WO2006117378A1 - Systeme optique pour un dispositif de lithographie - Google Patents

Systeme optique pour un dispositif de lithographie Download PDF

Info

Publication number
WO2006117378A1
WO2006117378A1 PCT/EP2006/061987 EP2006061987W WO2006117378A1 WO 2006117378 A1 WO2006117378 A1 WO 2006117378A1 EP 2006061987 W EP2006061987 W EP 2006061987W WO 2006117378 A1 WO2006117378 A1 WO 2006117378A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
optical
lenses
concave mirror
optical system
Prior art date
Application number
PCT/EP2006/061987
Other languages
English (en)
Inventor
Jean-François TANNE
Jean-Luc Michelin
Roland Geyl
Original Assignee
Sagem Defense Securite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0504362A external-priority patent/FR2885234B1/fr
Application filed by Sagem Defense Securite filed Critical Sagem Defense Securite
Priority to EP06754963A priority Critical patent/EP1880249B1/fr
Publication of WO2006117378A1 publication Critical patent/WO2006117378A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/008Systems specially adapted to form image relays or chained systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0892Catadioptric systems specially adapted for the UV
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements

Definitions

  • the invention relates to an optical system for a photolithography device.
  • Photolithography is generally used for the manufacture of integrated circuits with a resolution of the order of one-tenth of a micrometer for high performance applications. However, some applications do not require this type of precision and are content with lithography resolutions of the order of 1 to a few micrometers.
  • the advantage of such circuits is that they allow the design of complex and efficient electronic chips by the superposition of simple chips, each chip being easy to design and manufacture.
  • FIGS. 1A and 1B The technique used for the manufacture of the pads is schematically represented in FIGS. 1A and 1B.
  • a radiation 7 emitted from an illuminator is illuminated by means of a photolithography device, generally unit magnification to have a large field of work, a layer 2 of resin located on a plate 1 circuit (or "wafer” according to the terminology generally used by those skilled in the art).
  • Illumination is effected at the right of certain areas by means of a mask, so that zones 3 are hollowed out of resin by a specific treatment to be filled with a material capable of forming the solder pads. This is usually gold (so-called "gold bumping").
  • Another series of steps also known to obtain the circuit shown in Figure 1 B, namely a plate 1 on which are arranged substantially spherical solder pads 6.
  • the distance 4 between two pads 6 is generally between 50 and 500 microns.
  • the photolithography device used for this This application does not require large precision or large resolutions in comparison with the state-of-the-art photolithography devices of the current technology which, it will be remembered, allow resolutions of the order of one-tenth of a ⁇ m. A resolution of the order of 2 ⁇ m and a maximum distortion of 0.3 ⁇ m are sufficient for the targeted applications.
  • the resin layer 2 is approximately 100 ⁇ m thick.
  • the device must therefore have a large depth of field, of the order of 50 to 100 microns.
  • the device must therefore have a field as large as possible to be able to illuminate the most plates possible in a given time and / or the largest possible area of a given plate.
  • the device must also be able to adapt to several types of high power illumination lamps used by manufacturers, including the spectral lines g, h and i of a high-pressure mercury lamp to be able to use the maximum optical flux necessary to insolation of photosensitive resins.
  • the optics are telecentric in the object space and the image space, as recommended by those skilled in the art, that is to say that the cones of useful radii are well perpendicular to the object plane and to the image plane so that the system does not transform focusing errors into lateral positioning errors of the images detrimental to the recovery of the engraved patterns during the various stages of the lithographic process.
  • An object of the invention is to provide an optical lithography structure which: - has a unit magnification (copy 1/1), is particularly suitable for medium resolution applications (from 1 to a few micrometers), allows operation with a large field while being telecentric in the object and image space,
  • a first example of such a device is a structure of the "Dyson Winne" type diagrammatically shown in FIG. 2. It comprises a concave spherical mirror 10 whose center of curvature is referenced by
  • the mirror 10 reflects light rays from an illuminator (not shown) and through a mask M to return to some parts of a plate W to create the desired patterns, for example solder pads. If M and W were both located at the center of curvature C of the mirror, the image of M on W would be optically perfect, but it is understood that the device could not work because M and W should be physically confused.
  • the device therefore comprises lenses 11 and 12 having surfaces concentric with the mirror 10 to correct the aberrations resulting from the fact that the mask M and the plate W are not located exactly on the center of curvature C of the spherical mirror
  • FIG. 2 shows the device of FIG. 2 however has the particular disadvantage that M and W are located in the same plane, which makes their relative displacement difficult by means of actuation during illumination.
  • the field width 7 of the device is too small to illuminate plates of sizes compatible with industrial applications.
  • M and W must be located near the center C of the mirror 10 and the correction lenses 11 and 12 in order to be able to remain in the circular optical useful field and necessarily limited to a certain value according to performance limitations of the Dyson-Wynne device.
  • FIG. 4 A second example of a known device is shown in FIG. 4.
  • the lens 11 comprises however, two reflecting surfaces 20 and 22 (also called “folding prisms" by those skilled in the art), so that the light rays passing through the mask M and the rays coming from the mirror 10 to illuminate the plate W no longer pass through the center C of the mirror 10 and the lenses 11 and 12, but are folded.
  • folding prisms also called "folding prisms" by those skilled in the art
  • the horizontal plane comprising W and the oblique plane including M are tangent to the cone of the useful light rays which propagate between the concave mirror 10 and the lens group 11 and 12 to reduce the field for which the lenses 11 and 12 must introduce a correction. .
  • the lenses 11 and 12 being concentric with the mirror 10, it is indeed necessary to reduce the angle of field with which the light rays are incident on the surfaces of the mirror 10 and the lenses 11 and 12.
  • the device of FIG. disadvantages.
  • the field of view of the device is still too weak to illuminate plates of sizes compatible with industrial applications because M and W are still too close to one another and the center C.
  • Document US Pat. No. 6,424,471 also discloses an optical projection structure comprising a number of lenses and a separator cube. Apart from the fact that this structure corresponds to a VA magnification and is intended for submicron applications, it will be noted that it is particularly cumbersome and uses, to minimize possible aberrations, a polarization separator cube, which complicates the structure and contributes to increasing its cost
  • the invention proposes to overcome at least one of the aforementioned drawbacks.
  • an optical system with unit magnification, telecentric in the image and object space, for application of medium resolution lithography comprising:
  • a well-known Dyson-Winne type structure having a spherical concave mirror working for an object and an image passing through its center of curvature and an optical block disposed in the vicinity of the center of curvature of said mirror, characterized in that it comprises between said concave mirror and said optical block
  • a convergent group consisting of at least two lenses, situated in the vicinity of said optical block and having a field corrector function and reducing the size of the spherical mirror by convergence of the light rays propagating between the mirror and the optical block and the convergent group,
  • a group of at least two other lenses located in the vicinity of the concave mirror and having the function of opening and chromatic correction.
  • Such a structure has the advantage of allowing a large field and significantly improving the compactness of the optics, at the same time as it allows the desired image quality.
  • the mask and plate supports may be parallel to the optical axis of the system. Mounting, holding and moving the mask and the plate are greatly facilitated and the support means are less difficult to design and less expensive. By the spacing of the support means, it is possible to separate the latter from the other optical elements of the system, which further improves the ease of assembly and free movement of the mask and the plate.
  • FIG. 2 already commented, schematically shows a first example of a known embodiment of a photolithography optical system
  • FIG. 3 also already commented, schematically represents a view of the optical field of a unit-size and Dyson-Winne photolithography system
  • FIGS. 5 and 6 show diagrammatically two examples of possible embodiments of an optical system of a photolithography device according to the invention. Other embodiments are possible and not shown.
  • FIG. 5 shows a system without the prisms enabling the rays coming from the mask M to be picked up and returned to the plate W.
  • FIG. 6 shows a system according to a more practical practical embodiment with the two return prisms.
  • the optical system has a Dyson Winne telecentric structure well known to those skilled in the art, with a spherical concave mirror 10 working for an object and an image placed in the vicinity of its center of curvature and the optical block 11 according to the Dyson-Winne concept consisting mainly of a thick lens with a diopter whose center of curvature is placed near the center of the object.
  • It further comprises a group 40 consisting of at least two lenses located in the vicinity of said optical block 11 and having a function of field corrector and beam convergence to reduce the size of said mirror 10, and a group 50 of at least two other lenses, located at adjacent to the concave mirror 10 and having the function of opening and chromatic correction.
  • the lenses constituting the lenses of the two groups 40 and 50 are selected according to the rules of the art for calculating the optical combinations to ensure the chromatic correction on the desired spectral range.
  • the means 31 and 32 of support adapted to receive and maintain on the one hand a mask M and a plate W on the other hand.
  • the means 31 are designed to adapt to the mask M and the means 32 are designed to adapt to the plate W.
  • the correction means constituted by the groups 40 and 50 are located optically between the means 31 and 32 of support and the mirror 10. In other words, light rays coming from an illuminator of a photolithography device and passing through the mask M located on the means 31 pass through the correction means before being reflected by the mirror 10 to go back the correction means and illuminate the plate W on the means 32.
  • the refractive power of the group 40 is adjusted so that the light ray farthest from the optical axis travels almost parallel to the optical axis between the two optical groups 40 and 50. In this way the total dimensions of the optics are judiciously minimized as well as the costs of optical materials and their machining and polishing.
  • the total refractive power of the group 50 is small and typically less than 50% of the reflective power of the mirror 10.
  • the optical unit 11 may comprise a folding prism capable of folding light beams coming from the mask M or emitted towards the plate W.
  • the folding prism is in the form of two surfaces 20 and 22 cut in the block 11, these two surfaces 20 and 22 extending at 45 ° with respect to the main axis of the concave mirror. The light rays passing through the mask M or illuminating the plate W are thus folded, which allows the fact that the support means 31 and 32 extend substantially along an axis parallel to an optical axis of the system.
  • the support means 31 and 32 are arranged so that the mask M and the plate W can also extend substantially along an axis parallel to an optical axis of the system.
  • the design and maintenance of the plate and the mask in horizontal planes are greatly facilitated with respect to devices according to the prior art.
  • the support means 31 and 32 further comprise means 33 able to move the mask M and / or the plate W in a direction substantially parallel to the optical axis of the system.
  • One of the advantages of the invention is that the optical object of the present invention can be designed so that the distance of the support means 31 and 32 from the optical axis of the system is greater than the radial space requirement. mirror 10 and means 11, 40 and 50.
  • the structure allows a wide-field operation such as 44 * 44 mm 2 , instead of the 22 * 44 mm 2 found in the state of the prior art, with an optics remaining very compact.
  • This compactness is characterized by the size of the object and image field greater than 65% of the diameter of the largest optical element of the formula, generally constituted by the concave mirror in the Dyson Wynne type formula.
  • the lenses of the groups 40 or 50 are for example advantageously made by including aspherical surfaces.
  • the system according to FIG. 5 comprises a spherical mirror 10, near which is placed a group 50 consisting of 2 lenses.
  • Group 40 is made of 3 lenses.
  • the useful numerical aperture is
  • NA 0.18. From the image field, 44 x 44 m 2 areas can be extracted for the mask and the plate. The resolution provided by this optics is 2 microns over this entire area for a spectral range covering the three lines g (435 nm), h (405 nm) and i (365 nm) of the high-pressure arc lamps.
  • the system according to FIG. 6 comprises the return prisms of the light towards the mask M and the plate W.
  • the group 40 consists only of of 2 lenses. The performance is very similar to that of the system of Figure 5 but slightly lower.
  • the optical block 11 is a reflection-surface prism
  • FIG. 5 illustrates a variant in which the optical block has no reflection surface, the emission mask and the receiving plate being all two in a plane perpendicular to the general optical axis, that is to say to the axis of the spherical mirror 10.
  • the circular image field encircling the useful areas for the mask M and the plate W according to the concept shown in FIG. 3 is of a diameter greater than 65% of the diameter of the concave mirror 10, while the concave mirror, the optical block and the various lenses are distributed in a substantially cylindrical envelope for the best compactness of the system and the easiest implantation in the lithography machine.
  • the inner diameter of this cylinder is less than 250 mm, while its inner length is less than 750 mm.
  • the operating wavelengths are between 360 and 435 nm.

Abstract

L'invention concerne un Système optique à grandissement unitaire, télécentrique dans l'espace image et objet, pour application de lithographie moyenne résolution, comportant: - une structure de type Dyson-Winne présentant un miroir concave sphérique (10) travaillant pour un objet (31) et une image (32) passant par son centre de courbure et un bloc optique (11) disposé au voisinage du centre de courbure dudit miroir, caractérisé en ce qu'il comporte entre ledit miroir concave et ledit bloc optique - d'un groupe (40) d'au moins deux lentilles, situé au voisinage dudit bloc optique et ayant une fonction de correcteur de champ et de confinement des faisceaux dans un volume réduit, - d'un groupe (50) d'au moins deux autres lentilles, situé au voisinage du miroir concave et ayant pour fonction la correction d'ouverture et de chromatisme.

Description

SYSTEME OPTIQUE POUR UN DISPOSITIF DE LITHOGRAPHIE
DOMAINE TECHNIQUE GENERAL
L'invention concerne un système optique pour un dispositif de photolithographie.
La photolithographie est généralement utilisée pour la fabrication de circuits intégrés avec une résolution de l'ordre du dixième de micromètre pour les applications de haute performance. Cependant, certaines applications ne nécessitent toutefois pas ce type de précision et se contentent de résolutions de lithographie de l'ordre de 1 à quelques micromètres. On peut citer notamment, l'utilisation de la photolithographie pour la réalisation des plots d'interconnection et de soudure pour les circuits électroniques multicouches dans lesquels des plaques de circuits sont superposées les unes aux autres. L'avantage de tels circuits est qu'ils permettent la conception de puces électroniques complexes et performantes par la superposition de puces simples, chaque puce étant facile à concevoir et fabriquer.
La technique utilisée pour la fabrication des plots est schématiquement représentée sur les figures 1A et 1 B. Lors d'une première série d'étapes connues, on illumine grâce à un rayonnement 7 issu d'un illuminateur d'un dispositif de photolithographie, généralement à grandissement unitaire pour disposer d'un grand champ de travail, une couche 2 de résine située sur une plaque 1 de circuit (ou « wafer » selon la terminologie généralement utilisée par l'homme du métier). L'illumination ne s'effectue qu'au droit de certaines zones grâce à un masque, de sorte que des zones 3 sont évidées de résine par un traitement spécifique pour être remplies d'un matériau apte à former les plots de soudure. Il s'agit généralement d'or (on parle alors de « gold bumping »). Une autre série d'étapes également connues permettent d'obtenir le circuit représenté à la figure 1 B, à savoir une plaque 1 sur laquelle sont disposés des plots de soudure 6 sensiblement sphériques.
La distance 4 séparant deux plots 6 est généralement comprise entre 50 et 500 μm. Ainsi, le dispositif de photolithographie utilisé pour cette application ne requiert pas de grandes précisions ni de grandes résolutions en comparaison des dispositifs de photolithographie de pointe de la technologie actuelle qui permettent, on le rappelle, des résolutions de l'ordre du dixième de μm. Une résolution de l'ordre de 2 μm et une distorsion maximale de 0.3 μm sont suffisantes pour les applications visées.
La couche 2 de résine est d'une épaisseur 5 de 100 μm environ. Le dispositif doit donc avoir une grande profondeur de champ, de l'ordre de 50 à 100 μm.
Enfin, les circuits électroniques de ce type doivent pouvoir être produits à une échelle industrielle avec la meilleure productivité. Le dispositif doit donc avoir un champ le plus grand possible pour pouvoir illuminer le plus de plaques possibles dans un temps donné et/ou la plus grande surface possible d'une plaque donnée. Le dispositif doit aussi pouvoir s'adapter à plusieurs types de lampes d'illumination hautes puissances utilisés par les industriels, notamment les raies spectrales g, h et i d'une lampe à mercure haute pression pour pouvoir utiliser le maximum de flux optique nécessaire à l'insolation des résines photosensibles.
En outre, il est extrêmement désirable en lithographie optique que les optiques soient télécentriques dans l'espace objet et l'espace image, comme préconisé par l'homme de l'art, c'est à dire que les cônes de rayons utiles soient bien perpendiculaires au plan objet et au plan image afin que le système ne transforme pas des erreurs de focalisation en des erreurs de positionnement latéral des images préjudiciables au recouvrement des dessin gravés lors des diverses étapes du processus lithographique.
BUTS DE L'INVENTION ET PRESENTATION DE L'ART ANTERIEUR
Un but de l'invention est de proposer une structure optique de lithographie qui : - présente un grandissement unitaire (recopie 1/1 ), est particulièrement adaptée pour des applications de moyenne résolutions (de 1 à quelques micromètres), permet un fonctionnement avec un champ important tout en étant télécentrique dans l'espace objet et image,
- tout en étant tout à la fois particulièrement compacte, peu chère et performante (en permettant notamment un fonctionnement avec les raies g, i et h d'une lampe à mercure).
On connaît déjà de nombreuses structures optiques de photolithographie qui ont été conçues et développées pour des applications de ce type.
Un premier exemple d'un tel dispositif est une structure du type « Dyson Winne » représentée schématiquement sur la figure 2. Il comporte un miroir sphérique concave 10 dont le centre de courbure est référencé par
C. Le miroir 10 réfléchit des rayons lumineux issus d'un illuminateur (non représenté) et traversant un masque M pour les renvoyer vers certaines parties d'une plaque W pour créer les motifs désirés, par exemple des plots de soudure. Si M et W étaient tous les deux situés au centre C de courbure du miroir, l'image de M sur W serait optiquement parfaite, mais on comprend que le dispositif ne pourrait pas fonctionner car M et W devraient être physiquement confondus. Le dispositif comporte par conséquent des lentilles 11 et 12 présentant des surfaces concentriques au miroir 10 pour corriger les aberrations venant du fait que le masque M et la plaque W ne sont pas situés exactement sur le centre de courbure C du miroir sphérique
10 mais sont situés dans un même plan et légèrement décalés respectivement vers le haut et le bas par rapport à l'axe optique comme le montre la figure 3. Le dispositif de la figure 2 présente cependant l'inconvénient notamment que M et W sont situés dans un même plan, ce qui rend difficile leur déplacement relatif par des moyens d'actionnement lors de l'illumination. De plus, la largeur de champ 7 du dispositif est trop faible pour permettre d'illuminer des plaques de tailles compatibles avec des applications industrielles. Cette limitation des systèmes existants vient du fait que M et W doivent être situés à proximité du centre C du miroir 10 et des lentilles 11 et 12 de correction afin de pouvoir demeurer dans le champ utile optique circulaire et forcément limité à une certaine valeur en fonction des limitations de performance du dispositif type Dyson-Wynne. Un deuxième exemple d'un dispositif connu est représenté à la figure 4. Il est d'une structure optique tout à fait similaire et comporte comme précédemment un miroir concave sphérique 10 et des lentilles 11 et 12 concentriques au miroir 10. La lentille 11 comporte cependant deux surfaces 20 et 22 réfléchissantes (également appelées « prismes de repliement » par l'homme du métier), de sorte que les rayons lumineux traversant le masque M et les rayons issus du miroir 10 pour illuminer la plaque W ne passent plus par le centre C du miroir 10 et des lentilles 11 et 12, mais soient repliés. Un tel repliement des rayons lumineux permet que M et W ne soient plus placés physiquement dans un même plan. On peut ainsi déplacer W dans un plan horizontal et M dans un plan oblique. Le plan horizontal comportant W et le plan oblique comportant M sont tangents au cône des rayons lumineux utiles qui se propagent entre le miroir concave 10 et le groupe de lentille 11 et 12 pour diminuer le champ pour lequel les lentilles 11 et 12 doivent introduire une correction. Les lentilles 11 et 12 étant concentriques au miroir 10, il faut en effet diminuer l'angle de champ avec lequel les rayons lumineux sont incidents sur les surfaces du miroir 10 et des lentilles 11 et 12. Le dispositif de la figure 4 présente cependant encore des inconvénients. Le fait que M soit situé dans un plan oblique engendre des difficultés pour son montage, son maintien et son déplacement mécanique. De plus, la largeur de champ du dispositif est encore trop faible pour permettre d'illuminer des plaques de tailles compatibles avec des applications industrielles car M et W sont encore trop proches l'un de l'autre et du centre C. Le dispositif de la figure 4 ne permet de corriger grâce aux lentilles 11 et 12 que de faibles aberrations, astigmatisme ou distorsion, car les rayons lumineux doivent rester autant que possible en incidence normale sur les surfaces du miroir 10 et des lentilles 11 et 12, puisqu'on désire que le dispositif reste autant que possible concentrique par rapport au centre du miroir C. On connaît également par le document US 6.424.471 une structure optique de projection qui comporte un certain nombre de lentilles et un cube séparateur. Outre que cette structure correspond à un grandissement VA et est destinée à des applications submicroniques, on relèvera qu'elle est particulièrement encombrante et utilise, pour minimiser les éventuelles aberrations, un cube séparateur à polarisation, ce qui complexifie la structure et contribue à augmenter son coût
On connaît par ailleurs par le document US 6.556.278 différentes solutions d'optique de lithographie à grandissement unitaire. Les solutions proposées dans ce document ne sont pas d'une compacité satisfaisante, ce document préconisant au contraire d'utiliser en combinaison une batterie de petites optiques pour obtenir un grand champ de fonctionnement.
Une autre solution d'optique à grandissement unitaire est encore proposée par le document US2003/0223127. Toutefois, la solution proposée dans ce document n'utilise pas de structure de type « Dyson- Winne » à miroir concave, mais une structure à miroir plan de renvoi. Elle ne pose pas les problèmes d'aberrations rencontrées avec les structures de type « Dyson-Winne », mais ne permet pas non plus les compacités qui peuvent être obtenues avec ces dernières.
PRESENTATION DE L'INVENTION
L'invention propose de pallier au moins un des inconvénients précités.
Elle propose en particulier un système optique à grandissement unitaire, télécentrique dans l'espace image et objet, pour application de lithographie moyenne résolution, comportant :
- une structure de type Dyson-Winne bien connue présentant un miroir concave sphérique travaillant pour un objet et une image passant par son centre de courbure et un bloc optique disposé au voisinage du centre de courbure dudit miroir, caractérisé en ce qu'il comporte entre ledit miroir concave et ledit bloc optique
- d'un groupe convergent, constitué d'au moins deux lentilles, situé au voisinage dudit bloc optique et ayant une fonction de correcteur de champ et de réduction de dimension du miroir sphérique par convergence des rayons lumineux se propageant entre le miroir et le bloc optique et le groupe convergent,
- d'un groupe d'au moins deux autres lentilles, situé au voisinage du miroir concave et ayant pour fonction la correction d'ouverture et de chromatisme. Une telle structure à l'avantage de permettre un grand champ et d'améliorer significativement la compacité de l'optique, en même temps qu'elle permet la qualité d'image recherchée.
Notamment, elle permet un champ image supérieur à 70% du diamètre du miroir concave.
D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit. Notamment, la solution décrite permet, du fait de l'accroissement du champ d'écarter l'un de l'autre les supports du masque et de la plaque pour une implantation machine plus aisée. Le champ étendu permet aussi d'illuminer une plus grande surface de plaque à chaque exposition et d'augmenter le rendement du dispositif.
De plus, les supports du masque et de la plaque peuvent être parallèles à l'axe optique du système. Le montage, le maintien et le déplacement du masque et de la plaque sont donc grandement facilités et les moyens de support sont donc moins difficiles à concevoir et moins onéreux. De par l'écartement des moyens de support, il est possible de dégager ces derniers des autres éléments optiques du système, ce qui améliore encore la facilité de montage et de déplacement libre du masque et de la plaque.
PRESENTATION DES FIGURES
- les figures 1A et 1 B, déjà commentées, représentent schématiquement une technique connue pour la fabrication de plots de soudure ;
- la figure 2, déjà commentée, représente schématiquement un premier exemple d'un mode de réalisation connu d'un système optique de photolithographie ; - la figure 3, également déjà commentée, représente schématiquement une vue du champ optique d'un système de photolithographie de grandissement unitaire et de type Dyson-Winne;
- la figure 4, déjà commentée, représente schématiquement un deuxième exemple d'un mode de réalisation connu d'un système optique de photolithographie de grandissement unitaire;
- les figures 5 et 6 illustrent schématiquement deux modes de réalisation possibles d'un système optique conforme à l'invention.
Sur l'ensemble des figures, les éléments similaires portent des références numériques identiques.
DESCRIPTION DETAILLEE D'UN OU PLUSIEURS EXEMPLES DE REALISATION
Les figures 5 et 6 représentent schématiquement deux exemples de modes de réalisation possibles d'un système optique d'un dispositif de photolithographie selon l'invention. D'autres modes de réalisation sont possibles et non représentés.
La figure 5 présente un système sans les prismes permettant de capter les rayons issus du masque M et de les renvoyer vers la plaque W. La figure 6 présente un système selon un mode de réalisation pratique plus abouti avec les 2 prismes de renvoi.
Principalement, le système optique présente une structure télécentrique de type Dyson Winne bien connue de l'homme de l'art, avec un miroir concave sphérique 10 travaillant pour un objet et une image placés au voisinage de son centre de courbure et le bloc optique 11 selon le concept Dyson-Winne constitué principalement d'une lentille épaisse avec une dioptre dont le centre de courbure est placé au voisinage du centre de l'objet. II comporte en outre un groupe 40 constitué d'au moins deux lentilles situé au voisinage dudit bloc optique 11 et ayant une fonction de correcteur de champ et de convergence des faisceaux pour réduire la dimension dudit miroir 10, ainsi qu'un groupe 50 d'au moins deux autres lentilles, situé au voisinage du miroir concave 10 et ayant pour fonction la correction d'ouverture et de chromatisme. Les verres constituant les lentilles des 2 groupes 40 et 50 sont sélectionnés selon les règles de l'art du calcul des combinaisons optiques pour assurer la correction chromatique sur le domaine spectral souhaité.
Il comporte également des moyens 31 et 32 de support aptes à recevoir et maintenir d'une part un masque M et une plaque W d'autre part. Les moyens 31 sont conçus pour s'adapter au masque M et les moyens 32 sont conçus pour s'adapter à la plaque W. Les moyens de correction que constituent les groupes 40 et 50 sont situés optiquement entre les moyens 31 et 32 de support et le miroir 10. Autrement dit, des rayons lumineux, issus d'un illuminateur d'un dispositif de photolithographie et traversant le masque M situé sur les moyens 31 , passent par les moyens de correction avant d'être réfléchis par le miroir 10 pour retraverser les moyens de correction et illuminer la plaque W sur les moyens 32.
La puissance réfractive du groupe 40 est ajustée pour que le rayon lumineux le plus éloigné de l'axe optique chemine quasiment parallèle à l'axe optique entre les 2 groupes optiques 40 et 50. De cette façon les dimensions totales de l'optique sont judicieusement minimisées ainsi que les coûts des matières optiques et de leur usinage et polissage.
La puissance réfractive totale du groupe 50 est faible et typiquement inférieure à 50% de la puissance réflective du miroir 10. Dans les dispositifs de l'art antérieur, les moyens de support et les lentilles de correction étaient situés à proximité immédiate du centre de courbure du miroir notamment comme le montre la figure 6, le bloc optique 11 peut comporter un prisme de repliement apte à replier des faisceaux lumineux issus du masque M ou émis vers la plaque W. Le prisme de repliement se présente sous la forme de deux surfaces 20 et 22 taillées dans le bloc 11 , ces deux surfaces 20 et 22 s'étendant à 45° par rapport à l'axe principal du miroir concave. Les rayons lumineux traversant le masque M ou illuminant la plaque W sont donc repliés, ce qui permet le fait que les moyens de support 31 et 32 s'étendent sensiblement selon un axe parallèle à un axe optique du système. Bien entendu, les moyens de support 31 et 32 sont agencés de sorte que le masque M et la plaque W puissent également s'étendre sensiblement selon un axe parallèle à un axe optique du système. La conception et le maintien de la plaque et du masque dans des plans horizontaux sont grandement facilités par rapport aux dispositifs selon l'art antérieur.
Les moyens de support 31 et 32 comportent en outre des moyens 33 aptes à déplacer le masque M et/ou la plaque W selon une direction sensiblement parallèle à l'axe optique du système. L'un des avantages de l'invention est que l'on peut concevoir l'optique objet de la présente invention de sorte que la distance des moyens 31 et 32 de support à l'axe optique du système est supérieure à l'encombrement radial du miroir 10 et des moyens 11 , 40 et 50.
On dégage ainsi de l'espace pour le déplacement libre des moyens de support.
En même temps, la structure permet un fonctionnement grand champ tel que 44*44 mm2, au lieu des 22*44 mm2 constatés dans l'état de l'art antérieur, avec une optique demeurant très compacte. Cette compacité est caractérisée par la dimension du champ objet et image supérieure à 65 % du diamètre du plus grand élément optique de la formule, généralement constitué par le miroir concave dans la formule type Dyson Wynne.
Les lentilles des groupes 40 ou 50 sont par exemple avantageusement réalisées en incluant des surfaces asphériques.
Le système selon la figure 5 comporte un miroir sphérique 10, à proximité duquel est placé un groupe 50 constitué de 2 lentilles. Le groupe 40 est, lui, constitué de 3 lentilles. L'ouverture numérique utile est
NA = 0.18. Du champ image, on peut extraire des zones de 44 x 44 m2 pour le masque et la plaque. La résolution fournie par cette optique est de 2 μm sur toute cette surface pour un domaine spectral couvrant les trois raies g (435 nm), h (405 nm) et i (365 nm) des lampes à arc haute pression au
Mercure.
Le système selon la figure 6 comprend les prismes de renvoi de la lumière vers le maque M et la plaque W. Le groupe 40 n'est constitué que de 2 lentilles. Les performances sont très voisines de celles du système de la figure 5 mais légèrement inférieures.
Sur la figure 6, le bloc optique 11 est un prisme à surface de réflexion, tandis que la figure 5 illustre une variante dans laquelle le bloc optique ne comporte pas de surface de réflexion, le masque d'émission et la plaque de réception étant tous deux dans un plan perpendiculaire à l'axe optique général, c'est-à-dire à l'axe du miroir sphérique 10.
Dans ces deux exemples, le champ image circulaire encerclant les zones utiles pour le masque M et la plaque W selon le concept présenté en figure 3 est d'un diamètre supérieur à 65% du diamètre du miroir concave 10, tandis que le miroir concave, le bloc optique et les différentes lentilles sont répartis dans une enveloppe sensiblement cylindrique pour la meilleure compacité du système et l'implantation la plus aisée dans la machine de lithographie. Le diamètre intérieur de ce cylindre est inférieur à 250 mm, tandis que sa longueur intérieure est inférieure à 750 mm.
Les longueurs d'onde de fonctionnement sont comprises entre 360 et 435 nm.

Claims

REVENDICATIONS
1. Système optique à grandissement unitaire, télécentrique dans l'espace image et objet, pour application de lithographie moyenne résolution, comportant :
- une structure de type Dyson-Winne présentant un miroir concave sphérique travaillant pour un objet et une image passant par son centre de courbure et un bloc optique disposé au voisinage du centre de courbure dudit miroir, caractérisé en ce qu'il comporte entre ledit miroir concave et ledit bloc optique
- un groupe d'au moins deux lentilles, situé au voisinage dudit bloc optique et ayant une fonction de correcteur de champ et de confinement des faisceaux dans un volume réduit, - un groupe d'au moins deux autres lentilles, situé au voisinage direct du miroir concave et ayant pour fonction principale la correction des aberrations d'ouverture et de chromatisme.
2. Système optique selon la revendication 1 , caractérisé en ce que le champ image total est supérieur à 65% du diamètre du miroir concave.
3. Système optique selon l'une des revendications précédentes, caractérisé en ce que le miroir concave, le bloc optique et les différentes lentilles sont répartis dans une enveloppe sensiblement cylindrique.
4. Système optique selon l'une des revendications précédentes, caractérisé en ce que le masque et la plaque à lithographier se déplacent selon des plans parallèles et que le bloc optique comprend des surfaces de réflexion s'étendant à 45° par rapport à l'axe du miroir concave afin de recueillir la lumière issue du masque et de renvoyer le faisceau image vers le plaque.
5. Système optique selon l'une des revendications précédentes, caractérisé en ce qu'au moins une des lentilles est de type asphérique.
6. Système selon l'une des revendications précédentes, dans lequel le miroir (10) est du type miroir de Mangin, constitué d'un traitement réfléchissant appliqué sur la face arrière d'une lentille.
PCT/EP2006/061987 2005-04-29 2006-05-02 Systeme optique pour un dispositif de lithographie WO2006117378A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06754963A EP1880249B1 (fr) 2005-04-29 2006-05-02 Systeme optique pour un dispositif de lithographie

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0504362A FR2885234B1 (fr) 2005-04-29 2005-04-29 Systeme optique pour un dispositif de photolithographie
FR0504362 2005-04-29
FR0508657A FR2885235B1 (fr) 2005-04-29 2005-08-22 Systeme optique pour un dispositif de photolithographie
FR0508657 2005-08-22

Publications (1)

Publication Number Publication Date
WO2006117378A1 true WO2006117378A1 (fr) 2006-11-09

Family

ID=36716827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/061987 WO2006117378A1 (fr) 2005-04-29 2006-05-02 Systeme optique pour un dispositif de lithographie

Country Status (2)

Country Link
EP (1) EP1880249B1 (fr)
WO (1) WO2006117378A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140663A1 (fr) 2006-06-02 2007-12-13 Shanghai Micro Electronics Equipment Co., Ltd. Système optique de projection grand champ àgrossissement unitaire
EP1959289A1 (fr) * 2007-02-13 2008-08-20 Carl Zeiss SMT AG Objectif de projection d'agrandissement d'unité

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103989A (en) * 1977-02-07 1978-08-01 Seymour Rosin Unit-power concentric optical systems
US4171871A (en) * 1977-06-30 1979-10-23 International Business Machines Corporation Achromatic unit magnification optical system
US20040239893A1 (en) * 2003-05-27 2004-12-02 Mercado Romeo I. Deep ultraviolet unit-magnification projection optical system and projection exposure apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103989A (en) * 1977-02-07 1978-08-01 Seymour Rosin Unit-power concentric optical systems
US4171871A (en) * 1977-06-30 1979-10-23 International Business Machines Corporation Achromatic unit magnification optical system
US20040239893A1 (en) * 2003-05-27 2004-12-02 Mercado Romeo I. Deep ultraviolet unit-magnification projection optical system and projection exposure apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140663A1 (fr) 2006-06-02 2007-12-13 Shanghai Micro Electronics Equipment Co., Ltd. Système optique de projection grand champ àgrossissement unitaire
EP2024791A1 (fr) * 2006-06-02 2009-02-18 Shanghai Micro Electronics Equipment Co., Ltd. Système optique de projection grand champ àgrossissement unitaire
EP2024791A4 (fr) * 2006-06-02 2010-07-28 Shanghai Microelectronics Equi Système optique de projection grand champ àgrossissement unitaire
EP1959289A1 (fr) * 2007-02-13 2008-08-20 Carl Zeiss SMT AG Objectif de projection d'agrandissement d'unité

Also Published As

Publication number Publication date
EP1880249B1 (fr) 2012-05-23
EP1880249A1 (fr) 2008-01-23

Similar Documents

Publication Publication Date Title
EP1745329B1 (fr) Module de projection et projecteur l'incorporant
EP1800188B1 (fr) Dispositif de generation de lumiere dans l' extreme ultraviolet et application a une source de lithographie par rayonnement dans l'extreme ultraviolet
EP0030875B1 (fr) Dispositif d'éclairage pour grand écran
EP0880724A1 (fr) Dispositif de visualisation et ecran plat de television utilisant ce dispositif
FR2883645A1 (fr) Systeme d'imagerie pour projecteur et projecteur correspondant
EP3836214B1 (fr) Capteur de lumiere
EP2005252A1 (fr) Dispositif de collecte de flux de rayonnement electromagnetique dans l'extreme ultraviolet
EP1880249B1 (fr) Systeme optique pour un dispositif de lithographie
EP1924889A1 (fr) Illuminateur d'un dispositif de photolithographie
EP0156683B1 (fr) Appareil de microlithographie optique à système d'alignement local
EP0018264B1 (fr) Illuminateur à lampe à arc
EP3938836A2 (fr) Dispositif séparateur de polarisation, interféromètre différentiel et microscope optique à contraste différentiel comprenant un tel dispositif
WO2004106992A2 (fr) Lentille de fresnel, ecran de projection, systeme et appareil de projection correspondants.
FR2885234A1 (fr) Systeme optique pour un dispositif de photolithographie
FR2759468A1 (fr) Dispositif holographique de formation de faisceaux de lumiere de compositions spectrales predeterminees et projecteur d'images video comprenant un tel dispositif
FR3069332B1 (fr) Dispositif d’illumination diffractif a angle de diffraction augmente
FR2860304A1 (fr) Systeme optique a haute ouverture numerique
WO2005096060A1 (fr) Microscope optique a fort grandissement utilisable dans l'extreme ultraviolet
FR2887038A1 (fr) Systeme optique et element optique correspondant
FR2957686A1 (fr) Photorepeteur pour la lithographie en extreme ultra-violet
FR2678742A1 (fr) Systeme optique a miroirs de revolution sans obturation centrale.
EP3983837A1 (fr) Composant optique matriciel pour focaliser sur une série de points un faisceau lumineux incident
EP0351380B1 (fr) Système optique pour signaux de différentes couleurs, lumineux en permanence, en particulier pour la signalisation ferroviaire
FR2878626A1 (fr) Systeme optique et element optique correspondant
BE443044A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200680014811.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006754963

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006754963

Country of ref document: EP