WO2007001043A1 - 乳酸の製造方法および乳酸製造装置 - Google Patents

乳酸の製造方法および乳酸製造装置 Download PDF

Info

Publication number
WO2007001043A1
WO2007001043A1 PCT/JP2006/312967 JP2006312967W WO2007001043A1 WO 2007001043 A1 WO2007001043 A1 WO 2007001043A1 JP 2006312967 W JP2006312967 W JP 2006312967W WO 2007001043 A1 WO2007001043 A1 WO 2007001043A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
glycerin
solution
alkaline
gas
Prior art date
Application number
PCT/JP2006/312967
Other languages
English (en)
French (fr)
Inventor
Heiji Enomoto
Fangming Jin
Takehiko Moriya
Kenji Kakeda
Yoshitoshi Sekiguchi
Hisanori Kishida
Original Assignee
Hitachi Zosen Corporation
Tohoku Electric Power Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corporation, Tohoku Electric Power Co., Inc. filed Critical Hitachi Zosen Corporation
Priority to US11/994,263 priority Critical patent/US7829740B2/en
Priority to BRPI0612750A priority patent/BRPI0612750B1/pt
Priority to JP2007523988A priority patent/JP4906720B2/ja
Publication of WO2007001043A1 publication Critical patent/WO2007001043A1/ja
Priority to US12/606,473 priority patent/US20100047140A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/28Moving reactors, e.g. rotary drums
    • B01J19/285Shaking or vibrating reactors; reactions under the influence of low-frequency vibrations or pulsations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/02Preparation of carboxylic acids or their salts, halides or anhydrides from salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00099Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor the reactor being immersed in the heat exchange medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing lactic acid and a lactic acid producing apparatus using glycerin as a raw material.
  • fatty acid esters are extracted from fats and oils by transesterifying fats and alcohols, which are triesters of glycerin, in the presence of an alkali catalyst, and used as diesel fuel oil.
  • fatty acid esters extracted from fats and oils can be effectively used as biodiesel fuel oil, but glycerin containing an al-rich catalyst is used as a by-product in its production, with a weight of about 1Z10 as a raw material. The problem is how to handle this.
  • Lactic acid is a raw material for plastics (lactic acid polymer).
  • Lactic acid polymer is a material that is being investigated for applications such as agricultural or civil engineering sheets, packaging, plastic bags, car interiors, etc. and is a biodegradable material (a material that can be decomposed by microorganisms). Attention has been focused on the use of lactic acid polymers as one of the solutions to the waste disposal problem. In addition, since lactic acid polymers are biologically derived, the effects of saving petroleum resources and reducing CO emissions are attracting attention.
  • lactic acid which is a raw material for lactic acid polymer-based plastics
  • Conventional methods for producing lactic acid include fermentation and synthesis methods.
  • Fermentation methods include sucrose extracted from cultivated plants such as corn, sugarcane, and cassava.
  • glucose, starch, etc. are used as raw materials, and these raw materials are converted to lactic acid by the fermentation action of lactic acid bacteria.
  • cyanhydrin is synthesized by reacting acetoaldehyde with hydrocyanic acid.
  • a method for obtaining lactic acid by hydrolyzing it, and (ii) a method for obtaining lactic acid by reacting acetaldehyde and carbon monoxide under high pressure are known.
  • glycerin is a by-product of the production of biodiesel fuel oil, and is a constituent of oil and fat such as vegetable oil and animal fat, and is abundant in nature. Can be separated and produced from various oils and fats, and can be obtained in large quantities
  • glycerin is a material that can be obtained at low cost. If lactic acid can be produced using this material, the cost of working with lactic acid can be reduced, which is desirable.
  • Patent Document 1 discloses a method for obtaining an organic acid from fish meat.
  • organic acids are produced using fish meat as a raw material, and lactic acid is mentioned as one of various organic acids obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-342379
  • the present invention has been made in view of the above circumstances, and uses glycerin obtained over a wide range from pure products and edible waste oil to produce lactic acid that is expected to have industrial demand at low cost. It aims to provide a method.
  • the method for producing lactic acid of the present invention is characterized in that glycerin is hydrothermally reacted under alkaline conditions.
  • the glycerin was also produced as vegetable oil, animal oil and the like. Or a chemically synthesized pure product is preferably used as a starting material.
  • the glycerin was produced during the production of a diesel fuel oil such as a fat and oil obtained by transesterifying oil with alcohol in the presence of an alkali catalyst to obtain a fatty acid ester. It is preferable to use a glycerin-containing waste liquid as a raw material.
  • the method of the present invention includes a step of gas-liquid separation of the lactic acid-containing alkaline solution and hydrogen gas generated by the hydrothermal reaction.
  • the method of the present invention preferably further includes a concentration step of concentrating the concentrations of lactic acid and alkali components in the aqueous solution after the hydrothermal reaction by electrodialysis.
  • the method of the present invention further includes a separation step of separating lactic acid and an alkali component in the aqueous solution after the hydrothermal reaction using a neopolar membrane electrodialysis method.
  • the alkaline component for making the glycerin an alkaline condition is
  • the alkali component is preferably supplied in several batches.
  • the generated hydrogen gas is preferably used as a fuel cell gas.
  • the lactic acid production apparatus of the present invention includes a reactor for hydrothermal reaction of glycerin under alkaline conditions, and continuously performs the process from supplying an alkaline glycerin solution to lactic acid production.
  • the apparatus of the present invention preferably further comprises a gas-liquid separation device for gas-liquid separation of the lactic acid-containing alkaline solution produced in the reactor and hydrogen gas.
  • the apparatus of the present invention preferably further comprises a bipolar membrane electrodialyzer that separates the lactic acid-containing alkaline solution from the gas-liquid separator into a lactic acid solution and an alkaline solution.
  • a bipolar membrane electrodialyzer that separates the lactic acid-containing alkaline solution from the gas-liquid separator into a lactic acid solution and an alkaline solution.
  • Lactic acid can be produced from discarded glycerin as a raw material (previously, cultivation of crops was necessary).
  • Glycerin which is also discarded from biodiesel factories and oleochemical factories, often contains alkali as a catalyst. In the method of the present invention, such alkali should be used effectively. Can do.
  • FIG. 1 is a flow sheet illustrating a method using a continuous reaction apparatus, which is an example of the method for producing lactic acid according to the present invention.
  • glycerin as a raw material is added to a raw material storage tank (1) together with water and an alkaline component such as sodium hydroxide.
  • the alkaline liquid containing dariserine stored in the raw material storage tank (1) sequentially passes through the high-pressure pump (2), preheater (3), reactor (4), and cooler (5), and the pressure regulating valve ( After 7), it finally reaches the lactic acid-containing alkaline solution storage tank (6).
  • the raw material storage tank (1) contains a desired amount of glycerin, an alkaline component, and water, thereby adding a desired amount of glycerin and having a desired alkalinity. It is a tank for producing potash liquid.
  • the glycerin added to the raw material storage tank (1) may be a product produced by decomposing each oil and fat such as vegetable oil and animal fat or a pure product synthesized chemically.
  • the glycerin used as a raw material may contain impurities.
  • impurities for example, as such a glycerin raw material containing impurities, glycerin in fats and oils that can be recovered from rendering of fish meat and animal meat, biodiesel fuel, etc. Oil, stalagmite plant, etc. Powered waste liquids are listed.
  • the concentration of glycerin is 1 to 80% by weight, and is preferably 50% by weight or less considering that the viscosity is lowered and the fluidity is improved.
  • the alkali component may be any arbitrary substance as long as it is an alkaline substance.
  • Sodium hydroxide, potassium hydroxide, ammonia and the like may be used.
  • a solid catalyst exhibiting basicity such as calcium hydroxide may be used.
  • the preferred alkali component concentration is 0.1 to
  • the high-pressure pump (2) supplies water quantitatively by applying a predetermined pressure to the glycerin-containing alkaline liquid in the raw material storage tank (1).
  • the preheater (3) preliminarily heats the glycerin-containing alkaline liquid before being introduced into the reactor (4) that performs the reaction under high temperature and high pressure conditions.
  • the preheater (3) is equipped with a heater for preheating !, but it can be recovered by heat exchange with the cooler (5) provided on the downstream side of the reactor (4). Let's heat the serine-containing alkaline solution.
  • the glycerin-containing alkaline liquid is subjected to high-temperature and high-pressure conditions to convert glycerin in the alkaline liquid into lactic acid.
  • the pressure is set to a temperature equal to or higher than the saturated vapor pressure of water at a temperature of 150 to 400 ° C so that water can maintain a liquid phase.
  • reaction pressure is preferably equal to or higher than the saturated vapor pressure of the reaction temperature.
  • glycerin in the alkaline solution is converted into lactic acid.
  • the temperature of the lactic acid-containing alkaline liquid is lowered by the cooler (5), it is sent to the lactic acid-containing alkaline liquid storage tank (6) and stored in the lactic acid-containing alkaline liquid storage tank (6).
  • a pressure control valve (7) is provided between the reactor (4) and the lactic acid-containing alkaline liquid storage tank (6), and the high pressure state of the alkaline liquid is released by this valve (7).
  • the lactic acid-containing alkaline solution in the lactic acid-containing alkaline solution storage tank (6) can be efficiently concentrated by using an electrodialyzer when the concentrations of lactic acid and alkali are low.
  • the lactic acid-containing alkaline liquid in the lactic acid-containing alkaline liquid storage tank (6) can separate lactic acid from the alkali by using a bipolar membrane separator when separation of lactic acid and alkali is necessary.
  • the lactic acid-containing alkaline solution in the lactic acid-containing alkaline solution storage tank (6) can also be used to remove the lactic acid-alkali salt by a crystallization method using a crystallizer when it is desired to remove the lactic acid-alkali salt as a solid. It can be taken out as a solid.
  • FIG. 2 is a flowchart illustrating the lactic acid production apparatus according to the second embodiment.
  • raw material glycerin which is a waste liquid from a BDF production plant, an oil and fat chemical plant, or the like is added to the raw material storage tank (1).
  • the raw material glycerin which is a waste liquid supplied from a BDF manufacturing plant, contains an alkali component. If the content of the alkali component is small, an alkali component such as NaOH is additionally added as appropriate. If the amount of water is small, water is added as appropriate.
  • the glycerin-containing alkaline solution stored in the raw material storage tank (1) is appropriately added with water, and then the high-pressure pump (2), heat exchanger (3), reactor (4), heat exchanger ( 3) is sequentially passed through the pressure regulating valve (7) and finally supplied to the gas-liquid separator (5), where it is separated into a lactic acid-containing alkaline solution and hydrogen gas.
  • the raw material storage tank (1), high-pressure pump (2), and reactor (4) shown in FIG. 2 are the same as those in Embodiment 1 shown in FIG.
  • the glycerin-containing alkaline solution in the raw material storage tank is pressurized to a predetermined pressure by the high-pressure pump (2) and supplied to the heat exchanger (3), where The temperature is raised by heat exchange with the gas-liquid mixed fluid after hydrothermal reaction (described later), and the reactor (
  • the glycerin supplied to the reactor (4) is heated by a heat medium (such as superheated water vapor or silicone oil) sent from the heat medium heating device (6) and maintained at a predetermined temperature, and the hydrothermal reaction is performed. Done and decomposed into lactic acid and hydrogen gas.
  • a heat medium such as superheated water vapor or silicone oil
  • the gas-liquid mixed fluid that has exited the reactor (4) is subjected to heat exchange with the glycerin-containing alkaline solution before the reactor (4) is supplied, and then cooled down, and then the pressure is reduced by the pressure control valve (7). After that, it is supplied to the gas-liquid separator (5).
  • the gas component generated by the hydrothermal reaction in the reactor (4) is almost hydrogen gas, and high-purity hydrogen gas is obtained in the gas-liquid separator (5).
  • the liquid component produced by the decomposition of glycerin is mostly a lactic acid-containing alkaline solution, and a highly pure lactic acid-containing alkaline solution can be obtained.
  • the obtained hydrogen gas and lactic acid-containing alkaline solution are regulated by the pressure regulating valves (8) and (9), respectively, and then taken out to the outside.
  • FIG. 3 is a flow sheet illustrating the lactic acid production apparatus according to the third embodiment.
  • the lactic acid production apparatus of the present embodiment includes the same configuration as that of the lactic acid production apparatus of the second embodiment, in the following description, the same configuration as the lactic acid production apparatus of the second embodiment is used. In this case, the same reference numerals are assigned and detailed description is omitted.
  • raw material glycerin that is a waste liquid from a BDF production plant, an oil and fat chemical plant, or the like is added to the raw material storage tank (1).
  • the glycerin-containing alkaline solution stored in the raw material storage tank (1) is appropriately added with water, and then the high-pressure pump (2), heat exchanger (3), reactor (4), heat exchanger ( After sequentially passing through 3), it is supplied to the gas-liquid separator (5) via the pressure regulating valve (7), where it is gas-liquid separated into a sodium lactate solution and a hydrogen gas.
  • the sodium lactate solution separated by the gas-liquid separator (5) is supplied to the bipolar membrane dialyzer (10), where it is separated into a lactic acid solution and a NaOH solution.
  • the separated NaOH solution is stored in the storage tank (11) and then supplied to the reactor (4).
  • the lactic acid production apparatus of Embodiment 3 is different from the lactic acid production apparatus of Embodiment 2 described above. Therefore, NaOH is not supplied to the raw material storage tank (1) but to the reactor (4). This is to prevent the heat exchanger (3) and high-pressure pump (2) from being corroded by high concentrations of NaOH. As the reaction proceeds, lactic acid is produced and neutralized with NaOH and consumed, so NaOH is fed into the reactor (4) in several batches. The supply of NaOH divided into several times can again prevent corrosion of the reactor (4) due to high-concentration alkali.
  • the sodium lactate aqueous solution from the gas-liquid separator (5) can be used as a raw material for moisturizers and chemicals, but to use it as a raw material for polylactic acid, lactic acid and sodium are separated. There is a need.
  • the sodium lactate aqueous solution separated by the gas-liquid separator (5) is separated into the lactic acid solution and the NaOH solution by the bipolar membrane dialysis apparatus (10).
  • the NaOH solution separated by the bipolar membrane dialyzer (10) is stored in the storage tank (11) and then supplied to the reactor (4).
  • the separated NaO H solution may be reused as a catalyst for the transesterification reaction of fats and oils.
  • FIG. 4 is a flow sheet illustrating the lactic acid production apparatus according to the fourth embodiment.
  • the lactic acid production apparatus of the present embodiment includes the same configuration as that of the lactic acid production apparatus of Embodiment 2 shown in FIG. Detailed description will be omitted by assigning one reference symbol.
  • the separated sodium lactate solution is a calcium crystal. Supplied to the analyzer (12).
  • the separated NaOH solution is temporarily stored in the storage tank (13) and then supplied to the raw material storage tank (1).
  • the NaOH solution separated by the calcium crystallizer (12) Resin remains and dissolves, and by supplying NaOH solution to the raw material storage tank (1), unreacted glycerin can be circulated, thereby improving the efficiency of lactic acid production. I'll do it.
  • the hydrogen gas generated by the lactic acid production apparatus shown in each of the above embodiments may be incinerated by a flare stack or the like as an off gas, but as described above, the hydrogen gas generated by the above method is Since the hydrogen purity is high, it can be recovered and used as gas for fuel cells, hydrogen engines, and the like.
  • Lactic acid produced by the lactic acid production apparatus shown in each of the above embodiments is a racemic mixture in which L-form and D-form optical isomers are mixed in equal amounts.
  • optical resolution a known resolution method such as a chromatographic method, a preferential crystal method, a diastereomer method, or an inclusion complex method can be used.
  • Example 1 a reactor (10) having a material SUS316 tube sealed with a cap as shown in FIG. 5 was used.
  • the capacity is 10ml
  • the heat-resistant temperature is 400 ° C
  • the pressure resistance is 30MPa.
  • aqueous solution prepared to have a glycerin concentration of 0.33M and a sodium hydroxide concentration of 0.25M was placed in the reactor (10) and sealed.
  • the filling rate of the solution was 60 vol% or less of the solution in the reactor (10).
  • the reactor (10) was immersed in a heating shaker shown in Fig. 6 and shaken for a predetermined time.
  • FIG. 6 shows a schematic diagram of a heating and shaking apparatus.
  • This heating shaker comprises a molten salt bath (21), a heater (22), a stirrer (23), a temperature controller (24), and a thermocouple (25)! /
  • This heating and shaking device can control the temperature to 170-400 ° C by the temperature controller (24) and thermocouple (25).
  • the reaction temperature of the heating reaction using a heating shaker was 300 ° C, and the reaction time was 60 minutes.
  • the pressure is the saturated vapor pressure of water at 300 ° C.
  • reaction solution was immersed in cold water for rapid cooling.
  • cooling take out the solution filled in the reactor (10), remove the solid content with a 0.45 ⁇ m filter, adjust the pH to neutral with sulfuric acid, and remove the neutralized solution as a high-speed liquid. Analysis was performed by chromatography.
  • the decomposition rate of glycerin and the conversion rate to product were defined as follows based on the amount of carbon in the substance.
  • Decomposition rate (%) carbon content in decomposed glycerin Z carbon content of raw material glycerin X 100
  • Figure 7 detector: absorptiometric detector (UV)
  • Table 1 shows the decomposition and conversion rates determined based on the substances detected in 1.
  • Example 2 the degradation rate of glycerin and the conversion rate to lactic acid when the reaction time was variously changed were measured. Other conditions are the same as in Example 1.
  • Example 3 in order to examine the stability of lactic acid in alkaline high-temperature and high-pressure water, an experiment of alkaline hydrothermal decomposition of lactic acid was conducted. Reaction conditions such as temperature and pressure were the same as in Example 1. Figure 9 shows the results. As is clear from Fig. 9, it was found that lactic acid is very stable under alkaline hydrothermal conditions.
  • Example 4 glycerol was hydrothermally decomposed with a neutral aqueous solution without adding an alkali component.
  • the reaction temperature is 300 ° C and the reaction time is 10 minutes.
  • Figure 10 shows the results.
  • Figure 11 shows high performance liquid chromatography after the reaction.
  • Example 5 a reactor (10) having a material SUS316 pipe (10a) as shown in FIG. 12 that can be sealed at both ends by a SUS316 cap (10b) made of the same material was used.
  • the tube (10a) of the reactor (10) has dimensions of outer diameter 12.7mm, wall thickness lmm, length 111.3mm, capacity 10ml, heat resistance temperature 400 ° C, pressure resistance 30MPa. .
  • a line (10c) is connected to one end of the pipe (10a). The line (10c) is connected to the high pressure valve (10d). When the high pressure valve (10d) is closed, the reaction tube (10) is sealed, and when the high pressure valve (10d) is opened, the line (10c) Through this, the gas components generated in the reactor (10) are taken out to the outside.
  • the reactor (10) is sealed by closing the high-pressure valve (10d), and the molten salt bath (21) of the heating shaker (20) maintained at a predetermined temperature (see Fig. 13) Immerse in and start the reaction.
  • the reaction temperature was 300 ° C.
  • the molten salt bath (21), heater (22), temperature controller (24), and thermocouple (25) are the same as the heating shaker (20) shown in FIG. Omitted.
  • Reference numeral (26) in FIG. 13 denotes a shaking device, and the horizontal bar (26b) moves in the left-right direction as the crank-shaped rotating bar (26a) extending downwards rotates.
  • the reactor (10) suspended from the horizontal bar (26b) at the portion of the cap (10b) is shaken horizontally! /.
  • FIGS. 14 and 15 show the HPLC analysis results of the reaction products.
  • the graph in FIG. 14 is obtained by measuring the absorbance of UV
  • the graph in FIG. 15 is obtained by measuring the refractive index.
  • the reaction product was mostly lactic acid which was the target product.
  • Acetic acid and acrylic acid were detected as other products. Since these are considered to be produced by further decomposition of lactic acid, the production ratio thereof is considered to increase as the reaction time increases. As shown in the graph of FIG. 15, a part of glycerin remains unreacted.
  • Example 6 In this example, the change over time of the reaction product was measured.
  • the reaction conditions were the same as in Example 5 except that the NaOH concentration was set to 1.25 M.
  • HPLC analysis and GC analysis were performed on the reaction solution after 20, 40, 60, 80 and 100 minutes. The residual ratio of glycerin over time, the yield of lactate and the yield of hydrogen were measured.
  • the change over time in the lactic acid yield was measured when the NaOH concentration was varied between 0 and 2.5M.
  • the experimental conditions were a reaction temperature of 300 ° C. and a glycerin concentration of 0.33 M, and the lactic acid yield was measured after 30, 60, 90, 120 and 150 minutes at the start.
  • the lactic acid yield was calculated in the same manner as in Example 6 above. The obtained results are shown in FIG.
  • the change over time in the lactic acid yield was measured when the reaction temperature was changed between 220 and 340 ° C.
  • the experimental conditions were a NaOH concentration of 1.25 M and a glycerin concentration of 0.33 M, and the lactic acid yield was measured after 20, 40, 60, 80 and 100 minutes at the start.
  • the lactic acid yield was calculated in the same manner as in Example 6 above. The obtained results are shown in FIG.
  • FIG. 1 is a flow sheet illustrating a method for producing lactic acid according to Embodiment 1.
  • FIG. 2 is a flow sheet illustrating the lactic acid production apparatus according to Embodiment 2.
  • FIG. 3 is a flow sheet illustrating the lactic acid production apparatus according to Embodiment 3.
  • FIG. 4 is a flow sheet illustrating the lactic acid production apparatus according to Embodiment 3.
  • FIG. 5 is a schematic view showing a reactor used in Example 1.
  • FIG. 6 is a schematic view showing a heating and shaking apparatus used in Example 1.
  • FIG. 7 is a graph of high performance liquid chromatography analysis showing the results of Example 1 in which the detector is an absorptiometric detector (UV).
  • UV absorptiometric detector
  • FIG. 8 is a graph showing the results of Example 2.
  • FIG. 9 is a graph showing the results of Example 3.
  • FIG. 10 is a graph showing the results of Example 4.
  • FIG. 11 is a graph showing high performance liquid chromatography after the reaction in Example 4.
  • FIG. 12 is a schematic view showing a reactor used in Example 5.
  • FIG. 13 is a schematic view showing a heating and shaking apparatus used in Example 5.
  • FIG. 14 is a graph of high performance liquid chromatography analysis showing the results of Example 5.
  • FIG. 15 is a graph of high performance liquid chromatography analysis showing the results of Example 5.
  • FIG. 16 is a graph showing the results of Example 6.
  • FIG. 17 is a graph showing the results of Example 7.
  • FIG. 18 is a graph showing the results of Example 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明の乳酸の製造方法は、グリセリンをアルカリ性条件下で、150~400°Cの温度でかつ上記温度での飽和蒸気圧以上の圧力で水熱反応させることを特徴とする。前記グリセリンは、植物油脂、動物油脂等から製造されたもの、あるいは、化学的に合成された純粋製品を出発原料とするか、または、アルカリ触媒の存在下に油脂をアルコールとエステル交換して脂肪酸エステルを得る、油脂からのディーゼル燃料油の製造の際に生じたグリセリン含有廃液を原料とすることが好ましい。

Description

明 細 書
乳酸の製造方法および乳酸製造装置
技術分野
[0001] 本発明は、グリセリンを原料とする乳酸の製造方法および乳酸製造装置に関する。
背景技術
[0002] 近年、欧州、米国をはじめとして、植物油を原料としたディーゼル燃料油(いわゆる バイオディーゼル燃料: BDF)が盛んに製造されている。これは、アルカリ触媒の存 在下に、グリセリンのトリエステル体である油脂とアルコールとをエステル交換させるこ とにより油脂から脂肪酸エステルを取り出し、これをディーゼル燃料油とするものであ る。し力しながら、この技術では、油脂から取り出される脂肪酸エステルをバイオディ ーゼル燃料油として有効利用できる反面で、その製造に際して副生物として、アル力 リ触媒を含んだグリセリンが原料の 1Z10程度の重量で生成するため、これをいかに 処理するかが問題となっている。
[0003] 乳酸は、プラスチック (乳酸ポリマー)の原料である。乳酸ポリマーは、農業用または 土木用のシート、包装用、レジ袋、車の内装等の用途が検討されている材料であり、 生分解性素材 (微生物により分解可能な素材)であるため、廃棄物処理問題の解決 策の一つとして乳酸ポリマーを使用することが注目されている。また、乳酸ポリマーは 、生物由来であるため、石油資源の節約および CO発生量の削減の効果が注目さ
2
れている。
[0004] このため、廃棄物が増加している現状にあって、廃棄物の減量化を進める観点から も、上記乳酸ポリマーは注目されており、将来的な需要の増加が望まれている。
[0005] 乳酸ポリマー系のプラスチックの原料である乳酸の従来の製造方法としては、発酵 法または合成法が挙げられる。
[0006] 発酵法は、とうもろこし、サトウキビ、キヤッサバ等の栽培植物力 抽出されたショ糖
、ブドウ糖、デンプン等を原料とし、これら原料を乳酸菌の発酵作用により乳酸に変 換する方法である。
[0007] 合成法としては、(i)ァセトアルデヒドに青酸を作用させてシァノヒドリンを合成し、こ れを加水分解することにより乳酸を得る方法、 (ii)ァセトアルデヒドと一酸ィ匕炭素とを 高圧下で反応させることにより乳酸を得る方法が知られている。
[0008] しかし、 V、ずれの方法によっても乳酸を得るために費用がかかる(キヤッサバ等の栽 培のための土地および栽培期間、糖類の発酵に要する期間および発酵のために必 要な大規模な発酵槽、乳酸を得た後に発生する廃液処理等)ために乳酸の原価が 高くなることが問題となっており、安価に乳酸を得る方法が求められていた。
[0009] グリセリンは、上記のように、バイオディーゼル燃料油の製造に際して副生される他 、植物油脂、動物油脂等の油脂の構成物質であり自然界に豊富に含まれており、油 脂工業分野において、各種の油脂から分離 ·生成され、大量に入手することができる
[0010] したがって、グリセリンは安価に入手することが可能な材料であり、これを利用して 乳酸を製造することができれば、乳酸に力かる原価を低減することができるので望ま しい。
[0011] 特許文献 1には、魚肉から有機酸を得る方法が開示されている。この文献の方法で は、魚肉を原料として有機酸を製造しており、多種にわたって得られる有機酸の 1つ として乳酸が挙げられて 、る。
[0012] し力しながら、この方法では、得られる多岐にわたる有機酸の 1つとして乳酸が副生 成物として製造されるのであって、効率良く乳酸を得ることができるものではな 、。 特許文献 1:特開平 11― 342379号公報
発明の開示
発明が解決しょうとする課題
[0013] 本発明は、上記事情に鑑みてなされたものであり、純粋製品や、食廃油等から広範 囲にわたって得られるグリセリンを利用して、安価に工業的な需要が見込まれる乳酸 を製造する方法を提供することを目的とする。
課題を解決するための手段
[0014] 上記課題を解決するため、本発明の乳酸の製造方法は、グリセリンをアルカリ性条 件下で水熱反応させることを特徴とするものである。
[0015] 本発明の方法において、前記グリセリンは、植物油脂、動物油脂等力も製造された もの、あるいは、化学的に合成された純粋製品を出発原料とすることが好ましい。
[0016] 本発明の方法において、前記グリセリンは、アルカリ触媒の存在下に油脂をアルコ ールとエステル交換して脂肪酸エステルを得る、油脂力ゝらのディーゼル燃料油の製 造の際に生じたグリセリン含有廃液を原料とすることが好ましい。
[0017] 本発明の方法において、前記水熱反応により生成する乳酸含有アルカリ溶液と水 素ガスとを気液分離する工程を包含することが好ま 、。
[0018] 本発明の方法において、電気透析法によって、水熱反応後の水溶液中の乳酸とァ ルカリ成分の濃度を濃縮する濃縮工程をさらに包含することが好ましい。
[0019] 本発明の方法において、ノィポーラ膜電気透析法を用いて、水熱反応後の水溶液 中の乳酸とアルカリ成分を分離する分離工程をさらに包含することが好ましい。
[0020] 本発明の方法において、前記グリセリンをアルカリ条件とするためのアルカリ成分は
、水熱反応を行う際に供給されることが好ましい。
[0021] 本発明の方法において、前記アルカリ成分は、数回に分けて供給されることが好ま しい。
[0022] 本発明の方法において、前記乳酸含有アルカリ溶液から分離されたアルカリ成分 を利用することが好ましい。
[0023] 本発明の方法において、前記アルカリ成分の溶液に溶解している未反応のグリセリ ンを回収して、乳酸の原料として再利用することが好ま 、。
[0024] 本発明の方法において、発生した水素ガスを燃料電池用ガスとして利用することが 好ましい。
[0025] また、本発明の乳酸製造装置は、グリセリンをアルカリ条件下で水熱反応させる反 応器を備え、アルカリ性のグリセリン溶液の供給カゝら乳酸生成までを連続して行うもの である。
[0026] 本発明の装置において、前記反応器で生成した乳酸含有アルカリ溶液と水素ガス を気液分離する気液分離装置をさらに備えることが好ましい。
[0027] 本発明の装置において、前記気液分離装置から出た乳酸含有アルカリ溶液を、乳 酸溶液とアルカリ溶液に分離するバイポーラ膜電気透析装置をさらに備えることが好 ましい。 [0028] 本発明の装置において、前記気液分離装置から出た乳酸含有アルカリ溶液を、晶 析法により、乳酸カルシウム固体とアルカリ溶液に分離するカルシウム晶析装置をさ らに備えることが好ましい。
発明の効果
[0029] 本発明により、次のような効果が得られる。
[0030] (1)バイオディーゼル工場、油脂化学工場等力 廃棄されるグリセリンを原料として乳 酸を製造することができる(従来は、作物の栽培が必要であった)。
[0031] (2)バイオディーゼル工場、油脂化学工場等力も廃棄されるグリセリンには、多くの場 合触媒としてアルカリが含まれており、本発明方法では、そのようなアルカリも有効利 用することができる。
[0032] (3)グリセリン力 乳酸への転換反応に要する時間は数十分〜数時間以内である( 従来の発酵法では、数日間の反応時間が必要であった)。
[0033] (4)グリセリン力 乳酸への転換率は 90%と高ぐ反応副生成物が少ないため、廃水 処理が比較的容易である(従来の発酵法では、乳酸発酵菌の培養液の処理が必要 であった)。
発明を実施するための最良の形態
[0034] 以下、図面を参照しながら、本発明のグリセリン含有廃液等の活用方法について詳 細に説明する。
[0035] (実施の形態 1)
図 1は、本発明の乳酸の製造方法の一例である連続式反応装置を用いた方法を説 明するフローシートである。
[0036] 本発明の乳酸の製造方法では、まず、原料のグリセリンを水および水酸ィ匕ナトリウム 等のアルカリ成分と共に原料貯蔵槽(1)に加える。原料貯蔵槽(1)に貯蔵されたダリ セリン含有アルカリ液は、高圧ポンプ(2)、予熱器 (3)、反応器 (4)、冷却器 (5)を順 次通過し、圧力調整弁(7)を経て最後に乳酸含有アルカリ液貯蔵槽 (6)に達する。
[0037] 各構成について説明する。
[0038] 原料貯蔵槽(1)は、グリセリン、アルカリ成分および水を各適量ずつ添加することに より、所望のグリセリンを含有し、かつ、所望のアルカリ性を有するグリセリン含有アル カリ液を作製するための槽である。
[0039] 原料貯蔵槽(1)に添加されるグリセリンは、植物油脂、動物油脂等の各油脂の分解 により製造されたものやィ匕学的に合成された純粋製品を使用することができる。ある いは、原料となるグリセリンは不純物を含むものも使用可能であり、例えば、このような 不純物含有グリセリン原料としては、魚肉、動物肉のレンダリング等から回収できる油 脂中のグリセリン、バイオディーゼル燃料油、石鹼工場等力 排出された廃液等が挙 げられる。
[0040] グリセリンの濃度は、 1〜80重量%であり、好ましくは、粘度が下がり流動性が良好 になることを考慮して 50重量%以下である。
[0041] アルカリ成分は、アルカリ性の物質であれば任意のものが適用可能であり、例えば
、水酸化ナトリウム、水酸ィ匕カリウム、アンモニア等が挙げられる。また、水酸化カルシ ゥムのように塩基性を示す個体触媒でも良い。好適なアルカリ成分の濃度は、 0. 1〜
50%である。
[0042] 高圧ポンプ(2)は、原料貯蔵槽(1)のグリセリン含油アルカリ液に所定の圧力をか けて水を定量的に供給する。
[0043] 予熱器 (3)は、高温高圧条件での反応を行う反応器 (4)に導入する前のグリセリン 含有アルカリ液を予備的に加熱する。予熱器 (3)は予備加熱のための加熱器を備え て!、てもよ!/、が、反応器 (4)の後流側に備えられた冷却器 (5)との熱交換によりダリ セリン含有アルカリ液を加熱するようにしてもょ 、。
[0044] 反応器 (4)にて、グリセリン含有アルカリ液を、高温高圧条件に付し、アルカリ液中 のグリセリンを乳酸に変換する。具体的には、 150〜400°Cの温度で、かつ水が液相 を保持出来るように上記温度での水の飽和蒸気圧以上の圧力とされる。
[0045] ある温度において、水の飽和蒸気圧より低い圧力で反応させた場合、水は全て蒸 発してしまい、アルカリが固体塩として析出してしまう。本反応は、アルカリ性を示す 水中でグリセリンと水酸ィ匕物イオン OH—が反応して乳酸に転換する反応であるため、 水が液相を保った状態でないと反応は進行しにくい。このため、反応圧力は反応温 度の飽和蒸気圧以上の圧力が望ましい。反応時間は反応温度によって著しく異なる が反応温度が高 、程、あるいはアルカリ濃度が高 、ほど乳酸への変換に要する反応 時間は短縮される。
[0046] 反応器 (4)での反応により、アルカリ溶液中のグリセリンは乳酸に変換される。この 乳酸含有アルカリ液は、冷却器 (5)で温度が低下された後、乳酸含有アルカリ液貯 蔵槽 (6)に送られ、乳酸含有アルカリ液貯蔵槽 (6)で貯留される。反応器 (4)と乳酸 含有アルカリ液貯蔵槽 (6)との間には、圧力調節弁(7)が設けられており、この弁(7 )でアルカリ液の高圧状態が解除される。
[0047] 乳酸含有アルカリ液貯蔵槽 (6)の乳酸含有アルカリ液は、乳酸とアルカリの濃度が 低い場合、電気透析装置を使用することによって効率的に濃縮することができる。ま た、乳酸含有アルカリ液貯蔵槽 (6)の乳酸含有アルカリ液は、乳酸とアルカリの分離 が必要な場合、バイポーラ膜分離装置を使用することによって、乳酸とアルカリを分 離することができる。また、乳酸含有アルカリ液貯蔵槽 (6)の乳酸含有アルカリ液力も 、乳酸とアルカリの塩を固体として取り出したい場合、晶析装置を用いた晶析法によ つて、乳酸とアルカリの塩を固体として取り出すことができる。
[0048] (実施の形態 2)
図 2は、実施の形態 2の乳酸製造装置を説明するフロー図である。
[0049] 本実施の形態 2の乳酸製造装置では、まず、 BDF製造工場、油脂化学工場等から の廃液である原料グリセリンが原料貯蔵槽(1)に加えられる。 BDF製造工場等から 供給される廃液である原料グリセリンには、アルカリ成分が含まれているが、アルカリ 成分の含量が少ない場合には、 NaOH等のアルカリ成分が適宜追加投入される。ま た、水分量が少ない場合には、適宜、水が追加される。
[0050] 原料貯蔵槽(1)に貯蔵されたグリセリン含有アルカリ溶液は、適宜水が追加された 後、高圧ポンプ (2)、熱交換器 (3)、反応器 (4)、熱交換器 (3)を順次通過し、圧力 調整弁 (7)を経て最後に気液分離器 (5)に供給されて、ここで、乳酸含有アルカリ溶 液と水素ガスとに気液分離される。図 2に示す、原料貯蔵槽(1)、高圧ポンプ (2)、反 応器 (4)は、図 1に示す実施の形態 1のものと同一であるので詳しい説明は省略する
[0051] 本実施の形態 2の乳酸製造装置では、原料貯蔵槽のグリセリン含有アルカリ溶液は 、高圧ポンプ (2)にて所定の圧力に昇圧させられて熱交 (3)に供給され、ここで 、水熱反応後の気液混合流体 (後記)と熱交換がなされることにより昇温し、反応器(
4)に供給される。
[0052] 反応器 (4)に供給されたグリセリンは、熱媒加熱装置 (6)から送られる熱媒 (過熱水 蒸気またはシリコーンオイル等)によって加熱されて所定温度に保たれ、水熱反応が 行われ、乳酸と水素ガスに分解される。
[0053] 反応器 (4)を出た気液混合流体は、反応器 (4)供給前のグリセリン含有アルカリ溶 液と熱交換がなされて降温した後、圧力調節弁 (7)により減圧させられた後、気液分 離器 (5)に供給される。反応器 (4)での水熱反応により発生するガス成分は、ほとん ど水素ガスであり、気液分離器(5)において純度の高い水素ガスが得られる。また、 グリセリンの分解によって生成する液体成分は、ほとんどが乳酸含有アルカリ溶液で あり、純度の高い乳酸含有アルカリ溶液が得られる。得られた水素ガスおよび乳酸含 有アルカリ溶液は、それぞれ、調圧弁 (8)および (9)により調圧された後、外部に取り 出される。
[0054] (実施の形態 3)
図 3は、実施の形態 3の乳酸製造装置を説明するフローシートである。
[0055] 本実施の形態の乳酸製造装置は、上記実施の形態 2の乳酸製造装置と同一の構 成を含むので、以下の説明では、実施の形態 2の乳酸製造装置と同一の構成につ いては、同一の参照符号を付すこととして詳細な説明を省略する。
[0056] 本実施の形態 3の乳酸製造装置では、原料貯蔵槽(1)に BDF製造工場、油脂化 学工場等からの廃液である原料グリセリンが加えられる。
[0057] 原料貯蔵槽(1)に貯蔵されたグリセリン含有アルカリ溶液は、適宜水が追加された 後、高圧ポンプ (2)、熱交換器 (3)、反応器 (4)、熱交換器 (3)を順次通過した後、 圧力調整弁 (7)を経て気液分離器 (5)に供給されて、ここで、乳酸ナトリウム溶液と水 素ガスとに気液分離される。気液分離器 (5)で分離された乳酸ナトリウム溶液は、バ ィポーラ膜透析装置(10)に供給され、ここで、乳酸溶液と NaOH溶液とに分離され る。分離された NaOH溶液は、貯蔵タンク(11)に貯蔵された後、反応器 (4)に供給 される。
[0058] 本実施の形態 3の乳酸製造装置では、上記の実施の形態 2の乳酸製造装置と異な り、 NaOHを原料貯蔵槽(1)に供給せず、反応器 (4)に供給するようにしている。こ れは、高濃度の NaOHによって熱交換器 (3)や高圧ポンプ(2)が腐食するのを防止 するためである。反応が進行すると、乳酸が生成しこれが NaOHと中和し消費される ので、 NaOHは数回に分けて反応器 (4)に供給する。このような NaOHの数回に分 けた供給により、ここでも高濃度アルカリによる反応器 (4)の腐食を防止することがで きる。
[0059] 気液分離器 (5)から出た乳酸ナトリウム水溶液は、保湿剤や化学薬品の原料として の用途も見込めるが、ポリ乳酸の原料として利用するためには、乳酸とナトリウムを分 離する必要がある。本実施の形態 3の乳酸製造装置では、気液分離器 (5)にて分離 された乳酸ナトリウム水溶液をバイポーラ膜透析装置(10)にて、乳酸溶液と NaOH 溶液に分離する。バイポーラ膜透析装置(10)によって分離された NaOH溶液は、貯 蔵タンク(11)に貯蔵された後、反応器 (4)に供給される。あるいは、分離された NaO H溶液は、油脂のエステル交換反応のための触媒として、再度利用されてもよい。
[0060] (実施の形態 4)
図 4は、実施の形態 4の乳酸製造装置を説明するフローシートである。
[0061] 本実施の形態の乳酸製造装置は、図 2に示す実施の形態 2の乳酸製造装置と同 一の構成を含むので、実施の形態 2の乳酸製造装置と同一の構成については、同 一の参照符号を付すこととして詳しい説明を省略する。
[0062] 本実施の形態 4の乳酸製造装置では、気液分離装置(5)で乳酸ナトリウム溶液と水 素ガスとに気液分離が行われた後、分離された乳酸ナトリウム溶液は、カルシウム晶 析装置(12)に供給される。
[0063] カルシウム晶析装置(12)には、水酸ィ匕カルシウムが加えられることにより、下記式 により乳酸カルシウム塩の沈殿が生成し、これを固液分離することにより、 NaOH溶 液と分離される。
[0064] 2CH CH (OH) COONa + Ca (OH)
3 2
→(CH CH (OH) COO) Ca i + 2NaOH
3 2
分離された NaOH溶液は、貯蔵タンク(13)に一旦貯蔵された後、原料貯蔵槽(1) に供給される。カルシウム晶析装置(12)で分離された NaOH溶液には、未反応のグ リセリンが残存して溶解しており、 NaOH溶液を原料貯蔵槽(1)に供給することにより 、未反応のグリセリンを循環させることができ、これにより、乳酸製造の効率ィ匕を図るこ とがでさる。
[0065] 上記各実施の形態に示した乳酸製造装置によって生じる水素ガスは、オフガスとし てフレアスタック等で焼却処理してもよ 、が、前述のように上記方法により発生する水 素ガスは、水素純度が高いので、回収して燃料電池や水素エンジン等用のガスとし て利用することができる。
[0066] 上記各実施の形態に示した乳酸製造装置によって生成した乳酸は、 L体と D体の 光学異性体が等量ずつ混合したラセミ体である。乳酸をポリ乳酸の原料として利用す るためには、光学分割 (ラセミ分割)によって L体と D体とに分離する必要がある。光学 分割〖こは、クロマトグラフ法や優先結晶法、ジァステレオマー法、包接錯体法等の公 知の分割法を利用することができる。
[0067] 次に、本発明を具体的に説明するために、本発明の実施例を説明する。
[0068] (実施例 1)
本実施例 1では、反応器(10)として、図 5に示すような材質 SUS316の管をキヤッ プで密閉したものを用いた。容量は、 10ml、耐熱温度は 400°C、耐圧は 30MPaで ある。
[0069] グリセリン濃度 0. 33M、水酸化ナトリウム濃度 0. 25Mになるように調製した水溶液 を反応器(10)に入れ、これを密封した。溶液の充填率は反応器(10)の溶液の 60v ol%以下とした。
[0070] 次に、反応器(10)を図 6に示す加熱振とう器に浸して、所定時間振とうした。
[0071] 図 6に加熱振とう装置の概略図を示す。この加熱振とう装置は、溶融塩バス(21)と 、ヒータ(22)と、攪拌機 (23)と、温度調節機 (24)と、熱電対 (25)とを備えて!/、る。こ の加熱振とう装置は、温度調節機(24)と熱電対(25)とにより 170〜400°Cに温度を 帘 U御することができる。
[0072] 加熱振とう器を用いた加熱反応の反応温度を 300°C、反応時間を 60分とした。圧 力は 300°Cにおける水の飽和蒸気圧である。
[0073] 加熱処理の後、反応液を冷水に浸して急速冷却した。 [0074] 冷却後、反応器(10)に充填された溶液を取り出し、 0. 45 μ mのフィルタで固形分 を取り除き、硫酸により中性に pHを調節し、中和後の溶液を高速液体クロマトグラフ ィ一により分析した。
[0075] ここで、グリセリンの分解率および生成物への転換率は物質中の炭素量を基準とし て次のように定義した。
[0076] 転換率(% =生成物中の炭素量 Z原料グリセリン中の炭素量 X 100
分解率(%じ) =分解したグリセリン中の炭素量 Z原料グリセリンの炭素量 X 100 高速液体クロマトグラフィーによる分析結果を図 7 (検出器:吸光光度検出器 (UV) )に示し、反応液中で検出された物質に基づいて求めた分解率および転換率を下記 表 1に示す。
[表 1]
Figure imgf000012_0001
[0077] 図 7に示す高速液体クロマトグラフィーの分析結果により、反応液中には、未反応の グリセリン、主生成物である乳酸、副生成物であるギ酸、酢酸、アクリル酸等が検出さ れた。グリセリンの分解率は 59. 8%Cであり、乳酸への転換率は 58. 6%Cであった 。この結果により、グリセリンを効率よく乳酸に転換できることが明らかとなった。
[0078] (実施例 2)
実施例 2では、反応時間を種々変更したときのグリセリンの分解率と乳酸への転換 率を測定した。他の条件は、実施例 1と同じである。
[0079] 実施例 2の結果を下記表 2に示す。また、図 8は、表 2をグラフ化したものである。
[0080] 表 2および図 8から、グリセリンの分解が進むのに伴って、乳酸の生成量が増えて!/ヽ ることが分力ゝる。
[表 2] 反応時間 (分) 分解率 (%c) 転換率 (%c)
5 1 6 . 0 6. 6
1 0 1 9. 5 1 4. 5
3 0 4 3. 0 3 9 . 4
6 0 5 9. 8 5 8. 6
[0081] (実施例 3)
実施例 3では、乳酸のアルカリ性の高温高圧水中での安定性を調べるため、乳酸 のアルカリ水熱分解の実験を行った。温度、圧力などの反応条件は、実施例 1と同様 にした。図 9はその結果を示している。図 9から明らかなように、アルカリ性の水熱条 件下で、乳酸は非常に安定であることが分力つた。
[0082] (実施例 4)
実施例 4では、アルカリ成分を添加せず、中性の水溶液でグリセリンの水熱分解を 行った。反応温度は 300°C、反応時間は 10分である。図 10はその結果を示す。図 1 1は、反応後の高速液体クロマトグラフィーを示す。
[0083] 図 10から、中性条件での水熱反応では乳酸の生成は見られな力つた。また、図 11 から、アクリル酸、ァクロレイン等の生成が見られた。このことから、乳酸を得るために は、アルカリ性条件で反応を行う必要があることが分力つた。
[0084] (実施例 5)
本実施例 5では、反応器(10)として、図 12に示すような材質 SUS316の管(10a) の両端を同素材の SUS316製のキャップ(10b)により密閉可能なものを用いた。反 応器(10)の管(10a)は、外径 12. 7mm、肉厚 lmm、長さ 111. 3mmの寸法を有し 、容量は 10ml、耐熱温度は 400°C、耐圧は 30MPaである。管(10a)の一端には、 ライン(10c)が接続されている。ライン(10c)は、高圧バルブ(10d)に接続されており 、高圧バルブ(10d)の閉により、反応管(10)は、密閉状態となり、高圧バルブ(10d) の開により、ライン(10c)を通じて、反応器(10)内に発生したガス成分が外部に取り 出される。
[0085] 反応器(10)を用いて下記手順に従って実験を行った。
[0086] (1)グリセリン濃度: 0. 33M、 NaOH濃度: 0. 25Mとなるように、グリセリンおよび Na OHを水に加え水溶液を調製した。 [0087] (2) (1)の水溶液を反応管(10)に 40vol%の体積量になるように充填した。
[0088] (3)反応中に溶質が酸化反応することを防止するために、水溶液を脱気し、反応管(
10)内の空気を窒素ガスで置換した。
[0089] (4)高圧バルブ(10d)を閉にすることにより反応器(10)を密閉し、所定温度に保持 した加熱振とう装置 (20)の溶融塩バス (21) (図 13参照)中に浸し、反応を開始した 。反応温度は 300°Cとした。図 13において、溶融塩バス(21)、ヒータ(22)、温度調 節機(24)および熱電対 (25)は、図 6に示す加熱振とう装置(20)と同一であるので 詳しい説明は省略する。図 13中の参照符号 (26)は、振とう装置を示しており、下方 に伸びたクランク状の回転棒(26a)の回転に伴って、水平棒(26b)が左右方向に移 動するようになっており、該水平棒(26b)にキャップ(10b)の部分で吊り下げられた 反応器(10)が水平に振とうされるようになって!/、る。
[0090] (5) 60分間にわたり加熱,振とうを続けた後、反応器(10)を加熱振とう装置力も取り 出し、冷水中で急速に冷却した。
[0091] (6)発生したガスを回収しガスクロマトグラフ(GC)によりガス成分を分析した。
[0092] (7)反応器(10)の管(10a)の反応液については、 pHを 7〜8に調整した後、 0. 45 μ mのフィルタ一により固形物をろ過した。
[0093] (8)高速液体クロマトグラフ(HPLC)によってろ液の成分を分析した。
[0094] 図 14および 15に反応生成物の HPLC分析結果を示す。図 14のグラフは、 UVの 吸光度を測定することにより得られたものであり、図 15のグラフは、屈折率を測定する ことにより得られたものである。
[0095] 図 14から明らかなように、反応生成物はほとんどが目的物である乳酸であった。他 の生成物としては酢酸およびアクリル酸が検出された。これらは、乳酸がさらに分解し て生成したものと考えられるため、反応時間が長くなれば、これらの生成比が高くなる と考えられる。また、図 15のグラフに示されるように、グリセリンの一部は、未反応のま ま残存している。
[0096] 発生したガスの成分分析を行った結果 (GCによる)、ほとんどが水素 (H )ガスであ
2 り、一酸化炭素 (CO)、二酸化炭素 (CO )、酸素 (o )等は検出されな力 た。
2 2
[0097] (実施例 6) 本実施例では、反応生成物の経時変化を測定した。反応条件は、 NaOH濃度を 1 . 25Mとした他は実施例 5と同一とし、開始時、 20、 40、 60、 80および 100分後の反 応液に対し HPLC分析および GC分析を行い、各時間におけるグリセリン残存率、乳 酸お収率よび水素の収率を測定した。
[0098] 乳酸の収率 (mol%)およびグリセリンの残存率 (mol%)は、下記式により算出した
[0099] 乳酸の収率(mol%)
=反応生成物の量 (molZL) Z供給したグリセリンの量 (molZL) X 100 残存率 (mol%)
= (未反応のグリセリンの量 (molZL) Z供給したグリセリンの量 (molZL) X 100 得られた結果を図 16に示す。
[0100] 図 16に示されるように、反応開始から 90分後に乳酸の収率は約 90%に達している ことが分かる。また水素の収率も乳酸とほぼ同一の挙動を示している。また、各時間 において、乳酸の収率は、グリセリンの分解率(100—残存率)とほぼ一致している。 すなわち、グリセリンは、アルカリ水熱反応による脱水素反応により酸化されほとんど が乳酸と水素に転換されたことが分かる。一方で、反応によってアルコール (グリセリ ン)から酸 (乳酸)が生成するため、 NaOHが中和のために消費される。以上のことは 、下記式(1)の化学量論式によって表すことができる。
[0101] C H (OH) + NaOH
3 5 3
→ CH CH (OH) COO"Na+ + H O + H † (1)
3 2 2
この量論式は、反応を 100%進行させるためにはグリセリンと等モルの NaOHが必 要であることを示している。
[0102] (実施例 7)
本実施例では、 NaOH濃度を 0〜2. 5Mの間で変化させた場合の乳酸収率の経 時変化を測定した。実験条件は、反応温度を 300°C、グリセリン濃度を 0. 33Mとし、 開始時、 30、 60、 90、 120および 150分後の乳酸収率を測定した。乳酸収率の算 出は、上記の実施例 6と同様にして得た。得られた結果を図 17に示す。
[0103] 図 17に示すように、 NaOH濃度がゼロ Mの場合、乳酸は検出されず、代わりにダリ セリンの脱水生成物であるァクロレインが検出された。また、アルカリ濃度の増加と共 に、乳酸の生成速度が増加し、 NaOH濃度が 1. 25Mのときに、 90分後に乳酸収率 は約 90%に達した。このように、当量以上のアルカリの存在が反応に重要な役割を 果たして!/ヽることが考えられる。
[0104] (実施例 8)
本実施例では、反応温度を 220〜340°Cの間で変化させた場合の乳酸収率の経 時変化を測定した。実験条件は、 NaOH濃度を 1. 25M、グリセリン濃度を 0. 33Mと し、開始時、 20、 40、 60、 80および 100分後の乳酸収率を測定した。乳酸収率の算 出は、上記の実施例 6と同様にして得た。得られた結果を図 18に示す。
[0105] 図 18に示すように、反応温度が 220°Cで反応時間力 ^時間のとき、僅かではあるが 乳酸の生成が確認された。また、反応温度が 150°Cであっても長時間反応を継続さ せることで乳酸を製造することが可能であることが分力つた。また、反応温度の増加と 共に乳酸の生成速度が増加し、 300°Cのとき、 90分で乳酸収率は約 90%に達した。 反応温度が 340°Cであるとき、 10分で収率が 80%に達した力 その後、収率は低下 した。 300°C超では、乳酸の分解が顕著に起こると考えられる。乳酸のアルカリ水熱 分解による分解生成物としては、酢酸やアクリル酸が検出された。
図面の簡単な説明
[0106] [図 1]実施の形態 1の乳酸の製造方法を説明するフローシートである。
[図 2]実施の形態 2の乳酸製造装置を説明するフローシートである。
[図 3]実施の形態 3の乳酸製造装置を説明するフローシートである。
[図 4]実施の形態 3の乳酸製造装置を説明するフローシートである。
[図 5]実施例 1で使用する反応器を示す概略図である。
[図 6]実施例 1で使用する加熱振とう装置を示す概略図である。
[図 7]検出器を吸光光度検出器 (UV)とした実施例 1の結果を示す高速液体クロマト グラフィー分析のグラフである。
[図 8]実施例 2の結果を示すグラフである。
[図 9]実施例 3の結果を示すグラフである。
[図 10]実施例 4の結果を示すグラフである。 [図 11]実施例 4の反応後の高速液体クロマトグラフィーを示すグラフである。
[図 12]実施例 5で使用する反応器を示す概略図である。
[図 13]実施例 5で使用する加熱振とう装置を示す概略図である。
[図 14]実施例 5の結果を示す高速液体クロマトグラフィー分析のグラフである。
[図 15]実施例 5の結果を示す高速液体クロマトグラフィー分析のグラフである。
[図 16]実施例 6の結果を示すグラフである。
[図 17]実施例 7の結果を示すグラフである。
[図 18]実施例 8の結果を示すグラフである。
符号の説明
1 原料貯蔵槽
2 高圧ポンプ
3 予熱器
4 反応塔
5 冷却器
6 乳酸含有アルカリ液貯蔵槽

Claims

請求の範囲
[I] グリセリンをアルカリ性条件下で、水熱反応させることを特徴とする乳酸の製造方法
[2] 150°C〜400°Cの温度で、かつ、水が液相状態を保持できるように、各反応温度で の飽和蒸気圧以上の圧力で水熱反応を行う請求項 1の方法。
[3] 前記グリセリンは、植物油脂、動物油脂等力も製造されたもの、あるいは、化学的に 合成された純粋製品を出発原料とした、請求項 1に記載の乳酸の製造方法。
[4] 前記グリセリンは、アルカリ触媒の存在下に油脂をアルコールとエステル交換して 脂肪酸エステルを得る、油脂からのディーゼル燃料油の製造の際に生じたグリセリン 含有廃液を原料とする、請求項 1に記載の乳酸の製造方法。
[5] 前記水熱反応により生成する乳酸含有アルカリ溶液と水素ガスとを気液分離する 工程を包含する請求項 1〜4のいずれか 1つに記載の方法。
[6] 電気透析法によって、水熱反応後の水溶液中の乳酸とアルカリ成分の濃度を濃縮 する濃縮工程をさらに包含する、請求項 1〜5の 、ずれか 1つに記載の乳酸の製造 方法。
[7] バイポーラ膜電気透析法を用いて、水熱反応後の水溶液中の乳酸とアルカリ成分 を分離する分離工程をさらに包含する請求項 1〜6のいずれか 1つに記載の乳酸の 製造方法。
[8] 晶析法を用いて、水熱反応後の水溶液中から固体の乳酸塩とアルカリ成分溶液と して分離する分離工程をさらに包含する請求項 1〜5の 、ずれか 1つに記載の乳酸 の製造方法。
[9] 前記グリセリンをアルカリ条件とするためのアルカリ成分は、水熱反応を行う際に供 給される、請求項 1〜8のいずれ力 1つに記載の方法。
[10] 前記アルカリ成分は、数回に分けて供給される、請求項 9に記載の方法。
[II] 前記乳酸含有アルカリ溶液から分離されたアルカリ成分を利用する、請求項 9また は 10に記載の方法。
[12] 前記アルカリ成分の溶液に溶解している未反応のグリセリンを回収し、再び乳酸原 料として再利用する、請求項 7〜: L 1のいずれか 1つに記載の方法。
[13] 水素ガスを燃料電池用ガスとして利用する請求項 5〜12のいずれか 1つに記載の 方法。
[14] グリセリンをアルカリ条件下で水熱反応させる反応器を備え、アルカリ性グリセリン溶 液の供給から乳酸生成までを連続して行う連続式の乳酸製造装置。
[15] 前記反応器が、 150〜400°Cの温度でかつ上記温度での飽和蒸気圧以上の圧力 で水熱反応させる反応器である、請求項 14に記載の連続式の乳酸製造装置。
[16] 前記反応器で生成した乳酸含有アルカリ溶液と水素ガスを気液分離する気液分離 装置をさらに備えた、請求項 14〜 15に記載の乳酸製造装置。
[17] 前記気液分離装置から出た乳酸含有アルカリ溶液を、乳酸溶液とアルカリ溶液に 分離するバイポーラ膜電気透析装置をさらに備えた、請求項 16に記載の乳酸製造 装置。
[18] 前記気液分離装置から出た乳酸含有アルカリ溶液を、晶析法により、乳酸カルシゥ ム固体とアルカリ溶液に分離するカルシウム晶析装置をさらに備えた請求項 16に記 載の乳酸製造装置。
PCT/JP2006/312967 2005-06-29 2006-06-29 乳酸の製造方法および乳酸製造装置 WO2007001043A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/994,263 US7829740B2 (en) 2005-06-29 2006-06-29 Process for production of lactic acid and equipment for the production
BRPI0612750A BRPI0612750B1 (pt) 2005-06-29 2006-06-29 processo para produção de ácido láctico, e aparelho para produção de ácido láctico
JP2007523988A JP4906720B2 (ja) 2005-06-29 2006-06-29 乳酸の製造方法および乳酸製造装置
US12/606,473 US20100047140A1 (en) 2005-06-29 2009-10-27 Apparatus for producing lactic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-189182 2005-06-29
JP2005189182 2005-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/606,473 Division US20100047140A1 (en) 2005-06-29 2009-10-27 Apparatus for producing lactic acid

Publications (1)

Publication Number Publication Date
WO2007001043A1 true WO2007001043A1 (ja) 2007-01-04

Family

ID=37595288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312967 WO2007001043A1 (ja) 2005-06-29 2006-06-29 乳酸の製造方法および乳酸製造装置

Country Status (4)

Country Link
US (2) US7829740B2 (ja)
JP (1) JP4906720B2 (ja)
BR (1) BRPI0612750B1 (ja)
WO (1) WO2007001043A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200862A (ja) * 2008-02-22 2009-09-03 Hitachi Communication Technologies Ltd リソース割り当て方法、無線通信システム、端末及び基地局
WO2011158905A1 (ja) * 2010-06-17 2011-12-22 日立造船株式会社 ポリ乳酸の製造方法
WO2011145867A3 (ko) * 2010-05-18 2012-04-19 주식회사 엘지화학 알킬락테이트의 제조방법 및 이를 이용한 락타미드의 제조방법
JP2012229189A (ja) * 2011-04-27 2012-11-22 Nihon Univ 乳酸エステルの合成方法
JP2014521601A (ja) * 2011-07-15 2014-08-28 プラクシカ・リミテッド 分離方法
JP2015519323A (ja) * 2012-05-03 2015-07-09 ディー.01 ピー.エー.シー. ホールディングD.01 P.A.C.Holding 有機塩形成のためのグリセリンを反応させる方法
CN111514832A (zh) * 2020-05-30 2020-08-11 侯梦斌 一种介入微界面強化反应的水热碳化设备与工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085521B2 (en) 2011-03-30 2015-07-21 University Of Kansas Catalyst system and process for converting glycerol to lactic acid
AT511965B1 (de) 2011-10-11 2013-04-15 Amitava Dipl Ing Dr Kundu Verfahren zur herstellung von milchsäure
LV14490B (lv) 2011-12-23 2012-05-20 Rīgas Tehniskā Universitāte Selektīvi katalizatori pienskābes iegūšanai no glicerīna
US9447011B2 (en) 2012-11-21 2016-09-20 University Of Tennessee Research Foundation Methods, systems and devices for simultaneous production of lactic acid and propylene glycol from glycerol
TWI503625B (zh) 2013-08-23 2015-10-11 Ind Tech Res Inst 感光性組成物與光阻
US10881133B2 (en) * 2015-04-16 2021-01-05 R.J. Reynolds Tobacco Company Tobacco-derived cellulosic sugar

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356436A (ja) * 1990-12-05 1992-12-10 Kao Corp カルボニル化合物の製造方法
EP0523014A2 (en) * 1991-07-10 1993-01-13 NOVAMONT S.p.A. A catalytic method of hyrogenating glycerol
JP2005200340A (ja) * 2004-01-15 2005-07-28 Heiji Enomoto モノカルボン酸の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034105A (en) * 1989-07-27 1991-07-23 Michigan Biotechnology Institute Carboxylic acid purification and crystallization process
US5192453A (en) * 1992-01-06 1993-03-09 The Standard Oil Company Wet oxidation process for ACN waste streams
US5183577A (en) * 1992-01-06 1993-02-02 Zimpro Passavant Environmental Systems, Inc. Process for treatment of wastewater containing inorganic ammonium salts
ZA955641B (en) * 1994-07-11 1996-02-16 Duphar Int Res Process for the separation of lactulose
JP3644842B2 (ja) 1998-03-30 2005-05-11 独立行政法人科学技術振興機構 廃棄有機物からの有機酸の製造方法
JP4356436B2 (ja) 2003-12-04 2009-11-04 マツダ株式会社 車体補強構造、及び車体補強部材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356436A (ja) * 1990-12-05 1992-12-10 Kao Corp カルボニル化合物の製造方法
EP0523014A2 (en) * 1991-07-10 1993-01-13 NOVAMONT S.p.A. A catalytic method of hyrogenating glycerol
JP2005200340A (ja) * 2004-01-15 2005-07-28 Heiji Enomoto モノカルボン酸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KISHIDA H. ET AL.: "Conversion of glycerin into lactic acid by alkaline hydrothermal reaction", CHEMISTRY LETTERS, vol. 34, no. 11, 2005, pages 1560 - 1561, XP003002969 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200862A (ja) * 2008-02-22 2009-09-03 Hitachi Communication Technologies Ltd リソース割り当て方法、無線通信システム、端末及び基地局
US9040740B2 (en) 2010-05-18 2015-05-26 Lg Chem, Ltd. Method for preparing alkyl lactate and a method for preparing lactamide using the same
WO2011145867A3 (ko) * 2010-05-18 2012-04-19 주식회사 엘지화학 알킬락테이트의 제조방법 및 이를 이용한 락타미드의 제조방법
JP2012001634A (ja) * 2010-06-17 2012-01-05 Hitachi Zosen Corp ポリ乳酸の製造方法
CN103097432A (zh) * 2010-06-17 2013-05-08 日立造船株式会社 聚乳酸的制备方法
WO2011158905A1 (ja) * 2010-06-17 2011-12-22 日立造船株式会社 ポリ乳酸の製造方法
US9056946B2 (en) 2010-06-17 2015-06-16 Hitachi Zosen Corporation Method for producing polylactic acid
JP2012229189A (ja) * 2011-04-27 2012-11-22 Nihon Univ 乳酸エステルの合成方法
JP2014521601A (ja) * 2011-07-15 2014-08-28 プラクシカ・リミテッド 分離方法
JP2014522652A (ja) * 2011-07-15 2014-09-08 プラクシカ・リミテッド 分離方法
JP2014522651A (ja) * 2011-07-15 2014-09-08 プラクシカ・リミテッド 分離方法
JP2015519323A (ja) * 2012-05-03 2015-07-09 ディー.01 ピー.エー.シー. ホールディングD.01 P.A.C.Holding 有機塩形成のためのグリセリンを反応させる方法
CN111514832A (zh) * 2020-05-30 2020-08-11 侯梦斌 一种介入微界面強化反应的水热碳化设备与工艺

Also Published As

Publication number Publication date
US20100047140A1 (en) 2010-02-25
BRPI0612750B1 (pt) 2015-10-13
US7829740B2 (en) 2010-11-09
JP4906720B2 (ja) 2012-03-28
US20090088589A1 (en) 2009-04-02
JPWO2007001043A1 (ja) 2009-01-22
BRPI0612750A2 (pt) 2012-01-03

Similar Documents

Publication Publication Date Title
WO2007001043A1 (ja) 乳酸の製造方法および乳酸製造装置
Ramos-Suarez et al. Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste
Lecker et al. Biological hydrogen methanation–a review
Tao et al. Recovery and concentration of thermally hydrolysed waste activated sludge derived volatile fatty acids and nutrients by microfiltration, electrodialysis and struvite precipitation for polyhydroxyalkanoates production
AU2006267042B2 (en) Production plant and method for converting biomass
AU2005262467B2 (en) Methods and systems for biomass conversion to carboxylic acids and alcohols
JP2010511387A (ja) バイオマス変換プロセスにおける水素処理、並びに、不純物除去及び洗浄の方法
Garcia-Aguirre et al. Up-concentration of succinic acid, lactic acid, and ethanol fermentations broths by forward osmosis
Meng et al. Recent advances on purification of lactic acid
JP5190320B2 (ja) メタンガス回収方法及びエネルギー変換システム
Karekar et al. Continuous in-situ extraction of acetic acid produced by Acetobacterium woodii during fermentation of hydrogen and carbon dioxide using Amberlite FPA53 ion exchange resins
Tharani et al. Process intensification in separation and recovery of biogenic volatile fatty acid obtained through acidogenic fermentation of organics-rich substrates
US8772538B2 (en) Process for producing formic acid by hydrothermal oxidation reaction with glycerol and their equipment
Chen et al. Advances in downstream processes and applications of biological carboxylic acids derived from organic wastes
Braune et al. A downstream processing cascade for separation of caproic and caprylic acid from maize silage-based fermentation broth
CA3091187A1 (en) Processes for converting biomass into high-value products
WO2016160526A1 (en) Processes for bioconverting syngas to oxygenated hydrocarbonaceous compounds
WO2006085764A1 (en) Process and apparatus for the production of sulphur oxides
KR20070035562A (ko) 카르복실산 및 알콜로의 생체물질 전환용 방법 및 시스템
GB2476090A (en) Method of combining hydrogen with carbon dioxide to make methane and other compounds
Zhou et al. A continuous flow reaction system for producing acetic acid by wet oxidation of biomass waste
WO2008111857A1 (en) Treatment of organic material by digestion
JP6013589B2 (ja) 有機塩形成のためのグリセリンを反応させる方法
Chen Conversion of Glycerol to Lactic Acid under Low Corrosive Conditions with Homogeneous and Heterogeneous Catalysts
WO2010110773A1 (en) Methanogenic reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007523988

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11994263

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06767584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0612750

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071217