WO2006127449A2 - Cross-line plugging system and locking plug - Google Patents

Cross-line plugging system and locking plug Download PDF

Info

Publication number
WO2006127449A2
WO2006127449A2 PCT/US2006/019420 US2006019420W WO2006127449A2 WO 2006127449 A2 WO2006127449 A2 WO 2006127449A2 US 2006019420 W US2006019420 W US 2006019420W WO 2006127449 A2 WO2006127449 A2 WO 2006127449A2
Authority
WO
WIPO (PCT)
Prior art keywords
cross
line
pipeline
pig
pipe plug
Prior art date
Application number
PCT/US2006/019420
Other languages
French (fr)
Other versions
WO2006127449A3 (en
Inventor
Phillip K. Morrison
Eric N. Freeman
Mark A. Morgan
Tony R. Garrison
Original Assignee
Tdw Delaware, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/133,514 external-priority patent/US7311114B2/en
Application filed by Tdw Delaware, Inc. filed Critical Tdw Delaware, Inc.
Priority to JP2008512538A priority Critical patent/JP2008545926A/en
Priority to BRPI0611290-0A priority patent/BRPI0611290A2/en
Priority to CA002606814A priority patent/CA2606814A1/en
Priority to CN2006800174295A priority patent/CN102232159A/en
Priority to EP06760170A priority patent/EP1886060A2/en
Priority to AU2006251924A priority patent/AU2006251924B2/en
Publication of WO2006127449A2 publication Critical patent/WO2006127449A2/en
Publication of WO2006127449A3 publication Critical patent/WO2006127449A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/18Appliances for use in repairing pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/10Means for stopping flow from or in pipes or hoses
    • F16L55/12Means for stopping flow from or in pipes or hoses by introducing into the pipe a member expandable in situ
    • F16L55/128Means for stopping flow from or in pipes or hoses by introducing into the pipe a member expandable in situ introduced axially into the pipe or hose
    • F16L55/136Means for stopping flow from or in pipes or hoses by introducing into the pipe a member expandable in situ introduced axially into the pipe or hose the closure device being a plug fixed by radially expanding or deforming a split ring, hooks or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/04Tapping pipe walls, i.e. making connections through the walls of pipes while they are carrying fluids; Fittings therefor
    • F16L41/06Tapping pipe walls, i.e. making connections through the walls of pipes while they are carrying fluids; Fittings therefor making use of attaching means embracing the pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems

Definitions

  • This invention relates to a system and method of providing access to the interior of a branch pipeline, referred to as a "cross-line" that intersects with a main pipeline of equal or greater diameter.
  • Pipelines are used in all parts of the world for the transportation of hydrocarbon products including primarily natural gas and crude oil. These commodities are exceedingly valuable and, in fact, indispensable to the modern standard of living enjoyed throughout the world. However, in addition to being valuable, they are also hazardous. Such hazards include danger to life as can be a consequence of explosions or fires from leaked oil or gas products and, in addition, these products can be harmful to the environment. For these reasons, it is important that pipelines be periodically inspected and/or evaluated for proper repair and maintenance. Pipelines are usually buried under the earth's surface to protect them against hazards that would exist if they were laid on the earth's surface.
  • a particular problem is encountered with the use of pipeline pigs for inspecting cross-lines, that is, pipelines that interconnect between other and usually, larger diameter pipelines. While primary pipelines may extend for miles or even hundreds of miles, cross-lines are typically of much shorter length, such as a few hundred feet up to a few miles. It is sometimes difficult and always expensive to install pig launching and receiving facilities for such cross-lines.
  • cross-line includes a pipeline that interconnects between other pipelines, as above stated, and also branch lines, that is, a smaller diameter pipeline that extends from a main pipeline that does not necessarily connect to another main pipeline but that connects such as to a storage facility, a processing plant or the like.
  • branch lines herein includes branch lines.
  • the invention herein provides methods, apparatus and systems for providing access to the interior of a cross-line that intersects with a main pipeline of equal or greater diameter.
  • the method includes the steps of first attaching a side outlet fitting to the exterior of the main pipeline on the side thereof diametrically opposite the point of intersection of the cross-line.
  • a side outlet may be attached by welding to the exterior of the main pipeline a saddle-type device having a portion that fits against the exterior wall of the pipeline with an integral branch fitting.
  • a full opening valve is affixed to the outlet fitting.
  • the typical side outlet fitting is of the type having a flange. A full open valve can be affixed to the flange fitting.
  • a hot tapping system is then affixed to the valve.
  • the following two U.S. patents illustrate and describe apparatus and systems that can be used to tap a pipeline under pressure. 1. 4,579,484 entitled “Underwater Tapping Machine", Sullivan, issued April 1, 1986;
  • such hot tapping system is applied to the exterior of the valve and with the valve open, the hot tapping system can extend through it to cut an opening in the sidewall of the main pipeline. While in some instances it may be necessary to cut an opening in the pipeline that is only as large as the interior diameter of the cross-line, nevertheless, for practical purposes, it is normally desirable that an opening be cut in the sidewall of the main pipeline substantially equal to its internal diameter.
  • a pig launcher may be affixed to the valve. Thereafter, with the valve open, a pig can be launched through the valve and through the fitting attached to the main pipeline diametrically through the main pipeline and into the cross-line. Thereafter, the pig moves by fluid flow, either gas or liquid, through the cross-line to perform any of the usual services that can achieved by a pig.
  • pigs can be employed to make geometry measurements to detect indentations, buckles or other obstructions in the pipeline.
  • Pigs can be employed for cleaning the interior of the cross-line.
  • Pigs can be employed for detecting corrosion in the walls of the cross-line by the use of magnetic flux leakage or sonic inspection technologies.
  • the cross-line can be closed adjacent the point where it intersects the main pipeline. With the cross-line closed, pressure tests can be made. Further, by closing off the cross-line at both ends, it can be depressurized and repairs can be made to it without stopping the flow of the fluids through the main pipeline.
  • Cross-lines typically extend between two main pipelines. In this case it is desirable to provide access to both ends of the cross-line which is accomplished by the steps above indicated being employed on both main pipelines. That is, access can be obtained through the main pipelines into both the opposite ends of the cross-line.
  • the invention herein further provides an apparatus for use when inspecting, testing or repairing a cross-line after access has been provided through the main pipelines to which the cross-line attaches.
  • a branch shield pig guide is disclosed that can be installed in a main pipeline to prevent a pig passing through the main pipeline from being inadvertently diverted into the cross-line.
  • a flow-through pig guide is also disclosed to ensure the passage of a pig diametrically through a main pipeline and into a cross-line. Such flow-through pig guide is always removed after the pigging operation is complete through the cross-line.
  • locking pipe plugs or cross-line pluggers both of which are disclosed herein, can be employed for closing off the ends of the cross-line for reasons above described.
  • Figure 1 is a diagrammatic, isometric view showing an excavation in the earth in an area having two main pipelines and a cross-line. This figure shows the method of this invention for providing access to the cross-line by cutting a hole in the side wall of each of the main pipelines, each hole being diametrically opposite the attachment of the cross-line .
  • Figure 2 is an isometric view showing a main pipeline in dotted outline and showing, in solid line, a flow-through pig guide that is temporarily inserted through a main pipeline when a pig is being launched into the cross-line.
  • Figure 3 is an isometric view of a branch shield pig guide that can be inserted into a main pipeline after access has been provided to a cross-line to restore pigability of the main pipeline. That is, the branch shield pig guide is used to ensure that a pig passing through a main pipeline is not inadvertently diverted into a cross-line.
  • Figure 4 is an exploded view of a locking pipe plug that can be used for closing the interior of a cross-line and showing a tool that is used for the installation of the locking pipe plug.
  • FIG 5 is a cross-sectional view of a locking pipe plug of the type shown in Figure 4.
  • the locking pipe plug is in the non-expanded condition as when it is being inserted into or removed from the interior of the cross-line.
  • Figure 6 shows the locking pipe plug of Figures 4 and 5 after having been actuated to a secure position within the interior of the cross-line in a manner to provide leak proof closure of the cross-line.
  • Figure 7 is a side view of the cross-line plugger that can be used to close off the opening in a main pipeline where communication is provided with a cross-line.
  • Figure 8 is a side view of the cross-line plugger rotated 90° with respect to Figure 7.
  • Figure 9 is an isometric view of a cross-line plugger of Figures 7 and 8.
  • Figure 10 is an elevational front view of the cross-line plugger of Figures 7, 8 and 9.
  • Figure 11 is an elevational rear view of the cross-line plugger of Figures 7, 8, 9 and 10.
  • Figure 12 is an isometric view of a typical instrument pipeline pig, shown in small scale, that can be launched into the cross-line after the methods of this invention are employed to provide access diametrically through main pipelines to which the cross-line connects.
  • Figure 13 is an elevational view, shown partially in cross-section, of an improved locking pipe plug of the type shown in Figures 5 and 6.
  • the improved locking pipe plug includes, among other advantages, a rotation resistor.
  • FIG. 1 an environment in which the principles of this invention can be practiced is illustrated.
  • This figure shows the earth's surface 10 having an excavation 12 that reveals a first main pipeline 14, a second main pipeline 16 and a cross-line 18.
  • This invention provides improved methods, systems and apparatuses for verifying the integrity of cross-line 18.
  • the first step in practicing the invention to provide access to cross-line 18 is to affix a branch fitting 22 to the exterior of primary pipeline 14 on the side thereof diametrically opposite the point of intersection 20 of cross-line 18.
  • the term "cross- line” could equally as well be "branch pipeline” as either term is indicative of a line that extends perpendicularly from a primary pipeline.
  • the branch fitting 22 needs to be of a diameter at least equal to the diameter of cross-line 18 but preferably is of a diameter equal to that of the main pipeline 14.
  • Such branch fitting will typically include a flange 24 which receives the attachment of a full opening valve 26. After valve 26 has been attached, then a hot tap machine (not shown) is secured to the valve.
  • the use of hot tapping machines to provide access to the interior of a pipeline is well known in the industry. For specific teachings of the construction, operation and methods of use of hot tapping machines, reference may be had to the following United States Patents:
  • a shell cutter (not shown) is extended through valve 26, flange 24 and branch fitting 22 to engage the exterior sidewall of main pipeline 14 so that an opening is cut in the side wall of main pipeline 14.
  • the opening is diametrically opposite the connection 20 of cross-line 18 to the main pipeline 14.
  • Valve 26 can then be closed and the hot tapping machine (not shown) can be removed and in place of the hot tapping machine, a pig launcher 28 is attached to valve 26.
  • Pig launchers are well known in the pipeline industry.
  • a pig launcher is a device that permits, at atmospheric pressures, a pipeline pig such as the pipeline pig 30 illustrated in Figure 1, to be positioned within the launcher.
  • the pig launcher is then hermetically sealed.
  • Valve 26 can then be opened and by means such as a hydraulic ram 32, pipeline pig 30 can be pushed out of pig launcher 28, through valve 26 and branch fitting 22, and diametrically through main pipeline 14 into the interior of cross-line 18.
  • By force of fluid flow either liquids or gases, the pig can then be caused to move through cross- line 18.
  • a pipeline pig 30 is indicated by dotted outline as moving through cross-line 18.
  • a plugging machine generally indicated by the numeral 34 can be affixed to pipeline 14 downstream of the cross-line connection.
  • a plugging machine which functions as previously described can provide an opening into the interior of main pipeline 14 through which a flow blockage apparatus (not shown) can be inserted for temporarily blocking or at least reducing fluid flow through the main pipeline.
  • flow blockage mechanism is well known in the pipeline industry and is commercially available from T.D. Williamson, Inc. of Tulsa, Oklahoma, U.S.A.
  • the pipeline pig 30 With fluid flow blocked or at least restricted by way of a plugging machine 34 and the insertion of a flow blockage mechanism, the pipeline pig 30 will be forced through the interior of cross-line 18.
  • the pig 30 may be of any type that is currently used in the industry including geometrical measurement pigs, cleaning pigs, corrosion measurement pigs and so forth. Movement through cross-line 18 of the pig can be verified by the use of pig signaling devices 36 that are attached to the exterior of cross-line 18. Two such pig signaling devices are shown in Figure 1.
  • a second branch fitting 38 is shown as having been attached to second main pipeline 16 opposite the connection of cross-line 18.
  • a valve 42 is employed.
  • a hot tapping machine (not shown) may be employed to provide an opening in the wall of second main pipeline 16. After such opening is provided, the hot tapping machine is removed and a pig catcher 44 can be installed.
  • the pig is captured within catcher 44 and may be removed.
  • a hot tap machine can be employed so as to provide an opening into the interior of second main pipeline 16 and the insertion of flow blockage equipment with a plugging machine to temporarily block or restrict fluid flow.
  • a flow-through pig guide as generally indicated by the numeral 48 is employed.
  • the flow-through pig guide is illustrated in Figure 2.
  • Flow-through pig guide 48 is inserted diametrically through first main pipeline 14 that is illustrated in dotted outline in Figure 2, the flow-through pig guide 48 passing through valve 26.
  • Flow-through pig guide 48 has a tubular body 50 with slotted openings 52 therein.
  • the outer end portion 54 is of external diameter so that it can extend telescopically within the interior of cross-line 18.
  • the inner end of flow-through pig guide 48 has a locking ring flange 56 with an external circumferential groove 58 therein.
  • Flange fittings 24 and 40 are preferably of the type that facilitate receiving an internal device and removably locking it in place. Such a device is illustrated and described in detail in United States Patent No. 3,766,947 entitled “Fluid-Type Closure", issued October 23, 1973.
  • This patent teaches a type of flange that has provisions for actuation of a plurality of locking elements that can be moved radially inwardly or radially outwardly by adjustment of screw mechanisms on the exterior of the flange (not shown in Figure 1). These locking elements are moved into external circumferential groove 58 to thereby hold flow-through pig guide 48 in position as it extends diametrically through pipeline 14.
  • a flow-through pig guide as illustrated in Figure 2 is positioned diametrically within second pipeline 16 in which case the flange 40 (as seen in Figure 1) is of the type that has locking elements that can be extended into and withdrawn from the circumferential groove 58.
  • the flow-through pig guide 48 of Figure 2 is used only when a pig is being launched into or received diametrically through main pipeline 14 or 16 and thereafter removed since if left in position they would interfere with the passage of pigs through the main pipelines.
  • the branch shield pig guide includes a main short length tubular body portion 62 that is of external dimensions slightly less than the internal diameter of main pipeline 14. Extending from tubular body portion 62 is a lateral tubular portion 64 that connects the main body portion to a locking ring flange 66 that has a circumferential groove 68.
  • a locking ring system as illustrated and described in U.S. Patent No. 3,766,947 as previously mentioned, the branch shield pig guide 60 can be maintained within the interior of main pipeline 14.
  • the short length tubular portion 70 extends telescopically within the cross-line to assist in anchoring the branch shield pig guide 60 in position.
  • paralleled bars 72 close tubular portion 70.
  • Similar bars 74 are shown closing the lateral tubular portion 64 for similar reasons, that is, to close off the possibility of a pig attempting to enter this passageway. The use of bars 74 is optional since there is no fluid flow through this lateral tubular passageway that would tend to cause a pig to enter it whereas fluid flow through the short length tubular portion 70 is possible.
  • Branch shield pig guide 60 is installed through valve 26 as previously described by means of a hot tapping machine so that such device can be installed while the main pipeline 14 is under pressure.
  • Branch shield pig guide 60 includes a flange closure system 66 to close off flange 24 enabling valve 26 to be removed and a blind flange (not shown) installed.
  • a branch shield pig guide 60 will also be installed in second main pipeline 16 for the same reasons as described with reference to the first main pipeline 14.
  • a locking pipe plug 76 as generally indicated in Figure 4 and in greater detail in Figures 5 and 6 is employed. As shown in Figure 4 the locking pipe plug 76 has, on the rearward end thereof, a tightening nut 78 that can be grasped by a ram expander 80 that is positioned and rotated by a shaft 82. By means of hot tapping equipment that controls the axial and rotational position of ram expander 80, it can be extended diametrically through the interiors of both main pipeline 14 and 16.
  • a base member 84 has a tubular portion 86 that is externally threaded and receives nut 78 thereon.
  • the base portion 84 has an integral radial flange portion 88 that faces a radial compression member 90 that is slidable on tubular portion 86.
  • Between radial flange portion 88 and compression member 90 is a circumferential elastomeric seal member 92.
  • the seal member In the relaxed position as shown in Figure 5 the seal member is cupped outwardly as indicated in the cross-sectional view.
  • Received on tubular portion 86 is an actuation member 94 having a cupped portion 96.
  • the compression member 90 has a frusto- conical surface 98 that receives segmented slips 100.
  • segmented slips 100 are concurrently moved forward and the reaction of the slips with frusto-conical surface 98 causes the slips to expand radially outwardly for engagement with the interior of cross-line 18. In this way the locking pipe plug 76 is tightly engaged within the interior of cross-line 18.
  • each locking pipe plug With a locking pipe plug at each end of the cross-line, pressure can be applied to it to test for leakage. High pressure can be applied to test the bursting strength of cross- line 18. After such tests are completed, each locking pipe plug can be removed by reversing the rotation of nut 78, and retrieving the plug with expander 80 as affixed to shaft 82.
  • FIG. 7 Another way of closing off the opposed ends of cross-line 18 is by the use of a cross-line plugger 108 as shown in Figures 7 through 11.
  • This item has a base portion 102 with a bolt 104 having a head 106 that forms the forward end of the cross-line plugger, which is generally indicated by the numeral 108.
  • Bolt 104 receives an arcuate back up plate 110 having an elastomer seal 112 on the forward surface thereof.
  • the radius of curvature of the back up plate 110 and the forward surface of elastomer seal 112 is the same radius of curvature as the interior circumferential surface of the main pipelines 14 and 16.
  • the rearward end of the cross-line plugger 108 is an attachment guide 114.
  • the cross-line plugger 108 is used in this way: with an opening having been formed in each of the main pipelines 14 and 16, each ends of cross-line 18 can be temporarily closed by inserting through each open valves 26 and 42, a cross-line plugger 108 attached to a rod (not shown) extending from hydraulic cylinder 32.
  • Cross-line plugger 108 passes diametrically through a main pipeline.
  • the elastomer seal 112 of each plugger engages the circumferential area of the internal cylindrical wall of a main pipeline that surrounds the opening communicating with cross-line 18. In this way the cross-line is plugged off at each end.
  • cross-line plugger 108 is not intended for use to resist high pressure within cross-line 18 but cross-line pluggers 108 may be used to isolate the cross-line from the main pipelines and permit drainage of liquids and gases from it so as to permit repairs.
  • the cross-line pluggers are not intended for permanently closing the cross-line.
  • Figure 12 is a small scale isometric representation of a pipeline pig 116 which may be of the type used for determining the structural integrity of cross-line 18. Pigs 116 of the type shown in Figure 12 may include highly technical systems such as for measurement of corrosion by magnetic flux leakage, or sonic energy reflections.
  • FIG. 1 illustrates an additional element that is not directly related to the methods and systems of this invention but that make the inventions herein more useful.
  • Extending from cross-line 18 is a bypass line 118 that connects to second main pipeline 16 downstream of branch fitting 38.
  • a bypass valve 120 controls flow through bypass line 118.
  • valve 120 is opened.
  • pipeline pig 30 gets to near the end of cross-line 18 as shown in dotted outline in Figure 1 the restriction to fluid flow imposed by the pipeline pig will cause fluid flow through bypass line 118, stopping further movement of the pipeline pig which is then in position for retrieval by apparatus extending from pig catcher 44.
  • bypass valve 120 will normally be closed.
  • FIG 13 illustrates in elevational view, shown partially in cross-section, an improved locking pipe plug generally indicated by the numeral 76A.
  • the improved locking pipe plug employs the basic concepts of the locking pipe plug illustrated and described with reference to Figures 5 and 6 and the components in the improved locking pipe plug 76A that have the similar structure and function to the components in Figures 5 and 6 are provided with the same numbers.
  • Figure 13 As compared with the embodiment of Figures 5 and 6, has these similar functioning components: a base member 84 with a tubular portion 86 and a radial flange 88; an expansion member 90; an elastomeric seal member 92; an actuation member 94 having a cup portion 96; and a frusto- conical surface 98 on compression member 90 that receives segmented slips 100.
  • Figure 13 shows additional features and improvements.
  • segmented slips 100 are formed of metal to securely lock into the interior wall of the pipe in which the improved locking pipe plug 76 A is positioned.
  • a retainer spring 126 encircles the segments making up segmented slips 100 to hold them in contact with frusto-conical surface 98 of compression member 100.
  • Actuation member 94 is received slideably on the external threads 128 of tubular portion 86 of base member 84.
  • rotation of holder 150 With its internal threads 154 engaged in the external threads 128 on tubular portion 86, causes actuation member 94 to be axially advanced so that it moves the cup portion 96 against segment slips 100 to thereby force compression member 90 in the direction towards radial flange 88.
  • This causes radially expansion of segmented slips 100 and simultaneously axially advances compression member 90 towards flange 88, thereby compressing seal member 92.
  • threadably rotating holder 150 simultaneously causes segmented slips 100 to lock against the interior surface of the pipe in which the plug is positioned and to radially expand the seal member 92 to seal against the wall of the pipe in which the plug is positioned.
  • the embodiment of the improved locking plug 76A of Figure 13 includes an innovative system of restraining rotation of the base member 84 so as to permit locking a plug in position.
  • the improved locking pipe plug 76A When the improved locking pipe plug 76A is inserted into a pipeline, it is necessary to rotate holder 150 relative to base member 84 to threadably advance it and thus slideably advance the actuation member 94 so that the cup portion 96 presses against slips 100 to start the process of locking the pipe plug within the pipe. Thus it is helpful if a system is provided for resisting the rotation of base member 84 especially during the initial process of tightening holder 150 on the actuation member tubular portion 86.
  • the improved locking pipe plug 76A includes a rotation resistor generally indicated by the numeral 132.
  • a rotation resistor 132 In Figure 13, a preferred embodiment of a rotation resistor 132 is illustrated and is in the form of a stiff cleaning brush assembly commonly used on pipeline cleaning pigs.
  • An alternative embodiment is essentially of a cylindrical wire brush that is of the type readily commercially available and that is typically used as a part of a rotating mechanism for cleaning the surface of metallic objects.
  • the rotation resistor 132 is a wire brush 134 that provides a large number of radially extending flexible wires 136.
  • Each of the wires 136 has an outer free end 138 arranged so that the length of the wires 136 extends the outer ends thereof 138 beyond the normal diameter of the pipe in which the plug is to be used. That is, the wires 136 are of sufficient lengths so that the outer ends 138 thereof flexibly engage the pipe inner surface 140.
  • Wire brush 134 typically includes opposed face plates 142A and 142B that retain the wires 136 therebetween.
  • Face plates 142 A and 142B each have a central opening 144 therein that receives a bolt 146.
  • Bolt 146 is received in a threaded opening 148 in base member 84.
  • the rotation resistor 132 is rotatably locked to base member 84.
  • AU that is required is that rotational resistance be applied to the base member 84 as the holder 150 is rotated to threadably advance actuation member 94 slideably on tubular portion 86.
  • segmented slips 100 engage the pipe interior surface and immediately serve to resist rotation of the pipe plug.
  • seal member 92 As the advance of the base member 84 continues compressive force is applied against seal member 92 so the outer circumferential surface thereof expands to engage the interior of the pipe to further resist rotation.
  • the segmented slip 100 and seal member 92 themselves begin to lock the pipe plug against rotation. After this action takes place the rotational resistance applied by rotation resistor 132 is no longer required.
  • wire brush 134 is to merely resist rotation to get the process of anchoring the pipe plug in the pipe started.
  • the contact of segmented slips 100 and seal member 92 with the pipe interior surface gradually decreases and the rotational resistor 132 takes over to allow the actuation member 94 to be retracted to the point that the plug can be axially extracted from the pipe.
  • Holder 150 is tubular with an inner end portion 152 having an internally threaded opening 154 therein.
  • the forward portion of holder 150 is tubular providing an interior recess 156 that receives a threaded pipe plug 158.
  • Internally pipe threads 162 at the outer end of the base member tubular portion 86 threadably and sealably receives pipe plug 158.
  • a washer 160 has an outer diameter greater than the diameter of holder threaded opening 154.
  • the outer end of holder 150 has a radial flange 164 with openings 166 therein.
  • Bolts extending through openings 166 can be used to hold locking pipe plug 76A, for inserting it into a pipe and correspondingly for removing it after a plug has been inserted, onto shaft 82 of an insertion tool or onto a tapping machine 46 of the type as commonly employed in piping technology and that is readily commercially available from T.D. Williamson, Inc. of Tulsa, Oklahoma.

Abstract

A method of providing access to the interior of a cross-line (18) that intersects with a primary pipeline (14) of equal or greater diameter includes the steps of attaching a branch fitting (22) to the exterior of the primary pipeline, affixing a full opening valve to the branch fitting, securing a hot tap machine (46) to the valve (26), using the hot tap machine (46) to cut an opening in the primary pipeline (14) of a diameter at least equal to the internal diameter of the cross-line (18), and removing the machine leaving an access diametrically through the valve (24) and primary pipeline (14) into the interior of the cross-line (18) for installing pipeline inspection or cleaning pigs (30) and/or a locking plug (26). A rotation resistor (132) facilitates securing a locking plug (76) within the pipeline (18).

Description

CROSS-LINE PLUGGING SYSTEM AND LOCKING PLUG
REFERENCE TO PENDING APPLICATIONS
This is a continuation-in-part of United States Patent Application No. 11/133,514, filed May 20, 2005 and entitled Cross-Line Plugging System. The application is not related to any federally sponsored research or development.
BACKGROUND OF THE INVENTION
I. Field of the Invention. This invention relates to a system and method of providing access to the interior of a branch pipeline, referred to as a "cross-line" that intersects with a main pipeline of equal or greater diameter.
II. Description of the Prior Art.
Pipelines are used in all parts of the world for the transportation of hydrocarbon products including primarily natural gas and crude oil. These commodities are exceedingly valuable and, in fact, indispensable to the modern standard of living enjoyed throughout the world. However, in addition to being valuable, they are also hazardous. Such hazards include danger to life as can be a consequence of explosions or fires from leaked oil or gas products and, in addition, these products can be harmful to the environment. For these reasons, it is important that pipelines be periodically inspected and/or evaluated for proper repair and maintenance. Pipelines are usually buried under the earth's surface to protect them against hazards that would exist if they were laid on the earth's surface. In addition, due to the increased amount of offshore oil and gas exploration, many pipelines today are laid at the bottom of an ocean, that is, on the ocean floor. For these reasons, the exterior surfaces of pipelines are not readily available for visual inspection. As a consequence, the most economical and effective way of inspecting pipelines is by transmitting pigs that are moved through the pipelines by fluid flow, that is, by the flow of natural gas or crude oil. For background information as to the application and use of pipeline pigs, reference may be had to an article entitled "Fundamentals of Pipeline Pigging", authored by Burt VerNooy, appearing in Pipeline Industry, September/October 1980, published by the Gulf Publishing Company of Houston, Texas. A particular problem is encountered with the use of pipeline pigs for inspecting cross-lines, that is, pipelines that interconnect between other and usually, larger diameter pipelines. While primary pipelines may extend for miles or even hundreds of miles, cross-lines are typically of much shorter length, such as a few hundred feet up to a few miles. It is sometimes difficult and always expensive to install pig launching and receiving facilities for such cross-lines.
The term "cross-line" as used herein includes a pipeline that interconnects between other pipelines, as above stated, and also branch lines, that is, a smaller diameter pipeline that extends from a main pipeline that does not necessarily connect to another main pipeline but that connects such as to a storage facility, a processing plant or the like. Thus, "cross-lines" herein includes branch lines.
For additional background information relating to this invention, reference may be had to the following previously issued United States patents. Patent Inventor Title
Number
408,826 Conroy Cross For Gas Mains or Pipes
1,825,034 Weatherhead, Sectional Pipe Coupling Jr.
2,546,502 Harrington Means For Incorporating Solid Fat In Liquid Fatty Mixtures
2,563,244 Holicer Fluid Control Mechanism
2,913,259 Rings Sidebranch Fitting For Main Supply Pipe
3,135,278 Foord et al. Loading Pipeline Pigging System and Method
3,373,452 Watts Manifold Assembly For Hot and Cold Water Faucet Pairs Arranged Back to Back
3,510,156 Markowz Device For Transmitting Flows Patent Inventor Title Number
3,766,947 Osburn Fluid Tight Closure
4,579,484 Sullivan Underwater Tapping Machine
4,708,372 Arima et al. Cross Piping Construction
4,880,028 Osburn et al. Completion Machine
5,439,331 Andrew et al. High Pressure Tapping Apparatus
5,678,865 Anderson Tank Tee Unit
5,967, 168 Kitani et al. Method of Connecting Branch Pipe
6,196,256 Klampfer Manifold
BRIEF SUMMARY OF THE INVENTION
The invention herein provides methods, apparatus and systems for providing access to the interior of a cross-line that intersects with a main pipeline of equal or greater diameter. The method includes the steps of first attaching a side outlet fitting to the exterior of the main pipeline on the side thereof diametrically opposite the point of intersection of the cross-line. A side outlet may be attached by welding to the exterior of the main pipeline a saddle-type device having a portion that fits against the exterior wall of the pipeline with an integral branch fitting. After a side outlet fitting is welded to the main pipeline, a full opening valve is affixed to the outlet fitting. The typical side outlet fitting is of the type having a flange. A full open valve can be affixed to the flange fitting.
A hot tapping system is then affixed to the valve. The following two U.S. patents illustrate and describe apparatus and systems that can be used to tap a pipeline under pressure. 1. 4,579,484 entitled "Underwater Tapping Machine", Sullivan, issued April 1, 1986;
2. 5,439,331 entitled "High Pressure Tapping Apparatus, Andrew et al, issued August 8, 1995"
In the present case, such hot tapping system is applied to the exterior of the valve and with the valve open, the hot tapping system can extend through it to cut an opening in the sidewall of the main pipeline. While in some instances it may be necessary to cut an opening in the pipeline that is only as large as the interior diameter of the cross-line, nevertheless, for practical purposes, it is normally desirable that an opening be cut in the sidewall of the main pipeline substantially equal to its internal diameter.
After an opening is cut in the wall of the main pipeline the hot tap machine is removed and equipment can then be attached to the valve for use in inserting inspection pigs into the pipeline. As a practical step, after the hot tap machine has been employed, a pig launcher may be affixed to the valve. Thereafter, with the valve open, a pig can be launched through the valve and through the fitting attached to the main pipeline diametrically through the main pipeline and into the cross-line. Thereafter, the pig moves by fluid flow, either gas or liquid, through the cross-line to perform any of the usual services that can achieved by a pig. For instance, pigs can be employed to make geometry measurements to detect indentations, buckles or other obstructions in the pipeline. Pigs can be employed for cleaning the interior of the cross-line. Pigs can be employed for detecting corrosion in the walls of the cross-line by the use of magnetic flux leakage or sonic inspection technologies.
In addition to being able to introduce a pig into a cross-line by the methods and systems of this invention, other activities can be accomplished that do not employ a pig. For instance, by the use of locking pipe plug, the cross-line can be closed adjacent the point where it intersects the main pipeline. With the cross-line closed, pressure tests can be made. Further, by closing off the cross-line at both ends, it can be depressurized and repairs can be made to it without stopping the flow of the fluids through the main pipeline.
Cross-lines typically extend between two main pipelines. In this case it is desirable to provide access to both ends of the cross-line which is accomplished by the steps above indicated being employed on both main pipelines. That is, access can be obtained through the main pipelines into both the opposite ends of the cross-line.
The invention herein further provides an apparatus for use when inspecting, testing or repairing a cross-line after access has been provided through the main pipelines to which the cross-line attaches. A branch shield pig guide is disclosed that can be installed in a main pipeline to prevent a pig passing through the main pipeline from being inadvertently diverted into the cross-line. A flow-through pig guide is also disclosed to ensure the passage of a pig diametrically through a main pipeline and into a cross-line. Such flow-through pig guide is always removed after the pigging operation is complete through the cross-line. After access is provided to the cross-line using the concepts of the present invention, locking pipe plugs or cross-line pluggers, both of which are disclosed herein, can be employed for closing off the ends of the cross-line for reasons above described.
A better understanding of the invention will be obtained from the following detailed description of the preferred embodiments and claims, taken in conjunction with the attached drawings. BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the invention will now be described in further detail. Other features, aspects, and advantages of the present invention will become better understood with regard to the following detailed description, appended claims, and accompanying drawings (which are not to scale) where:
Figure 1 is a diagrammatic, isometric view showing an excavation in the earth in an area having two main pipelines and a cross-line. This figure shows the method of this invention for providing access to the cross-line by cutting a hole in the side wall of each of the main pipelines, each hole being diametrically opposite the attachment of the cross-line .
Figure 2 is an isometric view showing a main pipeline in dotted outline and showing, in solid line, a flow-through pig guide that is temporarily inserted through a main pipeline when a pig is being launched into the cross-line.
Figure 3 is an isometric view of a branch shield pig guide that can be inserted into a main pipeline after access has been provided to a cross-line to restore pigability of the main pipeline. That is, the branch shield pig guide is used to ensure that a pig passing through a main pipeline is not inadvertently diverted into a cross-line.
Figure 4 is an exploded view of a locking pipe plug that can be used for closing the interior of a cross-line and showing a tool that is used for the installation of the locking pipe plug.
Figure 5 is a cross-sectional view of a locking pipe plug of the type shown in Figure 4. In this view the locking pipe plug is in the non-expanded condition as when it is being inserted into or removed from the interior of the cross-line.
Figure 6 shows the locking pipe plug of Figures 4 and 5 after having been actuated to a secure position within the interior of the cross-line in a manner to provide leak proof closure of the cross-line.
Figure 7 is a side view of the cross-line plugger that can be used to close off the opening in a main pipeline where communication is provided with a cross-line.
Figure 8 is a side view of the cross-line plugger rotated 90° with respect to Figure 7.
Figure 9 is an isometric view of a cross-line plugger of Figures 7 and 8.
Figure 10 is an elevational front view of the cross-line plugger of Figures 7, 8 and 9. Figure 11 is an elevational rear view of the cross-line plugger of Figures 7, 8, 9 and 10.
Figure 12 is an isometric view of a typical instrument pipeline pig, shown in small scale, that can be launched into the cross-line after the methods of this invention are employed to provide access diametrically through main pipelines to which the cross-line connects.
Figure 13 is an elevational view, shown partially in cross-section, of an improved locking pipe plug of the type shown in Figures 5 and 6. The improved locking pipe plug includes, among other advantages, a rotation resistor.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
It is to be understood that the invention that is now to be described is not limited in its application to the details of the construction and arrangement of the parts illustrated in the accompanying drawings. The invention is capable of other embodiments and of being practiced or carried out in a variety of ways. The phraseology and terminology employed herein are for purposes of description and not limitation.
Elements illustrated in the drawings are identified by the following numbers:
10 Earth's surface 70 Short length tubular portion
12 Excavation 72 Bars
14 First main pipeline 74 Bars
16 Second main pipeline 76 Locking pipe plug
18 Cross-line 76A Improved locking pipe plug
20 Connection of the cross-line 78 Tightening nut
22 Branch fitting 80 Ram expander
24 Flange fitting 82 Shaft
26 Valve 84 Base member
28 Pig launcher 86 Tubular portion
30 Pipeline pig 88 Radial flange
32 Hydraulic ram 90 Compression member
34 Plugging machine 92 Seal member
36 Pig signal device 94 Actuation member
38 Branch fitting 96 Cup portion
40 Flange fitting 98 Frusto-conical surface
42 Valve 100 Segmented slips
44 Pig catcher 102 Base portion
46 Hot tap machine 104 Bolt
48 Flow-through pig guide 106 Bolt head
50 Tubular body 108 Cross-line plugger
52 Slotted openings 110 Back up plate
54 Outer diameter 112 Elastomer seal
56 Locking ring flange 114 Attachment guide
58 External groove 116 Pipeline pig 60 Branch shield pig guide 118 Bypass line
62 Tubular body portion 120 Bypass valve
64 Lateral tubular portion 126 Retainer spring
66 Locking ring flange 128 External threads
68 Circumferential groove 132 Rotation resistor
134 Wire brush 152 Inner end portion
136 Wires 154 Threaded opening
138 Outer end 156 Interior recess
140 Pipe inner surface 158 Pipe plug
142 A, B Face plates 160 Washer
144 Opening 162 Internal threads
146 Bolt 164 Flange
148 Threaded opening 166 Openings
150 Holder
Referring first to Figure 1, an environment in which the principles of this invention can be practiced is illustrated. This figure shows the earth's surface 10 having an excavation 12 that reveals a first main pipeline 14, a second main pipeline 16 and a cross-line 18. This invention provides improved methods, systems and apparatuses for verifying the integrity of cross-line 18.
The first step in practicing the invention to provide access to cross-line 18 is to affix a branch fitting 22 to the exterior of primary pipeline 14 on the side thereof diametrically opposite the point of intersection 20 of cross-line 18. The term "cross- line" could equally as well be "branch pipeline" as either term is indicative of a line that extends perpendicularly from a primary pipeline. The branch fitting 22 needs to be of a diameter at least equal to the diameter of cross-line 18 but preferably is of a diameter equal to that of the main pipeline 14. Such branch fitting will typically include a flange 24 which receives the attachment of a full opening valve 26. After valve 26 has been attached, then a hot tap machine (not shown) is secured to the valve. The use of hot tapping machines to provide access to the interior of a pipeline is well known in the industry. For specific teachings of the construction, operation and methods of use of hot tapping machines, reference may be had to the following United States Patents:
4,579,484 entitled "Underwater Tapping Machine"; and 5,439,331 entitled "High Pressure Tapping Apparatus", that have been previously identified.
By use of a hot tapping machine a shell cutter (not shown) is extended through valve 26, flange 24 and branch fitting 22 to engage the exterior sidewall of main pipeline 14 so that an opening is cut in the side wall of main pipeline 14. The opening is diametrically opposite the connection 20 of cross-line 18 to the main pipeline 14. After such large diameter opening is cut in the side wall of main pipeline 14, the piece cut out of the pipeline is removed through valve 26. Valve 26 can then be closed and the hot tapping machine (not shown) can be removed and in place of the hot tapping machine, a pig launcher 28 is attached to valve 26. Pig launchers are well known in the pipeline industry. Essentially a pig launcher is a device that permits, at atmospheric pressures, a pipeline pig such as the pipeline pig 30 illustrated in Figure 1, to be positioned within the launcher. The pig launcher is then hermetically sealed. Valve 26 can then be opened and by means such as a hydraulic ram 32, pipeline pig 30 can be pushed out of pig launcher 28, through valve 26 and branch fitting 22, and diametrically through main pipeline 14 into the interior of cross-line 18. By force of fluid flow, either liquids or gases, the pig can then be caused to move through cross- line 18. In Figure 1, a pipeline pig 30 is indicated by dotted outline as moving through cross-line 18.
In order to ensure the passage of a pig 30 through cross-line 18, increased fluid flow pressure can be obtained by temporarily closing or at least partially closing main pipeline 14. For this purpose, a plugging machine generally indicated by the numeral 34 can be affixed to pipeline 14 downstream of the cross-line connection. A plugging machine which functions as previously described can provide an opening into the interior of main pipeline 14 through which a flow blockage apparatus (not shown) can be inserted for temporarily blocking or at least reducing fluid flow through the main pipeline. Such flow blockage mechanism is well known in the pipeline industry and is commercially available from T.D. Williamson, Inc. of Tulsa, Oklahoma, U.S.A.
With fluid flow blocked or at least restricted by way of a plugging machine 34 and the insertion of a flow blockage mechanism, the pipeline pig 30 will be forced through the interior of cross-line 18. The pig 30 may be of any type that is currently used in the industry including geometrical measurement pigs, cleaning pigs, corrosion measurement pigs and so forth. Movement through cross-line 18 of the pig can be verified by the use of pig signaling devices 36 that are attached to the exterior of cross-line 18. Two such pig signaling devices are shown in Figure 1.
In Figure 1 a second branch fitting 38 is shown as having been attached to second main pipeline 16 opposite the connection of cross-line 18. As with first pipeline 14, after the branch fitting 18 is attached with a flange 40, a valve 42 is employed. By accessing the exterior surface of main pipeline 18 through valve 42, a hot tapping machine (not shown) may be employed to provide an opening in the wall of second main pipeline 16. After such opening is provided, the hot tapping machine is removed and a pig catcher 44 can be installed. In this way, after the pipeline pig 30 has traversed through cross-line 18 to perform any of the functions that are commonly available by the use of a pipeline pig, the pig is captured within catcher 44 and may be removed.
As has been described, to augment fluid flow pressure through cross-line 18 to cause pig 30 to move therethrough, it may be desirable to block the fluid flow that normally occurs within second main pipeline 16 and for this reason, a hot tap machine can be employed so as to provide an opening into the interior of second main pipeline 16 and the insertion of flow blockage equipment with a plugging machine to temporarily block or restrict fluid flow. Thus with flow blocked or restricted downstream of the cross-line in first main pipeline 14 and blocked or restricted upstream of the cross-line in second main pipeline 16, fluid flow pressure through cross-line 18 is optimized to ensure movement of pipeline pig 30 through it and into position for retrieval.
After the opening through the side wall of first pipeline 14 has been accomplished as described, it is important that provisions be made so that when pipeline pig 30 is injected diametrically through the main pipeline that the pig will pass into cross-line 18 and not become lodged within the main pipeline. For this reason, a flow-through pig guide as generally indicated by the numeral 48 is employed. The flow-through pig guide is illustrated in Figure 2. Flow-through pig guide 48 is inserted diametrically through first main pipeline 14 that is illustrated in dotted outline in Figure 2, the flow-through pig guide 48 passing through valve 26. Flow-through pig guide 48 has a tubular body 50 with slotted openings 52 therein. The outer end portion 54 is of external diameter so that it can extend telescopically within the interior of cross-line 18.
The inner end of flow-through pig guide 48 has a locking ring flange 56 with an external circumferential groove 58 therein. Flange fittings 24 and 40, as previously identified, are preferably of the type that facilitate receiving an internal device and removably locking it in place. Such a device is illustrated and described in detail in United States Patent No. 3,766,947 entitled "Fluid-Type Closure", issued October 23, 1973. This patent teaches a type of flange that has provisions for actuation of a plurality of locking elements that can be moved radially inwardly or radially outwardly by adjustment of screw mechanisms on the exterior of the flange (not shown in Figure 1). These locking elements are moved into external circumferential groove 58 to thereby hold flow-through pig guide 48 in position as it extends diametrically through pipeline 14.
The use of the flow-through pig guide ensures, as above indicated, the passage of a pig 30 through the main pipeline 14 so that the pig passes into cross-line 18. In the same manner, a flow-through pig guide as illustrated in Figure 2 is positioned diametrically within second pipeline 16 in which case the flange 40 (as seen in Figure 1) is of the type that has locking elements that can be extended into and withdrawn from the circumferential groove 58. The flow-through pig guide 48 of Figure 2 is used only when a pig is being launched into or received diametrically through main pipeline 14 or 16 and thereafter removed since if left in position they would interfere with the passage of pigs through the main pipelines.
After the method of this invention has been employed as has been described to provide access diametrically through main pipelines 14 and 16 and after pigging operations or other work required to be done on cross-line 18 has been completed, it is important that the main pipelines 14 and 16 be restored to function in the manner as if such work on the cross-line had not been done. That is, it is important that the provision of the openings through the walls of main pipelines 14 and 16 do not interfere with the passage of pipeline pigs through them. For this purpose, after the work on the cross-line 18 has been completed, a branch shield pig guide generally indicated by the numeral 60 as shown in Figure 3, can then be installed within the main pipelines 14 and 16. The branch shield pig guide includes a main short length tubular body portion 62 that is of external dimensions slightly less than the internal diameter of main pipeline 14. Extending from tubular body portion 62 is a lateral tubular portion 64 that connects the main body portion to a locking ring flange 66 that has a circumferential groove 68. Thus, by use of a locking ring system as illustrated and described in U.S. Patent No. 3,766,947 as previously mentioned, the branch shield pig guide 60 can be maintained within the interior of main pipeline 14.
Extending from the tubular body portion 62 is a short length tubular portion 70 of external diameter substantially equal to the interior diameter of cross-line 18. When positioned within the interior of main pipeline 14, the short length tubular portion 70 extends telescopically within the cross-line to assist in anchoring the branch shield pig guide 60 in position. To prevent the possibility of a pig passing through main pipeline 14 attempting to enter cross-line 18, paralleled bars 72 close tubular portion 70. Similar bars 74 are shown closing the lateral tubular portion 64 for similar reasons, that is, to close off the possibility of a pig attempting to enter this passageway. The use of bars 74 is optional since there is no fluid flow through this lateral tubular passageway that would tend to cause a pig to enter it whereas fluid flow through the short length tubular portion 70 is possible.
The branch shield pig guide 60 is installed through valve 26 as previously described by means of a hot tapping machine so that such device can be installed while the main pipeline 14 is under pressure. Branch shield pig guide 60 includes a flange closure system 66 to close off flange 24 enabling valve 26 to be removed and a blind flange (not shown) installed.
A branch shield pig guide 60 will also be installed in second main pipeline 16 for the same reasons as described with reference to the first main pipeline 14.
After access to cross-line 18 is provided diametrically through main pipelines 14 and 16, it is then possible to seal off both ends of the cross-line 18 to allow for pressure testing, as is sometimes required to ensure the integrity of the cross-line. For this purpose, a locking pipe plug 76 as generally indicated in Figure 4 and in greater detail in Figures 5 and 6 is employed. As shown in Figure 4 the locking pipe plug 76 has, on the rearward end thereof, a tightening nut 78 that can be grasped by a ram expander 80 that is positioned and rotated by a shaft 82. By means of hot tapping equipment that controls the axial and rotational position of ram expander 80, it can be extended diametrically through the interiors of both main pipeline 14 and 16. In this way a locking pipe plug 76 can be inserted in each end of cross-line 18. The details of the locking pipe plug are shown in Figure 5. A base member 84 has a tubular portion 86 that is externally threaded and receives nut 78 thereon. The base portion 84 has an integral radial flange portion 88 that faces a radial compression member 90 that is slidable on tubular portion 86. Between radial flange portion 88 and compression member 90 is a circumferential elastomeric seal member 92. In the relaxed position as shown in Figure 5 the seal member is cupped outwardly as indicated in the cross-sectional view. Received on tubular portion 86 is an actuation member 94 having a cupped portion 96. The compression member 90 has a frusto- conical surface 98 that receives segmented slips 100. When nut 78 is threadably tightened by rotation of shaft 82 and thereby ram expander 80 as seen in Figure 4, the threaded advancement of nut 78 towards base member 84 moves compression member 90 towards base member radial flange 88, compressing seal member 92. The segmented slips 100 are concurrently moved forward and the reaction of the slips with frusto-conical surface 98 causes the slips to expand radially outwardly for engagement with the interior of cross-line 18. In this way the locking pipe plug 76 is tightly engaged within the interior of cross-line 18. With a locking pipe plug at each end of the cross-line, pressure can be applied to it to test for leakage. High pressure can be applied to test the bursting strength of cross- line 18. After such tests are completed, each locking pipe plug can be removed by reversing the rotation of nut 78, and retrieving the plug with expander 80 as affixed to shaft 82.
Another way of closing off the opposed ends of cross-line 18 is by the use of a cross-line plugger 108 as shown in Figures 7 through 11. This item has a base portion 102 with a bolt 104 having a head 106 that forms the forward end of the cross-line plugger, which is generally indicated by the numeral 108. Bolt 104 receives an arcuate back up plate 110 having an elastomer seal 112 on the forward surface thereof. The radius of curvature of the back up plate 110 and the forward surface of elastomer seal 112 is the same radius of curvature as the interior circumferential surface of the main pipelines 14 and 16. The rearward end of the cross-line plugger 108 is an attachment guide 114.
The cross-line plugger 108 is used in this way: with an opening having been formed in each of the main pipelines 14 and 16, each ends of cross-line 18 can be temporarily closed by inserting through each open valves 26 and 42, a cross-line plugger 108 attached to a rod (not shown) extending from hydraulic cylinder 32. Cross-line plugger 108 passes diametrically through a main pipeline. The elastomer seal 112 of each plugger engages the circumferential area of the internal cylindrical wall of a main pipeline that surrounds the opening communicating with cross-line 18. In this way the cross-line is plugged off at each end. It should be kept in mind that the cross-line plugger 108 is not intended for use to resist high pressure within cross-line 18 but cross-line pluggers 108 may be used to isolate the cross-line from the main pipelines and permit drainage of liquids and gases from it so as to permit repairs. The cross-line pluggers are not intended for permanently closing the cross-line. Figure 12 is a small scale isometric representation of a pipeline pig 116 which may be of the type used for determining the structural integrity of cross-line 18. Pigs 116 of the type shown in Figure 12 may include highly technical systems such as for measurement of corrosion by magnetic flux leakage, or sonic energy reflections.
Figure 1 illustrates an additional element that is not directly related to the methods and systems of this invention but that make the inventions herein more useful. Extending from cross-line 18 is a bypass line 118 that connects to second main pipeline 16 downstream of branch fitting 38. A bypass valve 120 controls flow through bypass line 118. When a pig 30 is launched through branch fitting 22 and diametrically through first main pipeline 14, valve 120 is opened. When pipeline pig 30 gets to near the end of cross-line 18 as shown in dotted outline in Figure 1, the restriction to fluid flow imposed by the pipeline pig will cause fluid flow through bypass line 118, stopping further movement of the pipeline pig which is then in position for retrieval by apparatus extending from pig catcher 44. When a pig is not being received bypass valve 120 will normally be closed. Figure 13 illustrates in elevational view, shown partially in cross-section, an improved locking pipe plug generally indicated by the numeral 76A. The improved locking pipe plug employs the basic concepts of the locking pipe plug illustrated and described with reference to Figures 5 and 6 and the components in the improved locking pipe plug 76A that have the similar structure and function to the components in Figures 5 and 6 are provided with the same numbers.
Thus, the embodiment of Figure 13, as compared with the embodiment of Figures 5 and 6, has these similar functioning components: a base member 84 with a tubular portion 86 and a radial flange 88; an expansion member 90; an elastomeric seal member 92; an actuation member 94 having a cup portion 96; and a frusto- conical surface 98 on compression member 90 that receives segmented slips 100. In addition to the similarities in the locking pipe plug illustrated in Figures 5 and 6 and that of Figure 13, Figure 13 shows additional features and improvements.
As has been previously described, segmented slips 100 are formed of metal to securely lock into the interior wall of the pipe in which the improved locking pipe plug 76 A is positioned. A retainer spring 126 encircles the segments making up segmented slips 100 to hold them in contact with frusto-conical surface 98 of compression member 100.
Actuation member 94 is received slideably on the external threads 128 of tubular portion 86 of base member 84. When the improved pipe plug 76A is inserted into a pipe, rotation of holder 150, with its internal threads 154 engaged in the external threads 128 on tubular portion 86, causes actuation member 94 to be axially advanced so that it moves the cup portion 96 against segment slips 100 to thereby force compression member 90 in the direction towards radial flange 88. This causes radially expansion of segmented slips 100 and simultaneously axially advances compression member 90 towards flange 88, thereby compressing seal member 92. Thus, threadably rotating holder 150 simultaneously causes segmented slips 100 to lock against the interior surface of the pipe in which the plug is positioned and to radially expand the seal member 92 to seal against the wall of the pipe in which the plug is positioned.
When holder 150 is rotated to set the locking pipe plug it is necessary that the pipe plug itself not rotate, that is, there must take place threading action between the internal threads of holder 150 and external threads 128 on the base member tubular portion 86. Stating it another way, it is important that the base member 84 be restrained from rotation so that actuation member 94 can be slideably advanced, through rotation of holder 150, to actuate segmented slips 100 and seal member 92. The embodiment of the improved locking plug 76A of Figure 13 includes an innovative system of restraining rotation of the base member 84 so as to permit locking a plug in position. When the improved locking pipe plug 76A is inserted into a pipeline, it is necessary to rotate holder 150 relative to base member 84 to threadably advance it and thus slideably advance the actuation member 94 so that the cup portion 96 presses against slips 100 to start the process of locking the pipe plug within the pipe. Thus it is helpful if a system is provided for resisting the rotation of base member 84 especially during the initial process of tightening holder 150 on the actuation member tubular portion 86. For this purpose, the improved locking pipe plug 76A includes a rotation resistor generally indicated by the numeral 132. In Figure 13, a preferred embodiment of a rotation resistor 132 is illustrated and is in the form of a stiff cleaning brush assembly commonly used on pipeline cleaning pigs. An alternative embodiment is essentially of a cylindrical wire brush that is of the type readily commercially available and that is typically used as a part of a rotating mechanism for cleaning the surface of metallic objects. Thus in the illustrated embodiment, the rotation resistor 132 is a wire brush 134 that provides a large number of radially extending flexible wires 136. Each of the wires 136 has an outer free end 138 arranged so that the length of the wires 136 extends the outer ends thereof 138 beyond the normal diameter of the pipe in which the plug is to be used. That is, the wires 136 are of sufficient lengths so that the outer ends 138 thereof flexibly engage the pipe inner surface 140. Wire brush 134 typically includes opposed face plates 142A and 142B that retain the wires 136 therebetween. Face plates 142 A and 142B each have a central opening 144 therein that receives a bolt 146. Bolt 146 is received in a threaded opening 148 in base member 84. Thus the rotation resistor 132 is rotatably locked to base member 84. When the improved locking pipe plug 76A is inserted into a pipe to plug the interior of the pipe against fluid flow therethrough, the wires 136 of the wire brush flex or bend so that the pipe plug is relatively easily inserted into the pipe. The wire ends 138 engage the internal surface 140 of the pipe and resist the rotation of the base member 84. It is to be emphasized that the wire brush 134 does not lock the plug base member 84 against rotation but merely resists rotation. AU that is required is that rotational resistance be applied to the base member 84 as the holder 150 is rotated to threadably advance actuation member 94 slideably on tubular portion 86. As the actuation member 94 advances, segmented slips 100 engage the pipe interior surface and immediately serve to resist rotation of the pipe plug. As the advance of the base member 84 continues compressive force is applied against seal member 92 so the outer circumferential surface thereof expands to engage the interior of the pipe to further resist rotation. Thus it can be seen that after actuation member 94 is advanced, the segmented slip 100 and seal member 92 themselves begin to lock the pipe plug against rotation. After this action takes place the rotational resistance applied by rotation resistor 132 is no longer required. Therefore, the function of wire brush 134 is to merely resist rotation to get the process of anchoring the pipe plug in the pipe started. In the same manner, when it is necessary to remove the pipe plug, as the holder 150 is threadably retracted, the contact of segmented slips 100 and seal member 92 with the pipe interior surface gradually decreases and the rotational resistor 132 takes over to allow the actuation member 94 to be retracted to the point that the plug can be axially extracted from the pipe.
Another element illustrated in Figure 13 that is not shown in Figures 5 and 6 is a holder generally indicated by the numeral 150. Holder 150 is tubular with an inner end portion 152 having an internally threaded opening 154 therein. The forward portion of holder 150 is tubular providing an interior recess 156 that receives a threaded pipe plug 158. Internally pipe threads 162 at the outer end of the base member tubular portion 86 threadably and sealably receives pipe plug 158. A washer 160 has an outer diameter greater than the diameter of holder threaded opening 154. Thus after holder 150 is threaded onto the outer end of tubular portion 86, pipe plug 158 and washer 160 may be secured in position to prevent holder 150 from being inadvertently unthreaded from base member tubular portion 86.
The outer end of holder 150 has a radial flange 164 with openings 166 therein. Bolts extending through openings 166 (not shown) can be used to hold locking pipe plug 76A, for inserting it into a pipe and correspondingly for removing it after a plug has been inserted, onto shaft 82 of an insertion tool or onto a tapping machine 46 of the type as commonly employed in piping technology and that is readily commercially available from T.D. Williamson, Inc. of Tulsa, Oklahoma.
While the invention has been described with a certain degree of particularity, it is manifest that many changes may be made in the details of construction and the arrangement of components without departing from the spirit and scope of this disclosure. It is understood that the invention is not limited to the embodiments set forth herein for purposes of exemplification, but is to be limited only by the scope of the attached claim or claims, including the full range of equivalency to which each element thereof is entitled.

Claims

WHAT IS CLAIMED IS:
1. A method of providing access to the interior of a cross-line that intersects with a primary pipeline of equal or greater diameter, comprising the steps of: attaching a branch fitting to the exterior of the primary pipeline on the side thereof opposite the point of intersection of the cross-line; affixing a full opening valve to said branch fitting; securing a hot tap machine to said valve; by use of said hot tap machine, cutting an opening in the primary pipeline diametrically opposite of the cross-line and of a diameter at least equal to the internal diameter of the cross-line; and removing said hot tap machine leaving an access through said valve and diametrically through the primary pipeline into the interior of the cross- line.
2. A method according to Claim 1 including the step of attaching a branch fitting to the exterior of the primary pipeline includes welding said branch fitting to the main pipeline.
3. A method according to Claim 1 including the step of inserting a flow-through pig guide diametrically through the main pipeline and into the cross-line to thereby permit launching a pig into the cross-line.
4. A method according to Claim 1 including conducting a pigging operation by the additional steps of: affixing a pig launcher to said valve; and launching a pig from said launcher through said valve, through said branch fitting and diametrically through the primary pipeline into the cross- line.
5. A method according to Claim 1 wherein the opening cut into the primary pipeline is of a diameter substantially equal to the inside diameter of the primary pipeline and including the step of positioning a branch shield pig guide through said valve and into the interior of the primary pipeline, the branch shield pig guide having a tubular body portion substantially equal to the interior diameter of the primary pipeline for guiding a pig past the cross- line intersection and a lateral tubular portion telescopically extendable into the cross-line and including restrictions in the lateral tubular portion that permit fluid flow therethrough but prohibit the passage of a pig therethrough.
6. A method of plugging a cross-line that extends between a first and a second main pipeline comprising the steps of: affixing a first branch fitting to said first primary pipeline diametrically opposite from the cross-line; affixing a second branch outlet fitting to said second main pipeline diametrically opposite from the cross-line; affixing a full opening valve to each of said first and second side branch fittings; attaching a hot tap machine sequentially to said first and second valves; by use of said hot tap machine, cutting an opening in each main pipeline, each opening being in diametrical alignment with the cross-line; and inserting pipe plugs diametrically through both of the first and second main pipelines and into opposed ends of the cross-line.
7. A method according to Claim 6 wherein said pipe plugs are locking plugs that fit internally of the cross-line and are expanded to provide pressure resisting leak proof seals of the opposed end of the cross-line to thereby permit pressure testing of the cross-line.
8. A method according to Claim 6 wherein said pipe plugs are cross-line plugs that fit elastomeric portions against the interior wall of both the first and second main pipelines and that surround the opposed ends of the cross-line where the cross-line communicate with the interiors of the main pipelines whereby the cross-line can be depressurized and maintenance or repairs conducted on it.
9. For use in closing the internal cylindrical sidewall of a pipe, a locking pipe plug, comprising: a base member having a radial flange portion of diameter less than that of the cylindrical sidewall and an integral co-axial tubular portion; an annular elastomeric seal member having a circumferential sealing surface and a central opening slideably received on said base member tubular portion and in engagement with said flange portion; a circular rigid compression member having a central opening slideably received on said base member tubular portion, having a radial face in contact with said elastomeric member and having a frusto-conical circumferential surface extending in the direction away from said radial face; a plurality of rigid segmented slips circumferential received on said compression member frusto-conical surface and having teeth for biting into the cylindrical sidewall, the segmented slips being radially outwardly displaceable when slideably displaced on said frusto-conical surface; an actuation member slideably received on said base member tubular portion providing an end surface in engagement with said segmented slips; and a tightening nut threadably received on a threaded end portion of said base member tubular portion that can be threadably tightened to cause said segmented slips and said circumferential sealing surface to be outwardly displaced to lock the pipe plug in position and to sealably close the pipe cylindrical sidewall.
10. A locking pipe plug according to Claim 9 wherein said plurality of rigid segmented slips are slideably retained on said compression member frusto- conical surface by a circumferential retainer spring.
11. A locking pipe plug according to Claim 9 wherein said compression member has an end surface in contact with said seal member whereby axial displacement of said compression member radially expand said circumferential sealing surface of said elastomeric member.
12. A locking pipe plug according to Claim 9 wherein said elastomeric member is V-shaped in cross-section to thereby augment the radial expansion of said circumferential sealing surface when the elastomeric member is axially compressed.
13. A locking pipe plug according to Claim 9 wherein said tightening nut has at a forward end thereof a radially extending flange portion for use when the locking pipe plug is positioned into or removed from a pipe using an actuator or tapping machine.
14. A locking pipe plug according to Claim 9 including a rotation resistor affixed to said base member and configured to engage the internal cylindrical sidewall of a pipe in which the pipe plug is positioned.
15. A locking pipe plug according to Claim 14 wherein said rotation resistor is in the form of a wire brush having radially extending wires that engage the internal cylindrical sidewall of a pipe in which the pipe plug is positioned.
16. A locking pipe plug according to Claim 13 wherein said tightening nut is elongated, having an internally threaded opening in a forward end to engage said threaded end portion of said base member tubular portion and has a recess in a rearward end terminating in said radially extending flange portion and wherein said base member tubular portion is internally threaded at the outer end thereof and including a pipe plug and washer positioned within said tightening nut recess, the pipe plug being threaded into said base member tubular portion, the pipe plug and washer thereby retaining said tightening nut onto said base member tubular portion.
PCT/US2006/019420 2005-05-20 2006-05-18 Cross-line plugging system and locking plug WO2006127449A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008512538A JP2008545926A (en) 2005-05-20 2006-05-18 Cross-line stopper system and stopper
BRPI0611290-0A BRPI0611290A2 (en) 2005-05-20 2006-05-18 cross line buffering system and locking cap
CA002606814A CA2606814A1 (en) 2005-05-20 2006-05-18 Cross-line plugging system and locking plug
CN2006800174295A CN102232159A (en) 2005-05-20 2006-05-18 Cross-line plugging system and locking plug
EP06760170A EP1886060A2 (en) 2005-05-20 2006-05-18 Cross-line plugging system and locking plug
AU2006251924A AU2006251924B2 (en) 2005-05-20 2006-05-18 Cross-line plugging system and locking plug

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/133,514 2005-05-20
US11/133,514 US7311114B2 (en) 2005-05-20 2005-05-20 Cross-line plugging system
US11/431,215 US7546847B2 (en) 2005-05-20 2006-05-10 Locking plug for closing the sidewall of a pipe
US11/431,215 2006-05-10

Publications (2)

Publication Number Publication Date
WO2006127449A2 true WO2006127449A2 (en) 2006-11-30
WO2006127449A3 WO2006127449A3 (en) 2011-05-26

Family

ID=37452628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/019420 WO2006127449A2 (en) 2005-05-20 2006-05-18 Cross-line plugging system and locking plug

Country Status (5)

Country Link
EP (1) EP1886060A2 (en)
KR (1) KR20080008372A (en)
AU (1) AU2006251924B2 (en)
CA (1) CA2606814A1 (en)
WO (1) WO2006127449A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017129631A1 (en) * 2016-01-25 2017-08-03 Quality Intervention Technology As Plug for plugging a line and a method for installing a plug in a line
US10302598B2 (en) 2016-10-24 2019-05-28 General Electric Company Corrosion and crack detection for fastener nuts

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US660199A (en) * 1898-05-25 1900-10-23 Friedrich Silberstein Telautograph or facsimile-telegraph.
US3842864A (en) * 1971-10-29 1974-10-22 American Gas Ass Stopping apparatus for pipe lines
US4100929A (en) * 1976-08-02 1978-07-18 Team, Inc. Across the line plugging apparatus and method
US4401133A (en) * 1981-05-28 1983-08-30 Gulf & Western Manufacturing Company Device for launching spherical pigs into a pipeline
GB2117863A (en) * 1982-03-23 1983-10-19 Stortford Engineering Designs Pipe plug
US5035266A (en) * 1989-12-11 1991-07-30 Cherne Industries Incorporated Mechanical plug for clean-out tees
US5493748A (en) * 1995-04-06 1996-02-27 Santo; David Tube cleaning device
US6691733B1 (en) * 1997-11-04 2004-02-17 Bruce E. Morris Tapping connector and method of using same
US6241424B1 (en) * 1998-03-17 2001-06-05 Sonsub Inc. Method and apparatus for replacing damaged section of a subsea pipeline without loss of product or entry of seawater
US6810903B1 (en) * 1998-04-22 2004-11-02 Hydra-Stop, Inc. Conduit flow controller
US6361015B1 (en) * 2000-07-26 2002-03-26 Plug-It Products Corporation Variable flow-through control plug
GB0027277D0 (en) * 2000-11-08 2000-12-27 Stolt Offshore Ltd Connecting conduits for fluids
CA2370729C (en) * 2001-11-23 2010-01-26 John W. Mcgivery Method and device for plugging a gas main
US6769152B1 (en) * 2002-06-19 2004-08-03 Parnell Consultants, Inc. Launcher for passing a pig into a pipeline
US6883546B1 (en) * 2003-03-20 2005-04-26 Thomas E. Kobylinski Lockable compression plug assembly for hermetically sealing an opening in a part, such as the end of a tubular member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017129631A1 (en) * 2016-01-25 2017-08-03 Quality Intervention Technology As Plug for plugging a line and a method for installing a plug in a line
US10718460B2 (en) 2016-01-25 2020-07-21 Quality Intervention Technology As Plug for plugging a line and a method for installing a plug in a line
US10302598B2 (en) 2016-10-24 2019-05-28 General Electric Company Corrosion and crack detection for fastener nuts

Also Published As

Publication number Publication date
CA2606814A1 (en) 2006-11-30
AU2006251924A1 (en) 2006-11-30
EP1886060A2 (en) 2008-02-13
AU2006251924B2 (en) 2010-09-23
WO2006127449A3 (en) 2011-05-26
KR20080008372A (en) 2008-01-23

Similar Documents

Publication Publication Date Title
US7546847B2 (en) Locking plug for closing the sidewall of a pipe
CA2485354C (en) A resilient seal
US7841364B2 (en) Double block and bleed plug
US7475591B2 (en) Methods and systems for hydrostatic testing a pipeline
US4434816A (en) Service line interior by-pass fitting
US5560388A (en) Seal plug for lined pipelines
EP2603727B1 (en) Pipeline isolation tool and method
US8616074B2 (en) In-line piggable wye fitting, apparatus and method
WO2006055102A9 (en) Pipeline repair system and method of installation
US8783293B2 (en) Simple reverse flow wye connector
AU2006251924B2 (en) Cross-line plugging system and locking plug
US5402828A (en) Closure device with dual-mandrel-acutated peripheral seal
US4377945A (en) Service line interior by-pass
US4427112A (en) Service line interior by-pass kit
US11085571B1 (en) Sealing plug system
RU2476758C2 (en) Tool and method for safe removal of valves installed in pipelines for transportation of liquids
US4427031A (en) Method of installing an interior by-pass liner
US4427032A (en) Service line interior by-pass
Bowie A comparison of double block and bleed technologies
WO2003002902A1 (en) Apparatus for penetrating a pipewall, comprising an inner pipe equipped with seal and a pretensioning device and a method for penetrating a pipewall and setting up a connection point
GB2470997A (en) A pipe plugging system
Selden et al. New Frontienrs in Pipeline Pressure Isolation: Non-Invasive, Without De-Pressurizing, Production Loss or Flow Interruption
Millward Case Studies Highlighting Rapid Repair Methods of Pressurised Pipelines Damaged by Anchors
FR2583849A1 (en) Method and device for detecting leaks in pipelines

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680017429.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2606814

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 4283/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006251924

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008512538

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020077027004

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006760170

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: PI0611290

Country of ref document: BR

Kind code of ref document: A2