WO2006129427A1 - Light sensor and display device - Google Patents

Light sensor and display device Download PDF

Info

Publication number
WO2006129427A1
WO2006129427A1 PCT/JP2006/308113 JP2006308113W WO2006129427A1 WO 2006129427 A1 WO2006129427 A1 WO 2006129427A1 JP 2006308113 W JP2006308113 W JP 2006308113W WO 2006129427 A1 WO2006129427 A1 WO 2006129427A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor regions
layer
optical sensor
layers
film
Prior art date
Application number
PCT/JP2006/308113
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromi Katoh
Yoshihiro Izumi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006129427A1 publication Critical patent/WO2006129427A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback

Definitions

  • the present invention relates to an optical sensor and a display device including the same.
  • an optical sensor can be mounted on a liquid crystal display device by mounting an optical sensor of a discrete component on a liquid crystal display panel.
  • an attempt has been made to monolithically form an optical sensor on an active matrix substrate constituting a liquid crystal display panel (see, for example, Patent Document 3).
  • the optical sensor is an active sensor. It is formed on the glass substrate that becomes the base of the active matrix substrate at the same time by the process of forming the element (TFT) and peripheral circuits. According to the latter, the manufacturing cost can be reduced and the display device can be downsized by reducing the number of parts compared to the former.
  • FIG. 9 is a plan view showing an optical sensor constituted by a conventional PIN photodiode.
  • the optical sensor 51 includes a p-type semiconductor region (p layer) 52, an intrinsic semiconductor region (i layer) 53, and an n-type semiconductor region (n layer) formed in a silicon film 55. ) 54.
  • the p layer 52, the i layer 53, and the n layer 54 are sequentially arranged along the plane direction of the silicon film 55.
  • Shi The recon film 55 is formed on the glass substrate 60 which is the base of the active matrix substrate.
  • 58 and 59 are electrode patterns. Electrode pattern 58 is connected to p layer 52 via contact plug 56.
  • the electrode pattern 59 is connected to the n layer 54 via a contact plug 57.
  • the optical sensor 51 shown in FIG. 9 is formed simultaneously with an active element (not shown) formed on the active matrix substrate and a peripheral circuit forming process.
  • the silicon film 55 is a thin film common to the silicon film constituting the active element (TFT), and is formed at the same time by the formation process of the silicon film constituting the active element.
  • Examples of the silicon film include an amorphous silicon film, a polysilicon film, and a continuous grain boundary crystal silicon (CGS) film (see, for example, Patent Document 4).
  • amorphous silicon film a polysilicon film
  • CGS continuous grain boundary crystal silicon
  • polysilicon films with higher electron mobility than amorphous silicon films and continuous grain boundary crystalline silicon have been used.
  • the use of membranes is increasing.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-174819
  • Patent Document 2 Japanese Patent Laid-Open No. 5-241512
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-175026 (Fig. 12)
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-319878
  • Non-Patent Document 1 N. Tada and 6 others “A Touch Panel Function Integrated LCD Using LTPS Technology”, Late—News Paper AMD 7—4L, 11th International Display Workshops (2004), 2004, p. 349-350
  • the optical sensor 51 shown in FIG. 9 has a problem that the sensitivity to light from a specific direction is lowered.
  • the polysilicon film and the CGS film have a characteristic that, although the electron mobility is larger than that of amorphous silicon, the light absorption coefficient is smaller than that of amorphous silicon. Therefore, when using a polysilicon film or a CGS film, it is necessary to further increase the width W of the i layer 53 than when using an amorphous silicon film, and the i layer 53 has a further elongated shape. For this reason, in the optical sensor 51 formed of a polysilicon film or a CGS film, the sensitivity to light from a specific direction is further reduced as compared with the optical sensor 51 formed of an amorphous silicon film.
  • An object of the present invention is to provide an optical sensor that can solve the above-described problems and suppress a decrease in sensitivity to light from a specific direction, and a display device including the optical sensor.
  • an optical sensor includes three or more semiconductor regions and intrinsic semiconductor regions formed on a substrate or a thin film, and the three or more semiconductor regions are formed on the substrate or the thin film.
  • the intrinsic semiconductor regions are arranged between the adjacent semiconductor regions, with the conductive types of adjacent semiconductor regions being opposite to each other at intervals in a row along the surface.
  • the PIN photodiode is formed together with the adjacent semiconductor region, which is disposed so as to contact the matching semiconductor region.
  • a display device includes an active matrix substrate on which a plurality of active elements are formed, and a photosensor that outputs a signal in response to ambient light.
  • the optical sensor includes three or more semiconductor regions and intrinsic semiconductor regions formed in a thin film, and the thin film is formed on a base substrate of the active matrix substrate, and the three or more semiconductor regions are formed.
  • the semiconductor regions are arranged in a row along the surface of the thin film, and are arranged so that the conductivity types of adjacent semiconductor regions are opposite to each other, and the intrinsic semiconductor region is an adjacent semiconductor region Between areas, the adjacent It is disposed so as to be in contact with a semiconductor region, and a PIN photodiode is formed together with the adjacent semiconductor region.
  • the “intrinsic semiconductor region” may be a region that is electrically neutral compared to the adjacent first conductivity type semiconductor region and second conductivity type semiconductor region.
  • the “intrinsic semiconductor region” is preferably a region containing no impurities or a region where the conduction electron density and the hole density are equal.
  • the display device of the present invention may be an EL display device as well as a liquid crystal display device as long as the display device includes an active matrix substrate.
  • the intrinsic semiconductor region is formed in, for example, a stripe shape or a lattice shape. It is done. For this reason, according to the optical sensor of the present invention, it is possible to suppress a decrease in sensitivity to light from a specific direction as compared with a conventional optical sensor including a PIN photodiode (see FIG. 9).
  • FIG. 1 is a perspective view showing a schematic configuration of a display device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of an active element formed on the active matrix substrate shown in FIG.
  • FIG. 3 is a diagram showing the configuration of the photosensor according to the embodiment of the present invention.
  • FIG. 3 (a) is a plan view
  • FIG. 3 (b) is a section line A in FIG. 3 (a).
  • FIG. 3 is a cross-sectional view taken along a line.
  • FIG. 4 is a plan view showing an example in which the wiring structure of the photosensor shown in FIG. 3 is different.
  • FIG. 5 is a circuit diagram of the photosensor shown in FIG. 3.
  • FIG. 6 is a diagram showing an example in which mask displacement occurs in the optical sensor manufacturing process according to the embodiment of the present invention.
  • FIG. 6 (a) is a plan view
  • FIG. 6 (b) is FIG. It is a sectional view cut along a cutting line B- in (a).
  • FIG. 7 is a cross-sectional view showing another example of the optical sensor of the present invention.
  • FIG. 8 is a plan view showing another example of the optical sensor of the present invention.
  • FIG. 9 is a plan view showing an optical sensor constituted by a conventional PIN photodiode.
  • the optical sensor according to the present invention includes three or more semiconductor regions and intrinsic semiconductor regions formed on a substrate or a thin film, and the three or more semiconductor regions are arranged in a line along the surface of the substrate or the thin film. Are arranged so that the conductivity types of adjacent semiconductor regions are opposite to each other, and the intrinsic semiconductor region is in contact with the adjacent semiconductor region between adjacent semiconductor regions.
  • the PIN photodiodes are formed together with the adjacent semiconductor regions.
  • the three or more semiconductor regions and the intrinsic semiconductor region are formed in a silicon film, and the silicon film is an active matrix substrate including a plurality of active elements.
  • the silicon film is an active matrix substrate including a plurality of active elements.
  • An embodiment in which a film is formed on the base substrate is also possible.
  • the optical sensor is formed monolithically on the active matrix substrate. For this reason, the number of parts of the active matrix substrate can be reduced, and the manufacturing cost of the display device equipped with the photosensor of the present invention can be reduced.
  • the display device is a display device having an active matrix substrate on which a plurality of active elements are formed, and an optical sensor that outputs a signal in response to ambient light.
  • Comprises three or more semiconductor regions and intrinsic semiconductor regions formed in a thin film the thin film is formed on a base substrate of the active matrix substrate, and the three or more semiconductor regions are formed on a surface of the thin film.
  • the conductivity types of adjacent semiconductor regions are opposite to each other, and the intrinsic semiconductor regions are adjacent to each other between adjacent semiconductor regions.
  • the PIN photodiode is formed together with the adjacent semiconductor regions.
  • FIG. 1 is a perspective view showing a schematic configuration of a display device according to an embodiment of the present invention.
  • the display device is a liquid crystal display device.
  • the display device includes a liquid crystal display panel in which a liquid crystal layer 102 is sandwiched between an active matrix substrate 101 and a counter substrate 103, and a knock light 110.
  • the knock light 110 illuminates the liquid crystal display panel also with the active matrix substrate 101 side force.
  • a region in contact with the liquid crystal layer 102 is a display region.
  • a plurality of pixels each having an active element and a pixel electrode are formed in a matrix. The configuration of the active element will be described later with reference to FIG.
  • peripheral area the area around the display area of the active matrix substrate 101 (hereinafter referred to as “peripheral area”) is provided with the optical sensor 1 in the present embodiment. ing.
  • the optical sensor 1 outputs a current (generated current) having a magnitude corresponding to the intensity of external light to the detection device 111 that is also provided in the peripheral region.
  • the detection device 111 has a capacity, and generates a voltage signal by accumulating the generated current output from the optical sensor in the capacity.
  • the detection device 111 compares the potential of the voltage signal with a reference potential, and generates a digital signal that specifies the level of the potential of the voltage signal.
  • This digital signal is input to a control device (not shown) of the backlight 110, and the brightness of the backlight 110 is adjusted according to the intensity of external light.
  • a control device not shown
  • reference potentials of about 4 to 5 steps are set.
  • the digital signal output from the detection device 111 is 2 bits or more.
  • the optical sensor 1 includes an active sensor as shown in FIG. It is formed monolithically on the base substrate (glass substrate) of the submatrix substrate 101. Further, the detection device 111 is also monolithically formed on the base substrate.
  • “monolithically formed on a glass substrate” means that a device is formed directly on a glass substrate by a physical process and a z or chemical process, and a semiconductor circuit. Does not include being mounted on a glass substrate.
  • a horizontal drive circuit (source driver) 104 and a vertical drive circuit (gate driver) 105 are also provided in the peripheral region of the active matrix substrate 101.
  • the semiconductor elements constituting the horizontal drive circuit 104 or the vertical drive circuit 105 are also monolithically formed on the base substrate (glass substrate) of the active matrix substrate 101.
  • an external substrate 107 is connected to the active matrix substrate 101 via an FPC 106.
  • An IC chip 108 and an IC chip 109 are mounted on the external substrate 107.
  • the IC chip 109 includes a reference power supply circuit that generates a power supply voltage used inside the display device.
  • the IC chip 108 includes a control circuit for controlling the horizontal drive circuit 104 and the vertical drive circuit 105.
  • an IC chip other than the IC chip 108 and the IC chip 109 can be mounted on the external substrate 107.
  • FIG. 2 is a cross-sectional view showing the configuration of active elements formed on the active matrix substrate shown in FIG.
  • the active element 21 includes a silicon film 25 formed on the glass substrate 20 and a gate electrode 26 disposed on the upper layer.
  • the glass substrate 20 is a base substrate of the active matrix substrate 101 (see FIG. 1).
  • 20 glass substrates! Don't forget hatching.
  • the active element 21 shown in FIG. 2 is an n-type TFT.
  • n-type semiconductor regions 22 and 24 which are the source or drain of the TFT are formed.
  • the n-type semiconductor regions 22 and 24 are formed by ion implantation of phosphorus (P) arsenic (As) t and other n-type impurities.
  • Reference numeral 23 denotes a channel region serving as a TFT channel.
  • the silicon film 25 can be formed of an amorphous silicon film, a polysilicon film, a continuous grain boundary crystal silicon (CGS) film, or the like.
  • the detection device 111, the horizontal drive circuit 104, and the vertical drive circuit 105 are connected to the active matrix. It is formed monolithically on the task substrate 101. Therefore, from the viewpoint of electron mobility, the silicon film 25 is preferably formed of a polysilicon film or a CGS film. In particular, it is preferable that the silicon film 25 is formed of a CGS film because it has the highest electron mobility.
  • the formation of the silicon film 25 using the CGS film can be performed as follows, for example. First, an oxide silicon film and an amorphous silicon film are sequentially formed on the glass substrate 20. Next, a nickel thin film serving as a catalyst for promoting crystallization is formed on the surface of the amorphous silicon film. Next, the nickel thin film and the amorphous silicon film are reacted by heating to form a crystalline silicon layer at these interfaces. Thereafter, the unreacted nickel film and the silicon-nickel layer are removed by etching or the like. Next, annealing is performed on the remaining silicon film to advance crystallization, and a CGS film is obtained. Thereafter, by patterning the CGS film by forming a resist pattern by photolithography and performing etching using the resist pattern as a mask, a silicon film 25 shown in FIG. 2 is obtained.
  • a first interlayer insulating film 31 is formed between the gate electrode 26 and the silicon film 25.
  • the portion of the first interlayer insulating film 31 immediately below the gate electrode 26 functions as a gate insulating film.
  • the formation of the first interlayer insulating film 31 is performed by forming a silicon nitride film or a silicon oxide film by the CVD method after the silicon film 25 is formed.
  • the gate electrode 26 is formed by forming a conductive film such as a silicon film on the first interlayer insulating film 31 by a CVD method or the like, and then forming a resist pattern by a photolithography method or using the resist pattern as a mask. This is done by performing an etching.
  • a second interlayer insulating film 32 is formed on the first interlayer insulating film 31 so as to cover the gate electrode 26.
  • the formation of the second interlayer insulating film 32 is performed by forming a silicon nitride film or a silicon oxide film by the CVD method after the formation of the gate electrode 26, as in the case of the first interlayer insulating film 31. Yes. Further, contact plugs 27 and 28 that penetrate the first interlayer insulating film 31 and the second interlayer insulating film 32 and are connected to the semiconductor region 22 or 24 are also formed. On the second interlayer insulating film 32, electrode patterns 29 and 30 connected to the contact plugs 27 or 28 are also formed!
  • FIG. 3 is a diagram showing the configuration of the optical sensor according to the embodiment of the present invention.
  • FIG. 3 (a) is a plan view
  • FIG. 3 (b) is a cut line ⁇ - ⁇ along FIG. 3 (a). It is sectional drawing cut
  • FIG. 4 is a plan view showing an example in which the wiring structure of the photosensor shown in FIG. 3 is different.
  • FIG. 5 is a circuit diagram of the photosensor shown in FIG. In FIG. 3, the hatching of the glass substrate 20 is omitted.
  • the optical sensor 1 includes three or more semiconductor regions and an intrinsic semiconductor region.
  • the optical sensor 1 includes five semiconductor regions, that is, p-type semiconductor regions (p layer) 2 to 4 and n-type semiconductor regions (n layer) 9 and 10. .
  • the optical sensor 1 includes four intrinsic semiconductor regions (i layers) 5 to 8.
  • the ⁇ layers 2 to 4, the i layers 5 to 8, and the n layers 9 and 10 are formed on the silicon film 11.
  • p layers 2-4, i layers 5-8, and n layers 9 and 10 are formed in a strip shape extending in the vertical direction of the drawing! Speak.
  • the p layers 2 to 4 and the n layers 9 and 10 formed in the silicon film 11 are arranged in rows along the surface of the silicon film 11, and the conductivity type of the adjacent semiconductor regions is the same. They are arranged so that they are opposite to each other. In other words, the p layer and the n layer are alternately arranged in a line along the horizontal direction of the drawing (a direction substantially perpendicular to the direction in which each layer extends). Further, the i layers 5 to 8 are disposed between the adjacent p layer and n layer so as to be in contact with them. In the present embodiment, the length Ll of the i layer 5, the length L2 of the i layer 6, the length L3 of the i layer 7, and the length L4 of the i layer 8 are all set to be the same. .
  • one PIN photodiode D1 is formed by the p layer 2, the i layer 5, and the n layer 9.
  • a PIN photodiode D2 is formed by ⁇ layer 3, i layer 6, and n layer 9, and a PIN photodiode D3 is formed by p layer 3, i layer 7, and n layer 10, and p layer 4, i layer 8
  • the n layer 10 forms a PIN photodiode D4.
  • the optical sensor 1 includes four PIN photodiodes. The PIN photodiodes D1 to D4 share the p layer or the n layer with the adjacent PIN photodiodes.
  • the silicon film 11 is formed on the glass substrate 20 that becomes the base substrate of the active matrix substrate 101 (see FIG. 1).
  • the silicon film 11 is formed simultaneously with the silicon film 25 by the formation process of the silicon film 25 (see FIG. 2) constituting the active element 21. Is formed.
  • the p layers 2 to 4 and the n layers 9 and 10 form the active element 21 (see FIG. 2) and the p-type or n-type semiconductor region of the horizontal drive circuit 104 and the vertical drive circuit 105 (see FIG. 1). It is formed using a process (ion implantation process).
  • the n layers 9 and 10 can be formed by the process (ion implantation process) of forming the semiconductor regions 22 and 24 of the active element 21 shown in FIG.
  • the optimum ion implantation for forming the n layers 9 and 10 is selected from these.
  • the i layers 5 to 8 may be formed so as to be electrically more neutral than the adjacent p layer and n layer.
  • the i layers 5 to 8 are formed so that the impurity concentration is lower than the impurity concentration of the adjacent P layer and n layer.
  • the i layers 5 to 8 can be formed by providing a mask in the formation region of the i layers 5 to 8 at the time of ion implantation, or when the formed silicon film is not electrically neutral. 8 can be formed by ion implantation in the formation region.
  • the rings 5 to 8 can be formed by a method of electrically neutralizing the region to be the i layers 5 to 8, and the forming method of the i layers 5 to 8 is limited to the above method. is not.
  • a first interlayer insulating film 12 and a second interlayer insulating film 13 are sequentially stacked on the upper surface of the optical sensor 1.
  • the first interlayer insulating film 12 and the second interlayer insulating film 13 are formed by using the step of forming the first interlayer insulating film 31 or the second interlayer insulating film 32 of the active element 21 shown in FIG. Done.
  • illustration of the first interlayer insulating film 12 and the second interlayer insulating film 13 is omitted.
  • the first interlayer insulating film 12 and the second interlayer insulating film 13 are formed with contact plugs 14a to 14c and contact plugs 15a and 15b penetrating therethrough.
  • the contact plugs 14a to 14c, 15a and 15b are formed by using the process of forming the contact plugs 27 and 28 of the active element 21 shown in FIG.
  • Contact plugs 14a-14c are connected to corresponding p layers 2-4.
  • the contact plugs 15a and 15b are connected to the corresponding n layers 9 and 10!
  • wirings 16 and 17 are formed on the second interlayer insulating film 13.
  • the wirings 16 and 17 are formed using the process of forming the electrode patterns 29 and 30 of the active element shown in FIG.
  • the wiring 16 includes a main wiring 16d and branch wirings 16a to 16c branched therefrom.
  • the branch wirings 16a to 16d are connected to contact plugs 14a to 14c connected to the p layer.
  • the main wiring 16d of the wiring 16 is electrically connected to all the P-type semiconductor regions (P layers 2 to 4). Therefore, all the currents generated from the PIN photodiodes D1 to D4 are output to the detection device 111 (see FIG. 1) via the wiring 16.
  • the wiring 17 also includes a main wiring 17c and branch wirings 17a and 17b branched therefrom.
  • Each of the branch wirings 17a and 17b is connected to contact plugs 15a and 15b connected to the n layer. Therefore, the main wiring 17c of the wiring 17 is electrically connected to all the n-type semiconductor regions (n layers 9 and 10). Wiring 17 is connected to the power supply potential V.
  • the reverse bias voltage is applied to the n layers 9 and 10.
  • the optical sensor 1 is configured such that the branch wirings 16a to 16c and the branch wirings 17a and 17b are extended in the width direction as compared with the example of FIG. You can also.
  • three contact plugs 14a to 14c, 15a and 15b are formed. Therefore, each of the branch wirings 16a to 16c is connected to the corresponding p layers 2 to 4 at three locations, and similarly, each of the branch wirings 17a and 17b is connected to the corresponding n layer 9 or 10 at three locations.
  • the contact resistance between the optical sensor 1 and the contact plugs 14a to 14c, 15a and 15b can be reduced.
  • the PIN photodiodes D1 to D4 included in the optical sensor 1 are connected in parallel by the wirings 16 and 17 shown in FIGS.
  • the current value I of the generated current I output from the entire photosensor 1 is generated by each of the PIN photodiodes D1 to D4.
  • the generated current I output from the optical sensor 1 includes the light
  • the current value of the generated current is the sum of the current value of the photocurrent and the current value of the dark current.
  • a plurality of i layers 5 to 8 are formed, and these i layers 5 to 8 are sandwiched between the p layer and the n layer. In a state, they are arranged in a line along a direction perpendicular to the width direction.
  • the i layers 5 to 8 are formed in a striped pattern, so that compared to a conventional optical sensor (see FIG. 9) having a PIN photodiode, A decrease in sensitivity can be suppressed.
  • the optical sensor 51 shown in FIG. 9 not only the shape of the i layer 53 but also the overall shape is an elongated shape. For this reason, the optical sensor 51 shown in FIG. 9 is likely to become an obstacle to other wiring and semiconductor elements laid out on the active matrix substrate, and it is difficult to lay out the optical sensor 51 on the active matrix substrate.
  • the optical sensor 1 in the present embodiment a sufficient generated current can be output without making the i layer elongated as in the prior art. For this reason, if the optical sensor 1 is used, the outer shape of the entire optical sensor 1 can be made into a square or a shape close thereto, and the layout can be made easier as compared with the conventional one.
  • FIG. 6 is a diagram showing an example in which mask displacement occurs in the optical sensor manufacturing process according to the embodiment of the present invention.
  • FIG. 6 (a) is a plan view
  • FIG. 6 (b) is FIG. a) Middle cutting line ⁇ —A cross-sectional view taken along the edge.
  • the length of the i layer 5 is L and the length L3 ′ of the i layer 7 is shorter than that in the example of FIG. 3 (Ll> Lr, L3> L3, i layer 5 and i layer 7 The current value of the generated generated current is reduced.
  • the light sensor 1 can output a sufficient generated current even when mask displacement occurs.
  • the “length of the i layer” refers to the distance from the boundary (interface) between the i layer and the adjacent p layer to the boundary (interface) between the i layer and the adjacent n layer.
  • the length of each i layer is particularly limited as long as it is set so as to output a sufficient generated current.
  • the length of each i layer is preferably set to 2.5 / zm or more and 10 / zm or less. If the length of each i layer exceeds 10 m, the generated current decreases but the dark current increases, so the sensitivity and dynamic range of the optical sensor 1 decrease. If the length is less than 2.5 m, the rate of change in dark current when the reverse bias voltage fluctuates increases, and this is a force that reduces the detection accuracy of the detection device 111 (see FIG. 1).
  • the length of each i layer when a CGS film is used is preferably set to 3 m or more and 7 m or less. In this case, the rate of change of the dark current when the reverse bias voltage fluctuates can be reduced, which can improve the detection accuracy of the detection device 111 (see FIG. 1). That's it.
  • the length of the i layer when using the CGS film is most preferably set based on the design rule of the active matrix substrate. For example, if the design rule of the active matrix substrate is 3 m, the length of the i layer when using the CGS film should be set to about 5 / ⁇ ⁇ to 6 / ⁇ ⁇ .
  • the width W of the i layers 5 to 8 is not particularly limited. Depending on the lengths L1 to L4 of the i layers 5 to 8 and the use environment of the display device Appropriate What is necessary is just to set so that a raw current can be output.
  • the electron mobility of the silicon film 11 is 200 [cm 2 Zvs] or more, in particular, 200
  • the lengths (length in the arrangement direction) of each of the p layers 2 to 4 and the n layers 9 and 10 are preferably as short as possible from the viewpoint of downsizing the optical sensor 1.
  • the length of each of the p layers 2-4 and n layers 9 and 10 must be set in consideration of the design rules of the active matrix substrate so that they can be connected to the contact plugs 14a to 14c, 15a and 15b. There is. For example, if the design rule of the active matrix substrate is 3 ⁇ m, the length of each of the p layers 2 to 4 and the n layers 9 and 10 should be about 15 ⁇ m.
  • the optical sensor is not limited to the example shown in FIG.
  • FIG. 7 is a cross-sectional view showing another example of the optical sensor of the present invention. Unlike the optical sensor 1 shown in FIG. 3, the optical sensor shown in FIG. 7 has an LDD structure.
  • the p layer and the n layer include a high concentration layer and a low concentration layer.
  • the p layer 2 includes high concentration p layers 2a and 2c and a low concentration p layer 2b.
  • the p layer 3 includes high concentration p layers 3a and 3c and a low concentration layer 3b
  • the p layer 4 includes high concentration p layers 4a and 4c and a low concentration layer 4b.
  • the n layer 9 includes high concentration n layers 9a and 9c and a low concentration n layer 9b
  • the n layer 10 includes high concentration n layers 10a and 10c and a low concentration n layer 10b.
  • the part denoted by the reference numeral shown in FIG. 3 is the same part as the part denoted by the same reference numeral in FIG.
  • the p layers 2 to 4 are formed into the high concentration p layers 2a to 4a and 2c to 4c after ion-implanting p-type impurities at a low concentration into the formation regions of the respective p layers It is formed by ion-implanting p-type impurities at a high concentration in the region.
  • the formation of the n layers 9 and 10 is the same.
  • the optical sensor shown in FIG. 7 has an LDD structure. For this reason, the energy level changes at the interface between the i layer 5-8 and the p layer and at the interface between the i layer 5-8 and the n layer can be made smoother. A current can be generated.
  • the optical sensor of the present invention may have an aspect in which the arrangement and shape of the p layer, i layer, and n layer are different from the example shown in FIG.
  • FIG. 8 is a plan view showing another example of the optical sensor of the present invention. In the example of FIG. 8, illustration of wiring is omitted.
  • the p layers 42 to 44 and the n layers 46 to 48 are arranged in rows and in two directions perpendicular to each other (X direction and Y direction). Conductive semiconductor regions are arranged next to each other.
  • the i layer 45 is formed along two directions (X direction and Y direction) perpendicular to each other, that is, in a lattice shape. Therefore, according to the example of FIG. 8, the i layer 45 is more than the example shown in FIG. Furthermore, a decrease in sensitivity to light from a specific direction can be suppressed.
  • the number of PIN photodiodes sharing a semiconductor region can be increased. Therefore, the current value of the generated current output from the optical sensor force can be improved. Also in the optical sensor 41 shown in FIG. 8, the ⁇ layers 42 to 44, the i layer 45, and the n layers 46 to 48 are formed on the silicon film 49, as in the f row of FIG. .
  • the semiconductor region and the intrinsic semiconductor region constituting the photosensor of the present invention are formed in a silicon film on a substrate.
  • the present invention is not limited to this example, and the semiconductor region and the intrinsic semiconductor region may be formed in a film other than the silicon film.
  • the semiconductor region and the intrinsic semiconductor region may be formed on various substrates such as a semiconductor substrate.
  • the optical sensor of the present invention may have a mode in which the semiconductor region and the intrinsic semiconductor region are formed on a silicon substrate constituting the IC chip.
  • the optical sensor of the present invention can be mounted on a display device such as a liquid crystal display device or an EL display device. Therefore, not only the photodiode of the present invention but also a display device equipped with the photodiode has industrial applicability.

Abstract

A light sensor (1) provided with semiconductor regions (2-4, 9, 10) formed on a silicon film (11) and intrinsic semiconductor regions (5-8) is used. The semiconductor regions (2-4, 9, 10) are arranged along the surface of the silicon film (11) in a row at intervals so that the adjacent semiconductor regions have opposite conductivity types. The intrinsic semiconductor regions (5-8) are arranged in contact with the adjacent semiconductor regions between the adjacent semiconductor regions. PIN photodiodes (D1-D4) are composed of the intrinsic semiconductor regions (5-8) and the adjacent semiconductor regions.

Description

明 細 書  Specification
光センサ及び表示装置  Optical sensor and display device
技術分野  Technical field
[0001] 本発明は、光センサ、及びそれを備えた表示装置に関する。  [0001] The present invention relates to an optical sensor and a display device including the same.
背景技術  Background art
[0002] 液晶表示装置に代表される表示装置の分野においては、周囲の光の強度に応じ て表示画面の輝度の調整を行うため、表示装置に光センサを搭載することが提案さ れている (例えば、特許文献 1及び特許文献 2参照。 )0透過型液晶表示装置に光セ ンサを搭載した場合は、屋外など明る 、環境下ではバックライトの光強度を高めるこ とができ、夜間や室内など比較的暗い環境下ではバックライトの光強度を低くすること ができる。このため、画面の視認性の向上や、液晶表示装置の低消費電力化及び長 寿命化が実現される。 [0002] In the field of display devices typified by liquid crystal display devices, it has been proposed to mount an optical sensor on the display device in order to adjust the brightness of the display screen in accordance with the intensity of ambient light. (For example, see Patent Document 1 and Patent Document 2.) 0 When a light sensor is mounted on a transmissive liquid crystal display device, the light intensity of the backlight can be increased in bright environments such as outdoors and in the environment. In a relatively dark environment such as indoors, the light intensity of the backlight can be reduced. For this reason, the visibility of the screen is improved, and the power consumption and life of the liquid crystal display device are reduced.
[0003] 例えば、液晶表示装置への光センサの搭載は、液晶表示パネルに、ディスクリート 部品の光センサを実装することによって行うことができる。また、近年においては、液 晶表示パネルを構成するアクティブマトリクス基板にモノリシックに光センサを形成す る試みもなされている(例えば、特許文献 3参照。 )0後者の場合、光センサは、ァクテ イブ素子 (TFT)や周辺回路の形成プロセスによって、これらと同時に、アクティブマト リクス基板のベースとなるガラス基板上に形成される。後者によれば、前者に比べ、 部品点数の削減による製造コストの低下や、表示装置の小型化を図ることができる。 [0003] For example, an optical sensor can be mounted on a liquid crystal display device by mounting an optical sensor of a discrete component on a liquid crystal display panel. In recent years, an attempt has been made to monolithically form an optical sensor on an active matrix substrate constituting a liquid crystal display panel (see, for example, Patent Document 3). 0 In the latter case, the optical sensor is an active sensor. It is formed on the glass substrate that becomes the base of the active matrix substrate at the same time by the process of forming the element (TFT) and peripheral circuits. According to the latter, the manufacturing cost can be reduced and the display device can be downsized by reducing the number of parts compared to the former.
[0004] 後者の場合の光センサとしては、例えば、 PINフォトダイオードが知られて 、る(例 えば、非特許文献 1参照。 ) oこの PINフォトダイオードは、いわゆるラテラル構造を備 えている。ここで、アクティブマトリクス基板にモノリシックに形成された PINフォトダイ オードについて図 9を用いて説明する。図 9は、従来からの PINフォトダイオードによ つて構成された光センサを示す平面図である。  [0004] As a photosensor in the latter case, for example, a PIN photodiode is known (for example, see Non-Patent Document 1). O This PIN photodiode has a so-called lateral structure. Here, the PIN photodiode formed monolithically on the active matrix substrate will be described with reference to FIG. FIG. 9 is a plan view showing an optical sensor constituted by a conventional PIN photodiode.
[0005] 図 9に示すように、光センサ 51は、シリコン膜 55に形成された p型の半導体領域 (p 層) 52、真性半導体領域 (i層) 53及び n型の半導体領域 (n層) 54を備えている。 p 層 52、 i層 53及び n層 54は、シリコン膜 55の面方向に沿って順に配置されている。シ リコン膜 55は、アクティブマトリクス基板のベースとなるガラス基板 60上に成膜されて いる。また、図 9において、 58及び 59は、電極パターンである。電極パターン 58は、 コンタクトプラグ 56を介して p層 52に接続されている。また、電極パターン 59は、コン タクトプラグ 57を介して n層 54に接続されている。 As shown in FIG. 9, the optical sensor 51 includes a p-type semiconductor region (p layer) 52, an intrinsic semiconductor region (i layer) 53, and an n-type semiconductor region (n layer) formed in a silicon film 55. ) 54. The p layer 52, the i layer 53, and the n layer 54 are sequentially arranged along the plane direction of the silicon film 55. Shi The recon film 55 is formed on the glass substrate 60 which is the base of the active matrix substrate. In FIG. 9, 58 and 59 are electrode patterns. Electrode pattern 58 is connected to p layer 52 via contact plug 56. The electrode pattern 59 is connected to the n layer 54 via a contact plug 57.
[0006] 図 9に示す光センサ 51は、アクティブマトリクス基板に形成されたアクティブ素子(図 示せず)や周辺回路の形成工程を利用して、これらと同時に形成されている。例えば 、シリコン膜 55は、アクティブ素子 (TFT)を構成するシリコン膜と共通の薄膜であり、 アクティブ素子を構成するシリコン膜の形成工程によって、これと同時に形成されて いる。 [0006] The optical sensor 51 shown in FIG. 9 is formed simultaneously with an active element (not shown) formed on the active matrix substrate and a peripheral circuit forming process. For example, the silicon film 55 is a thin film common to the silicon film constituting the active element (TFT), and is formed at the same time by the formation process of the silicon film constituting the active element.
[0007] シリコン膜としては、アモルファスシリコン膜、ポリシリコン膜、連続粒界結晶シリコン ( CGS : Continuous Grain Silicon)膜(例えば、特許文献 4参照)が挙げられる。このう ち、従来においてはアモルファスシリコン膜が主流であった力 近年は、アクティブ素 子の性能向上のために、アモルファスシリコン膜よりも電子の移動度の高いポリシリコ ン膜や、連続粒界結晶シリコン膜の利用が増カロしている。  Examples of the silicon film include an amorphous silicon film, a polysilicon film, and a continuous grain boundary crystal silicon (CGS) film (see, for example, Patent Document 4). Of these, the power that has been mainly used for amorphous silicon films in recent years.To improve the performance of active elements in recent years, polysilicon films with higher electron mobility than amorphous silicon films and continuous grain boundary crystalline silicon have been used. The use of membranes is increasing.
[0008] また、図 9に示す光センサ 51に適切な感度を付与するためには、十分な発生電流 が出力されるようにする必要がある。但し、 i層 53の長さ Lが一定値を超えると、発生 電流は逆に低下してしまう。このため、図 9に示す光センサでは、十分な発生電流が 出力されるように i層 53の幅 Wが設定される。  [0008] Further, in order to provide appropriate sensitivity to the optical sensor 51 shown in FIG. 9, it is necessary to output a sufficient generated current. However, if the length L of the i-layer 53 exceeds a certain value, the generated current decreases conversely. For this reason, in the optical sensor shown in FIG. 9, the width W of the i layer 53 is set so that a sufficient generated current is output.
特許文献 1:特開平 4— 174819号公報  Patent Document 1: Japanese Patent Laid-Open No. 4-174819
特許文献 2:特開平 5— 241512号公報  Patent Document 2: Japanese Patent Laid-Open No. 5-241512
特許文献 3:特開 2002— 175026号公報 (第 12図)  Patent Document 3: Japanese Patent Laid-Open No. 2002-175026 (Fig. 12)
特許文献 4 :特開 2001— 319878号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-319878
非特許文献 1 :タダ(N.Tada)他 6名「ァ タツチ パネル ファンクション インテグレー テッド LCD ユージング LTPS テクノロジ(A Touch Panel Function Integrated L CD Using LTPS Technology)」、レート ニュース ぺーパ(Late— News Paper) AMD 7— 4L、第 11回ディスプレイ国際ワークショップ(International Display Workshops 20 04) , 2004年、 p. 349 - 350  Non-Patent Document 1: N. Tada and 6 others “A Touch Panel Function Integrated LCD Using LTPS Technology”, Late—News Paper AMD 7—4L, 11th International Display Workshops (2004), 2004, p. 349-350
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0009] し力しながら、図 9に示す光センサ 51において十分な発生電流を出力できるように すると、 i層 53の幅 Wは長さ Lに比べて非常に大きくなり、 i層 53の形状は細長い形状 となってしまう。このため、図 9に示す光センサ 51においては、特定の方向からの光 に対する感度が低下するという問題が発生してしまう。  [0009] If a sufficient generated current can be output from the optical sensor 51 shown in FIG. 9 while the force is applied, the width W of the i layer 53 becomes very large compared to the length L, and the shape of the i layer 53 Becomes an elongated shape. Therefore, the optical sensor 51 shown in FIG. 9 has a problem that the sensitivity to light from a specific direction is lowered.
[0010] また、ポリシリコン膜や CGS膜は、電子の移動度がアモルファスシリコンよりも大きい 代わりに、光の吸収係数がアモルファスシリコンよりも小さいという特性がある。よって 、ポリシリコン膜や CGS膜を利用する場合は、アモルファスシリコン膜を利用する場合 よりも、 i層 53の幅 Wを更に大きくする必要があり、 i層 53は更に細長い形状となる。こ のため、ポリシリコン膜や CGS膜によって形成された光センサ 51においては、ァモル ファスシリコン膜によって形成された光センサ 51よりも、特定の方向からの光に対する 感度は更に低下する。  [0010] In addition, the polysilicon film and the CGS film have a characteristic that, although the electron mobility is larger than that of amorphous silicon, the light absorption coefficient is smaller than that of amorphous silicon. Therefore, when using a polysilicon film or a CGS film, it is necessary to further increase the width W of the i layer 53 than when using an amorphous silicon film, and the i layer 53 has a further elongated shape. For this reason, in the optical sensor 51 formed of a polysilicon film or a CGS film, the sensitivity to light from a specific direction is further reduced as compared with the optical sensor 51 formed of an amorphous silicon film.
[0011] 本発明の目的は、上記問題を解消し、特定の方向からの光に対する感度の低下を 抑制し得る光センサ、及びこれを備えた表示装置を提供することにある。  An object of the present invention is to provide an optical sensor that can solve the above-described problems and suppress a decrease in sensitivity to light from a specific direction, and a display device including the optical sensor.
課題を解決するための手段  Means for solving the problem
[0012] 上記目的を達成するために本発明における光センサは、基板又は薄膜に形成され た三以上の半導体領域及び真性半導体領域を備え、前記三以上の半導体領域は、 前記基板又は前記薄膜の表面に沿って列状に間隔を於いて、且つ、隣り合う半導体 領域の導電型が互いに逆の導電型となるように配置され、前記真性半導体領域は、 隣り合う半導体領域の間に、前記隣り合う半導体領域と接触するように配置され、前 記隣り合う半導体領域と共に PINフォトダイオードを形成していることを特徴とする。  In order to achieve the above object, an optical sensor according to the present invention includes three or more semiconductor regions and intrinsic semiconductor regions formed on a substrate or a thin film, and the three or more semiconductor regions are formed on the substrate or the thin film. The intrinsic semiconductor regions are arranged between the adjacent semiconductor regions, with the conductive types of adjacent semiconductor regions being opposite to each other at intervals in a row along the surface. The PIN photodiode is formed together with the adjacent semiconductor region, which is disposed so as to contact the matching semiconductor region.
[0013] また、上記目的を達成するため本発明における表示装置は、複数のアクティブ素子 が形成されたアクティブマトリクス基板と、周囲の光に反応して信号を出力する光セン サとを有する表示装置であって、前記光センサは、薄膜に形成された三以上の半導 体領域及び真性半導体領域を備え、前記薄膜は、前記アクティブマトリクス基板のベ ース基板上に形成され、前記三以上の半導体領域は、前記薄膜の表面に沿って列 状に間隔を於いて、且つ、隣り合う半導体領域の導電型が互いに逆の導電型となる ように配置され、前記真性半導体領域は、隣り合う半導体領域の間に、前記隣り合う 半導体領域と接触するように配置され、前記隣り合う半導体領域と共に PINフォトダイ オードを形成して ヽることを特徴とする。 In order to achieve the above object, a display device according to the present invention includes an active matrix substrate on which a plurality of active elements are formed, and a photosensor that outputs a signal in response to ambient light. The optical sensor includes three or more semiconductor regions and intrinsic semiconductor regions formed in a thin film, and the thin film is formed on a base substrate of the active matrix substrate, and the three or more semiconductor regions are formed. The semiconductor regions are arranged in a row along the surface of the thin film, and are arranged so that the conductivity types of adjacent semiconductor regions are opposite to each other, and the intrinsic semiconductor region is an adjacent semiconductor region Between areas, the adjacent It is disposed so as to be in contact with a semiconductor region, and a PIN photodiode is formed together with the adjacent semiconductor region.
[0014] 本発明にお ヽて、「真性半導体領域」は、隣接する第 1導電型の半導体領域および 第 2導電型の半導体領域に比べて電気的に中性に近い領域であれば良い。但し「 真性半導体領域」は、不純物を全く含まない領域や、伝導電子密度と正孔密度とが 等しい領域であるのが好ましい。また、本発明の表示装置は、アクティブマトリクス基 板を備える表示装置であれば良ぐ液晶表示装置のみならず、 EL表示装置であって も良い。 In the present invention, the “intrinsic semiconductor region” may be a region that is electrically neutral compared to the adjacent first conductivity type semiconductor region and second conductivity type semiconductor region. However, the “intrinsic semiconductor region” is preferably a region containing no impurities or a region where the conduction electron density and the hole density are equal. In addition, the display device of the present invention may be an EL display device as well as a liquid crystal display device as long as the display device includes an active matrix substrate.
発明の効果  The invention's effect
[0015] 以上のように、本発明の光センサにおいては、 p型の半導体領域と n型の半導体領 域とを交互に配列できるため、真性半導体領域は、例えば、縞状や格子状に形成さ れる。このため、本発明の光センサによれば、従来の PINフォトダイオードを備えた光 センサ(図 9参照)に比べて、特定の方向からの光に対する感度の低下を抑制できる 図面の簡単な説明  As described above, since the p-type semiconductor region and the n-type semiconductor region can be alternately arranged in the optical sensor of the present invention, the intrinsic semiconductor region is formed in, for example, a stripe shape or a lattice shape. It is done. For this reason, according to the optical sensor of the present invention, it is possible to suppress a decrease in sensitivity to light from a specific direction as compared with a conventional optical sensor including a PIN photodiode (see FIG. 9).
[0016] [図 1]図 1は、本発明の実施の形態における表示装置の概略構成を示す斜視図であ る。  FIG. 1 is a perspective view showing a schematic configuration of a display device according to an embodiment of the present invention.
[図 2]図 2は、図 1に示したアクティブマトリクス基板に形成されたアクティブ素子の構 成を示す断面図である。  FIG. 2 is a cross-sectional view showing the configuration of an active element formed on the active matrix substrate shown in FIG.
[図 3]図 3は、本発明の実施の形態における光センサの構成を示す図であり、図 3 (a) は平面図、図 3 (b)は図 3 (a)中の切断線 A— に沿って切断された断面図である。  FIG. 3 is a diagram showing the configuration of the photosensor according to the embodiment of the present invention. FIG. 3 (a) is a plan view, and FIG. 3 (b) is a section line A in FIG. 3 (a). FIG. 3 is a cross-sectional view taken along a line.
[図 4]図 4は、図 3に示した光センサの配線構造が異なる例を示す平面図である。  FIG. 4 is a plan view showing an example in which the wiring structure of the photosensor shown in FIG. 3 is different.
[図 5]図 5は、図 3に示す光センサの回路図である。  FIG. 5 is a circuit diagram of the photosensor shown in FIG. 3.
[図 6]図 6は、本発明の実施の形態における光センサの製造工程においてマスクずれ が生じた例を示す図であり、図 6 (a)は平面図、図 6 (b)は図 6 (a)中の切断線 B— に沿って切断された断面図である。  [FIG. 6] FIG. 6 is a diagram showing an example in which mask displacement occurs in the optical sensor manufacturing process according to the embodiment of the present invention. FIG. 6 (a) is a plan view, and FIG. 6 (b) is FIG. It is a sectional view cut along a cutting line B- in (a).
[図 7]図 7は、本発明の光センサの他の例を示す断面図である。  FIG. 7 is a cross-sectional view showing another example of the optical sensor of the present invention.
[図 8]図 8は、本発明の光センサの他の例を示す平面図である。 [図 9]図 9は、従来からの PINフォトダイオードによって構成された光センサを示す平 面図である。 FIG. 8 is a plan view showing another example of the optical sensor of the present invention. [FIG. 9] FIG. 9 is a plan view showing an optical sensor constituted by a conventional PIN photodiode.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明における光センサは、基板又は薄膜に形成された三以上の半導体領域及 び真性半導体領域を備え、前記三以上の半導体領域は、前記基板又は前記薄膜の 表面に沿って列状に間隔を於いて、且つ、隣り合う半導体領域の導電型が互いに逆 の導電型となるように配置され、前記真性半導体領域は、隣り合う半導体領域の間に 、前記隣り合う半導体領域と接触するように配置され、前記隣り合う半導体領域と共 に PINフォトダイオードを形成していることを特徴とする。  The optical sensor according to the present invention includes three or more semiconductor regions and intrinsic semiconductor regions formed on a substrate or a thin film, and the three or more semiconductor regions are arranged in a line along the surface of the substrate or the thin film. Are arranged so that the conductivity types of adjacent semiconductor regions are opposite to each other, and the intrinsic semiconductor region is in contact with the adjacent semiconductor region between adjacent semiconductor regions. The PIN photodiodes are formed together with the adjacent semiconductor regions.
[0018] 上記本発明における光センサにおいては、前記三以上の半導体領域のうちの一導 電型の全ての半導体領域と接続される第 1の配線と、前記三以上の半導体領域のう ちの前記一導電型とは逆の導電型の全ての半導体領域と接続される第 2の配線とを 、更に備えた態様とするのが好ましい。この場合、真性半導体領域と隣り合う半導体 領域とで形成された複数の PINフォトダイオードは、並列に接続されるため、光セン サ力 出力される発生電流の電流値を増大させることができる。  [0018] In the optical sensor according to the present invention, the first wiring connected to all the one-conductivity-type semiconductor regions among the three or more semiconductor regions, and the one of the three or more semiconductor regions described above. It is preferable that the second wiring connected to all the semiconductor regions having the conductivity type opposite to the one conductivity type is further provided. In this case, since the plurality of PIN photodiodes formed by the intrinsic semiconductor region and the adjacent semiconductor region are connected in parallel, the current value of the generated current output by the optical sensor force can be increased.
[0019] また、上記本発明における光センサにおいては、前記三以上の半導体領域及び前 記真性半導体領域が、シリコン膜に形成され、前記シリコン膜は、複数のアクティブ 素子を備えたアクティブマトリクス基板のベース基板上に成膜されている態様としても 良い。この場合、光センサはアクティブマトリクス基板にモノリシックに形成される。こ のため、アクティブマトリクス基板の部品点数を削減でき、本発明の光センサを搭載し た表示装置の製造コストの低下を図ることができる。  [0019] In the optical sensor of the present invention, the three or more semiconductor regions and the intrinsic semiconductor region are formed in a silicon film, and the silicon film is an active matrix substrate including a plurality of active elements. An embodiment in which a film is formed on the base substrate is also possible. In this case, the optical sensor is formed monolithically on the active matrix substrate. For this reason, the number of parts of the active matrix substrate can be reduced, and the manufacturing cost of the display device equipped with the photosensor of the present invention can be reduced.
[0020] また、本発明における表示装置は、複数のアクティブ素子が形成されたアクティブ マトリクス基板と、周囲の光に反応して信号を出力する光センサとを有する表示装置 であって、前記光センサは、薄膜に形成された三以上の半導体領域及び真性半導 体領域を備え、前記薄膜は、前記アクティブマトリクス基板のベース基板上に形成さ れ、前記三以上の半導体領域は、前記薄膜の表面に沿って列状に間隔を於いて、 且つ、隣り合う半導体領域の導電型が互いに逆の導電型となるように配置され、前記 真性半導体領域は、隣り合う半導体領域の間に、前記隣り合う半導体領域と接触す るように配置され、前記隣り合う半導体領域と共に PINフォトダイオードを形成してい ることを特徴とする。 The display device according to the present invention is a display device having an active matrix substrate on which a plurality of active elements are formed, and an optical sensor that outputs a signal in response to ambient light. Comprises three or more semiconductor regions and intrinsic semiconductor regions formed in a thin film, the thin film is formed on a base substrate of the active matrix substrate, and the three or more semiconductor regions are formed on a surface of the thin film. Are arranged so that the conductivity types of adjacent semiconductor regions are opposite to each other, and the intrinsic semiconductor regions are adjacent to each other between adjacent semiconductor regions. In contact with the semiconductor region The PIN photodiode is formed together with the adjacent semiconductor regions.
[0021] (実施の形態)  [0021] (Embodiment)
以下、本発明の実施の形態における光センサ及び表示装置について、図 1〜図 8 を参照しながら説明する。最初に、本実施の形態における表示装置の全体構成につ いて図 1を用いて説明する。図 1は、本発明の実施の形態における表示装置の概略 構成を示す斜視図である。  Hereinafter, an optical sensor and a display device according to an embodiment of the present invention will be described with reference to FIGS. First, the overall structure of the display device in this embodiment will be described with reference to FIG. FIG. 1 is a perspective view showing a schematic configuration of a display device according to an embodiment of the present invention.
[0022] 図 1に示すように、本実施の形態において、表示装置は液晶表示装置である。表示 装置は、アクティブマトリクス基板 101と対向基板 103との間に液晶層 102を挟みこん で形成した液晶表示パネルと、ノ ックライト 110とを備えている。ノ ックライト 110は、 液晶表示パネルをアクティブマトリクス基板 101側力も照明している。  As shown in FIG. 1, in the present embodiment, the display device is a liquid crystal display device. The display device includes a liquid crystal display panel in which a liquid crystal layer 102 is sandwiched between an active matrix substrate 101 and a counter substrate 103, and a knock light 110. The knock light 110 illuminates the liquid crystal display panel also with the active matrix substrate 101 side force.
[0023] アクティブマトリクス基板 101にお 、て液晶層 102と接触する領域は表示領域であ る。表示領域には、図 1においては図示しないが、アクティブ素子と画素電極とを備 えた複数の画素がマトリクス状に形成されて 、る。アクティブ素子の構成にっ 、ては、 図 2を用いて後述する。  [0023] In the active matrix substrate 101, a region in contact with the liquid crystal layer 102 is a display region. In the display area, although not shown in FIG. 1, a plurality of pixels each having an active element and a pixel electrode are formed in a matrix. The configuration of the active element will be described later with reference to FIG.
[0024] また、外光の強度を検出するため、アクティブマトリクス基板 101の表示領域の周辺 の領域 (以下、「周辺領域」という。)には、本実施の形態における光センサ 1が設けら れている。光センサ 1は、外光の強度に応じた大きさの電流 (発生電流)を、同じく周 辺領域に設けられた検出装置 111へと出力している。  In addition, in order to detect the intensity of external light, the area around the display area of the active matrix substrate 101 (hereinafter referred to as “peripheral area”) is provided with the optical sensor 1 in the present embodiment. ing. The optical sensor 1 outputs a current (generated current) having a magnitude corresponding to the intensity of external light to the detection device 111 that is also provided in the peripheral region.
[0025] 検出装置 111は、容量を備えており、光センサが出力した発生電流を容量に蓄電 して電圧信号を発生させる。また、本実施の形態においては、検出装置 111は、この 電圧信号の電位を参照電位と比較し、電圧信号の電位の準位を特定するデジタル 信号を生成する。このデジタル信号は、バックライト 110の制御装置(図示せず)に入 力され、外光の強度に応じてバックライト 110の輝度が調節される。なお、図 1に示す 液晶表示装置が、例えば、携帯電話等のモパイル機器に搭載される場合は、 4〜5 段階程度の参照電位が設定される。また、この場合に、検出装置 111が出力するデ ジタル信号は 2ビット以上である。  [0025] The detection device 111 has a capacity, and generates a voltage signal by accumulating the generated current output from the optical sensor in the capacity. In the present embodiment, the detection device 111 compares the potential of the voltage signal with a reference potential, and generates a digital signal that specifies the level of the potential of the voltage signal. This digital signal is input to a control device (not shown) of the backlight 110, and the brightness of the backlight 110 is adjusted according to the intensity of external light. When the liquid crystal display device shown in FIG. 1 is mounted on a mopile device such as a mobile phone, for example, reference potentials of about 4 to 5 steps are set. In this case, the digital signal output from the detection device 111 is 2 bits or more.
[0026] また、本実施の形態においては、光センサ 1は、後述の図 3に示すように、ァクティ ブマトリクス基板 101のベース基板 (ガラス基板)上にモノリシックに形成されている。 更に、検出装置 111もベース基板上にモノリシックに形成されている。本発明におい て、「ガラス基板上にモノリシックに形成される」とは、物理的プロセスおよび zまたは 化学的プロセスにより、ガラス基板上に直接に素子が形成されることを意味し、半導 体回路がガラス基板に実装されることを含まない意である。 [0026] In the present embodiment, the optical sensor 1 includes an active sensor as shown in FIG. It is formed monolithically on the base substrate (glass substrate) of the submatrix substrate 101. Further, the detection device 111 is also monolithically formed on the base substrate. In the present invention, “monolithically formed on a glass substrate” means that a device is formed directly on a glass substrate by a physical process and a z or chemical process, and a semiconductor circuit. Does not include being mounted on a glass substrate.
[0027] 更に、アクティブマトリクス基板 101の周辺領域には、水平駆動回路 (ソースドライバ ) 104と垂直駆動回路 (ゲートドライバ) 105も備えられている。水平駆動回路 104又 は垂直駆動回路 105を構成する半導体素子も、アクティブマトリクス基板 101のべ一 ス基板 (ガラス基板)上にモノリシックに形成されて 、る。  Furthermore, a horizontal drive circuit (source driver) 104 and a vertical drive circuit (gate driver) 105 are also provided in the peripheral region of the active matrix substrate 101. The semiconductor elements constituting the horizontal drive circuit 104 or the vertical drive circuit 105 are also monolithically formed on the base substrate (glass substrate) of the active matrix substrate 101.
[0028] また、アクティブマトリクス基板 101には、 FPC106を介して外部基板 107が接続さ れている。外部基板 107には、 ICチップ 108及び ICチップ 109が実装されている。 I Cチップ 109は、表示装置内部で使用される電源電圧を発生させる基準電源回路を 備えている。 ICチップ 108は、水平駆動回路 104及び垂直駆動回路 105の制御を 行うための制御回路を備えている。本実施の形態 1において、外部基板 107には、 I Cチップ 108及び ICチップ 109以外の ICチップを実装することもできる。  Further, an external substrate 107 is connected to the active matrix substrate 101 via an FPC 106. An IC chip 108 and an IC chip 109 are mounted on the external substrate 107. The IC chip 109 includes a reference power supply circuit that generates a power supply voltage used inside the display device. The IC chip 108 includes a control circuit for controlling the horizontal drive circuit 104 and the vertical drive circuit 105. In the first embodiment, an IC chip other than the IC chip 108 and the IC chip 109 can be mounted on the external substrate 107.
[0029] ここで、図 2を用いてアクティブ素子の構成について説明する。図 2は、図 1に示し たアクティブマトリクス基板に形成されたアクティブ素子の構成を示す断面図である。 図 2に示すように、アクティブ素子 21は、ガラス基板 20上に形成されたシリコン膜 25 と、その上層に配置されたゲート電極 26とを備えている。ガラス基板 20は、アクティブ マトリクス基板 101 (図 1参照)のベース基板である。図 2において、ガラス基板 20に つ!ヽてはハッチングを省略して 、る。  Here, the configuration of the active element will be described with reference to FIG. FIG. 2 is a cross-sectional view showing the configuration of active elements formed on the active matrix substrate shown in FIG. As shown in FIG. 2, the active element 21 includes a silicon film 25 formed on the glass substrate 20 and a gate electrode 26 disposed on the upper layer. The glass substrate 20 is a base substrate of the active matrix substrate 101 (see FIG. 1). In Fig. 2, 20 glass substrates! Don't forget hatching.
[0030] また、図 2に示すアクティブ素子 21は n型の TFTである。シリコン膜 25には、 TFT のソース又はドレインとなる n型の半導体領域 22及び 24が形成されて!、る。 n型の半 導体領域 22及び 24の形成は、リン (P)ゃヒ素 (As) t 、つた n型の不純物のイオン注 入によって行われている。 23は、 TFTのチャネルとなるチャネル領域を示している。  Further, the active element 21 shown in FIG. 2 is an n-type TFT. In the silicon film 25, n-type semiconductor regions 22 and 24 which are the source or drain of the TFT are formed. The n-type semiconductor regions 22 and 24 are formed by ion implantation of phosphorus (P) arsenic (As) t and other n-type impurities. Reference numeral 23 denotes a channel region serving as a TFT channel.
[0031] また、シリコン膜 25は、アモルファスシリコン膜や、ポリシリコン膜、連続粒界結晶シ リコン (CGS)膜等によって形成できる。但し、本実施の形態においては、上述したよ うに、検出装置 111、水平駆動回路 104、及び垂直駆動回路 105をアクティブマトリ タス基板 101にモノリシックに形成する。このため、電子の移動度の点から、シリコン 膜 25はポリシリコン膜や CGS膜によって形成するのが好ましぐ特には、電子の移動 度が最も高 、CGS膜によって形成するのが好ま 、。 [0031] The silicon film 25 can be formed of an amorphous silicon film, a polysilicon film, a continuous grain boundary crystal silicon (CGS) film, or the like. However, in this embodiment, as described above, the detection device 111, the horizontal drive circuit 104, and the vertical drive circuit 105 are connected to the active matrix. It is formed monolithically on the task substrate 101. Therefore, from the viewpoint of electron mobility, the silicon film 25 is preferably formed of a polysilicon film or a CGS film. In particular, it is preferable that the silicon film 25 is formed of a CGS film because it has the highest electron mobility.
[0032] CGS膜を用いたシリコン膜 25の形成は、例えば、以下のようにして行うことができる 。先ず、ガラス基板 20上に酸ィ匕シリコン膜とアモルファスシリコン膜とを順に成膜する 。次に、アモルファスシリコン膜の表層に、結晶化促進の触媒となるニッケル薄膜を形 成する。次に、加熱によって、ニッケル薄膜とアモルファスシリコン膜とを反応させ、こ れらの界面に結晶シリコン層を形成する。その後、エッチング等によって、未反応の ニッケル膜と珪ィ匕ニッケルの層を除去する。次に、残ったシリコン膜にァニールを行つ て結晶化を進展させると、 CGS膜が得られる。その後、フォトリソグラフィ法によるレジ ストパターンの形成、及びレジストパターンをマスクとしたエッチングの実施によって、 CGS膜をパターニングすると、図 2に示すシリコン膜 25が得られる。  The formation of the silicon film 25 using the CGS film can be performed as follows, for example. First, an oxide silicon film and an amorphous silicon film are sequentially formed on the glass substrate 20. Next, a nickel thin film serving as a catalyst for promoting crystallization is formed on the surface of the amorphous silicon film. Next, the nickel thin film and the amorphous silicon film are reacted by heating to form a crystalline silicon layer at these interfaces. Thereafter, the unreacted nickel film and the silicon-nickel layer are removed by etching or the like. Next, annealing is performed on the remaining silicon film to advance crystallization, and a CGS film is obtained. Thereafter, by patterning the CGS film by forming a resist pattern by photolithography and performing etching using the resist pattern as a mask, a silicon film 25 shown in FIG. 2 is obtained.
[0033] また、図 2に示すように、ゲート電極 26とシリコン膜 25との間には、第 1の層間絶縁 膜 31が形成されている。第 1の層間絶縁膜 31のゲート電極 26の直下にある部分は 、ゲート絶縁膜として機能する。図 2の例では、第 1の層間絶縁膜 31の形成は、シリコ ン膜 25の形成後に、 CVD法によってシリコン窒化膜やシリコン酸ィ匕膜を成膜すること によって行われる。また、ゲート電極 26の形成は、第 1の層間絶縁膜 31の上に CVD 法等によってシリコン膜等の導電膜を成膜した後、フォトリソグラフィ法によるレジスト パターンの形成、レジストパターンをマスクとしたエッチングを実施することによって行 われる。  Further, as shown in FIG. 2, a first interlayer insulating film 31 is formed between the gate electrode 26 and the silicon film 25. The portion of the first interlayer insulating film 31 immediately below the gate electrode 26 functions as a gate insulating film. In the example of FIG. 2, the formation of the first interlayer insulating film 31 is performed by forming a silicon nitride film or a silicon oxide film by the CVD method after the silicon film 25 is formed. The gate electrode 26 is formed by forming a conductive film such as a silicon film on the first interlayer insulating film 31 by a CVD method or the like, and then forming a resist pattern by a photolithography method or using the resist pattern as a mask. This is done by performing an etching.
[0034] 第 1の層間絶縁膜 31の上には、ゲート電極 26を被覆するように第 2の層間絶縁膜 3 2が形成されている。第 2の層間絶縁膜 32の形成は、ゲート電極 26の形成後に、第 1 の層間絶縁膜 31と同様に、 CVD法によってシリコン窒化膜やシリコン酸ィ匕膜を成膜 することによって行われている。更に、第 1の層間絶縁膜 31及び第 2の層間絶縁膜 3 2を貫通し、半導体領域 22又は 24に接続されるコンタクトプラグ 27及び 28も形成さ れている。第 2の層間絶縁膜 32の上には、コンタクトプラグ 27又は 28に接続される電 極パターン 29及び 30も形成されて!、る。  A second interlayer insulating film 32 is formed on the first interlayer insulating film 31 so as to cover the gate electrode 26. The formation of the second interlayer insulating film 32 is performed by forming a silicon nitride film or a silicon oxide film by the CVD method after the formation of the gate electrode 26, as in the case of the first interlayer insulating film 31. Yes. Further, contact plugs 27 and 28 that penetrate the first interlayer insulating film 31 and the second interlayer insulating film 32 and are connected to the semiconductor region 22 or 24 are also formed. On the second interlayer insulating film 32, electrode patterns 29 and 30 connected to the contact plugs 27 or 28 are also formed!
[0035] 次に、図 1に示した光センサ 1の具体的構成について図 3〜図 5を用いて説明する 。図 3は、本発明の実施の形態における光センサの構成を示す図であり、図 3 (a)は 平面図、図 3 (b)は図 3 (a)中の切断線 Α—ΑΊこ沿って切断された断面図である。図 4は、図 3に示した光センサの配線構造が異なる例を示す平面図である。図 5は、図 3 に示す光センサの回路図である。なお、図 3においても、ガラス基板 20についてはハ ツチングを省略している。 Next, a specific configuration of the optical sensor 1 shown in FIG. 1 will be described with reference to FIGS. . FIG. 3 is a diagram showing the configuration of the optical sensor according to the embodiment of the present invention. FIG. 3 (a) is a plan view, and FIG. 3 (b) is a cut line Α-ΑΊ along FIG. 3 (a). It is sectional drawing cut | disconnected by. FIG. 4 is a plan view showing an example in which the wiring structure of the photosensor shown in FIG. 3 is different. FIG. 5 is a circuit diagram of the photosensor shown in FIG. In FIG. 3, the hatching of the glass substrate 20 is omitted.
[0036] 図 3 (a)及び (b)に示すように、光センサ 1は、三以上の半導体領域と、真性半導体 領域とを備えている。本実施の形態においては、光センサ 1は、五つの半導体領域、 即ち、 p型の半導体領域 (p層) 2〜4と、 n型の半導体領域 (n層) 9及び 10とを備えて いる。また、光センサ 1は、四つの真性半導体領域 (i層) 5〜8を備えている。本実施 の形態では、 ρ層 2〜4、 i層 5〜8、 n層 9及び 10は、シリコン膜 11に形成されている。 また、図 3 (a)に示すように、 p層 2〜4、 i層 5〜8、 n層 9及び 10は、図面の縦方向に 延びる短冊状に形成されて!ヽる。  [0036] As shown in FIGS. 3A and 3B, the optical sensor 1 includes three or more semiconductor regions and an intrinsic semiconductor region. In the present embodiment, the optical sensor 1 includes five semiconductor regions, that is, p-type semiconductor regions (p layer) 2 to 4 and n-type semiconductor regions (n layer) 9 and 10. . The optical sensor 1 includes four intrinsic semiconductor regions (i layers) 5 to 8. In the present embodiment, the ρ layers 2 to 4, the i layers 5 to 8, and the n layers 9 and 10 are formed on the silicon film 11. As shown in FIG. 3 (a), p layers 2-4, i layers 5-8, and n layers 9 and 10 are formed in a strip shape extending in the vertical direction of the drawing! Speak.
[0037] また、シリコン膜 11に形成された p層 2〜4と n層 9及び 10は、シリコン膜 11の表面 に沿って列状に、間隔を於いて、隣り合う半導体領域の導電型が互いに逆となるよう に配置されている。言い換えると、 p層と n層とは、互いに交互に、図面の横方向(各 層が延びる方向に対して略垂直な方向)に沿って一列に並ぶように配置されて 、る。 更に、 i層 5〜8は、隣り合う p層と n層との間に、これらと接触するように配置されている 。なお、本実施の形態において、 i層 5の長さ Ll、 i層 6の長さ L2、 i層 7の長さ L3、及 び i層 8の長さ L4は、全て同一に設定されている。  In addition, the p layers 2 to 4 and the n layers 9 and 10 formed in the silicon film 11 are arranged in rows along the surface of the silicon film 11, and the conductivity type of the adjacent semiconductor regions is the same. They are arranged so that they are opposite to each other. In other words, the p layer and the n layer are alternately arranged in a line along the horizontal direction of the drawing (a direction substantially perpendicular to the direction in which each layer extends). Further, the i layers 5 to 8 are disposed between the adjacent p layer and n layer so as to be in contact with them. In the present embodiment, the length Ll of the i layer 5, the length L2 of the i layer 6, the length L3 of the i layer 7, and the length L4 of the i layer 8 are all set to be the same. .
[0038] このため、 p層 2、 i層 5、 n層 9によって、一つの PINフォトダイオード D1が形成され ている。同様に、 ρ層 3、 i層 6、 n層 9によって PINフォトダイオード D2が形成され、 p層 3、 i層 7、 n層 10によって PINフォトダイオード D3が形成され、 p層 4、 i層 8、 n層 10に よって PINフォトダイオード D4が形成されている。本実施の形態において、光センサ 1は、四つの PINフォトダイオードを備えている。また、 PINフォトダイオード D1〜D4 は、隣り合う PINフォトダイオードと p層又は n層を共有して 、る。  [0038] For this reason, one PIN photodiode D1 is formed by the p layer 2, the i layer 5, and the n layer 9. Similarly, a PIN photodiode D2 is formed by ρ layer 3, i layer 6, and n layer 9, and a PIN photodiode D3 is formed by p layer 3, i layer 7, and n layer 10, and p layer 4, i layer 8 The n layer 10 forms a PIN photodiode D4. In the present embodiment, the optical sensor 1 includes four PIN photodiodes. The PIN photodiodes D1 to D4 share the p layer or the n layer with the adjacent PIN photodiodes.
[0039] 本実施の形態において、シリコン膜 11は、アクティブマトリクス基板 101 (図 1参照) のベース基板となるガラス基板 20上に形成されている。シリコン膜 11は、アクティブ 素子 21を構成するシリコン膜 25 (図 2参照)の形成工程により、シリコン膜 25と同時 に形成されている。また、 p層 2〜4、 n層 9及び 10は、アクティブ素子 21 (図 2参照) や、水平駆動回路 104及び垂直駆動回路 105 (図 1参照)の p型又は n型の半導体 領域の形成工程 (イオン注入工程)を利用して形成されて 、る。 In the present embodiment, the silicon film 11 is formed on the glass substrate 20 that becomes the base substrate of the active matrix substrate 101 (see FIG. 1). The silicon film 11 is formed simultaneously with the silicon film 25 by the formation process of the silicon film 25 (see FIG. 2) constituting the active element 21. Is formed. The p layers 2 to 4 and the n layers 9 and 10 form the active element 21 (see FIG. 2) and the p-type or n-type semiconductor region of the horizontal drive circuit 104 and the vertical drive circuit 105 (see FIG. 1). It is formed using a process (ion implantation process).
[0040] 例えば、 n層 9及び 10は、図 2に示したアクティブ素子 21の半導体領域 22及び 24 の形成工程 (イオン注入工程)によって形成できる。アクティブ素子 21の半導体領域 22及び 24が、注入条件の異なる複数回のイオン注入によって行われる場合は、この 中から、 n層 9及び 10の形成に最適なイオン注入が選択される。  For example, the n layers 9 and 10 can be formed by the process (ion implantation process) of forming the semiconductor regions 22 and 24 of the active element 21 shown in FIG. In the case where the semiconductor regions 22 and 24 of the active element 21 are performed by a plurality of ion implantations under different implantation conditions, the optimum ion implantation for forming the n layers 9 and 10 is selected from these.
[0041] i層 5〜8は、それぞれが隣接する p層及び n層よりも電気的に中性に近くなるように 形成されていれば良い。本実施の形態では、 i層 5〜8は、その不純物濃度が、隣接 する P層及び n層の不純物濃度より薄くなるように形成されている。例えば、 i層 5〜8 は、イオン注入時に i層 5〜8の形成領域にマスクを設けることによって、又は、成膜さ れたシリコン膜が電気的に中性でない場合は、 i層 5〜8の形成領域にイオン注入を 行うことによって形成できる。また、イオン注入を行う場合は、アクティブ素子 21や、水 平駆動回路 104、垂直駆動回路 105の形成時に行われるイオン注入工程の中から、 最適な条件のものを選択し、それを利用できる。但し、環 5〜8は、 i層 5〜8となる領 域を電気的に中性にする方法によれば形成でき、 i層 5〜8の形成方法は上記の方 法に限定されるものではない。  [0041] The i layers 5 to 8 may be formed so as to be electrically more neutral than the adjacent p layer and n layer. In the present embodiment, the i layers 5 to 8 are formed so that the impurity concentration is lower than the impurity concentration of the adjacent P layer and n layer. For example, the i layers 5 to 8 can be formed by providing a mask in the formation region of the i layers 5 to 8 at the time of ion implantation, or when the formed silicon film is not electrically neutral. 8 can be formed by ion implantation in the formation region. Further, when ion implantation is performed, an optimum condition can be selected from the ion implantation steps performed at the time of forming the active element 21, the horizontal driving circuit 104, and the vertical driving circuit 105, and can be used. However, the rings 5 to 8 can be formed by a method of electrically neutralizing the region to be the i layers 5 to 8, and the forming method of the i layers 5 to 8 is limited to the above method. is not.
[0042] また、図 3 (b)に示すように、光センサ 1の上面には、第 1の層間絶縁膜 12と第 2の 層間絶縁膜 13とが順に積層されている。第 1の層間絶縁膜 12及び第 2の層間絶縁 膜 13の形成は、図 2に示したアクティブ素子 21の第 1の層間絶縁膜 31又は第 2の層 間絶縁膜 32の形成工程を用いて行われる。なお、図 3 (a)においては、第 1の層間 絶縁膜 12及び第 2の層間絶縁膜 13の図示を省略して 、る。  Further, as shown in FIG. 3B, a first interlayer insulating film 12 and a second interlayer insulating film 13 are sequentially stacked on the upper surface of the optical sensor 1. The first interlayer insulating film 12 and the second interlayer insulating film 13 are formed by using the step of forming the first interlayer insulating film 31 or the second interlayer insulating film 32 of the active element 21 shown in FIG. Done. In FIG. 3A, illustration of the first interlayer insulating film 12 and the second interlayer insulating film 13 is omitted.
[0043] 更に、第 1の層間絶縁膜 12及び第 2の層間絶縁膜 13には、これらを貫通するコン タクトプラグ 14a〜14cとコンタクトプラグ 15a及び 15bとが形成されている。コンタクト プラグ 14a〜14c、 15a及び 15bの形成は、図 2に示したアクティブ素子 21のコンタク トプラグ 27及び 28の形成工程を用いて行われている。コンタクトプラグ 14a〜14cは 、対応する p層 2〜4に接続されている。コンタクトプラグ 15a及び 15bは、対応する n 層 9及び 10に接続されて!ヽる。 [0044] また、第 2の層間絶縁膜 13の上には、配線 16及び 17が形成されている。配線 16 及び 17の形成は、図 2に示したアクティブ素子の電極パターン 29及び 30の形成ェ 程を用いて行われている。配線 16は、主配線 16dと、それから分岐した分岐配線 16 a〜16cを備えている。また、分岐配線 16a〜16dそれぞれは、 p層に接続されたコン タクトプラグ 14a〜 14cに接続されている。このため、配線 16の主配線 16dは、全て の P型の半導体領域 (P層 2〜4)に電気的に接続される。よって、 PINフォトダイォー ド D1〜D4からの発生電流は、全て配線 16を介して検出装置 111 (図 1参照)へと出 力される。 Furthermore, the first interlayer insulating film 12 and the second interlayer insulating film 13 are formed with contact plugs 14a to 14c and contact plugs 15a and 15b penetrating therethrough. The contact plugs 14a to 14c, 15a and 15b are formed by using the process of forming the contact plugs 27 and 28 of the active element 21 shown in FIG. Contact plugs 14a-14c are connected to corresponding p layers 2-4. The contact plugs 15a and 15b are connected to the corresponding n layers 9 and 10! In addition, wirings 16 and 17 are formed on the second interlayer insulating film 13. The wirings 16 and 17 are formed using the process of forming the electrode patterns 29 and 30 of the active element shown in FIG. The wiring 16 includes a main wiring 16d and branch wirings 16a to 16c branched therefrom. The branch wirings 16a to 16d are connected to contact plugs 14a to 14c connected to the p layer. For this reason, the main wiring 16d of the wiring 16 is electrically connected to all the P-type semiconductor regions (P layers 2 to 4). Therefore, all the currents generated from the PIN photodiodes D1 to D4 are output to the detection device 111 (see FIG. 1) via the wiring 16.
[0045] 同様に、配線 17も、主配線 17cと、それから分岐した分岐配線 17a及び 17bとを備 えている。分岐配線 17a及び 17bそれぞれは、 n層に接続されたコンタクトプラグ 15a 及び 15bに接続されている。このため、配線 17の主配線 17cは、全ての n型の半導 体領域 (n層 9及び 10)に電気的に接続される。また、配線 17は、電源電位 V に接  Similarly, the wiring 17 also includes a main wiring 17c and branch wirings 17a and 17b branched therefrom. Each of the branch wirings 17a and 17b is connected to contact plugs 15a and 15b connected to the n layer. Therefore, the main wiring 17c of the wiring 17 is electrically connected to all the n-type semiconductor regions (n layers 9 and 10). Wiring 17 is connected to the power supply potential V.
DD  DD
続されており、 n層 9及び 10には逆バイアス電圧が印加される。  The reverse bias voltage is applied to the n layers 9 and 10.
[0046] また、図 4に示すように、光センサ 1は、分岐配線 16a〜16c、分岐配線 17a及び 17 bが、図 3の例に比べて、幅方向に延長されている態様とすることもできる。この態様 においては、コンタクトプラグ 14a〜14c、 15a及び 15bは、それぞれ三つずつ形成さ れる。よって、分岐配線 16a〜16cそれぞれは対応する p層 2〜4に三個所で接続さ れ、同様に、分岐配線 17a及び 17bそれぞれも対応する n層 9又は 10に三箇所で接 続される。 Further, as shown in FIG. 4, the optical sensor 1 is configured such that the branch wirings 16a to 16c and the branch wirings 17a and 17b are extended in the width direction as compared with the example of FIG. You can also. In this embodiment, three contact plugs 14a to 14c, 15a and 15b are formed. Therefore, each of the branch wirings 16a to 16c is connected to the corresponding p layers 2 to 4 at three locations, and similarly, each of the branch wirings 17a and 17b is connected to the corresponding n layer 9 or 10 at three locations.
[0047] よって、図 4に示す構成とすれば、 n層 9及び 10においては、層全体に均一に電源 電位 V が印加され、 p層 2〜4においては、層全体から電流 I が出力される。また、 Therefore, with the configuration shown in FIG. 4, in n layers 9 and 10, power supply potential V is applied uniformly to the entire layer, and in p layers 2 to 4, current I is output from the entire layer. The Also,
DD PH DD PH
図 4に示す構成とすれば、光センサ 1と、コンタクトプラグ 14a〜14c、 15a及び 15bと のコンタクト抵抗を低下させることができる。  With the configuration shown in FIG. 4, the contact resistance between the optical sensor 1 and the contact plugs 14a to 14c, 15a and 15b can be reduced.
[0048] また、図 3及び図 4に示した配線 16及び 17により、図 5に示すように、光センサ 1が 備える PINフォトダイオード D1〜D4は並列に接続される。この場合、光センサ 1全体 が出力する発生電流 I の電流値は、 PINフォトダイオード D1〜D4それぞれの発生  Further, as shown in FIG. 5, the PIN photodiodes D1 to D4 included in the optical sensor 1 are connected in parallel by the wirings 16 and 17 shown in FIGS. In this case, the current value I of the generated current I output from the entire photosensor 1 is generated by each of the PIN photodiodes D1 to D4.
PH  PH
電流の電流値の総和に相当する。なお、光センサ 1が出力する発生電流 I には、光  This corresponds to the sum of current values. Note that the generated current I output from the optical sensor 1 includes the light
PH  PH
の入射のみに起因する光電流のみならず、暗電流も含まれている。よって、実際には 、発生電流の電流値は、光電流の電流値と暗電流の電流値との和になっている。 In addition to the photocurrent caused only by the incident light, dark current is also included. So actually The current value of the generated current is the sum of the current value of the photocurrent and the current value of the dark current.
[0049] 以上のように、本実施の形態における光センサ 1においては、複数の i層 5〜8が形 成され、更に、これら i層 5〜8は p層と n層とで挟まれた状態で、幅方向に垂直な方向 に沿って一列に配置される。つまり、本実施の形態においては、 i層 5〜8は縞状に形 成されるため、従来の PINフォトダイオードを備えた光センサ(図 9参照)に比べて、 特定の方向からの光に対する感度の低下を抑制できる。  [0049] As described above, in the optical sensor 1 according to the present embodiment, a plurality of i layers 5 to 8 are formed, and these i layers 5 to 8 are sandwiched between the p layer and the n layer. In a state, they are arranged in a line along a direction perpendicular to the width direction. In other words, in this embodiment, the i layers 5 to 8 are formed in a striped pattern, so that compared to a conventional optical sensor (see FIG. 9) having a PIN photodiode, A decrease in sensitivity can be suppressed.
[0050] また、背景技術において図 9に示した光センサ 51においては、 i層 53の形状のみな らず、全体としての形状も細長い形状となる。このため、図 9に示した光センサ 51は、 アクティブマトリクス基板にレイアウトされる他の配線や半導体素子の障害となり易ぐ 光センサ 51のアクティブマトリクス基板へのレイアウトは困難である。これに対して、本 実施の形態における光センサ 1によれば、従来のように i層を細長くしなくても、十分 な発生電流を出力できる。このため、光センサ 1を用いれば、光センサ 1全体の外形 を正方形又はそれに近い形状とすることができ、従来に比べて、レイアウトを容易なも のとすることができる。  In the background art, in the optical sensor 51 shown in FIG. 9, not only the shape of the i layer 53 but also the overall shape is an elongated shape. For this reason, the optical sensor 51 shown in FIG. 9 is likely to become an obstacle to other wiring and semiconductor elements laid out on the active matrix substrate, and it is difficult to lay out the optical sensor 51 on the active matrix substrate. On the other hand, according to the optical sensor 1 in the present embodiment, a sufficient generated current can be output without making the i layer elongated as in the prior art. For this reason, if the optical sensor 1 is used, the outer shape of the entire optical sensor 1 can be made into a square or a shape close thereto, and the layout can be made easier as compared with the conventional one.
[0051] また、図 9に示した従来の光センサであれば、 i層からリーク電流が発生すると、表示 パネル全体が不良品となってしまうが、本実施の形態によれば、このような事態を回 避することができる。つまり、光センサ 1によれば、幾つかの i層からリーク電流が発生 しても、残りの i層によって正常な PINフォトダイオードが構成されるため、表示パネル 全体が不良品となるのを回避できる。  [0051] Further, in the case of the conventional optical sensor shown in FIG. 9, when a leak current is generated from the i layer, the entire display panel becomes a defective product. The situation can be avoided. In other words, according to the optical sensor 1, even if leakage current is generated from several i layers, a normal PIN photodiode is constituted by the remaining i layers, so that the entire display panel is prevented from being defective. it can.
[0052] 更に、図 9に示した従来の光センサにおいては、 p層又は n層の形成工程でマスク ずれが生じ、これによつて i層の長さ Lが適切な範囲から逸脱すると、十分な発生電流 を出力できなくなるが、本実施の形態における光センサによれば、この問題も回避で きる。この点について、図 6を用いて説明する。図 6は、本発明の実施の形態におけ る光センサの製造工程においてマスクずれが生じた例を示す図であり、図 6 (a)は平 面図、図 6 (b)は図 6 (a)中の切断線 Β— ΒΊこ沿って切断された断面図である。  [0052] Further, in the conventional optical sensor shown in FIG. 9, if the mask shift occurs in the formation process of the p layer or the n layer, and the length L of the i layer deviates from an appropriate range, it is sufficient. However, according to the optical sensor in the present embodiment, this problem can also be avoided. This point will be described with reference to FIG. FIG. 6 is a diagram showing an example in which mask displacement occurs in the optical sensor manufacturing process according to the embodiment of the present invention. FIG. 6 (a) is a plan view, and FIG. 6 (b) is FIG. a) Middle cutting line Β—A cross-sectional view taken along the edge.
[0053] 図 6に示すように、本例では、 η層 9及び 10の形成工程においてマスクずれが生じ、 η層 9及び 10の位置がずれてしまっている。このため、 i層 5の長さは L 及び i層 7の 長さ L3'は、図 3の例に比べて短くなり(Ll >Lr、 L3 >L3 、 i層 5及び i層 7から出 力される発生電流の電流値は低下してしまう。 As shown in FIG. 6, in this example, mask displacement occurs in the process of forming the η layers 9 and 10, and the positions of the η layers 9 and 10 are displaced. Therefore, the length of the i layer 5 is L and the length L3 ′ of the i layer 7 is shorter than that in the example of FIG. 3 (Ll> Lr, L3> L3, i layer 5 and i layer 7 The current value of the generated generated current is reduced.
[0054] し力し、 i層 6の長さ 及び i層 8の長さ ま、図 3の例に比べて、反対に長くなり  [0054] The length of the i-layer 6 and the length of the i-layer 8 are increased in comparison with the example of FIG.
(L2' >L2、 L4' >L4)、 i層 6及び i層 8から出力される発生電流の電流値は増大す る。また、 i層全体の長さ(Lr +L2' +L3' +L4')は、図 3の例の場合(L1 +L2 + L 3+L4)と同一である。  (L2 ′> L2, L4 ′> L4), the current value of the generated current output from the i layer 6 and the i layer 8 increases. Further, the length of the entire i layer (Lr + L2 ′ + L3 ′ + L4 ′) is the same as the case of the example in FIG. 3 (L1 + L2 + L3 + L4).
[0055] このため、配線 17から出力される光センサ 1全体の発生電流 I の電流値に変化は  [0055] For this reason, the current value of the generated current I of the entire optical sensor 1 output from the wiring 17 is not changed.
PH  PH
なぐ光センサ 1は、マスクずれが生じた場合であっても十分な発生電流を出力するこ とができる。なお、「i層の長さ」とは、 i層とそれに隣接する p層との境界 (界面)から、 該 i層とそれに隣接する n層との境界 (界面)までの距離を 、う。  The light sensor 1 can output a sufficient generated current even when mask displacement occurs. The “length of the i layer” refers to the distance from the boundary (interface) between the i layer and the adjacent p layer to the boundary (interface) between the i layer and the adjacent n layer.
[0056] また、本実施の形態においては、各 i層の長さ(Ll〜L4 (Lr〜L4 )は、十分な 発生電流を出力できるように設定されて 、れば良ぐ特に限定されるものではな 、。 但し、例えば、シリコン膜 11が CGS膜で形成されているのであれば、各 i層の長さは 2 . 5 /z m以上 10 /z m以下に設定するのが好ましい。これは、各 i層の長さが 10 mを 超えると、発生電流は低下するが暗電流が増加してしまうため、光センサ 1の感度や ダイナミックレンジが低下するからである。また、各 i層の長さが 2. 5 m未満であると 、逆バイアス電圧が変動した場合の暗電流の変化率が大きくなり、検出装置 111 (図 1参照)の検出精度が低下する力 である。  In the present embodiment, the length of each i layer (Ll to L4 (Lr to L4)) is particularly limited as long as it is set so as to output a sufficient generated current. However, for example, if the silicon film 11 is formed of a CGS film, the length of each i layer is preferably set to 2.5 / zm or more and 10 / zm or less. If the length of each i layer exceeds 10 m, the generated current decreases but the dark current increases, so the sensitivity and dynamic range of the optical sensor 1 decrease. If the length is less than 2.5 m, the rate of change in dark current when the reverse bias voltage fluctuates increases, and this is a force that reduces the detection accuracy of the detection device 111 (see FIG. 1).
[0057] また、 CGS膜を用いたときの各 i層の長さは、更に、 3 m以上 7 m以下に設定す るのが好ましい。この場合は、逆バイアス電圧が変動した場合の暗電流の変化率を 低下させることができ、これによつて検出装置 111 (図 1参照)の検出精度の向上を図 ることがでさるカゝらである。  [0057] In addition, the length of each i layer when a CGS film is used is preferably set to 3 m or more and 7 m or less. In this case, the rate of change of the dark current when the reverse bias voltage fluctuates can be reduced, which can improve the detection accuracy of the detection device 111 (see FIG. 1). That's it.
[0058] なお、実際上は、図 6に示したマスクずれを考慮する必要がある。よって、 CGS膜を 用いたときの i層の長さは、アクティブマトリクス基板のデザインルールに基づいて設 定するのが、最も好ましい。例えば、アクティブマトリクス基板のデザインルールが 3 mであるならば、 CGS膜を用いたときの i層の長さは、 5 /ζ πι〜6 /ζ πι程度に設定する のが良い。  Note that in practice, it is necessary to consider the mask displacement shown in FIG. Therefore, the length of the i layer when using the CGS film is most preferably set based on the design rule of the active matrix substrate. For example, if the design rule of the active matrix substrate is 3 m, the length of the i layer when using the CGS film should be set to about 5 / ζ πι to 6 / ζ πι.
[0059] また、本実施の形態における光センサ 1において、 i層 5〜8の幅 Wは特に限定され るものではなぐ i層 5〜8の長さ L1〜L4や表示装置の使用環境に応じて、適切な発 生電流が出力できるように設定すれば良い。また、シリコン膜 11として CGS膜を使用 する場合、シリコン膜 11の電子移動度は、 200[cm2Zvs]以上、特には、 200 [0059] In the optical sensor 1 according to the present embodiment, the width W of the i layers 5 to 8 is not particularly limited. Depending on the lengths L1 to L4 of the i layers 5 to 8 and the use environment of the display device Appropriate What is necessary is just to set so that a raw current can be output. When a CGS film is used as the silicon film 11, the electron mobility of the silicon film 11 is 200 [cm 2 Zvs] or more, in particular, 200
[cmVvs]〜400 [cmVvs]程度であれば良!ヽ。  [cmVvs] ~ 400 [cmVvs] or better!ヽ.
[0060] また、 p層 2〜4、 n層 9及び 10それぞれの長さ(配列方向の長さ)は、光センサ 1の 小型化を図る点から出来る限り短くするのが好ましい。但し、 p層 2〜4、 n層 9及び 10 それぞれの長さは、コンタクトプラグ 14a〜14c、 15a及び 15bとの接続が可能なよう に、アクティブマトリクス基板のデザインルールを考慮して設定する必要がある。例え ば、アクティブマトリクス基板のデザインルールが 3 μ mであるならば、 p層 2〜4、 n層 9及び 10それぞれの長さは、 15 μ m程度とするのが良い。  [0060] The lengths (length in the arrangement direction) of each of the p layers 2 to 4 and the n layers 9 and 10 are preferably as short as possible from the viewpoint of downsizing the optical sensor 1. However, the length of each of the p layers 2-4 and n layers 9 and 10 must be set in consideration of the design rules of the active matrix substrate so that they can be connected to the contact plugs 14a to 14c, 15a and 15b. There is. For example, if the design rule of the active matrix substrate is 3 μm, the length of each of the p layers 2 to 4 and the n layers 9 and 10 should be about 15 μm.
[0061] 本発明において、光センサは、図 3に示した例に限定されるものではない。図 7は、 本発明の光センサの他の例を示す断面図である。図 7に示す光センサは、図 3に示 した光センサ 1と異なり、 LDD構造を備えている。図 7の例では、 p層及び n層は、高 濃度層と低濃度層とを備えている。  In the present invention, the optical sensor is not limited to the example shown in FIG. FIG. 7 is a cross-sectional view showing another example of the optical sensor of the present invention. Unlike the optical sensor 1 shown in FIG. 3, the optical sensor shown in FIG. 7 has an LDD structure. In the example of FIG. 7, the p layer and the n layer include a high concentration layer and a low concentration layer.
[0062] 具体的には、 p層 2は、高濃度 p層 2a及び 2cと低濃度 p層 2bとを備えている。同様 に、 p層 3は、高濃度 p層 3a及び 3cと低濃度層 3bとを備え、 p層 4は、高濃度 p層 4a及 び 4cと低濃度層 4bとを備えている。また、 n層 9は、高濃度 n層 9a及び 9cと低濃度 n 層 9bとを備え、 n層 10は、高濃度 n層 10a及び 10cと低濃度 n層 10bとを備えている。 なお、図 7において図 3に示された符号が付された部分は、図 3において同符号が付 された部分と同様の部分である。  Specifically, the p layer 2 includes high concentration p layers 2a and 2c and a low concentration p layer 2b. Similarly, the p layer 3 includes high concentration p layers 3a and 3c and a low concentration layer 3b, and the p layer 4 includes high concentration p layers 4a and 4c and a low concentration layer 4b. The n layer 9 includes high concentration n layers 9a and 9c and a low concentration n layer 9b, and the n layer 10 includes high concentration n layers 10a and 10c and a low concentration n layer 10b. In FIG. 7, the part denoted by the reference numeral shown in FIG. 3 is the same part as the part denoted by the same reference numeral in FIG.
[0063] 図 7の例では、 p層 2〜4は、各 p層の形成領域に低濃度で p型の不純物をイオン注 入した後に、高濃度 p層 2a〜4a及び 2c〜4cの形成領域に高濃度で p型の不純物を イオン注入することによって形成されている。 n層 9及び 10の形成も同様である。  [0063] In the example of FIG. 7, the p layers 2 to 4 are formed into the high concentration p layers 2a to 4a and 2c to 4c after ion-implanting p-type impurities at a low concentration into the formation regions of the respective p layers It is formed by ion-implanting p-type impurities at a high concentration in the region. The formation of the n layers 9 and 10 is the same.
[0064] このように、図 7に示す光センサは、 LDD構造を備えている。このため、 i層 5〜8と p 層との界面、及び i層 5〜8と n層との界面におけるエネルギー準位の変化を滑らかに でき、図 3に示した例に比べてより大きな光電流を発生させることができる。  As described above, the optical sensor shown in FIG. 7 has an LDD structure. For this reason, the energy level changes at the interface between the i layer 5-8 and the p layer and at the interface between the i layer 5-8 and the n layer can be made smoother. A current can be generated.
[0065] また、本発明の光センサは、図 8に示すように、 p層、 i層及び n層の配置や形状が 図 3に示した例と異なる態様とすることもできる。図 8は、本発明の光センサの他の例 を示す平面図である。図 8の例では、配線の図示を省略している。 [0066] 図 8に示すように、本例では、 p層 42〜44と n層 46〜48とは、互いに直行する二方 向 (X方向及び Y方向)において、列状に、且つ、異なる導電型の半導体領域が隣り 合うように配置される。このため、 i層 45は、互いに直行する二方向(X方向及び Y方 向)に沿って、即ち、格子状に形成されるので、図 8の例によれば、図 3に示す例より も更に、特定方向からの光に対する感度の低下を抑制できる。 In addition, as shown in FIG. 8, the optical sensor of the present invention may have an aspect in which the arrangement and shape of the p layer, i layer, and n layer are different from the example shown in FIG. FIG. 8 is a plan view showing another example of the optical sensor of the present invention. In the example of FIG. 8, illustration of wiring is omitted. [0066] As shown in FIG. 8, in this example, the p layers 42 to 44 and the n layers 46 to 48 are arranged in rows and in two directions perpendicular to each other (X direction and Y direction). Conductive semiconductor regions are arranged next to each other. For this reason, the i layer 45 is formed along two directions (X direction and Y direction) perpendicular to each other, that is, in a lattice shape. Therefore, according to the example of FIG. 8, the i layer 45 is more than the example shown in FIG. Furthermore, a decrease in sensitivity to light from a specific direction can be suppressed.
[0067] また、図 8の例では、半導体領域を共有する PINフォトダイオードは七つ形成され、 面積当たりの PINフォトダイオードの個数を増加させることができる。よって、光センサ 力 出力される発生電流の電流値の向上が図られる。なお、図 8に示す光センサ 41 にお ヽても、図 3の f列と同様に、 ρ層 42〜44、 i層 45、及び n層 46〜48はシリコン膜 4 9に形成されている。  In the example of FIG. 8, seven PIN photodiodes sharing a semiconductor region are formed, and the number of PIN photodiodes per area can be increased. Therefore, the current value of the generated current output from the optical sensor force can be improved. Also in the optical sensor 41 shown in FIG. 8, the ρ layers 42 to 44, the i layer 45, and the n layers 46 to 48 are formed on the silicon film 49, as in the f row of FIG. .
[0068] 図 1〜図 8においては、本発明の光センサを構成する半導体領域及び真性半導体 領域が、基板上のシリコン膜に形成された例について説明している。但し、本発明は この例に限定されず、半導体領域及び真性半導体領域がシリコン膜以外の膜に形 成されていても良い。本発明においては、半導体領域及び真性半導体領域は、半導 体基板等の各種基板に形成されていても良い。本発明の光センサは、例えば、半導 体領域及び真性半導体領域が、 ICチップを構成するシリコン基板に形成された態様 であっても良い。  1 to 8 illustrate an example in which the semiconductor region and the intrinsic semiconductor region constituting the photosensor of the present invention are formed in a silicon film on a substrate. However, the present invention is not limited to this example, and the semiconductor region and the intrinsic semiconductor region may be formed in a film other than the silicon film. In the present invention, the semiconductor region and the intrinsic semiconductor region may be formed on various substrates such as a semiconductor substrate. For example, the optical sensor of the present invention may have a mode in which the semiconductor region and the intrinsic semiconductor region are formed on a silicon substrate constituting the IC chip.
産業上の利用可能性  Industrial applicability
[0069] 本発明の光センサは、液晶表示装置や EL表示装置といった表示装置に搭載でき る。よって、本発明のフォトダイオードのみならず、これを搭載した表示装置は産業上 の利用可能性を有するものである。 [0069] The optical sensor of the present invention can be mounted on a display device such as a liquid crystal display device or an EL display device. Therefore, not only the photodiode of the present invention but also a display device equipped with the photodiode has industrial applicability.

Claims

請求の範囲 The scope of the claims
[1] 基板又は薄膜に形成された、三以上の半導体領域、及び真性半導体領域を備え、 前記三以上の半導体領域は、前記基板又は前記薄膜の表面に沿って列状に間隔 を於いて、且つ、隣り合う半導体領域の導電型が互いに逆の導電型となるように配置 され、  [1] Three or more semiconductor regions formed on a substrate or a thin film, and an intrinsic semiconductor region, wherein the three or more semiconductor regions are spaced in a row along the surface of the substrate or the thin film, And the adjacent semiconductor regions are arranged such that the conductivity types are opposite to each other,
前記真性半導体領域は、隣り合う半導体領域の間に、前記隣り合う半導体領域と 接触するように配置され、前記隣り合う半導体領域と共に PINフォトダイオードを形成 して 、ることを特徴とする光センサ。  The intrinsic semiconductor region is disposed between adjacent semiconductor regions so as to be in contact with the adjacent semiconductor region, and forms a PIN photodiode together with the adjacent semiconductor region.
[2] 前記三以上の半導体領域のうちの一導電型の全ての半導体領域と接続される第 1 の配線と、 [2] a first wiring connected to all semiconductor regions of one conductivity type among the three or more semiconductor regions;
前記三以上の半導体領域のうちの前記一導電型とは逆の導電型の全ての半導体 領域と接続される第 2の配線とを、更に備える請求項 1に記載の光センサ。  2. The optical sensor according to claim 1, further comprising a second wiring connected to all semiconductor regions having a conductivity type opposite to the one conductivity type among the three or more semiconductor regions.
[3] 前記三以上の半導体領域、及び前記真性半導体領域が、シリコン膜に形成され、 前記シリコン膜は、複数のアクティブ素子を備えたアクティブマトリクス基板のベース 基板上に成膜されて!ヽる請求項 1に記載の光センサ。 [3] The three or more semiconductor regions and the intrinsic semiconductor region are formed in a silicon film, and the silicon film is formed on a base substrate of an active matrix substrate having a plurality of active elements! The optical sensor according to claim 1.
[4] 複数のアクティブ素子が形成されたアクティブマトリクス基板と、周囲の光に反応し て信号を出力する光センサとを有する表示装置であって、 [4] A display device having an active matrix substrate on which a plurality of active elements are formed, and an optical sensor that outputs a signal in response to ambient light,
前記光センサは、薄膜に形成された、三以上の半導体領域、及び真性半導体領域 を備え、  The optical sensor includes three or more semiconductor regions formed in a thin film, and an intrinsic semiconductor region,
前記薄膜は、前記アクティブマトリクス基板のベース基板上に形成され、 前記三以上の半導体領域は、前記薄膜の表面に沿って列状に間隔を於いて、且 つ、隣り合う半導体領域の導電型が互いに逆の導電型となるように配置され、 前記真性半導体領域は、隣り合う半導体領域の間に、前記隣り合う半導体領域と 接触するように配置され、前記隣り合う半導体領域と共に PINフォトダイオードを形成 して 、ることを特徴とする表示装置。  The thin film is formed on a base substrate of the active matrix substrate, and the three or more semiconductor regions are spaced in rows along the surface of the thin film, and the conductivity type of adjacent semiconductor regions is The intrinsic semiconductor regions are disposed so as to be in contact with the adjacent semiconductor regions between adjacent semiconductor regions, and form a PIN photodiode together with the adjacent semiconductor regions. A display device characterized by that.
PCT/JP2006/308113 2005-05-31 2006-04-18 Light sensor and display device WO2006129427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-160082 2005-05-31
JP2005160082 2005-05-31

Publications (1)

Publication Number Publication Date
WO2006129427A1 true WO2006129427A1 (en) 2006-12-07

Family

ID=37481360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308113 WO2006129427A1 (en) 2005-05-31 2006-04-18 Light sensor and display device

Country Status (1)

Country Link
WO (1) WO2006129427A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053583A (en) * 2006-08-28 2008-03-06 Nec Corp Semiconductor light receiving element and semiconductor optical integrated element
WO2008130060A1 (en) * 2007-04-20 2008-10-30 Sharp Kabushiki Kaisha Stray light compensation in ambient light sensor
WO2008143216A1 (en) * 2007-05-18 2008-11-27 Sharp Kabushiki Kaisha Display device
WO2009133716A1 (en) * 2008-04-28 2009-11-05 シャープ株式会社 Diode and photosensor circuit and display equipped with diode
JP2009295777A (en) * 2008-06-05 2009-12-17 Epson Imaging Devices Corp Semiconductor device, electro-optical device, and electronic apparatus
JP2010157665A (en) * 2009-01-05 2010-07-15 Sony Corp Solid-state imaging element, and camera
US8368676B2 (en) 2007-05-18 2013-02-05 Sharp Kabushiki Kaisha Display device with light shield

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124889A (en) * 1976-04-12 1977-10-20 Matsushita Electronics Corp Semiconductor photoelectric transducer
WO1989006052A1 (en) * 1987-12-14 1989-06-29 Santa Barbara Research Center Reticulated junction photodiode having enhanced responsivity to short wavelength radiation
JPH03148869A (en) * 1989-11-06 1991-06-25 Fujitsu Ltd Photo-detector
JPH0513808A (en) * 1990-12-18 1993-01-22 Hamamatsu Photonics Kk Two dimensional optical position detector
JPH05226686A (en) * 1992-02-17 1993-09-03 Ricoh Co Ltd Photodetector
JP2002314116A (en) * 2001-04-09 2002-10-25 Seiko Epson Corp Lateral semiconductor photodetector of pin structure
JP2004511106A (en) * 2000-10-03 2004-04-08 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor device and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124889A (en) * 1976-04-12 1977-10-20 Matsushita Electronics Corp Semiconductor photoelectric transducer
WO1989006052A1 (en) * 1987-12-14 1989-06-29 Santa Barbara Research Center Reticulated junction photodiode having enhanced responsivity to short wavelength radiation
JPH03148869A (en) * 1989-11-06 1991-06-25 Fujitsu Ltd Photo-detector
JPH0513808A (en) * 1990-12-18 1993-01-22 Hamamatsu Photonics Kk Two dimensional optical position detector
JPH05226686A (en) * 1992-02-17 1993-09-03 Ricoh Co Ltd Photodetector
JP2004511106A (en) * 2000-10-03 2004-04-08 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor device and method of manufacturing the same
JP2002314116A (en) * 2001-04-09 2002-10-25 Seiko Epson Corp Lateral semiconductor photodetector of pin structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TADA N. ET AL.: "A Touch Panel Function Integrated LCD Using LTPS Technology", LATE-NEWS PAPER, AMD7-4L, INTERNATIONAL DISPLAY WORKSHOPS 2004, 2004, XP003000288 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053583A (en) * 2006-08-28 2008-03-06 Nec Corp Semiconductor light receiving element and semiconductor optical integrated element
WO2008130060A1 (en) * 2007-04-20 2008-10-30 Sharp Kabushiki Kaisha Stray light compensation in ambient light sensor
WO2008143216A1 (en) * 2007-05-18 2008-11-27 Sharp Kabushiki Kaisha Display device
US8309901B2 (en) 2007-05-18 2012-11-13 Sharp Kabushiki Kaisha Display device adjusting luminance of display based at least on detections by ambient light sensors
JP5073742B2 (en) * 2007-05-18 2012-11-14 シャープ株式会社 Display device
US8368676B2 (en) 2007-05-18 2013-02-05 Sharp Kabushiki Kaisha Display device with light shield
WO2009133716A1 (en) * 2008-04-28 2009-11-05 シャープ株式会社 Diode and photosensor circuit and display equipped with diode
US8294079B2 (en) 2008-04-28 2012-10-23 Sharp Kabushiki Kaisha Diode, photodetector circuit including same, and display device
JP2009295777A (en) * 2008-06-05 2009-12-17 Epson Imaging Devices Corp Semiconductor device, electro-optical device, and electronic apparatus
JP2010157665A (en) * 2009-01-05 2010-07-15 Sony Corp Solid-state imaging element, and camera
US8350937B2 (en) 2009-01-05 2013-01-08 Sony Corporation Solid-state imaging device having pixels including avalanche photodiodes

Similar Documents

Publication Publication Date Title
WO2006129428A1 (en) Photodiode and display
KR101200444B1 (en) TFT and TFT Substrate Using the Same and Method of Fabricating the TFT Substrate and Liquid Crystal Display
US8803151B2 (en) Semiconductor device
US6674106B2 (en) Display device such as electro-optic element and thin film transistor and display device manufacturing method
US7315076B2 (en) Display device and manufacturing method of the same
WO2008044368A1 (en) Liquid crystal display
US20100118237A1 (en) Liquid crystal display
US8766337B2 (en) Semiconductor device and method for manufacturing the same
WO2008044370A1 (en) Liquid crystal display
KR20070003784A (en) Active matrix pixel device with photo sensor
JP2006003857A (en) Display device and photoelectric conversion device
WO2006129427A1 (en) Light sensor and display device
KR20050022358A (en) Display device and photoelectric conversion device
KR20080056648A (en) High-sensitive light sensor device and light sensor apparatus using the same
JP2008193087A (en) Image display system
CN107946324B (en) Light sensing device
KR100684675B1 (en) Optical sensor and display
JP2005043672A5 (en)
US20100127280A1 (en) Photo sensor and display device
KR102068275B1 (en) Thin film transistor array panel and manufacturing method thereof
CN110767722A (en) Display substrate, manufacturing method thereof, display panel and display device
WO2006117955A1 (en) Display device and method for manufacturing same
JP2005010690A (en) Flat panel display device
US20100181570A1 (en) Display device and method for manufacturing the same
KR20140141459A (en) Organic light emitting display device and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP