plated in 96- well culture plates (250- 1000 cells per well, depending on cell type). On the next day (defined as day 0), after cells attached to the bottom of plates, 5-fold serial dilutions of compounds were added in duplicate. No compound and 10 μM colchicine (cell division inhibitor) was added to control wells, which would represent 100% proliferation and 0% proliferation, respectively.
2. Staining of cells with Sulforhodamine B
Seven days after addition of compounds, culture plates were treated with 10% trichloroacetic acid at 4°C for 1 hr, then washed with water. This procedure allows cell-derived proteins to bind to the bottom surface of plates. Proteins were stained with 0.4% Sulforhodamine B in 1% acetic acid for 10 minutes, followed by extensive washing with 1% acetic acid. Remaining dye bound to the bottom of plates was dissolved in 1OmM Trizma base. This generated purple color that was quantified by measuring the absorbance at 510 nm wavelength, using spectrophotometer.
3. Data analysis
From the experimental data, sigmoidal dose-response curve was generated and 50% effective concentration (ECso) was calculated using GraphPad
Prism version 4.01 for Windows (GraphPad Software, San Diego California USA).
Table 79-1. Cell types used in antiproliferation assays
* Culture media
Cells were maintained in humidified incubators at 370C with 5% CO2, in the following culture media.
Al: Medium for culture maintenance: Eagle MEM with Earle's BSS (Cambrex, East Rutherford, NJ), supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 units/mL penicillin, and 100 μg/mL streptomycin.
A2: Medium for antiproliferation assays: Eagle MEM with Earle's BSS, supplemented with 5% fetal bovine serum, 2 mM glutamine, 100 units/mL penicillin, and 100 μg/mL streptomycin.
Bl: Medium for culture maintenance: Keratinocyte-SFM (Invitrogen, Carlsbad, CA), supplemented with 0.01 mg/mL bovine pituitary extract, 0.001 μg/mL recombinant epidermal growth factor, 100 units/mL penicillin, and 100 μg/mL streptomycin. B2: Medium for antiproliferation assays: 4:1 mixture of Bl and A2.
Results
1. Selective antiproliferation activity of the amidate prodrugs in HPV positive SiHa cells compared with normal fibroblasts. The goal was to discover a compound that inhibits growth of HPV- transf ormed lesion without affecting normal cells in epidermis and dermis (such as keratinocytes and fibroblasts). In vitro antiproliferation assays were setup using SiHa cells and HEL cells, which model HPV-transformed lesion and normal fibroblasts, respectively. SiHa cells are derived from squamous cell carcinoma in cervix caused by HPV-16 infection and HEL fibroblasts are derived from normal human embryonic lung (Table 79-1). As shown in Table 79-2, 50% effective concentration (ECso) of the seven amidate prodrugs in SiHa cells ranged 0.13 - 3.2 nM, while ECso in HEL cells ranged 12 - 727 nM, indicating that these compounds inhibited proliferation of SiHa cells more efficiently than HEL cells. HEL/SiHa selectivity index (HEL ECso divided by SiHa ECso) ranged from 72 - 559 (Table 79-2).
All seven amidate prodrugs produce the same metabolite, cprPMED AP. cprPMED AP is further metabolized to PMEG [Compton et alv 1999; Haste et al., 1999]. Antiproliferation ECso of these compounds in
SiHa cells were much higher than those of the prodrugs (Table 79-2), indicating that attachment of amidate moieties improved potency. Furthermore, HEL/SiHa selectivity indices of cprPMED AP and PMEG were 17 and 4.1, respectively (Table 79-2), indicating that the prodrugs
have better selectivity than cprPMED AP and cprPMEDAP has better selectivity than PMEG.
PMEG is known to be phosphorylated to PMEGpp that acts as a chain-terminating inhibitor of cellular DNA polymerase [Compton et al., 1999; Haste et al., 1999]. Four known DNA polymerase inhibitors
(Cidofovir, Ara C, doxifluridine, and Aphidicolin) and other anticancer drugs with different mechanisms of action, including DNA topoisomarase inhibitors (Dacarbazine, Ellipticine), DNA alkylaters (Doxorubicin, Mitoxantrone, Bleomycin, Mechlorethanmine), and tublin inhibitors (Vincristine, Vinblastine, Etoposide, and Indanocine) were tested in SiHa and HEL cells (Table 79-2). Antiproliferation ECsoof these compounds in SiHa cells varied, and some were equally or more potent than the seven amidate prodrugs. Nonetheless, all of them exhibited poor HEL/SiHa selectivity indices (0.01 - 3.98), compared with the seven amidate prodrugs. Taken together, a unique set of compounds were taught, which shows sub-low nM antiproliferation ECsoin HPV- 16 positive SiHa carcinoma cells and greater than 50 fold selectivity when compared with HEL fibroblasts.
2. Selective antiproliferation activity of the amidate prodrugs in HPV positive SiHa cells compared with normal keratinocytes
In order to test effect of the compounds in normal cells from epidermis, anti-proliferation assays were performed using primary human keratinocytes, isolated from skin (PHK) and cervix (CK). Antiproliferation EC50 values obtained with the seven prodrugs in PHK and CK were lower than those in HEL, indicating that keratinocytes are more susceptible than fibroblasts (Table 79-2 and 79-3). Nonetheless, PHK/SiHa and CK/SiHa selectivity indices of these prodrugs and cprPMEDAP were still better than
I the control compounds PMEG and a DNA polymerase inhibitor AraC (Table 79-3). Thus, the prodrugs preferentially inhibited proliferation of HPV-16 positive SiHa cells, compared with normal keratinocytes from skin and cervix.
3. Antiproliferation activities in other HPV positive cells
The seven prodrugs were then tested in five additional cell lines derived from HPV-induced cervical carcinoma (listed in Table 79-1) in antiproliferation assays and data are shown in Table 4 along with SiHa data. In SiHa, C-4I, and MS751 cells, all compounds except Compound C showed sub-low nM antiproliferation ECso. In CaSki, HeLa, and ME-180, however, all compounds were significantly less potent, with ECso ranging 7.8 - 410 nM. There seems to be no correlation between resistance and HPV type (16, 18 or 39), or resistance and metastatis (CaSki, MS751, and ME180 are derived from metastased site). The control compound AraC (DNA polymerase inhibitor) uniformly inhibited all cell lines with ECso values ranging 94 - 257 nM.
4. Antiproliferation activities in HPV negative carcinoma cells To investigate the effect of the compounds on HPV negative carcinoma cell lines, three cell lines (HT-3, SCC4, SCC9, Table 79-1) were tested in antiproliferation assays. As shown in Table 79-4, all seven prodrugs were equally or more potent than the control compound AraC.
Table 79-2. Selective inhibition of HPVl 6+ SiHa cells compared with HEL fibroblasts
Table 79-3. Selective inhibition of HPV16+ SiHa cells compared with primary keratinocytes
Table 79-4. Antiproliferation activities in other HPV positive and negative carcinoma cells
Example 80
Antiproliferation assay
Antiproliferation assays measure effect of compounds on proliferation of cultured cells. Active compounds in antiproliferation assays may be cytostatic
(inhibit cell division) and/or cytocidal (kill cells). By performing antiproliferation assays using HPV positive carcinoma cells and normal cells, we identify compounds that selectively inhibit proliferation of HPV positive carcinoma cells compared with cells from normal human tissues. Table 80-1 summarizes characteristics of each cell type, including six cervical carcinoma cell lines transformed by HPV, normal human skin keratinocytes (PHK), and normal lung fibroblasts (HEL). Skin keratinocytes were obtained from Cambrex (East Rutherford, NJ). All other cells were obtained from American Type Culture Collection (Manassas, VA). Cells were detached from culture flasks using trypsin, counted, and plated in 96-well culture plates (250- 100 cells per well, depending on cell type). On the next day (defined as day 0), 5-fold serial dilutions of compounds were added in duplicate. Seven days after addition of compounds, culture plates were treated with 10% trichloroacetic acid at 4°C for 1 hr and washed with water. This procedure allows cellular proteins to bind to the bottom surface of plates. Proteins were stained with 0.4% Sulforhodamine B in 1% acetic acid for 10 minutes, followed by extensive washing with 1% acetic acid. Remaining dye bound to the bottom of plates was solubilized in 1OmM Trizma base, generating purple color. Intensity of the color (proportional to cell number) was quantified by measuring the absorbance at 510 nm wavelength, using spectrophotometer. Cells without drug treatment (=100% proliferation) and cells treated with 10 μM colchicine (cell division inhibitor) (= 0% proliferation) were used as controls, to determine % inhibition. % inhibition values were plotted against compound concentrations, fitted to a sigmoidal dose response curve, from which the compound concentration that reduced cell proliferation rate by 50% (= ECso) was determined. GraphPad Prism version 4.00 for Windows (GraphPad Software, San Diego California USA) was used for the curve fitting and ECso calculation. ' '
Apoptosis assay (caspase 3 induction method)
Induction of caspases is one of the early events associated with apoptosis or programmed cell death. Caspase activity can be quantitatively detected using fluorescent substrate. Compounds that directly act on the apoptotic pathway may induce caspase in a relatively short incubation period (<24 hrs). Compounds that disturb other cell physiology, which eventually causes apoptosis, may require longer incubation period (>48 hrs) for induction of caspase.
10,000 cells were plated in 96-well culture plates and incubated with 5-fold serial dilutions of compounds for 24, 48, and 72 hrs. Cells were lysed and activity of caspase in cell lysates were measured using fluorescent substrate, according to the manufacturer's instruction (Caspases assay kit, Roche, Indianapolis, IN).
Apoptosis assay (Annexin V staining method)
Translocation of phosphatidylserine from the inner of the cell membrane to the outside is one of the the early / intermediate events associated with apoptosis or programmed cell death. Translocated phosphatidylserine can be detected by incubating cells with FITC-labelled Annexin V, which is a Ca++ dependent phospholipid-binding protein. When cells are stained with Annexin-FITC and propidium iodide (which stains dead cells), live cells are negative for both dyes, dead cells are positive for both, while apoptotic cells are positive only for Annexin-FITC.
HPV-16 SiHa cells were cultured with three different concentrations of compounds for 3 or 7 days and simultaneously stained with Annexin-FITC and propidium iodide. Staining of each individual cell was examined by flow cytometry.
Results
Selective antiproliferation activity
The purpose of this procedure was to identify compounds that inhibits growth of HPV- transformed lesion without affecting normal cells in epidermis and dermis (such as keratinocytes and fibroblasts). Therefore, compounds were tested in SiHa, PHK, and HEL cells, which model HPV-transformed cells, normal keratinocytes, and normal fibroblasts, respectively.
Representative compounds of the present invention, such as those listed in Table 80-2, showed detectable levels of antiproliferation activity in SiHa cells, with 50% effective concentration (ECso) less than 25,000 nM. Active compounds were also tested in HEL cells. In all cases, ECso in HEL cells were higher than ECso in SiHa cells, indicating that the active compounds inhibited proliferation of SiHa cells more efficiently than HEL cells. Other nucleotide/nucleoside analogs, such as PMEG (2-phosphonomethoxyethyl guanine), Ara-C (cytarabine, CAS# 147-94- 4), and gemcitabine (CAS# 95058-81-4) did not show such selectivity. Podofilox (CAS# 518-28-5), the active ingredient of the anti-wart drug Condylox, also showed no selectivity.
Representative prodrug compounds of the present invention, such as those listed in Table 80-3 show activities. In most cases, the prodrugs were more potent and in some cases, more selective than their respective parent compounds. The majority of phosphoamidate prodrugs were more active and selective than podofilox.
Taken together, compounds were identified that possess sub nM antiproliferation ECso in HPV-16 positive SiHa cells and greater than 50 fold selectivity when compared with PHK keratinocytes or with HEL fibroblasts.
Antiproliferation activity in other HPV+ cell lines
Selected compounds were also tested in five additional cell lines derived from HPV-induced cervical carcinoma (see Example 79 and Table 80-4). Each compound showed different levels of activities in the six HPV+ cell lines,
regardless the type of HPV present. In general, compounds were more potent in SiHa (HPV-16), C-4I (HPV-18), and MS751 (HPV-18) cells than in CaSki (HPV-16), HeLa (HPV-18), and ME-180 (HPV-39) cells.
Induction of apoptosis (caspase 3 induction method)
A representative compound of the present invention was tested for induction of apoptosis in SiHa cells. When cells were incubated for 72 hrs (solid bars), significant dose responsive induction of caspase was observed, indicating that the compound induced apoptosis (Figure 80-1). Induction of caspase was less obvious with 48 hr incubation (shaded bars) and was not observed with 24 hr incubation (data not shown).
Induction of apoptosis (Annexin V staining method)
PMEG, N6-cyclopropyl PMEDAP, and a representative compound of the present invention were tested at three different concentrations, for induction of apoptosis in SiHa cells, using Annexin V-Propidium iodide double staining method. With all three compounds, a greater percentage of apoptotic cells were observed on day 7 than day 3. The aforementioned representative compound of the present invention was the most active in inducing apoptosis; on day 7, 63.8% of cells in the culture treated with 0.2 μg/m of this compound were apoptotic. In contrast, cultures treated with 0.2 μg/mL PMEG and 0.5 μg/mL N6-cyclopropyl PMEDAP only had 1.2 % and 15.9 % of apoptotic cells, respectively.
Table 80-1. Cell types used in antiproliferation assays
Cells were maintained in humidified incubators at 370C with 5% COz, in the following culture media.
A1 : Medium for culture maintenance: Eagle MEM with Earle's BSS (Cambrex, East Rutherford, NJ), supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 units/mL penicillin, and 100 ug/mL streptomycin.
A2: Medium for antiproliferation assays: Eagle MEM with Earle's BSS, supplemented with 5% fetal bovine serum, 2 mM glutamine, 100 units/mL penicillin, and 100 μg/mL streptomycin. B1 : Medium for culture maintenance: Keratinocyte-SFM (Invitrogen, Carlsbad, CA), supplemented with 0.01 mg/mL bovine pituitary extract, 0.001 μg/mL recombinant epidermal growth factor, 100 units/mL penicillin, and 100 μg/mL streptomycin. B2: Medium for antiproliferation assays: 4:1 mixture of B1 and A2.
Table 80-2. Antiproliferation activity of Nβ-substituted PMEDAP in HPVl 6+ SiHa cells and HEL fibroblasts
where RX1 is hydrogen, and R*2 is one of the following substituents, except in the indicated instances (*), where R XI and R*2 together forms a N-heterocyclic ring. methylamine
1-propylamine
1-butylamine dimethylamine methylethylamine
2~methylpropan-1 -amine ally! amine
2-propynyl amine
2-butylene amine
2-isobutylen amine cyclopropylamine cyclopropylmethanamine
1 -cyclopropylethanamine dicyclopropylamine cyclobutylamine cyclopentanamine cyclohexaneamine cycfoheptanamine cyclooctanamine diethanolamine
2-ethanolamine
2-propanol amine
1 -amino 2-propanol amine
2-methoxyethylamine
6-aminohexaneamine
3-aminopropylamine
2~dimethylamι'noethylamine
6-hexanateamine benzylamine methylbenzylamine
4-aminobenzylamine
2-phenylethanamine
2-pyridinyl 1-methanamine
3-pyridinyl 1-methanamine
4-pyridinyl 1-methanamine
1-naphthylamine
*pyrrolidine (N6 makes pyrrolidine)
*piperidine (N6 makes piperidine)
*morpholine (N6 makes morpholine)
2,2,2-trifluoroethanamine
Table 80-3. Antiproliferation activity of phosphoamidate prodrugs of N6- substituted PMEDAP in HPV16+ SiHa cells, PHK keratinocytes, and in HEL fibroblasts
where RX1 and R*2 are substituted as depicted in the formula, and Y1A and Y1B are substituted as indicated,
where R and R are substituted as depicted in the formula, and Y1A and Y1B are substituted as indicated,
/IA ,1B
OH OH
O-iPr O-iPr
AIa-Bu AIa-Bu
Oph Phe-Et
where RX1 and R*2 are substituted as depicted in the formula, and Y1A and Y 1B are substituted as indicated, γ1A γ1B
OH OH
AIa-Bu AIa-Bu
Table 80-4. Antiproliferation activities of N6-cycloprolyl PMEDAP and its phosphoamidate prodrugs in six different HPV positive cells
Example 81
Rabbit Skin Irritation Study of Compounds A and B
A study was conducted to evaluate the potential of two compounds of the present invention to produce irritation when administered via dermal application to male rabbits for seven consecutive days. A total of six males were assigned to the study as presented in the table below.
The vehicle, positive control articles, and test articles were administered dermally once daily for seven days during the study. The test articles were administered at concentrations of 0.01, 0.03, and 0.1%. The positive control articles were administered at concentrations of 0.1% (PMEG) or 1% (Cidofovir®). The dose volume for all formulations was a fixed volume of lOOμL.
The test sites for each animal were shaved prior to the initial administration and as needed during the study. Two sites were clipped on the left dorsal side, and three were clipped on the right dorsal side. The outline of each dosing (approximately 1 square inch each) was marked with indelible ink. The total clipped area comprised no less than 10% of the total body surface of each animal. The vehicle and appropriate positive control and test article were administered to each animal within a dosing site of approximately 1 square inch. Vehicle was administered on the left rostral site (Dose Site 1), and the appropriate positive control article was administered to the left caudal site (Dose Site 2). The appropriate test article was administered as follows: 0.01% to the right rostral site (Dose Site 3), 0.03% to the right middle site (Dose Site 4), and 0.1% to the right caudal site (Dose Site 5). Collars were placed on the animals immediately following dosing for 1 to 2 hours.
The sites were evaluated for erythema and edema prior to dosing on Day 1 and daily thereafter, approximately 24 hours following each dose and prior to the next dose. Each site was assigned an irritation score based upon the Draize scale for scoring skin irritation (Draize JH, Woodard G, Calvery HO, Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 1944;82:377-90).
Observations for mortality, morbidity, and the availability of food and water were conducted twice daily for all animals. Detailed clinical examinations were conducted prior to randomization, prior to dosing on Day 1, and daily thereafter. Body weights were measured and recorded the day after arrival, prior to randomization, and prior to dosing on Days 1, 3, and 7.
Euthanasia was by intravenous anesthesia overdose with sodium pentobarbital- based euthanasia solution and exsanguinations by severing the femoral vessels. The animals were examined carefully for external abnormalities including masses. The skin was reflected from a ventral midline incision and any abnormalities were identified and correlated with ante-mortem findings. The abdominal, thoracic, and cranial cavities were examined for abnormalities and the organs removed, examined, and, where required, placed in neutral buffered formalin. The dosing sites, kidneys, and any gross lesions of each animal were collected and preserved. Microscopic examination of fixed hematoxylin and eosin-stained paraffin sections were performed for each dosing site for all animals. The slides were examined by a veterinary pathologist. A four-step grading system was utilized to define gradable lesions for comparison between dose groups.
Conclusions
The two test articles did not produce notable clinical findings, dermal irritation, changes in body weight or macroscopic and microscopic observations at any dose concentrations. One of the positive controls was associated with clinical findings and slight to moderate macroscopic and microscopic observations.
Example 82
Rabbit Skin Irritation Study of Compounds B and H
A study was conducted to evaluate the potential of two compounds of the present invention to produce irritation when administered via dermal application to male rabbits for seven consecutive days. A total of 24 males were assigned to the study.
The test and control articles were administered dermally once per day for 7 consecutive days during the study. The dose levels for Compound B were 0.03, 0.1, and 0.3%. The dose levels for Compound H were 0.03, 0.1, and 0.3%. The dose level for PMEG (positive control) was 0.1%. The dose level for cPrPMEDAP (positive control) was 1.0%. The dose level for the vehicle control was 0.0% (this
was dosed as both gel and ointment formulations). The dose volume for all sites was a constant lOOμL. Less than 24 hours prior to the first administration, the hair was clipped from the back of the animal. This clipped area comprised no less than 10% of the total body surface area. Care was taken to avoid abrading the skin.
The test, positive control, and vehicle control articles were administered within a dosing site of approximately 1" x 1". Two dosing sites were placed along the left dorsal surface. The vehicle or positive control article was administered to the rostral site, and the low dose of the test article was administered to the caudal site. Two dosing sites were placed along the right dorsal surface. The mid-dose of the test article was administered to the rostral site, and the high dose of the test article was administered to the caudal site. Collars were placed on the animals for approximately two hours immediately following dosing. The duration of collaring was documented in the raw data.
Observations for mortality, morbidity, and the availability of food and water were conducted twice daily for all animals. The test sites were evaluated for erythema and edema prior to the first administration and at approximately 24 hours following each administration (prior to the next scheduled dosing) and daily during the 7- day recovery period. Observations for clinical signs were conducted daily during the study at the same time as the dermal observations. Body weights were measured and recorded the day after receipt, prior to randomization, prior to test article administration on Day 1, and on Days 7 and 14, and at necropsy (Days 8 and 15). Body weights taken at receipt and prior to random are not reported, but maintained in the study file. Blood samples (4-6 mL) will be collected from 6 animals/group at termination and 3 animals/group at recovery
from the jugular or other suitable vein for evaluation of clinical pathology- parameters.
Additional blood samples (approximately ImL) were taken from all animals from the jugular or other suitable vein for determination of the plasma concentrations of the test article at approximately 2 hours postdose on Day 7. Samples were placed in tubes containing potassium EDTA and stored on an ice block until centrifuged. Animals were not fasted before blood collection. Samples were stored at -70° until examination.
Complete necropsy examinations were performed under procedures approved by a veterinary pathologist on all animals. Euthanasia was by anesthesia overdose with sodium pentobarbital-based euthanasia solution via the ear vein/artery or other suitable vein and exsanguinations by severing the femoral vessels. The animals were examined carefully for external abnormalities including masses.
The skin was reflected from a ventral midline incision and any abnormalities were identified and correlated with antemortem findings. The abdominal, thoracic, and cranial cavities were examined for abnormalities and the organs removed, examined, and, where required, placed in neutral buffered formalin. Microscopic examination of fixed hematoxylin and eosin-stained paraffin sections was performed on sections of tissues from the dosing sites (4 per animal), kidneys, and any gross lesions.
At the time of necropsy, Day 8 for main study animals and Day 15 for recovery animals, the four dosing sites per animal were identified. Approximately half of each dosing site was excised and then collected and preserved as mentioned above for histologic processing. While the other approximate half of each dosing site was still intact on the animal, the following procedures are performed. The
αosing sites were wiped with three gauzes of ethanol (95%) and allowed to dry completely. Tape (3M® packing tape or equivalent) was applied to each dosing site ten times. A clean piece of tape was used for reach application. The remaining portions of the dosing sites were then excised with scissors. The scissors were washed between each dose site and animal with acetone or ethanol. The order of dose site removal was vehicle or positive control site, low dose site, mid-dose site, and high dose site. A 1 cm2 tissue was excised from each dose site. The tissue sample was weighted and recorded. The skin punches were minced with clean scissors in individual appropriately sized scintillation vials. Cold phosphate-buffered saline (5mL) was added to the scintillation vial. The tissue was then homogenized with 20 second pulses using a mechanical homogenizer. The homogenates were quickly frozen at approximately -2O0C.
Conclusions Based on dermal irritation scores and microscopic findings, one of the test articles was non-irritating in the vehicle gel, but was a mild to moderate irritant in the vehicle ointment. The second test article was a very slight irritant in the vehicle gel and a mild irritant when formulated in the vehicle ointment.
Example 83
Preparation of Topical Gel Pharmaceutical Composition
This example illustrates the preparation of a representative topical gel composition containing an active compound of Formula I. A topical gel composition is prepared having the following composition:
*X = Compound ranging from 0.01% to 1.0%
Other compounds of Formula I, such as those prepared in accordance with the present Specification can be used as the active compound in the preparation of the gel formulations of this example.
The following ingredients have also been evaluated for suitability during the development of this formulation:
Isopropyl mysritate (solvent/cosolvent/penetration enhancer),
Polyethylene glycols, Triacetin (solvents),
Cetyl alcohol and Stearyl alcohol (Stiffening agents),
Carbomer (Viscosity enhancer), and
Tweens, Spans (emulsifiers).
Example 84
Preparation of Topical Ointment Pharmaceutical Composition
This example illustrates the preparation of a representative topical ointment composition containing an active compound of Formula I. A topical ointment composition is prepared having the following composition:
*X = Compound ranging from 0.01% to 1.0%
Other compounds of Formula I, such as those prepared in accordance with the present Specification can be used as the active compound in the preparation of the ointment formulations of this example.
The following ingredients have also been evaluated for suitability during the development of this formulation:
Isopropyl mysritate (solvent/cosolvent/penetration enhancer), Polyethylene glycols, Triacetin (solvents),
Cetyl alcohol and Stearyl alcohol (Stiffening agents),
Carbomer (Viscosity enhancer), and
Tweens, Spans (emulsifiers).
Example 85
Antiproliferation assay
Representative compounds of the present invention were screened for antiproliferative activity of compounds in three HPV negative SCC cell lines. All compounds showed antiproliferative activity, suggesting that the compounds may also be useful for non-HPV proliferative lesions, such as AK, BCC, and SCC.
Cells were detached from culture flasks using trypsin, counted, and plated in 96-well culture plates (250- 100 cells per well, depending on cell type). On the next day (defined as day 0), 5-fold serial dilutions of compounds were added in
duplicate. Seven days after addition of compounds, culture plates were treated with 10% trichloroacetic acid at 4oC for 1 hr and washed with water. This procedure allows cellular proteins to bind to the bottom surface of plates. Proteins were stained with 0.4% Sulforhodamine B in 1% acetic acid for 10 minutes, followed by extensive washing with 1% acetic acid. Remaining dye bound to the bottom of plates was solubilized in 1OmM Trizma base, generating purple color. Intensity of the color (proportional to cell number) was quantified by measuring the absorbance at 510 nm wavelength, using spectrophotometer. Cells without drug treatment (=100% proliferation) and cells treated with 10 μM colchicine (cell division inhibitor) (= 0% proliferation) were used as controls, to determine % inhibition. % inhibition values were plotted against compound concentrations, fitted to a sigmoidal dose response curve, from which the compound concentration that reduced cell proliferation rate by 50% (= EC50) was determined. GraphPad Prism version 4.00 for Windows (GraphPad Software, San Diego California USA) was used for the curve fitting and EC50 calculation.
Results
Antiproliferation activity in other HPV+ cell lines
Compounds were tested in one SCC cell line that contains HPV16, and three non- HPV SCC cell lines (see Table 1 for cell line description). As shown in Table 2, all amidate prodrugs showed low nM to sub μM EC50 in the antiproliferation assay.
Table 1. Cell types used in antiproliferation assays
Table 2. Antiproliferation activity of cprPMEDAP amidates in HPV positive and negative SCC cell lines
Conclusion
Antiproliferative activity was observed for the cprPMEDAP amidates in three squamous carcinoma cell lines that are not transformed by HPV. The data shows that these compounds can inhibit abnormal cell proliferation in non-HPV skin diseases, such as actinic keratosis, squamous cell carcinoma, and basal cell carcinoma.
Claims
1. A compound of Formula I,
I wherein:
Y1A and Y1B are independently Y1; RX1 and R^ are independently Rx; Y1 is =O, -O(RX), =S, -N(R3O, -N(O)(R5O, -N(ORX), -N(O)(OR3O, or -N(N(RX)(
Rx));
Rx is independently R1, R2, R4, W3, or a protecting group; R1 is independently -H or alkyl of 1 to 18 carbon atoms; R2 is independently R3 or R4 wherein each R4 is independently substituted with 0 to 3 R3 groups or taken together at a carbon atom, two R2 groups form a ring of 3 to 8 carbons and the ring may be substituted with 0 to 3 R3 groups;
R3 is R3a, R3b, R3c or R3d, provided that when R3 is bound to a heteroatom, then R3 is R3c or R3d;
R3a is -H, -F, -Cl, -Br, -I, -CF3, -CN, Ns, -NO2, or -OR4; R3b is =O, -O(R4), =S, -N(R4), -N(O)(R4), -N(OR4), -N(O)(OR4), or -N(N(R4X
R4));
R3c is -R4, -N(R4XR4), -SR4, -S(O)R4, -S(O)2R4, -S(O)(OR4), -S(O)2(OR4), - OC(R3b)R4, ~OC(R3b)OR4, -OC(R3b)(N(R4)(R4)), -SC(R3b)R4, -SC(R3b)OR4, - SC(R3b)(N(R4)(R4)), -N(R4)C(R3b)R4, -N(R4)C(R3b)OR4 / -N(R4)C(R3b)(N(R4)(R4)), W3 or -R5W3 ;
R3d is -C(R3b)R4, -C(R3b)OR4, -C(R3b)W3, -C(R3b)OW3 or -C(R3b)(N(R4)(R4));
R4 is -H, or an alkyl of 1 to 18 carbon atoms, alkenyl of 2 to 18 carbon atoms, or alkynyl of 2 to 18 carbon atoms;
R5 is alkylene of 1 to 18 carbon atoms, alkenylene of 2 to 18 carbon atoms, or alkynylene of 2 to 18 carbon atoms;
W3 is W4 or W5;
W4 is R6, -C(R3b)R6, -C(R3b)W5, -SOM2R6, or -SOM2W5, wherein R6 is R4 wherein, each R4 is substituted with 0 to 3 R3 groups;
W5 is carbocycle or heterocycle wherein W5 is independently substituted with 0 to 3 R2 groups; and
M2 is 0, 1 or 2; or pharmaceutically acceptable salts thereof.
2. The compound of claim 1 wherein RX1 is H.
3. The compound of claim 2 wherein RX2 is W3.
4. The compound of claim 3 wherein W3 is W5.
5. The compound of claim 4 wherein W5 is cyclopropyl.
6. The compound of claim 5 of the Formula IA,
IA
7. The compound of claim 6 wherein Y1A and Y1B are -N(RX).
8. The compound of claim 7 wherein Rx is R2.
9. The compound of claim 8 wherein R2 is R4 substituted with R3d.
10. The compound of claim 9 wherein R4 is ethyl substituted with R3d.
11. The compound of claim 10 wherein R3d is -C(R3b)OR4
12. The compound of claim 11 wherein R3b is =O.
13. The compound of claim 12 wherein R4 is propyl.
14. The compound of claim 13 wherein R4 is n-propyl.
15. The compound of claim 14 of the formula,
16. The compound of claim 13 wherein R4 is z-propyl.
17. The compound of claim 16 of the formula,
18. The compound of claim 10 wherein R3d is -C(R3b)OW3.
19. The compound of claim 18 wherein R3b is =O.
20. The compound of claim 19 wherein W3 is W5.
21. The compound of claim 20 wherein W5 is a carbocycle.
22. The compound of claim 9 wherein R4 is propyl substituted with R3d.
23. The compound of claim 22 wherein R3d is -C(R3b)OR4.
24. The compound of claim 23 wherein R3b is =O.
25. The compound of claim 24 wherein R4 is ethyl.
26. The compound of claim 25 of the formula,
27. The compound of claim 24 wherein R4 is butyl.
28. The compound of claim 27 wherein R4 is n-butyl.
29. The compound of claim 28 of the formula,
30. The compound of claim 24 wherein R4 is propyl.
31. The compound of claim 30 wherein R4 is z-propyl.
32. The compound of claim 31 of the formula,
33. The compound of claim 8 wherein R2 is R4 independently substituted with two R3 groups.
34. The compound of claim 33 wherein R4 is methyl substituted with two R3 groups.
35. The compound of claim 34 wherein one R3 group is R3c.
36. The compound of claim 35 wherein R3d is -R5W3.
37. The compound of claim 36 wherein R5 is methylene.
38. The compound of claim 37 wherein W3 is W5.
39. The compound of claim 38 wherein W5 is phenyl.
40. The compound of claim 35 wherein the other R3 group is R3d.
41. The compound of claim 40 wherein R3d is -C(R3b)OR4.
42. The compound of claim 41 wherein R3b is =O.
43. The compound of claim 42 wherein R4 is butyl.
44. The compound of claim 43 wherein R4 is z'-butyl.
45. The compound of claim 44 of the formula,
46. The compound of claim 6 wherein Y1A is -N(RX).
47. The compound of claim 46 wherein Rx is R2.
48. The compound of claim 47 wherein R2 is R4 substituted with R3d.
49. The compound of claim 48 wherein R4 is ethyl substituted with R3d.
50. The compound of claim 49 wherein R3d is -C(R3b)OR4.
51. The compound of claim 50 wherein R3b is =O.
52. The compound of claim 51 wherein R4 is propyl.
53. The compound of claim 52 wherein R4 is z-propyl.
54. The compound of claim 46 wherein Y1B is -N(RX).
55. The compound of claim 54 wherein Rx is R2.
56. The compound of claim 55 wherein R2 is R4 independently substituted with two R3 groups.
57. The compound of claim 56 wherein R4 is methyl substituted with two R3 groups. ;
58. The compound of claim 57 wherein one R3 group is R3c.
59. The compound of claim 58 wherein R3c is -R5W3.
60. The compound of claim 59 wherein -R5- is methylene.
61. The compound of claim 60 wherein W3. is Ws.
62. The compound of claim 61 wherein W5 is phenyl.
63. The compound of claim 58 wherein the other R3 group is R3d.
64. The compound of claim 63 wherein R3d is -C(R3b)OR4.
65. The compound of claim 64 wherein R3b is =O.
66. The compound of claim 65 wherein R4 is butyl.
67. The compound of claim 66 wherein R4 is z-butyl.
68. The compound of claim 67 of the formula,
69. The compound of claim 63 wherein R3d is -C(R3b)OW3.
70. The compound of claim 69 wherein R3b is =O.
71. The compound of claim 70 wherein W3 is W5.
72. The compound of claim 71 wherein W5 is a carbocycle.
73. The compound of claim 6 wherein Y1B is -O(RX).
74. The compound of claim 73 wherein Y1B is -O(W3) .
75. The compound of claim 74 wherein W3 is W5.
76. The compound of claim 75 wherein W5 is a carbocycle.
77. The compound of claim 76 wherein said carbocycle is phenyl.
78. The compound of claim 77 of the formula,
79. The compound of claim 78 wherein Y1A is -N(RX).
80. The compound of claim 79 wherein Rx is R2.
81. The compound of claim 80 wherein R2 is R4 substituted with R3d.
82. The compound of claim 81 wherein R4 is ethyl substituted with R3d.
83. The compound of claim 82 wherein R3d is -C(R3b)OR4.
84. The compound of claim 83 wherein R3b is =O.
85. The compound of claim 84 wherein R4 is propyl.
86. The compound of claim 85 wherein R4 is n-propyl.
88. The compound of claim 81 wherein R4 is propyl substituted with R3d.
89. The compound of claim 88 wherein R4 is n-propyi substituted with R3d.
90. The compound of claim 89 wherein R3d is -C(R3b)OR4.
91. The compound of claim 90 wherein R3b is =0.
92. The compound of claim 91 wherein R4 is butyl.
93. The compound of claim 92 wherein R4 is n-butyl.
94. The compound of claim 93 of the formula,
95. The compound of claim 79 wherein Rx is R2.
96. The compound of claim 95 wherein R2 is R4 substituted with R3c and R3d.
97. The compound of claim 96 wherein R4 is ethyl substituted with R3c and R3d.
98. The compound of claim 97 wherein R3c is -R5W3.
99. The compound of claim 98 wherein -R5 is methylene.
100. The compound of claim 99 wherein W3 is W5.
101. The compound of claim 100 wherein W5 is a carbocycle.
102. The compound of claim 101 wherein said carbocycle is phenyl.
103. The compound of claim 102 wherein R3d is -C(R3b)OR4.
104. The compound of claim 103 wherein R3b is =O.
105. The compound of claim 104 wherein R4 is ethyl.
106. The compound of claim 105 of the formula,
107. The compound of claim 6 wherein Y1A and Y1B are -O(RX).
108. The compound of claim 2 wherein R*2 is R4.
109. The compound of claim 108 wherein R4 is alkyl.
110. The compound of claim 108 wherein R4 is alkenyl.
111. The compound of claim 108 wherein R4 is alkynyl.
112. The compound of claim 110 wherein R4 is 2-propenyl.
113. The compound of claim 2 wherein RX2 is R2.
114. The compound of claim 113 wherein R2 is R4 substituted with one R3.
115. The compound of claim 114 wherein R4 is methyl substituted with one R3.
116. The compound of claim 115 wherein R3 is R3a.
117. The compound of claim 116 wherein R3a is -CF3.
118. The compound of claim 115 wherein R4 is -CH2-CF3.
119. The compound of claim 1 wherein RX1 is H.
120. The compound of claim 119 wherein R*2 is alkenyl of 2 to 18 carbon atoms.
121. The compound of claim 119 wherein RX2 is alkenyl of 2 to 6 carbon atoms.
122. The compound of claims 119 wherein R*2 is 2-propenyl.
123. The compound of claim 1 of the Formula IA,
IA
wherein Y1A and Y1B are as previously defined.
124. The compound of claim 123 wherein Y1A and Y1B are -N(RX).
125. The compound of claim 124 wherein Rx is R2.
126. The compound of claim 125 wherein R2 is R4 substituted with R3d.
127. The compound of claim 126 wherein R4 is ethyl substituted with R3d.
128. The compound of claim 127 wherein R3d is -C(R3b)OR4.
129. The compound of claim 128 wherein R3b is =O.
130. The compound of claim 129 wherein R4 is alkyl of 1 to 18 carbon atoms.
131. The compound of claim 130 wherein R4 is alkyl of 1 to 6 carbon atoms.
132. The compound of claim 131 wherein R4 is ethyl, butyl, n-propyl, /-propyl, or hexyl.
133. The compound of claim 132 of the formula,
135. The compound of claim 132 of the formula,
136. The compound of claim 132 of the formula,
138. The compound of claim 127 wherein R3d is -C(R3b)OW3.
139. The compound of claim 138 wherein R3b is =O.
140. The compound of claim 139 wherein W3 is W5.
141. The compound of claim 140 wherein W5 is a carbocycle.
142. The compound of claim 141 of the formula,
143. The compound of claim 126 wherein R4 is propyl substituted with R3d.
144. The compound of claim 143 wherein R3d is -C(R3b)OR4.
145. The compound of claim 144 wherein R3b is =O.
146. The compound of claim 145 wherein R4 is alkyl of 1 to 18 carbon atoms.
147. The compound of claim 146 wherein R4 is alkyl of 1 to 6 carbon atoms.
148. The compound of claim 147 wherein R4 is ethyl, n-butyl, n-propyl, i- propyl, or hexyl.
149. The compound of claim 148 of the formula,
150. The compound of claim 148 of the formula,
151. The compound of claim 148 of the formula.
152. The compound of claim 148 of the formula,
153. The compound of claim 125 wherein R2 is R4 independently substituted with two R3 groups. ,
154. The compound of claim 153 wherein R4 is methyl substituted with two R3 groups.
155. The compound of claim 154 wherein one R3 group is R 3c
156. The compound of claim 155 wherein R3c is -R5W3.
157. The compound of claim 156 wherein R5 is methylene.
158. The compound of claim 157 wherein W3 is W5.
159. The compound of claim 158 wherein W5 is phenyl.
160. The compound of claim 159 wherein the other R3 group is R3d.
161. The compound of claim 160 wherein R3d is -C(R3b)OR4.
162. The compound of claim 161 wherein R3b is =O.
163. The compound of claim 162 wherein R4 is alkyl of 1 to 18 carbon atoms.
164. The compound of claim 163 wherein R4 is alkyl of 1 to 6 carbon atoms.
165. The compound of claim 164 wherein R4 is ethyl, π-butyl, or z-butyl.
166. The compound of claim 165 of the formula,
167. The compound o£ claim 165 of the formula
168. The compound of claim 165 of the formula,
169. The compound of claim 123 wherein Y1A is -N(RX).
170. The compound of claim 169 wherein Rx is R2.
171. The compound of claim 170 wherein R2 is R4 substituted with R3d.
172. The compound of claim 171 wherein R4 is ethyl substituted with R3d.
173. The compound of claim 172 wherein R3d is -C(R3b)OR4.
174. The compound of claim 173 wherein R3b is =O.
175. The compound of claim 174 wherein R4 is propyl.
176. The compound of claim 175 wherein R4 is z-propyl.
177. The compound of claim 169 wherein Y1B is -N(RX).
178. The compound of claim 177 wherein Rx is R2.
179. The compound of claim 178 wherein R2 is R4 independently substituted with two R3 groups.
180. The compound of claim 179 wherein R4 is methyl substituted with two R3 groups.
181. The compound of claim 180 wherein one R3 group is R3c.
182. The compound of claim 181 wherein R3c is -R5W3.
183. The compound of claim 182 wherein -R5- is methylene.
184. The compound of claim 183 wherein W3 is W5.
185. The compound of claim 184 wherein W5 is phenyl.
186. The compound of claim 185 wherein the other R3 group is R3d.
187. The compound of claim 186 wherein R3d is -C(R3b)OR4.
188. The compound of claim 187 wherein R3b is =O.
189. The compound of claim 188 wherein R4 is butyl.
190. The compound of claim 189 wherein R4 is z-butyl.
191. The compound of claim 190 of the formula,
192. The compound of claim 186 wherein R3d is -C(R3b)OW3.
193. The compound of claim 192 wherein R3b is =O.
194. The compound of claim 193 wherein W3 is W5.
195. The compound of claim 194 wherein W5 is a carbocycle.
196. The compound of claim 123 wherein Y1B is -O(RX).
197. The compound of claim 196 wherein Rx is W3.
198. The compound of claim 197 wherein W3 is W5.
199. The compound of claim 198 wherein W5 is a carbocycle.
200. The compound of claim 199 wherein said carbocycle is phenyl.
201. The compound of claim 200 of the formula,
202. The compound of claim 201 wherein Y1A is -N(RX) .
203. The compound of claim 202 wherein Rx is R2.
204. The compound of claim 203 wherein R2 is R4 substituted with R3d.
205. The compound of claim 204 wherein R4 is ethyl substituted with R3d.
206. The compound of claim 205 wherein R3d is -C(R3b)OR4.
207. The compound of claim 206 wherein R3b is =O.
208. The compound of claim 207 wherein R4 is alkyl of 1 to 6 carbon atoms.
209. The compound of claim 208 wherein R4 is ethyl, butyl, n-propyl, or hexyl.
210. The compound of claim 209 of the formula,
211. The compound of claim 209 of the formula
213. The compound of claim 209 of the formula,
214. The compound of claim 205 wherein R3d is -C(R3b)OW3.
215. The compound of claim 214 wherein R3b is =O.
216. The compound of claim 215 wherein W3 is W5.
217. The compound of claim 216 wherein W5 is a carbocycle.
218. The compound of claim 217 of the formula,
219. The compound of claim 204 wherein R4 is propyl substituted with R3d.
220. The compound of claim 219 wherein R4 is n-propyl substituted with R3d.
221. The compound of claim 220 wherein R3d is -C(R3b)OR4.
222. The compound of claim 221 wherein R3b is =O.
223. The compound of claim 222 wherein R4 is butyl.
224. The compound of claim 223 wherein R4 is n-butyl.
225. The compound of claim 224 of the formula,
226. The compound of claim 203 wherein R2 is R4 substituted with R3c and R3d.
227. The compound of claim 226 wherein R4 is ethyl substituted with R3c and R3d.
228. The compound of claim 227 wherein R3c is -R5W3.
229. The compound of claim 228 wherein -R5 is methylene.
230. The compound of claim 229 wherein W3 is W5.
231. The compound of claim 230 wherein W5 is a carbocycle.
232. The compound of claim 231 wherein said carbocycle is phenyl.
233. The compound of claim 232 wherein R3d is -C(R3b)OR4.
234. The compound of claim 233 wherein R3b is =O.
235. The compound of claim 234 wherein R4 is alkyl of 1 to 6 carbon atoms.
236. The compound of claim 235 wherein R4 is ethyl, n-butyl, or f-butyl.
237. The compound of claim 236 of the formula,
238. The compound of claim 236 of the formula,
239. The compound of claim 236 of the formula,
240. The compound of claim 123 wherein Y1A and Y1B are -O(RX).
241. The compound of claim 240 wherein Rx is R1.
242. The compounds of claim 241 wherein R1 is H or z'-propyl.
243. The compound of claim 242 of the formula,
244. The compound of claim 123 of the formula,
245. The compound of claim 119 wherein R*2 is alkynyl.
246. The compound of claim 245 wherein W2 is 2-propynyl.
247. A compound of claim 1 used as an anti-nonmelanoma carcinoma agent.
248. A compound of claim 1 used as a topical anti-nonmelanoma carcinoma agent.
249. A pharmaceutical composition comprising an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
250. The pharmaceutical composition of claim 249, where said composition is a gel composition.
251. The pharmaceutical composition of claim 249, where said composition is an ointment composition.
252. A pharmaceutical composition comprising an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof, and an effective amount of at least one anti-nonmelanoma carcinoma agent, and a pharmaceutically acceptable carrier.
253. The pharmaceutical composition of claim 252, where said composition is a gel composition.
254. The pharmaceutical composition of claim 252, where said composition is an ointment composition.
255. A compound of claim 1 used as an anti-actinic keratosis agent.
256. A compound selected from Table 2.
257. The compound of claim 247 where the carcinoma is squamous cell or basal cell.
258. A compound selected from Table 2 for use as a medicament.
259. Use of compound of claim 258 in the manufacture of a medicament for the treatment of nonmelanoma carcinoma or actinic keratosis.
260. The use of the compound of claim 258 where the compound is compound H or compound K.
261. A compound of claim 1 for use as a medicament.
262. Use of the compound of claim 1 in the manufacture of a medicament for the treatment of nonmelanoma carcinoma or actinic keratosis.
263. A compound pharmaceutically acceptable salt or pharmaceutical composition as described in the description.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/170,325 US20060046981A1 (en) | 2003-12-30 | 2005-06-29 | Anti-nonmelanoma carcinoma compounds, compositions, and methods of use thereof |
US11/170,325 | 2005-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007002808A1 true WO2007002808A1 (en) | 2007-01-04 |
Family
ID=37075945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/025311 WO2007002808A1 (en) | 2005-06-29 | 2006-06-29 | Anti-nonmelanoma carcinoma compounds, compositions, and methods of use thereof |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007002808A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2308885A2 (en) | 2008-02-20 | 2011-04-13 | Gilead Sciences, Inc. | Novel compounds and methods for therapy |
US9156867B2 (en) | 2013-03-15 | 2015-10-13 | The Regents Of The University Of California | Acyclic nucleoside phosphonate diesters |
WO2016044281A1 (en) | 2014-09-15 | 2016-03-24 | The Regents Of The University Of California | Nucleotide analogs |
WO2017048956A1 (en) | 2015-09-15 | 2017-03-23 | The Regents Of The University Of California | Nucleotide analogs |
US9908908B2 (en) | 2012-08-30 | 2018-03-06 | Jiangsu Hansoh Pharmaceutical Co., Ltd. | Tenofovir prodrug and pharmaceutical uses thereof |
EP3473636A4 (en) * | 2017-02-28 | 2019-06-26 | Alla Chem, LLC | Nucleotides containing an n-[(s)-1-cyclobutoxycarbonyl]phosphoramidate fragment, analogs thereof, and use thereof |
CN114525235A (en) * | 2022-02-25 | 2022-05-24 | 郑州大学 | Method for improving secretion production efficiency of human epidermal growth factor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001049688A1 (en) * | 2000-01-07 | 2001-07-12 | Universitaire Instelling Antwerpen | Purine derivatives, process for their preparation and use thereof |
WO2005066189A1 (en) * | 2003-12-30 | 2005-07-21 | Gilead Sciences, Inc. | Phosphonates, monophosphonamidates, bisphosphonamidates for the treatment of viral diseases |
-
2006
- 2006-06-29 WO PCT/US2006/025311 patent/WO2007002808A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001049688A1 (en) * | 2000-01-07 | 2001-07-12 | Universitaire Instelling Antwerpen | Purine derivatives, process for their preparation and use thereof |
WO2005066189A1 (en) * | 2003-12-30 | 2005-07-21 | Gilead Sciences, Inc. | Phosphonates, monophosphonamidates, bisphosphonamidates for the treatment of viral diseases |
US20050222090A1 (en) * | 2003-12-30 | 2005-10-06 | Gilead Sciences, Inc. | Anti-proliferative compounds, compositions, and methods of use thereof |
US20060046981A1 (en) * | 2003-12-30 | 2006-03-02 | Gilead Sciences, Inc. | Anti-nonmelanoma carcinoma compounds, compositions, and methods of use thereof |
Non-Patent Citations (5)
Title |
---|
COMPTON MINDY L ET AL: "9-(2-phosphonylmethoxyethyl)-N6-cyclopropyl-2,6-diaminopurine (cpr-PMEDAP) as a prodrug of 9-(2-phosphonylmethoxyethyl)guanine (PMEG)", BIOCHEMICAL PHARMACOLOGY, PERGAMON, OXFORD, GB, vol. 58, no. 4, 15 August 1999 (1999-08-15), pages 709 - 714, XP002211846, ISSN: 0006-2952 * |
HATSE S ET AL: "N6-cyclopropyl-PMEDAP: a novel derivative of 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP) with distinct metabolic, antiproliferative, and differentiation-inducing properties", BIOCHEMICAL PHARMACOLOGY, PERGAMON, OXFORD, GB, vol. 58, no. 2, 15 July 1999 (1999-07-15), pages 311 - 323, XP002213675, ISSN: 0006-2952 * |
HOLY A ET AL: "SYNTHESIS AND CYTOSTATIC ACTIVITY OF N-Ä2-(PHOSPHONOMETHOXY)ALKYLÜ DERIVATIVES OF N6-SUBSTITUTED ADENINES, 2,6-DIAMINOPURINES AND RELATED COMPOUNDS", COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, INSTITUTE OF ORGANIC CHEMISTRY & BIOCHEMISTRY, PRAGUE, CZ, vol. 66, 2001, pages 1545 - 1592, XP009054316, ISSN: 0010-0765 * |
KEITH K A ET AL: "Evaluation of Nucleoside Phosphonates and Their Analogs and Prodrugs for Inhibition of Orthopoxvirus Replication", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, AMERICAN SOCIETY FOR MICROBIOLOGY, WASHINGTON, DC, US, vol. 47, no. 7, July 2003 (2003-07-01), pages 2193 - 2198, XP002327373, ISSN: 0066-4804 * |
SNOECK R ET AL: "Antivaccinia Activities of Acyclic Nucleoside Phosphonate Derivatives in Epithelial Cells and Organotypic Cultures", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, AMERICAN SOCIETY FOR MICROBIOLOGY, WASHINGTON, DC, US, vol. 46, no. 11, November 2002 (2002-11-01), pages 3356 - 3361, XP002327372, ISSN: 0066-4804 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2308885A2 (en) | 2008-02-20 | 2011-04-13 | Gilead Sciences, Inc. | Novel compounds and methods for therapy |
US9908908B2 (en) | 2012-08-30 | 2018-03-06 | Jiangsu Hansoh Pharmaceutical Co., Ltd. | Tenofovir prodrug and pharmaceutical uses thereof |
US9156867B2 (en) | 2013-03-15 | 2015-10-13 | The Regents Of The University Of California | Acyclic nucleoside phosphonate diesters |
US9387217B2 (en) | 2013-03-15 | 2016-07-12 | The Regents Of The University Of California | Acyclic nucleoside phosphonate diesters |
US10195222B2 (en) | 2013-03-15 | 2019-02-05 | The Regents Of The University Of California | Acyclic nucleoside phosphonate diesters |
US10076533B2 (en) | 2013-03-15 | 2018-09-18 | The Regents Of The University Of California | Acyclic nucleoside phosphonate diesters |
US9629860B2 (en) | 2013-03-15 | 2017-04-25 | The Regents Of The University Of California | Acyclic nucleoside phosphonate diesters |
US9775852B2 (en) | 2013-03-15 | 2017-10-03 | The Regents Of The University Of California | Acyclic nucleoside phosphonate diesters |
US10076532B2 (en) | 2013-03-15 | 2018-09-18 | The Regents Of The University Of California | Acyclic nucleoside phosphonate diesters |
US10702532B2 (en) | 2014-09-15 | 2020-07-07 | The Regents Of The University Of California | Nucleotide analogs |
US9801884B2 (en) | 2014-09-15 | 2017-10-31 | The Regents Of The University Of California | Nucleotide analogs |
US9493493B2 (en) | 2014-09-15 | 2016-11-15 | The Regents Of The University Of California | Nucleotide analogs |
US10213430B2 (en) | 2014-09-15 | 2019-02-26 | The Regents Of The University Of California | Nucleotide analogs |
WO2016044281A1 (en) | 2014-09-15 | 2016-03-24 | The Regents Of The University Of California | Nucleotide analogs |
US11344555B2 (en) | 2014-09-15 | 2022-05-31 | The Regents Of The University Of California | Nucleotide analogs |
WO2017048956A1 (en) | 2015-09-15 | 2017-03-23 | The Regents Of The University Of California | Nucleotide analogs |
EP3875462A1 (en) | 2015-09-15 | 2021-09-08 | The Regents of The University of California | Nucleotide analogs |
US11572377B2 (en) | 2015-09-15 | 2023-02-07 | The Regents Of The University Of California | Nucleotide analogs |
EP3473636A4 (en) * | 2017-02-28 | 2019-06-26 | Alla Chem, LLC | Nucleotides containing an n-[(s)-1-cyclobutoxycarbonyl]phosphoramidate fragment, analogs thereof, and use thereof |
CN114525235A (en) * | 2022-02-25 | 2022-05-24 | 郑州大学 | Method for improving secretion production efficiency of human epidermal growth factor |
CN114525235B (en) * | 2022-02-25 | 2023-07-14 | 郑州大学 | Method for improving secretion production efficiency of human epidermal growth factor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2550222C (en) | Phosphonates, monophosphonamidates, bisphosphonamidates for the treatment of viral diseases | |
WO2007002912A2 (en) | Anti-proliferative compounds, compositions, and methods of use thereof | |
EP1778249B1 (en) | Phosphonate prodrugs of a 2'-fluoro-2',3'-didehydro-2',3'-dideoxyadenosine analogue as anti-hiv agents | |
JP2017031212A (en) | Nucleotide analogs | |
NO338306B1 (en) | Antiviral phosphonate analogue, its pharmaceutical composition, its use in the treatment of virus infections in an animal, and a method of promoting an anti-viral effect in vitro | |
WO2007002808A1 (en) | Anti-nonmelanoma carcinoma compounds, compositions, and methods of use thereof | |
MXPA06007422A (en) | Phosphonates, monophosphonamidates, bisphosphonamidates for the treatment of viral diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06774252 Country of ref document: EP Kind code of ref document: A1 |