WO2006123694A1 - フッ素樹脂組成物及び電線 - Google Patents

フッ素樹脂組成物及び電線 Download PDF

Info

Publication number
WO2006123694A1
WO2006123694A1 PCT/JP2006/309821 JP2006309821W WO2006123694A1 WO 2006123694 A1 WO2006123694 A1 WO 2006123694A1 JP 2006309821 W JP2006309821 W JP 2006309821W WO 2006123694 A1 WO2006123694 A1 WO 2006123694A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
electric wire
coating
mass
ptfe
Prior art date
Application number
PCT/JP2006/309821
Other languages
English (en)
French (fr)
Inventor
Hideki Kono
Kenji Ishii
Yoshiyuki Takase
Sadashige Irie
Takahiro Kitahara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US11/920,442 priority Critical patent/US7723615B2/en
Priority to EP06746524.5A priority patent/EP1887040B1/en
Priority to CN2006800138655A priority patent/CN101163739B/zh
Priority to JP2007516316A priority patent/JP4798131B2/ja
Publication of WO2006123694A1 publication Critical patent/WO2006123694A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to a fluorine resin composition and an electric wire.
  • Fluororesin is excellent in properties such as heat resistance, chemical resistance, solvent resistance, and insulation. Therefore, it is possible to obtain products such as tubes, wire coatings, pipes and filaments by melt extrusion molding. it can.
  • Tetrafluoroethylene [TFE] / hexafluoropropylene [HFP] copolymer [FEPW] has a low dielectric constant and dielectric loss tangent, and has excellent insulation properties. It is suitably used for wire coating applications such as wires.
  • PTFE is blended in the form of a dispenser, but FEP and the above terpolymer are blended as a powder and cannot be blended as a dispenser. ⁇ that is completely described.
  • This composition does not reduce the frequency of lamp generation, similar to the above-described technique in which FEP powder and PTFE are blended to reduce the deposition by carrying the lamp away during wire coating molding. There is. In addition, a lamp with a small size has a problem of increasing the capacitance variation and degrading the electrical characteristics of the final product.
  • Patent Document 1 JP-A 52-98761
  • Patent Document 2 Pamphlet of International Publication No. 03Z22922
  • Patent Document 3 International Publication No. 03Z22923 Pamphlet
  • Patent Document 4 Japanese Translation of Special Publication 2004- 502853
  • Patent Document 5 International Publication No. 01Z36504 Pamphlet
  • Patent Document 6 Japanese Patent Laid-Open No. 7-70397
  • An object of the present invention is to provide a fluororesin composition that improves moldability in melt extrusion molding, in particular, high-speed molding in wire extrusion extrusion molding, and greatly improves molding defects in view of the above-mentioned present situation. It is to provide.
  • the present invention relates to 100 parts by mass of tetrafluoroethylene [TFE] Z hexafluoropropylene [HFP] copolymer [FEP] and a standard specific gravity of 2.15 to 2.30.
  • a fluorocow composition comprising 0.01 to 3 parts by mass of tetrafluoroethylene, wherein the fluorocow composition also comprises an aqueous dispersion of the FEP and the polytetrafluoroethylene power.
  • a fluorinated resin composition obtained by mixing an aqueous dispersion and then praying and then melt-extruding after drying.
  • the present invention is an electric wire having a core conductor and a coating material formed on the core conductor using a fluorine resin composition, the fluorine resin composition of the present invention It is an electric wire characterized by being a fluorine resin composition.
  • the present invention is a foamed electric wire having a core conductor and a coating material formed on the core conductor using a fluorine resin composition, wherein the fluorine resin composition is the present invention.
  • the fluorocobalt composition of the present invention comprises 100 parts by mass of FEP and 0.01 to 3 parts by mass of polytetrafluoroethylene [PTFE] having a standard specific gravity of 2.15 to 2.30. Is.
  • the FEP is a fluorine-containing copolymer that is powerful with TFE and HFP, and can be melt-processed.
  • the FEP is composed of TFE and HFP, it may be obtained by copolymerizing only one type of monomer other than TFE and HFP, or by copolymerizing two or more types. It may be.
  • the other monomers are not particularly limited, and examples thereof include perfluorobule ether [PFVE], black trifluoroethylene [CTFE], fluorinated bule [VF], and hexafluoroisobutene. Etc.
  • the PFVE is not particularly limited.
  • the general formula: CF CF—ORf (where Rf
  • the perfluoroaliphatic hydrocarbon group means an aliphatic hydrocarbon group in which all of the hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • One fluoroaliphatic hydrocarbon group may have an ether oxygen.
  • PFVE perfluoro (alkyl bur ether) [PAVE].
  • PAVE examples include perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], perfluoro (butyl vinyl ether), etc. From the viewpoint of performance, PMVE, PEVE, PPVE power is preferable, and PPVE is more preferable.
  • the FEP is preferably composed of a TFE unit, an HFP unit, and a PFVE unit, and more preferably a TFE unit, an HFP unit, and a PFVE unit. Further, those having a melting point of 240 ° C or higher and 280 ° C or lower, more preferably those having a melting point of 250 ° C or higher and 270 ° C or lower are more preferable.
  • the FEP may have only one PFVE unit or two or more PFVE units.
  • the TFE unit, HFP unit, and PFVE unit are derived from TFE, HFP, and PFVE, respectively, and are part of the molecular structure of FEP.
  • the TFE unit is represented by-(CF CF)-.
  • the FEP is preferably composed of only TFE units and HFP units, or is composed of only TFE units, HFP units, and PFVE units. More preferred are those consisting only of units and PFVE units.
  • the FEP is preferably a mass ratio of TFE units to HFP units (100 in total for both monomers) force (70 to 95): (5 to 30) (85 to 95): (5 to 15) is more preferable.
  • the monomer units derived from the other monomers are generally 10% by mass or less of the total monomer units.
  • the mass ratio of TFE units: H FP units: PFVE units (100 in total for all units) is (70 to 95): (4 to 20) : (0.1-10) is preferred (75-95): (5-15): (0.3-3) is more preferred.
  • the PFVE unit in the above mass ratio is based on the total mass of the two or more units when the PFVE unit is two or more units, as in the case of two types of PMVE units and PPVE units.
  • the above mass ratio is the content of TFE unit, HFP unit and PFVE unit, respectively, NMR analyzer (Bruker Biospin, AC300 high temperature program) or infrared absorption measuring device (Perkin Elma). , Model 1760).
  • the FEP in the present invention generally has a melting point of 240 ° C or higher and 280 ° C or lower.
  • the melting point has a preferred lower limit of 250 ° C., a more preferred lower limit of 255 ° C., a preferred upper limit of 270 ° C., and a more preferred upper limit of 265 ° C.
  • the melting point is the peak of the endothermic reaction in the thermal melting curve obtained by using a differential scanning calorimeter [DSC] (manufactured by Seiko) at a rate of temperature increase of 10 ° C.Z. Temperature.
  • DSC differential scanning calorimeter
  • the FEP preferably has a melt flow rate [MFR] of 10 to 60 (gZlO content). If the MFR of the FEP is within the above range, the molding speed at the time of coating molding can be improved. In addition, a product with little fluctuation in electrical capacitance can be obtained from the obtained composition.
  • MFR melt flow rate
  • the above MFR is more preferably a lower limit of 20 (gZlO minutes), a more preferable upper limit force of 0 (gZlO minutes), and a further preferable upper limit of 35 (gZlO minutes) in terms of improving the molding speed.
  • the above MFR was measured by measuring about 6 g of FEP at a load of 5 kg at a temperature of 372 ° C. using a melt index tester compliant with ASTM D 1238-98 or IS K 7210. Is.
  • the FEP is prepared by performing a polymerization reaction using TFE and HFP and, if desired, other monomers other than TFE and HFP, and performing post-treatment such as concentration if necessary. It is out.
  • the polymerization reaction is not particularly limited, and examples thereof include emulsion polymerization, suspension polymerization, solution polymerization, and gas phase polymerization. As the polymerization method, emulsion polymerization and suspension polymerization are preferred. Emulsion polymerization is more preferred.
  • the fluorine resin composition of the present invention covers the above FEP and further contains polytetrafluoroethylene [PTFE].
  • PTFE may be a tetrafluoroethylene [TFE] homopolymer, or a modified polytetrafluoroethylene [modified PTF E] obtained with TFE and a small amount of a comonomer. There may be.
  • the TFE homopolymer is obtained by polymerizing only tetrafluoroethylene [TFE] as a monomer.
  • the trace comonomer in the modified PTFE is not particularly limited as long as it is a fluorine-containing compound that can be copolymerized with TFE.
  • perfluoroolefin such as hexafluoropropene [HFP].
  • Perfluorobule ether [PFVE] such as various PAVEs described above; fluorodixol, etc .; trifluorinated styrene, vinylidene fluoride, and the like.
  • the content of the trace monomer units derived from the trace monomer in the total monomer units is usually in the range of 0.001 to 1.0% by mass.
  • the content (mass%) J of the trace monomer unit in the total monomer units” J is the monomer from which the above “total monomer units” is derived, that is, This means the mass fraction (% by mass) of the trace monomer from which the trace monomer unit is derived, occupying the total amount of the monomers constituting the fluoropolymer.
  • the PTFE has a standard specific gravity [SSGWS2. 15-2.30 is preferably 2.25 or less, more preferably 2.25 or less in terms of heat resistance and electrical characteristics. It is even more preferable.
  • the high molecular weight PTFE having an SSG of less than 2.15 does not exclude the effects of the present invention, but is difficult to manufacture and impractical.
  • the above SSG is a value measured based on the underwater substitution method in accordance with ASTM D4895-89.
  • the PTFE is preferably emulsion polymerization as a force polymerization method that can be prepared by a known method such as emulsion polymerization or suspension polymerization.
  • the average primary particle size of PTFE is preferably 50 to 800 nm, more preferably 50 to 500 nm, more than force S.
  • the transmittance of projection light with a wavelength of 500 nm per unit length is measured, and a transmission electron microscope is measured in advance.
  • PTFE number reference length obtained by measuring the unidirectional diameter in the photograph was determined based on a calibration curve of the average primary particle diameter and the transmittance.
  • PTFE is preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the FEP. If the amount is less than 01 parts by mass, the effect of PTFE-added filler may not appear. If the amount exceeds 3 parts by mass, there is a problem that the insulation is frequently broken during wire coating molding due to poor dispersion of PTFE.
  • the content of PTFE in the fluorocobalt composition is 0.03 parts by mass with respect to 100 parts by mass of the FEP, more preferably 2 parts by mass, and even more preferably 1 part by mass. is there.
  • the fluorinated resin composition of the present invention may be obtained by appropriately blending known additives such as fillers and stabilizers in addition to the FEP and the PTFE.
  • the fluorine resin composition of the present invention preferably has a sodium element content of 5 to LOOppm when it is prepared by blending a metal catalyst having a sodium element in the melt extrusion step (2) described later.
  • the sodium element content is less than 5 ppm, the effect of adding a metal catalyst having a sodium element may not be sufficiently obtained. If it exceeds lOOppm, an effect sufficient to meet the addition amount of the metal catalyst may be obtained. It may not be obtained.
  • the above-mentioned sodium element content has a more preferred lower limit of 7 ppm and a more preferred upper limit of 8 ppm. Oppm.
  • the metal element content such as the sodium element content is measured by an ashing method.
  • the ashing method for the content of metal element other than potassium elements, the 0.2 mass 0/0 sulfate aqueous potassium 2g and methanol from about 2g to sample 2g Ka ⁇ E and heated 580 ° C, 30 minutes ⁇ The residue obtained was burned off and the residue obtained was washed twice with 20 ml of 0.1N hydrochloric acid twice (10 ml x 2 times).
  • the 0.1N hydrochloric acid used for the washing was measured with an atomic absorption spectrometer (HITACHI Z-8100 The measurement was carried out under the conditions of measuring with a polarizing Zeeman atomic absorption spectrophotometer).
  • 0.2 mass% potassium sulfate aqueous solution was 0.2 mass% sodium sulfate. It was changed to an aqueous solution.
  • the fluorinated resin composition of the present invention is obtained by mixing the aqueous dispersion composed of the FEP and the aqueous dispersion capable of PTFE, then praying and then melt-extruding. .
  • the fluorocobalt composition of the present invention is to obtain a co-coagulated powder by mixing an aqueous dispersion composed of FEP and an aqueous dispersion having PTFE power, and then, preferably, drying. It can be produced by a method for producing a fluorinated resin composition comprising a co-coagulation step (1) and a melt-extrusion step (2) comprising melt-extruding the co-coagulated powder.
  • the co-coagulation step (1) comprises coagulation after mixing an aqueous dispersion comprising FEP and an aqueous dispersion having PTFE power.
  • coagulation after mixing the aqueous polymer dispersions is sometimes referred to as “co-coagulation”.
  • the polymer solid concentration in each of the above polymer aqueous dispersions is not particularly limited and can be appropriately set according to the type and amount of each polymer to be used, but it is preferably 1 to 70% by mass. More preferably, it is 3-50 mass%.
  • the aqueous medium constituting each of the polymer aqueous dispersions may contain water !, but may also contain a water-soluble organic solvent such as a water-soluble alcohol! / Does not contain any sexual organic solvents!
  • each of the above polymer aqueous dispersions preferably contains a conventionally known surfactant or the like in a range without impairing the moldability of the obtained resin.
  • the co-coagulation can be appropriately performed by a conventional method as long as PTFE is mixed so as to be 0.01 to 3 parts by mass with respect to 100 parts by mass of FEP.
  • the mixed solution obtained by mixing the two types of polymer aqueous dispersions so that the solid content concentration of the whole polymer is 5 to 40% by mass.
  • the coagulation method in the co-coagulation is not particularly limited, and examples thereof include salt coagulation using nitric acid, hydrochloric acid or the like as a coagulant.
  • a method of mechanical praying such as stirring without using a coagulant.
  • the drying is preferably performed at a temperature of 100 to 240 ° C. for 2 to 48 hours. At this time, it is possible to take a technique of promoting drying such as reducing the pressure or allowing the dried gas to flow.
  • the melt extrusion step (2) comprises melt extrusion of the co-coagulated powder obtained from the co-coagulation step (1).
  • the melt-extrusion in the melt-extrusion step (2) can be performed by appropriately setting the extrusion conditions as long as the extrusion conditions are generally capable of pelleting.
  • the above-mentioned FEP, or FEP and PTFE may have a terminal group such as -CF and -CF H in the polymer main chain and / or the polymer side chain.
  • the thermally unstable group 2 2 3 has a low or no content.
  • the above thermally unstable group can be reduced by a stabilization treatment described later.
  • the melt-extrusion in the melt-extrusion step (2) may be performed by, for example, performing the above-described stable wrinkle treatment together with the pellets using a twin screw extruder or the like.
  • the set temperature of the cylinder in the extruder to be used is preferably 280 to 430 ° C.
  • the thermally unstable group may be stabilized before the melt extrusion.
  • the co-coagulated powder is supplied with water and air (oxygen) while setting the cylinder temperature of the twin screw extruder to 280 to 430 ° C. Kneading method, the co-coagulated powder and F gas (may be supplied as F ZN mixed gas) and It is preferable to carry out by a method of performing fluorination by bringing them into contact with each other.
  • the stabilization treatment is performed by the above-described method of kneading the co-coagulated powder while supplying water and air (oxygen), water and air (oxygen) are added, and an alkali metal or alkaline earth is added. It is more preferable to use a metal catalyst containing a metal element such as a metal; a catalyst such as ammonia, alcohols, amines or salts thereof;
  • the metal element content in the resulting fluorinated resin composition is 5 to: LOOppm.
  • the metal element content has a more preferable lower limit of 7 ppm and a more preferable upper limit of 80 ppm. If the metal element content is less than 5 ppm, the effect of adding a metal catalyst may not be sufficiently obtained. If the content exceeds lOOppm, an effect sufficient to meet the metal catalyst addition amount may not be obtained. There is.
  • the metal catalyst may be blended in advance with the co-coagulated powder, but it is preferable to add it together with water because it can be uniformly dispersed in the co-coagulated powder.
  • the metal element content in the fluorine-containing resin composition is a value measured by the ashing method.
  • a metal catalyst having an alkali metal element is preferable, and a metal catalyst having a sodium element is preferable.
  • a potassium salt is conventionally used in terms of sufficient terminal stability.
  • a sodium salt instead of the potassium salt, (1) -Drool] was eliminated, and (2) the die chip was found not to corrode even after long-term use.
  • Die— Drool looks like white traces of liquid flowing on the die surface, which may cause coating contamination and die corrosion.
  • sodium salt as the metal catalyst in the stable treatment, Die— The mechanism that could prevent drool is not clear, but Na is less reactive than polymer than K, so the polymer end modification that causes Die—Drool is less likely to occur.
  • a wire coating material is formed by containing titanium dioxide as a pigment, the reactivity with titanium dioxide is lower in Na than in K. Dro It is estimated that ol prevention power is increased.
  • the fluorine resin composition of the present invention has a complex viscosity of 2.5 X 10 3 to 4. OX 10 3 Pa 'in a melt viscoelasticity measurement at 310 ° C and an angular frequency of 0. It is preferable that the storage elastic modulus is 0.25 to 3.5 Pa.
  • the fluorocobalt composition tends to have poor moldability and poor molding.
  • the complex viscosity has a more preferable lower limit of 3.0 ⁇ 10 3 Pa ′ s and a more preferable upper limit of 3.8 ⁇ 10 3 Pa ′ s.
  • the storage elastic modulus has a more preferable lower limit of 0.30 Pa and a more preferable upper limit of 3. OPa.
  • the above complex viscosity and storage elastic modulus are set to 25 mm in the parallel plate diameter and 1.5 mm between the gaps in a 310 ° C atmosphere using a melt viscoelasticity measuring device (MCR-500 manufactured by Fuji Force Co., Ltd.). Then, the frequency dispersion was measured, and the value was obtained as the value at an angular frequency of 0. OlradZsec.
  • the fluorine resin composition of the present invention can have a die swell of 5 to 35%.
  • the fluorine resin composition of the present invention can also have a melt tension of 0.08-0.16N.
  • the fluorine resin composition of the present invention preferably has a die swell of 5 to 35% and a melt tension of 0.08 to 0.16N.
  • the fluorine resin composition has a die swell and melt tension within the specific range, Even if a fine resin lump is formed at the extrusion port during the wire coating extrusion molding, it is possible to prevent the fine resin lump from growing large to form a lamp.
  • the above-mentioned die swell has a more preferable lower limit of 7%, a more preferable upper limit of 30%, and still more preferably an upper limit of 25%.
  • a more preferable lower limit of the melt tension is 0.1N.
  • the die swell uses a capillograph (manufactured by ROSAND), puts 5 Og of resin into a cylinder with a diameter of about 372 ° C and a diameter of 15 mm, and extrudes it through an orifice with a length of 0.26 mm and an inner diameter of lm m.
  • the diameter force of the strand measured at the tip of the extrusion after the obtained strand was cooled to room temperature was also calculated.
  • the melt tension is measured by using the above capillograph, putting about 50 g of resin into a cylinder with an inner diameter of 15 mm at about 385 ° C and an inner diameter of 2 mm under a shear rate of 36.5 (lZs). This is the value obtained by measuring the strands obtained by extrusion through an orifice with a length of 20 mm.
  • the fluorine resin composition of the present invention has a melt flow rate [MFR] at 372 ° C of 10 (gZ
  • the fluorocoagulant composition can provide a coated electric wire with little wire diameter fluctuation even when the electric wire is coated at a high speed.
  • the perfluoro resin of the present invention has good heat resistance, chemical resistance, solvent resistance, insulation, electrical properties, etc., in addition to having poor moldability and poor molding defects. It can be used for the production of various molded products such as coating materials such as electric wires, foamed electric wires, cables and wires, tubes, films, sheets, filaments and the like.
  • the fluorinated resin composition of the present invention has not been a problem in the past, such as shortage of coating, spark-out, generation of lamp (Lump), capacitance change, etc. without reducing the coating molding speed in the coating extrusion molding of electric wires.
  • it is possible to significantly reduce molding defects, and therefore, it can be suitably used particularly for coated extrusion molding of electric wires.
  • the fluororesin composition of the present invention also has a conventional molding defect in the high-speed molding. It is possible to carry out the sheathing extrusion of the wires without causing any problems. [0041] Since the fluorine resin composition of the present invention has the above-described configuration, even when a resin fine lump is once generated at the extrusion port of a molding machine when used in the coating extrusion molding of electric wires. Since the extruded loca can be carried away before it grows and becomes a lamp, the number of lamps can be reduced significantly compared to the prior art.
  • the fluororesin composition of the present invention can be used in extrusion molding of foamed electric wires.
  • uniform foaming void ratio
  • the foaming rate can be increased.
  • it has excellent molding stability at high speed, and a finer wire can be obtained. This is thought to be due to the fact that the foaming nucleating agent makes it difficult for the foam to break, and it is difficult to cause the loss of grease.
  • An electric wire comprising a core conductor and a coating material formed on the core conductor using the above-described fluorocoagulant composition of the present invention is also one aspect of the present invention. .
  • the electric wire of the present invention is not particularly limited as long as it is composed of a core conductor (core wire) and the above covering material, and examples thereof include a cape, a wire and the like.
  • the above-mentioned electric wires are preferably used as insulated electric wires for communication, and include, for example, cables for connecting computers and peripheral devices such as data transmission cables such as LAN cables. It is also suitable as a plenum cable wired in a space (plenum area).
  • Examples of the electric wire of the present invention include a coaxial cable, a high-frequency cable, a flat cable, and a heat-resistant cable.
  • the material of the core wire in the electric wire of the present invention is not particularly limited, and a metal conductor material such as copper or silver can be used.
  • the wire of the present invention preferably has a core wire size force diameter of 2 to 80 mil.
  • the covering material in the electric wire of the present invention is not particularly limited as long as it is made of the fluororesin composition of the present invention, and is particularly preferably a FEP force perfluoropolymer in the fluororesin composition of the present invention.
  • TFE units, HFP units, and PFVE units are also preferred.
  • TFE units, HFP units, and PFVE units have a melting point of 240 ° C or higher and 280 ° C or lower. Is more preferable.
  • the electric wire of the present invention preferably has a thickness of the above coating material of 1.0 to 20 mil.
  • the electric wire of the present invention may be one in which a layer A (outer layer) is formed around the covering material! / ⁇ Further, the layer A (outer layer) may be coated around the core wire, and the coating material may be formed around the layer A (outer layer)! /.
  • the layer A (outer layer) is not particularly limited. TFEZPAVE copolymer, TFEZ ethylene copolymer, vinylidene fluoride polymer, polyolefin resin such as polyethylene [PE], and polysulfide resin It may be a resin layer made of resin such as PVC]. Of these, PE and PVC are preferable in terms of cost.
  • the thickness of the layer A (outer layer) and the coating material is not particularly limited, and the thickness of the layer A (outer layer) may be 1 mil to 20 mil, and the thickness of the coating material may be 1 mil to 20 mil.
  • the coating material is made of the above-described fluororesin composition of the present invention, it is formed by extrusion coating at a coating molding speed of 1000 to 3000 feet / minute. Can do.
  • the electric wire of the present invention has a small wire diameter fluctuation, and even when the coating material is formed by extrusion coating at a covering molding speed within the above range, the process capability index [ Cp] can be 1.0 or more.
  • the preferred lower limit of Cp in the above-mentioned wire diameter blur measurement is 1.2.
  • Cp in the above-mentioned wire diameter fluctuation measurement is obtained when the core wire (diameter 20. lmil) is coated with a single screw extruder (manufactured by Davis Standard) for 20 hours so that the wire diameter is 34.5 mil.
  • This is the value obtained by measuring the outer diameter (OD) of an electric wire with an outer diameter measuring instrument ODAC15XY (manufactured by Zumbach) and analyzing the tolerance with a tolerance of ⁇ 0.5 mil with US YS 2000 (manufactured by Zumbach).
  • the core wire has a diameter of 18.0-24. Omil, and the covering material has a thickness of 3.0 to 8.
  • Cp in capacitance measurement can be 1.0 or more.
  • Cp in the above capacitance measurement is measured for 20 hours using a capacitance measuring device Capac HS (Type: MR20. 50HS, manufactured by Zumbach), and the obtained data is accumulated in US YS 2000 (manufactured by Zumbach) This is an analysis value with a tolerance of ⁇ 1.0 (pf / inch).
  • the electric wire of the present invention has a lamp having a height of 10 to 50 mil when it is obtained by continuously forming by extrusion coating at a coating molding speed of 1000 to 3000 feet Z min for 20 hours.
  • the number of lamps may or may not be 100 in total.
  • the electric wire of the present invention is, for example, the above-mentioned category for the core material (diameter: 18.0 to 24. Omil).
  • the total number of lamps generated is preferably 30 or less, more preferably 20 or less. It can be.
  • the size (height) and occurrence frequency of the lamp are measured using a lamp detector KW32 TRIO (manufactured by Zumbach).
  • the fluorine resin composition of the present invention has the above-described configuration, it has good heat resistance, chemical resistance, solvent resistance, insulation, electrical characteristics, and the like, and further has good moldability. A molded product with reduced molding defects can be obtained.
  • the electric wire and the foamed electric wire of the present invention have the above-described configuration, they have few molding defects and are excellent in heat resistance, chemical resistance, solvent resistance, insulation, electrical characteristics, and the like.
  • part represents “part by mass”.
  • the average primary particle size of the polymer is 303 nm. It was.
  • a part of the obtained latex was evaporated to dryness at 200 ° C. for 1 hour, and the polymer concentration was calculated based on the obtained solid content to be 32.3 mass%.
  • the polymer had a standard specific gravity of 2. 1 76.
  • the average primary particle size of the polymer was 298 nm.
  • a part of the obtained latex was evaporated to dryness at 200 ° C for 1 hour, and the polymer concentration was calculated to be 32.2% by mass based on the obtained solid content.
  • the standard specific gravity of the polymer was 2.173. It was.
  • the obtained polymer had a PPVE content of 0.02% by mass and a CTFE content of 0.090% by mass.
  • Production Example 3 APS aqueous solution and DSP aqueous solution were each changed to a solution of 397 mg of APS in 330 ml of water and a DSP aqueous solution of DSP6.4 g in 330 ml of water.
  • a polymer concentration of 31.8 mass ° / c ⁇ PTFE homopolymer was obtained.
  • the PTFE in this Dispurgeon had a standard specific gravity [SS G] of 2.191.
  • the average primary particle size of the polymer was 295 nm.
  • a horizontal stainless steel autoclave with a stirrer (volume: 100 L) was degassed in advance, 26 L of deionized water was added, the interior was thoroughly replaced with nitrogen gas, and then 20 kg of perfluorocyclobutane was charged. After the stirring speed was 200rpm and the system temperature was 35 ° C, 2.0kg of perfluoro (propyl butyl ether) [PPVE], 3.8kg of TFE and 100g of methanol were charged. 7 g) (hydrocarbon polymerization initiator, manufactured), and polymerization was started at an internal pressure of 0.83 MPaG.
  • a horizontal stainless steel autoclave with a stirrer (capacity 1000L) is degassed in advance, and 600L of deionized water, 10% by weight fluorinated surfactant (C F COONH) aqueous solution 1
  • a polymerization initiator As a polymerization initiator, 2.4 kg of 10 mass% APS aqueous solution was charged to initiate the polymerization reaction. After the reaction started, a 10 mass% APS aqueous solution was continuously added at a rate of 22 gZ. During the reaction, when the amount of the above mixed monomer reached 25%, 50% and 75% by mass of the total amount of supplied monomer, 180 g of PPVE was charged each time. The above mixed monomer was continuously supplied so as to maintain the pressure in the system at 4.2 MPaG. 55 minutes after the start of the polymerization, the addition of the 10 mass% APS aqueous solution was stopped, the stirring was stopped, the gas in the autoclave was released to normal pressure, and the polymerization reaction was completed.
  • the measurement was performed using an NMR analyzer (manufactured by Bruker Biospin Corporation, AC300 high-temperature program) and an infrared absorption measuring apparatus (manufactured by Perkin Elma, model 1760).
  • CTFE content is for defining a value obtained by multiplying 0.58 to the ratio of the absorbance of 2360 cm _1 to the absorbance of 957cm _1 infrared absorption spectrum band mass% in the polymer, the content of PPVE, infrared absorption the value obtained by multiplying 0.95 to the ratio of the absorbance of 2360 cm _1 to the absorbance of the 995 cm _1 spectral bands defined mass% in the polymer.
  • the transmittance of projection light with a wavelength of 500 nm per unit length is measured, and the fixed direction diameter in the transmission electron micrograph is measured in advance. It was determined based on the calibration curve of the obtained PTFE number standard length average primary particle diameter and the above transmittance.
  • the ternary polymer emulsion dispersion of TFEZHFPZPPVE obtained in Production Example 4 is transferred to a 3000 L autoclave with a stirrer, and deionized water is added with stirring to a polymer solid content concentration of 10.0% by mass.
  • the PTFE dispersion obtained in Production Example 1 was added in an amount of 0.07 parts in terms of solid content with respect to 100 parts of the TFEZHFPZPPVE ternary polymer.
  • 40 kg of 60% nitric acid was added and coagulation was performed at a stirring speed of 40 rpm. After the solid phase and the liquid phase were separated, water was removed. After washing with deionized water, the obtained white powder was dehydrated in a convection air oven at 170 ° C. for 20 hours to obtain a perfluoropolymer (A) white powder.
  • the melting point and MFR of the obtained fluorinated resin composition were measured by the above-described methods, and the following measurements were performed.
  • Die Swell (%) [(Strand Diameter (mm) —Orifice Inner Diameter (mm)) Z Orifice Inner Diameter (mm)] X 100
  • a capillograph manufactured by ROSAND
  • a strand was obtained by extrusion through an orifice having an inner diameter of 2 mm (error 0.002 mm or less) and a length of 20 mm under a shear rate of 36.5 (lZs).
  • the strand is passed through a pulley placed at a position 45 cm directly below the orifice outlet, pulled up to an angle of 60 ° obliquely above, and wound on a roll that is almost at the same height as the orifice outlet.
  • the maximum value of the tension measured under conditions where the roll take-up speed was increased from 5 mZ to 500 mZ over 5 minutes was taken as the melt tension.
  • melt viscoelasticity measuring device manufactured by Fuji Force Co., Ltd.
  • a cylindrical sample with a diameter of 25 mm and a thickness of 1.5 mm is placed on a parallel plate, and the angular dispersion is measured by frequency dispersion at 310 ° C.
  • Core conductor Annealed copper wire AWG 24 (American Wire Gauge) Core wire diameter 20. lmil
  • the outer diameter (OD) was measured for 20 hours using an outer diameter measuring device ODAC 15XY (manufactured by Zumbach) and calculated as a process capability index [Cp].
  • Cp is in US YS 2000 (Zumbach)
  • USL upper limit of wire diameter
  • LSL lower limit
  • a capacitance measuring device Capac HS (Type: MR20. 50HS, manufactured by Zumbach) was measured for 20 hours and calculated as a process capability index [Cp].
  • Cp is stored in USYS 2 000 (manufactured by Zumbach) sequentially, and the upper limit (USL) is set to + 1. O (pfZinch) and the lower limit (LSL) is set to -1.0 (pf / inch). did.
  • Example 2 Except for changing the type of PTFE Dispersion to be added and the amount of applied force as shown in Table 2, the same operation as in Example 1 was carried out to obtain a fluororesin composition, and wire coating molding evaluation was performed. It was.
  • the ternary polymer emulsion dispersion of TFEZHFPZPPVE obtained in Production Example 4 is transferred to a 3000 L autoclave with a stirrer, and deionized water is added with stirring to a polymer solid content concentration of 10.0% by mass.
  • the PTFE dispersion obtained in Production Example 1 was added in an amount of 0.07 part in terms of solid content with respect to 100 parts of the TFEZHFPZPPVE ternary polymer.
  • 40 kg of 60% nitric acid was added, and coagulation was carried out at a stirring speed of 40 rpm. After the solid phase and the liquid phase were separated, water was removed. After washing with deionized water, water was removed from the resulting white powder in a convection air oven at 170 ° C. for 20 hours to obtain a perfluoropolymer (A) white powder.
  • potassium carbonate (K 2 CO 3) was added to the perfluoropolymer (A) white powder as a final concentrate.
  • the mixture was added to a concentration of 15 ppm and dispersed uniformly, and then melted and pelletized simultaneously with stabilization (wet heat treatment) with a twin-screw extruder (manufactured by Nippon Steel).
  • the raw material was supplied at a temperature of 360 ° C, a screw rotation speed of 200 rpm, and a speed of 15 kgZ hours. Air and water 0.93kg / Time and water were supplied at a flow rate of 0.6 kgZ hours, and pelletized while reacting to obtain a fluorine resin composition.
  • Example 1 Under the wire coating forming conditions of Example 1, the same operation as in Example 1 was performed, except that the wire take-up speed was 2400 feet Z, and wire coating forming evaluation was performed.
  • the fluorine resin composition obtained in Example 1 and boron nitride (BN, grade SHP-325, average particle size 10.3 m, manufactured by Carborundum Co., Ltd.) were used, and the boron nitride concentration was 7.5% by weight.
  • the master batch pellets prepared by mixing the pellets and the pellets of the fluorinated resin composition of Example 1 were mixed in the ratio of master batch pellets: pellets of Example 1 1: 9. Foamed wire molding was performed under the described conditions.
  • Example 6 Following the same procedure as in Example 6 except that PTFE A rosin composition was obtained and wire coating molding evaluation was performed.
  • the obtained PTFE fine powder had an apparent density of 0.45 gZml and an average secondary particle size of 90 ⁇ m.
  • Example 1 a perfluoropolymer (B) white powder (TFEZHFPZPPVE ternary polymer) obtained without adding PTFE disk purge was obtained.
  • pelletization was carried out in the same manner as in Example 1 except that PFA obtained from Comparative Production Example 1 was mixed with 3 parts of 100 parts of TFEZHFPZ PPVE ternary polymer. A fat composition was obtained and wire coating molding evaluation was performed.
  • pelletization was carried out in the same manner as in Example 1 except that PFA obtained in Comparative Production Example 1 was mixed to 0.07 part with 100 parts of TFEZHFPZ PPVE ternary polymer. Then, a fluorine resin composition was obtained, and wire coating molding evaluation was performed.
  • Example 1 Except for adding 100 parts of the TFE / HFP / PPVE ternary polymer obtained in Production Example 1 to 5 parts in terms of solid content, the same operation as in Example 1 was performed. The fluorinated resin composition was obtained and the wire coating molding was evaluated. However, the wire diameter fluctuation was large and it was impossible to mold stably.
  • Table 2 The results of Examples 1 to 7 and Comparative Examples 1 to 4 are shown in Table 2.
  • Each of the electric wires obtained from each example had less than 30 lamps, almost no lamps of 30 mils or more and no spark out, and the amount of die-drool generated was very small. I got it. On the other hand, the number of lamps generated in all of the electric wires with which each comparative example was obtained was 100 or more. In particular, in the wire coating of Comparative Example 2, the spark out was 500 or more.
  • the fluorine resin composition of the present invention has the above-described configuration, it has good heat resistance, chemical resistance, solvent resistance, insulation, electrical properties, and the like, and further has good moldability. A molded product with reduced molding defects can be obtained.
  • the electric wire and the foamed electric wire of the present invention have the above-described configuration, they have few molding defects and are excellent in heat resistance, chemical resistance, solvent resistance, insulation, electrical characteristics, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Insulated Conductors (AREA)

Abstract

本発明は、溶融押出成形における成形性の改良、特に電線の被覆押出成形において高速成形を行っても成形不良を大幅に改善するフッ素樹脂組成物を提供する。本発明は、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体〔FEP〕100質量部と、標準比重が2.15~2.30であるポリテトラフルオロエチレン〔PTFE〕0.01~3質量部とからなるフッ素樹脂組成物であって、上記フッ素樹脂組成物は、上記FEPからなる水性分散液と、上記PTFEからなる水性分散液とを混合したのち凝析し次いで乾燥後に溶融押出することより得られるものであることを特徴とするフッ素樹脂組成物である。

Description

明 細 書
フッ素樹脂組成物及び電線
技術分野
[0001] 本発明は、フッ素榭脂組成物及び電線に関する。
背景技術
[0002] フッ素榭脂は、耐熱性、耐薬品性、耐溶剤性、絶縁性等の特性に優れているので、 溶融押出成形してチューブ、電線被覆、パイプ、フィラメント等の製品を得ることがで きる。特にテトラフルォロエチレン〔TFE〕 /へキサフルォロプロピレン〔HFP〕系共重 合体〔FEPW なるフッ素榭脂は、誘電率、誘電正接が低く優れた絶縁性を有して いるので、ケーブル、ワイヤ等の電線被覆用途に好適に用いられる。
[0003] 電線被覆等の成形においては、生産性向上及びコストダウンを目的として、成形速 度向上と同時に成形不良の低減が可能である材料が必要とされる。
[0004] 成形不良のうち、メルトフラクチャ一現象の改善と臨界押出速度の向上を目的として 、 FEPにポリテトラフルォロエチレン〔PTFE〕をその含有量が 0. 01〜5重量0 /0となる ように配合すること (例えば、特許文献 1参照。)、また、電線被覆時の被覆切れの改 良を目的として、 FEP若しくはそのパーフルォロアルキルビュルエーテルとの 3元共 重合体 100重量部に対し PTFEを 0. 03〜2重量部配合すること (例えば、特許文献 2及び特許文献 3参照。)が提案されている。
[0005] これらの技術において、 PTFEはデイスパージヨンの形で配合することが開示されて いるが、 FEPと上記 3元共重合体は、粉末として配合され、デイスパージヨンとして配 合することは全く記載されて ヽな ヽ。
これらの技術では、被覆樹脂と導線との間に生じてしまう榭脂塊 (Lump)のサイズを 小さくする効果は多少あるが、ランプ発生頻度の低減が不充分である問題があった。
[0006] FEP、及び、その融点よりも 20°C以上高い融点をもち高分子量のパーフルォロポリ マーを FEPの 0. 01〜5重量%含む、溶融加工可能な組成物において、 FEP及び パーフルォロポリマーはともにディスパージヨンの形で配合することが提案されている (例えば、特許文献 4参照。 ) oこのパーフルォロポリマーとしては、 HFP単位 2〜20 重量%を必須とする TFEZHFP共重合体が記載されて 、るのみであり、 PTFEは記 載されていない。
[0007] この組成物は、電線被覆成形時において、ランプを運び去り堆積を抑制するとされる 力 FEP粉末と PTFEとを配合した前述の技術と同様に、ランプ発生頻度を低減する ものではない問題がある。また、サイズの小さいランプは、キャパシタンスの変動を大 きくしてしまい、最終製品の電気特性を悪化させる問題がある。
[0008] 安定した成形性として電線被覆成形時の線径ブレ低減を目的とし、ダイスゥエルが 5 〜20%と比較的高ぐ特定範囲のメルトフローレートを有する FEP共重合体が提案さ れている(例えば、特許文献 5参照。 )0し力しながら、この FEP共重合体には、 PTF E等の高分子量のパーフルォロポリマーを添加することにつ ヽて全く記載されて 、な い。
[0009] 表面平滑性に優れた成形体の材料となるフッ素榭脂として、結晶化温度 305°C以上 である PTFEを 0. 01〜30重量0 /0含有する TFEZフルォロアルコキシトリフルォロェ チレン共重合体組成物が提案されている (例えば、特許文献 6参照。 )0しかしながら 、この PFA組成物は、高速押出成形にて電線被覆した際に成形不良がない電線を 得ることができるか明らかでない。
特許文献 1 :特開昭 52— 98761号公報
特許文献 2:国際公開第 03Z22922号パンフレット
特許文献 3:国際公開第 03Z22923号パンフレット
特許文献 4:特表 2004— 502853号公報
特許文献 5:国際公開第 01Z36504号パンフレット
特許文献 6:特開平 7— 70397号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明の目的は、上記現状に鑑み、溶融押出成形における成形性の改良、特に電 線の被覆押出成形において高速成形を行っても成形不良を大幅に改善するフッ素 榭脂組成物を提供することにある。
課題を解決するための手段 [0011] 本発明は、テトラフルォロエチレン〔TFE〕Zへキサフルォロプロピレン〔HFP〕系共 重合体〔FEP〕 100質量部と、標準比重が 2. 15〜2. 30であるポリテトラフルォロェ チレン 0. 01〜3質量部とからなるフッ素榭脂組成物であって、上記フッ素榭脂組成 物は、上記 FEPからなる水性分散液と、上記ポリテトラフルォロエチレン力もなる水性 分散液とを混合したのち凝祈し次いで乾燥後に溶融押出することより得られるもので あることを特徴とするフッ素榭脂組成物である。
[0012] 本発明は、芯導体と、上記芯導体上にフッ素榭脂組成物を用いて形成してなる被覆 材とを有する電線であって、上記フッ素榭脂組成物は、上記本発明のフッ素榭脂組 成物であることを特徴とする電線である。
[0013] 本発明は、芯導体と、上記芯導体上にフッ素榭脂組成物を用いて形成してなる被覆 材とを有する発泡電線であって、上記フッ素榭脂組成物は、上記本発明のフッ素榭 脂組成物であることを特徴とする発泡電線である。
以下に本発明を詳細に説明する。
[0014] 本発明のフッ素榭脂組成物は、 FEP100質量部と、標準比重が 2. 15〜2. 30であ るポリテトラフルォロエチレン〔PTFE〕0. 01〜3質量部とからなるものである。
[0015] 上記 FEPは、 TFEと HFPと力 なる含フッ素共重合体であって、溶融加工可能なも のである。
上記 FEPは、 TFEと HFPとからなるものであれば、 TFE及び HFP以外のその他の 単量体を 1種のみ共重合してなるものであってもよ 、し、 2種以上共重合してなるもの であってもよい。
[0016] 上記その他の単量体としては、特に限定されず、例えば、パーフルォロビュルエーテ ル〔PFVE〕、クロ口トリフルォロエチレン〔CTFE〕、フッ化ビュル〔VF〕、へキサフルォ ロイソブテン等が挙げられる。
上記 PFVEとしては、特に限定されず、例えば、一般式: CF =CF— ORf (式中、 Rf
2
は、パーフルォロ脂肪族炭化水素基を表す。)で表されるパーフルォロ不飽和化合 物等が挙げられる。
本明細書において、パーフルォロ脂肪族炭化水素基とは、炭素原子に結合する水 素原子が全てフッ素原子に置換されている脂肪族炭化水素基を意味する。上記パ 一フルォロ脂肪族炭化水素基は、エーテル酸素を有して 、てもよ 、。
上記 PFVEとしては、例えば、パーフルォロ(アルキルビュルエーテル)〔PAVE〕が 挙げられる。 PAVEは、一般式: CF =CFO (CF ) CF (式中、 nは、 0
2 2 n 3 〜3の整数を 表す。)で表される化合物である。
PAVEとしては、パーフルォロ(メチルビ-ルエーテル)〔PMVE〕、パーフルォロ(ェ チルビ-ルエーテル) [PEVE]、パーフルォロ(プロピルビュルエーテル) [PPVE]、 パーフルォロ(ブチルビニルエーテル)等が挙げられ、なかでも、耐クラック性の観点 より、 PMVE、 PEVE, PPVE力好ましく、 PPVEがより好ましい。
[0017] 上記 FEPは、パーフルォロポリマーであることが好ましぐ TFE単位、 HFP単位及び PFVE単位とからなるものがより好ましぐ TFE単位、 HFP単位及び PFVE単位とか らなるものであって、融点が 240°C以上、 280°C以下であるもの、なかでも融点が 25 0°C以上、 270°C以下であるものが更に好ましい。
上記 FEPは、上記 PFVE単位を有する場合、該 PFVE単位を 1種のみ有するもので あってもよいし、 2種以上有するものであってもよい。
上記 TFE単位、 HFP単位及び PFVE単位は、それぞれ TFE、 HFP及び PFVEに 由来し、 FEPの分子構造上の一部分であるものである。例えば TFE単位は、―(CF CF )—により表される。
2 2
[0018] 上記 FEPとしては、 TFE単位と HFP単位とのみからなるもの、又は、 TFE単位と HF P単位と PFVE単位とのみからなるものが好ましぐ成形不良改善の点で、 TFE単位 と HFP単位と PFVE単位とのみからなるものがより好ましい。
上記 FEPは、 TFE単位: HFP単位の質量比(両単量体合計で 100。)力 (70〜95 ): (5〜30)であることが好ましぐ(85〜95): (5〜15)であることがより好ましい。 上記 FEPは、上記その他の単量体をも共重合したものである場合、該その他の単量 体に由来する単量体単位が合計で一般に全単量体単位の 10質量%以下である。 上記 FEPは、 TFE単位と HFP単位と PFVE単位とのみからなる場合、 TFE単位: H FP単位: PFVE単位の質量比(全単位合計で 100。)が(70〜95): (4〜20): (0. 1 〜10)であるものが好ましぐ(75〜95): (5〜15): (0. 3〜3)であるものがより好ま しい。 上記質量比における PFVE単位は、例えば PMVE単位と PPVE単位との 2種である 場合のように、 PFVE単位が 2種以上の単位である場合、該 2種以上の単位の合計 質量に基づく。
本明細書において、上記質量比は、 TFE単位、 HFP単位及び PFVE単位の含有率 を、それぞれ NMR分析装置 (ブルカーバイオスピン社製、 AC300 高温プログ)又 は赤外吸収測定装置 (パーキンエルマ社製、 1760型)を用いて測定することにより 得たものである。
[0019] 本発明における FEPは、一般に、融点が 240°C以上、 280°C以下であるものである。
240°C未満であると、耐熱性、特に被覆電線成形品の耐熱性が不充分となる問題が 生じることがあり、 280°Cを超えると被覆押出成形が困難となる傾向がある。上記融点 は、好ましい下限が 250°C、より好ましい下限が 255°Cであり、好ましい上限が 270°C であり、より好ましい上限が 265°Cである。
本明細書において、上記融点は、示差走査熱量計〔DSC〕(セイコー社製)を用い、 1 0°CZ分の昇温速度にて測定したときに得られる熱融解曲線における吸熱反応のピ ーク温度である。
[0020] 上記 FEPは、メルトフローレート〔MFR〕が 10〜60 (gZlO分)であるものが好ましい 上記 FEPの MFRが上記範囲内であると、被覆成形時の成形速度を向上することが でき、また、得られる組成物から電気的にキャパシタンスの変動が少ない製品を得る ことができる。
上記 MFRは、成形速度を向上する点で、より好ましい下限が 20 (gZlO分)であり、 より好ましい上限力 0 (gZlO分)、更に好ましい上限が 35 (gZlO分)である。
本明細書において、上記 MFRは、 ASTM D 1238— 98又 ίお IS K 7210に準 拠したメルトインデックステスターを用いて、約 6gの FEPを 372°Cの温度下に荷重 5k gにて測定したものである。
[0021] 上記 FEPは、 TFE及び HFPと、所望により TFE及び HFP以外のその他の単量体と を用いて重合反応を行い、必要に応じ、濃縮等の後処理を行うことにより調製するこ とがでさる。 上記重合反応としては特に限定されず、例えば、乳化重合、懸濁重合、溶液重合、 気相重合等が挙げられる。上記重合方法としては、乳化重合、懸濁重合が好ましぐ 乳化重合がより好ましい。
[0022] 本発明のフッ素榭脂組成物は、上記 FEPにカ卩え、更に、ポリテトラフルォロエチレン〔 PTFE]をも含むものである。
本発明において、 PTFEは、テトラフルォロエチレン〔TFE〕ホモポリマーであってもよ V、し、 TFEと微量共単量体と力 得られる変性ポリテトラフルォロエチレン〔変性 PTF E〕であってもよい。
上記 TFEホモポリマーは、モノマーとしてテトラフルォロエチレン〔TFE〕のみを重合 することにより得られるものである。
上記変性 PTFEにおける微量共単量体としては、 TFEとの共重合が可能な含フッ素 化合物であれば特に限定されず、例えば、へキサフルォロプロペン〔HFP〕等のパー フルォロォレフイン;上述した各種 PAVE等のパーフルォロビュルエーテル〔PFVE〕 ;フルォロジォキソール等;三フッ化工チレン;フッ化ビ-リデン等が挙げられる。
上記変性 PTFEにおいて、上記微量単量体に由来する微量単量体単位の全単量体 単位に占める含有率は、通常 0. 001-1. 0質量%の範囲である。
本明細書にぉ 、て、「全単量体単位に占める微量単量体単位の含有率 (質量%) Jと は、上記「全単量体単位」が由来する単量体、即ち、含フッ素ポリマーを構成すること となった単量体全量に占める、上記微量単量体単位が由来する微量単量体の質量 分率 (質量%)を意味する。
[0023] 上記 PTFEは、耐熱性、電気特性の点で、標準比重〔SSGWS2. 15-2. 30である ことが好ましぐ 2. 25以下であることがより好ましぐ 2. 22以下であることが更に好ま しい。
上記 SSGが 2. 15より小さい高分子量の PTFEは、本発明の効果を排除するもので はないが、製造上困難であり実際的でない。
上記 SSGは、 ASTM D4895— 89に準拠して、水中置換法に基づき測定した値で ある。
PTFEの SSGが低い場合には、成形不良を抑制する効果を少量の添加量により発 揮することができる。 SSGが高い場合には、添加量を多くすることで上記効果を発現 させることが可會となる。
[0024] 上記 PTFEは、乳化重合、懸濁重合等、公知の方法にて調製することができる力 重 合方法としては乳化重合が好ま 、。
本発明のフッ素榭脂組成物中に PTFEの凝集物が存在する場合には電線被覆成形 中にスパークアウトが頻繁に発生し不良率を悪ィ匕させる結果になる。従って、 PTFE の平均一次粒子径は、 50〜800nmであることが好ましぐ 50〜500nmであること力 S より好まし 、。
上記 PTFEの平均一次粒子径は、固形分 0. 22質量%となるように水で希釈したポリ マーラテックスについて、単位長さに対する波長 500nmの投射光の透過率を測定し 、予め透過型電子顕微鏡写真における定方向径を測定して得た PTFE数基準長さ 平均一次粒子径と上記透過率との検量線に基づいて決定したものである。
[0025] 本発明のフッ素榭脂組成物は、上記 FEP100質量部に対し、 PTFEが 0. 01〜3質 量部であることが好ましい。 0. 01質量部未満である場合、 PTFE添カ卩による効果が 現れないことがあり、 3質量部を超える場合、 PTFEの分散不良により電線被覆成形 時に被覆切れが頻繁に生じる問題がある。
上記フッ素榭脂組成物における PTFEの含有量は、上記 FEP100質量部に対し、よ り好ましい下限が 0. 03質量部であり、より好ましい上限が 2質量部、更に好ましい上 限が 1質量部である。
[0026] 本発明のフッ素榭脂組成物は、上記 FEPと上記 PTFEとに加え、充填材、安定剤等 、公知の添加剤を適宜配合してなるものであってよい。
本発明のフッ素榭脂組成物は、後述の溶融押出工程 (2)においてナトリウム元素を 有する金属触媒を配合して調製した場合、ナトリウム元素含有量が 5〜: LOOppmであ るものが好ましい。
上記ナトリウム元素含有量が 5ppm未満であると、ナトリウム元素を有する金属触媒を 添加することによる効果が充分に得られない場合があり、 lOOppmを超えると、金属 触媒の添加量に見合うだけの効果が得られない場合がある。
上記ナトリウム元素含有量は、より好ましい下限が 7ppmであり、より好ましい上限が 8 Oppmである。
本明細書において、上記ナトリウム元素含有量等の金属元素含有量は、灰化法にて 測定したものである。上記灰化法は、カリウム元素以外の金属元素含有量について は、試料 2gに 0. 2質量0 /0硫酸カリウム水溶液 2g及びメタノール約 2gをカ卩え、 580°C 、 30分間加熱して榭脂を焼失させ、得られた残渣について 0. 1N塩酸 20mlを用い た洗浄を 2回行い(10ml X 2回)、該洗浄に使用した 0. 1N塩酸を原子吸光測定装 置 (HITACHI Z— 8100形偏光ゼーマン原子吸光分光光度計)にて測定する条件 下で行ったものであり、カリウム元素含有量については、上記条件において、 0. 2質 量%硫酸カリウム水溶液を 0. 2質量%硫酸ナトリウム水溶液に変更して行ったもので ある。
[0027] 本発明のフッ素榭脂組成物は、上記 FEPからなる水性分散液と、上記 PTFE力 な る水性分散液とを混合したのち凝祈し次いで溶融押出することより得られるものであ る。
即ち、本発明のフッ素榭脂組成物は、 FEPからなる水性分散液と、 PTFE力もなる水 性分散液とを混合したのち凝祈し、好ましくは乾燥することにより共凝析粉末を得るこ とよりなる共凝析工程(1)、及び、上記共凝析粉末を溶融押出することよりなる溶融 押出工程 (2)を含むフッ素榭脂組成物の製造方法にて製造することができる。
[0028] 上記共凝析工程(1)は、 FEPからなる水性分散液と PTFE力もなる水性分散液とを 混合したのち凝析することよりなる。本明細書において、該ポリマー水性分散液同士 を混合したのち凝析することを「共凝析」ということがある。
上記各ポリマー水性分散液におけるポリマー固形分濃度としては、特に限定されず、 使用する各ポリマーの種類、量に応じて適宜設定することができるが、 1〜70質量% であることが好ましぐ 3〜50質量%であることがより好ましい。
上記各ポリマー水性分散液を構成する水性媒体は、水を含むものであればよ!、が、 水溶性アルコール等の水溶性有機溶媒をも含むものであってもよ!/、し、該水溶性有 機溶媒を含まな!/、ものであってもよ 、。
なお、上記各ポリマー水性分散液は、分散性をよくするため、従来公知の界面活性 剤等を、得られる榭脂の成形性を損なわな 、範囲で含有することが好ま U、。 [0029] 上記共凝析は、 PTFEが FEP100質量部に対し 0. 01〜3質量部となるよう混合する ものであれば、適宜従来の方法にて行うことができる。
上記共凝析にお 、て、上記 2種のポリマー水性分散液を混合して得られる混合液は 、全ポリマーの固形分濃度が 5〜40質量%となるよう調整することが好ましい。
上記共凝析における凝析法は、特に限定されず、例えば、硝酸、塩酸等を凝析剤と して使用する塩凝祈が挙げられる。また、凝析剤を使用せず、攪拌等、機械的に凝 祈させる手法も挙げられる。
上記共凝析後に回収する湿潤粉末は、乾燥することが好ましい。該乾燥は、 100〜2 40°Cの温度下において 2〜48時間行うことが好ましい。このとき、減圧にする、乾燥 したガスをフローさせる等の乾燥を促進させる手法を取ることができる。
[0030] 上記溶融押出工程 (2)は、上記共凝析工程(1)から得られた共凝析粉末を溶融押 出することよりなる。
[0031] 上記溶融押出工程 (2)における溶融押出は、一般にペレツトイ匕可能な押出条件であ れば、押出条件を適宜設定して行うことができる。
本発明において、上述の FEP、若しくは、 FEP及び PTFEは、ポリマー主鎖並びに /又はポリマー側鎖に、 -CF 、 -CF H等の末端基を有しているものであってよい
3 2
力 一 COOH、 -CH OH、 一 COF、 一 CF = CF—、 一 CONH 、 一 COOCH等
2 2 3 の熱的に不安定な基は含有量が低 、か無 、ことが好ま 、。上記熱的に不安定な 基は、後述の安定ィ匕処理により低減することができる。
上記溶融押出工程 (2)における溶融押出は、例えば 2軸スクリュー押出機等にて、ぺ レツトイ匕とともに上記安定ィ匕処理をも行うものであってもよい。上記安定化処理を行う 場合、用いる押出機におけるシリンダーの設定温度は、 280〜430°Cであることが好 ましい。
[0032] 上記溶融押出工程(2)は、上記溶融押出の前に上記熱的に不安定な基の安定化処 理を行うものであってもよ 、。
上記安定化処理は、溶融押出の前に行う場合、上記共凝析粉末を、水と空気 (酸素 )とを供給しながら 2軸スクリュー押出機のシリンダー温度を 280〜430°Cに設定して 混練する方法、上記共凝析粉末を Fガス (F ZN混合ガスとして供給してよい。)と を接触させてフッ素化を行う方法等にて行うことが好ましい。
[0033] 上記安定化処理は、上述の水と空気 (酸素)とを供給しながら共凝析粉末を混練する 方法にて行う場合、水と空気 (酸素)を加え、アルカリ金属、アルカリ土類金属等の金 属元素を有する金属触媒;アンモニア、アルコール類、ァミン又はその塩;等の触媒 を配合して行うことが好ましぐ金属触媒がより好ましい。
上記安定ィ匕処理において金属触媒を用いる場合、用いる金属触媒の種類によるが、 好ましくは、得られる含フッ素榭脂組成物における金属元素含有量が 5〜: LOOppmと なるよう配合することが好ましい。上記金属元素含有量は、より好ましい下限が 7ppm であり、より好ましい上限が 80ppmである。上記金属元素含有量が 5ppm未満である と、金属触媒を添加することによる効果が充分に得られない場合があり、 lOOppmを 超えると、金属触媒の添加量に見合うだけの効果が得られない場合がある。
上記金属触媒は、予め共凝析粉末に配合してもよいが、水と共に添加する方が共凝 析粉末に均一に分散できる点で好ましい。
上記含フッ素榭脂組成物における金属元素含有量は、上記灰化法にて測定した値 である。
[0034] 上記安定ィ匕処理における金属触媒としては、アルカリ金属元素を有するものが好まし ぐなかでもナトリウム元素を有する金属触媒が好ましい。
上記金属触媒としては、末端安定ィ匕を充分に行う点で従来カリウム塩を使用していた 1S 本発明において、該カリウム塩に代えてナトリウム塩を用いることにより、(1)めや に〔Die— Drool〕がなくなった、(2)ダイチップが長期間使用しても腐食しなくなった 、という優れた効果を奏することが判明したものである。 Die— Droolは、ダイ表面に 白く液体が流れた跡のように見え、被覆材の汚染、ダイ腐食の原因ともなりかねない 上記安定ィ匕処理において上記金属触媒としてナトリウム塩を用いることにより Die— D roolを防止することができた機構としては、明確ではないが、ポリマーとの反応性が K より Naの方が低いので、 Die— Droolの原因であるポリマー末端の変性が生じにくい こと〖こよるものと推測され、特に、顔料として二酸ィ匕チタンを含有させて電線被覆材を 形成する場合、該ニ酸ィ匕チタンとの反応性が Kよりも Naの方が低いことも Die— Dro ol防止力を高めると推測される。
[0035] 上記含フッ素榭脂組成物の製造方法により、成形性を維持しつつ、スパークアウト等 の成形不良を著しく低減したフッ素榭脂組成物を得ることができる。また、上記含フッ 素榭脂組成物を発泡電線に用いると均一な発泡が得られ、発泡率 (空隙率)を上げ ることができる。また、高速での成型安定性に優れ、より細い発泡電線を得ることがで きる。この優れた効果を奏する機構としては、明確ではないが、上記 2種のポリマー水 性分散液の混合を含む共凝析により、 FEP粒子相互の間に PTFEを充分に分散さ せることができ、重合時に副生する低分子量物が存在していたとしても、該低分子量 物の表出を FEPと PTFEとの分子の絡み合いを強めて抑制し、該低分子量体の表 出による悪影響を防止することができるものと考えられる。
[0036] 本発明のフッ素榭脂組成物は、例えば、 310°C、角周波数 0. OlradZ秒での溶融 粘弾性測定において、複素粘度が 2. 5 X 103〜4. O X 103Pa' sであり、貯蔵弾性率 が 0. 25-3. 5Paであることが好ましい。
上記フッ素榭脂組成物は、複素粘度と貯蔵弾性率が上記範囲内にあると、成形性が よぐ成形不良が生じにくい傾向がある。
上記複素粘度は、より好ましい下限が 3. 0 X 103Pa' sであり、より好ましい上限が 3. 8 X 103Pa' sである。
上記貯蔵弾性率は、より好ましい下限が 0. 30Paであり、より好ましい上限が 3. OPa である。
上記複素粘度及び貯蔵弾性率は、溶融粘弾性測定装置 (フイジ力社製 MCR— 500 )を用いて、 310°Cの雰囲気下で、パラレルプレートの直径を 25mm、ギャップ間を 1 . 5mmに設定して周波数分散測定を行い、角周波数 0. OlradZsecにおける値とし て求めたものである。
[0037] 本発明のフッ素榭脂組成物は、ダイスゥエルを 5〜35%とすることができる。本発明 のフッ素榭脂組成物は、また、溶融張力を 0. 08-0. 16Nとすることができる。
本発明のフッ素榭脂組成物は、ダイスゥエルが 5〜35%であり、溶融張力が 0. 08〜 0. 16Nであるものが好ましい。
上記フッ素榭脂組成物は、ダイスゥエルと溶融張力とを上記特定範囲とすることで、 電線被覆押出成形時において押出口にたとぇ榭脂微小塊が生じたとしても、榭脂微 小塊が大きく成長してランプを形成することを防止することができる。
上記ダイスゥエルは、より好ましい下限が 7%であり、より好ましい上限が 30%、更に 好まし 、上限は 25%である。
上記溶融張力は、より好ましい下限が 0. 1Nである。
本明細書において、上記ダイスゥエルは、キヤピログラフ(ROSAND社製)を用い、 5 Ogの榭脂を約 372°Cの内径 15mmのシリンダーに投入し、長さ 0. 26mm,内径 lm mのオリフィスを通して押出し、得られたストランドを室温に冷却した後に押出先端部 分において測定した該ストランドの直径力も算出したものである。
上記溶融張力は、後述するように、上記キヤピログラフを用い、約 50gの榭脂を約 38 5°Cの内径 15mmのシリンダーに投入し、 36. 5 (lZs)の剪断速度の下で内径 2m m、長さ 20mmのオリフィスを通して押出すことにより得られたストランドについて測定 して得られた値である。
[0038] 本発明のフッ素榭脂組成物は、 372°Cにおけるメルトフローレート〔MFR〕を10 (gZ
10分)以上とすることができる。従って、上記フッ素榭脂組成物は、後述するように、 高速にて電線被覆を行っても線径ブレが少ない被覆電線を得ることができる。
[0039] 本発明のパーフルォロ榭脂は、成形性がよぐ成形不良が生じにくいことに加え、良 好な耐熱性、耐薬品性、耐溶剤性、絶縁性、電気特性等を有するので、例えば、電 線、発泡電線、ケーブル、ワイヤ等の被覆材、チューブ、フィルム、シート、フィラメント 等の種々の成形品の製造に供することができる。
[0040] 本発明のフッ素榭脂組成物は、電線の被覆押出成形において被覆成形速度を低下 させることなぐ被覆切れ、スパークアウト、ランプ (Lump)発生、キャパシタンスの変 動等、従来問題となっていた成形不良を大幅に低減することが可能であるので、特 に、電線の被覆押出成形に好適に用いることができる。
従来の成形不良は、特に被覆成形速度が 1000フィート〔 Z分から 3000ftZ分と いう高速成形において従来問題視されていたが、本発明のフッ素榭脂組成物は、該 高速成形においても従来の成形不良を起こすことなく電線の被覆押出成形を行うこ とがでさる。 [0041] 本発明のフッ素榭脂組成物は、上述の構成よりなるものであるので、電線の被覆押 出成形に用いる場合、榭脂微小塊が成形機の押出口にたとえ一旦生じたとしても、 大きく成長しランプとなる前に押出ロカも運び去ることができるので、ランプ数を従来 よりも著しく低減した電線とすることができる。
また、本発明のフッ素榭脂組成物は発泡電線の押し出し成形において使用すること ができる。この場合、均一な発泡(空隙率)が得られ、発泡率を上げることができる。ま た、高速での成型安定性に優れ、より細線の発泡電線を得ることができる。これは張 力の向上により、発泡核剤によって破泡しにくくなつていることと、榭脂切れを起こし にくくなつているためと考えられる。
[0042] 芯導体と、上記芯導体上に上述の本発明のフッ素榭脂組成物を用いて形成してなる 被覆材とを有することを特徴とする電線もまた、本発明の一つである。
本発明の電線としては、芯導体 (芯線)と上記被覆材とからなるものであれば特に限 定されず、例えばケープノレ、ワイヤ等が挙げられる。
上記電線は、なかでも、通信用絶縁電線に好適に用いられ、例えば LAN用ケープ ルのようなデータ伝送用ケーブル等のコンピューター及びその周辺機器を接続する ケーブル類が挙げられ、例えば建物の天井裏の空間(プレナムエリア)等において配 線されるプレナムケーブルとしても好適である。本発明の電線としては、同軸ケープ ル、高周波用ケーブル、フラットケーブル、耐熱ケーブル等も挙げられる。
[0043] 本発明の電線における芯線の材料としては、特に限定されないが、銅、銀等の金属 導体の材料を用いることができる。
本発明の電線は、芯線のサイズ力 直径 2〜80milであるものが好ましい。
本発明の電線における被覆材は、本発明のフッ素榭脂組成物カゝらなるものであれば 特に限定されず、特に本発明のフッ素榭脂組成物における FEP力 パーフルォロポ リマーであることが好ましぐ TFE単位と、 HFP単位及び PFVE単位と力もなるものが より好ましぐ TFE単位と、 HFP単位及び PFVE単位とからなるものであって、融点が 240°C以上、 280°C以下であるものが更に好ましい。
本発明の電線は、上記被覆材の厚みが 1. 0〜20milであるものが好ましい。
[0044] 本発明の電線は、上記被覆材の周りに層 A (外層)を形成してなるものであってもよ!/ヽ し、層 A (外層)を芯線の周りに被覆させ、更に該層 A (外層)の周りに上記被覆材を 形成してなるものであってもよ!/、。
上記層 A (外層)は、特に限定されず TFEZPAVE共重合体、 TFEZエチレン系共 重合体 、フッ化ビ-リデン系重合体、ポリエチレン〔PE〕等のポリオレフイン榭脂、ポ リ塩ィ匕ビュル〔PVC〕等の榭脂からなる榭脂層であってよい。なかでも、コスト的に PE と PVCが好ましい。
上記層 A (外層)と上記被覆材の厚みは特に限定されず、層 A (外層)の厚みは lmil 〜20milであってよく、上記被覆材の厚みは lmil〜20milであってよ!ヽ。
[0045] 本発明の電線において、被覆材は、上述の本発明のフッ素榭脂組成物カゝらなるもの であるので、被覆成形速度 1000〜3000フィート/分にて押出被覆成形により形成 することができる。本発明の電線は、線径ブレが小さいものであり、上記範囲内の被 覆成形速度にて押出被覆成形により被覆材を形成した場合であっても、線径ブレ測 定における工程能力指数〔Cp〕を 1. 0以上とすることができる。
上記線径ブレ測定における Cpは、好ましい下限が 1. 2である。
上記線径ブレ測定における Cpは、芯線 (直径 20. lmil)について、単軸押出成形機 (デービス スタンダード社製)にて線径 34. 5milとなるよう 20時間電線被覆を行った とき〖こ、外径測定器 ODAC15XY(Zumbach社製)にて電線の外径 (OD)を測定し 、 US YS 2000 (Zumbach社製)にて、公差を ±0. 5milとして解析した値である。
[0046] 本発明の電線は、例えば、芯線が直径 18. 0-24. Omil、被覆材が厚み 3. 0〜8.
Omilである場合、キャパシタンス測定における Cpを 1. 0以上とすることができる。 上記キャパシタンス測定における Cpは、キャパシタンス測定器 Capac HS (Type: MR20. 50HS、 Zumbach社製)を用いてキャパシタンスを 20時間測定し、得られた データを US YS 2000 (Zumbach社製)に蓄積し、公差を ± 1. 0 (pf/inch)として 解析した値である。
[0047] 本発明の電線は、被覆成形速度 1000〜3000フィート Z分にて押出被覆成形により 20時間連続して形成して得られるものである場合、高さ 10〜50milのランプを有す るか又は有しないものであり、上記ランプは、総数で 100個以下とすることができる。 本発明の電線は、例えば、芯線(直径 18. 0〜24. Omil)の芯材について、上記範 囲内の被覆成形速度にて 20時間連続して線径 30. 0-40. Omilとなるよう押出被 覆成形する場合、発生するランプの総数を、好ましくは 30個以下、より好ましくは 20 個以下とすることができる。
本明細書において、上記ランプのサイズ (高さ)と発生頻度は、ランプ検知器 KW32 TRIO (Zumbach社製)を用いて測定したものである。
発明の効果
[0048] 本発明のフッ素榭脂組成物は、上述の構成よりなるので、良好な耐熱性、耐薬品性 、耐溶剤性、絶縁性、電気特性等を有し、更に、成形性がよぐ成形不良を抑制した 成形品を得ることができる。
本発明の電線及び発泡電線は、上記構成よりなるものであるので、成形不良が少な ぐまた、耐熱性、耐薬品性、耐溶剤性、絶縁性、電気特性等に優れている。
発明を実施するための最良の形態
[0049] 以下に実施例及び比較例を掲げて本発明を更に詳しく説明するが、本発明は本実 施例及び比較例のみに限定されるものではない。
なお、特に説明しない限り、「部」は「質量部」を表す。
[0050] 製造例 1 (PTFEホモポリマーデイスパージヨン)
アンカー型攪拌翼と温度調節用ジャケットを備えた内容量 100Lのステンレス鋼製ォ 一トクレーブに、脱イオン水 49Lと融点 62°Cの固形パラフィンワックス 1. 4kg及びパ 一フルォロオクタン酸アンモ-ゥム 0八〕 73gを仕込み、 85°Cに加温しながら窒 素ガスで 3回、テトラフルォロエチレン〔TFE〕ガスで 2回系内を置換して酸素を除!ヽ た後、内圧が 6. 5kg/cm2Gとなるまで TFEを圧入した。続いて水 330mlに過硫酸 ァンモ-ゥム〔八?3〕3131118を溶かした八?3水溶液、及び、水 330mlにジコハク酸 パーオキサイド〔DSP〕 5gを溶かした DSP水溶液を TFEと共に圧入し、オートクレー ブ内圧を 8. 0kgZcm2Gにした。反応は加速的に進行するが、反応温度 85°C、ォー トクレーブ内圧 8. 0kgZcm2Gを保つように TFEガスを連続的に供給した。
APS水溶液及び DSP水溶液の添加後、反応で消費された TFEが 23. 8kgに達した 時点で TFEの供給と攪拌を停止し、直ちにオートクレープ内のガスを常圧まで放出 して内容物(ラテックス)を取り出した。ポリマーの平均一次粒子径は、 303nmであつ た。
得られたラテックスの一部を 200°Cで 1時間蒸発乾固させ、得られた固形分に基づき ポリマー濃度を計算すると 32. 3質量%であった。また、ポリマーは、標準比重が 2. 1 76であった。
[0051] 製造例 2 (変性 PTFEデイスパージヨン)
製造例 1と同様の装置にお 、て脱イオン水 49Lと融点 56°Cの固形パラフィンワックス 1. 6kg及び PFOA50gを仕込み、 70°Cに加温しながら窒素ガスで 3回、 TFEガスで 2回系内を置換して酸素を除いた後、 TFEを内圧が 7. 0kgZcm2Gとなるまで圧入 した。次にパーフルォロ(プロピルビュルエーテル)〔PPVE〕 5g、続いて、水 330ml に APS 187mgを溶力した APS水溶液、及び、水 330mlに DSP6gを溶力した DSP 水溶液を TFEで圧入し、オートクレーブ内圧を 8. 0kgZcm2Gにした。反応は加速 的に進行する力 反応温度を 70°Cに、攪拌速度を 280rpmに一定に保つようにした 。 TFEはオートクレーブの内圧を常に 8. 0kgZcm2Gを保つように連続的に供給し た。
APS水溶液及び DSP水溶液の添加後、反応で消費された TFEが 21. 7kgに達した 時点で TFEの供給と攪拌を停止し、直ちにオートクレーブ内のガスを 2. Okg/cm2 Gまで放出し、次いで予め調製したクロ口トリフルォロエチレン〔CTFE〕と TFEとの混 合モノマー(CTFE含有量 1. 5モル0 /0)を供給し、内圧8. 0kg/cm2G、攪拌速度 2 80rpmに維持して、引き続き反応を行った。
混合モノマーの消費が 2. 1kgになった時点で混合モノマーの供給と攪拌を停止し、 直ちにオートクレープ内のガスを常圧まで放出し内容物(ラテックス)を取り出した。ポ リマーの平均一次粒子径は 298nmであった。
得られたラテックスの一部を 200°Cで 1時間蒸発乾固して、得られた固形分に基づき ポリマー濃度を計算すると 32. 2質量%であり、ポリマーの標準比重は 2. 173であつ た。
また、得られたポリマーは、 PPVE含量が 0. 02質量%であり、 CTFE含量が 0. 090 質量%であった。
[0052] 製造例 3 APS水溶液及び DSP水溶液を、それぞれ水 330mlに APS 397mgを溶かしたもの 、及び、水 330mlに DSP6. 4gを溶力した DSP水溶液に変え、開始剤量を変動させ た以外は、製造例 1と同様にして、ポリマー濃度 31. 8質量 °/c^PTFEホモポリマー デイスパージヨンを得た。なお、本デイスパージヨンにおける PTFEは、標準比重〔SS G〕が 2. 191であった。ポリマーの平均一次粒子径は、 295nmであった。
[0053] 比較製造例 1
攪拌機付き横型ステンレススチール製オートクレープ (容積 100L)を予め脱気してお き、脱イオン水 26Lを入れ、内部を充分に窒素ガスで置換したのちパーフルォロシク ロブタン 20kgを仕込んだ。攪拌速度を 200rpm、系内温を 35°Cにしたのち、パーフ ルォロ(プロピルビュルエーテル)〔PPVE〕2. 0kg、TFE3. 8kg及びメタノール 100 gを仕込み、パーロィル NPP - 50M (日本油脂 (株)製、炭化水素系重合開始剤) 7g を加え、系内圧 0. 83MPaGにて重合を開始した。
重合の進行に伴い系内圧が低下するので、 TFEを追加して系内圧を 0. 83MPaG に保った。また、 TFEを 1. 125kg追加するごとに PPVEを 58g追加した。重合開始 2 0時間後に、モノマーの供給と攪拌を停止し、直ちにオートクレープ内のガスを常圧 まで放出し、内容物を水洗し取り出した。更に、得られた内容物を 150°Cにて 24時間 乾燥し、 12. 5kgの TFEZPPVE共重合体〔PFA〕白色粉末を得た。得られた PFA は、 PPVE含有量が 1. 6モル%であり、 MFRが 0. 1 (g/10分)であった。
[0054] 製造例 4
攪拌機付き横型ステンレススチール製オートクレープ (容積 1000L)を予め脱気して おき、脱イオン水 600L、 10質量%フッ素系界面活性剤(C F COONH )水溶液 1
7 15 4
60kgを仕込み、窒素置換及び真空脱気操作を 3回行った。その後、 HFPモノマー 1 00kgを仕込み、更に、 TFEとHFPとの混合モノマー(TFE :HFP = 86 : 14 (質量% ) )を仕込み、攪拌速度 200rpmにて攪拌しながら、徐々に温度を上げ、オートクレー ブ内雰囲気を 95°Cとし、 1. 5MPaGまで昇圧した。重合開始剤として 10質量%AP S水溶液を 70kg仕込み、反応を開始させた。反応系内の 1. 5MPaGを維持するよう 、上記混合モノマーを連続的に供給した。重合開始力も 30分後、攪拌を停止し、ォ 一トクレーブ内のガスを常圧まで放出して重合反応を終了し、ポリマー固形分濃度 4 . 5質量%の TFEZHFP2元ポリマー乳化分散体を得た。
[0055] 別途、同様のステンレススチール製オートクレーブを予め脱気しておき、脱イオン水 6 OOL、上記 2元ポリマー乳化分散体を 20kg仕込み、窒素置換及び真空脱気操作を 3回行った。その後 HFPモノマー 138kgを仕込み、その後パーフルォロ(プロピルビ -ルエーテル)〔PPVE〕4kgを仕込み、攪拌速度 200rpmにて攪拌しながら徐々に 温度を上げ、オートクレーブ内雰囲気を 95°Cにし、 TFEと HFPとの混合モノマー(T FE :HFP = 87. 3 : 12. 7 (質量%) )を圧入することにより 4. 2MPaGに昇圧した。重 合開始剤として 10質量%APS水溶液を 2. 4kg仕込み、重合反応を開始させた。反 応開始後、 10質量%APS水溶液を 22gZ分の速度で連続的に追加した。反応中、 上記混合モノマー量が供給モノマー全量の 25質量%、 50質量%及び 75質量%に 達した時点で、 PPVEを各回 180g仕込んだ。系内の圧力を 4. 2MPaGに維持する よう、上記混合モノマーを連続的に供給した。重合開始から 55分後、 10質量%APS 水溶液の追加を止め、攪拌を停止し、オートクレープ内のガスを常圧まで放出し、重 合反応を終了した。得られたラテックスの一部を 200°Cで 1時間蒸発乾固して、得ら れた固形分に基づきポリマー濃度を計算すると計算すると 20. 2質量%であった。 また、得られたポリマーは、 MFRが 26. 2 (gZlO分)、組成比(質量0 /0)力 TFE/ HFP/PPVE = 87. 3/11. 7/1. 0、融点力 257。Cであった。
[0056] なお、各製造例力 得られたポリマーのデータは、以下の方法にて測定した。
1.メルトフローレ一 HMFR〕
ASTM D 1238- 98に準拠し、メルトインデックステスター (東洋精機製作所社製 )を用い、約 6gの榭脂を 372°Cに保たれたシリンダーに投入し、 5分間放置して温度 が平衡状態に達した後、 5kgのピストン荷重下で直径 2mm、長さ 8mmのオリフィスを 通して榭脂を押し出して、単位時間 (通常 10〜60秒)に採取される榭脂の質量 (g) を測定する。同一試料について 3回ずつ測定を行い、その平均値を 10分間当たりの 押出量に換算した値 (単位: gZlO分)を測定値とした。
2.標準比重〔SSG〕
ASTM D4895— 89〖こ準拠して、水中置換法に基づき測定した。
3.融点 示差走査熱量計〔DSC〕(セイコー社製)を用い、 10°CZ分の昇温速度で昇温した 時の融解ピークを記録し、極大値に対応する温度を融点とした。
4.組成
NMR分析装置(ブルカーバイオスピン社製、 AC300 高温プログ)及び赤外吸収測 定装置 (パーキンエルマ社製、 1760型)を用いて測定した。
CTFE含量は、赤外吸収スペクトルバンドの 957cm_1の吸光度に対する 2360cm_1 の吸光度の比に 0. 58を乗じた値をポリマー中の質量%と定めたものであり、 PPVE の含量は、赤外吸収スペクトルバンドの 995cm_1の吸光度に対する 2360cm_1の吸 光度の比に 0. 95を乗じた値をポリマー中の質量%と定めた。
5.平均一次粒子径
固形分 0. 22質量%になるように水で希釈したポリマーラテックスについて、単位長さ に対する波長 500nmの投射光の透過率を測定し、予め透過型電子顕微鏡写真に おける定方向径を測定して得た PTFE数基準長さ平均一次粒子径と上記透過率と の検量線に基づ 、て決定した。
[0057] 実施例 1
製造例 4で得られた TFEZHFPZPPVEの 3元ポリマー乳化分散体を、容量 3000 Lの攪拌機付オートクレープに移し、攪拌しながら脱イオン水を加えてポリマー固形 分濃度を 10. 0質量%にする。次いで攪拌下、製造例 1で得られた PTFEデイスパー ジョンを上記 TFEZHFPZPPVEの 3元ポリマー 100部に対して固形分換算で 0. 0 7部となる量を添加した。次いで 60%硝酸 40kgを投入し、攪拌速度 40rpmにて凝 析を行い、固体相と液体相が分離したのち、水分を取り除いた。脱イオン水を用いて 洗浄後、得られた白色粉末を、 170°Cにて 20時間の対流空気炉の中で水分を除去 してパーフルォロポリマー (A)白色粉末を得た。
[0058] 次いで、このパーフルォロポリマー (A)白色粉末に炭酸ナトリウム (Na CO )を最終
2 3 濃度 30ppmとなるよう添加し、均一に分散させて、 2軸スクリュー型押出機(日本製鋼 所製)にて安定化 (湿潤熱処理)と同時に溶融ペレツトイ匕した。本押出機は、軸径 32 mm、 L/D = 52. 5、原料投入側より供給部、可塑化部、安定化処理部、ベント部、 定量部各部位力も構成されている。安定ィ匕処理部の温度を 360°C、スクリュー回転 数 200rpm、 15kgZ時間の速度で原料を供給した。空気、水をそれぞれ 0. 93kg/ 時間、水 0. 6kgZ時間の流量で供給し、反応させながらペレツトイ匕し、フッ素榭脂組 成物を得た。
[0059] 更に、得られたフッ素榭脂組成物について、融点及び MFRを上述の方法にて測定 し、更に以下の測定を行った。
1.ダイスゥエル
キヤピログラフ (ROSAND社製)を用い、榭脂 50gを 372°C±0. 5°Cに保たれた内 径 15mmのシリンダーに投入し、 5分間放置してフッ素榭脂組成物の温度を均一に させた後、 90 (lZs)の剪断速度下で内径 lmm (誤差 0. 002mm以下)、長さ 0. 26 mmのオリフィスを通して、ストランド(ストランド長 30 ± 5mm)を押出し、得られたスト ランドを室温に冷却した後、ストランドの先端部分 (先に押出された部分)を直径とし て測定した。本測定を 5回行い、得られた各測定値の平均から、下記式にて算出す る。
ダイスゥエル(%) =〔(ストランド直径 (mm)—オリフィス内径 (mm) ) Zオリフィス内径 (mm) ] X 100
[0060] 2.溶融張力
キヤピログラフ(ROSAND社製)を用い、榭脂約 50gを 385°C±0. 5°Cに保たれた 内径 15mmのシリンダーに投入し、 10分間放置してフッ素榭脂組成物の温度を均一 させた後、剪断速度 36. 5 (lZs)下で、内径 2mm (誤差 0. 002mm以下)、長さ 20 mmのオリフィスを通して押出すことによりストランドを得た。
更に、上記ストランドを、オリフィス出口の真下 45cmの位置に置かれた滑車に通し、 斜め上方 60° の角度に引き上げ、オリフィス出口とほぼ同じ高さにあるロールに巻き つける。ロールの引き取り速度を 5mZ分から 500mZ分まで 5分間かけて上昇させ る条件において測定した張力の最大値を溶融張力とした。
[0061] 3.複素粘度と貯蔵弾性率
溶融粘弾性測定装置(MCR— 500、フイジ力社製)にて、直径 25mm、厚み 1. 5m mの円柱形にした試料をパラレルプレート上に置き、 310°Cでの周波数分散にて、角 周波数 100radZsec〜0. OlradZsecまで溶融粘弾性測定を行い、 0. 01rad/se cでの角周波数における各値として求めた。
[0062] 次 、で、得られたフッ素榭脂組成物を被覆材として以下の電線被覆を行 、、電線被 覆押出成形中に、以下の手順にてオンラインで成形評価した。
[0063] 電線被覆成形条件は以下の通りである。
(1)芯導体:軟銅線 AWG 24 (American Wire Gauge)芯線径 20. lmil
(2)被覆厚み: 7. 2mil
(3)被覆電線径: 34. 5mil
(4)電線引取速度: 1800フィート Z分
(5)溶融成形 (押出)条件:
'シリンダー軸径 = 2インチ
• L/D = 30の単軸押出成形機
•ダイ(内径) Zチップ(外形) =8. 71mm/4. 75mm
'押出機の設定温度:バレル部 Zl (338°C)、バレル部 Z2 (360°C)、バレル部 Z3 (37 1°C)、バレル部 Z4 (382°C)、バレル部 Z5 (399)、クランプ部(404°C)、アダプター 部 (404°C)、クロスヘッド部 (404°C)、ダイ部 (404°C)に、芯線予備加熱を 140°Cに 設疋した。
'成形時の溶融メルトコーン長 = 3. 7〜4. Omm
[0064] 1.スパークアウトの測定
約 6m空冷ゾーンと水冷ゾーンで冷却された後に、スパーク検知器(Model HF— 2 0— H、 CLINTON INSTRUMENT COMPANY社製)を用いて、 20時間の成 形において榭脂で被覆されていない部分を測定電圧 2. 0KVにて測定し、スパーク の発生する回数として求めた。
2.ランプサイズ (高さ)と発生頻度の測定
ランプ検知器 KW32TRIO (Zumbach社製)を用いて 20時間の成形で発生するサ ィズ (高さ)と発生頻度を測定した。
3.線径ブレ測定
外径測定器 ODAC 15XY(Zumbach社製)を用いて外径 (OD)を 20時間測定し、 工程能力指数〔Cp〕として算出した。なお、 Cpは、 US YS 2000 (Zumbach社製)に て、線径上限 (USL)を上記被覆電線径 34. 5miUり 0. 5mil高く、下限 (LSL)を上 記被覆電線径より 0. 5mil低く設定して、得られた外径データ力も解析した。
4.キャパシタンスぶれの測定
キャパシタンス測定器 Capac HS (Type : MR20. 50HS、 Zumbach社製)を用い て 20時間測定し、工程能力指数〔Cp〕として算出した。なお、 Cpは、逐次 USYS 2 000 (Zumbach社製)に蓄え、上限(USL)を + 1. O (pfZinch)、下限(LSL)を— 1 . 0 (pf/inch)に設定して、解析した。
5. Die— Droolの発生量
20時間成形における発生量を目視判定した。
[0065] 実施例 2〜5
添加する PTFEデイスパージヨンの種類と添力卩量を表 2に示すように変更する以外は 、実施例 1と同様に操作を行い、フッ素榭脂組成物を得、電線被覆成形評価を行つ た。
[0066] 実施例 6
製造例 4で得られた TFEZHFPZPPVEの 3元ポリマー乳化分散体を、容量 3000 Lの攪拌機付オートクレープに移し、攪拌しながら脱イオン水を加えてポリマー固形 分濃度を 10. 0質量%にする。次いで攪拌下、製造例 1で得られた PTFEデイスパー ジョンを TFEZHFPZPPVEの 3元ポリマー 100部に対して固形分換算で 0. 07部 となる量を添加した。次いで 60%硝酸 40kgを投入し、攪拌速度 40rpmにて凝析を 行い、固体相と液体相が分離したのち、水分を取り除いた。脱イオン水を用いて洗浄 後、得られた白色粉末を、 170°Cにて 20時間の対流空気炉の中で水分を除去して パーフルォロポリマー (A)白色粉末を得た。
[0067] 次いで、このパーフルォロポリマー (A)白色粉末に炭酸カリウム (K CO )を最終濃
2 3
度 15ppmとなるよう添加し、均一に分散させた後、 2軸スクリュー型押出機(日本製鋼 所製)にて安定化 (湿潤熱処理)と同時に溶融ペレツトイ匕した。本押出機は、軸径 32 mm、 L/D = 52. 5、原料投入側より供給部、可塑化部、安定化処理部、ベント部、 定量部各部位力も構成されている。安定ィ匕処理部の温度を 360°C、スクリュー回転 数 200rpm、 15kgZ時間の速度で原料を供給した。空気、水をそれぞれ 0. 93kg/ 時間、水 0. 6kgZ時間の流量で供給し、反応させながらペレツトイ匕し、フッ素榭脂組 成物を得た。
[0068] 実施例 7
実施例 1の電線被覆成形条件において、電線引取速度を 2400フィート Z分とした以 外は、実施例 1と同様に操作を行い、電線被覆成形評価を行った。
[0069] 実施例 8
実施例 1で得られたフッ素榭脂組成物と窒化ホウ素(BN、グレード SHP— 325、平 均粒子径 10. 3 m、カーボランダム社製)とを、窒化ホウ素濃度が 7. 5重量%となる ように混合して作成したマスターバッチペレットと、実施例 1のフッ素榭脂組成物のぺ レットとを、マスターバッチペレット:実施例 1のペレット = 1 : 9の割合で混合し、表 1に 記載の条件にて発泡電線成形を行った。
[0070] [表 1]
Figure imgf000024_0001
[0071] 成型安定性は良好であり、得られた発泡電線は微細な気泡が均一に分布しており、 発泡率も高いものが得られた。
[0072] 比較例 1
PTFEデイスパージヨンを添カ卩しない以外は、実施例 6と同様に操作を行い、フッ素 榭脂組成物を得、電線被覆成形評価を行った。
[0073] 比較例 2
製造例 2の PTFEデイスパージヨンをアンカー型攪拌翼と邪魔板を備えたステンレス 製凝析槽に移し、 PTFEデイスパージヨンの比重が 1. 074になるように水をカ卩え、温 度を 20°Cに調節した後、直ちに 60%硝酸を添加すると同時に攪拌しポリマーを凝析 し、水と濾別し、再度水を入れ洗浄と同時に整粒し、更に、水を濾別し、 140°Cで 24 時間乾燥させて PTFEファインパウダーを得た。
得られた PTFEファインパウダーは、見掛け密度が 0. 45gZmlであり、二次粒子の 平均粒子径カ 90 μ mであった。
別途、実施例 1において、 PTFEデイスパージヨンを添カ卩しないで得たパーフルォロ ポリマー(B)白色粉末 (TFEZHFPZPPVEの 3元ポリマー)を得た。
次に、攪拌機と-一デイングブロックとを備えた粉末混合機にパーフルォロポリマー( B)白色粉末 100部に対して固形分換算で 0. 07部となるように上記 PTFEファインパ ウダ一を添加し、 30分予備混合を行った後、実施例 1と同様にペレツトイ匕を行いフッ 素榭脂組成物を得、電線被覆成形評価を行った。
[0074] 比較例 3
PTFEファインパウダーに替えて、比較製造例 1から得られた PFAを TFEZHFPZ PPVEの 3元ポリマー 100部に対し 3部となるよう混合する以外は、実施例 1と同様に ペレット化を行 ヽフッ素榭脂組成物を得、電線被覆成形評価を行った。
[0075] 比較例 4
PTFEファインパウダーに替えて、比較製造例 1から得られた PFAを TFEZHFPZ PPVEの 3元ポリマー 100部に対し 0. 07部となるよう混合する以外は、実施例 1と同 様にペレット化を行 、フッ素榭脂組成物を得、電線被覆成形評価を行った。
[0076] 比較例 5
製造例 1で得られた PTFEデイスパージヨンを上記 TFE/HFP/PPVEの 3元ポリマ 一 100部に対して固形分換算で 5部となる量を添加した以外は、実施例 1と同様に操 作を行い、フッ素榭脂組成物を得、電線被覆成形評価を行ったが、線径ブレが大きく 安定して成形することができな力つた。 実施例 1〜 7及び比較例 1〜4の結果を表 2に示す。
[表 2]
Figure imgf000027_0001
[0078] 各実施例から得られた電線は、何れもランプ発生が 30個未満であり、 30mil以上の ランプ発生及びスパークアウトが殆どなく、 Die— Droolの発生量が微小であることが 分力つた。一方、各比較例力も得られた電線は、何れもランプ発生が 100個以上で あった。特に、比較例 2の電線被覆では、スパークアウトが 500以上であった。
[0079] 比較例 6
比較例 1のフッ素榭脂組成物を用いて、実施例 8と同条件にて発泡電線の成形を行 つたところ、発泡径は大きぐ不均一で、成型安定性に劣っていた。
産業上の利用可能性
[0080] 本発明のフッ素榭脂組成物は、上述の構成よりなるので、良好な耐熱性、耐薬品性 、耐溶剤性、絶縁性、電気特性等を有し、更に、成形性がよぐ成形不良を抑制した 成形品を得ることができる。
本発明の電線及び発泡電線は、上記構成よりなるものであるので、成形不良が少な ぐまた、耐熱性、耐薬品性、耐溶剤性、絶縁性、電気特性等に優れている。

Claims

請求の範囲
[1] テトラフルォロエチレン Zへキサフルォロプロピレン系共重合体 loo質量部と、標準 比重が 2. 15-2. 30であるポリテトラフルォロエチレン 0. 01〜3質量部とからなるフ ッ素榭脂組成物であって、
前記フッ素榭脂組成物は、前記テトラフルォロエチレン Zへキサフルォロプロピレン 系共重合体からなる水性分散液と、前記ポリテトラフルォロエチレン力 なる水性分 散液とを混合したのち凝祈し次いで乾燥後に溶融押出することより得られるものであ る
ことを特徴とするフッ素榭脂組成物。
[2] 標準比重が 2. 15〜2. 30であるポリテトラフルォロエチレンの平均一次粒子径は、 5
0〜800nmである請求項 1記載のフッ素榭脂組成物。
[3] 310°C、角周波数 0. OlradZ秒での溶融粘弾性測定において複素粘度が 2. 5 X 1
03〜4. 0 10¥& ' 5、貯蔵弹性率が0. 25-3. 5Paである請求項 1又は 2記載のフ ッ素榭脂組成物。
[4] ダイスゥエルが 5〜35%であり、溶融張力が 0. 08-0. 16Nである請求項 1、 2又は
3記載のフッ素榭脂組成物。
[5] ナトリウム元素含有量が 5〜: LOOppmである請求項 1、 2、 3又は 4記載のフッ素榭脂 組成物。
[6] 芯導体と、前記芯導体上にフッ素榭脂組成物を用いて形成してなる被覆材とを有す る電線であって、
前記フッ素榭脂組成物は、請求項 1、 2、 3、 4又は 5記載のフッ素榭脂組成物である ことを特徴とする電線。
[7] 被覆材は、被覆成形速度 1000〜3000フィート Z分にて押出被覆成形により形成し たものであり、
線径ブレ測定における工程能力指数〔Cp〕が 1. 0以上である請求項 6記載の電線。
[8] 被覆材は、被覆成形速度 1000〜3000フィート Z分にて押出被覆成形により形成し たものであり、
キャパシタンス測定における工程能力指数〔Cp〕が 1. 0以上である請求項 6又は 7記 載の電線。
[9] 被覆材は、被覆成形速度 1000〜3000フィート Z分にて押出被覆成形により 20時 間連続形成したものであり、
被覆材は、高さ 10〜50milのランプを有するか又は有しないものであり、前記ランプ は、総数で 100個以下である請求項 6、 7又は 8記載の電線。
[10] 芯導体と、前記芯導体上にフッ素榭脂組成物を用いて成形してなる被覆材とを有す る発泡電線であって、
前記フッ素榭脂組成物は、請求項 1, 2, 3, 4又は 5記載のフッ素榭脂組成物である ことを特徴とする発泡電線。
PCT/JP2006/309821 2005-05-18 2006-05-17 フッ素樹脂組成物及び電線 WO2006123694A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/920,442 US7723615B2 (en) 2005-05-18 2006-05-17 Fluororesin composition and electric wire
EP06746524.5A EP1887040B1 (en) 2005-05-18 2006-05-17 Fluororesin composition and electric wire
CN2006800138655A CN101163739B (zh) 2005-05-18 2006-05-17 氟树脂组合物和电线
JP2007516316A JP4798131B2 (ja) 2005-05-18 2006-05-17 フッ素樹脂組成物及び電線

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-146056 2005-05-18
JP2005146056 2005-05-18

Publications (1)

Publication Number Publication Date
WO2006123694A1 true WO2006123694A1 (ja) 2006-11-23

Family

ID=37431267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309821 WO2006123694A1 (ja) 2005-05-18 2006-05-17 フッ素樹脂組成物及び電線

Country Status (5)

Country Link
US (1) US7723615B2 (ja)
EP (1) EP1887040B1 (ja)
JP (1) JP4798131B2 (ja)
CN (1) CN101163739B (ja)
WO (1) WO2006123694A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059690A (ja) * 2007-08-08 2009-03-19 Daikin Ind Ltd 被覆電線及び同軸ケーブル
WO2009044753A1 (en) 2007-10-03 2009-04-09 Daikin Industries, Ltd. Fluororesin composition and covered electric wire
JP2009242710A (ja) * 2008-03-31 2009-10-22 Daikin Ind Ltd ポリテトラフルオロエチレンの成形体、混合粉末及び成形体の製造方法
JP2010527404A (ja) * 2007-05-15 2010-08-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フルオロポリマー電線絶縁体
JP2011514407A (ja) * 2008-02-15 2011-05-06 ダイキン アメリカ インコーポレイティッド テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体及びその製造方法、並びに電線
US20110203830A1 (en) * 2008-10-31 2011-08-25 Daikin America, Inc. Foam electric wire
JP2011231267A (ja) * 2010-04-30 2011-11-17 Du Pont Mitsui Fluorochem Co Ltd フッ素樹脂成形品およびその製造方法
US8153701B2 (en) 2006-12-21 2012-04-10 E. I. Du Pont De Nemours And Company Extrusion of a foamable fluoropolymer
JP2013117620A (ja) * 2011-12-02 2013-06-13 Sumitomo Electric Ind Ltd 光ファイバケーブル
JP2013532766A (ja) * 2010-08-02 2013-08-19 スリーエム イノベイティブ プロパティズ カンパニー 改質剤及びヨウ素又は臭素末端基を含有する過酸化物硬化性フルオロエラストマー
WO2014115623A1 (ja) 2013-01-24 2014-07-31 ダイキン工業株式会社 組成物、並びに、発泡成形体及び電線の製造方法
JP2015004057A (ja) * 2013-05-21 2015-01-08 旭硝子株式会社 発泡体
WO2015119053A1 (ja) * 2014-02-05 2015-08-13 ダイキン工業株式会社 テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体及び電線
WO2019208492A1 (ja) 2018-04-26 2019-10-31 ダイキン工業株式会社 精製フルオロポリマーの製造方法
US10557006B2 (en) 2013-01-24 2020-02-11 Daikin Industries, Ltd. Composition, and method for producing foam molded material and electric wire
JP2020097750A (ja) * 2018-03-27 2020-06-25 ダイキン工業株式会社 成形材料の製造方法および成形品の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049661A1 (ja) * 2003-11-20 2005-06-02 Daikin Industries, Ltd. 含フッ素重合体製造方法及び含フッ素重合体物
PL3323853T3 (pl) * 2008-05-30 2019-12-31 Whitford Corporation Zmieszane kompozycje fluoropolimerowe
RU2498435C1 (ru) * 2012-03-21 2013-11-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ изготовления электрического провода
CN103050185B (zh) * 2012-08-31 2015-07-22 上海福尔欣线缆有限公司 一种氟绝缘电线及其制造方法和用途
KR101940431B1 (ko) * 2014-10-10 2019-01-18 다이킨 고교 가부시키가이샤 수지 조성물 및 성형품
EP3378617B1 (en) * 2016-01-18 2021-02-24 Daikin Industries, Ltd. Pellets comprising a fluororesin, their use and method for producing an electric wire therewith
CN113380463B (zh) * 2021-06-09 2024-06-25 亳州联滔电子有限公司 柔性扁平线缆的制作方法及柔性扁平线缆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301294A (ja) * 1992-02-24 1993-11-16 Daikin Ind Ltd ポリテトラフルオロエチレン成形用水系押出し助剤
JPH06283831A (ja) * 1992-06-11 1994-10-07 Rogers Corp 充填剤を含む配合フルオロポリマーの回路基板材料及びその製造法
WO2001018076A1 (fr) * 1999-09-08 2001-03-15 Daikin Industries, Ltd. Fluoropolymere, et fil et cable electrique enrobe dudit fluoropolymere
JP2002293831A (ja) * 2001-03-28 2002-10-09 Daikin Ind Ltd 含フッ素オレフィン重合体粒子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023702B2 (ja) * 1976-02-17 1985-06-08 ダイキン工業株式会社 成形性の改良されたフツ素樹脂組成物
JP3559062B2 (ja) * 1993-06-30 2004-08-25 三井・デュポンフロロケミカル株式会社 テトラフルオロエチレン/フルオロアルコキシトリフルオロエチレン共重合体組成物
US5543217A (en) * 1995-02-06 1996-08-06 E. I. Du Pont De Nemours And Company Amorphous copolymers of tetrafluoroethylene and hexafluoropropylene
US5677217A (en) * 1996-08-01 1997-10-14 Vanguard International Semiconductor Corporation Method for fabricating a mosfet device, with local channel doping and a titanium silicide gate
WO2001036504A1 (fr) 1999-11-16 2001-05-25 Daikin Industries, Ltd. Fluorocopolymere
DE10033514A1 (de) * 2000-07-11 2002-02-07 Dyneon Gmbh FEP mit erhöhter Wechselbiegefestigkeit und geringen Düsenablagerungen
JP2002047315A (ja) * 2000-08-03 2002-02-12 Daikin Ind Ltd 高周波電気特性に優れたテトラフルオロエチレン系樹脂成形用材料
JP4458658B2 (ja) * 2000-12-06 2010-04-28 三井・デュポンフロロケミカル株式会社 熱溶融性フッ素樹脂組成物
US6583226B1 (en) * 2001-06-28 2003-06-24 3M Innovative Properties Company FEP with increased flexural fatigue strength and a low level of die deposits
US7528198B2 (en) * 2001-09-11 2009-05-05 Daikin Industries, Ltd. Fluororesin composition, process for preparing the same and cable coated with the same
US7169854B2 (en) * 2001-09-11 2007-01-30 Daikin Industries, Ltd. Fluororesin composition, process for preparing the same and cable coated with the same
TWI263910B (en) 2002-08-01 2006-10-11 Hon Hai Prec Ind Co Ltd A measuring device management system and method
JP3758666B2 (ja) * 2003-07-02 2006-03-22 ダイキン工業株式会社 フルオロアルキルカルボン酸誘導体、含フッ素重合体の製造方法及び含フッ素重合体水性分散液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301294A (ja) * 1992-02-24 1993-11-16 Daikin Ind Ltd ポリテトラフルオロエチレン成形用水系押出し助剤
JPH06283831A (ja) * 1992-06-11 1994-10-07 Rogers Corp 充填剤を含む配合フルオロポリマーの回路基板材料及びその製造法
WO2001018076A1 (fr) * 1999-09-08 2001-03-15 Daikin Industries, Ltd. Fluoropolymere, et fil et cable electrique enrobe dudit fluoropolymere
JP2002293831A (ja) * 2001-03-28 2002-10-09 Daikin Ind Ltd 含フッ素オレフィン重合体粒子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1887040A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120172466A1 (en) * 2006-12-21 2012-07-05 E. I. Du Pont De Nemours And Company Extrusion of a Foamable Fluoropolymer
US8153701B2 (en) 2006-12-21 2012-04-10 E. I. Du Pont De Nemours And Company Extrusion of a foamable fluoropolymer
JP2010527404A (ja) * 2007-05-15 2010-08-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フルオロポリマー電線絶縁体
JP2009059690A (ja) * 2007-08-08 2009-03-19 Daikin Ind Ltd 被覆電線及び同軸ケーブル
EP2185648A4 (en) * 2007-10-03 2011-07-06 Daikin Ind Ltd FLUORO-RESIN COMPOSITION AND ISOLATED ELECTRO-WIRE
JP2010539252A (ja) * 2007-10-03 2010-12-16 ダイキン工業株式会社 フッ素樹脂組成物及び被覆電線
US8143351B2 (en) 2007-10-03 2012-03-27 Daikin Industries, Ltd. Fluororesin composition and covered electric wire
WO2009044753A1 (en) 2007-10-03 2009-04-09 Daikin Industries, Ltd. Fluororesin composition and covered electric wire
US9012580B2 (en) 2008-02-15 2015-04-21 Daikin Industries, Ltd. Tetrafluoroethylene/hexafluoropropylene copolymer and the production method thereof, and electrical wire
JP2011514407A (ja) * 2008-02-15 2011-05-06 ダイキン アメリカ インコーポレイティッド テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体及びその製造方法、並びに電線
JP2009242710A (ja) * 2008-03-31 2009-10-22 Daikin Ind Ltd ポリテトラフルオロエチレンの成形体、混合粉末及び成形体の製造方法
US20110203830A1 (en) * 2008-10-31 2011-08-25 Daikin America, Inc. Foam electric wire
JP2012507832A (ja) * 2008-10-31 2012-03-29 ダイキン アメリカ インコーポレイティッド 発泡電線
JP2011231267A (ja) * 2010-04-30 2011-11-17 Du Pont Mitsui Fluorochem Co Ltd フッ素樹脂成形品およびその製造方法
JP2013532766A (ja) * 2010-08-02 2013-08-19 スリーエム イノベイティブ プロパティズ カンパニー 改質剤及びヨウ素又は臭素末端基を含有する過酸化物硬化性フルオロエラストマー
JP2013117620A (ja) * 2011-12-02 2013-06-13 Sumitomo Electric Ind Ltd 光ファイバケーブル
WO2014115623A1 (ja) 2013-01-24 2014-07-31 ダイキン工業株式会社 組成物、並びに、発泡成形体及び電線の製造方法
KR20190029784A (ko) 2013-01-24 2019-03-20 다이킨 고교 가부시키가이샤 조성물, 및 발포 성형체 및 전선의 제조 방법
US10304585B2 (en) 2013-01-24 2019-05-28 Daikin Industries, Ltd. Composition, and method for producing foam molded material and electric wire
US10557006B2 (en) 2013-01-24 2020-02-11 Daikin Industries, Ltd. Composition, and method for producing foam molded material and electric wire
JP2015004057A (ja) * 2013-05-21 2015-01-08 旭硝子株式会社 発泡体
WO2015119053A1 (ja) * 2014-02-05 2015-08-13 ダイキン工業株式会社 テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体及び電線
JP2020097750A (ja) * 2018-03-27 2020-06-25 ダイキン工業株式会社 成形材料の製造方法および成形品の製造方法
US12036714B2 (en) 2018-03-27 2024-07-16 Daikin Industries, Ltd. Molding material and tube
WO2019208492A1 (ja) 2018-04-26 2019-10-31 ダイキン工業株式会社 精製フルオロポリマーの製造方法

Also Published As

Publication number Publication date
JP4798131B2 (ja) 2011-10-19
EP1887040A1 (en) 2008-02-13
EP1887040A4 (en) 2009-11-11
US20090044965A1 (en) 2009-02-19
CN101163739A (zh) 2008-04-16
CN101163739B (zh) 2010-12-29
EP1887040B1 (en) 2013-05-15
US7723615B2 (en) 2010-05-25
JPWO2006123694A1 (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
WO2006123694A1 (ja) フッ素樹脂組成物及び電線
EP2185648B1 (en) Fluororesin composition and covered electric wire
JP5298853B2 (ja) 含フッ素共重合体及び成形品
JP5844764B2 (ja) テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体の製造方法
US11021556B2 (en) Tetrafluoroethylene/hexafluoropropylene copolymer, and electric wire
JP5874653B2 (ja) 溶融ペレットの製造方法、及び、電線の製造方法
WO2003059969A1 (en) Fep pellet
CN107223139B (zh) 包含全氟烷氧基烷基侧基的四氟乙烯/六氟丙烯共聚物及其制备和使用方法
EP3279904A1 (en) Method for producing electric wire
WO2009076450A1 (en) Core/shell polymer and fluoropolymer blend blown film process
WO2023195377A1 (ja) 固体組成物、回路基板、及び、固体組成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680013865.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007516316

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11920442

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006746524

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746524

Country of ref document: EP