WO2006114548A1 - Procede de commande d'un moteur de vehicule pour reguler la temperature d'un filtre a particules - Google Patents

Procede de commande d'un moteur de vehicule pour reguler la temperature d'un filtre a particules Download PDF

Info

Publication number
WO2006114548A1
WO2006114548A1 PCT/FR2006/050384 FR2006050384W WO2006114548A1 WO 2006114548 A1 WO2006114548 A1 WO 2006114548A1 FR 2006050384 W FR2006050384 W FR 2006050384W WO 2006114548 A1 WO2006114548 A1 WO 2006114548A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
injection
temperature
engine
filter
Prior art date
Application number
PCT/FR2006/050384
Other languages
English (en)
Inventor
Marc Daneau
Frédéric NOTH
Arnaud Julliard
Adrien Pillot
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to EP06743841A priority Critical patent/EP1877657B1/fr
Publication of WO2006114548A1 publication Critical patent/WO2006114548A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to the control of vehicle engines and in particular the regeneration of particulate filters of heat engines.
  • the present invention relates in particular to a method of regenerating a particulate filter in the exhaust circuit of an internal combustion engine. It aims more particularly to maximize the regeneration performance of the particulate filter, conventional or catalytic.
  • Diesel engines by their specific operation, emit (among others) in their exhaust polluting soot that we also called particles.
  • a filter is installed in the exhaust line downstream of the combustion chambers of the engine. This filter retains the particles that accumulate within it as and when the engine is used, hence its name: particulate filter (DPF). But this accumulation of particles in the filter creates a stronger and stronger back pressure on the exhaust, which considerably reduces the performance of the engine, and can even undermine its reliability.
  • DPF particulate filter
  • soot combustion is caused by raising the temperature of the exhaust gas at the inlet of the particulate filter.
  • Initialization and maintenance of particle combustion in the filter is achieved by raising the internal temperature of the FAP.
  • a delayed injection is made in the combustion chambers of the engine, that is to say, it delays the injection of diesel compared to the optimal phasing of the normal injection. This has the effect of increasing the temperature of the exhaust gases.
  • one or more late injections are added, that is to say that one injects fuel long after the top dead center of the piston (PMH).
  • This diesel will not burn in the combustion chamber, but in the catalytic part of the exhaust system. Indeed, always in order to reduce emissions
  • pollutants are provided either with an oxidation catalyst positioned upstream of the FAP in the exhaust line or directly with a catalytic material (such as platinum) within the FAP. It is on these catalytic sites that the HC and CO of the late injections oxidize by generating an exotherm, which increases the temperature of the gases.
  • This FAP regeneration operation is carried out periodically as soon as the quantity of particles in the filter becomes too great. Regeneration occurs when the engine is running and must be transparent to the user (that is, he / she should not notice that the FAP is in the regeneration phase).
  • the filter temperature is not precisely controlled during the regeneration of the FAP, a runaway of the particle combustion reaction may occur, resulting in a large increase in the internal temperature and possibly leading to deterioration of the FAP.
  • the regeneration of the filter is managed with a regulation of its temperature which acts on the quantities and / or phases of the various injections of gas oil, so as to have a temperature of the FAP as close as possible to a temperature of setpoint.
  • This instruction is developed to allow optimal regeneration of the FAP, while protecting it from the risks of runaway.
  • a control method of a vehicle engine in which an inlet temperature of a particle filter of the engine is controlled by controlling at least one fuel injection in a cylinder of the engine. engine and fuel injection directly downstream of an engine oxidation catalyst.
  • the method according to the invention may furthermore have at least one of the following characteristics: a reference temperature value of the filter is taken into account for at least one of the injections;
  • a temperature measurement is taken into account at the inlet of the filter, in particular for the downstream injection;
  • a value mapped from the temperature given by the downstream injection to a catalyst placed directly upstream of the filter is taken into account;
  • a setpoint temperature value equal to the setpoint temperature value of the filter minus a mapped value of the given temperature is taken into account; by the downstream injection to a catalyst placed directly upstream of the filter;
  • At least one of the injections is controlled taking into account a mapped basic value of this command
  • At least one of the injections is controlled by comparing it with predetermined high and low thresholds; - It limits a flow rate of the downstream injection to keep it below a predetermined threshold; a flow rate of the downstream injection is limited below a threshold which is a function of an air flow rate of the engine;
  • the injection into the cylinder or at least one of the injections into the cylinder is arranged to degrade an engine efficiency by reference to a predetermined yield;
  • the injection into the cylinder or at least one of the injections into the cylinder is carried out after the piston associated with the cylinder has reached a top dead center;
  • the engine comprises two oxidation catalysts.
  • the invention also provides, according to the invention, a vehicle engine comprising at least one cylinder fuel injector, an oxidation catalyst and a particulate filter and a fuel injector downstream of the catalyst and a control member arranged to regulate a temperature. filter by controlling the cylinder injector and the downstream injector.
  • FIG. 1 is a diagram showing the general arrangement of an engine according to the preferred embodiment of the invention
  • FIG. 2 is a diagram showing the arrangement of the catalysts and the particulate filter in the exhaust line of the engine of FIG. 1;
  • FIG. 3 is a flowchart illustrating the various steps of the regulation of the temperature of the particulate filter in the engine of FIG. 1.
  • the engine 2 of the present embodiment of the invention comprises a cylinder head 4 enclosing cylinders 6 in which are mounted movable pistons 8 and open fuel injectors 10.
  • the engine comprises an intake circuit 12 opening into the cylinders 6 and an exhaust circuit 14 whose input is at these same cylinders.
  • the engine 2 comprises a recirculation circuit 16 exhaust gas or EGR for taking a fraction of the exhaust gas at the cylinder outlet for reinjecting into the intake circuit.
  • This EGR circuit comprises in particular a controllable valve 18.
  • the engine 2 comprises a turbocharger 20 comprising a turbine 22 set in motion by the exhaust gas flowing through the circuit 14 and connected to a compressor 24 producing a compression of the gases flowing through the circuit admission 12.
  • the exhaust circuit 14 comprises a first oxidation catalyst 26 and a second oxidation catalyst 28 placed downstream of the first. It also comprises a particulate filter 30 placed downstream of the second catalyst 28. The latter is contiguous with the particulate filter 30.
  • This circuit comprises a downstream fuel injector 32 for injecting fuel directly downstream of the first catalyst 26 and upstream of the second catalyst 28.
  • the engine comprises a temperature sensor 34 placed in the exhaust circuit upstream of the turbine 22. It further comprises a temperature sensor 36 placed downstream of the downstream injector 32 and upstream of the second catalyst 28. It finally comprises a temperature sensor 40 placed downstream of the second catalyst 28 and upstream of the particulate filter 30.
  • the engine comprises a computer 41 able to control the various components of the engine and receiving data from the various sensors.
  • the method of which the flow is illustrated in FIG. 3 is implemented in the motor of FIG. 1 to regulate the temperature at the inlet of the particulate filter 30 in order to periodically ensure its regeneration.
  • the regulation command is carried out via the control of the flow rate of the injector 32 or fifth injector and the control of each of the four injectors 10.
  • Concerning the latter it is a question of controlling, in addition to the main injection which produces the engine-generated torque, a remote post-injection 50 consisting of a fuel injection into the engine. cylinder after the associated piston reached the top dead center and a close post-injection 52 concomitant with the main injection. It is therefore in the latter case to inject an excess amount of fuel in order to degrade the efficiency of the engine with respect to a predetermined yield corresponding to the circumstances in which the regeneration of the filter is not controlled.
  • a set point temperature value 54 of the particulate filter is taken into account.
  • a temperature measurement 56 provided by the sensor 40 at the input of the particle filter 30 is also taken into account.
  • This measurement 56 is subtracted from the value 54 in step 58, then gives rise to a correction in the block 60 which is for example a proportional-integral-derivative or PID-type block.
  • PID-type block is for example a proportional-integral-derivative or PID-type block.
  • PID-type block mapped basic value or open loop control value stored in a memory of the computer.
  • This base value 62 of the command 49 is added to the value from the block 60.
  • the sum of these two values is compared with predetermined high and low thresholds during the step represented by the block 64. If it passes the one of these thresholds, this value is replaced by the corresponding threshold.
  • the value 49 is obtained for controlling the flow rate of the fifth injector 32.
  • This regulation is responsible for maintaining an optimal thermal level for the combustion of soot in the particulate filter.
  • the flow injected into the exhaust is controlled according to the conditions thermal conditions that prevail at the outlet of the secondary catalyst and at the inlet of the particulate filter.
  • a mapped value 66 of the temperature given to the catalyst 28 is also taken into account by the injection carried out at the level of the injector 32. This involves taking into account the potential exotherm generated in this second catalyst 28 and distribute as much as possible the bias on the fifth injector 32.
  • the value 66 of this exotherm is provided by a map and subtracted from the value 54 at the level of the operator 68. The result is taken as the set temperature for the commands 50 and 52. Then, the value 70 thus obtained is subtracted from the value of the measurement supplied by the sensor 36 located at the inlet of the second catalyst 28.
  • the resulting value is then transmitted to two correction blocks 72 and 74 which can each be constituted by PID blocks each associated with the commands 50 and 52.
  • the value emanating from these blocks is added to a base value 76, 78 of the concerned command, value which results from a cartography, that is to say which is constituted by an open-loop control.
  • the resulting value then passes through a saturation block 80, 82 to be compared with thresholds and possibly replaced by one of these as before.
  • the final values of orders 50 and 52 are then obtained.
  • the second part of the regulation aims to control the flow and phasing of the post-injections in the cylinders, respectively post-injection 50 and post-injection close 52 integrated to the main injection.
  • This regulation is responsible for producing a thermal objective at the inlet of the second catalyst 28 so that the latter is at each moment in the priming state to be able to treat the fuel introduced into the exhaust by the downstream injector 32.
  • this thermal lens also incorporates some of the thermal expected at the inlet of the particulate filter which can not be ensured integrally by the exotherm of the secondary catalyst 28.
  • the downstream injector 32 it is preferable in this case to request the downstream injector 32 to the maximum. This is the reason why the temperature setpoint used downstream of the block 68 is in fact the temperature setpoint at the inlet of the filter 30 minus the exotherm which will be able to be generated in the secondary catalyst by virtue of the fifth injector 32. In particular, it is intended to ensure the thermal loading at the maximum by the fifth injector.
  • the maximum hourly flow rate of the fifth injector 32 is limited to a predetermined threshold.
  • the flow rate of the fifth injector is limited to a predetermined threshold as a function of the air flow rate of the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Dans le procédé de commande d'un moteur de véhicule, on régule une température d'entrée d'un filtre à particules (30) du moteur en commandant au moins une injection de carburant dans un cylindre (6) du moteur et une injection de carburant directement en aval d'un catalyseur d'oxydation (26) du moteur.

Description

PROCÉDÉ DE COMMANDE D'UN MOTEUR DE VÉHICULE POUR RÉGULER LA
TEMPÉRATURE D'UN FLITRE A PARTICULES L'invention concerne la commande des moteurs de véhicule et en particulier la régénération des filtres à particules des moteurs thermiques. La présente invention concerne notamment un procédé de régénération d'un filtre à particules dans le circuit d'échappement d'un moteur à combustion interne. Elle vise plus particulièrement à maximiser les performances de régénération du filtre à particules, classique ou catalytique.
Les moteurs Diesel, par leur fonctionnement spécifique, émettent (entre autres) dans leur gaz d'échappement des suies polluantes que l'on nomme également particules. Afin de limiter les émissions de ces particules dans l'atmosphère, un filtre est implanté dans la ligne d'échappement, en aval des chambres de combustion du moteur. Ce filtre retient les particules qui s'accumulent en son sein au fur et à mesure de l'utilisation du moteur, d'où son nom : filtre à particules (FAP). Mais cette accumulation de particules dans le filtre crée une contre-pression de plus en plus forte à l'échappement, ce qui diminue considérablement les performances du moteur, et peut même porter atteinte à sa fiabilité.
Pour assurer le fonctionnement d'un filtre à particules et éviter son colmatage par les suies, ce qui dégraderait les performances du moteur, il est nécessaire de procéder périodiquement à une régénération qui consiste à brûler les suies. Cette combustion des suies est provoquée par élévation de la température des gaz d'échappement en entrée du filtre à particules. L'initialisation et le maintien de la combustion des particules dans le filtre s'obtiennent par élévation de la température interne du FAP. Pour ce faire, on procède à une injection retardée dans les chambres de combustion du moteur, c'est-à-dire que l'on retarde l'injection du gasoil par rapport au phasage optimal de l'injection normale. Cela a pour effet d'augmenter la température des gaz à l'échappement. On ajoute également, si besoin est, une ou plusieurs injections tardives, c'est-à-dire que l'on injecte du gasoil longtemps après le point mort haut du piston (PMH). Ce gasoil ne brûlera pas dans la chambre de combustion, mais dans la partie catalytique de la ligne d'échappement. En effet, toujours afin de diminuer les émissions polluantes, on dispose, en plus du filtre à particules, soit d'un catalyseur d'oxydation positionné en amont du FAP dans la ligne d'échappement, soit directement d'un matériau catalytique (tel que le platine) au sein du FAP. C'est sur ces sites catalytiques que les HC et CO des injections tardives s'oxydent en générant un exotherme, ce qui augmente la température des gaz.
On effectue cette opération de régénération du FAP périodiquement, dès que la quantité de particules dans le filtre devient trop importante. La régénération s'effectue lorsque le moteur fonctionne et cela doit être transparent pour l'utilisateur (c'est-à-dire qu'il ne doit pas remarquer que le FAP est en phase de régénération).
Si la température du filtre n'est pas contrôlée avec précision pendant la régénération du FAP, un emballement de la réaction de combustion des particules peut se produire, entraînant une forte augmentation de la température interne et pouvant aboutir à une détérioration du FAP.
Afin d'éviter cela, on gère la régénération du filtre avec une régulation de sa température qui agit sur les quantités et/ou phasages des différentes injections de gasoil, de façon à avoir une température du FAP la plus proche possible d'une température de consigne. Cette consigne est élaborée pour permettre une régénération optimale du FAP, tout en le protégeant des risques d'emballement.
Actuellement, on est capable de réguler l'exotherme produit par la conversion des réducteurs (HC, CO) dans le catalyseur d'oxydation en contrôlant le phasage et le débit des post-injections de carburant dans les cylindres du moteur, ce pour un débit de gaz donné. Les réglages moteur qui permettent d'atteindre la température cible en entrée FAP, résultante de l'exotherme, sont réalisés en régime établi. La régulation adapte à chaque instant les débits nominaux fonction des écarts mesurés par rapport à la consigne de température, ce qui permet notamment de compenser les dispersions de température de moteur à moteur, pour maintenir un niveau thermique maximisant la part de particules brûlées à chaque régénération. Un but de l'invention est d'améliorer encore les procédés de régulation de la température du filtre à particules en vue de sa régénération.
A cet effet, on prévoit selon l'invention un procédé de commande d'un moteur de véhicule, dans lequel on régule une température d'entrée d'un filtre à particules du moteur en commandant au moins une injection de carburant dans un cylindre du moteur et une injection de carburant directement en aval d'un catalyseur d'oxydation du moteur.
Le procédé selon l'invention pourra présenter en outre au moins l'une quelconque des caractéristiques suivantes : - on prend en compte une valeur de température de consigne du filtre pour au moins l'une des injections ;
- on prend en compte une mesure de température à l'entrée du filtre, notamment pour l'injection aval ;
- on prend en compte, notamment pour l'injection dans le cylindre ou au moins l'une des injections dans le cylindre, une valeur cartographiée de la température donnée par l'injection aval à un catalyseur placé directement en amont du filtre ;
- on prend en compte pour l'injection dans le cylindre ou au moins l'une des injections dans le cylindre, une valeur de température de consigne égale à la valeur de température de consigne du filtre diminuée d'une valeur cartographiée de la température donnée par l'injection aval à un catalyseur placé directement en amont du filtre ;
- on prend en compte, notamment pour l'injection dans le cylindre ou au moins l'une des injections dans le cylindre, une mesure de température à l'entrée d'un catalyseur placé directement en amont du filtre ;
- on commande au moins l'une des injections en tenant compte d'une valeur de base cartographiée de cette commande ;
- on commande au moins l'une des injections en la comparant avec des seuils haut et bas prédéterminés ; - on limite un débit horaire de l'injection aval pour la maintenir en deçà d'un seuil prédéterminé ; - on limite un débit de l'injection aval en deçà d'un seuil fonction d'un débit d'air du moteur ;
- l'injection dans le cylindre ou au moins l'une des injections dans le cylindre est agencée pour dégrader un rendement du moteur par référence à un rendement prédéterminé ;
- l'injection dans le cylindre ou au moins l'une des injections dans le cylindre est effectuée après que le piston associé au cylindre a atteint un point mort haut ; et
- le moteur comprend deux catalyseurs d'oxydation. On prévoit également selon l'invention un moteur de véhicule comprenant au moins un injecteur de carburant de cylindre, un catalyseur d'oxydation et un filtre à particules et un injecteur de carburant en aval du catalyseur et un organe de commande agencé pour réguler une température du filtre en commandant l'injecteur de cylindre et l'injecteur aval. D'autres caractéristiques et avantages de l'invention apparaîtront encore dans la description suivante d'un mode préféré de réalisation donné à titre d'exemple non limitatif en référence aux dessins annexés sur lesquels :
- la figure 1 est un schéma montrant l'agencement général d'un moteur selon le mode préféré de réalisation de l'invention ; - la figure 2 est un schéma montrant l'agencement des catalyseurs et du filtre à particules dans la ligne d'échappement du moteur de la figure 1 ; et
- la figure 3 est un organigramme illustrant les différentes étapes de la régulation de la température du filtre à particules dans le moteur de la figure 1 . En référence à la figure 1 , le moteur 2 du présent mode de réalisation de l'invention comprend une culasse 4 renfermant des cylindres 6 dans lesquels sont montés mobiles des pistons 8 et débouchent des injecteurs de carburant 10.
Le moteur comprend un circuit d'admission 12 débouchant dans les cylindres 6 et un circuit d'échappement 14 dont l'entrée se situe au niveau de ces mêmes cylindres. Le moteur 2 comprend un circuit 16 de recirculation des gaz d'échappement ou EGR permettant de prélever une fraction des gaz d'échappement en sortie des cylindres pour les réinjecter dans le circuit d'admission. Ce circuit d'EGR comprend notamment une vanne commandable 18. Le moteur 2 comprend un turbocompresseur 20 comprenant une turbine 22 mise en mouvement par les gaz d'échappement parcourant le circuit 14 et reliée à un compresseur 24 produisant une compression des gaz parcourant le circuit d'admission 12.
Le circuit d'échappement 14 comprend un premier catalyseur d'oxydation 26 et un deuxième catalyseur d'oxydation 28 placé en aval du premier. Il comprend également un filtre à particules 30 placé en aval du deuxième catalyseur 28. Ce dernier est contigu au filtre à particules 30. Ce circuit comprend un injecteur de carburant aval 32 permettant d'injecter du carburant directement en aval du premier catalyseur 26 et en amont du deuxième catalyseur 28. Le moteur comprend un capteur de température 34 placé dans le circuit d'échappement en amont de la turbine 22. Il comprend par ailleurs un capteur de température 36 placé en aval de l'injecteur aval 32 et en amont du deuxième catalyseur 28. Il comprend enfin un capteur de température 40 placé en aval du deuxième catalyseur 28 et en amont du filtre à particules 30.
Le moteur comprend un calculateur 41 apte à commander les différents organes du moteur et recevant des données des différents capteurs.
Le procédé dont le déroulement est illustré à la figure 3 est mis en œuvre dans le moteur de la figure 1 pour réguler la température à l'entrée du filtre à particules 30 en vue d'assurer périodiquement sa régénération.
La commande de régulation s'effectue via la commande du débit de l'injecteur 32 ou cinquième injecteur et de la commande de chacun des quatre injecteurs 10. Concernant ces derniers, il s'agit de commander, en plus de l'injection principale qui produit le couple généré par le moteur, une post-injection éloignée 50 consistant en une injection de carburant dans le cylindre après que le piston associé a atteint le point mort haut ainsi qu'une post-injection proche 52 concomitante à l'injection principale. Il s'agit donc dans ce dernier cas d'injecter une quantité de carburant excédentaire afin de dégrader le rendement du moteur par rapport à un rendement prédéterminé correspondant aux circonstances dans lesquelles la régénération du filtre n'est pas commandée.
On cherche à réaliser par ce procédé un exotherme dans le premier catalyseur 26 pour déclencher l'amorce du deuxième catalyseur 28, ce qui permettra d'atteindre la température cible en entrée du filtre à particules. Il s'agit donc d'effectuer deux régulations : d'une part, une régulation en température à l'entrée du filtre à particules 30, et d'autre part une régulation en température à l'entrée du deuxième catalyseur 28.
Comme illustré à la figure 3, on prend en compte au cours du procédé, en l'espèce pour la mise en œuvre de chacune des commandes 49, 50, 51 une valeur de température de consigne 54 du filtre à particules. On prend également en compte une mesure de température 56 fournie par le capteur 40 en entrée du filtre à particules 30. Cette mesure 56 est soustraite à la valeur 54 à l'étape 58, puis donne lieu à une correction dans le bloc 60 qui est par exemple un bloc de type proportionnel-intégral-dérivé ou PID. On prend également en compte une valeur de base cartographiée ou valeur de commande en boucle ouverte stockée dans une mémoire du calculateur. Cette valeur de base 62 de la commande 49 est ajoutée à la valeur provenant du bloc 60. La somme de ces deux valeurs est comparée à des seuils haut et bas prédéterminés au cours de l'étape représentée par le bloc 64. Si elle franchit l'un de ces seuils, cette valeur est remplacée par le seuil correspondant. On obtient finalement la valeur 49 pour la commande du débit du cinquième injecteur 32.
Cette régulation est chargée de maintenir un niveau thermique optimal pour la combustion des suies dans le filtre à particules. Pour cela, on commande le débit injecté à l'échappement en fonction des conditions thermiques qui régnent en sortie du catalyseur secondaire et à l'entrée du filtre à particules.
Pour le calcul des valeurs des commandes 50 et 52, on prend également en compte une valeur cartographiée 66 de la température donnée au catalyseur 28 par l'injection effectuée au niveau de l'injecteur 32. Il s'agit ici de prendre en compte l'exotherme potentiel généré dans ce deuxième catalyseur 28 et de répartir au maximum la sollicitation sur le cinquième injecteur 32. La valeur 66 de cet exotherme est fournie par une cartographie et soustraite de la valeur 54 au niveau de l'opérateur 68. La valeur qui en résulte est prise comme température de consigne pour les commandes 50 et 52. Ensuite, on soustrait de la valeur 70 ainsi obtenue la valeur de la mesure fournie par le capteur 36 situé à l'entrée du deuxième catalyseur 28.
La valeur qui en résulte est ensuite transmise à deux blocs de correction 72 et 74 qui peuvent être chacun constitués par des blocs PID associés chacun aux commandes 50 et 52. La valeur émanant de ces blocs est additionnée à une valeur de base 76, 78 de la commande concernée, valeur qui résulte d'une cartographie, c'est-à-dire qui est constituée par une commande en boucle ouverte. Sur chacune des branches, la valeur en résultant passe ensuite à travers un bloc de saturation 80, 82 pour être comparée à des seuils et éventuellement remplacée par un de ceux-ci comme précédemment. On obtient ensuite les valeurs finales des commandes 50 et 52.
La deuxième partie de la régulation qui vient d'être décrite vise à commander les débit et phasage des post-injections dans les cylindres, respectivement post-injection éloignée 50 et post-injection proche 52 intégrées à l'injection principale. Cette régulation est chargée de réaliser un objectif thermique à l'entrée du deuxième catalyseur 28 de sorte que ce dernier soit à chaque instant en état d'amorçage pour pouvoir traiter le carburant introduit dans l'échappement par l'injecteur aval 32. Outre la condition d'amorçage, cet objectif thermique intègre également une partie de la thermique attendue en l'entrée du filtre à particules qui ne peut pas être assurée intégralement par l'exotherme du catalyseur secondaire 28.
On remarquera que, pour minimiser le niveau de dilution d'huile par le carburant induit par les post-injections, on préfère en l'espèce solliciter au maximum l'injecteur aval 32. C'est la raison pour laquelle la consigne de température utilisée en aval du bloc 68 est en fait la consigne de température en entrée du filtre 30 diminuée de l'exotherme qu'on sera capable de générer dans le catalyseur secondaire grâce au cinquième injecteur 32. On vise en particulier à faire assurer la sollicitation thermique au maximum par le cinquième injecteur.
Pour éviter que l'exotherme du catalyseur secondaire 28 ne dépasse les 350°C, on limite en l'espèce le débit horaire maximal du cinquième injecteur 32 à un seuil prédéterminé.
Enfin, afin d'éviter que des HC ou des CO ne se retrouvent en entrée du filtre à particules, on limite le débit du cinquième injecteur à un seuil prédéterminé en fonction du débit d'air du moteur.
Bien entendu, on pourra apporter à l'invention de nombreuses modifications sans sortir du cadre de celle-ci.

Claims

REVENDICATIONS
1 . Procédé de commande d'un moteur de véhicule, caractérisé en ce qu'on régule une température d'entrée d'un filtre à particules (30) du moteur en commandant au moins une injection de carburant (50, 52) dans un cylindre (6) du moteur et une injection de carburant (49) directement en aval d'un catalyseur d'oxydation (26) du moteur.
2. Procédé selon la revendication précédente, caractérisé en ce qu'on prend en compte une valeur (54) de température de consigne du filtre
(30) pour au moins l'une des injections (49, 50, 52).
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on prend en compte une mesure (56) de température à l'entrée du filtre (30), notamment pour l'injection aval (49).
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on prend en compte, notamment pour l'injection dans le cylindre ou au moins l'une des injections (50, 52) dans le cylindre, une valeur cartographiée (66) de la température donnée par l'injection aval (49) à un catalyseur (28) placé directement en amont du filtre.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on prend en compte pour l'injection dans le cylindre ou au moins l'une des injections (50, 52) dans le cylindre (6), une valeur de température de consigne égale à la valeur (54) de température de consigne du filtre (30) diminuée d'une valeur cartographiée (66) de la température donnée par l'injection aval (49) à un catalyseur (28) placé directement en amont du filtre.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on prend en compte, notamment pour l'injection dans le cylindre ou au moins l'une des injections (50, 52) dans le cylindre, une mesure (70) de température à l'entrée d'un catalyseur (28) placé directement
5 en amont du filtre (30).
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on commande au moins l'une des injections (49, 50, 52) en tenant compte d'une valeur de base cartographiée (62, 76, 78) de cette i o commande.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on commande au moins l'une des injections (49, 50, 52) en la comparant avec des seuils haut et bas prédéterminés.
15
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on limite un débit horaire de l'injection aval (49) pour la maintenir en deçà d'un seuil prédéterminé.
20 10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on limite un débit de l'injection aval (49) en deçà d'un seuil fonction d'un débit d'air du moteur.
1 1. Procédé selon l'une quelconque des revendications précédentes, 25 caractérisé en ce que l'injection dans le cylindre ou au moins l'une (52) des injections (50, 52) dans le cylindre est agencée pour dégrader un rendement du moteur par référence à un rendement prédéterminé.
12. Procédé selon l'une quelconque des revendications précédentes, 30 caractérisé en ce que l'injection dans le cylindre ou au moins l'une (50) des injections (50, 52) dans le cylindre (6) est effectuée après que le piston (8) associé au cylindre a atteint un point mort haut.
13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le moteur comprend deux catalyseurs d'oxydation (26,
28).
14. Moteur de véhicule comprenant au moins un injecteur de carburant de cylindre (10), un catalyseur d'oxydation (26) et un filtre à particules (30), caractérisé en ce qu'il comprend un injecteur (32) de carburant en aval du catalyseur et un organe de commande (41 ) agencé pour réguler une température du filtre (30) en commandant l'injecteur de cylindre (10) et l'injecteur aval (32).
PCT/FR2006/050384 2005-04-25 2006-04-25 Procede de commande d'un moteur de vehicule pour reguler la temperature d'un filtre a particules WO2006114548A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06743841A EP1877657B1 (fr) 2005-04-25 2006-04-25 Procede de commande d'un moteur de vehicule pour reguler la temperature d'un filtre a particules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0504113A FR2884872B1 (fr) 2005-04-25 2005-04-25 Procede de commande d'un moteur de vehicule pour reguler la temperature d'un filtre a particules
FR0504113 2005-04-25

Publications (1)

Publication Number Publication Date
WO2006114548A1 true WO2006114548A1 (fr) 2006-11-02

Family

ID=35517524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050384 WO2006114548A1 (fr) 2005-04-25 2006-04-25 Procede de commande d'un moteur de vehicule pour reguler la temperature d'un filtre a particules

Country Status (3)

Country Link
EP (1) EP1877657B1 (fr)
FR (1) FR2884872B1 (fr)
WO (1) WO2006114548A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921416A1 (fr) * 2007-09-24 2009-03-27 Peugeot Citroen Automobiles Sa Procede de regulation de la temperature d'un filtre a particules
DE102009014236A1 (de) 2009-03-20 2010-09-30 Audi Ag Vorrichtung zur Abgasreinigung für eine Brennkraftmaschine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2925598A1 (fr) * 2007-12-21 2009-06-26 Renault Sas Procede de post traitement des gaz d'echappement d'un moteur a combustion
FR2934316B1 (fr) * 2008-07-25 2010-08-13 Peugeot Citroen Automobiles Sa Procede d'adaptation d'une regulation de la temperature d'un filtre a particules.
FR2936568B1 (fr) * 2008-09-30 2011-08-05 Peugeot Citroen Automobiles Sa Moteur a combustion interne muni d'un filtre a particules

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079170A1 (fr) * 2003-03-08 2004-09-16 Johnson Matthey Public Limited Company Systeme d'echappement pour moteur a combustion interne a melange pauvre, comprenant un filtre a particules et un absorbant de nox
US20040200271A1 (en) * 2003-04-11 2004-10-14 Van Nieuwstadt Michiel J. Pressure sensor diagnosis via a computer
US20040204818A1 (en) * 2003-04-11 2004-10-14 Dominic Trudell Computer algorithm to estimate particulate filter regeneration rates
DE202005001257U1 (de) * 2004-09-17 2005-04-07 Arvinmeritor Emissions Tech Abgasanlage eines Kfzs mit Dieselmotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079170A1 (fr) * 2003-03-08 2004-09-16 Johnson Matthey Public Limited Company Systeme d'echappement pour moteur a combustion interne a melange pauvre, comprenant un filtre a particules et un absorbant de nox
US20040200271A1 (en) * 2003-04-11 2004-10-14 Van Nieuwstadt Michiel J. Pressure sensor diagnosis via a computer
US20040204818A1 (en) * 2003-04-11 2004-10-14 Dominic Trudell Computer algorithm to estimate particulate filter regeneration rates
DE202005001257U1 (de) * 2004-09-17 2005-04-07 Arvinmeritor Emissions Tech Abgasanlage eines Kfzs mit Dieselmotor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921416A1 (fr) * 2007-09-24 2009-03-27 Peugeot Citroen Automobiles Sa Procede de regulation de la temperature d'un filtre a particules
WO2009040488A1 (fr) * 2007-09-24 2009-04-02 Peugeot Citroën Automobiles SA Procede de regulation de la temperature d'un filtre a particules
DE102009014236A1 (de) 2009-03-20 2010-09-30 Audi Ag Vorrichtung zur Abgasreinigung für eine Brennkraftmaschine
DE102009014236B4 (de) * 2009-03-20 2016-12-29 Audi Ag Vorrichtung zur Abgasreinigung für eine Brennkraftmaschine

Also Published As

Publication number Publication date
FR2884872B1 (fr) 2007-09-14
FR2884872A1 (fr) 2006-10-27
EP1877657A1 (fr) 2008-01-16
EP1877657B1 (fr) 2012-11-28

Similar Documents

Publication Publication Date Title
EP1086304B1 (fr) Systeme de regeneration pour un filtre a particules de gaz d'echappement de moteur diesel
FR2899932A1 (fr) Procede et dispositif de controle de la regeneration d'un systeme de depollution
EP1987239B1 (fr) Procede et dispositif de regeneration du filtre a particules d'un moteur a combustion interne, pendant les phases transitoires de fonctionnement de celui-ci
EP1877657B1 (fr) Procede de commande d'un moteur de vehicule pour reguler la temperature d'un filtre a particules
EP2092168A1 (fr) Procede de determination de la quantite de carburant a injecter dans une ligne d'echappement en vue de regenerer un filtre a particules
EP1524425B1 (fr) Procédé de commande pour la régénération d'un filtre à particules
EP1314875B2 (fr) Système de contrôle du fonctionnement d'un moteur diesel de véhicule automobile
EP2078839B1 (fr) Strategie de chauffage rapide pour compenser le vieillissement d'un catalyseur d'oxydation d'un moteur diesel
WO2009101316A2 (fr) Procede et dispositif pour la regeneration d'un dispositif de post-traitement de gaz d'echappement
FR2928686A3 (fr) Procede de regeneration d'un dispositif de post-traitement d'un systeme d'echappement d'un moteur a combustion interne
FR3088957A1 (fr) Dispositif et procédé de commande de la régénération d'un filtre à particules d'une ligne d'échappement d'un moteur à combustion interne
EP1625296B1 (fr) Procede et systeme de gestion de la regenation d'un filtre a particules et moteur a combustion interne equipe d'un tel filtre a particules
EP1827893A1 (fr) Procede de controle de la regeneration d'un filtre a particules electrostatique
FR2846049A1 (fr) Procede de regeneration d'un filtre a particules et dispositif de mise en oeuvre
FR2846038A1 (fr) Procede de determination de la temperature interne d'un filtre a particules, procede de commande de la generation du filtre a particules, systeme de commande et filtre a particules correspondant.
FR2874970A1 (fr) Procede de regeneration d'un systeme de motorisation a filtre a particules
FR2983531A1 (fr) Alimentation en mode riche d'un moteur a combustion interne a double pre-injection
FR2897640A1 (fr) Procede et dispositif de regeneration du filtre a particules d'un moteur a combustion interne du type diesel
FR2930968A1 (fr) Procede de regeneration d'un systeme de post traitement par fractionnement de la richesse.
EP1987238B1 (fr) Procede et dispositif de regeneration du filtre a particules d'un moteur a combustion interne du type diesel, pendant les phases de ralenti
WO2005064129A1 (fr) Systeme d'aide a la regeneration de moyens de depollution integres dans une ligne d'echappement d'un moteur de vehicule automobile
FR2995638A1 (fr) Alimentation en mode riche d'un moteur a combustion interne a derivation des gaz de suralimentation
FR2874967A1 (fr) Procede de regeneration d'un systeme a filtre a particules
FR2925937A1 (fr) Procede de regeneration d'un filtre a particules a basse temperature.
FR2948418A3 (fr) Procede de gestion de la purge d'un piege a oxydes d'azote.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006743841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3277/KOLNP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006743841

Country of ref document: EP