WO2006122691A2 - Dispositif laser forme par un empilement de diodes laser - Google Patents

Dispositif laser forme par un empilement de diodes laser Download PDF

Info

Publication number
WO2006122691A2
WO2006122691A2 PCT/EP2006/004389 EP2006004389W WO2006122691A2 WO 2006122691 A2 WO2006122691 A2 WO 2006122691A2 EP 2006004389 W EP2006004389 W EP 2006004389W WO 2006122691 A2 WO2006122691 A2 WO 2006122691A2
Authority
WO
WIPO (PCT)
Prior art keywords
cooling body
laser
layer
wafers
laser diodes
Prior art date
Application number
PCT/EP2006/004389
Other languages
English (en)
Other versions
WO2006122691A3 (fr
Inventor
Fabrice Monti Di Sopra
Bruno Frei
Original Assignee
Lasag A.G.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lasag A.G. filed Critical Lasag A.G.
Priority to EP06742865A priority Critical patent/EP1889341A2/fr
Publication of WO2006122691A2 publication Critical patent/WO2006122691A2/fr
Publication of WO2006122691A3 publication Critical patent/WO2006122691A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/02365Fixing laser chips on mounts by clamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Definitions

  • the invention relates to a laser device formed by a stack of laser diodes each arranged on a wafer formed of an electrically conductive material and a good conductor of heat. These plates provide on the one hand an electrical connection between the laser diodes to allow the passage of an electric supply current and on the other hand to conduct the heat produced by these laser diodes in the direction of a cooling body which evacuates or dissipate the heat of the laser diodes.
  • the invention relates to a quasi-continuous or continuous light wave laser diode stack (QCW or CW laser diode).
  • FIG 1 is shown partially a laser device of the type mentioned above.
  • This device 2 comprises laser diodes 4 in bar form, shown schematically, and metal plates 6 between which the laser diodes are arranged.
  • the plates 6 are provided electrically conductive.
  • the electrical connection between the wafers 6 and the laser diodes 4 is performed in a manner known to those skilled in the art.
  • the latter can be associated with a lower electrically insulating portion and of greater thickness than the material constituting the laser diode.
  • the various elements or layers associated with a laser diode are schematically represented therewith in the form of a bar 4.
  • the arrangement of the wafers 6 and the laser diodes thus allows the passage of an electric current in the direction X. Some heat transmission is also obtained in this direction X via the metal plates 6.
  • the wafers 6 are copper.
  • This cooling body conventionally presents a conduit 12 for a circulation of water. Since the electric current must pass through the diodes in the X direction, it is necessary that the wafers 6 are electrically insulated from one another. To do this, in the prior art of FIG. 1, an electrically insulating ceramic layer 14 is welded to the body 10 by means of a solder forming a film 16.
  • each wafer 6 is welded to the layer 14 also at the same time. 18.
  • the welding of the pads 6 must be carried out in a structured manner, to avoid short circuits between these plates 6. It is therefore necessary to prevent the solder between a wafer 6 and the ceramic layer 14 is in contact with the solder for welding another wafer.
  • the device of the prior art described herein before has several disadvantages.
  • performing a structured weld to attach the wafers to the insulating layer is a complex operation that requires special precautions.
  • a weld defines an interface which forms a brake on the transfer of heat towards the cooling body 10.
  • two solder layers are present on either side of the layer 14 , which decreases the efficiency of the cooling of the laser diodes.
  • each plate is assembled in its lower part to an electrically insulating layer by welding.
  • This insulating layer is flat and has the same dimensions as those of the end of the wafer.
  • Each plate is therefore first welded to a clean insulating layer.
  • each assembly thus formed is welded to the cooling body by means of a solder provided on the cooling body and structured to correspond to the separate zones provided for the plurality of "wafer-insulating layer" assemblies.
  • This last embodiment of the prior art has manufacturing problems.
  • the structured weld defines a precise location for each wafer on the cooling body. This poses a machining problem for the various elements, in particular tolerances for the thickness of the wafers and for the thickness of the diodes. Indeed, variations in these thicknesses cause a problem of alignment of the stack of diodes and platelets with solder areas. But decreasing the tolerances in the machining of wafers and diodes increases the manufacturing price.
  • the thickness of the diodes can vary substantially in the standard assortment of a laser diode manufacturer. It should also be noted that this thickness is not standardized so that it also varies from one supplier to another.
  • a method as described in document US 2004/0082112 thus poses a real problem of assembly.
  • Another problem is that the layer of structured solder must be of low height to remain substantially in the separate areas provided.
  • the tolerance in the machining of the height of the wafers is also critical. If during the prior assembly of the stack of wafers and laser diodes the lower ends of the wafers are arranged in the same geometrical plane to ensure that each plate will rest well on the solder deposited in the corresponding zone on the cooling body during the welding of the wafers to this body, the laser diodes attached to the wafers on the side of their upper ends will not emit in the same emission plane, this which then poses a problem of collimation or focusing of the laser beam generated by the plurality of diodes.
  • An object of the present invention is to solve the aforementioned problems by providing a laser device with a stack of laser diodes that can be manufactured by a reliable industrial process whose implementation is relatively easy.
  • the present invention relates to a laser device formed by a stack of laser diodes each arranged on a wafer formed of an electrically conductive material and having a good thermal conductivity, these wafers being arranged next to each other, two wafers adjacent ones being located on either side of one of the laser diodes.
  • These plates provide on the one hand an electrical connection between the laser diodes which allows the passage of an electric supply current and, on the other hand, to conduct the heat produced by these laser diodes in the direction of a cooling body to which the plates are fixed by means of a fixing material, each plate being provided at its end on the side of said cooling body with an electrically insulating layer forming an interface between, on the one hand, the cooling body and said material fastening and, on the other hand, the wafer.
  • This laser device is characterized in that said electrically insulating layer has a thickness of about 100 microns or greater and said fixing material forms a through layer between said platelets.
  • the electrically insulating layer is a thick layer arranged on the lower face of the end of each wafer located opposite the cooling body.
  • the thickness of the insulating layer is selected so that the fixing material, in particular a solder, can go up a little along the lateral faces of this insulating layer while remaining below the height of the insulating layer.
  • FIG. 1 already described, schematically represents a laser device with a stack of laser diodes according to the prior art;
  • FIG. 2 diagrammatically represents an embodiment of the present invention.
  • FIG. 3 shows in perspective an alternative embodiment of the invention. - AT -
  • the laser device 34 comprises, as in the prior art, pads 6 formed of an electrically conductive material and good heat conductor. Laser diodes 4 are arranged between the plates 6 so as to allow the passage of an electric supply current of these diodes.
  • the number of diodes and platelets may vary, in particular depending on the intended application for the laser devices.
  • the wafers 6 may be entirely of metal or of another metallized material on the surface.
  • the plates 6 are arranged above a cooling body 10 having a conduit 12 for the circulation of a cooling fluid.
  • the plates 6 and the cooling body 10 are made for example of copper. Other materials that are good conductors of heat are obviously conceivable.
  • the wafers 6 are formed of an electrically conductive material with good thermal conductivity to allow evacuation of the heat produced by the laser diodes towards the cooling body 10.
  • the wafers are attached at their lower end to the body of the cooling by means of a fixing material 26 selected so as to conduct the heat sufficiently.
  • the fastening material 26 is also an electrical conductor.
  • Each plate 6 has at its lower end, that is to say at the end fixed to the cooling body 10, an electrically insulating layer 38 which is arranged to form an interface between, on the one hand, the body 10 and the fixing material 26 and, on the other hand, the wafer 6 considered.
  • the fastening material is a solder.
  • each plate 6 has at its lower end 24 located opposite the cooling body 10 a relatively thick layer of electrically insulating material.
  • the thickness H1 of the insulating layer 38 is about 100 microns. Given the thickness of this layer 38, a material having a good thermal conductivity will be selected. In the context of the present invention, a thickness H1 greater than 100 microns is preferred.
  • the brazing layer covers the underside of the layer 38 and also rises a little along the lateral faces of this layer 38, so as not to rise above the height H1 of the thick layer 38.
  • the solder layer 26 has about a height H2 less than the height H1 from the lower surface of the insulating layer 38.
  • the insulating layer 38 on the lower end 24 of each of the wafers defines an insulating block which is fixed to the cooling body by a fixing material preferably having a good thermal conductivity.
  • the solder 26 forms a relatively thick through layer. It is thus possible to deposit solder necessary for welding the wafers on the cooling body so as to form a continuous layer, that is to say unstructured, and the wafers are then made to be welded. It is also conceivable to provide the solder 26 once the plates 6 are arranged facing the body 10. All welding methods known to those skilled in the art are available to optimize the method of fixing the wafers 6 to 10.
  • FIG 3 partially shows a variant of the laser device of Figure 2 which highlights the advantages of the present invention.
  • the wafers 6 have varying lengths. However, thanks to the thick insulating layer, for example between 150 and 250 microns, and a continuous solder layer 26 which is also thick, for example between 200 and 300 microns, it is ensured that each insulating layer is correctly coated with solder on its lower face.
  • the stack of wafers and diodes is made so that the diodes emit substantially in one and the same transmission plane.
  • the machining tolerance on the height of the pads is therefore reported from the side of the weld to the cooling body.
  • the average height H of penetration of the insulating layers 38 in the solder 26 is in this example approximately equal to half the thickness of this insulating layer.
  • the thickness W of the plates 6 and the thickness D of the diodes 4 can vary without causing any problem for welding to the cooling body.

Abstract

Le dispositif laser (22) est formé par un empilement de diodes laser (4) agencées sur des plaquettes (6) formées d'un matériau électriquement conducteur et ayant une bonne conductivité thermique. Pour obtenir une bonne efficacité de l'évacuation de chaleur en direction du corps de refroidissement (10) et éviter des problèmes de court-circuit électrique, chaque plaquette présente à son extrémité inférieure (24) une couche électriquement isolante déposée sur sa surface préalablement à la fixation au corps de refroidissement par un matériau de fixation (26) de préférence bon conducteur de chaleur, formé en particulier par une couche de brasure. Selon l'invention, la couche isolante présente une certaine épaisseur qui est suffisante pour permettre au matériau de fixation de couvrir en partie les faces latérales des couches isolantes et le matériau de fixation est prévu traversant entre les plaquettes, c'est-à-dire qu'il forme une couche continue sur le corps de refroidissement.

Description

D ISPOSITI F LASER FORME PAR UN EMPILEMENT DE DIODES LASER
L'invention concerne un dispositif laser formé par un empilement de diodes laser agencées chacune sur une plaquette formée d'un matériau électriquement conducteur et bon conducteur de chaleur. Ces plaquettes assurent d'une part une liaison électrique entre les diodes laser pour permettre le passage d'un courant électrique d'alimentation et d'autre part de conduire la chaleur produite par ces diodes laser en direction d'un corps de refroidissement qui évacue ou dissipe ainsi la chaleur des diodes laser.
En particulier, l'invention concerne un empilement de diodes laser à onde lumineuse quasi continue ou continue (QCW or CW diode laser). A la figure 1 est représenté partiellement un dispositif laser du type mentionné ci-dessus. Ce dispositif 2 comprend des diodes laser 4 sous forme de barre, représentées schématiquement, et des plaquettes métalliques 6 entre lesquelles les diodes laser sont agencées. Pour alimenter les diodes laser, les plaquettes 6 sont prévues électriquement conductrices. La connexion électrique entre les plaquettes 6 et les diodes laser 4 est effectuée d'une manière connue de l'homme du métier. Pour protéger la diode laser elle-même, cette dernière peut être associée à une partie inférieure électriquement isolante et d'épaisseur supérieure au matériau constituant la diode laser. Dans les figures jointes à la description de la présente invention, les divers éléments ou couches associés à une diode laser sont représentées schématiquement avec celle-ci sous la forme d'une barre 4.
L'agencement des plaquettes 6 et des diodes laser permet ainsi le passage d'un courant électrique selon la direction X. Une certaine transmission de chaleur est également obtenue selon cette direction X par l'intermédiaire des plaquettes métalliques 6. En particulier, les plaquettes 6 sont en cuivre. Cependant, pour permettre un refroidissement efficace, il est nécessaire que la chaleur produite par les diodes puisse s'évacuer par les plaquettes 6 en direction du corps de refroidissement 10. Ce corps de refroidissement présente de manière classique un conduit 12 pour une circulation d'eau. Comme le courant électrique doit passer au travers des diodes selon la direction X, il est nécessaire que les plaquettes 6 soient isolées électriquement l'une des autres. Pour ce faire, dans l'art antérieur de la figure 1 , une couche céramique 14 électriquement isolante est soudée au corps 10 par intermédiaire d'une brasure formant un film 16. Ensuite, chaque plaquette 6 est soudée à la couche 14 également à l'aide d'une brasure 18. La soudure des plaquettes 6 doit être réalisée de manière structurée, pour éviter des court-circuits entre ces plaquettes 6. Il est donc nécessaire d'éviter que la brasure entre une plaquette 6 et la couche céramique 14 soit en contact avec la brasure servant au soudage d'une autre plaquette.
Le dispositif de l'art antérieur décrit ici avant présente plusieurs inconvénients. Premièrement, la réalisation d'une soudure structurée pour fixer les plaquettes à la couche isolante est une opération complexe qui nécessite des précautions particulières. De plus, il est difficile de garantir un bon rendement industriel pour une telle opération étant donné que la brasure 18 a tendance à s'étendre lors du soudage. On remarquera aussi qu'une soudure définit une interface qui forme un frein au transfert de chaleur en direction du corps de refroidissement 10. Dans le cas de la figure 1 , deux couches de soudure sont présentes de part et d'autre de la couche 14, ce qui diminue un peu l'efficacité du refroidissement des diodes laser.
On connaît aussi du document US 2004/0082112 un empilement de diodes laser qui diffère de celui représenté à la figure 1 essentiellement par le fait que la couche isolante est structurée. Selon l'enseignement de ce document, chaque plaquette est assemblée dans sa partie inférieure à une couche électriquement isolante par un soudage. Cette couche isolante est plane et présente les mêmes dimensions que celles de l'extrémité de la plaquette. Chaque plaquette est donc premièrement soudée à une propre couche isolante. Ensuite, chaque ensemble ainsi formé est soudé sur le corps de refroidissement au moyen d'une brasure apportée sur ce corps de refroidissement et structurée de manière à correspondre aux zones distinctes prévues pour la pluralité d'ensembles "plaquette-couche isolante".
Ce dernier mode de réalisation de l'art antérieur, tout comme celui représenté à la figure 1 , présente des problèmes de fabrication. La soudure structurée définit un emplacement précis pour chaque plaquette sur le corps de refroidissement. Ceci pose un problème d'usinage des divers éléments, en particulier de tolérances pour l'épaisseur des plaquettes et pour l'épaisseur des diodes. En effet, des variations dans ces épaisseurs engendrent un problème d'alignement de l'empilement des diodes et plaquettes avec les zones de brasure. Or diminuer les tolérances dans l'usinage des plaquettes et des diodes augmente le prix de fabrication. De plus, l'épaisseur des diodes peut varier sensiblement dans l'assortiment standard d'un fabricant de diodes laser. Il faut aussi noter que cette épaisseur n'est pas normée de sorte qu'elle varie aussi d'un fournisseur à l'autre. Un procédé tel que décrit dans le document US 2004/0082112 pose donc un réel problème d'assemblage. Un autre problème vient du fait que la couche de brasure structurée doit être de faible hauteur pour rester sensiblement dans les zones distinctes prévues. Ainsi la tolérance dans l'usinage de la hauteur des plaquettes est aussi critique. Si lors de l'assemblage préalable de l'empilement de plaquettes et de diodes laser on agence les extrémités inférieures des plaquettes dans un même plan géométrique pour assurer que chaque plaquette reposera bien sur la brasure déposée dans la zone correspondante sur le corps de refroidissement lors du soudage des plaquettes à ce corps, les diodes laser fixées aux plaquettes du côté de leurs extrémités supérieures n'émettront pas dans un même plan d'émission, ce qui pose alors un problème de collimation ou de focalisation du faisceau laser engendré par la pluralité de diodes.
Un but de la présente invention est de résoudre les problèmes susmentionnés en proposant un dispositif laser avec un empilement de diodes laser qui puisse être fabriqué par un procédé industriel fiable dont la mise en œuvre est relativement aisée. A cet effet, la présente invention concerne un dispositif laser formé par un empilement de diodes laser agencée chacune sur une plaquette formée d'un matériau électriquement conducteur et ayant une bonne conductivité thermique, ces plaquettes étant disposées les unes à côté des autres, deux plaquettes adjacentes étant situées de part et d'autre d'une des diodes laser. Ces plaquettes assurent d'une part une liaison électrique entre les diodes laser qui permet le passage d'un courant électrique d'alimentation et, d'autre part, de conduire la chaleur produite par ces diodes laser en direction d'un corps de refroidissement auquel les plaquettes sont fixées au moyen d'un matériau de fixation, chaque plaquette étant pourvue à son extrémité du côté dudit corps de refroidissement d'une couche électriquement isolante formant une interface entre, d'une part, le corps de refroidissement et ledit matériau de fixation et, d'autre part, la plaquette. Ce dispositif laser est caractérisé en ce que ladite couche électriquement isolante présente une épaisseur d'environ 100 microns ou supérieure et en ce que ledit matériau de fixation forme une couche traversante entre lesdites plaquettes.
Selon un mode de réalisation de l'invention, la couche électriquement isolante est une couche épaisse agencée à la face inférieure de l'extrémité de chaque plaquette située en regard du corps de refroidissement. L'épaisseur de la couche isolante est sélectionnée de manière à ce que le matériau de fixation, notamment une brasure, puisse remonter un peu le long des faces latérales de cette couche isolante tout en restant en dessous de la hauteur de la couche isolante. L'invention sera décrite ci-après à l'aide de la description suivante, faite en référence au dessin annexé, donné à titre d'exemple nullement limitatif, et dans lequel :
- la figure 1 , déjà décrite, représente schématiquement un dispositif laser avec un empilement de diodes laser selon l'art antérieur ; - la figure 2 représente schématiquement un mode de réalisation de la présente invention ; et
- la figure 3 représente en perspective une variante de réalisation de l'invention. - A -
Le dispositif laser 34 comporte, comme dans l'art antérieur, des plaquettes 6 formées d'un matériau électriquement conducteur et bon conducteur de chaleur. Des diodes laser 4 sont agencées entre les plaquettes 6 de manière à permettre le passage d'un courant électrique d'alimentation de ces diodes. Le nombre de diodes et de plaquettes peut varier notamment en fonction de l'application prévue pour les dispositifs laser. Les plaquettes 6 peuvent être entièrement en métal ou en un autre matériau métallisé en surface.
Les plaquettes 6 sont agencées au-dessus d'un corps de refroidissement 10 présentant un conduit 12 pour la circulation d'un fluide de refroidissement. Les plaquettes 6 et le corps de refroidissement 10 sont réalisés par exemple en cuivre. D'autres matériaux bons conducteurs de la chaleur sont évidemment envisageables. De préférence, les plaquettes 6 sont formées d'un matériau électriquement conducteur avec une bonne conductivité thermique pour permettre une évacuation de la chaleur produite par les diodes laser en direction du corps de refroidissement 10. Les plaquettes sont fixées à leur extrémité inférieure au corps de refroidissement 10 au moyen d'un matériau de fixation 26 sélectionné de manière à conduire suffisamment la chaleur. Dans ce mode de réalisation, le matériau de fixation 26 est également un conducteur électrique.
Chaque plaquette 6 présente à son extrémité inférieure, c'est-à-dire à l'extrémité fixée au corps de refroidissement 10, une couche électriquement isolante 38 qui est agencée de manière à former une interface entre, d'une part, le corps de refroidissement 10 et le matériau de fixation 26 et, d'autre part, la plaquette 6 considérée. Dans le mode de réalisation décrit ici, le matériau de fixation est une brasure. Plus particulièrement, chaque plaquette 6 présente à son extrémité inférieure 24 située en regard du corps de refroidissement 10 une couche relativement épaisse en matériau électriquement isolant. A titre d'exemple, l'épaisseur H1 de la couche isolante 38 est d'environ 100 microns. Etant donné l'épaisseur de cette couche 38, on sélectionnera un matériau présentant une bonne conductivité thermique. Dans le cadre de la présente invention, une épaisseur H1 supérieure à 100 microns est préférée.
La couche de brasure recouvre le dessous de la couche 38 et remonte également un peu le long des faces latérales de cette couche 38, de manière à ne pas s'élever au-dessus de la hauteur H1 de la couche épaisse 38. A titre d'exemple, la couche de brasure 26 présente environ une hauteur H2 inférieure à la hauteur H1 depuis la surface inférieure de la couche isolante 38.
La couche isolante 38 sur l'extrémité inférieure 24 de chacune des plaquettes définit un bloc isolant qui est fixé au corps de refroidissement par un matériau de fixation présentant de préférence une bonne conductivité thermique. Selon l'invention, la brasure 26 forme une couche traversante relativement épaisse. On peut ainsi déposer une brasure nécessaire au soudage des plaquettes sur le corps de refroidissement de manière à former une couche continue, c'est-à-dire non structurée, et les plaquettes sont ensuite apportées pour être soudées. On peut également envisager d'apporter la brasure 26 une fois que les plaquettes 6 sont agencées en regard du corps 10. Toutes les méthodes de soudage connues par l'homme du métier sont à sa disposition pour optimiser le procédé de fixation des plaquettes 6 au corps 10. Le fait que les plaquettes 6 ont leurs parties inférieures plongées dans la couche de brasure 26 jusqu'à une certaine hauteur augmente la surface de transfert de la chaleur entre chaque plaquette et la couche de brasure, ce qui augmente l'efficacité du transfert de chaleur des plaquettes 6 à la brasure 26, puis au corps de refroidissement 10 sur lequel la couche de brasure est disposée.
La figure 3 montre partiellement une variante du dispositif laser de la figure 2 qui met en évidence les avantages de la présente invention. Les plaquettes 6 présentent des longueurs variables. Toutefois grâce à la couche isolante épaisse, par exemple entre 150 et 250 microns, et une couche de brasure continue 26 également épaisse, par exemple entre 200 et 300 microns, on assure que chaque couche isolante soit correctement recouverte de brasure sur sa face inférieure. L'empilement des plaquettes et des diodes est réalisé de manière que les diodes émettent sensiblement dans un seul et même plan d'émission. La tolérance d'usinage sur la hauteur des plaquettes est donc reportée du côté de la soudure au corps de refroidissement. La hauteur moyenne H d'enfoncement des couches isolantes 38 dans la brasure 26 est dans cet exemple environ égale à la moitié de l'épaisseur de cette couche isolante. Ensuite, grâce à la couche de brasure continue, l'épaisseur W des plaquettes 6 et l'épaisseur D des diodes 4 peuvent varier sans que cela engendre le moindre problème pour le soudage au corps de refroidissement.

Claims

REVENDICATIONS
1. Dispositif laser (22 ; 34) formé par un empilement de diodes laser (4) agencée chacune sur une plaquette (6) formée d'un matériau électriquement conducteur et ayant une bonne conductivité thermique, ces plaquettes étant disposées les unes à côté des autres, deux plaquettes adjacentes étant situées de part et d'autre d'une des diodes laser, ces plaquettes assurant d'une part une liaison électrique entre les diodes laser qui permet le passage d'un courant électrique d'alimentation et, d'autre part, de conduire la chaleur produite par ces diodes laser en direction d'un corps de refroidissement (10) auquel les plaquettes sont fixées au moyen d'un matériau de fixation (26), chaque plaquette étant pourvue à son extrémité du côté dudit corps de refroidissement d'une couche électriquement isolante (28 ; 38) formant une interface entre, d'une part, le corps de refroidissement et ledit matériau de fixation et, d'autre part, la plaquette, ce dispositif laser étant caractérisé en ce que ladite couche électriquement isolante présente une épaisseur d'environ 100 microns ou supérieure et en ce que ledit matériau de fixation forme une couche traversante entre lesdites plaquettes.
2. Dispositif laser selon la revendication 1 , caractérisé en ce qu'au moins la majorité des couches électriquement isolantes ont leurs parois latérales partiellement recouvertes par ledit matériau de fixation.
3. Dispositif laser selon la revendication 1 ou 2, caractérisé en ce que ledit matériau de fixation est une brasure formant une couche continue à la surface dudit corps de refroidissement.
PCT/EP2006/004389 2005-05-13 2006-05-10 Dispositif laser forme par un empilement de diodes laser WO2006122691A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06742865A EP1889341A2 (fr) 2005-05-13 2006-05-10 Dispositif laser forme par un empilement de diodes laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05010406 2005-05-13
EP05010406.6 2005-05-13

Publications (2)

Publication Number Publication Date
WO2006122691A2 true WO2006122691A2 (fr) 2006-11-23
WO2006122691A3 WO2006122691A3 (fr) 2007-04-19

Family

ID=35159808

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2006/004390 WO2006122692A2 (fr) 2005-05-13 2006-05-10 Dispositif laser forme par un empilement de diodes laser
PCT/EP2006/004389 WO2006122691A2 (fr) 2005-05-13 2006-05-10 Dispositif laser forme par un empilement de diodes laser

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/004390 WO2006122692A2 (fr) 2005-05-13 2006-05-10 Dispositif laser forme par un empilement de diodes laser

Country Status (3)

Country Link
US (1) US7848371B2 (fr)
EP (2) EP1889342A2 (fr)
WO (2) WO2006122692A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470810B (zh) * 2015-12-15 2019-01-08 西安炬光科技股份有限公司 一种宏通道液冷高功率半导体激光器模块和装置
CN105790063B (zh) * 2016-03-22 2019-01-08 西安炬光科技股份有限公司 一种应用于半导体激光器的衬底
CN105790062B (zh) * 2016-03-22 2019-02-26 西安炬光科技股份有限公司 一种基于各向异性衬底的半导体激光器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394426A (en) 1992-11-13 1995-02-28 Hughes Aircraft Company Diode laser bar assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099488A (en) * 1991-03-27 1992-03-24 Spectra Diode Laboratories, Inc. Ribbed submounts for two dimensional stacked laser array
US5305344A (en) * 1993-04-29 1994-04-19 Opto Power Corporation Laser diode array
US5764675A (en) * 1994-06-30 1998-06-09 Juhala; Roland E. Diode laser array
US5898211A (en) * 1996-04-30 1999-04-27 Cutting Edge Optronics, Inc. Laser diode package with heat sink
RU2117371C1 (ru) * 1996-09-30 1998-08-10 Акционерное общество закрытого типа "Энергомаштехника" Матрица лазерных диодов
US5923692A (en) * 1996-10-24 1999-07-13 Sdl, Inc. No wire bond plate (NWBP) packaging architecture for two dimensional stacked diode laser arrays
US5848083A (en) * 1996-10-24 1998-12-08 Sdl, Inc. Expansion-matched high-thermal-conductivity stress-relieved mounting modules
US6636538B1 (en) * 1999-03-29 2003-10-21 Cutting Edge Optronics, Inc. Laser diode packaging
US6700913B2 (en) * 2001-05-29 2004-03-02 Northrop Grumman Corporation Low cost high integrity diode laser array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394426A (en) 1992-11-13 1995-02-28 Hughes Aircraft Company Diode laser bar assembly

Also Published As

Publication number Publication date
EP1889341A2 (fr) 2008-02-20
US20080310469A1 (en) 2008-12-18
US7848371B2 (en) 2010-12-07
WO2006122691A3 (fr) 2007-04-19
EP1889342A2 (fr) 2008-02-20
WO2006122692A3 (fr) 2007-04-19
WO2006122692A2 (fr) 2006-11-23

Similar Documents

Publication Publication Date Title
EP0308296B1 (fr) Circuit imprimé équipé d'un drain thermique
EP0221616B1 (fr) Composant opto-électronique pour montage en surface et son procédé de fabrication
FR2686765A1 (fr) Dispositif de fixation, notamment pour la fixation d'un composant electronique sur une paroi d'un dissipateur thermique .
EP2521175B1 (fr) Dispositif d'interconnexion électrique d'au moins un composant électronique avec une alimentation électrique comprenant des moyens de diminution d'une inductance de boucle entre une première et une deuxième borne
CA2290802C (fr) Composant electronique de puissance comportant des moyens de refroidissement
FR2879021A1 (fr) Dispositif a semiconducteur de puissance
WO2006122691A2 (fr) Dispositif laser forme par un empilement de diodes laser
FR2937795A1 (fr) Dispositif electronique a matrice de diodes electroluminescentes de forte puissance comprenant des moyens de refroidissement ameliores
FR2631751A1 (fr) Embase de montage intermediaire pour un laser a semiconducteurs
FR2793990A1 (fr) Boitier electronique sur plaque et procede de fabrication d'un tel boitier
EP0308306A1 (fr) Thermistance CTP pour le montage en surface
EP1116424B1 (fr) Assemblage electronique comportant une semelle formant drain thermique
EP1979938B1 (fr) Module electronique et procede d'assemblage d'un tel module
EP1114456B1 (fr) Procede collectif de conditionnement d'une pluralite de composants formes initialement dans un meme substrat
FR2790905A1 (fr) Composant electrique de puissance a montage par brasage sur un support et procede de montage correspondant
EP0117804B1 (fr) Procédé de fabrication d'une cavité hyperfréquence, et cavité obtenue par ce procédé
EP1079432A1 (fr) Module électronique et procédé de fabrication d'un tel module
FR2803132A1 (fr) Systeme de redressement perfectionne pour diodes pastilles
EP1371113B1 (fr) Connecteur de puissance pour circuit imprime
FR2699039A1 (fr) Carte électronique à substrat multicouche.
WO2022175629A1 (fr) Module électronique de puissance
FR2995496A1 (fr) Circuit electrique, dispositif electrique et compresseur electrique
EP0119134A1 (fr) Dispositif d'assemblage de composants électroniques de puissance sur un dissipateur thermique et application aux ponts monophasés ou polyphasés
FR2612821A1 (fr) Outil de soudage pour l'assemblage de composants electriques
FR3066937A1 (fr) Dispositif de chauffe

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006742865

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06742865

Country of ref document: EP

Kind code of ref document: A2

WWP Wipo information: published in national office

Ref document number: 2006742865

Country of ref document: EP