WO2006109693A1 - 粘性試料のサンプリング器具、喀痰の均質化処理方法及び微生物の検出方法 - Google Patents

粘性試料のサンプリング器具、喀痰の均質化処理方法及び微生物の検出方法 Download PDF

Info

Publication number
WO2006109693A1
WO2006109693A1 PCT/JP2006/307371 JP2006307371W WO2006109693A1 WO 2006109693 A1 WO2006109693 A1 WO 2006109693A1 JP 2006307371 W JP2006307371 W JP 2006307371W WO 2006109693 A1 WO2006109693 A1 WO 2006109693A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
soot
filter
homogenizing
present
Prior art date
Application number
PCT/JP2006/307371
Other languages
English (en)
French (fr)
Inventor
Takeharu Morishita
Mitsugu Usui
Original Assignee
Eisai R & D Management Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai R & D Management Co., Ltd. filed Critical Eisai R & D Management Co., Ltd.
Priority to JP2007512955A priority Critical patent/JPWO2006109693A1/ja
Priority to EP06731319A priority patent/EP1867973A1/en
Priority to US11/887,832 priority patent/US20090054809A1/en
Publication of WO2006109693A1 publication Critical patent/WO2006109693A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/019Biological contaminants; Fouling

Definitions

  • the present invention is a sampling instrument for quantitatively sampling a liquid sample with high viscosity such as sputum and its auxiliary jig, and the sputum is quickly processed under mild conditions, so that the sputum can be stabilized more stably.
  • Homogenization treatment agent capable of detecting microorganisms present in food, homogenization equipment, homogenization method and method of detecting microorganisms using the method, and microorganisms present in soot
  • the present invention also relates to a microorganism separator for efficient collection, a microorganism collection method, and a microorganism detection method using the method.
  • a general syringe 110 as shown in FIG. 10 has a nozzle 114 with a small-diameter nozzle 114 projecting from the distal end side of a cylindrical body 112 having an internal hollow long straight barrel portion.
  • a circular suction / discharge port 116 is opened at the tip of the tube, the base end side is an opening 117, a flange 118 is formed on the outer peripheral edge thereof, and the tube 112 is in close contact with the inner wall of the tubular body 112.
  • a gasket 120 slidably fitted in the longitudinal direction of the body 112 is provided, and in order to slide the gasket 120, the distal end is engaged with the gasket 120 and the base end is used as the operation head 134.
  • Non-Patent Document 1 recommends the NALC-NaOH method using the reducing substance N-acetyl-L-cysteine (NALC). This method is widely used (see, for example, Patent Document 3).
  • NALC-NaOH method has a problem that, when detecting general bacteria such as Haemophilus influenzae, the treatment conditions are severe and damage to the bacteria is large.
  • a mild method of pretreatment conditions there is a method using a semi-alkaline protease which is an enzyme.
  • Patent Document 5 it has been proposed to homogenize the soot using a soot processing tool containing a spherical solid material, and this document describes glass or quartz as the spherical solid material.
  • this document describes glass or quartz as the spherical solid material.
  • Patent Document 6 discloses a method for recovering microorganisms by pretreating a specimen and then adsorbing only the microorganisms using an adsorption carrier.
  • Patent Document 7 there is a known method of filtering a specimen and capturing microorganisms on the filter (Patent Document 7), but it is thought that improvement is required in terms of yield and separation from human cells, blood cells, dust, etc. It is done.
  • Patent Document 8 describes a method for preparing a sample for immunochromatography by pre-treating a specimen and then filtering it with a filtration member comprising at least two types of filtration membranes. It is intended to eliminate clogging of the sample on the chromatographic membrane carrier during chromatography, and is not intended to collect microorganisms. Wow! Further, only a glass fiber filter paper and a glass filter are described as filter membranes.
  • Patent Document 1 Japanese Patent Publication No. 5-3318
  • Patent Document 2 Japanese Patent Publication No. 1-21989
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-344108
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-65249
  • Patent Document 5 JP-A-1 291160
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2001-112497
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2004-180551
  • Patent Document 8 Japanese Patent Laid-Open No. 2005-24325
  • Non-Patent Document 1 Guidelines for Testing Mycobacterium tuberculosis 2000, published by the TB Prevention Association Foundation Disclosure of Invention
  • the present invention has been made in view of the above problems. First, it improves the quantitativeness when sampling a viscous sample such as a sputum, and allows an operator with relatively small suction force and discharge force. The purpose of this study is to provide a sampling device for viscous samples and its auxiliary jigs that reduce the burden on the sample, improve the cutting of viscous samples at the time of suction and discharge, and reduce environmental hygiene problems. Second, the present invention is capable of homogenizing purulent sputum, and simply and quickly homogenizing sputum under mild conditions to detect microorganisms present in sputum more stably.
  • the object is to provide a homogenizing agent for soot, a device for homogenizing treatment, a homogenizing method, and a method for detecting microorganisms. Furthermore, the present invention thirdly provides a microorganism separator, a microorganism recovery method, and a microorganism detection method using the method, for simply, quickly and efficiently recovering microorganisms present in sputum. It aims to.
  • the present inventors first, in sampling a viscous sample such as a sputum, by changing the shape of the tip of the syringe, the quantitativeness and operability are improved. Secondly, it was found that viscous samples can be collected easily and safely, and secondly, in the pretreatment method of sputum, cysteine protease, one of the proteolytic enzymes, especially bromelain, can be used efficiently. Thirdly, in the pretreatment method for soot, the agitation is achieved by stirring with particles containing one or more metals selected from the group strength of the metal and its acid strength.
  • the viscous sample sampling device of the present invention has an inner hollow shape in which a distal end is closed and a proximal end is opened, and a flange is formed on the outer peripheral edge of the proximal end.
  • a long rod-like plunger (30) which is an engaging convex portion to be engaged with the gasket, has a base end as an operation head, and allows the gasket to slide by operating the operation head.
  • the tip of the cylindrical body is closed by a plate-shaped nozzle (14) having the same diameter as the straight body portion of the cylindrical body, and a slit having a predetermined shape is formed in the plate-shaped nozzle. (16) is opened to form a suction / discharge port.
  • the slit is preferably located near the center of the plate-like nozzle (14), and the slit preferably has a shape having at least one corner (15). Yes.
  • the shape of the slit is preferably a cross (X-shaped), Y-shaped or W-shaped.
  • the width of the slit is preferably 0.5 to 1.5 mm, more preferably 0.5 to 2. Omm.
  • the viscous sample is not particularly limited as long as it is a high-viscosity liquid sample to be subjected to an inspection 'analysis' test, but the instrument of the present invention is particularly suitable when it is a soot.
  • the auxiliary jig for a sampling instrument is an auxiliary jig (40, 60) for the sampling instrument, wherein the operation head of the sampling instrument is freely operable. To do.
  • the sampling instrument auxiliary jig (40) has an engagement piece that is freely engageable with a flange portion of the cylindrical body of the sampling instrument at a distal end, and has a base end as an opening.
  • a long cylindrical outer fitting cylinder member (42) having a guide groove formed in the same part of the moon and a shaft slidably inserted into the outer fitting cylinder member, and at the tip of the plunger of the sampling instrument
  • An internal fitting shaft member (50) having an engaging portion that is freely engageable with the operating head, an operating lever provided along the guide groove, and a base end as a pressing head. It is suitable to provide.
  • the auxiliary jig (60) for the sampling instrument is an auxiliary jig (60) for the sampling instrument, and is fitted on the inner periphery of the distal end of the cylindrical instrument in the sampling instrument.
  • a long cylindrical outer fitting cylinder member (62) provided with an existing fitting projection and having a base end as an opening, and is slidably passed through the inside of the outer fitting cylinder member; Sampling on the inner periphery of the tip
  • An intermediate fitting cylinder member (70) provided with a fitting convex portion that can be fitted to the operation head of the plunger in the instrument, and provided with an urging means and a locking means for the outer fitting cylinder member;
  • the inner fitting cylinder member is slidably passed through the shaft, and the distal end is a contact end contacting the operation head of the plunger in the sampling instrument, and the proximal end is the pressing head.
  • the sputum homogenizing agent of the present invention is characterized by containing a cysteine protease.
  • a cysteine protease As the cysteine protease, bromelain, papain, chymopapain, and bromelain, which are more preferable for one or two or more types, which are also selected as a group power, are particularly preferable.
  • the homogenizing agent of the present invention preferably further contains sodium chloride sodium salt and Tris buffer.
  • the homogenization treatment agent of the present invention is suitably used for pretreatment in the microorganism detection method.
  • the soot homogenization device of the present invention is characterized in that it contains particles containing one or more metals selected from a metal and a group force that is its acid strength.
  • the metal and its oxide are preferably stainless steel, iron or alumina. It is more preferable that the particles are spherical particles having a diameter of 4 mm or more and 10 mm or less.
  • a first aspect of the soot homogenization method of the present invention is characterized in that soot is treated with the above-described homogenizing agent of the present invention.
  • the homogenization treatment method of the present invention is particularly preferred as a pretreatment in the detection of microorganisms.
  • the sample containing the test soot is a metal and its group strength consisting of its acid strength. It is characterized by stirring in the presence.
  • the metal and its oxide are stainless steel, iron or alumina.
  • stainless steel is also simply referred to as stainless steel.
  • the particles are preferably spherical particles having a diameter of 1 mm or more and 10 mm or less, and more preferably spherical particles having a diameter of 4 mm or more and 10 mm or less.
  • the sample contains a soot pretreatment agent.
  • the koji pretreatment agent contains a proteolytic enzyme.
  • the protein Degrading enzyme power Group power consisting of semi-alkaline protease and cysteine protease power is preferably selected from one or more.
  • the cystine protease strength is one or more selected from the group force including bromelain, papain, chymopapain, and ficin force.
  • the soot pretreatment agent is the homogenization treatment agent of the present invention.
  • the homogenization method of the present invention is particularly suitable as a pretreatment in the microorganism detection method.
  • the method for recovering a microorganism from a soot is a method for collecting a microbe from a homogenized soot, wherein the test microorganism can pass through the soot that has been subjected to the homogenous soot treatment, and an organic material.
  • a filtrate containing the test microorganism is obtained by filtering using a separator having at least three types of filters.
  • the separator is provided with a first filter, a second filter and a third filter in the order in which the homogenized soot passes, and the pore diameter of the filter sequentially decreases in the downstream direction.
  • the pore size of the third filter is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 2 ⁇ m or more and 7 ⁇ m or less.
  • the pore size of the second filter is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the pore size of the first filter is preferably 5 ⁇ m or more, more preferably 20 m or more, and even more preferably 80 ⁇ m or more and 120 ⁇ m or less.
  • the organic material is one or two or more selected from the group force including polycarbonate, polytetrafluoroethylene, polyamide, cellulose, and polyethylene.
  • the test microorganism is preferably a microorganism such as a virus, rickettsia, bacteria or fungus.
  • the homogenous soot treatment method of soot is not particularly limited, but the homogenization method of the present invention is preferably used.
  • the microorganism separator of the present invention is the above-described separator having at least three types of filters through which a test microorganism can pass and made of an organic material. Used.
  • a first aspect of the method for detecting a microorganism of the present invention is to detect a microorganism present in the test sputum after the test sputum has been treated with the above-described soot homogenization treatment method of the present invention. It is characterized by.
  • a second aspect of the microorganism detection method of the present invention is characterized in that a test microorganism is detected from the filtrate obtained by the microorganism recovery method of the present invention.
  • the microorganism is preferably a microorganism such as a virus, rickettsia, bacteria or fungus.
  • the present invention it is possible to perform homogenous soot treatment more easily and quickly than the conventional soot pretreatment method, and to detect microorganisms more stably. Furthermore, according to the present invention, it is possible to recover microorganisms present in sputum more simply, quickly and efficiently than in the conventional method.
  • FIG. 1 is a perspective view showing a viscous sample sampling device of the present invention.
  • FIG. 2 is an exploded perspective view of FIG.
  • FIG. 3 is a plan view showing various examples of the shape of slits (suction / discharge ports) of a plate-like nozzle in the sampling device of the present invention.
  • FIG. 4 is an enlarged explanatory view of FIG. 3 (a).
  • FIG. 5 is a conceptual explanatory diagram of an apparatus used for measuring the suction force and the discharge force of the present invention.
  • (A) is a case of suction force
  • (b) is a case of discharge force.
  • FIG. 6 is an explanatory side view showing an example of an auxiliary jig for a sampling instrument according to the present invention.
  • FIG. 7 is an enlarged perspective view of a main part of FIG. 6 (a).
  • FIG. 8 is an explanatory side view showing another example of the auxiliary jig for a sampling instrument of the present invention.
  • FIG. 9 is an enlarged view of the main part of FIG. 8 (a).
  • FIG. 10 is a perspective explanatory view showing a conventional syringe.
  • FIG. 11 is a schematic explanatory view showing a first example of a homogenous soot processing apparatus for soot according to the present invention.
  • FIG. 12 is a schematic explanatory view showing a second example of a homogenous soot processing device for soot according to the present invention.
  • FIG. 13 is a schematic explanatory view showing a third example of the homogenity wrinkle processing apparatus for sputum according to the present invention.
  • FIG. 14 is a schematic explanatory view showing a fourth example of a homogenous soot processing apparatus for soot according to the present invention.
  • FIG. 15 is a schematic explanatory diagram showing an example of a method for collecting a microorganism of the present invention.
  • FIG. 16 is a schematic explanatory view showing another example of the microorganism recovery method of the present invention.
  • FIG. 17 is a schematic cross-sectional explanatory view showing an example of a microorganism separator of the present invention.
  • FIG. 18 is a schematic explanatory view showing an example of a microorganism recovery kit including the separator of the present invention shown in FIG.
  • FIG. 19 is a graph showing the results of Examples 16 and 17.
  • FIG. 20 is a photomicrograph of the homogeneous liquid before filling of Example 18, where (a) shows the result at 100 magnification and (b) shows the result at 1000 magnification.
  • FIG. 21 is a photomicrograph of the homogenized liquid after fill trace of Example 18, wherein (a) shows the result at 100 magnification and (b) shows the result at 1000 magnification.
  • Sampling instrument of the present invention 10: cylindrical body, 12: straight body part, 13: closed part, 14, 14a to 14j: plate nozzle, 15: corner part, 16, 16a to 16j: slit, 17: Opening, 18: collar, 20: gasket, 22: seal ridge, 24: core, 30: plunger, 32: engaging projection, 34: head for operation, 40: sampling device of the present invention Auxiliary jig (example), 42: external fitting cylindrical member, 43: opening, 44: engagement piece, 45: notch, 46: taper, 48: guide groove, 50: internal fitting shaft member, 52: engagement Joint: 53: Notch, 56: Head for pressing, 58: Operation lever, 60: Auxiliary jig for sampling device of the present invention (other example), 62: External fitting cylindrical member, 63: Opening, 64: Mating convex part, 65: Notch concave part, 66: Tapered part, 67: Locking convex part, 68: Button hole, 69: Bi
  • FIG. 1 is a perspective view showing a viscous sample sampling device of the present invention.
  • FIG. 2 is an exploded perspective view of FIG.
  • FIG. 3 is a plan view showing various examples of the shape of the slit (suction / discharge port) of the plate-like nozzle in the present invention.
  • FIG. 4 is an enlarged explanatory view of FIG.
  • FIG. 5 is a conceptual explanatory diagram of the apparatus used for measuring the suction force and the discharge force of the present invention.
  • (A) is the case of the suction force
  • (b) is the case of the discharge force.
  • FIG. 6 is an explanatory side view showing an example of the auxiliary jig for a sampling instrument of the present invention.
  • FIG. 7 is an enlarged perspective view of a main part of FIG.
  • FIG. 8 is an explanatory side view showing another example of the auxiliary jig for a sampling instrument of the present invention.
  • FIG. 9 is an enlarged view of the main part of FIG. 8 (a).
  • reference numeral 2 is a sampling device for a viscous sample
  • reference numeral 40 is an example of an auxiliary jig for a sampling instrument
  • reference numeral 60 is another example of an auxiliary jig for a sampling instrument.
  • the viscous sample sampling device 2 of the present invention has a basic structure similar to that of a so-called conventional syringe 110, and includes a cylindrical body 10, a gasket 20, and a plunger 30 (Fig. 1). And Figure 2).
  • the viscous sample is not particularly limited as long as it is a highly viscous and liquid sample subject to the inspection 'analysis' test. The case where cocoons are used as a viscous sample will be mainly described.
  • the cylindrical body 10 has a long straight body 12 that is hollow inside, the distal end is a closed portion 13, the proximal end is an opening 17, and the outer peripheral edge of the proximal end of the tubular body 10
  • the ridge part 18 is formed in (Figs. 1 and 2).
  • the shape of the collar 18 is not particularly limited, but it can be circular, elliptical, or square. I can't. In the example shown in the figure, it is a truncated ellipse with both ends of the ellipse cut off (Figs. 1 and 2), but the main point is the relationship between the engagement structure and the engagement structure with the auxiliary jigs 40 and 60 described later. Anything that is appropriate.
  • the closing portion 13 at the tip of the cylindrical body 10 is closed by a plate-like nozzle 14 (FIGS. 1 and 2). That is, the conventional syringe 110 is provided with a small-diameter nozzle 114 (see FIG. 11), and a plate-like nozzle 14 is provided instead.
  • the plate-like nozzle 14 is substantially the same diameter as the straight body portion 12 of the cylindrical body, and may be integrally formed with the straight body portion 12 or may be attached as a separate body by external fitting or internal fitting. May be. According to such a plate-like nozzle 14, the lower end surface of the gasket 20 is in contact with substantially the entire surface, so that the viscous sample does not remain at the time of discharge. The problem that the viscous sample remains inside is solved.
  • a slit 16 having a predetermined shape is opened in the plate-like nozzle 14 to form a suction / discharge port.
  • the predetermined shape of the slit 16 various shapes can be used. For example, various shapes as shown in FIG. 3 can be adopted.
  • a plate-like nozzle is used as a preferable slit shape condition. The position near the center of 14 and the shape having at least one corner 15 reduce the suction force and the discharge force, the point of cutting of the viscous sample at the time of suction and discharge, etc. Power can also be mentioned (see Fig. 3 and Fig. 4).
  • the most preferred slit shape is either a cross (X shape), Y shape or W shape.
  • the slit width dl is 0.5 mn! ⁇ 2. Omm, more preferably 0.5 to 1.5 mm (Fig. 4).
  • the distance d2 from the outer edge is preferably 0.5 mm to 2 mm, more preferably lmm to l.8 mm (FIG. 4).
  • the material of the cylindrical body 10 is not particularly limited as long as it is a transparent or translucent material having an internal visibility.
  • a glass material may be used.
  • the manufacturing cost and ease of processing make it transparent.
  • vinyl chloride, polyolefins such as polyethylene and polypropylene, styrenes such as polystyrene, and other synthetic resin materials are examples of synthetic resin materials.
  • the gasket 20 is slidable in the longitudinal direction of the cylindrical body 10 while being in close contact with the inner wall of the cylindrical body 10. It is fitted inside.
  • the gasket 20 can be the same as that of a conventional syringe, and there is no particular limitation on the form and material thereof. However, the form has adhesiveness to the inner wall of the cylindrical body 10, and the lower end surface thereof. Needs to abut against the plate-like nozzle 14.
  • seal protrusions 22 are formed on the outer peripheral edges of the front and rear ends of the core portion 24, and the lower end surface is flat according to the shape of the plate-like nozzle 14 (FIGS. 1 and 2).
  • the gasket 20 As a material of the gasket 20, natural rubber, butyl rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, silicone rubber, etc., which are desired to be elastic materials in order to ensure adhesion (sealability), etc. It can be constructed using various rubber materials and elastomer materials such as various synthetic resin materials such as polyurethane, polyester, polyamide, olefin and styrene.
  • the plunger (pushing element) 30 is a long rod-shaped member for slidingly operating the gasket 20, and the distal end is an engaging projection 32 that engages the gasket 20, and the proximal end is the operating head. Part 34.
  • the engaging projection 32 of the plunger 30 is engaged with the engaging recess inside the gasket 20 (not shown), and the operation head 34 is operated, so that the gasket 20 can be slid within the cylindrical body 10.
  • the material of the plunger 30 is not particularly limited, but may be manufactured by injection molding a synthetic resin material such as olefin or styrene.
  • auxiliary jigs 40 and 60 of the present invention facilitate the operation of the sampling instrument 2 of the present invention, and because of handling a viscous sample such as a scissors, it is not possible to operate by directly touching the sampling instrument 2 by hand. Since the sanitary power is also favorable, it is used as an auxiliary so that the sampling instrument 2 can be operated indirectly.
  • the auxiliary jig 40 for a sampling instrument of the present invention is composed of a long cylindrical outer fitting cylindrical member 42 and an inner fitting shaft member 50 that is slidably passed through the inner cylindrical member 42. ( Figures 6 and 7).
  • the external fitting cylindrical member 42 has an engagement piece 44 at its tip that is freely engageable with the flange 18 of the cylindrical body 10 in the sampling device 2 (Figs. 6 and 7). .
  • the engaging piece 44 is formed with a notch 45 that engages with the flange 18 of the cylindrical body 10 (FIG. 7).
  • the base end of the external fitting cylinder member 42 is an opening 43, and the body portion is formed with a tapered portion 46, and the guide groove 4 8 is drilled in the longitudinal direction (Fig. 6).
  • the internal fitting shaft member 50 is slidably passed through the inside of the external fitting cylindrical member 42, and the tip thereof is engaged with the operation head 34 of the plunger 30 in the sampling instrument 2. It has an engaging portion 52 that can be freely fitted.
  • the engaging portion 52 is formed with a recessed portion 53 that fits with the operating head 34 of the plunger 30.
  • an operation lever 58 is provided along the guide groove 48 of the outer fitting cylinder member 42, and a pressing head 56 is provided at the base end.
  • sampling instrument auxiliary jig 40 first, the operating head 34 of the plunger 30 of the sampling instrument 2 is engaged with the engaging portion 52 of the internal fitting shaft member 50 [Fig. (a) (b)], and then, the auxiliary jig for the sampling instrument by engaging the flange 18 of the sampling instrument 2 and the engaging piece 44 of the external fitting cylinder member 42 so as to be held together.
  • the sampling device 2 can be attached to the plate 40 (Fig. 6 (c)), and when the viscous sample is sucked, the sampling lever 2 is pulled by pulling the operating lever 58 of the auxiliary tool 40 for the sampling device toward the proximal end.
  • the viscous sample can be sucked, and when the viscous sample is discharged, the pressing head 56 of the sampling device auxiliary jig 40 is pressed in the distal direction to discharge the viscous sample by the sampling device 2. (Fig. 6 (d)]. Therefore, the operator can suck and discharge the viscous sample without directly touching the sampling device 2.
  • the auxiliary jig 60 for a sampling instrument of the present invention includes a long cylindrical outer fitting cylindrical member 62, a middle fitting cylindrical member 70 slidably inserted into the inner cylindrical fitting member 70, and an inner portion thereof. And an internally fitted shaft member 80 that is slidably passed through the shaft (FIGS. 8 and 9).
  • the outer fitting cylindrical member 62 is provided with a fitting convex portion 64 which can be fitted to the flange portion 18 of the cylindrical body 10 in the sampling device 2 on the inner peripheral surface of the tip end.
  • a locking projection 67 is provided to lock the upper end of the flange 18 when the fitting projection 64 is fitted to the fitting projection 64.
  • the base end is an opening 63, and the body portion has a tapered portion 66.
  • a button hole 68 is formed (FIGS. 8 and 9).
  • the shape of the flange 18 in the sampling device 2 is a truncated elliptical shape as in the illustrated example (see FIGS. 1 and 2), or in the case of an elliptical shape, a rectangular shape, etc. Is long and does not fit within the inner diameter of the outer fitting cylindrical member 62, a notch recess 65 is provided at the tip of the outer fitting cylindrical member 62, and the fitting convex portion 64 is What is necessary is just to make it fit.
  • the intermediate fitting cylindrical member 70 is slidably passed through the inside of the outer fitting cylindrical member 62, and an operation head 34 of the plunger 30 in the sampling instrument 2 is provided on the inner peripheral surface of the distal end.
  • a fitting projection 72 that can be freely fitted is provided (FIGS. 8 and 9).
  • the middle fitting cylinder member 70 is provided with a biasing means 69 and a locking means 74 for the outer fitting cylinder member 62.
  • the urging means 69 is a spring (panel) and is provided so as to be interposed between the front end portion of the intermediate fitting cylindrical member 70 and the locking convex portion 67 of the outer fitting cylindrical member 62.
  • the locking means 74 is a button for switching between locking and releasing the intermediate fitting cylindrical member 70 with respect to the outer fitting cylindrical member 62, and using the biasing force of the spring 76, the middle fitting cylindrical member 70 is connected to the outer fitting cylindrical member 62. It can be locked against.
  • the internal fitting shaft member 80 is slidably passed through the inside fitting cylindrical member 70, and the tip thereof is in contact with the operation head 34 of the plunger 30 in the sampling instrument 2.
  • An end 82 is provided, and a pressing head 84 is provided at the base end.
  • sampling instrument auxiliary jig 60 first, the operation head 34 of the plunger 30 of the sampling instrument 2 is fitted to the fitting convex part 72 of the intermediate fitting cylindrical member 70 [Fig. 8 (a) (b)], and by fitting the flange 18 of the sampling device 2 to the fitting convex portion 64 of the external fitting cylindrical member 62 (FIG. 8 (a) (b)), the sampling device Auxiliary jig 60 for sampling equipment
  • the biasing means 69 is extended [(FIG. 8 (c)], the viscous sample is sucked by the sampling device 2, and when the viscous sample is discharged, the pressing head 84 of the auxiliary jig 60 for the sampling device is used.
  • the viscous sample can be discharged by the sampling device 2 by pressing the tip in the direction of the tip [Fig. 8 (c) (d)], and after the discharge, the pressing head 84 is further pressed. Therefore, the sampling device 2 can be detached from the auxiliary jig 60 for the sampling device [Fig. 8 (d)], so that the operator can suck and discharge the viscous sample without directly touching the sampling device 2. In addition to being able to do so, the sampling device 2 can also be detached [Fig. 8 (d)].
  • the homogenizing agent for sputum according to the present invention contains cysteine protease as an active ingredient It is characterized by the fact that it can be processed faster under mild conditions and more stably detect microorganisms present in the sputum, and is particularly effective for homogenous sputum treatment of purulent sputum.
  • the cysteine protease used in the present invention is not particularly limited, but the plant power of bromelain, papain, chymopapain, and ficin is preferred by plant-derived cysteine protease.
  • the preferred bromelain is particularly preferred.
  • These cysteine proteases may be commercially available or those obtained by a known method.
  • bromelain a plant-derived cysteine protease belonging to Bromeliaceae is used, but one derived from pineapple (Ananas comosus M.) is more preferable.
  • the homogenization treatment agent of the present invention is not particularly limited as long as it is a composition containing cysteine protease as an active ingredient.
  • an aqueous solution obtained by dissolving cysteine protease in a solution such as a buffer solution is used. Used in form.
  • the concentration of cysteine protease is not particularly limited, but 0.01-: LwZv% is preferred 0.1-0.3 wZv% is more preferred
  • the solution for dissolving the cysteine protease is not particularly limited, but a buffer solution having a pH of around 6.0 to 10 is preferable.
  • a Tris buffer solution having a force of about pH 7 to 9 including a Tris buffer solution, a phosphate buffer solution, a carbonate buffer solution and the like is more preferable.
  • the buffer solution preferably contains sodium chloride salt, EDTA, or the like.
  • the concentration of sodium chloride in this Tris buffer is more than 0.6% and less than 1.2%, and the Tris concentration is 10 mM. More preferably, it is less than 50 mM and the pH is 7.0 or more and less than 8.0.
  • sputum is a mixture of mucin (mucoprotein and mucopolysaccharide) secreted from the trachea and bronchial mosquito, and externally attracted bacteria and dust, and includes human cells and blood cells There is also.
  • mucin mucoprotein and mucopolysaccharide
  • the properties of cocoons are divided into five levels: Ml, M2, Pl, P2, and P3.
  • P2 purulent sputum containing purulent parts 1Z3 to 2 Z3
  • P3 purulent sputum containing purulent parts 2Z3 or more
  • Pre-treatment of cocoon takes time, especially P3 is easy and homogeneous The conversion process was difficult.
  • the present invention enables a quick and simple homogenization treatment of this purulent sputum.
  • a first aspect of the method for homogenizing cocoons of the present invention is characterized in that cocoons are treated with the homogenizing agent of the present invention.
  • the method for treating soot using the homogenizing agent is not particularly limited, but after mixing the homogenizing agent and the test soot, room temperature to 37 ° C, preferably room temperature. By reacting with appropriate vortexing, soot can be dissolved quickly.
  • the microorganisms present in the test rod can be detected.
  • the detection method of microorganisms is not specifically limited, A well-known method can be used widely.
  • microorganisms may be detected by detecting organism-related substances that may directly detect microorganisms.
  • microorganisms are not particularly limited !, but for example, herpes virus (HSV, CMV, ZVZ, EBV, HHV, etc.), influenza virus, human immunodeficiency virus, etc.
  • HSV herpes virus
  • CMV human adult T-cell leukemia virus
  • HTLV human adult T-cell leukemia virus
  • HCV hepatitis virus
  • HCV hepatitis virus
  • HCV hepatitis virus
  • HCV hepatitis virus
  • HCV hepatitis virus
  • HCV hepatitis virus
  • HCV hepatitis virus
  • HGV hepatitis virus
  • other Kaze syndrome other Kaze syndrome
  • digestive disorders central nervous system diseases, respiratory diseases, hemorrhagic fever, etc.
  • Viruses such as pathogenic viruses of various diseases, rickettsia, Staphylococcus aureus, streptococci, coliforms, Pseudomonas aeruginosa, Legionella, Moraxella, influenza bacteria, Klebsiella, Chlamydia, Mycoplasma, and other bacteria, fungi, etc. .
  • examples of the biological substance include nucleic acids (DNA, RNA), proteins, peptides and the like.
  • Preparation of DNA or RNA from living cells can be carried out by known methods, for example, DNA extraction by the method of Blin et al. (Blin et al., Nucleic Acids Res. 3: 2303 (1976)), etc. Extraction can be performed by the method of Favaloro et al. (Favaloro et al, Methods Enzymol. 65: 718 (1980)) and the like.
  • Favaloro et al. Favaloro et al, Methods Enzymol. 65: 718 (1980)
  • rRNA cells may be lysed with an aqueous sodium hydroxide solution and then neutralized with hydrochloric acid.
  • PCR Polymerase chain reaction
  • hybridization pulser method (see PALSAR method, for example, Patent No. 3267576 and Patent No. 3310662), D It can be carried out using an NA chip, protein chip, antigen-antibody reaction or the like.
  • a particle containing one or more selected from the group consisting of metal and its acid strength (in the present invention) These particles are referred to as metal particles.)
  • the soot can be treated easily and quickly under mild conditions, and more stably. It can detect microorganisms present in sputum, and is particularly effective for homogenous sputum treatment of purulent sputum.
  • the metal particles include one or two or more kinds selected from a group force that also has a metal and its acid strength. Particles containing one or more types as a main component are preferred.
  • the metal particles may contain materials other than metals and oxides thereof.
  • the particles of the present invention include those in which the surface of the particles is coated with a thin film of metal or oxide thereof. When the particles coated with the thin film are used, the material of the particles to be covered is not particularly limited, and may be metal or non-metal! /, Or may be misaligned! /.
  • the metal is not particularly limited.
  • iron, aluminum, magnesium, titanium, copper, zinc, nickel, lead, tin, chromium, zirconium, molybdenum, gold, silver, platinum, and these are base metals.
  • iron and stainless steel are particularly preferable.
  • the oxide of the metal is not particularly limited.
  • the power mentioned above is particularly preferable.
  • Alumina is preferable.
  • the shape of the metal particles is not particularly limited, but spherical particles are preferred.
  • the diameter of the particles is preferably 1 mm or more, more preferably 4. Omm or more.
  • the upper limit of the diameter of these particles is not particularly limited, but is preferably 10 mm or less.
  • the particles may be one or two or more of the same kind of particles, for example, two or more kinds of particles, for example, a combination of particles having different particle sizes or materials, and a total of two or more particles. Also good.
  • a method for homogenizing soot using metal particles specifically, it is preferable to homogenize by stirring the test sample mixed with a solution such as a buffer solution with the particles. It is more preferable to dissolve the soot quickly by mixing the test soot, the soot pretreatment agent and the particles and reacting them by vortexing at room temperature to 37 ° C, preferably at room temperature.
  • the solution is not particularly limited, but is described in the description of the homogeneous soot treating agent of the present invention.
  • a solid solution is also preferably used.
  • soot pretreating agent examples include known alkaline pretreating agents such as semi-alkaline protease (for example, sputazyme (manufactured by Kyokuto Pharmaceutical Co., Ltd.)), NALC-NaOH reagent, reducing agent, and surfactant.
  • semi-alkaline protease for example, sputazyme (manufactured by Kyokuto Pharmaceutical Co., Ltd.)
  • NALC-NaOH reagent for example, sputazyme (manufactured by Kyokuto Pharmaceutical Co., Ltd.)
  • NALC-NaOH reagent for example, NALC-NaOH reagent, reducing agent, and surfactant.
  • the pretreatment agent described in JP-A-2-273197, WO02Z010744, and Patent Document 4 and the homogenous soot treating agent of the present invention containing cysteine protease as an active ingredient can be used.
  • the homogeneous treatment agent containing a proteolytic enzyme such as semi-alkaline protease or cysteine protease is preferred, and it is more preferable to use the homogeneous treatment agent of the present invention described above.
  • proteolytic enzymes can be used alone or in combination of two or more.
  • the cocoon is homogenized by the homogenization method using the metal particles, and the microorganisms present in the test tub are detected after or without culturing the microorganisms.
  • the method for detecting microorganisms is not particularly limited, and known methods can be widely used. In the detection of microorganisms, microorganisms may be detected by detecting biological substances that may be detected directly.
  • the homogenous soot treating device of the present invention has a lid that accommodates particles containing one or more kinds selected from the group force of metal and its acid strength, that is, the metal particles described above. Container.
  • FIG. 11 to FIG. 14 are schematic explanatory views showing first to fourth examples of the homogenous soot processing apparatus for soot according to the present invention.
  • 210a to 210di container lids, 212a to 212di containers and 214 are metal particles.
  • the shape of the container is not particularly limited in the homogenous soot processing device of the present invention, but the round bottom cylindrical container 212a as shown in FIG. 11 or the flat bottom as shown in FIG.
  • the cylindrical container 212b is preferred.
  • a self-supporting cylindrical container 212c having a round bottom inside and a bottom 216 outside the container having a flat bottom or a hollow portion and having a self-supporting shape may be used.
  • a container 212d in which a bottom lid 218 is attached to the bottom of a cylindrical tube as shown in FIG. 14 can be used.
  • the material of the container is not particularly limited, but is preferably a plastic material such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polycarbonate. That's right.
  • the lid is not particularly limited as long as it can seal the container.
  • the method for attaching the lid is not particularly limited, and examples thereof include a cap type, an embedded type, an internal screw type, and an external screw type.
  • the particles are preferably spherical particles in which the above-mentioned metal particles are used in the same manner, and the material is stainless steel, iron or alumina.
  • the diameter of the particles is preferably lmm or more, more preferably 4. Omm or more.
  • the upper limit of the diameter of these particles is not particularly limited, but is preferably 1 Omm or less.
  • the number of particles accommodated in the container is not particularly limited, and may be appropriately determined according to the size of the container and the particles.
  • soot By performing the above-described method for homogenizing a soot according to the present invention using the above-described homogenizing apparatus for treating soot according to the present invention, the soot can be homogenized quickly and easily.
  • the homogenized soot is filtered by using the microorganism separator of the present invention having at least three types of filters through which a test microorganism can pass and also has organic material power.
  • the obtained filtrate is also for recovering the test microorganism.
  • homogenized soot is used.
  • the method for homogenizing cocoon is not particularly limited, and known methods can be widely used. However, the above-described homogenizing method of the present invention is preferable.
  • a method for homogenizing the soot for example, it is preferable to homogenize and dissolve the soot by treating the test soot with a solution containing a pretreatment agent such as a homogenizing agent.
  • a pretreatment agent such as a homogenizing agent.
  • the soot pretreatment agent and the solution described in the second embodiment of the homogenization treatment method of the present invention are also preferably used.
  • the method for homogenizing the soot using the homogenizing agent is not particularly limited, but after mixing the solution containing the homogenizing agent and the test soot, room temperature to 37 ° C, preferably By reacting with appropriate vortexing at room temperature, soot can be dissolved quickly.
  • the particles are not particularly limited, but spherical particles having a diameter of 1 mm or more, more preferably 4 mm or more are suitable.
  • the material of the particles is not particularly limited, however, particles containing one or more metals selected from the group force of metal and its acid strength are preferred.
  • the metal and its oxide stainless steel, iron or alumina is particularly suitable.
  • the homogenized liquid of the koji after the homogenization treatment is filtered using the microorganism separator of the present invention.
  • FIG. 15 is a schematic explanatory view showing an example of a microorganism recovery method using the microorganism separator of the present invention.
  • reference numeral 310a denotes a microorganism separator of the present invention, which includes a filter member 314 and a filter holder 316a for holding the filter member 314.
  • the filter member 314 has at least three types of filters, a first filter 311, a second filter 312, and a third filter 313, in the order in which the homogenized soot is passed.
  • Each of the first to third filters is a porous material such as an organic material, and can pass a test microorganism.
  • the material of each filter may be the same or different.
  • the arrangement of the force filter showing an example of a three-layer structure in which the filters are stacked is not particularly limited, and may be stacked with a certain gap.
  • the organic material is not particularly limited, but organic polymer fibers are preferred.
  • senorelose derivatives such as senorelose, senorelose fiber, nitrosenololose and senorelose acetate, polyethylene (PE), polypropylene (PP), Polyolefins such as polystyrene (PS) and cyclopolyolefin, Nylon-6, Nylon 6, 6, Nylon 11, Nylon 12, Polyamides such as copolyamide, Aramids such as polyparaphenylene terephthalamide, Polyesters such as polyethylene terephthalate (PETP) , Acrylic polymers such as polyacrylonitrile and acrylate, poly polymers such as poly (vinyl chloride) (PVC) and polybutyl alcohol, polyester ethers such as polyetheretherketone (PEEK), polyuretanes, epoxides, polyvinylidene fluoride (PVDF), Polytetrafluoro
  • One or a combination of two or more can be used.
  • the pore diameters of the first to third filters are not particularly limited as long as they can pass through the test microorganism, and the size of the test microorganism can be appropriately selected according to the state of the test sputum.
  • the third filter is preferably a filter having a pore size that allows passage of test microorganisms without passing cells and blood cells in sputum.
  • the pore size of the third filter is preferably not less than 0 and not more than 10 m, more preferably about 2 to 7 m, and further preferably about 5 m.
  • the second filter preferably has a larger pore diameter than the third filter.
  • the pore size of the second filter is preferably 5 m or more, more preferably 10 to 30 m, and even more preferably about 20 m.
  • the first filter preferably has a larger pore diameter than the second filter.
  • the pore size of the first filter is preferably 5 m or more, more preferably 20 m or more, and more preferably 80 to 120 / ⁇ ⁇ .
  • the film thickness of the first to third filters is not particularly limited, but is preferably 1 to 200 m.
  • the filter holder 316a includes, for example, a main body 317a that houses a filter member 314 as shown in FIG. 15, and a lid 318a.
  • the shape of the filter holder 316a is not particularly limited.
  • the method of attaching the filter and the method of attaching the lid are not particularly limited.For example, there are a method of integrally forming the filter holder body, a cap type, an embedded type, an internal screw type, an external screw type, and the like. Can be mentioned.
  • the material of the filter holder 316a is not particularly limited, but is preferably a plastic material such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polycarbonate, and fluorine resin.
  • the homogenized soot solution 324 after the homogenized soot treatment is composed of a test microorganism 320 and contaminants 322 such as human-derived cells, blood cells and dust.
  • the homogenized liquid 324 is filtered by the separator 310a of the present invention to remove impurities 322 such as cells, blood cells and dust by the filter member 314, and the test microorganism Filter containing 320 Liquid 330 can be obtained [Fig. 15 (b)].
  • a filtration operation is performed by centrifugation, and a filtrate 332 separated into a precipitate 334 containing a test microorganism 320 and a supernatant 332 is obtained.
  • the filtration method is not particularly limited in the present invention. For example, it is preferable to perform filtration under pressure or reduced pressure conditions using nitrogen gas syringe or the like.
  • the obtained homogenous liquid is injected into the separator of the present invention, the homogenized liquid is passed through the separation member, and the filtrate is recovered.
  • the test soot, lysate, pretreatment liquid, and the like are put into the separator of the present invention and the soot homogenized in the separator, the homogenized liquid is separated from the separation member. And collect the filtrate.
  • reference numeral 315a denotes a collection container for collecting the filtrate 330.
  • the recovery container 315a is not particularly limited as long as it can recover the filtrate, and may be installed in a separator as shown in FIG. 15 and FIG. It may be separate from the separator.
  • the shape of the recovery container 315a is not particularly limited. For example, a cylindrical container having a round bottom, a V bottom, a flat bottom, etc. is used.
  • the material of the recovery container 315a is not particularly limited, but is preferably a plastic material such as polyethylene, polypropylene, polystyrene, polysalt gel, polycarbonate, fluorine resin.
  • FIG. 16 is a schematic explanatory diagram showing another example of a microorganism recovery method using the microorganism separator of the present invention.
  • 310b is the microorganism separator of the present invention, which is an example using pressurized filtration.
  • Filter holder for holding the separation member 314 as shown in FIG. 16.
  • the homogenized liquid 324 is placed in 316b, and pressure is applied from above using nitrogen gas or the like, so that the test microorganism is placed in the recovery container 315b.
  • the filtrate 330 containing 320 can be recovered.
  • the pressurizing method is not particularly limited. For example, a method of connecting a pressurizing means (not shown) to the cover body 318b of the filter holder 316b or a vent hole (not shown) provided to the cover body 318b A method of applying pressure is used.
  • FIG. 17 is a schematic sectional view showing an example of the separator of the present invention
  • FIG. 18 shows an example of a microorganism collection kit including the separator of the present invention shown in FIG.
  • reference numeral 310c denotes a separator according to the present invention
  • the first to third components are placed in the filter holder 316c.
  • a separating member 314 having filters 311 to 313 is accommodated.
  • a syringe 340 is connected to a filter holder 316c, the homogenized liquid is put into the syringe 340, and pressure filtration is performed using the syringe 340, and the obtained filtrate is put into a collection container 315c. By collecting it, a filtrate containing the test microorganism can be obtained.
  • the microorganisms present in the test tub are detected by detecting the microorganisms in the obtained microorganism-containing filtrate after or without culturing the microorganisms.
  • the detection method of microorganisms is not specifically limited, A well-known method can be widely used.
  • microorganisms may be detected by detecting biological substances that may be detected directly.
  • FIG. 5 is a conceptual explanatory diagram of the apparatus used for measuring the suction force and the discharge force of the present invention.
  • FIG. 5 (a) shows the case of the suction force
  • FIG. 5 (b) shows the case of the discharge force.
  • symbol P is a viscous sample
  • symbol 90 is a weight holder
  • symbol 92 is a weight
  • symbol 94 is a sample container.
  • the sample container 94 is placed at the upper side, the viscous sample P is placed, the plate-like nozzle 14 of the sampling device 2 of the present invention is connected to the lower end of the sample container 94, and the sampling device 2 of the present invention is connected.
  • the weight holder 90 was suspended and connected to the operation head 34 of the plunger 30 and the weight 92 was gradually increased to measure the suction force.
  • FIG. 5 (b) the sample container 94 is placed below, and the plate-like nozzle 14 of the sampling device 2 of the present invention after the viscous sample P is sucked into the upper end of the sample container 94 is connected to the sample container 94 of the present invention.
  • the discharge force was measured by increasing the weight 92.
  • iron particles diameter: 6.4 mm
  • the formula of F mg (N) was used for suction force and discharge force. The results are shown in Table 1.
  • thermopile syringe for tuberculin (capacity 1 mL) was used as a sampling device.
  • the results are also shown in Table 1.
  • both the suction force and the discharge force showed low numerical values.
  • Particularly good results were obtained for Fig. 3 (a) to (c) where the slit shape is a cross (X) shape, Y shape and W shape and Fig. 3 (j) where the slit shape is Z.
  • the length of viscosity after aspiration means that a predetermined amount of a viscous sample is aspirated from a container containing a viscous sample using the sampling instrument 2 of the present invention, and then the tip of the sampling instrument 2 of the present invention is once rubbed against the container bottom. It was taken as the distance until the viscous sample was broken up.
  • the length of the viscosity after the discharge was defined as the distance from when the viscous sample sucked by a predetermined amount using the sampling device 2 of the present invention was once discharged to the bottom of the container and then pulled up to tear the viscous sample. The results are shown in Table 2.
  • thermopile syringe for tuberculin (capacity 1 mL) was used as a sampling instrument.
  • the results are also shown in Table 2.
  • the I-shaped figure 3 (d) and the Z-shaped figure 3 (j) were the second best, and the results were obtained.
  • Good cutting of viscous sample at the time of suction and discharge As a tendency of slit shape (short viscosity length), slit 16 is positioned near the center of plate nozzle 14, Having a shape with at least one corner 15 has become a component. According to the sampling instrument 2 of the present invention, it was confirmed that the viscous sample can be cut well during suction and discharge, which is preferable for environmental hygiene.
  • thermosyringe syringe (capacity lmL), which is generally marketed as a sampling instrument, was simply cut and a suction outlet with the same diameter as the straight barrel was used.
  • the experiment was conducted in the same manner as in Example 3. The results are also shown in Table 3.
  • the length of the viscosity after aspiration means that after a predetermined amount of a viscous sample is aspirated using the sampling instrument 2 of the present invention, such as the container force containing the viscous sample, the tip of the sampling instrument 2 of the present invention is once attached to the bottom of the container. The distance until the viscous sample was broken up was rubbed. Also, The length of the viscosity after discharge was defined as the distance from when the viscous sample sucked by a predetermined amount using the sampling device 2 of the present invention was once discharged to the bottom of the container and then pulled up, and then the viscous sample was broken. The results are shown in Table 4.
  • thermopile syringe for tuberculin (capacity 1 mL) was used as a sampling instrument.
  • the results are also shown in Table 4.
  • Glycerin manufactured by Kishida Chemical Co., Ltd.
  • ethylene glycol manufactured by Kishida Chemical Co., Ltd.
  • Triton X-100 manufactured by Kishida Chemical Co., Ltd.
  • Tween20 manufactured by Sigma Co.
  • Various samplings (suction / discharge ports) 16a a cross shape or X-shape as shown in FIG. Aspirate and discharge into another container) and weigh it twice to examine the quantitativeness of the different types of viscous samples. The results are shown in Table 5.
  • the specific gravity of each reagent (glycerin: 1.26, ethylene glycol: 1.1088, Triton X-100: 1.07, Tween 20: l. 105) force The calculated theoretical values are also shown.
  • sampling device 2 of the present invention As shown in Table 5, it was confirmed that high quantification was exhibited for various types of viscous samples.
  • the sampling instrument 2 of the present invention using the plate-like nozzles 14b to 14j having the shapes of the slits (suction / discharge ports) 16b to 16j shown in FIGS. .
  • Example 6 In Comparative Example 5 using a semi-alkaline protease as shown in Table 6, it took 120 minutes to make P2 purulent sputum into solution, and P3 purulent sputum was allowed to react for 180 minutes. In contrast, in Example 6 using bromelain, P2 purulent sputum was 70 minutes and P3 purulent sputum was 90 minutes in solution. Therefore, it was found that by using bromelain, homogenous wrinkle treatment can be performed quickly, and moreover, purulent wrinkles with many purulent parts that were difficult to be homogenized in the past can be rapidly homogenized.
  • the method for measuring the number of viable bacteria is as follows. Each bacterial suspension is mixed with chocolate agar medium EX (Nissui Pharmaceutical).
  • bromelain as shown in Table 7, in any bacteria of Haemophilus influenzae, Streptococcus pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Legionella and Neisseria pneumoniae, it is not affected by the enzyme. I found out.
  • Bromelain F (Amano Enzyme, 1000 U / mL) and Papain (Amano Enzyme, lOOOUZmL) were dissolved in 10 mM Tris buffer (pH 7.0), 0.9% sodium chloride, 0. ImM ethylenediamine. It was dissolved in sodium tetraacetate to prepare a pretreatment solution. In a 2 mL Eppendorf tube, hold ⁇ ⁇ (purulent pus of P3), 10 times the amount of pre-treatment solution, and particles of the material and diameter shown in Table 9 or Table 10 at room temperature (26 (C).
  • the number of iron and stainless steel particles is 1.6 mm diameter: 40 grains, diameter 2.4 mm: 20 grains, diameter 3.2 mm: 10 grains, diameter 4.
  • the number of alumina particles is 1.0mm diameter: 40 grains, diameter 2.
  • the number of glass particles is 1.5—2.5 mm: 20 grains, diameter 4.0—4.7 mm: 7 grains, diameter 4. 8—5.6 mm: 4 Grained.
  • the dissolution time could be greatly shortened. It was also clarified that the melting time can be further shortened by making the material strength S stainless steel, iron or alumina particles with a diameter of 4. Omm or more.
  • the number of stainless steel particles is the same as the weight of the particles. Diameter 1.6 mm: 40 grains, diameter 2.4 mm: 20 grains, diameter 3.2 mm: 10 grains, diameter 4.0 mm: 7 grains, diameter 4 8mm: 4 grains, diameter 5.6mm: 3 grains.
  • Example 11 The same pretreatment liquid as in Example 11 was used as the pretreatment liquid.
  • sputum sputum form P2 purulent sputum
  • 20 times the pretreatment solution of sputum were added and allowed to react at room temperature (26 ° C). At that time, the suspension was vortexed every 10 minutes and the dissolution time was measured. The dissolution time results are shown in Table 13.
  • Example 12 The same pretreatment liquid as in Example 12 was used as the pretreatment liquid.
  • the experiment was performed under the same conditions as in Example 13 except that the pretreatment liquid was changed. The results are shown in Table 13.
  • Staphylococcus aureus (S. aureus) was prepared in physiological saline to a concentration of 10 3 CFUZmL and used as a bacterial solution.
  • Each syringe filter holder was prepared with a filter with the pore size and material shown in Table 1. This was connected to a syringe and allowed to pass through the bacterial solution, and then the collected bacterial solution (filtrate) was seeded on a plate, and the number of viable bacteria was measured.
  • the method for measuring the number of viable bacteria was the same as in Experimental Example 1. In addition, as a control, the same applies to the bacterial solution not passed through the filter The viable cell count was measured. The results are shown in Table 14.
  • polycarbonate is Whatman's cyclopore membrane (hydrophilic poly-bonate membrane, film thickness 7-20 ⁇ m)
  • glass fiber is Whatman GMF150 (film thickness 0.75 mm). is there.
  • S. pneumoniae, P. aeruginosa, or K. pneum oniae were prepared in physiological saline to 10 3 CFU / mL, respectively.
  • the filter holders were prepared by putting the filters having the pore sizes and materials shown in Table 15. Each was connected to a syringe and allowed to pass through the bacterial solution, and then the collected bacterial solution was seeded on a plate and the viable cell count was measured. The method for measuring the number of viable cells was the same as in Experimental Example 1. In addition, as a control, the number of viable cells was also measured for the bacterial solution that did not pass through the filter. Show.
  • PTFE polyflon manufactured by ADVANTEC (registered trademark of Daikin Industries, Ltd.) filter (film thickness 0.36 mm)
  • cellulose fiber is a qualitative filter paper (film thickness 0.26 mm) manufactured by ADVANTEC
  • Polycarbonate is Whatman's cyclopore membrane (hydrophilic polycarbonate membrane, film thickness 7-20 ⁇ m).
  • P. aeruginosa or S. pneumoniae was prepared in physiological saline so as to be 10 3 CFUZmL.
  • Each syringe filter holder was prepared with a filter having the hole diameter and material shown in Table 16. This was connected to a syringe and the bacterial solution was allowed to pass through, and then the collected bacterial solution was seeded on a plate and the viable cell count was measured. The method for measuring the viable cell count was the same as in Experimental Example 1. As a control, the number of viable bacteria was also measured in the same way for the bacterial solution not passed through the filter. The results are shown in Table 16.
  • nylon is Nylon mesh sheet manufactured by Sampratec Co., Ltd.
  • polyethylene is Nylon mesh sheet manufactured by Sampratec Co., Ltd.
  • P. aeruginosa was prepared in physiological saline to a concentration of 10 3 CFUZmL, and PC-14 cells were further mixed with a bacterial solution to a concentration of 10 6 ZmL.
  • Syringe filter holder with hole diameter 5 ⁇ m, material polycarbonate used in Experiment 7 The second filter made of nylon with a pore diameter of 20 ⁇ m [manufactured by Sunbratech Co., Ltd., nylon mesh sheet] was placed thereon. This was connected to a syringe and allowed to pass through a mixed solution of cells and bacterial solution, and then the collected bacterial solution was seeded on a plate, and the viable cell count was measured. The method for measuring the number of viable bacteria was the same as in Experimental Example 1. The results are shown in Table 17.
  • Mucin derived from porcine stomach (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in physiological saline to obtain an 80% viscous solution.
  • An equal amount of 0.1% dithiothreitol (DTT) solution dissolved in physiological saline was added thereto, and the mixture was reacted at room temperature for 1 hour to obtain a homogenized viscous solution of mucin.
  • DTT dithiothreitol
  • the combination of a filter with a pore size of 20 m and a filter with a pore size of 108 ⁇ m was able to pass a homogeneous, viscous solution of mucin through the filter more smoothly.
  • the size of the first filter is preferably greater than 20 ⁇ m, more preferably about 100 ⁇ m.
  • Bromelain F (manufactured by Amano Enzyme) was dissolved in a solution [25 mM Tris buffer (pH 7.0), 0.9% sodium chloride salt, 0. ImM sodium ethylenediamine tetraacetate] at a final concentration of 2000 U / mL (0.25 %)
  • a pretreatment solution In a 2mL Eppendorf tube, sputum (property P3 purulent sputum), pretreatment solution 10 times the amount of sputum, 4mm diameter stainless steel granules Seven grains were picked up and reacted at room temperature (26 ° C). At that time, the suspension was suspended with vortex (TM-25 2 TEST TUBE MIXER, manufactured by Asahi Techno Glass Co., Ltd.) every 10 minutes. The solution reacted for 20 minutes was used as a homogenized solution.
  • a suspension of S. aureus cultured in tryptic soger for 18 hours in physiological saline was used as a culture stock solution. This was diluted to a predetermined number of bacteria with physiological saline to obtain a diluted bacterial solution used in the examples. Regarding the number of bacteria, a predetermined series was calculated from the number of viable bacteria obtained by preparing a dilution series of the stock solution of cultured bacteria and culturing with tryptic soger. Na In addition, what was made to react similarly using a physiological saline instead of a diluted bacterial solution was made into the control
  • Bromelain F (manufactured by Amano Enzyme) was dissolved in a solution [25 mM Tris buffer (pH 7.0), 0.9% sodium chloride salt, 0. ImM sodium ethylenediamine tetraacetate] at a final concentration of 2000 U / mL (0.25 %)
  • a pretreatment solution In a 2 mL Eppendorf tube, place ⁇ ⁇ (pure symptom of P3), 10 times the amount of pretreatment solution, and 7 stainless steel particles 4 mm in diameter, and react at room temperature (26 ° C). It was. At that time, the suspension was suspended with vortex (TM-25 2 TEST TUBE MIXER, manufactured by Asahi Techno Glass Co., Ltd.) every 10 minutes. The solution reacted for 20 minutes was used as a homogenized solution.
  • the staphylococcus aureus cultured according to the method described above was dissolved in 10 x 10 7 CFU / mL (25 mM Tris buffer (pH 7.0), 0.9% sodium chloride salt, 0. ImM ethylenediamine). Diluted with sodium tetraacetate, 0.25% Bromelain F (Amano Enzyme, 2000 U / mL)] was used as a positive control solution.
  • 3rd filter (pore size 5 ⁇ m, polycarbonate, manufactured by Whatman), 2nd filter (pore size 20 ⁇ m, nylon, manufactured by Sunbratech Co., Ltd.), and 1st filter (pore size 108 m, Nylon, Ltd.) ) (Sambratec) was put in the syringe filter holder in order of the lower force, connected to the syringe, and used as a microorganism separator.
  • a part of each of the prepared solutions was taken and passed through a microorganism separator to obtain a filter-passed solution.
  • the solution was lysed according to the alkaline SDS method (Shinsei Kagaku Kogaku Kenkyusho 2 Nucleic acid I separation and purification (Tokyo Kagaku Dojin), Nucleic Acids Res. Vol. 7, pl513 (1979)) to obtain a lysate.
  • a capillary probe having a sequence complementary to the rRNA of Staphylococcus aureus (a nucleic acid probe having the following base sequence) was immobilized on a 96-well microphone mouth plate of strip well type and used for the experiment.
  • the assist probe is a nucleic acid probe having a sequence complementary to rRNA of Staphylococcus aureus and the same base sequence as HCP-1 described later, and has the following base sequence.
  • Assist probe base sequence SEQ ID NO: 2
  • the HCP-1 and HCP-2 are a pair of nucleic acid probes used in the pulser method. When a plurality of pairs of the probes are reacted, the probes self-assemble to form a probe polymer (patent) See No. 3310662 etc.) o
  • the base sequences of HCP-1 and HCP-2 are as follows.
  • HCP-1 base sequence (SEQ ID NO: 3)
  • HCP 2 nucleotide sequence (SEQ ID NO: 4)
  • the second hybridization reaction solution was dispensed 100 L at a time onto a microplate that had been thoroughly washed, and was tightly sealed with a plate sealer. The reaction was allowed to proceed for 1 hour under conditions set at 20 ° C in the upper part of the microplate and 60 ° C in the lower part (second hybridization, pulsar reaction).
  • microorganisms could be detected in any of Examples 16 and 17 using the homogeneous soot treatment method of the present invention, but the microorganism separator of the present invention was used.
  • Example 16 where microorganisms were collected, microorganisms were detected more efficiently with repulsive force, and it was found that by passing through a filter, reaction inhibitory substances in the soot were removed and the reaction proceeded sufficiently. It was.
  • Bromelain F (manufactured by Amano Enzyme) is dissolved in a solution [25 mM Tris buffer (pH 7.0), 0.9% sodium chloride salt, 0. ImM sodium ethylenediamine tetraacetate]. It was. In a 25 mL container, hold ⁇ ⁇ (propagative P3 pus), 10 times the amount of pre-treatment solution, and stainless steel particles (diameter: 4.8 mm: 20 particles), and react at room temperature (25 ° C) I let you.
  • Fig. 20 shows a photomicrograph of the homogeneous liquid before filling.
  • Figure 21 shows a photomicrograph of the homogeneous liquid after fill trace. 20 and 21, (a) shows the result at a magnification of 100, and (b) shows the result at a magnification of 1000.
  • Fig. 20 it was found that the soot was homogenized in a short time by the homogeneous soot treatment method of the present invention.
  • leukocytes are indicated by arrows.
  • FIG. 21 it was found that the bloody cells and the viscous component of sputum were removed from the homogeneous liquid after the filtration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 喀痰等のように粘性の高い液体試料を定量的にサンプリングするためのサンプリング器具及びその補助治具、喀痰を穏和な条件下で迅速に処理し、より安定に喀痰中に存在する微生物を検出することができる喀痰の均質化処理剤、均質化処理用器具、均質化処理方法及び該方法を用いた微生物の検出方法、並びに喀痰中に存在する微生物を簡便、迅速且つ効率的に回収するための微生物の分離器、微生物の回収方法及び該方法を用いた微生物の検出方法を提供する。筒状体とガスケットと長尺棒状のプランジャとを備える粘性試料のサンプリング器具であって、前記筒状体の先端は、該筒状体の直胴部と略同径のプレート状ノズルによって閉塞され、該プレート状ノズルに所定形状のスリットを開穿して吸引吐出口を形成してなるようにした。

Description

明 細 書
粘性試料のサンプリング器具、喀痰の均質化処理方法及び微生物の検 出方法
技術分野
[0001] 本発明は、喀痰等のように粘性の高い液体試料を定量的にサンプリングするため のサンプリング器具及びその補助治具、喀痰を穏和な条件下で迅速に処理し、より 安定に喀痰中に存在する微生物を検出することができる喀痰の均質化処理剤、均質 化処理用器具、均質化処理方法及び該方法を用いた微生物の検出方法、並びに喀 痰中に存在する微生物を簡便、迅速且つ効率的に回収するための微生物の分離器 、微生物の回収方法及び該方法を用 、た微生物の検出方法に関する。
背景技術
[0002] 従来、培養試験 (菌の同定)等の対象となる液体試料を採取してサンプリングする 場合、サンプリング器具として、スポイトやピペット或いはシリンジを用いるのが一般的 である。しかし、これら器具は、粘性の低い液体試料である場合にはある程度の定量 性をもってサンプリングを行うことができるのである力 喀痰等の粘性の高 、液体試料 (以下、粘性試料という)の場合は、サンプリングの定量性が著しく損なわれるという問 題があった。
[0003] 即ち、一般的なスポイトやピペットでは、空気圧によって粘性試料を吸引又は吐出 するため、特に吐出の際に粘性試料がスポイトやピペットの内壁にこびり付いて残つ てしま 、、吸引した粘性試料の全量を吐出できな 、ことが多!、。
[0004] また、図 10に示した如ぐ一般的なシリンジ 110は、内部中空の長尺直胴部を有す る筒状体 112の先端側に小径のノズル 114を突設してノズル 114の先端に円形の吸 引吐出口 116を開穿し、また、基端側を開口部 117とし、その外周縁に鍔部 118を形 成すると共に、筒状体 112の内壁に密着しつつ筒状体 112の長手方向に摺動自在 に内嵌されたガスケット 120を設け、ガスケット 120を摺動操作するために、先端をガ スケット 120に係着し且つ基端を操作用頭部 134とした長尺棒状のプランジャ 130と を備える(図 10参照、その他特許文献 1及び 2等参照)。 [0005] このようなシリンジ 110の場合は、ガスケット 120によって粘性試料が筒状体 112の 内壁に残ることはないものの、ノズル 114が突設されているために、ノズル 114の内 部に粘性試料が残ってしま ヽ、やはり吸引した粘性試料の全量を吐出できな 、場合 がある。力!]えて、従来のシリンジ 110の場合は比較的多くの吸引力及び吐出力を要 し、作業者の負担が大きい。その他、従来のシリンジ 110では、吸引時及び吐出時に 粘性試料が粘ついて切れが悪ぐ必要量を採取するのが困難だったり、粘ついた粘 性試料が糸を引いて他所に付着したりして環境衛生面での問題もあった。
[0006] 他方、喀痰中に含まれる特定成分、特に、呼吸器感染症の患者の喀痰中に存在 する病原菌等を検出、測定する場合には、患者の喀痰を採取し、これを培養して病 原菌を検出することが行われている。しかし、患者の喀痰は一般に粘性が高ぐその ままでは培地に均等に検体を塗抹することが困難であり、検査結果を誤る場合がある 。また、遺伝子検査においても、そのままの状態では正確な菌数を判断することは困 難である。そこで喀痰を前処理して、喀痰中に含まれる成分を均一にして、特定の成 分の検出、測定を行いやすくする必要がある。
[0007] その方策として、数々の前処理法が考案されている。抗酸菌、結核菌の検出にお ける前処理方法としては、例えば、非特許文献 1は、還元性物質である N—ァセチル -L-システィン(NALC)を用 、た NALC - NaOH法を推奨しており、該方法は広 く使用されている(例えば、特許文献 3等参照)。しかしながら、 NALC— NaOH法は 、へモフィラス 'インフルエンザ(Haemophilus influenzae)などの一般細菌を検出する 場合においては、処理条件が厳しぐ細菌へのダメージが大きいといった問題があつ た。前処理条件の穏和な方法として、酵素であるセミアルカリプロテアーゼを用いる 方法があるが、膿性痰のような粘性強度の高いものにおいては、十分な均質化処理 ができない場合があった。そこで、セミアルカリプロテアーゼと NALC— NaOH法を 併用する方法も知られているが (例えば、特許文献 4等参照。)、操作が面倒であり、 時間も要する。また、喀痰の前処理の所要時間により生菌数が減少し、病原菌を正 確に判断することが困難な場合があるといった問題があった。
[0008] また、上記した前処理液を用いる懸濁方法としては、ボルテックスミキサーを用いる 方法が主流である。そのため、膿性痰のような粘性強度の高いものにおいては、十分 な均質化処理ができな!/ヽ場合があった。
そこで、特許文献 5に示すように、球状固体材料を収納した喀痰処理用器具による 喀痰の均質化が提案されており、該文献は球状固体材料としてガラス又は水晶を記 載している。しかしながら、膿性痰に対しては、該器具を用いても均質ィ匕に長時間を 要し、また十分な均質化処理ができな!/、場合があった。
[0009] さらに、前記した前処理液を用いて前処理された試料中には、微生物、ヒト由来細 胞、埃塵等様々なものが混在しており、遺伝子や蛋白質等の検査に用いる場合にお いては、擬陽性判定をしてしまう場合が多数ある。そこで、検体から微生物を回収す る方法として、例えば、特許文献 6は、検体を前処理した後、吸着担体を用いて微生 物のみを吸着させて微生物を回収する方法を開示している。し力しながら、この方法 は、吸着と剥がす作業の二つを要しているため、操作上の面倒さと、収率の問題があ る。また、検体を濾過し、フィルター上に微生物を捕捉する方法が知られているが (特 許文献 7)、収率及びヒト細胞、血球、塵埃等との分離に関して改善が必要であると考 えられる。
[0010] 一方、特許文献 8は、検体を前処理した後、少なくとも 2種類の濾過膜からなる濾過 部材で濾過し、免疫クロマトグラフィー用の試料を得る方法を記載している力 この方 法は免疫クロマトグラフィーを行う際に試料のクロマト用膜担体上の目詰まりをなくす ことを目的とするものであり、微生物の回収を目的とするものではなぐ微生物の回収 につ 、ては何ら記載されて!、な!、。さらに濾過膜としてはガラス繊維濾紙とガラスフィ ルターが記載されて 、るのみである。
特許文献 1:特公平 5 - 3318号公報
特許文献 2:特公平 1― 21989号公報
特許文献 3:特開 2004— 344108号公報
特許文献 4:特開 2002— 65249号公報
特許文献 5:特開平 1 291160号公報
特許文献 6:特開 2001— 112497号公報
特許文献 7 :特開 2004— 180551号公報
特許文献 8:特開 2005 - 24325号公報 非特許文献 1:新結核菌検査指針 2000、財団法人結核予防会発行 発明の開示
発明が解決しょうとする課題
[0011] 本発明は、上記問題点に鑑みてなされたものであり、第 1に、喀痰等の粘性試料を サンプリングする際の定量性を向上せしめ、比較的少ない吸引力及び吐出力で作業 者の負担を軽減し、吸引時及び吐出時の粘性試料の切れを良くし、環境衛生面での 問題も少な ヽ粘性試料のサンプリング器具及びその補助治具を提供することを目的 とする。また、本発明は、第 2に、膿性痰の均質化処理が可能であり、喀痰を穏和な 条件下で簡便且つ迅速に均質ィ匕処理し、より安定に喀痰中に存在する微生物を検 出することができる喀痰の均質化処理剤、均質化処理用器具、均質化処理方法、及 び微生物の検出方法を提供することを目的とする。さらに、本発明は、第 3に、喀痰 中に存在する微生物を簡便、迅速且つ効率的に回収するための微生物の分離器、 微生物の回収方法及び該方法を用いた微生物の検出方法を提供することを目的と する。
課題を解決するための手段
[0012] 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、第 1に、喀痰等の 粘性試料のサンプリングにおいて、シリンジの先端の形状を変えることにより、定量性 や操作性を改善でき、粘性試料を容易且つ安全に採取できることを見出し、第 2に、 喀痰の前処理方法において、蛋白質分解酵素の一つであるシスティンプロテアーゼ 、特にブロメライン (Bromelain)を用いることにより効率的に前処理できることを見出し 、第 3に、喀痰の前処理方法において、金属及びその酸ィヒ物力 なる群力 選択さ れる 1種又は 2種以上を含有する粒子を用いて攪拌することで、膿性痰のような粘性 の高い試料においても簡便かつ迅速に前処理できることを見出し、第 4に、喀痰から の微生物の検出において、 3種のフィルターを有する分離器を用いることで、微生物 と細胞、血球や埃塵等を効率的に分離できることを見出し、本発明を完成するに至つ た。
[0013] 即ち、上記課題を解決するために、本発明の粘性試料のサンプリング器具は、先 端を閉塞し且つ基端を開口し、該基端の外周縁に鍔部を形成した内部中空の長尺 の直胴部を有する筒状体(10)と、該筒状体の内壁に密着しつつ該筒状体の長手方 向に摺動自在に内嵌されたガスケット (20)と、先端を該ガスケットに係着する係着凸 部とし且つ基端を操作用頭部とし、該操作用頭部を操作して該ガスケットを摺動操作 可能にした長尺棒状のプランジャ(30)と、を備える粘性試料のサンプリング器具であ つて、前記筒状体の先端は、該筒状体の直胴部と略同径のプレート状ノズル(14)に よって閉塞され、該プレート状ノズルに所定形状のスリット(16)を開穿して吸引吐出 口を形成してなることを特徴とする。
[0014] 前記スリットは、前記プレート状ノズル(14)の中央部近傍に位置することが好ましく 、また、前記スリットは、少なくとも 1つの角部(15)を有する形状をなしていることが望 ましい。
前記スリットの形状は、十字 (X字)形、 Y字形又は W字形のいずれかであることが 好適である。前記スリットの幅は、 0. 5mm〜2. Ommであることが好ましぐより好まし くは 0. 5〜1. 5mmである。
[0015] 前記粘性試料としては、検査 '分析'試験の対象となる粘性の高 ヽ液体試料であれ ば特に限定されな 、が、喀痰である場合に本発明器具は特に好適である。
[0016] また、本発明のサンプリング器具用補助治具は、前記サンプリング器具用の補助治 具 (40, 60)であって、前記サンプリング器具における操作用頭部を操作自在とした ことを特徴とする。
[0017] 前記サンプリング器具用補助治具 (40)は、先端に前記サンプリング器具における 筒状体の鍔部に対して係合自在とされた係合片を有し且つ基端を開口部とし、直月同 部に案内溝を形成した長尺筒状の外嵌筒部材 (42)と、該外嵌筒部材の内部に摺動 自在に軸通されると共に、先端に前記サンプリング器具におけるプランジャの操作用 頭部に対して係合自在とされた係合部を有し且つ前記案内溝に沿って操作レバー を設け、基端を押圧用頭部とした内嵌軸部材 (50)と、を備えることが好適である。
[0018] 前記サンプリング器具用補助治具 (60)は、前記サンプリング器具用の補助治具 (6 0)であって、先端内周に前記サンプリング器具における筒状体の鍔部に対し嵌合自 在とされた嵌合凸部を設け且つ基端を開口部とした長尺筒状の外嵌筒部材 (62)と、 該外嵌筒部材の内部に摺動自在に軸通されると共に、先端内周に前記サンプリング 器具におけるプランジャの操作用頭部に対して嵌合自在とされた嵌合凸部を設け且 つ外嵌筒部材に対する付勢手段及び係止手段を設けた中嵌筒部材 (70)と、該中 嵌筒部材の内部に摺動自在に軸通されると共に、先端を前記サンプリング器具にお けるプランジャの操作用頭部に当接する当接端部とし、基端が押圧用頭部とされた 内嵌軸部材 (80)と、を備えることが好適である。
[0019] 本発明の喀痰の均質化処理剤は、システィンプロテアーゼを含有することを特徴と する。前記システィンプロテアーゼとしては、植物性システィンプロテアーゼが好まし ぐブロメライン、パパイン、キモパパイン及びフイシン力もなる群力も選択される 1種 又は 2種以上がより好ましぐブロメラインが特に好ましい。本発明の均質化処理剤は 、塩ィ匕ナトリウム及びトリス緩衝液を更に含有することが好ましい。本発明の均質化処 理剤は、微生物の検出方法における前処理に好適に用いられる。
[0020] 本発明の喀痰の均質ィ匕処理用器具は、金属及びその酸ィ匕物力 なる群力 選択さ れる 1種又は 2種以上を含有する粒子を収容することを特徴とする。前記金属及びそ の酸ィ匕物がステンレス鋼、鉄又はアルミナであることが好ましい。前記粒子が直径 lm m以上 10mm以下の球状粒子であることが好ましぐ直径 4mm以上 10mm以下の 球状粒子であることがより好まし 、。
[0021] 本発明の喀痰の均質化処理方法の第 1の態様は、喀痰を前記本発明の均質化処 理剤で処理することを特徴とする。本発明の均質化処理方法は、微生物の検出にお ける前処理として特に好まし 、。
[0022] 本発明の喀痰の均質化処理方法の第 2の態様は、被検喀痰を含む試料を金属及 びその酸ィ匕物力 なる群力 選択される 1種又は 2種以上を含有する粒子の存在下 で攪拌することを特徴とする。
[0023] 前記金属及びその酸ィ匕物がステンレス鋼、鉄又はアルミナであることが好まし 、。な お、本願明細書において、ステンレス鋼を単にステンレスとも称する。
前記粒子が直径 lmm以上 10mm以下の球状粒子であることが好ましぐ直径 4m m以上 10mm以下の球状粒子であることがより好ましい。
[0024] 前記試料が喀痰前処理剤を含むことが好ま ヽ。
前記喀痰前処理剤が、蛋白質分解酵素を含有することが好適である。前記蛋白質 分解酵素力 セミアルカリプロテアーゼ及びシスティンプロテアーゼ力 なる群力 選 択される 1種又は 2種以上であることが好ましい。さらに、前記システィンプロテアーゼ 力 ブロメライン、パパイン、キモパパイン及びフイシン力もなる群力 選択される 1種 又は 2種以上であることが好ましい。また、前記喀痰前処理剤が前記本発明の均質 化処理剤であることが好適である。
[0025] 本発明の均質化処理方法は、微生物の検出方法における前処理として特に好適 である。
[0026] 本発明の喀痰からの微生物の回収方法は、均質化処理した喀痰から微生物を回 収する方法であって、該均質ィ匕処理した喀痰を被検微生物が通過可能であり且つ 有機材料カゝらなる少なくとも 3種のフィルターを有する分離器を用いて濾過することに より、前記被検微生物を含有する濾液を得ることを特徴とする。
[0027] 前記分離器は、前記均質化処理した喀痰が通過する順に、第 1フィルター、第 2フ ィルター及び第 3フィルターが設けられ、下流方向に従い、順次に前記フィルターの 孔径が小となることが好ましい。前記第 3フィルターの孔径が 0. 1 μ m以上 10 μ m以 下であることが好ましぐ 2 μ m以上 7 μ m以下であることがより好ましい。前記第 2フィ ルターの孔径が 5 μ m以上であることが好ましぐ 10 μ m以上 30 μ m以下であること 力 り好ましい。前記第 1フィルターの孔径が 5 μ m以上であることが好ましぐ 20 m 以上であることがより好ましぐ 80 μ m以上 120 μ m以下であることがさらに好ましい。
[0028] 前記有機材料が、ポリカーボネート、ポリテトラフルォロエチレン、ポリアミド、セル口 ース及びポリエチレン力もなる群力 選択される 1種又は 2種以上であることが好適で ある。
前記被検微生物としては、ウィルス、リケッチヤ、細菌又は真菌等の微生物が好まし い。
本発明の微生物の回収方法において、喀痰の均質ィ匕処理方法は特に限定されな いが、本発明の均質化処理方法が好適に用いられる。
[0029] 本発明の微生物の分離器は、被検微生物が通過可能であり且つ有機材料からな る少なくとも 3種のフィルターを有する前述の分離器であって、本発明の微生物の回 収方法で用いられる。 [0030] 本発明の微生物の検出方法の第 1の態様は、被検喀痰を前記本発明の喀痰の均 質化処理方法で処理した後、前記被検喀痰中に存在する微生物を検出することを 特徴とする。
[0031] 本発明の微生物の検出方法の第 2の態様は、前記本発明の微生物の回収方法に より得られた濾液カゝら被検微生物を検出することを特徴とする。
[0032] 本発明の微生物の検出方法において、前記微生物としては、ウィルス、リケッチヤ、 細菌又は真菌等の微生物が好まし 、。
発明の効果
[0033] 本発明によれば、喀痰等の粘性試料をサンプリングする際の定量性を向上せしめ、 比較的少ない吸引力及び吐出力で作業者の負担を軽減し、吸引時及び吐出時の 粘性試料の切れを良くし、環境衛生面での問題も少な 、粘性試料のサンプリング器 具及びその補助治具を提供することができるという大きな効果を奏する。
[0034] また、本発明によれば、従来の喀痰の前処理方法よりも、簡便且つ迅速に均質ィ匕 処理でき、且つより安定に微生物を検出することができる。さらに、本発明により、従 来の方法よりも、喀痰中に存在する微生物を簡便、迅速且つ効率的に回収すること ができる。
図面の簡単な説明
[0035] [図 1]本発明の粘性試料のサンプリング器具を示す斜視図である。
[図 2]図 1の分解斜視図である。
[図 3]本発明のサンプリング器具におけるプレート状ノズルのスリット(吸引吐出口)の 形状の種々の例を示す平面図である。
[図 4]図 3 (a)の拡大説明図である。
[図 5]本発明の吸引力及び吐出力を測定する際に用いた装置の概念説明図であり、 (a)は吸引力の場合、(b)は吐出力の場合である。
[図 6]本発明のサンプリング器具用補助治具の一例を示す側面説明図である。
[図 7]図 6 (a)の要部拡大斜視図である。
[図 8]本発明のサンプリング器具用補助治具の他例を示す側面説明図である。
[図 9]図 8 (a)の要部拡大図である。 [図 10]従来のシリンジを示す斜視説明図である。
[図 11]本発明の喀痰の均質ィ匕処理用器具の第 1の例を示す概略説明図である。
[図 12]本発明の喀痰の均質ィ匕処理用器具の第 2の例を示す概略説明図である。
[図 13]本発明の喀痰の均質ィ匕処理用器具の第 3の例を示す概略説明図である。
[図 14]本発明の喀痰の均質ィ匕処理用器具の第 4の例を示す概略説明図である。
[図 15]本発明の微生物の回収方法の一例を示す概略説明図である。
[図 16]本発明の微生物の回収方法の他の例を示す概略説明図である。
[図 17]本発明の微生物の分離器の一例を示す断面概略説明図である。
[図 18]図 17の本発明の分離器を含む微生物の回収キットの一例を示す概略説明図 である。
[図 19]実施例 16及び 17の結果を示すグラフである。
[図 20]実施例 18のフィルトレーシヨン前の均質ィ匕液の顕微鏡写真であり、 (a)は倍率 100、 (b)は倍率 1000の結果をそれぞれ示す。
[図 21]実施例 18のフィルトレーシヨン後の均質ィ匕液の顕微鏡写真であり、 (a)は倍率 100、 (b)は倍率 1000の結果をそれぞれ示す。
符号の説明
2:本発明のサンプリング器具、 10:筒状体、 12:直胴部、 13:閉塞部、 14, 14a〜 14j:プレート状ノズル、 15:角部、 16, 16a〜16j:スリット、 17:開口部、 18:鍔部、 2 0:ガスケット、 22:シール突条、 24:コア部、 30:プランジャ、 32:係着凸部、 34:操作 用頭部、 40:本発明のサンプリング器具用補助治具 (一例 )、 42:外嵌筒部材、 43: 開口部、 44:係合片、 45:切欠部、 46:テーパー部、 48:案内溝、 50:内嵌軸部材、 52:係合部、 53:凹欠部、 56:押圧用頭部、 58:操作レバー、 60:本発明のサンプリ ング器具用補助治具 (他例 )、 62:外嵌筒部材、 63:開口部、 64:嵌合凸部、 65:切 欠凹部、 66:テーパー部、 67:係止凸部、 68:ボタン孔、 69:付勢手段 (スプリング)、 70:中嵌筒部材、 72:嵌合凸部、 74:係止手段 (ボタン)、 76:スプリング、 80:内嵌 軸部材、 82:当接端部、 84:押圧用頭部、 90:重りホルダ、 92:重り、 94:試料容器、 110:シリンジ、 112:筒状体、 114:ノズル、 116:吸引吐出口、 117:開口部、 118: 鍔部、 120:ガスケット、 130:プランジャ、 134:操作用頭部、 P:粘性試料、 210a〜2 10d:容器の蓋、 212a〜212d :容器、 214 :金属粒子、 216 :容器の底部、 218 :底 蓋、 310a, 310b, 310c :本発明の微生物の分離器、 311 :第 1フィルター、 312 :第 2フィルター、 313 :第 3フィルター、 314 :分離部材、 315a, 315b, 315c :回収容器 、 316a, 316b, 316c :フィルターホルダー、 317a :フィルターホルダーの本体、 318 a, 318b :蓋体、 320 :被検微生物、 322 :夾雑物、 324 :均質化液、 330 :濾液、 332 :上清、 334 :沈殿物、 340 :シリンジ。
発明を実施するための最良の形態
[0037] 以下に本発明の実施の形態を添付図面に基づいて説明するが、図示例は例示的 に示されたもので、本発明の技術思想力 逸脱しない限り種々の変形が可能なこと はいうまでもない。
[0038] 図 1は、本発明の粘性試料のサンプリング器具を示す斜視図である。図 2は、図 1の 分解斜視図である。図 3は、本発明におけるプレート状ノズルのスリット(吸引吐出口) の形状の種々の例を示す平面図である。図 4は、図 3 (a)の拡大説明図である。図 5 は、本発明の吸引力及び吐出力を測定する際に用いた装置の概念説明図であり、 ( a)は吸引力の場合、(b)は吐出力の場合である。図 6は、本発明のサンプリング器具 用補助治具の一例を示す側面説明図である。図 7は、図 6 (a)の要部拡大斜視図で ある。図 8は、本発明のサンプリング器具用補助治具の他例を示す側面説明図であ る。図 9は、図 8 (a)の要部拡大図である。図中、符号 2は粘性試料のサンプリング器 具、符号 40はサンプリング器具用補助治具の一例、符号 60はサンプリング器具用補 助治具の他例である。
[0039] 本発明の粘性試料のサンプリング器具 2は、いわゆる従来のシリンジ 110と基本的 構造が類似の形態をなすものであり、筒状体 10とガスケット 20とプランジャ 30とを備 える(図 1及び図 2)。なお、粘性試料としては、検査 '分析'試験の対象となる粘性の 高 、液体試料であれば特に限定されな ヽが、特に喀痰である場合に本発明器具は 有用であり、以下の説明では粘性試料として喀痰を用いた場合を主として説明する。
[0040] 筒状体 10は、内部中空の長尺の直胴部 12を有し、先端は閉塞部 13とされ、基端 は開口部 17とされ、筒状体 10の基端の外周縁には鍔部 18が形成されている(図 1 及び図 2)。鍔部 18の形状は、円形や楕円形や方形のいずれでもよぐ特に限定さ れない。図示例では楕円形の両端を切り落とした截頭楕円形をなしているが(図 1及 び図 2)、要は、後述する補助治具 40, 60との係合構造乃至嵌合構造の関係で適切 なものであればよい。
[0041] 筒状体 10の先端の閉塞部 13は、プレート状ノズル 14によって閉塞されている(図 1 及び図 2)。即ち、従来のシリンジ 110では小径のノズル 114が突設されていたのであ るカ 図 11参照)、これに代替してプレート状ノズル 14を設けたものである。プレート 状ノズル 14は、筒状体の直胴部 12と略同径であり、直胴部 12と一体成形してもよい し、別体に成形したものを外嵌又は内嵌等して取り付けてもよい。このようなプレート 状ノズル 14によれば、ガスケット 20の下端面が略全面に当接するので、吐出の際に 粘性試料が残留することがなぐ従来のシリンジ 110のように突設されたノズル 114の 内部に粘性試料が残ってしまうという問題が解消される。
[0042] プレート状ノズル 14には所定形状のスリット 16を開穿して吸引吐出口を形成する。
スリット 16の所定形状としては、種々様々の形状を用いることができ、例えば、図 3に 示した如くの種々の形状を採用することができるが、好ましいスリット形状の条件とし ては、プレート状ノズル 14の中央部近傍に位置することや、少なくとも 1つの角部 15 を有する形状をなしていること等が吸引力及び吐出力を軽減する観点、吸引時及び 吐出時の粘性試料の切れの観点等力も挙げられる(図 3、図 4参照)。最も好ましいス リット形状としては、十字 (X字)形、 Y字形又は W字形のいずれかである。
[0043] 吸引力及び吐出力を軽減する観点、吸引時及び吐出時の粘性試料の切れの観点 、製造の容易性の観点等から、スリットの幅 dlとしては、 0. 5mn!〜 2. Ommであるこ と力 子ましく、より好ましくは 0. 5〜1. 5mmである(図 4)。外縁からの距離 d2としては 、 0. 5mm〜2mmであることが好ましぐより好ましくは lmm〜l. 8mmである(図 4)
[0044] 筒状体 10の材質は、内部の視認性力 透明乃至半透明の材料であれば特に限定 されず、例えば、ガラス材料でもよいが、製造コストや加工容易性等カゝら透明性を有 する合成樹脂材料、例えば、塩化ビニル、ポリエチレンやポリプロピレン等のォレフィ ン系、ポリスチレン等のスチレン系、その他の合成樹脂材料カゝら構成される。
[0045] ガスケット 20は、筒状体 10の内壁に密着しつつ筒状体 10の長手方向に摺動自在 に内嵌されている。ガスケット 20については、従来のシリンジと同様のものを採用でき 、その形態や材質について特に限定はないが、形態としては、筒状体 10の内壁に対 する密着性があり、また、その下端面がプレート状ノズル 14に対して当接することが 必要である。図示例では、コア部 24の前後両端外周縁にシール突条 22が形成され 、下端面はプレート状ノズル 14の形状に合わせて平坦とされている(図 1及び図 2)。 ガスケット 20の材質としては密着性 (シール性)を確保する関係上、弾性を有する材 料であることが望ましぐ天然ゴム、ブチルゴム、イソプレンゴム、ブタジエンゴム、スチ レン ブタジエンゴム、シリコーンゴム等の各種のゴム材料や、ポリウレタン系、ポリエ ステル系、ポリアミド系、ォレフィン系、スチレン系等の各種の合成樹脂材料等のエラ ストマー材料を用いて構成すればょ 、。
[0046] プランジャ(押し子) 30は、ガスケット 20を摺動操作するための長尺棒状の部材で あり、先端をガスケット 20に係着する係着凸部 32とされ、基端を操作用頭部 34とされ ている。プランジャ 30の係着凸部 32を図示しないガスケット 20内部の係着凹部に係 着して、操作用頭部 34を操作することにより、ガスケット 20を筒状体 10内で摺動操作 可能にしたものである。プランジャ 30の材質も特に限定されないが、ォレフィン系、ス チレン系等の合成樹脂材料を射出成形して製作すればよい。
[0047] 次に、本発明の粘性試料のサンプリング器具 2に取り付けて用いられる補助治具の 一例(図 6及び図 7参照)及び他例(図 8及び図 9参照)について説明する。本発明の 補助治具 40, 60は、前記本発明のサンプリング器具 2の操作を容易にすると共に、 喀痰等の粘性試料を扱う関係上、サンプリング器具 2に直接に手で触れて操作する ことは衛生面力も好ましくな 、ため、サンプリング器具 2の操作を間接的に行 、得るよ うに補助的に用いられるものである。
[0048] 本発明のサンプリング器具用補助治具 40は、長尺筒状の外嵌筒部材 42と、その 内部に摺動自在に軸通された内嵌軸部材 50とから構成されて 、る(図 6及び図 7)。
[0049] 外嵌筒部材 42は、先端に前記サンプリング器具 2における筒状体 10の鍔部 18に 対して係合自在とされた係合片 44を有している(図 6及び図 7)。係合片 44には、前 記筒状体 10の鍔部 18に対して係合する切欠部 45が形成されている(図 7)。外嵌筒 部材 42の基端は開口部 43とされ、胴体部にはテーパー部 46が形成され、案内溝 4 8が長手方向に穿設されて 、る(図 6)。
[0050] 内嵌軸部材 50は、上記外嵌筒部材 42の内部に摺動自在に軸通されており、その 先端には前記サンプリング器具 2におけるプランジャ 30の操作用頭部 34に対して係 合自在とされた係合部 52を有する。係合部 52にはプランジャ 30の操作用頭部 34と 嵌合する凹欠部 53が形成されている。また、前記外嵌筒部材 42の案内溝 48に沿う ように操作レバー 58を設け、基端には押圧用頭部 56が設けられている。
[0051] このようなサンプリング器具用補助治具 40によれば、まず、前記サンプリング器具 2 のプランジャ 30の操作用頭部 34を内嵌軸部材 50の係合部 52に係合し〔図 6 (a) (b) 〕、次いで、前記サンプリング器具 2の鍔部 18と外嵌筒部材 42の係合片 44とを互い に嚙み合わせるようにして係合することによってサンプリング器具用補助治具 40にサ ンプリング器具 2を取り付けることができ〔図 6 (c)〕、粘性試料の吸引時には、サンプリ ング器具用補助治具 40の操作レバー 58を基端側に引くことによって、サンプリング 器具 2による粘性試料の吸引を行うことができ、また、粘性試料の吐出時には、サン プリング器具用補助治具 40の押圧用頭部 56を先端方向に押圧することによって、サ ンプリング器具 2による粘性試料の吐出を行うことができる〔図 6 (d)〕。従って、作業者 は直接にサンプリング器具 2に触れることなぐ粘性試料の吸引及び吐出を行うことが できる。
[0052] 他方、本発明のサンプリング器具用補助治具 60は、長尺筒状の外嵌筒部材 62と、 その内部に摺動自在に軸通された中嵌筒部材 70と、更にその内部に摺動自在に軸 通された内嵌軸部材 80とから構成されている(図 8及び図 9)。
[0053] 外嵌筒部材 62は、先端内周面に前記サンプリング器具 2における筒状体 10の鍔 部 18に対し嵌合自在とされた嵌合凸部 64が設けられ、また、鍔部 18を嵌合凸部 64 に嵌合した際に鍔部 18の上端を係止するための係止凸部 67が設けられ、更に、基 端を開口部 63とされ、胴体部にはテーパー部 66が形成され、ボタン孔 68が穿設さ れている(図 8及び図 9)。なお、サンプリング器具 2における鍔部 18の形状が図示例 のように截頭楕円形である場合や (図 1及び図 2参照)、楕円形や長方形等である場 合のように前後左右の一方が長尺で外嵌筒部材 62の内径に収まらない場合には、 外嵌筒部材 62の先端に切欠凹部 65を設けて、鍔部 18の短尺方向で嵌合凸部 64と 嵌合するようにすればよい。
[0054] 中嵌筒部材 70は、上記外嵌筒部材 62の内部に摺動自在に軸通されており、先端 の内周面には、前記サンプリング器具 2におけるプランジャ 30の操作用頭部 34に対 して嵌合自在とされた嵌合凸部 72が設けられている(図 8及び図 9)。また、中嵌筒部 材 70には外嵌筒部材 62に対する付勢手段 69及び係止手段 74が設けられている。 付勢手段 69はスプリング (パネ)であり、中嵌筒部材 70の先端部と外嵌筒部材 62の 係止凸部 67との間に介在するように設けられる。係止手段 74は中嵌筒部材 70の外 嵌筒部材 62に対する係止と解放を切り替えるためのボタンであり、スプリング 76の付 勢力を利用して、中嵌筒部材 70を外嵌筒部材 62に対して係止自在とするものであ る。
[0055] 内嵌軸部材 80は、上記中嵌筒部材 70の内部に摺動自在に軸通されており、その 先端は前記サンプリング器具 2におけるプランジャ 30の操作用頭部 34に当接する当 接端部 82とされ、その基端には押圧用頭部 84が設けられている。
[0056] このようなサンプリング器具用補助治具 60によれば、まず、前記サンプリング器具 2 のプランジャ 30の操作用頭部 34を中嵌筒部材 70の嵌合凸部 72に嵌合し〔図 8 (a) ( b)〕、また、前記サンプリング器具 2の鍔部 18を外嵌筒部材 62の嵌合凸部 64に嵌合 することによって〔図 8 (a) (b)〕、サンプリング器具用補助治具 60にサンプリング器具
2を取り付けることができ〔図 8 (b)〕、粘性試料の吸引時には係止手段 74を解放して
、付勢手段 69を伸張せしめて〔(図 8 (c)〕、サンプリング器具 2による粘性試料の吸引 を行い、また、粘性試料の吐出時には、サンプリング器具用補助治具 60の押圧用頭 部 84を先端方向に押圧することによって、サンプリング器具 2による粘性試料の吐出 を行うことができ〔図 8 (c) (d)〕、更に、吐出後は押圧用頭部 84を更に押入することに よって、サンプリング器具用補助治具 60からサンプリング器具 2を脱離せしめることが できる〔図 8 (d)〕。従って、作業者はサンプリング器具 2に直接に触れることなぐ粘性 試料の吸引及び吐出を行うことができることに加えて、サンプリング器具 2の脱離も行 うことができる〔図 8 (d)〕。
[0057] 次に本発明の喀痰の均質化処理剤について説明する。
本発明の喀痰の均質化処理剤は、システィンプロテアーゼを有効成分として含有 することを特徴とし、喀痰を穏和な条件下でより速く処理し、より安定に喀痰中に存在 する微生物を検出することができ、特に膿性痰の均質ィ匕処理に効果的である。
[0058] 本発明に用いられるシスティンプロテアーゼとしては、特に限定されないが植物由 来のシスティンプロテアーゼが好ましぐブロメライン、パパイン、キモパパイン及びフ イシン力 なる群力 選択される 1種又は 2種以上がより好ましぐブロメラインが特に 好ましい。これらシスティンプロテアーゼは市販のものでもよぐ公知の方法で得たも のを用いてもよい。
前記ブロメラインとしては、 Bromeliaceaeに属する植物由来のシスティンプロテア一 ゼが用いられるが、パイナップル(Ananas comosus M.)由来のものがより好ましい。
[0059] 本発明の均質化処理剤としては、システィンプロテアーゼを有効成分として含有す る組成物であれば、特に限定はないが、通常、システィンプロテアーゼを緩衝液等の 溶解液に溶解した水溶液の形で使用される。システィンプロテアーゼの濃度は、特 に限定されないが、 0. 01〜: LwZv%が好ましぐ 0. 1〜0. 3wZv%がより好ましい
[0060] システィンプロテアーゼを溶解する溶解液としては、特に限定されないが、 pH6. 0 〜 10付近の緩衝液が好ましい。緩衝液としては、トリス緩衝液、リン酸緩衝液、炭酸 緩衝液等が挙げられる力 pH7〜9付近のトリス緩衝液がより好ましい。前記緩衝液 が塩ィ匕ナトリウムや EDTA等を含んでいることが好ましい。特に前記溶解液として、塩 化ナトリウムを含むトリス緩衝液を用いることが好ましぐこのトリス緩衝液中の塩ィ匕ナト リウム濃度が 0. 6%を超え 1. 2%未満、トリス濃度が 10mM以上 50mM未満であり、 pHが 7. 0以上 8. 0未満であることがより好ましい。
また、本発明の効果を損なわな 、範囲で他の成分を含有して ヽても良 、。
[0061] 本発明において、喀痰とは、気管 ·気管支カも分泌されたムチン (ムコプロテインと ムコポリサッカライド)と外界力 吸引された細菌や塵埃の混合物であり、ヒト細胞や血 球を含む場合もある。喀痰の性状については、 Miller & Jonesの分類によると、 Ml、 M2、 Pl、 P2、 P3の五段階に分けられる。特に P2 (膿性痰で膿性部分が 1Z3〜2 Z3含まれる)及び P3 (膿性痰で膿性部分が 2Z3以上含まれる)の膿性痰になると 膿性部分が多く含まれ、その分喀痰の前処理は時間を要し、特に、 P3は簡便な均質 化処理が困難であった。本発明はこの膿性痰の迅速かつ簡便な均質化処理をも可 能とするものである。
[0062] 本発明の喀痰の均質化処理方法の第 1の態様は、喀痰を前記本発明の均質化処 理剤で処理することを特徴とする。
本発明にお 、て、前記均質化処理剤を用いた喀痰の処理方法は特に限定されな いが、該均質化処理剤と被検喀痰を混合した後、室温〜 37°C、好ましくは室温で適 宜ボルテックスをかけることで反応させることにより、喀痰をすみやかに溶解させること ができる。
[0063] 本発明において、前記均質化処理剤による均質化処理後、微生物を培養した後、 又は培養せずに、被検喀痰中に存在する微生物を検出することができる。微生物の 検出方法は特に限定されず、公知の方法を広く使用することができる。微生物の検 出においては、微生物を直接検出してもよぐ生体関連物質を検出することにより微 生物を検出してもよい。
[0064] 本発明にお!/、て、微生物としては、特に限定されな!、が、例えば、ヘルぺスウィル ス(HSV、 CMV、 ZVZ、 EBV、 HHVなど)、インフルエンザウイルス、ヒト免疫不全ゥ ィルス (HIV)、ヒト成人 T細胞白血病ウィルス (HTLV)、肝炎ウィルス(HBV、 HCV 、 HDV、 HGV)、その他カゼ症候群、消化器疾患、中枢神経系疾患、呼吸器系疾 患、出血熱等の様々な疾患の病因ウィルス等のウィルス、リケッチヤ、黄色ブドウ球菌 、連鎖球菌、大腸菌群、緑膿菌、レジオネラ属、モラクセラ属、インフルエンザ細菌、 クレブシエラ属、クラミジァ、マイコプラズマ等の細菌、真菌等が挙げられる。
[0065] 本発明にお 、て、生体関連物質とは、核酸 (DNA、 RNA)、タンパク質、ペプチド等 が挙げられる。生細胞からの DNA又は RNAの調製は、公知の方法、例えば DNA の抽出については、 Blinらの方法(Blin et al., Nucleic Acids Res. 3: 2303 (1976))等 により、また、 RNAの抽出については、 Favaloroらの方法(Favaloro et al, Methods E nzymol.65: 718 (1980))等により行うことができる。また、 rRNAにおいては、水酸化ナ トリウム水溶液などで細胞を溶解した後、塩酸などで中和すればよい。また、それらの 検出方法としては、 PCR (Polymerase chain reaction)、ハイブリダィゼーシヨン、パル サ一法 (PALSAR法、例えば、特許第 3267576号及び特許第 3310662号等参照。)、 D NAチップ、プロテインチップ、抗原抗体反応等を用いて行うことができる。
[0066] 本発明の喀痰の均質ィ匕処理方法の第 2の態様は、金属及びその酸ィ匕物力 なる 群から選択される 1種又は 2種以上を含有する粒子 (本発明にお ヽて、この粒子を金 属粒子と称する。)を用いることを特徴とし、被検喀痰を該粒子の存在下で攪拌する ことにより、喀痰を穏和な条件下で簡便かつ迅速に処理し、より安定に喀痰中に存在 する微生物を検出することができ、特に膿性痰の均質ィ匕処理に効果的である。
[0067] 本発明にお 、て、前記金属粒子は金属及びその酸ィ匕物力もなる群力 選択される 1種又は 2種以上を材料として含むものであり、金属及びその酸ィ匕物の 1種又は 2種 以上を主成分とする粒子が好ま 、。前記金属粒子中に金属及びその酸化物以外 の材料が含まれていてもよい。また、粒子の表面を金属やその酸化物の薄膜で被覆 したものも本発明の粒子に含まれる。前記薄膜で被覆された粒子を用いる場合、被 覆される粒子の材質は特に限定されず、金属及び非金属の!/、ずれでもよ!/、。
本発明において前記金属は特に限定されず、例えば、鉄、アルミニウム、マグネシ ゥム、チタン、銅、亜鉛、ニッケル、鉛、スズ、クロム、ジルコニウム、モリブデン、金、銀 、白金、及びこれらを基金属とする合金等が挙げられるが、特に鉄及びステンレス綱 が好ましい。前記金属の酸化物は特に限定されず、例えば、前述の金属の酸化物が 挙げられる力 特にアルミナが好ましい。
[0068] 前記金属粒子の形状は特に限定されな 、が、球状粒子が好ま 、。前記粒子の直 径は lmm以上が好ましぐより好ましくは 4. Omm以上である。これら粒子の直径の 上限は特に限定されないが、 10mm以下が好適である。本発明において、前記粒子 は同種の粒子 1個又は 2個以上を用いても良ぐ 2種以上の粒子、例えば、粒径ゃ材 質が異なる粒子を組み合わせて合計 2個以上の粒子を用いても良 、。
[0069] 金属粒子を用いた喀痰の均質化処理方法としては、具体的には、緩衝液等の溶解 液に混合した被検喀痰を前記粒子で攪拌することにより均質ィ匕することが好ましいが 、被検喀痰、喀痰前処理剤及び前記粒子を混合し、室温〜 37°C、好ましくは室温で 適宜ボルテックスをかけることで反応させることにより、喀痰をすみやかに溶解させる ことがより好ましい。
溶解液としては、特に限定されないが、本発明の均質ィ匕処理剤の説明において述 ベた溶解液が同様に好適に用いられる。
[0070] 前記喀痰前処理剤としては、セミアルカリプロテアーゼ (例えば、スプタザィム (極東 製薬工業 (株)製)等)、 NALC— NaOH試薬、還元剤、及び界面活性剤等の公知 の喀痰前処理剤(例えば、特開平 2— 273197号、 WO02Z010744号、及び特許 文献 4等に記載の前処理剤)やシスティンプロテアーゼを有効成分として含む本発 明の喀痰の均質ィ匕処理剤を使用することができる力 セミアルカリプロテア一ゼゃシ スティンプロテアーゼ等の蛋白質分解酵素を含む喀痰均質ィ匕処理剤が好ましぐ特 に前述した本発明の均質ィ匕処理剤を用いることがより好ましい。これら蛋白質分解酵 素は 1種、又は 2種以上組み合わせて使用することができる。
[0071] 本発明において、前記金属粒子を用いた均質化処理方法により喀痰を均質化処 理し、微生物を培養した後、又は培養せずに、被検喀痰中に存在する微生物を検出 することができる。微生物の検出方法は特に限定されず、公知の方法を広く使用する ことができる。微生物の検出においては、微生物を直接検出してもよぐ生体関連物 質を検出することにより微生物を検出してもよい。
[0072] 本発明の喀痰の均質ィ匕処理用器具は、金属及びその酸ィ匕物力 なる群力 選択さ れる 1種又は 2種以上を含有する粒子、すなわち前述した金属粒子を収容する蓋付 き容器である。
図 11〜図 14は本発明の喀痰の均質ィ匕処理用器具の第 1〜第 4の例を示す概略 説明図である。図 11〜図 14にお!/ヽて、 210a〜210diま容器の蓋、 212a〜212diま 容器、 214は金属粒子である。
[0073] 本発明の喀痰の均質ィ匕処理用器具において、前記容器の形状は特に限定されな いが、図 11に示したような丸底の円筒容器 212aや図 12に示したような平底の円筒 容器 212bが好ましい。また、図 13に示した如ぐ容器内部が丸底であり、容器外部 の底部 216が平底又は空洞部分があり自立可能な形状である自立型の円筒容器 21 2cを用いてもよい。さらに、図 14に示した如ぐ円筒状の管の底部に底蓋 218を取り 付けた容器 212dを用 、ることもできる。
前記容器の材質は特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポ リスチレン、ポリ塩化ビニル、ポリカーボネート等のプラスチック材料であることが好ま しい。
前記蓋は前記容器を密閉し得るものであれば特に限定されない。蓋の取り付け方 法は特に限定はないが、例えば、キャップ式、埋め込み式、内ねじ式、外ねじ式等が 挙げられる。
[0074] 前記粒子としては、前述した金属粒子が同様に用いられる力 材質がステンレス鋼 、鉄又はアルミナである球状粒子が好ましい。粒子の直径は lmm以上が好ましぐよ り好ましくは 4. Omm以上である。これら粒子の直径の上限は特に限定されないが、 1 Omm以下が好適である。
容器内に収容される粒子の数は特に限定されず、容器及び粒子の大きさに応じて 適宜定めればよい。
本発明の喀痰の均質ィヒ処理用器具を用いて前述した本発明の喀痰の均質ィヒ処理 方法を行うことにより、迅速且つ簡便に喀痰を均質ィ匕することができる。
[0075] 次に、本発明の微生物の回収方法について説明する。
本発明の微生物の回収方法は、均質化処理した喀痰を、被検微生物が通過可能 であり且つ有機材料力もなる少なくとも 3種のフィルターを有する本発明の微生物の 分離器を用いて濾過し、得られた濾液カも被検微生物を回収するものである。
[0076] 本発明の微生物の回収方法においては、均質化処理された喀痰が用いられる。喀 痰の均質化処理方法は特に限定されず、公知の方法を広く使用することができるが 、前述した本発明の均質化処理方法が好ましい。
喀痰の均質化処理方法としては、例えば、均質化処理剤等の前処理剤を含む溶 解液で被検喀痰を処理することにより喀痰を均質ィ匕し溶解させることが好まし ヽ。前 記前処理剤及び溶解液としては、本発明の均質化処理方法の第 2の態様において 述べた喀痰前処理剤及び溶解液が同様に好適に用いられる。
[0077] 前記均質化処理剤を用いた喀痰の均質化処理方法は特に限定されないが、該均 質化処理剤を含む溶解液と被検喀痰を混合した後、室温〜 37°C、好ましくは室温で 適宜ボルテックスをかけることで反応させることにより、喀痰をすみやかに溶解させる ことができる。
また、溶解液に混合した被検喀痰を粒子を用いて攪拌することにより均質化させる ことが好ましい。前記粒子としては特に限定されないが、直径 lmm以上、より好ましく は 4mm以上の球状粒子が好適である。粒子の材質も特に限定されないが、金属及 びその酸ィ匕物力 なる群力 選択される 1種又は 2種以上を含有する粒子が好ましい 。金属及びその酸化物としては、ステンレス鋼、鉄又はアルミナが特に好適である。 これら均質化処理反応は、微生物の分離器中で行うことも可能である。
[0078] 前記均質化処理後の喀痰の均質化液を本発明の微生物の分離器を用いて濾過 する。
図 15は本発明の微生物の分離器を用いた微生物の回収方法の一例を示す概略 説明図である。図 15において、 310aは本発明の微生物の分離器であり、濾過部材 314と、該濾過部材 314を保持するフィルターホルダー 316aとを有する。前記濾過 部材 314は均質ィ匕処理した喀痰が通過する順に少なくとも第 1フィルター 311、第 2 フィルター 312及び第 3フィルター 313の 3種のフィルターを有する。
[0079] 前記第 1〜第 3フィルタ一は、有機材料カゝらなる多孔性材料であり、被検微生物が 通過し得るものである。各フィルターの材質は同じであってもよく異なっていてもよい 。なお、図 15では、各フィルターが積層されている 3層構造の例を示した力 フィルタ 一の配置は特に限定されず、一定の間隙を設けて配置してもよぐ積層してもよい。
[0080] 前記有機材料としては特に限定されないが有機高分子繊維が好ましぐ例えば、セ ノレロース,セノレロース繊維,ニトロセノレロース及び酢酸セノレロース等のセノレロース誘 導体,ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)及びシクロポリオレ フィン等のポリオレフイン,ナイロンー6、ナイロン 6, 6、ナイロン 11、ナイロン 1 2、コポリアミド等のポリアミド,ポリパラフエ-レンテレフタルアミド等のァラミド,ポリエ チレンテレフタレート(PETP)等のポリエステル,ポリアクリロニトリル及びアタリレート 等のアクリルポリマー,ポリ塩化ビュル(PVC)及びポリビュルアルコール等のビュル ポリマー,ポリエーテルエーテルケトン(PEEK)等のポリエステルエーテル,ポリウレ タン,エポキシド,ポリフッ化ビ-リデン(PVDF)、ポリテトラフルォロエチレン(PTFE )、ポリへキサフルォロエチレン Zプロピレン'コポリマー(FEP)、ポリエチレン Zテトラ フルォロエチレン.コポリマー(ETFE)及びポリエチレン Zクロ口トリフルォロエチレン .コポリマー(ECTFE)等のフッ素榭脂,ポリカーボネート,ポリフエ-レンスルフイド( PPS) ,ポリエーテルスルホン等が挙げられる。特にポリカーボネート、ポリテトラフル ォロエチレン、ポリエチレン、セルロース及びポリアミドが好ましい。これら有機材料は
1種又は 2種以上組み合わせて用いることができる。
[0081] 前記第 1〜第 3フィルターの孔径は、被検微生物を通過可能であれば特に限定さ れず、被検微生物の大きさゃ被検喀痰の状態に応じて適宜選択可能である。
前記第 3フィルタ一は、喀痰中の細胞や血球を通さず被検微生物を通過できる孔 径を有するフィルターが好ましい。具体的には、第 3フィルターの孔径は 0. 以 上 10 m以下が好ましぐ 2〜7 mがより好ましぐ約 5 mがさらに好ましい。前記 第 2フィルタ一は、前記第 3フィルターよりも大きい孔径を有することが好ましい。具体 的には、第 2フィルターの孔径は 5 m以上が好ましぐ 10〜30 mがより好ましぐ 約 20 mがさらに好ましい。前記第 1フィルタ一は、前記第 2フィルターよりも大きい 孔径を有することが好ましい。具体的には、第 1フィルターの孔径は 5 m以上が好ま しぐ 20 m以上がより好ましぐ 80〜120 /ζ πιがさらに好ましい。
前記第 1〜第 3フィルターの膜厚は特に限定されないが、 1〜200 mのものが好 ましい。
[0082] 前記フィルターホルダー 316aは、例えば、図 15に示した如ぐ濾過部材 314を収 容する本体 317aと、蓋体 318aから構成される。前記フィルターホルダー 316aの形 状は特に限定されないが、例えば、図 15に示した如ぐ円筒形で底部にフィルターを 装着可能な容器が用いられる。フィルターの装着方法及び蓋体の取り付け方法は特 に限定されないが、例えば、フィルターホルダー本体に一体に形成する方法や、キヤ ップ式、埋め込み式、内ねじ式、外ねじ式等の設置方法が挙げられる。
前記フィルターホルダー 316aの材質は特に限定されないが、例えば、ポリエチレン 、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリカーボネート、フッ素榭脂等のプ ラスチック材料であることが好ま 、。
[0083] 図 15 (a)に示した如ぐ前記均質ィ匕処理後の喀痰の均質ィ匕液 324は、被検微生物 320と、ヒト由来細胞、血球及び埃塵等の夾雑物 322とが混在している場合が多いが 、この均質化液 324を本発明の分離器 310aで濾過処理することにより、細胞、血球 及び埃塵等の夾雑物 322を濾過部材 314により除去し、被検微生物 320を含む濾 液 330を得ることができる [図 15 (b) ]。図 15においては、遠心分離処理により濾過 操作を行い、被検微生物 320を含む沈殿物 334と上清 332に分離した濾液 332を 得たが、本発明において濾過処理方法は特に限定されない。例えば、窒素ガスゃシ リンジ等を用いて加圧又は減圧条件で濾過処理を行うことが好まし 、。
[0084] 本発明においては、前述の方法により喀痰を均質化処理した後、得られた均質ィ匕 液を本発明の分離器に注入し、均質化液を分離部材に通過させ、濾液を回収しても よぐまた、本発明の分離器に被検喀痰、溶解液及び前処理液等を投入し、該分離 器中で喀痰の均質化処理を行った後、該均質化液を分離部材に通過させ、濾液を 回収してちょい。
[0085] 図 15において、 315aは濾液 330を回収する回収容器である。本発明において、 回収容器 315aは、濾液を回収可能なものであれば特に限定されず、図 15及び図 1 6に示した如く分離器に設置されていてもよぐ図 17及び図 18に示した如く分離器と は別体となっていてもよい。前記回収容器 315aの形状も特に限定されないが、例え ば、円筒状で内底部が丸底、 V底、平底等の容器が用いられる。前記前記回収容器 315aの材質は特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリスチ レン、ポリ塩ィ匕ビュル、ポリカーボネート、フッ素榭脂等のプラスチック材料であること が好ましい。
[0086] 図 16は、本発明の微生物の分離器を用いた微生物の回収方法の他の例を示す概 略説明図である。図 16において、 310bは本発明の微生物の分離器であり、加圧濾 過を用いる例である。図 16に示した如ぐ分離部材 314を保持するフィルターホルダ 一 316b内に前記均質ィ匕液 324を入れ、上方から窒素ガス等を用いて圧力を加える ことにより、回収容器 315b中に被検微生物 320を含む濾液 330を回収することがで きる。加圧方法は特に限定されないが、例えば、フィルターホルダー 316bの蓋体 31 8bに加圧手段(図示せず)を接続する方法や蓋体 318bに通気孔(図示せず)を設け 、通気孔力 圧力を加える方法等が用いられる。
[0087] 図 17は、本発明の分離器の一例を示す断面概略説明図であり、図 18は図 17に示 した本発明の分離器を含む微生物の回収キットの一例をそれぞれ示す。図 17にお いて、 310cは本発明の分離器であり、フィルターホルダー 316c内に前記第 1〜第 3 フィルター 311〜313を有する分離部材 314が収納されて 、る。図 18に示した如ぐ フィルターホルダー 316cにシリンジ 340を接続し、該シリンジ 340内に前記均質化液 を入れ、該シリンジ 340を用いて加圧濾過し、得られた濾液を回収容器 315c内に回 収することにより、被検微生物を含有する濾液を得ることができる。
[0088] 本発明にお ヽて、前記得られた微生物含有濾液を、微生物を培養した後、又は培 養せずに、微生物を検出することにより、被検喀痰中に存在する微生物を検出するこ とができる。微生物の検出方法は特に限定されず、公知の方法を広く使用することが できる。微生物の検出においては、微生物を直接検出してもよぐ生体関連物質を検 出することにより微生物を検出してもよ 、。
実施例
[0089] 以下に実施例をあげて本発明をさらに具体的に説明する力 これらの実施例は例 示的に示されるもので限定的に解釈されるべきでな 、ことは 、うまでもな!/、。
[0090] (実施例 1)
喀痰に類似した性状の粘性試料として、ブタ胃由来ムチン (和光純薬製) 8gを 0. 9 %塩化ナトリウム溶液 10mLに十分溶解し、 80%ムチン溶液を用いた。本発明のサ ンプリング器具 2として、図 3 (a)〜 (j)に示した如くの種々のスリット(吸引吐出口) 16 a〜16jの形状を有するプレート状ノズル 14a〜14jを用いて吸引力及び吐出力を夫 々調べた。各スリットの幅はいずれも lmmとし、容量は lmLとした。実験装置として、 図 5に示した装置を用いた。図 5は本発明の吸引力及び吐出力を測定する際に用い た装置の概念説明図であり、図 5 (a)は吸引力の場合、図 5 (b)は吐出力の場合であ る。図 5 (a) (b)において、符号 Pは粘性試料、符号 90は重りホルダ、符号 92は重り、 符号 94は試料容器である。図 5 (a)では、試料容器 94を上方に配置して粘性試料 P を入れ、試料容器 94の下端に本発明のサンプリング器具 2のプレート状ノズル 14を 接続し、本発明のサンプリング器具 2のプランジャ 30の操作用頭部 34に重りホルダ 9 0を吊り下げて接続し、徐々に重り 92を増やすことによって吸引力の測定を行った。 図 5 (b)では、試料容器 94を下方に配置し、試料容器 94の上端に粘性試料 Pを吸引 した後の本発明のサンプリング器具 2のプレート状ノズル 14を接続し、本発明のサン プリング器具 2のプランジャ 30の操作用頭部 34に重りホルダ 90を載せて接続し、徐 々に重り 92を増やすことによって吐出力の測定を行った。重り 92としては鉄製粒子( 直径: 6. 4mm)を用い、吸引力及び吐出力は F=mg (N)の公式を用いた。その結 果を表 1に示す。
[0091] (比較例 1)
サンプリング器具として一般に市販されているッベルクリン用のテルモネ土製のシリン ジ (容量 lmL)を用いた以外は、実施例 1と同様の態様で実験を行った。結果を表 1 に併せて示す。
[0092] [表 1]
Figure imgf000026_0001
[0093] 表 1に示した如ぐサンプリング器具として一般に市販されているッベルクリン用のテ ルモ社製のシリンジ (容量 lmL)を用いた比較例 1では、吸引力及び吐出力のいず れにおいても高い数値を示したのに対し、図 3 (a)〜(; j)に示した如くの種々のスリット 16a〜16jの形状を有するプレート状ノズル 14a〜14jを用いた本発明のサンプリング 器具 2では、吸引力及び吐出力のいずれにおいても低い数値を示した。特に、スリツ トの形状が十字 (X字)形、 Y字形、 W字形である図 3 (a)〜(c)や Z字形である図 3 (j) については格別に良い結果が得られた。従って、本発明のサンプリング器具 2によれ ば、喀痰等の粘性試料を比較的少ない力で吸引及び吐出することができ、作業者の 負担を軽減できることが確認された。 [0094] (実施例 2)
粘性試料として膿性痰 (P2、 Miller & Jonesの分類)を用い、図 3 (a)〜 (j)に示した 如くの種々のスリット(吸引吐出口) 16a〜16jの形状を有するプレート状ノズル 14a〜 14jを用いた本発明のサンプリング器具 2によって、吸引後と吐出後における粘性の 長さ(粘性試料が糸を引く長さ)を夫々調べた。各スリットの幅はいずれも lmmとし、 容量は lmLとした。吸引後における粘性の長さとは、粘性試料を入れた容器から本 発明のサンプリング器具 2を用いて所定量の粘性試料を吸引した後に、本発明のサ ンプリング器具 2の先端を一度容器底に擦りつけてから引き上げ、粘性試料が千切 れるまでの距離とした。また、吐出後における粘性の長さとは、本発明のサンプリング 器具 2を用いて所定量吸引した粘性試料を一度容器底に全て吐出してから引き上げ 、粘性試料が千切れるまでの距離とした。その結果を表 2に示す。
[0095] (比較例 2)
サンプリング器具として一般に市販されているッベルクリン用のテルモネ土製のシリン ジ (容量 lmL)を用いた以外は、実施例 2と同様の態様で実験を行った。結果を表 2 に併せて示す。
[0096] [表 2]
Figure imgf000027_0001
[0097] 表 2に示した如ぐサンプリング器具として一般に市販されているッベルクリン用のテ ルモ社製のシリンジ (容量 lmL)を用いた比較例 2では、吸引後及び吐出後における 粘性の長さが長いのに対し、図 3 (a)〜 (j)に示した如くの種々のスリット 16a〜16jの 形状を有するプレート状ノズル 14a〜14jを用いた本発明のサンプリング器具 2では、 吸引後及び吐出後のいずれにおいても同等以上に短い数値を示した。特に、スリット の形状が十字 (X字)形、 Y字形、 W字形である図 3 (a)〜(c)については格別に良い 結果が得られた。その他、 I字形である図 3 (d)や Z字形である図 3 (j)もこれに次いで 良!、結果が得られた。吸引時及び吐出時の粘性試料の切れの良!、 (粘性長さの短 い)スリットの形状の傾向として、スリット 16がプレート状ノズル 14の中央部近傍に位 置して 、ることや、少なくとも 1つの角部 15を有する形状をなして 、ることが分力つた 。本発明のサンプリング器具 2によれば、吸引時及び吐出時の粘性試料の切れを良 くすることができ、環境衛生上好ましいことが確認された。
[0098] (実施例 3)
粘性試料として膿性痰 (P2、 Miller & Jonesの分類)を用い、図 3 (a)〜 (j)に示した 如くの種々のスリット(吸引吐出口) 16a〜16jの形状を有するプレート状ノズル 14a〜 14jを用 ヽた本発明のサンプリング器具 2によって、夫々 500 Lずつ採取(吸引して 別の容器に吐出)して、その重量を計ることを夫々 2回繰り返すことによって定量性を 調べた。その結果を表 3に示す。
[0099] (比較例 3)
サンプリング器具として一般に市販されているッベルクリン用のテルモネ土製のシリン ジ (容量 lmL)の筒状体先端を単に切断し、直胴部と同径の吸引吐出口を開口した ものを用いた以外は、実施例 3と同様の態様で実験を行った。結果を表 3に併せて示 す。
[0100] [表 3] スリットの 重量 (g)
形状種別 1回目 2回目
(a) 0.50 0.50
(b) 0.50 0.51
(c) 0.52 0.52
(d) 0.51 0.51
(e) 0.51 0.52
実施例 3
(f) 0.50 0.50
(g) 0.49 0.50
(h) 0.49 0.49
(i) 0.50 0.50
(j) 0.51 0.50
比較例 3 ― 0.47 0.16
[0101] 表 3に示した如ぐサンプリング器具として一般に市販されているッベルクリン用のテ ルモ社製のシリンジ (容量 lmL)の筒状体先端を切断して直胴部と同径の吸引吐出 口を開口したものを用いた比較例 3においては、吸引後に粘性試料の一部が引っ張 られて定量性が損なわれるのに対し、図 3 (a)〜(; j)に示した如くの種々のスリット 16a 〜16jの形状を有するプレート状ノズル 14a〜14jを用いた本発明のサンプリング器 具 2ではいずれも 1回目も 2回目も安定して高い定量性を示した。従って、定量性に おいて、サンプリング器具の吸引吐出口の形状が重要であり、本発明のサンプリング 器具 2によれば、著しく粘性試料をサンプリングする際の定量性を向上せしめることが できることが確認された。
[0102] (実施例 4)
粘性試料として膿性痰 (P2、 Miller & Jonesの分類)を用い、図 3 (a)に示したスリット (吸引吐出口) 16aの形状 (十字形乃至 X字形)を有するプレート状ノズル 14aを用い た本発明のサンプリング器具 2によって、スリットの幅 dlを 0. 5mm、 lmm、 1. 5mm 、 2mmとした場合における吸引後及び吐出後の粘性の長さを夫々調べた。吸引後 における粘性の長さとは、粘性試料を入れた容器力ゝら本発明のサンプリング器具 2を 用いて所定量の粘性試料を吸引した後に、本発明のサンプリング器具 2の先端を一 度容器底に擦りつけてカゝら引き上げ、粘性試料が千切れるまでの距離とした。また、 吐出後における粘性の長さとは、本発明のサンプリング器具 2を用いて所定量吸引し た粘性試料を一度容器底に全て吐出してから引き上げ、粘性試料が千切れるまでの 距離とした。その結果を表 4に示す。
[0103] (比較例 4)
サンプリング器具として一般に市販されているッベルクリン用のテルモネ土製のシリン ジ (容量 lmL)を用いた以外は、実施例 4と同様の態様で実験を行った。結果を表 4 に併せて示す。
[0104] [表 4]
Figure imgf000030_0001
[0105] 表 4に示した如ぐサンプリング器具として一般に市販されているッベルクリン用のテ ルモ社製のシリンジ (容量 lmL)を用いた比較例 4と比較して、本発明のサンプリング 器具 2におけるスリットの幅 dlを 0. 5mn!〜 2. Ommとした場合にはいずれも吸引後 及び吐出後の粘性の長さが短ぐ特にスリットの幅 dlを 0. 5mn!〜 1. 5mmとした場 合に良い結果が得られた。従って、本発明のサンプリング器具 2によれば、吸引時及 び吐出時の粘性試料の切れを良くすることができ、環境衛生上好ま 、ことが確認さ れた。なお、図 3 (b)〜(; j)に示したスリット(吸引吐出口) 16b〜16jの形状を有するプ レート状ノズル 14b〜14jを用いた本発明のサンプリング器具 2においても略同様の 結果であった。
[0106] (実施例 5)
粘性試料の種類としてグリセリン (キシダ化学社製)、エチレングリコール (キシダイ匕 学社製)、 Triton X- 100 (キシダ化学社製)又は Tween20 (シグマ社製)を用い、図 3 (a )に示した如くの種々のスリット(吸引吐出口) 16aの形状 (十字形乃至 X字形)を有す るプレート状ノズル 14aを用いた本発明のサンプリング器具 2によって、 500 1採取( 吸引して別の容器に吐出)して、その重量を計ることを夫々 2回繰り返すことによって 、粘性試料の種類の違いによる定量性を調べた。その結果を表 5に示す。なお、各 試薬の比重(グリセリン: 1. 26、エチレングリコール: 1. 1088、 Triton X- 100 : 1. 07 、 Tween20 : l. 105)力 算出した理論値を併せて示した。
[0107] [表 5] 実施例 5の結果
Figure imgf000031_0001
[0108] 表 5に示した如ぐ本発明のサンプリング器具 2によれば、様々な種類の粘性試料 に対して高い定量性を示すことが確認された。また、図 3 (b)〜①に示したスリット(吸 引吐出口) 16b〜16jの形状を有するプレート状ノズル 14b〜14jを用いた本発明の サンプリング器具 2においても略同様の結果であった。
[0109] 以上述べた如ぐ本発明によれば、喀痰等の粘性試料をサンプリングする際の定量 性を向上せしめ、比較的少ない吸引力及び吐出力で作業者の負担を軽減し、吸引 時及び吐出時の粘性試料の切れを良くし、環境衛生面での問題も少な ヽ粘性試料 のサンプリング器具 2及びその補助治具 40, 60を提供することができる。
[0110] (実施例 6)
0. 25% (2000UZmL)ブロメライン F (Bromelain F,天野ェンザィム社製)を、溶 解液 [25mMトリス緩衝液(pH7. 0)、0. 9%塩ィ匕ナトリウム、 0. ImM エチレンジァ ミン四酢酸ナトリウム (EDTA) ]に溶解し前処理液とした。この前処理液を、膿性痰( P2及び P3、 Miller & Jonesの分類)に対して 20倍量カ卩えて、室温(26°C)で反応させ た。その際、 10分おきにボルテックス(TM- 252 TEST TUBE MIXER,旭テクノグラス 社製)で懸濁し、溶解時間を測定した。尚、本実施例及び後述する実施例において 、喀痰の溶解時間は、喀痰がほぼ完全に溶液ィ匕の状態になるまでに要した反応時 間とした。その結果を表 6に示す。 [0111] (比較例 5)
スプタザィム (極東製薬工業 (株)製、セミアルカリプロテアーゼ)を、キットに付随す るリン酸バッファー溶解液に溶解し前処理液とした。前処理液を変更した以外は実施 例 6と同様に実験を行った。結果を表 6に示す。
[0112] [表 6]
Figure imgf000032_0001
[0113] 表 6に示した如ぐセミアルカリプロテアーゼを用いた比較例 5では、 P2の膿性痰の 溶液化に 120分を要し、更に P3の膿性痰は 180分反応させても溶液ィ匕されなカゝつた のに対し、ブロメラインを用いた実施例 6では P2の膿性痰は 70分、 P3の膿性痰は 9 0分という速さで溶液ィ匕されていた。従って、ブロメラインを用いることにより、均質ィ匕 処理を迅速に行うことができ、更に、従来では均質ィ匕が難しかった膿性部分の多い 膿性痰をも迅速に均質ィ匕できることが判った。
[0114] (実験例 1)
0. 25% (2000UZmL)ブロメライン F (天野ェンザィム社製)を、溶解液 [0. 9%塩 化ナトリウム溶液、 25mMトリス緩衝液 (pH7. 0)、 0. ImM EDTA]に加え、懸濁 液とした。この懸濁液にインフノレエンザ菌(Haemophilus influenzae, H. influenzae)、 肺炎レンサ球菌 (Streptococcus pneumoniae ^ b. pneumoniae)、緣膽菌 (Pseudomonas aeruginosa^ P. aeruginosa)、黄色フドウ球菌 (Staphylococcus aureus ^ S. aureus)、レ ンォネフ菌 (Legionella pneumophila^し pneumophila)、又 ίま月巿炎ネ旱菌 (Klebsiella pne umoniae、 K. pneumoniae)を 10 FUZmLとなるように加え、室温(26°C)において 0 時間と二時間後で生菌数を比較した。また、対照として、ブロメライン Fを添加せず、 溶解液を懸濁液として使用した以外は同様の条件で生菌数を測定した。
[0115] 生菌数の測定方法は、前記各細菌懸濁液を、チョコレート寒天培地 EX(日水製薬
(株)製)各プレートに 100 /z Lずつ 3枚播き、 37°Cで 18時間培養した後、コロニー数 を測定し、 3枚のプレートの平均値を生菌数とした。結果を表 7に示す。
[0116] (比較例 6) 懸濁液として、スプタザィム (極東製薬工業 (株)製、セミアルカリプロテアーゼ)を用 い、細菌としてインフルエンザ菌のみを添加した以外は、実験例 1と同様に実験を行 つた。結果を表 8に示す。
[表 7] 実験例 1の結果
[0118] [表 8]
Figure imgf000033_0001
[0119] 表 7に示した如ぐブロメラインを用いることで、インフルエンザ菌、肺炎レンサ球菌、 緑膿菌、黄色ブドウ球菌、レジオネラ菌及び肺炎桿菌のいずれの細菌においても、 酵素の影響を受けな 、ことが判った。
また、セミアルカリプロテアーゼを用いた比較例 6では、室温で 2時間反応させること で、生菌数の減少がみられたのに対し、ブロメラインを用いた実験例 1では室温で 2 時間反応させても、ほとんど生菌数の減少は認められな力つた。従って、ブロメライン を用いることにより、細菌に影響を与えることなく安定に細菌を検出できることがわか つた o
[0120] (実施例 7〜: LO)
ブロメライン F (天野ェンザィム社製、 1000U/mL)及びパパイン(天野ェンザィム 社製、 lOOOUZmL)を、溶解液 [10mMトリス緩衝液 (pH7. 0)、0. 9%塩化ナトリ ゥム、 0. ImM エチレンジァミン四酢酸ナトリウム]に溶解し前処理液とした。 2mLェ ッペンドルフチューブに、喀痰 (性状 P3の膿性痰)、喀痰の 10倍量の前処理液、及 び表 9又は表 10に示す材質及び直径の粒子をカ卩え、室温(26°C)で反応させた。そ の際、 10分おきにボルテックス(TM- 252 TEST TUBE MIXER,旭テクノグラス社製) で懸濁し、溶解時間を測定した。溶解時間の結果を表 9及び表 10に示す。
[0121] なお、鉄およびステンレス粒子の数は、直径 1. 6mm :40粒、直径 2. 4mm : 20粒、 直径 3. 2mm: 10粒、直径 4. Omm : 7粒、直径 4. 8mm :4粒、直径 5. 6mm : 3粒と し、アルミナ粒子の数は、直径 1. 0mm:40粒、直径 2. Omm: 20粒、直径 3. Omm: 10粒、直径 4. Omm : 7粒、直径 5. Omm :4粒とし、ガラス粒子の数は、直径 1. 5— 2 . 5mm : 20粒、直径 4. 0—4. 7mm : 7粒、直径 4. 8— 5. 6mm :4粒とした。
[0122] [表 9]
Figure imgf000034_0001
[0123] [表 10]
Figure imgf000035_0001
[0124] 表 9及び表 10に示した如ぐ鉄、ステンレス又はアルミナ粒子を用いることにより、喀 痰溶解時間を大幅に短縮することができた。また、材質力 Sステンレス、鉄又はアルミ ナの粒子で、かつ大きさを直径 4. Omm以上にすることで、喀痰溶解時間をさらに大 幅に短縮できることが明らかとなった。
[0125] (実験例 2)
インフルエンザ菌(H. influenzae)又は黄色ブドウ球菌(S. aureus)を、懸濁液 [25m Mトリス緩衝液 (pH7. 0)、 0. 9%塩ィ匕ナトリウム]にそれぞれ懸濁し、細菌調製液と した。 2mlエツペンドルフチューブに、細菌調製液 lmL、及びステンレス製の粒子( 直径 4mm) 7粒をカ卩え、ボルテックスを用いて回転数 2500rpmで振蕩させ、 30秒毎 に生菌数を測定し、各攪拌時間による細菌への影響を調べた。その結果を表 11に 示す。
[0126] [表 11] 実験例 2の結果
Figure imgf000035_0002
[0127] 表 11に示した如ぐ 3分間ボルテックスをかけても粒子による細菌への影響がない ことが明ら力となった。 [0128] (実験例 3)
インフルエンザ菌(H. influenzae)又は黄色ブドウ球菌(S. aureus)を、懸濁液 [25m Mトリス緩衝液 (pH7. 0)、 0. 9%塩ィ匕ナトリウム]にそれぞれ懸濁し、細菌調製液と した。 2mlエツペンドルフチューブに、細菌調製液 lmL、及び各直径のステンレス製 粒子を加え、ボルテックスを用いて回転数 2500rpmで 3分間振蕩させた後、生菌数 を測定し、細菌への影響を調べた。また、対照として、粒子を加えな力 た以外は同 様の条件で実験を行った。それらの結果を表 12に示す。
尚、ステンレス製粒子の数は、粒子の重量を統一し、直径 1. 6mm :40粒、直径 2. 4mm: 20粒、直径 3. 2mm: 10粒、直径 4. 0mm: 7粒、直径 4. 8mm:4粒、直径 5 . 6mm : 3粒とした。
[0129] [表 12] 実験例 3の結果
Figure imgf000036_0001
[0130] 表 12に示した如ぐステンレス製粒子を用いた均質ィ匕処理は細菌への影響が極め て少なぐ特に、粒子の大きさが 4. Omm以上では、 3分間ボルテックスをかけても粒 子による細菌への影響がな 、ことが明らかとなつた。
[0131] (実施例 11)
0. 25%のブロメライン F (天野ェンザィム社製)を、溶解液 [25mMトリス緩衝液 (p H7. 0)、0. 9%塩ィ匕ナトリウム、 0. ImM エチレンジァミン四酢酸ナトリウム]に溶解 し前処理液とした。 2mLエツペンドルフチューブに、喀痰 (性状 P2の膿性痰)、喀痰 の 10倍量の前処理液、直径 4mmのステンレス製粒子を 7粒カ卩え、室温(26°C)で反 応させた。その際、 10分おきにボルテックスで懸濁し、溶解時間を測定した。溶解時 間の結果を表 13に示す。
[0132] (実施例 12)
スプタザィム (極東製薬工業 (株)製、セミアルカリプロテアーゼ)を、キットに付随す るリン酸バッファー溶解液に溶解し前処理液とした。前処理液を変更した以外は実施 例 11と同様の条件で実験を行つた。結果を表 13に示す。
[0133] (実施例 13)
前処理液として、実施例 11と同様の前処理液を用いた。 10mLのスピッツ管に、喀 痰 (性状 P2の膿性痰)及び喀痰の 20倍量の前処理液を加え、室温(26°C)で反応さ せた。その際、 10分おきにボルテックスで懸濁し、溶解時間を測定した。溶解時間の 結果を表 13に示す。
[0134] (比較例 7)
前処理液として、実施例 12と同様の前処理液を用いた。前処理液を変更した以外 は実施例 13と同様の条件で実験を行った。結果を表 13に示す。
[0135] [表 13]
Figure imgf000037_0001
[0136] 表 13に示した如ぐ喀痰溶解性において、酵素のみでは長時間を要する場合にお いても、ステンレス粒子を用いることにより、喀痰溶解時間を大幅に短縮することがで きた。
[0137] (実験例 4及び比較例 8)
黄色ブドウ球菌(S. aureus)を 103CFUZmLとなるように生理食塩水で調製し菌液 とした。シリンジフィルターホルダーに表 1に示す孔径及び材質のフィルターをそれぞ れ入れて用意した。これをシリンジに接続し、菌液を通過させた後、回収した菌液 (濾 液)をプレートに播き、生菌数を測定した。なお、生菌数の測定方法は、実験例 1と同 様に行った。また、対照として、フィルターを通過させていない菌液についても、同様 に生菌数を測定した。その結果を表 14に示す。
[0138] [表 14]
Figure imgf000038_0001
[0139] 表 14中、ポリカーボネートはワットマン社製のサイクロポアメンブレン (親水性ポリ力 ーボネートメンブレン、膜厚 7— 20 μ m)、ガラス繊維はワットマン社製の GMF150 ( 膜厚 0. 75mm)である。
[0140] 以上の結果、ガラス繊維を用いた比較例 8ではフィルトレーシヨンによる菌の回収率 が大幅に減少しているのに対し、ポリカーボネートを用いた実験例 4では菌の回収率 がフィルトレーシヨンしていない対象と同等であった。このことより、ポリカーボネートを 用いることで、効率よく菌を回収できることが明らかとなった。
[0141] (実験例 5〜7)
月巿炎レンサ球菌 (S. pneumoniae 、緑g菌 (P. aeruginosa)又は月巾炎ネ旱菌 (K. pneum oniae)を 103CFU/mLとなるようにそれぞれ生理食塩水で調製した。シリンジフィル ターホルダーに表 15に示す孔径及び材質のフィルターをそれぞれ入れて用意した。 これをシリンジに接続し、菌液を通過させた後、回収した菌液をプレートに播き、生菌 数を測定した。生菌数の測定方法は、実験例 1と同様に行った。また、対照として、フ ィルターを通過させていない菌液についても、同様に生菌数を測定した。その結果を 表 15に示す。
[0142] [表 15] フィルター t l£菌数 (CFU/mL)
材質 孑し ί圣、 μ m) S. pneumoniae P. aeruginosa K. pneumoniae 実験例 5 PTFE 0 3.9 x 103 1.6 x 103 3.0 x 103 実験例 6 セルロース繊維 5 3.9 x 103 2.5 x 103 2.4 x 103 実験例 7 ボリカーボネート 5 4.3 x 103 2.6 x 103 3.0 x 103 対照 ― ― 4.6 x 103 2.9 x 103 2.4 x 103 [0143] 表 15中、 PTFEは ADVANTEC社製のポリフロン(ダイキン工業 (株)の登録商標) フィルター(膜厚 0. 36mm)、セルロース繊維は ADVANTEC社製の定性濾紙 (膜 厚 0. 26mm)、ポリカーボネートはワットマン社製のサイクロポアメンブレン(親水性ポ リカーボネートメンブレン、膜厚 7— 20 μ m)である。
[0144] 以上の結果、フィルターの材質を PTFE、セルロース繊維及びポリカーボネート等 の有機材料にすることで、種々の細菌に対して効率よく菌を回収できることが明らかと なった。
[0145] (実験例 8及び 9)
緑膿菌(P. aeruginosa)又は肺炎レンサ球菌(S. pneumoniae)を 103CFUZmLとな るようにそれぞれ生理食塩水で調製した。シリンジフィルターホルダーに表 16に示す 孔径及び材質のフィルターをそれぞれ入れて用意した。これをシリンジに接続し、菌 液を通過させた後、回収した菌液をプレートに播き、生菌数を測定した。生菌数の測 定方法は、実験例 1と同様に行った。また、対照として、フィルターを通過させていな ぃ菌液についても、同様に生菌数を測定した。その結果を表 16に示す。
[0146] [表 16]
Figure imgf000039_0001
[0147] 表 16中、ナイロンは (株)サンプラテック製のナイロンメッシュシート、ポリエチレンは
(株)サンブラテック製の PEメッシュシートである。
[0148] 以上の結果、フィルターの材質をナイロン又はポリエチレンにすることで、緑膿菌及 び肺炎レンサ球菌を効率よく回収できることが明らかとなった。
[0149] (実験例 10〜12)
<第 3及び第 2フィルターによる菌と細胞の混合溶液からの菌の分離 >
実験例 10では、緑膿菌(P. aeruginosa)を 103CFUZmLとなるように生理食塩水で 調製し、更に、 PC— 14細胞を 106ZmLとなるように菌液と混合した。
シリンジフィルターホルダーに実験例 7で用いた孔径 5 μ m、材質ポリカーボネート の第 3フィルターを入れ、その上に孔径 20 μ m、材質ナイロンの第 2フィルター [ (株) サンブラテック製、ナイロンメッシュシート]を入れた。これをシリンジに接続し、細胞と 菌液の混合溶液を通過させた後、回収した菌液をプレートに播き、生菌数を測定し た。生菌数の測定方法は、実験例 1と同様に行った。結果を表 17に示す。
[0150] また、対照として、表 17に示した如ぐ前記菌液と細胞の混合溶液 (実験例 11)又 は菌液 (実験例 12)を用いて前記第 2フィルターを入れずに第 3フィルターのみに通 過させた場合の濾液、並びにフィルターを通過させていない菌液 (対照)についても 同様に生菌数を測定した。結果を表 17に示す。
[0151] [表 17]
Figure imgf000040_0001
[0152] 以上の結果、第 3フィルターのみを用いた場合は細胞による詰まりが生じ、フィルタ 一への通過はできず、孔径 5 μ mのフィルター上に孔径 20 μ mのフィルターを組み 合わせることで、細胞存在下においても緑膿菌を効率よく回収できることが明らかとな つた o
[0153] (実験例 13〜17)
<第 2及び第 1フィルターによる粘性溶液の通過性 >
ブタ胃由来のムチン (和光純薬工業 (株)製)を生理食塩水に溶解し、 80%粘性溶 液とした。これに生理食塩水に溶解した 0. 1%ジチオトレイトール (DTT)溶液を等量 加え、室温で 1時間反応させ、ムチンの均質化粘性溶液とした。シリンジフィルターホ ルダ一に実験例 10で用いた孔径 20 m、材質ナイロンの第 2フィルターを入れ、そ の上に孔径 42、 59、 77又は 108 m、材質ナイロンの第 1フィルター [ (株)サンプラ テック社製、ナイロンメッシュシート]をそれぞれ入れた (実験例 13〜16)。これをシリ ンジに接続し、ムチンの均質ィ匕粘性溶液を通過させて、フィルターの通過性を調べた 。また、対照として、シリンジフィルターホルダーに前記第 2フィルターのみを入れたも のを用いて同様にフィルターの通過性を調べた (実験例 17)。結果を表 18に示す。
[0154] [表 18]
Figure imgf000041_0001
[0155] 表 18において、フィルターの通過性の評価基準は下記の通りである。
◎:シリンジ操作がよりスムーズである。
〇:シリンジ操作がスムーズである。
△:シリンジ操作が硬い。
X:シリンジ操作がかなり硬い。
[0156] 表 18に示した如ぐシリンジフィルターホルダーに孔径 20 μ mのフィルターのみを 入れたもの(実験例 17)では、シリンジ操作が硬ぐムチンの均質化粘性溶液をフィル ターに通過させることに手間取り、また、孔径 20 mのフィルターと、孔径 42、 59又 は 77 mのフィルターとの組み合わせ(実験例 13— 15)では、比較的スムーズにム チンの均質ィ匕粘性溶液をフィルターに通過させることができた。特に孔径 20 mの フィルターと孔径 108 μ mのフィルターとの組み合わせ(実験例 16)はよりスムーズに ムチンの均質ィ匕粘性溶液をフィルターに通過させることができた。このことから、第 1 フィルターのサイズは 20 μ mを超えることが好ましぐより好ましくは約 100 μ mである ことがわかった。
[0157] (実施例 14、 15及び実験例 18)
<第 1、第 2及び第 3フィルターによる喀痰均質ィヒ溶液の通過性 >
ブロメライン F (天野ェンザィム社製)を、溶解液 [25mMトリス緩衝液 (pH7. 0)、 0 . 9%塩ィ匕ナトリウム、 0. ImM エチレンジァミン四酢酸ナトリウム]に終濃度 2000U /mL (0. 25%)となるよう溶解し前処理液とした。 2mLエツペンドルフチューブに、 喀痰 (性状 P3の膿性痰)、喀痰の 10倍量の前処理液、直径 4mmのステンレス製粒 子 7粒をカ卩え、室温(26°C)で反応させた。その際、 10分おきにボルテックス (TM-25 2 TEST TUBE MIXER,旭テクノグラス社製)で懸濁した。 20分反応させた溶液を喀 痰均質化液とした。
[0158] シリンジフィルターホルダーに実験例 7で用いた孔径 5 μ m、材質ポリカーボネート の第 3フィルターを入れ、その上に実験例 10で用いた孔径 20 /z m 材質ナイロンの 第 2フィルターを入れ、さらにその上に孔径 42又は 108 m、材質ナイロンの第 1フィ ルター [ (株)サンブラテック社製、ナイロンメッシュシート]をそれぞれ入れた (実施例 14又は 15)。これをシリンジに接続し、前記喀痰の均質化液を通過させて、フィルタ 一の通過性を調べた。また、対照として、シリンジフィルターホルダーに前記第 3フィ ルター及び第 2フィルターのみを入れたものを用いて同様にフィルターの通過性を調 ベた(実験例 18)。結果を表 19に示す。なお、表 19のフィルターの通過性の評価基 準は表 18と同様である。
[0159] [表 19]
Figure imgf000042_0001
[0160] 表 19に示した如ぐシリンジフィルターホルダーに孔径 5及び 20 μ mの 2種のフィル ターのみを入れたもの(実験例 18)では、シリンジ操作が硬ぐ喀痰の均質化液をフィ ルターに通過させることに手間取り、また、孔径 5及び 20 mのフィルターと、孔径 42 又は 108 μ mのフィルターとの組み合わせでは(実施例 14又は 15)、比較的スムー ズに喀痰の均質ィ匕液をフィルターに通過させることができた。
[0161] (実施例 16)
1.菌液の調製
トリプチックソィァガーで 18時間培養した黄色ブドウ球菌(S. aureus)を生理食塩水 に懸濁させたものを培養菌原液とした。これを生理食塩水で所定の菌数に希釈し、 実施例に用いる希釈菌液とした。菌数については、培養菌原液の希釈系列を作成し て、トリプチックソィァガーで培養して得られた生菌数カも所定の菌数を算出した。な お、希釈菌液のかわりに生理食塩水を用いて同様に反応させたものを対照とした。
[0162] 2.喀痰均質化液の調製
ブロメライン F (天野ェンザィム社製)を、溶解液 [25mMトリス緩衝液 (pH7. 0)、 0 . 9%塩ィ匕ナトリウム、 0. ImM エチレンジァミン四酢酸ナトリウム]に終濃度 2000U /mL (0. 25%)となるよう溶解し前処理液とした。 2mLエツペンドルフチューブに、 喀痰 (性状 P3の膿性痰)、喀痰の 10倍量の前処理液、直径 4mmのステンレス製粒 子 7粒をカ卩え、室温(26°C)で反応させた。その際、 10分おきにボルテックス (TM-25 2 TEST TUBE MIXER,旭テクノグラス社製)で懸濁した。 20分反応させた溶液を喀 痰均質化液とした。
[0163] 3.菌液の添カロ
前述の方法に従って培養した黄色ブドウ球菌を 10 X 108CFUZmLになるように溶 解液 [25mMトリス緩衝液(pH7. 0)、0. 9%塩ィ匕ナトリウム、 0. ImM エチレンジァ ミン四酢酸ナトリウム、 0. 25%ブロメライン F (天野ェンザィム社製、 2000U/mL) ] で希釈した後、更に黄色ブドウ球菌が 10 X 107CFU/mLになるように前述の喀痰 均質化液で希釈した。
また、前述の方法に従って培養した黄色ブドウ球菌を 10 X 107CFU/mLになるよ うに溶解液 [25mMトリス緩衝液 (pH7. 0)、0. 9%塩ィ匕ナトリウム、 0. ImM ェチレ ンジァミン四酢酸ナトリウム、 0. 25%ブロメライン F (天野ェンザィム社製、 2000U/ mL) ]で希釈し、これを陽性コントロール液とした。
また、前述の喀痰均質ィ匕液のみのものを陰性コントロール液とした。
[0164] 4.微生物の回収
第 3フィルター(孔径 5 μ m、ポリカーボネート、ワットマン社製)、第 2フィルター(孔 径 20 μ m、ナイロン、(株)サンブラテック製)、及び第 1フィルター(孔径 108 m、ナ ィロン、(株)サンブラテック製)を下力も順にシリンジフィルターホルダーに入れ、シリ ンジと接続し、微生物の分離器として用いた。
前記調製した各溶液を一部とり、微生物の分離器に通過させ、フィルター通過液と した。
[0165] 5.微生物の検出 前記得られたフィルター通過液をそれぞれ、室温下で 3000g20分遠心し、上清除 去後、溶解液 [25mMトリス緩衝液 (pH7. 0)、 0. 9%塩化ナトリウム、 0. ImM ェ チレンジァミン四酢酸ナトリウム、 0. 25%ブロメライン F (天野ェンザィム社製、 2000 UZmL) ]で希釈し、黄色ブドウ球菌を 10 X 106CFUZmLになるように調製した。ァ ルカリ SDS法 (新生化学実験講座 2 核酸 I分離精製 (東京化学同人)、 Nucleic Ac ids Res.Vol.7,pl513(1979))に従って溶菌させ、これを溶菌液とした。
[0166] 前記得られた溶菌液に対して下記の方法により黄色ブドウ球菌の核酸検出を行な つた o
〈マイクロプレートの調製〉
黄色ブドウ球菌の rRNAに相補的な配列を有するキヤプチヤープローブ(下記塩基 配列を有する核酸プローブ)を各々ストリップウェルタイブの 96ウェルマイク口プレート 上に固定し、実験に用いた。
キヤプチヤープローブの塩基配列(配列番号 1)
5,- CGTCTTTCACTTTTGAACCAT GCGGTTCAAAATATTATCCGG - 3,- Amin 0 link
[0167] 〈各溶液の調製方法〉
(1)第 1ハイブリダィゼーシヨン反応溶液の調製
第 1ハイブリダィゼーシヨン溶液 [4XSSC、 0.2%SDS、 l%Blocking reagent (Roche製)、 20%ホルムアミド、 Salmon sperm DNA(10 μ g/mL)]にアシストプローブを 0. 025pm ol / Lになるように溶解し、第 1ハイブリダィゼーシヨン反応溶液を調製した。なお、 前記アシストプローブは、黄色ブドウ球菌の rRNAに相補的な配列及び後述する HC P— 1と同じ塩基配列を有する核酸プローブであり、下記塩基配列を有する。
アシストプローブの塩基配列(配列番号 2)
5'- CATGTCTCGTGTCTTGCATC CTGCTACAGTGAACACCATC GTTCTCGA CATAGACCAGTC ATCTATAAGTGACAGCAAGAC - 3,
[0168] (2)第 2ハイブリダィゼーシヨン反応溶液の調製
第 2ハイブリダィゼーシヨン溶液 [4XSSC、 0.2%SDS、 l%Blocking reagent (Roche製) ]に HCP— 1及び 5'末端が DIGラベルされた HCP— 2を lpmolZ Lになるように 溶解し、第 2ハイブリダィゼーシヨン反応溶液を調製した。なお、前記 HCP— 1及び H CP— 2は、パルサー法で用いられる一対の核酸プローブであり、該プローブの複数 対を反応させると、プローブが自己集合し、プローブのポリマーが形成される(特許第 3310662号等参照。 ) o前記 HCP— 1及び HCP— 2の塩基配列は下記の通りである。
HCP— 1の塩基配列 (配列番号 3)
5'- CATGTCTCGTGTCTTGCATC CTGCTACAGTGAACACCATC GTTCTCGA CATAGACCAGTC - 3'
HCP 2の塩基配列(配列番号 4)
DIG- 5,- GATGCAAGACACGAGACATG GATGGTGTTCACTGTAGCAG GACT GGTCTATGTCGAGAAC -3,
[0169] 〈反応及び検出方法〉
前記マイクロプレートに前記得られた溶菌液を 50 L、前記第 1ハイブリダィゼーシ ヨン反応溶液を 50 Lずつ分注し、プレートシ一ラーでしっかりとシールし、 1時間反 応させた(第 1ハイブリダィゼーシヨン)。なお、該反応は WO2005/106031号記載のハ イブリダィゼーシヨン方法を用いて、マイクロプレートの上部 20°C、下部 45°Cに設定 した温度条件下で行った。
反応後、洗浄液 [50mM Tris, 0.3M NaCl, 0.01% Triton X- 100, pH 7.6]で洗浄した
[0170] 洗浄後、洗浄液をよくきったマイクロプレートへ第 2ハイブリダィゼーシヨン反応溶液 を 100 Lずつ分注し、プレートシ一ラーでしっかりとシールした。マイクロプレートの 上部 20°C、下部 60°Cに設定した条件下で 1時間反応させた (第 2ハイブリダィゼー シヨン、パルサー反応)。
[0171] マイクロプレートウエルを洗浄後、 50mM Tris(pH 7.6)に溶解した POD標識抗ジゴキ シゲニン(60mU/mL)を 50 /z L加え、 37°Cのインキュベーターで反応させた。洗浄液 で洗浄後、 0. 2M酢酸緩衝液 (pH 5.0)、 0.06% TMBと 0.04% H 0を含む発色液を 5
2 2
O /z L力!]え、暗所で 15分間放置し、 655nmの吸光度を測定した。結果を図 19に示 す。なお菌数は 4. 6 X 105CFUZwellであった。
[0172] (実施例 17) 前記微生物の分離器を用いた微生物の回収工程を行わな力つた点以外は実施例
16と同様に実験を行った。結果を図 19に示す。
[0173] 図 19に示したように、本発明の均質ィ匕処理方法を用いた実施例 16及び 17のいず れにおいても微生物が検出できたが、本発明の微生物の分離器を用いて微生物の 回収を行った実施例 16は喀痰力もより効率的に微生物が検出されており、フィルタ 一に通過させることにより、喀痰中の反応阻害物質が除去され、反応が十分に進行 することがわかった。
[0174] (実施例 18)
0. 25%ブロメライン F (天野ェンザィム社製)を、溶解液 [25mMトリス緩衝液 (pH7 . 0)、0. 9%塩ィ匕ナトリウム、 0. ImM エチレンジァミン四酢酸ナトリウム]に溶解し 前処理液とした。 25mLコンテナ容器に、喀痰 (性状 P3の膿性痰)、喀痰の 10倍量 の前処理液、及びステンレス粒子(直径 4. 8mm : 20粒)をカ卩え、室温(25°C)で反応 させた。その際、 10分おきにボルテックス(TM- 252 TEST TUBE MIXER,旭テクノグ ラス社製)で懸濁後、溶解時間を 30分とし、得られた溶液を喀痰の均質ィ匕液とした。
[0175] シリンジフィルターホルダーに実験例 7で用いた孔径 5 μ m、材質ポリカーボネート の第 3フィルターを入れ、その上に実験例 10で用いた孔径 20 /z m 材質ナイロンの 第 2フィルターを入れ、さらにその上に実施例 15で用いた孔径 108 /z m 材質ナイ口 ンの第 1フィルターをそれぞれ入れた。これをシリンジに接続し、前記喀痰の均質ィ匕 液の一部を通過させて、フィルトレーシヨン後の均質ィ匕液とした。
[0176] 次に、フィルトレーシヨン前の均質化液、フィルトレーシヨン後の均質化液それぞれ について、フェイバー Gセット S (日水製薬 (株)製)を用いてグラム染色を行い、顕微 鏡で観察した。フィルトレーシヨン前の均質ィ匕液の顕微鏡写真を図 20に示す。フィル トレーシヨン後の均質ィ匕液の顕微鏡写真を図 21に示す。図 20及び図 21において、( a)は倍率 100、 (b)は倍率 1000の結果である。
[0177] 図 20に示したように、本発明の均質ィ匕処理方法により喀痰が短時間で均質化され ていることがわかった。なお、図 20中、白血球を矢印で示した。さらに、図 21に示し たように、フィルトレーシヨン後の均質ィ匕液では、血球細胞及び喀痰の粘性成分が除 かれていることがわかった。

Claims

請求の範囲
[1] 先端を閉塞し且つ基端を開口し、該基端の外周縁に鍔部を形成した内部中空の 長尺の直胴部を有する筒状体(10)と、該筒状体の内壁に密着しつつ該筒状体の長 手方向に摺動自在に内嵌されたガスケット(20)と、先端を該ガスケットに係着する係 着凸部とし且つ基端を操作用頭部とし、該操作用頭部を操作して該ガスケットを摺動 操作可能にした長尺棒状のプランジャ(30)と、を備える粘性試料のサンプリング器 具であって、前記筒状体の先端は、該筒状体の直胴部と略同径のプレート状ノズル( 14)によって閉塞され、該プレート状ノズルに所定形状のスリット(16)を開穿して吸 引吐出口を形成してなることを特徴とする粘性試料のサンプリング器具。
[2] 前記スリットは、前記プレート状ノズル(14)の中央部近傍に位置することを特徴とす る請求項 1記載の粘性試料のサンプリング器具。
[3] 前記スリットは、少なくとも 1つの角部(15)を有する形状をなしていることを特徴とす る請求項 1又は 2記載の粘性試料のサンプリング器具。
[4] 前記スリットの形状は、十字 (X字)形、 Y字形又は W字形の 、ずれかであることを特 徴とする請求項 1〜3のいずれ力 1項記載の粘性試料のサンプリング器具。
[5] 前記スリットの幅は、 0. 5mm〜2. Ommであることを特徴とする請求項 1〜4のいず れカ 1項記載の粘性試料のサンプリング器具。
[6] 前記粘性試料が喀痰であることを特徴とする請求項 1〜5の 、ずれか 1項記載の粘 性試料のサンプリング器具。
[7] 請求項 1〜6のいずれか 1項記載のサンプリング器具用の補助治具であって、前記 サンプリング器具における操作用頭部を操作自在としたことを特徴とするサンプリング 器具用補助治具。
[8] 前記サンプリング器具用補助治具は、先端に前記サンプリング器具における筒状 体の鍔部に対して係合自在とされた係合片を有し且つ基端を開口部とし、直胴部に 案内溝を形成した長尺筒状の外嵌筒部材 (42)と、該外嵌筒部材の内部に摺動自 在に軸通されると共に、先端に前記サンプリング器具におけるプランジャの操作用頭 部に対して係合自在とされた係合部を有し且つ前記案内溝に沿って操作レバーを 設け、基端を押圧用頭部とした内嵌軸部材 (50)と、を備えることを特徴とする請求項 7記載のサンプリング器具用補助治具。
[9] 前記サンプリング器具用補助治具は、先端内周に前記サンプリング器具における 筒状体の鍔部に対し嵌合自在とされた嵌合凸部を設け且つ基端を開口部とした長 尺筒状の外嵌筒部材 (62)と、該外嵌筒部材の内部に摺動自在に軸通されると共に 、先端内周に前記サンプリング器具におけるプランジャの操作用頭部に対して嵌合 自在とされた嵌合凸部を設け且つ外嵌筒部材に対する付勢手段及び係止手段を設 けた中嵌筒部材 (70)と、該中嵌筒部材の内部に摺動自在に軸通されると共に、先 端を前記サンプリング器具におけるプランジャの操作用頭部に当接する当接端部と し、基端が押圧用頭部とされた内嵌軸部材 (80)と、を備えることを特徴とする請求項 7記載のサンプリング器具用補助治具。
[10] システィンプロテアーゼを含有することを特徴とする喀痰の均質化処理剤。
[11] 前記システィンプロテア一ゼがブロメライン、パパイン、キモパパイン及びフイシンか らなる群力も選択される 1種又は 2種以上であることを特徴とする請求項 10記載の均 質化処理剤。
[12] 塩化ナトリウム及びトリス緩衝液を更に含有することを特徴とする請求項 10又は 11 記載の均質化処理剤。
[13] 微生物の検出方法における前処理に用いられることを特徴とする請求項 10〜12の
V、ずれか 1項記載の均質化処理剤。
[14] 金属及びその酸化物からなる群から選択される 1種又は 2種以上を含有する粒子を 収容することを特徴とする喀痰の均質化処理用器具。
[15] 前記金属及びその酸ィ匕物がステンレス鋼、鉄又はアルミナであることを特徴とする 請求項 14記載の喀痰の均質化処理用器具。
[16] 前記粒子が直径 lmn!〜 10mmの球状粒子であることを特徴とする請求項 14又は
15記載の均質化処理用器具。
[17] 喀痰を請求項 10〜 13のいずれか 1項記載の均質化処理剤で処理することを特徴 とする喀痰の均質化処理方法。
[18] 被検喀痰を含む試料を金属及びその酸ィ匕物力 なる群力 選択される 1種又は 2 種以上を含有する粒子の存在下で攪拌することを特徴とする喀痰の均質化処理方 法。
[19] 前記金属及びその酸ィ匕物がステンレス鋼、鉄又はアルミナであることを特徴とする 請求項 18記載の均質化処理方法。
[20] 前記粒子が直径 lmn!〜 10mm以下の球状粒子であることを特徴とする請求項 18 又は 19記載の均質化処理方法。
[21] 前記試料が喀痰前処理剤を含むことを特徴とする請求項 18〜20のいずれか 1項 記載の均質化処理方法。
[22] 前記喀痰前処理剤が、蛋白質分解酵素を含有することを特徴とする請求項 21記 載の均質化処理方法。
[23] 前記蛋白質分解酵素が、セミアルカリプロテアーゼ及びシスティンプロテアーゼか らなる群力 選択される 1種又は 2種以上であることを特徴とする請求項 22記載の均 質化処理方法。
[24] 前記喀痰前処理剤が請求項 10〜 13の 、ずれか 1項記載の均質化処理剤であるこ とを特徴とする請求項 21記載の均質化処理方法。
[25] 微生物の検出における前処理であることを特徴とする請求項 17〜24のいずれか 1 項記載の喀痰の均質化処理方法。
[26] 均質ィ匕処理した喀痰力 微生物を回収する方法であって、該均質化処理した喀痰 を被検微生物が通過可能であり且つ有機材料力 なる少なくとも 3種のフィルターを 有する分離器を用いて濾過することにより、前記被検微生物を含有する濾液を得るこ とを特徴とする喀痰からの微生物の回収方法。
[27] 喀痰の均質化処理方法が請求項 17〜25のいずれか 1項記載の均質化処理方法 であることを特徴とする請求項 26記載の微生物の回収方法。
[28] 前記分離器は、前記均質化処理した喀痰が通過する順に、第 1フィルター、第 2フ ィルター及び第 3フィルターが設けられ、下流方向に従い、順次に前記フィルターの 孔径が小となることを特徴とする請求項 26又は 27記載の微生物の回収方法。
[29] 前記第 3フィルターの孔径が 0. l ^ m-lO ^ mであることを特徴とする請求項 28 記載の微生物の回収方法。
[30] 前記第 2フィルターの孔径が 5 μ m〜30 μ mであることを特徴とする請求項 28又は 29記載の微生物の回収方法。
[31] 前記第 1フィルターの孔径が 5 μ πι〜120 /ζ mであることを特徴とする請求項 28〜
30のいずれか 1項記載の微生物の回収方法。
[32] 前記有機材料が、ポリカーボネート、ポリテトラフルォロエチレン、ポリアミド、セル口 ース及びポリエチレン力もなる群力 選択される 1種又は 2種以上であることを特徴と する請求項 26〜31のいずれ力 1項記載の微生物の回収方法。
[33] 前記被検微生物がウィルス、リケッチヤ、細菌又は真菌であることを特徴とする請求 項 26〜32のいずれ力 1項記載の微生物の回収方法。
[34] 請求項 26〜33のいずれか 1項記載の分離器であることを特徴とする微生物の分離
[35] 被検喀痰を請求項 17〜25の ヽずれか 1項記載の均質化処理方法で処理した後、 前記被検喀痰中に存在する微生物を検出することを特徴とする微生物の検出方法。
[36] 請求項 26〜32のいずれか 1項記載の微生物の回収方法により得られた濾液から 被検微生物を検出することを特徴とする微生物の検出方法。
[37] 前記微生物が、ウィルス、リケッチヤ、細菌又は真菌であることを特徴とする請求項 35又は 36記載の微生物の検出方法。
PCT/JP2006/307371 2005-04-08 2006-04-06 粘性試料のサンプリング器具、喀痰の均質化処理方法及び微生物の検出方法 WO2006109693A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007512955A JPWO2006109693A1 (ja) 2005-04-08 2006-04-06 粘性試料のサンプリング器具、喀痰の均質化処理方法及び微生物の検出方法
EP06731319A EP1867973A1 (en) 2005-04-08 2006-04-06 Sampling device for viscous sample, homogenization method for spatum and method of detecting microbe
US11/887,832 US20090054809A1 (en) 2005-04-08 2006-04-06 Sampling Device for Viscous Sample, Homogenization Method for Sputum and Method of Detecting Microbe

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005112297 2005-04-08
JP2005-112297 2005-04-08
JP2005112298 2005-04-08
JP2005-112298 2005-04-08
JP2005-134220 2005-05-02
JP2005134220 2005-05-02
JP2005277167 2005-09-26
JP2005-277167 2005-09-26

Publications (1)

Publication Number Publication Date
WO2006109693A1 true WO2006109693A1 (ja) 2006-10-19

Family

ID=37086968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307371 WO2006109693A1 (ja) 2005-04-08 2006-04-06 粘性試料のサンプリング器具、喀痰の均質化処理方法及び微生物の検出方法

Country Status (4)

Country Link
US (1) US20090054809A1 (ja)
EP (1) EP1867973A1 (ja)
JP (2) JPWO2006109693A1 (ja)
WO (1) WO2006109693A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487306A (zh) * 2013-10-11 2014-01-01 上海微银生物技术有限公司 一种含涂片功能的痰罐
WO2014061785A1 (ja) * 2012-10-19 2014-04-24 株式会社日立製作所 生体物質回収方法及び生体物質回収装置
US9598721B2 (en) 2010-05-17 2017-03-21 Curetis Gmbh Universally applicable lysis buffer and processing methods for the lysis of bodily samples
JP2021536011A (ja) * 2018-09-06 2021-12-23 杭州優思達生物技術有限公司 生体試料処理装置
KR102594607B1 (ko) * 2023-05-12 2023-10-26 주식회사 삼마테크 시료 샘플링 장치

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11213365B1 (en) * 2010-05-19 2022-01-04 Michael Angelillo Arthrocentesis kit device
US20120095369A1 (en) 2010-10-15 2012-04-19 Teixeira Scott M System and Method for Sampling Device for Bodily Fluids
EP3150702B1 (en) 2011-06-19 2021-05-19 DNA Genotek, Inc. Devices, solutions and methods for sample collection
US9434977B2 (en) 2013-02-27 2016-09-06 Avent, Inc. Rapid identification of organisms in bodily fluids
CN103308360B (zh) * 2013-06-07 2015-12-23 王惠萱 粘稠性临床检验标本的降粘设备及降粘方法
EP3101115B1 (en) 2014-01-31 2020-10-21 Toppan Printing Co., Ltd. Biomolecule analysis kit and biomolecule analysis method
CN113430105A (zh) * 2015-04-08 2021-09-24 贝克顿·迪金森公司 用于从半固体表面收集微生物生长的设备和装置
JP6761717B2 (ja) * 2016-09-29 2020-09-30 ケーディーアイコンズ株式会社 情報処理装置及びプログラム
GB201617713D0 (en) 2016-10-19 2016-11-30 Q-Linea Ab Method for recovering microbial cells
WO2018195747A1 (zh) * 2017-04-25 2018-11-01 赵佳奇 一种结核痰样采集处理装置
CN108982498B (zh) * 2018-07-18 2021-02-02 浙江今复康生物科技有限公司 利用痰液间接检测气道表面液pH值的方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291160A (ja) * 1988-05-18 1989-11-22 Kyokuto Seiyaku Kogyo Kk 喀痰処理用器具
JPH02273197A (ja) * 1989-04-14 1990-11-07 Senjiyu Seiyaku Kk 喀痰の均等化剤および均等化法
JPH0378640A (ja) * 1989-08-23 1991-04-03 Ebara Infilco Co Ltd 試料サンプリング装置
JP2547354B2 (ja) * 1990-06-18 1996-10-23 迪郎 芝崎 粘稠性を有する検体の捕捉方法と検体捕捉装置
JP2641306B2 (ja) * 1988-10-31 1997-08-13 ホルガー・ベーンク 血液凝固時間の試験および測定方法並びに装置
JPH10235273A (ja) * 1997-02-28 1998-09-08 Pentel Kk 吐出容器
JP2002116205A (ja) * 2000-10-11 2002-04-19 Olympus Optical Co Ltd 液体吐出装置、これを用いるマイクロアレイ製造方法および装置
JP3094186U (ja) * 2002-11-20 2003-06-06 仁志 田中 多段式ろ過器
JP3421331B2 (ja) * 1999-12-17 2003-06-30 ビオ−ラド・パストゥール 生物学的試料を得るための装置及び方法
WO2004055170A1 (ja) * 2002-12-17 2004-07-01 Arkray, Inc. 微生物または細胞の収集方法およびそれに用いる微生物または細胞の収集用具
JP2004180551A (ja) * 2002-12-02 2004-07-02 Arkray Inc 微生物の収集方法およびそれを用いた遺伝子の増幅方法若しくは検出方法

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007A (en) * 1841-03-16 Improvement in the mode of harvesting grain
US2006A (en) * 1841-03-16 Clamp for crimping leather
US2008A (en) * 1841-03-18 Gas-lamp eok conducting gas pkom ah elevated buhner to one below it
US4443700A (en) * 1980-02-01 1984-04-17 Pedro B. Macedo Optical sensing apparatus and method
US4297887A (en) * 1980-02-19 1981-11-03 The United States Of America As Represented By The Secretary Of The Navy High-sensitivity, low-noise, remote optical fiber
US4654520A (en) * 1981-08-24 1987-03-31 Griffiths Richard W Structural monitoring system using fiber optics
US4397551A (en) * 1981-10-29 1983-08-09 Northern Telecom Limited Method and apparatus for optical fiber fault location
US4463451A (en) * 1982-01-11 1984-07-31 The Standard Oil Company System for seismic digital data acquisition over water covered areas
US4572949A (en) * 1982-04-14 1986-02-25 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor for detecting very small displacements of a surface
US5363463A (en) * 1982-08-06 1994-11-08 Kleinerman Marcos Y Remote sensing of physical variables with fiber optic systems
US4538103A (en) * 1982-08-30 1985-08-27 John Cappon Time domain reflectometer apparatus for identifying the location of cable defects
US4593385A (en) * 1983-05-19 1986-06-03 The Charles Stark Draper Laboratory Fiber optic sensor lead fiber noise cancellation
JPS6085312A (ja) * 1983-10-17 1985-05-14 Hitachi Ltd 固体化干渉計
US5991479A (en) * 1984-05-14 1999-11-23 Kleinerman; Marcos Y. Distributed fiber optic sensors and systems
DE3421056C2 (de) * 1984-06-06 1987-04-30 Feldmühle AG, 4000 Düsseldorf Kieferimplantat mit einem Tragabschnitte aufweisenden Unterteil
US4697926A (en) * 1985-02-08 1987-10-06 The Board Of Trustees Of The Leland Stanford Junior University Coherent distributed sensor and method using short coherence length sources
US4770535A (en) * 1985-02-08 1988-09-13 The Board Of Trustees Of The Leland Stanford Junior University Distributed sensor array and method using a pulsed signal source
DE3506884A1 (de) * 1985-02-27 1986-08-28 Philips Patentverwaltung Gmbh, 2000 Hamburg Optisches zeitbereichsreflektometer mit heterodyn-empfang
FR2578645B1 (fr) * 1985-03-07 1987-03-20 Sopha Praxis Dispositif optique de detection d'effort, procede de mesure d'effort au moyen dudit dispositif et leur application a une balance
US4688200A (en) * 1985-09-18 1987-08-18 Western Geophysical Company Of America Optical system for detecting acoustic wave energy in a fluid medium
US4649529A (en) * 1985-12-02 1987-03-10 Exxon Production Research Co. Multi-channel fiber optic sensor system
US5223967A (en) * 1986-06-11 1993-06-29 Mcdonnell Douglas Corporation Secure communications system
US5311592A (en) * 1986-06-11 1994-05-10 Mcdonnell Douglas Corporation Sagnac interferometer based secure communication system
JPH0820506B2 (ja) * 1986-09-10 1996-03-04 海洋科学技術センター 海洋音響トモグラフィーデータ伝送装置
IL80276A0 (en) * 1986-10-10 1987-01-30 Ispra Israel Prod Res Co Ltd Wallpaper comprising an optical fibre
US4907856A (en) * 1988-08-29 1990-03-13 Motorola, Inc. Acoustooptic transducer arrangement for optical fibers
FR2636778B1 (fr) * 1988-08-31 1990-12-14 Sgs Thomson Microelectronics Transistor mos composite et application a une diode roue libre
DE3832569A1 (de) * 1988-09-24 1990-03-29 Philips Patentverwaltung Faseroptischer sensor
US5191614A (en) * 1988-11-14 1993-03-02 Mcdonnell Douglas Corporation Secure communication system
GB8828408D0 (en) * 1988-12-06 1989-01-05 British Telecomm Loss detector
US4991923A (en) * 1989-01-17 1991-02-12 Board Of Trustees Of The Leland Stanford Junior University Acousto-optic modulator for optical fibers using Hertzian contact with a grooved transducer substrate
DE69019865T2 (de) * 1989-03-02 1996-02-15 Furukawa Electric Co Ltd Verfahren und Vorrichtung zum Identifizieren eines optischen Übertragungsmediums.
US5015842A (en) * 1989-06-01 1991-05-14 United Technologies Corporation High density fiber optic damage detection system
US4994668A (en) * 1989-09-01 1991-02-19 The United States Of America As Represented By The Secretary Of The Navy Planar fiber-optic interferometric acoustic sensor
US5046848A (en) * 1989-09-08 1991-09-10 Mcdonnell Douglas Corporation Fiber optic detection system using a Sagnac interferometer
GB9007974D0 (en) * 1990-04-09 1990-06-06 British Telecomm Loss detection
US5104391A (en) * 1990-10-30 1992-04-14 Advanced Cardiovascular Systems Optical fiber breakage detection system
US5093568A (en) * 1990-12-14 1992-03-03 John Maycock Monitoring system for fiber optic cables utilizing an OTDR for detection of signal loss and automatic location of faults in the cable
US5140559A (en) * 1991-02-21 1992-08-18 The United States Of America As Represented By The Secretary Of The Navy Low flow-noise conformal fiber optic hydrophone
US5173743A (en) * 1991-05-28 1992-12-22 Litton Systems, Inc. Fiber optical time-division-multiplexed unbalanced pulsed interferometer with polarization fading compensation
US5194847A (en) * 1991-07-29 1993-03-16 Texas A & M University System Apparatus and method for fiber optic intrusion sensing
CA2093128A1 (en) * 1991-08-02 1993-02-03 Akira Fujisaki Method of detecting an optical transmission line
FR2682774B1 (fr) * 1991-10-17 1996-02-16 Geophysique Cie Gle Dispositif d'emission acoustique pour sismique marine.
US5206924A (en) * 1992-01-31 1993-04-27 The United States Of America As Represented By The Secretary Of The Navy Fiber optic Michelson sensor and arrays with passive elimination of polarization fading and source feedback isolation
GB9202564D0 (en) * 1992-02-07 1992-03-25 Marconi Gec Ltd Optical signal transmission network
US5355208A (en) * 1992-06-24 1994-10-11 Mason & Hanger National, Inc. Distributed fiber optic sensor for locating and identifying remote disturbances
FR2694088B1 (fr) * 1992-07-27 1994-09-02 France Telecom Système interférométrique de détection et de localisation de défauts réflecteurs de structures guidant la lumière.
US5313266A (en) * 1992-08-17 1994-05-17 Keolian Robert M Demodulators for optical fiber interferometers with [3×3] outputs
US5361130A (en) * 1992-11-04 1994-11-01 The United States Of America As Represented By The Secretary Of The Navy Fiber grating-based sensing system with interferometric wavelength-shift detection
US5351318A (en) * 1993-04-05 1994-09-27 The Board Of Trustees Of The Leland Stanford Jr./University Fiber optic communication system and fiber optic modulator
US5373487A (en) * 1993-05-17 1994-12-13 Mason & Hanger National, Inc. Distributed acoustic sensor
US6440457B1 (en) * 1993-05-27 2002-08-27 Alza Corporation Method of administering antidepressant dosage form
GB9324333D0 (en) * 1993-11-26 1994-01-12 Sensor Dynamics Ltd Measurement of one or more physical parameters
US5473459A (en) * 1993-12-03 1995-12-05 Optimux Systems Corporation Optical telecommunications system using phase compensation interferometry
US5691957A (en) * 1994-06-30 1997-11-25 Woods Hole Oceanographic Institution Ocean acoustic tomography
US5497233A (en) * 1994-07-27 1996-03-05 Litton Systems, Inc. Optical waveguide vibration sensor and method
DE4428650A1 (de) * 1994-08-12 1996-02-15 Marinitsch Waldemar Optische Druckkrafterfassungsvorrichtung
GB2292495B (en) * 1994-08-17 1998-03-25 Northern Telecom Ltd Fault location in optical communication systems
US5589937A (en) * 1994-10-31 1996-12-31 The United States Of America As Represented By The Secretary Of The Navy Fiber optic self-multiplexing amplified ring transducer and force transfer sensor with pressure compensation
US5502782A (en) * 1995-01-09 1996-03-26 Optelecom, Inc. Focused acoustic wave fiber optic reflection modulator
US5636021A (en) * 1995-06-02 1997-06-03 Udd; Eric Sagnac/Michelson distributed sensing systems
US5767950A (en) * 1996-04-15 1998-06-16 Eastman Kodak Company Method and apparatus for calibrating iris of photographic printer
US5663927A (en) * 1996-05-23 1997-09-02 The United States Of America As Represented By The Secretary Of The Navy Buoyed sensor array communications system
US5936719A (en) * 1996-07-16 1999-08-10 Johnson; Robert W. Test unit and method for simultaneous testing of multiple optical fibers
US6383763B1 (en) * 1996-07-26 2002-05-07 Case Western Reserve University Detection of mycobacteria
US6072921A (en) * 1997-07-18 2000-06-06 Litton Systems, Inc. Method of operating a fiber-optic acoustical sensor, apparatus for practicing the method, and in-line fiber-optic polarizer usable in such apparatus
US5778114A (en) * 1997-04-18 1998-07-07 Eslambolchi; Hossein Fiber analysis method and apparatus
GB9721473D0 (en) * 1997-10-09 1997-12-10 Sensor Dynamics Ltd Interferometric sensing apparatus
US6115520A (en) * 1998-03-05 2000-09-05 Lucent Technologies Inc. Compact mach-zehnder interferometer and wavelength reference employing same
US6456381B1 (en) * 1998-04-28 2002-09-24 Fujikura Ltd. Apparatus for and method of using optical interference of light propagating through an optical fiber loop
US5976507A (en) * 1998-06-04 1999-11-02 Colgate Palmolive Company Dentrifice composition containing encapsulated reactive ingredients
FR2781500B1 (fr) * 1998-07-23 2000-09-08 Bio Merieux Dispositif perfectionne et procede de lyse de micro-organismes
US6315463B1 (en) * 1998-08-21 2001-11-13 Infineon Technologies Ag Method for production of an optoelectronic female connector element, and an optoelectronic connector
US5975697A (en) * 1998-11-25 1999-11-02 Oti Ophthalmic Technologies, Inc. Optical mapping apparatus with adjustable depth resolution
JP3759845B2 (ja) * 1998-12-16 2006-03-29 富士通株式会社 光伝送路の監視のための方法及びシステム
US6459486B1 (en) * 1999-03-10 2002-10-01 Eric Udd Single fiber Sagnac sensing system
US6788417B1 (en) * 1999-04-30 2004-09-07 The Regents Of The University Of California Optical fiber infrasound sensor
US6194706B1 (en) * 1999-05-19 2001-02-27 Lucent Technologies Inc. Methods and systems for locating buried fiber optic cables
US6269198B1 (en) * 1999-10-29 2001-07-31 Litton Systems, Inc. Acoustic sensing system for downhole seismic applications utilizing an array of fiber optic sensors
US20010028766A1 (en) * 1999-11-23 2001-10-11 Hamid Hatami-Hanza Interferometer based optical devices such as amplifiers
FR2818388B1 (fr) * 2000-12-15 2003-02-14 Inst Francais Du Petrole Methode et dispositif d'exploration sismique d'une zone souterraine immergee, utilisant des recepteurs sismiques couples avec le fond de l'eau
US6594055B2 (en) * 2001-01-17 2003-07-15 Oyster Optics, Inc. Secure fiber optic telecommunications system and method
US6606148B2 (en) * 2001-04-23 2003-08-12 Systems And Processes Engineering Corp. Method and system for measuring optical scattering characteristics
US6628570B2 (en) * 2001-08-20 2003-09-30 The United States Of America As Represented By The Secretary Of The Navy Laser velocimetry detection of underwater sound
US6798523B2 (en) * 2001-12-04 2004-09-28 Honeywell International Inc. Sensor and method for detecting fiber optic faults
US20040197845A1 (en) * 2002-08-30 2004-10-07 Arjang Hassibi Methods and apparatus for pathogen detection, identification and/or quantification
ES2294086T3 (es) * 2002-12-16 2008-04-01 Aston Photonic Technologies Ltd. Sistema de interrogacion de una red de guias de onda opticas y sistema sensor.
US20040185454A1 (en) * 2003-03-21 2004-09-23 Jones Alison M. Identification and quantification of microbial species in a sample
US6859419B1 (en) * 2003-08-18 2005-02-22 The United States Of America As Represented By The Secretary Of The Navy Laser-based acousto-optic uplink communications technique
US8020790B2 (en) * 2003-10-24 2011-09-20 Applied Biosystems, Llc Biological sample disruption techniques
US20050239045A1 (en) * 2003-12-08 2005-10-27 Arkray Inc. Microorganism or cell collecting method, and microorganism or cell collecting implement used for the method
EP1788426B1 (en) * 2004-08-30 2012-12-12 Mitsubishi Electric Corporation Optical communication system with raman amplifier
US20080261229A1 (en) * 2006-03-28 2008-10-23 Oppedahl Angela M Simultaneous rapid detection of microbes
US9580760B2 (en) * 2006-03-28 2017-02-28 Becton, Dickinson And Company Rapid detection of mold by accelerated growth and detection

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291160A (ja) * 1988-05-18 1989-11-22 Kyokuto Seiyaku Kogyo Kk 喀痰処理用器具
JP2641306B2 (ja) * 1988-10-31 1997-08-13 ホルガー・ベーンク 血液凝固時間の試験および測定方法並びに装置
JPH02273197A (ja) * 1989-04-14 1990-11-07 Senjiyu Seiyaku Kk 喀痰の均等化剤および均等化法
JPH0378640A (ja) * 1989-08-23 1991-04-03 Ebara Infilco Co Ltd 試料サンプリング装置
JP2547354B2 (ja) * 1990-06-18 1996-10-23 迪郎 芝崎 粘稠性を有する検体の捕捉方法と検体捕捉装置
JPH10235273A (ja) * 1997-02-28 1998-09-08 Pentel Kk 吐出容器
JP3421331B2 (ja) * 1999-12-17 2003-06-30 ビオ−ラド・パストゥール 生物学的試料を得るための装置及び方法
JP2002116205A (ja) * 2000-10-11 2002-04-19 Olympus Optical Co Ltd 液体吐出装置、これを用いるマイクロアレイ製造方法および装置
JP3094186U (ja) * 2002-11-20 2003-06-06 仁志 田中 多段式ろ過器
JP2004180551A (ja) * 2002-12-02 2004-07-02 Arkray Inc 微生物の収集方法およびそれを用いた遺伝子の増幅方法若しくは検出方法
WO2004055170A1 (ja) * 2002-12-17 2004-07-01 Arkray, Inc. 微生物または細胞の収集方法およびそれに用いる微生物または細胞の収集用具

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598721B2 (en) 2010-05-17 2017-03-21 Curetis Gmbh Universally applicable lysis buffer and processing methods for the lysis of bodily samples
WO2014061785A1 (ja) * 2012-10-19 2014-04-24 株式会社日立製作所 生体物質回収方法及び生体物質回収装置
JP2014082946A (ja) * 2012-10-19 2014-05-12 Hitachi Ltd 生体物質回収方法及び生体物質回収装置
US9988663B2 (en) 2012-10-19 2018-06-05 Hitachi, Ltd. Method for collecting biological material and device for collecting biological material
CN103487306A (zh) * 2013-10-11 2014-01-01 上海微银生物技术有限公司 一种含涂片功能的痰罐
CN103487306B (zh) * 2013-10-11 2015-12-09 上海微银生物技术有限公司 一种含涂片功能的痰罐
JP2021536011A (ja) * 2018-09-06 2021-12-23 杭州優思達生物技術有限公司 生体試料処理装置
JP7188823B2 (ja) 2018-09-06 2022-12-13 杭州優思達生物技術有限公司 試料容器
KR102594607B1 (ko) * 2023-05-12 2023-10-26 주식회사 삼마테크 시료 샘플링 장치

Also Published As

Publication number Publication date
JPWO2006109693A1 (ja) 2008-11-13
JP2010160156A (ja) 2010-07-22
US20090054809A1 (en) 2009-02-26
EP1867973A1 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
WO2006109693A1 (ja) 粘性試料のサンプリング器具、喀痰の均質化処理方法及び微生物の検出方法
EP3304031B1 (en) A component of a device, a device, and a method for purifying and testing biomolecules from biological samples
US10639628B2 (en) Systems and methods for sample concentration and detection
US10774300B2 (en) Methods and kits for isolating microorganisms from culture
EP2651561B1 (en) Methods for the isolation, accumulation characterization and/or identification of microorganisms using a filtration and sample transfer device and such device
EP2510331A2 (en) Liquid to liquid biological particle concentrator with disposable fluid path
JP2002519649A (ja) 濾過抽出装置及び該装置の利用方法
JP6207815B2 (ja) フィルタリング部材及びフィルタリング方法
US10934541B2 (en) Method for separating nucleic acid from specimen containing nucleic acid and device therefor
JP5753839B2 (ja) 顕微鏡イメージングのための有機微小物体の高濃度化
US20140038228A1 (en) Removable layer and method of use
US20090171245A1 (en) Swab extraction device and methods of using
JP6606062B2 (ja) 生物学的試料を調製するための装置
JP6490755B2 (ja) フィルタリング部材
JP2009125033A (ja) 核酸単離方法、核酸抽出装置、及びそれらを用いた細胞種の同定方法及び遺伝子検出方法
WO2023135704A1 (ja) 捕集方法、検査方法、容器、遠心装置および検査システム
WO2022241243A1 (en) Techniques for detection and quantification of live and dead bacteria in a fluid sample
JP2016067291A (ja) 核酸の分離精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512955

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11887832

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006731319

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731319

Country of ref document: EP