WO2006109502A1 - 半導体ウエーハの評価方法及び評価装置並びに半導体ウエーハの製造方法 - Google Patents

半導体ウエーハの評価方法及び評価装置並びに半導体ウエーハの製造方法 Download PDF

Info

Publication number
WO2006109502A1
WO2006109502A1 PCT/JP2006/305911 JP2006305911W WO2006109502A1 WO 2006109502 A1 WO2006109502 A1 WO 2006109502A1 JP 2006305911 W JP2006305911 W JP 2006305911W WO 2006109502 A1 WO2006109502 A1 WO 2006109502A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
semiconductor wafer
change
evaluation
nanotopography
Prior art date
Application number
PCT/JP2006/305911
Other languages
English (en)
French (fr)
Inventor
Keiichi Okabe
Hisakazu Takano
Daisuke Nakamata
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to EP06729859A priority Critical patent/EP1868235A1/en
Publication of WO2006109502A1 publication Critical patent/WO2006109502A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/36DC mode
    • G01Q60/363Contact-mode AFM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/04Display or data processing devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor wafer evaluation method and apparatus, and a semiconductor wafer manufacturing method. More specifically, the present invention relates to a semiconductor wafer surface nanotopography evaluation method and evaluation apparatus, and a surface nanotopography. The present invention relates to a method for manufacturing a good semiconductor wafer. Background art
  • a method for manufacturing a semiconductor wafer such as a silicon wafer is a slicing process in which a semiconductor ingot is cut (sliced) to form a thin disc-shaped wafer, and cracking and chipping of the wafer are prevented.
  • a chamfering process for chamfering the outer periphery a rubbing process for flattening the wafer, an etching process for removing processing distortion remaining on the wafer surface layer, a polishing process for mirroring the wafer surface, and a polishing process
  • a cleaning process for removing contaminants such as attached abrasives and foreign matters.
  • a heat treatment or grinding process may be added as necessary, the process order may be changed, or the same process may be performed multiple times.
  • Nanotopography is an index that represents the flatness of the wafer surface, and represents the waviness of the non-adsorbed wafer surface in the spatial wavelength range from 0.1 mm to several tens of mm.
  • Nanotopography is generally measured by a device such as Nanomapper from ADE, NanoPro from KLA Tencor, Dynasearch from Raytex. Since these devices are optical and measure using the surface reflection of the object to be measured, the target wafer needs to be in a mirror state where the surface reflectance is somewhat high. Therefore, it is generally measured for wafers after polishing.
  • An object of the present invention is to provide a method for evaluating nanotopography on a semiconductor wafer surface, an evaluation apparatus, and a method for manufacturing a semiconductor wafer having good surface nanotopography.
  • the present invention provides a method for evaluating nanotopography of a surface of a semiconductor wafer cut from a semiconductor ingot, comprising at least polishing the surface of the wafer.
  • the surface shape in the cutting direction is measured before polishing, and the maximum slope of the change in warpage of the wafer surface is obtained from the cross-sectional shape in the cutting direction of the measured surface shape.
  • a method for evaluating a semiconductor wafer characterized by evaluating nanotopography of a wafer surface after polishing.
  • the surface shape in the cutting direction is measured at least before polishing the wafer surface.
  • the obtained maximum value has a high correlation with the nanotopography of the wafer surface after polishing.
  • the nanotopography of the wafer surface after polishing can be accurately evaluated from the previous surface shape.
  • the maximum value of the slope of the obtained change in warpage is set in a measurement section having a predetermined width in the cutting direction, the measurement section is moved by a distance smaller than the width, and each section to be moved is moved. It is preferable to set the maximum value of the change in the surface height to be calculated within the range, or the value obtained by dividing the change in the warp during that time by the distance to the point where the change in the point force at which the warp began to change.
  • the maximum value of the slope of the warp change to be obtained is set to a measurement section having a predetermined width in the cutting direction, the measurement section is moved by a distance smaller than the width, and ⁇ ,
  • the maximum amount of change in the surface height obtained in this way (hereinafter sometimes referred to as Line ⁇ Warp), or the point force at which the warp began to change is also the distance to the point where the change ended, and the amount of change in the warp during that time If these values are divided by (which may be referred to as Warp change), these values have a particularly high correlation with the nanotopography of the wafer surface after polishing. Therefore, the nanotopography of the wafer surface after polishing is used. Can be more accurately evaluated before polishing.
  • the width of the measurement section is preferably 20 mm or less.
  • the width of the measurement section is 20 mm or less, the correlation between Line ⁇ Warp and the nanotopography of the polished wafer surface can be made higher.
  • the surface shape of the wafer is measured in a state of being cut as it is cut.
  • the nanotopography on the wafer surface can be evaluated at an early stage of the wafer manufacturing process. Since this can be done, the productivity of the wafer can be improved by quickly feeding this result back to the cutting conditions.
  • the maximum value of the slope of the warp change is obtained after the cross-sectional shape is smoothed.
  • the cross-sectional shape is smoothed by the moving average method, the median scanning method, the polynomial fitting method, etc. to obtain the maximum value of the inclination of the change of the sledge, the calculated maximum value and the polished wafer are obtained.
  • the correlation with the surface nanotopography can be made higher.
  • the smoothing process is performed by a moving average method, and the moving average data interval is 20 to 40 mm! /.
  • the smoothing process is performed by the moving average method and the moving average data section is 20 to 40 mm, the correlation between the maximum value obtained and the nanotopography of the polished wafer surface can be further increased. .
  • the surface shape of the semiconductor wafer is measured by a deviation between an atomic force microscope method, a stylus method, and a capacitance method.
  • the surface shape of a semiconductor wafer can be easily measured by using a conventional measuring apparatus by measuring the surface shape of the semiconductor wafer by using an atomic force microscope method, a stylus method, or a capacitance method. I'll do it.
  • the present invention is a semiconductor wafer evaluation apparatus, comprising at least a surface shape measuring means for measuring a surface shape in a cutting direction of the semiconductor wafer, and a cross-sectional shape in the cutting direction of the surface shape.
  • the data processing means for obtaining the maximum value of the inclination of the warp on the wafer surface from the data of the wafer, and comparing the maximum value of the inclination of the warpage with the reference value to evaluate the quality of the nanotopography of the surface.
  • An evaluation apparatus for a semiconductor wafer comprising: an evaluation means.
  • the surface shape measuring means for measuring the surface shape in the cutting direction of the semiconductor wafer, and the inclination of the change in warpage of the wafer surface from the cross-sectional shape data in the cutting direction of the surface shape.
  • the evaluation device comprises a data processing means for obtaining the maximum value of the above and an evaluation means for evaluating the quality of the nanotopography of the surface by comparing the maximum value of the slope of the warp with a reference value,
  • the maximum value obtained is the nanometer on the wafer surface after polishing. Since it has a high correlation with the topography, it is possible to accurately evaluate the quality of the nanotopography on the wafer surface after polishing from the surface shape before polishing by comparing this with the reference value.
  • the maximum value of the inclination of the change in the obtained sledge is determined by setting a measurement section having a predetermined width in the cutting direction, moving the measurement section by a distance smaller than the width, and moving each section to be moved.
  • the maximum value of the slope of the change in the sledge to be obtained is set to a measurement section having a predetermined width in the cutting direction, the measurement section is moved by a distance smaller than the width, and within each section to be moved.
  • the maximum amount of change in the desired surface height (Line ⁇ Warp), or the value obtained by dividing the amount of change in the warp by the distance from the point where the warp starts to change to the point where the change ends (W arp change) Therefore, these values have a particularly high correlation with the nanotopography of the wafer surface after polishing, and therefore an evaluation device that can more accurately evaluate the quality of the nanotopography of the wafer surface after polishing. It becomes.
  • the data processing means obtains a maximum value of the slope of the change after smoothing the cross-sectional shape.
  • the evaluation apparatus can perform an accurate evaluation.
  • the data processing means performs the smoothing process by a moving average method, and sets a moving average data interval to 20 to 40 mm.
  • the data processing means performs the smoothing process by the moving average method and sets the moving average data section to 20 to 40 mm, the obtained maximum value and the nano-surface on the polished wafer surface are obtained. Since the correlation with the topography is even higher, the evaluation device can perform more accurate evaluation.
  • the surface shape measuring means includes an atomic force microscope, a stylus shape measuring device, an electrostatic It is preferable that the capacity-type shape measuring device is a deviation.
  • the surface shape measuring means is one of an atomic force microscope, a stylus type shape measuring device, and a capacitance type shape measuring device, measurement can be easily performed using a conventional measuring device.
  • the evaluation apparatus can be performed.
  • the present invention is a method for manufacturing a semiconductor wafer that polishes at least a wafer obtained by cutting a semiconductor ingot, and the surface shape of the wafer surface is evaluated by any one of the above methods.
  • the present invention also provides a method for manufacturing a semiconductor wafer, characterized in that cutting conditions are adjusted according to the evaluation result.
  • the semiconductor having good nanotopography on the surface after polishing. Adjustments can be made prior to polishing so that the cutting conditions are such that wafers can be manufactured, making it possible to make adjustments more quickly and efficiently producing wafers with good surface topography.
  • the present invention is a method for manufacturing a semiconductor wafer that polishes at least a wafer obtained by cutting a semiconductor ingot, wherein the surface shape of the wafer surface is evaluated by any one of the above methods.
  • the present invention provides a method for manufacturing a semiconductor wafer, wherein the quality of the polished wafer surface is determined according to the evaluation result.
  • the quality of the wafer before polishing is determined.
  • the wafers can be selected and advanced to the next process, and wafers with good surface nanotopography can be produced efficiently.
  • the surface shape in the cutting direction is measured at least before polishing the wafer surface, and the maximum value of the slope of the change in warpage of the wafer surface is determined from the cross-sectional shape in the cutting direction of the measured surface shape. If obtained, the obtained maximum value has a high correlation with the nanotopography of the wafer surface after polishing, so that the nanotopography of the wafer surface after polishing can be accurately evaluated from the surface shape before polishing.
  • the present invention from the surface shape measuring means for measuring the surface shape of the semiconductor wafer in the cutting direction and the cross-sectional shape data in the cutting direction of the surface shape, Data processing means for obtaining the maximum value of the slope of the sled change, and evaluation means for evaluating the quality of the nanotopography of the surface by comparing the maximum value of the slope of the sled change with a reference value.
  • the maximum value obtained has a high correlation with the nanotopography of the wafer surface after polishing. By comparing this with the reference value, the surface shape before polishing can be compared with the nanostructure on the wafer surface after polishing. This is an evaluation device that can accurately evaluate the quality of topography.
  • the surface shape of the wafer surface is evaluated by the method according to the present invention and the cutting conditions are adjusted according to the evaluation result, a semiconductor wafer having a good surface topography after polishing can be produced.
  • the wafer can be adjusted more quickly to meet the cutting conditions, and the wafer can be efficiently manufactured with good surface topography.
  • the non-defective wafer can be selected and advanced to the next process, and the efficiency is improved.
  • a polished wafer with good surface topography can be produced.
  • FIG. 1 is a schematic diagram showing an example of a semiconductor wafer evaluation apparatus according to the present invention.
  • FIG. 2 is a process diagram showing an example of a semiconductor wafer evaluation method according to the present invention.
  • FIG. 3 is a graph showing the correlation between the warp of the silicon wafer surface measured in the state of a no-cut and the value of the nanotopography of the wafer surface measured after polishing.
  • FIG. 4 is an explanatory diagram for explaining (a) Warp change degree and (b) Line ⁇ Warp.
  • FIG. 5 (a) is a graph showing the correlation between Warp change and nanotopography, and (b) is the correlation between Line ⁇ Warp and nanotopography when the measurement section width is 1 Omm. It is a graph to show.
  • FIG. 6 An example of a graph showing the correlation between the line ⁇ Warp in the case where smoothing processing is performed using the moving average method and the nanotopography after polishing.
  • FIG. 7 A graph showing the relationship between the width of the measurement category and the correlation coefficient when obtaining Line ⁇ Warp.
  • FIG. 8 The measurement results of the surface shape in the examples are shown, (a) shows before adjustment of the cutting conditions, and (b) shows after adjustment of the cutting conditions.
  • FIG. 9 (a) is a graph showing an example of a cross-sectional measurement shape after cutting
  • FIG. 9 (b) is an explanatory view showing the measurement direction of FIG. 9 (a)
  • FIG. 9 (c) Fig. 9 (d) ⁇ Fig. 9 (e) are graphs showing examples of the nanotopography (nanotopo) and warp shape after polishing.
  • Fig. 9 (c) is a nanotopographic map
  • Fig. 9 (d) is a bird's-eye view.
  • Figure 9 (e) is a slice map.
  • the wafer surface state is measured in the as-cut state and parameters such as warp and warp are obtained, they are not correlated with the nanotopography of the wafer surface after polishing. To evaluate the topography, it was necessary to perform the evaluation after the polishing process was completed.
  • the present inventors measured the warp of the silicon wafer surface in the as-cut state, and measured the nanotopography on the wafer surface measured after polishing the silicon wafer. The correlation with was obtained.
  • HCT was used as an index to represent nanotopography.
  • HCT is an abbreviation for Height Change Threshold, and the ratio of the area where the height difference (height change) of the wafer surface height (height change) exceeds a specified value within the square pixel size measurement area to the measurement area. (% are a) set the formula to be the set value!, is a value indicating the value.
  • HCT was obtained by using CR83 SQM manufactured by ADE with a pixel size of 10 mm square and% Area set to 0.5%.
  • FIG. 3 shows the results.
  • wafers with an HCT of 125 nm or less are judged as acceptable.
  • Warp there was a strong correlation between Warp in the as-cut state and the nanotopography after polishing. That is, it was confirmed that warped nanotopography could not be evaluated by Warp. Therefore, the present inventors diligently studied evaluation parameters that can be measured in the wafer-cut state of the wafer and correlate with the nanotopography of the wafer surface after polishing. Then, the surface shape in the cutting direction is measured, and the maximum inclination of the change in warpage of the wafer surface is obtained from the cross-sectional shape in the cutting direction of the measured surface shape, and this is used to determine the wafer after polishing. By evaluating the nanotopography of the surface, it was found that the nanotopography of the wafer surface after polishing could be accurately evaluated before polishing.
  • the warp change is the distance to the point at which the sledge begins to change between the start of cutting and the end of cutting of the wafer. This is the value obtained by dividing the amount of change in sled.
  • Line ⁇ Warp means that a measurement section with a predetermined width is set in the cutting direction in the cross-sectional shape (measurement curve in the figure), and the measurement section is a distance smaller than the width. This is the maximum value of the change in the surface height to be obtained in each section to be moved.
  • Figure 5 (a) is a graph showing the correlation between Warp change and nanotopography, and (b) the measurement section width is 10 mm and the measurement section is moved by a distance of 0.5 mm. It is a graph which shows the correlation with line (DELTA) Warp in case, and nanotopography one. Thus, all had high correlation. Incidentally, linear regression curve of the contribution R 2 each 0.7157, 0. is 8361, the correlation was higher at Line delta Warp. In the measurement of Line ⁇ Warp, it is more preferable that the distance for moving the measurement section is equal to the distance between the measurement points.
  • FIG. 1 is a schematic diagram showing an example of a semiconductor wafer evaluation apparatus according to the present invention.
  • This evaluation apparatus 10 uses the surface shape measuring means 1 for measuring the surface shape in the cutting direction of the semiconductor wafer and the cross-sectional shape data in the cutting direction of the surface shape to obtain the maximum inclination of the change in the warpage of the wafer surface.
  • a data processing means 2 for obtaining a value
  • an evaluation means 3 for evaluating the quality of nanotopography on the wafer surface by comparing the maximum value of the slope of the warp with a reference value.
  • the maximum value of the slope of the change in warpage obtained by the data processing means 2 sets a measurement category having a predetermined width in the cutting direction in the cross-sectional shape, and The measurement section is moved by a distance smaller than the width, and the change is finished from the maximum amount of change in surface height (Line ⁇ Warp) required in each section to be moved, or the point at which the warpage starts to change.
  • the value is the value obtained by dividing the amount of warpage change in the distance to the point (Warp change). This is because these values have a particularly high correlation with the nanotopography of the wafer surface after polishing, so that the quality of the nanotopography of the wafer surface after polishing can be more accurately evaluated.
  • the data processing means 2 performs smoothing processing on the cross-sectional shape by the moving average value method, the scanning median value method, the polynomial fitting method, or the like, the data processing means 2 obtains the maximum value of the slope of the warpage. Since the correlation between the obtained maximum value and the nanotopography of the polished wafer surface becomes higher, an accurate evaluation can be performed.
  • the data processing means 2 performs the smoothing process by the moving average method and sets the moving average data section to 20 to 40 mm, the correlation between the obtained maximum value and the nanotopography of the wafer surface after polishing Since it becomes higher, more accurate evaluation can be performed.
  • the surface shape measuring means 1 is not particularly limited as long as it can measure the surface shape, and is any one of an atomic force microscope, a stylus shape measuring device, and a capacitance type shape measuring device. If it is, it is preferable because it can be easily measured using a conventional measuring apparatus.
  • FIG. 2 is a process diagram showing an example of such a semiconductor wafer evaluation method.
  • Semiconductor ingots can be used with those grown by conventional CZ and FZ methods. There is no particular limitation.
  • the semiconductor ingot can be cut using a conventional wire saw. Of course, an inner peripheral blade slicer or an outer peripheral blade slicer can also be used. Further, after cutting, the wafer can be washed as necessary.
  • the surface shape measuring means 1 measures the surface shape in the cutting direction of the wafer surface (step B).
  • the surface shape to be measured should be at least the cutting direction of the wafer surface, and of course, the whole surface shape may be measured.
  • the reason for measuring in the cutting direction is that this direction has a significant effect on nanotopography.
  • Fig. 9 (a) is a graph showing an example of a cross-sectional measurement shape after cutting
  • Fig. 9 (b) is an explanatory diagram showing the measurement direction of Fig. 9 (a)
  • ⁇ Fig. 9 (e) is a graph showing examples of nanotopography (nanotopo) and warp shape after polishing.
  • Fig.9 (c) is a nanotoppo map
  • Fig.9 (d) is a bird's-eye view
  • 9 (e) is a slice map. As shown in Figs. 9 (a) to (e), the cutting direction has a negative effect on nanotopography.
  • the surface shape if it is after cutting and before polishing, it may be measured after chamfering, lapping, etc. Since the nanotopography on the wafer surface can be evaluated at an early stage of the wafer manufacturing process, this result is quickly fed back to the cutting conditions so that the nanotopography can be rejected. It is possible to minimize the sending of new products to the post-process and improve the productivity of wafers.
  • the measurement can be easily performed using a conventional measuring apparatus.
  • the data processing means 2 obtains the maximum value of the slope of the change in warpage of the wafer surface from the cross-sectional shape in the cutting direction of the surface shape thus measured (step C).
  • the maximum value of the slope of the desired change in sled is a force that can be defined in various ways. If the line ⁇ Warp or degree of warp change described above is used, these values have a particularly high correlation with the nanotopography of the wafer surface after polishing, as described above, so that the nanotopography of the wafer surface after polishing is more accurate. Can be evaluated.
  • FIG. 6 is an example of a graph showing the correlation between the Line ⁇ Warp and the nanotopography after polishing when smoothing processing using a moving average is performed.
  • the width of the measurement section when calculating Line ⁇ War P was 10 mm and moved by a distance of 0.5 mm.
  • the contribution ratio R 2 is 0.79, and the smoothing process using the moving average method is not performed. This is preferable because the correlation larger than the contribution ratio of 0.76 can be made higher. Similar trends were seen in other examples.
  • the smoothing process is performed by the moving average method and the moving average data section is 20 to 40 mm, the correlation between the obtained maximum value and the nanotopography of the wafer surface after polishing will be higher. And can.
  • Table 1 shows the contribution ratio (Contribution A) between Line ⁇ Warp measured in the as-cut state and Line ⁇ Warp measured after polishing, and the relationship between the Line ⁇ Warp measured in the as-cut state and HCT measured after polishing.
  • the moving average data section (moving average section) was set to 4 to 60 mm, and in the Line ⁇ Warp measured after polishing, the moving average section was set to 4 mm.
  • the moving average section is 20 to 40 mm, the contribution ratios A and B are both high, and therefore the correlation between the calculated Line ⁇ Warp and the nanotopography of the polished wafer surface is even higher. I can do it.
  • the width of the measurement section it is preferable to set the width of the measurement section to 20 mm or less.
  • Figure 7 is a graph showing the relationship between the width of the measurement category (data acquisition pitch) and the correlation coefficient R.
  • the width of the measurement section is set to 20 mm or less, the correlation with the nanotopography after polishing can be made higher.
  • the lower limit of the preferred measurement category width can be the minimum value that can be set. For example, it can be 0.1 mm or more depending on the purpose.
  • the noise is removed by filtering the cross-sectional shape as necessary, the correlation can be further increased.
  • step D the nanotopography of the polished wafer surface is evaluated by the evaluation means 3 based on the maximum value obtained (step D).
  • the quality of the nanotopography on the polished wafer surface is evaluated using the correlation function obtained in advance from the obtained Line ⁇ Warp.
  • the obtained Line ⁇ Warp is determined in advance and compared with the reference value to evaluate the quality of nanotopography on the wafer surface. In this way, the nanotopography of the wafer surface after polishing can be accurately evaluated from the surface shape before polishing.
  • the manufacturing method provided by the present invention when manufacturing a semiconductor wafer by polishing a wafer obtained by cutting a semiconductor ingot, the surface shape of the wafer surface is evaluated by the above steps (A) to (D). The cutting condition is adjusted according to the evaluation result.
  • the cutting conditions can be adjusted, for example, by adjusting the wire tension of the wire saw, adjusting the temperature of the slurry and the amount of silicon contained in the slurry. It is also possible to check for wire breakage and wear of the main roller. Moreover, it is preferable to replace the slurry if necessary.
  • Another manufacturing method provided by the present invention is obtained by cutting a semiconductor ingot.
  • the surface shape of the wafer surface is evaluated by the above steps (A) to (D) before polishing, and the quality of the wafer surface after polishing is determined according to the evaluation result. It is characterized by determining.
  • the next step is not performed for wafers whose surface nanotopography is not good after polishing, and only wafers that are good are selected.
  • the wafer can be manufactured to the next process, and a wafer with good surface nanotopography can be produced efficiently.
  • the pass / fail judgment can be performed by obtaining the correlation as shown in FIGS. 5 and 6 and setting the reference value of Line ⁇ Warp that is a judgment standard that the nanotopography is within the standard. However, the wafer with a small Line ⁇ Warp is judged as a good product and proceeds to the next process.
  • the surface shape in the cutting direction was measured with a stylus-type measuring device on a silicon wafer produced by cutting a silicon single crystal ingot with a diameter of 200 mm grown by the CZ method with a wire saw.
  • the measurement results are shown in Fig. 8 (a).
  • the line ⁇ Warp was 8.84 ⁇ m when the width of the measurement section was 10 mm and moved by a distance of 0.5 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

 本発明は、半導体インゴットから切断した半導体ウエーハの表面のナノトポグラフィーを評価する方法であって、少なくとも前記ウエーハ表面の研磨の前に切断方向での表面形状を測定し、該測定した表面形状の切断方向での断面形状から、ウエーハ表面のそりの変化の傾きの最大値を求め、該求めた最大値によって研磨後のウエーハ表面のナノトポグラフィーを評価することを特徴とする半導体ウエーハの評価方法である。これにより、半導体ウエーハ表面のナノトポグラフィーの評価方法及び評価装置並びに表面のナノトポグラフィーが良好な半導体ウエーハの製造方法が提供される。

Description

明 細 書
半導体ゥエーハの評価方法及び評価装置並びに半導体ゥエーハの製造 方法
技術分野
[0001] 本発明は、半導体ゥエーハの評価方法及び評価装置並びに半導体ゥエーハの製 造方法に関するものであり、より詳しくは半導体ゥエーハ表面のナノトポグラフィ一の 評価方法及び評価装置並びに表面のナノトポグラフィ一が良好な半導体ゥエーハの 製造方法に関する。 背景技術
[0002] 一般的にシリコンゥエーハ等の半導体ゥエーハの製造方法は、半導体インゴットを 切断 (スライス)して薄円板状のゥエーノ、にカ卩ェするスライス工程と、ゥエーハの割れ 、欠けを防止するために外周部を面取りする面取り工程と、ゥエーハを平坦化するラ ッビング工程と、ゥエーハ表層に残留した加工歪みを除去するエッチング工程と、ゥ エーハ表面を鏡面化する研磨工程と、研磨加工で付着した研磨剤や異物等の汚染 物を除去する洗浄工程とを有して 、る。さらに必要に応じてこれらの工程の他に熱処 理ゃ研削等の工程が加わったり、工程順が入れ換えられたり、同じ工程を複数回行う 場合もある。
[0003] 一方、近年の半導体デバイスの高集積ィ匕に伴 、、微細なデバイス技術として STI ( シヤロートレンチアイソレーション)等のプロセスが採用されている。そのため、回路配 線パターンをシリコンゥエーハ表面に形成するには、より平坦で均一な厚さの絶縁膜 が必要となり、例えば、 CMP (ケミカルメカ-カルボリツシング)等により絶縁膜を平坦 にする方法が半導体デバイス製造工程で用いられて 、る。
[0004] 従来は、半導体ゥエーハ表面の微小な凹凸形状 (以下、うねりと記す)は、特にデ バイス製造工程に影響しな力つた。しかし、 STIでは CMPにより凸部が選択的に研 磨されるため、うねりが原因となって絶縁膜の厚さが不均一になってしまう問題が生じ このうねりは、ナノトポグラフィ一というパラメータを用いて表現される。ナノトポグラフ ィ一とは、ゥエーハ表面の平坦度を表す指標で、 0. 1mmから数十 mmの空間波長 領域における非吸着状態のゥエーハ表面のうねりを表す。
[0005] ナノトポグラフィ一は、一般的に ADE社製 Nanomapper、 KLAテンコール社製 Na noPro、レイテックス社製 Dynasearch等の装置で測定される。これらの装置は光学 式で、被測定物の表面反射を利用して測定するため、対象となるゥエーハは表面の 反射率がある程度高い鏡面状態であることが必要である。従って、一般的には研磨 後のゥエーハについて測定される。
[0006] 一方、半導体インゴットからゥエーハを切断する工程の評価等のために、ゥエーハ を切断されたまま (ァズカット)の状態で表面形状を測定する技術が開示されて ヽる ( 特開平 7— 106387号公報、特表 2002— 538447号公報参照)。このようにァズカツ トの状態で測定を行なうのは、切断時に生じたうねりがその後のラッピング、研磨等に より解消できない場合もあるので、ァズカットの状態で表面形状を評価し、切断時に そのようなうねりが生じない切断条件に調整するためである。従来ァズカットの状態で 測定する表面状態を表すパラメータとして、そりや Warp等がある。
[0007] しかし、ァズカットの状態でゥエーハの表面状態を測定し、上記のパラメータを求め ても、それらは研磨後のゥエーハ表面のナノトポグラフィ一との相関がないので、ゥェ ーハ表面のナノトポグラフィーを評価するには、研磨工程まで行なった後で評価を行 なう必要があった。
一方、ゥエーハの製造効率の向上のため、製造工程のなるべく早い段階でナノトポ グラフィ一の評価を行うことができる方法が望まれていた。
発明の開示
[0008] 本発明の目的は、半導体ゥエーハ表面のナノトポグラフィ一の評価方法及び評価 装置並びに表面のナノトポグラフィ一が良好な半導体ゥエーハの製造方法を提供す ることにめる。
[0009] 上記目的達成のため、本発明は、半導体インゴットから切断した半導体ゥエーハの 表面のナノトポグラフィーを評価する方法であって、少なくとも前記ゥエーハ表面の研 磨の前に切断方向での表面形状を測定し、該測定した表面形状の切断方向での断 面形状から、ゥエーハ表面のそりの変化の傾きの最大値を求め、該求めた最大値に よって研磨後のゥエーハ表面のナノトポグラフィーを評価することを特徴とする半導体 ゥエーハの評価方法を提供する。
[0010] このように、少なくともゥエーハ表面の研磨の前に切断方向での表面形状を測定し
、測定した表面形状の切断方向での断面形状力 ゥエーハ表面のそりの変化の傾き の最大値を求めれば、求めた最大値は研磨後のゥエーハ表面のナノトポグラフィ一と 高い相関を有するので、研磨前の表面形状から研磨後のゥエーハ表面のナノトポグ ラフィーを正確に評価することができる。
[0011] この場合、前記求めるそりの変化の傾きの最大値を、前記切断方向に所定の幅の 測定区分を設定し、該測定区分を該幅より小さい距離で移動させ、該移動させる各 区分内において求める表面高さの変化量の最大値、または、そりが変化し始めた点 力 変化が終了した点までの距離でその間のそりの変化量を割り算した値とすること が好ましい。
このように、求めるそりの変化の傾きの最大値を、切断方向に所定の幅の測定区分 を設定し、該測定区分を該幅より小さい距離で移動させ、該移動させる各区分内に ぉ 、て求める表面高さの変化量の最大値(以下 Line Δ Warpと記する場合がある)、 または、そりが変化し始めた点力も変化が終了した点までの距離でその間のそりの変 化量を割り算した値 (以下 Warp変化度と記する場合がある)とすれば、これらの値は 研磨後のゥエーハ表面のナノトポグラフィ一と特に高い相関を有するので、研磨後の ゥエーハ表面のナノトポグラフィーを研磨前により正確に評価することができる。
[0012] また、前記測定区分の幅を 20mm以下とすることが好ましい。
このように、測定区分の幅を 20mm以下とすれば、 Line Δ Warpと研磨後のゥエー ハ表面のナノトポグラフィ一との相関をより高いものとできる。
[0013] また、前記ゥエーハの表面形状の測定を、切断されたままのァズカットの状態で行う ことが好ましい。
このように、ゥエーハの表面形状の測定を切断されたままのァズカットの状態で行え ば、ゥエーハの製造工程の早 、段階でゥエーハ表面のナノトポグラフィ一の評価を 行うことができるので、この結果を迅速に切断条件等にフィードバックすることで、ゥェ ーハの生産性を向上させることができる。
[0014] また、前記断面形状をスムージング処理してから、前記そりの変化の傾きの最大値 を求めることが好ましい。
このように、断面形状を移動平均値法、走査中央値法、多項式適合法などによりス ムージング処理して力 そりの変化の傾きの最大値を求めれば、求めた最大値と研 磨後のゥエーハ表面のナノトポグラフィ一との相関をより高いものとできる。
[0015] この場合、前記スムージング処理を移動平均値法により行い、移動平均のデータ区 間を 20〜40mmとすることが好まし!/、。
このように、スムージング処理を移動平均値法により行い、移動平均のデータ区間 を 20〜40mmとすれば、求めた最大値と研磨後のゥエーハ表面のナノトポグラフィー との相関をさらに高いものとできる。
[0016] また、前記半導体ゥエーハの表面形状を、原子間力顕微鏡法、触針法、静電容量 法の 、ずれかで測定することが好まし 、。
このように、半導体ゥエーハの表面形状を、原子間力顕微鏡法、触針法、静電容量 法の 、ずれかで測定することにより、従来の測定装置を用いて容易に測定を行なうこ とがでさる。
[0017] また、本発明は、半導体ゥエーハの評価装置であって、少なくとも、半導体ゥエー ハの切断方向での表面形状を測定する表面形状測定手段と、該表面形状の切断方 向での断面形状のデータから、ゥエーハ表面のそりの変化の傾きの最大値を求める データ処理手段と、該そりの変化の傾きの最大値を基準値と比較して前記表面のナ ノトポグラフィ一の良否を評価する評価手段とを具備することを特徴とする半導体ゥェ ーハの評価装置を提供する。
[0018] このように、少なくとも、半導体ゥエーハの切断方向での表面形状を測定する表面 形状測定手段と、該表面形状の切断方向での断面形状のデータから、ゥエーハ表 面のそりの変化の傾きの最大値を求めるデータ処理手段と、該そりの変化の傾きの 最大値を基準値と比較して前記表面のナノトポグラフィ一の良否を評価する評価手 段とを具備する評価装置であれば、求めた最大値は研磨後のゥエーハ表面のナノト ポグラフィ一と高い相関を有するので、これを基準値と比較することにより、研磨前の 表面形状から研磨後のゥエーハ表面のナノトポグラフィ一の良否を正確に評価する ことができる評価装置となる。
[0019] この場合、前記求めるそりの変化の傾きの最大値は、前記切断方向に所定の幅の 測定区分を設定し、該測定区分を該幅より小さい距離で移動させ、該移動させる各 区分内において求める表面高さの変化量の最大値、または、そりが変化し始めた点 力 変化が終了した点までの距離でその間のそりの変化量を割り算した値であること が好ましい。
このように、求めるそりの変化の傾きの最大値が、切断方向に所定の幅の測定区分 を設定し、該測定区分を該幅より小さい距離で移動させ、該移動させる各区分内に おいて求める表面高さの変化量の最大値 (Line Δ Warp)、または、そりが変化し始 めた点から変化が終了した点までの距離でその間のそりの変化量を割り算した値 (W arp変化度)であれば、これらの値は研磨後のゥエーハ表面のナノトポグラフィ一と特 に高い相関を有するので、研磨後のゥエーハ表面のナノトポグラフィ一の良否をより 正確に評価することができる評価装置となる。
[0020] また、前記データ処理手段は、前記断面形状をスムージング処理してから、前記そ りの変化の傾きの最大値を求めるものであることが好ましい。
このように、データ処理手段が、断面形状を移動平均値法、走査中央値法、多項 式適合法などによりスムージング処理して力 そりの変化の傾きの最大値を求めるも のであれば、求めた最大値と研磨後のゥエーハ表面のナノトポグラフィ一との相関が より高くなるので、正確な評価が行なえる評価装置となる。
[0021] この場合、前記データ処理手段は、前記スムージング処理を移動平均値法により 行い、移動平均のデータ区間を 20〜40mmとするものであることが好ましい。
このように、データ処理手段が、スムージング処理を移動平均値法により行い、移動 平均のデータ区間を 20〜40mmとするものであれば、求めた最大値と研磨後のゥェ ーハ表面のナノトポグラフィ一との相関がさらに高くなるので、より正確な評価が行な える評価装置となる。
[0022] また、前記表面形状測定手段は、原子間力顕微鏡、触針式形状測定装置、静電 容量式形状測定装置の 、ずれかのものであることが好ま 、。
このように、表面形状測定手段が、原子間力顕微鏡、触針式形状測定装置、静電 容量式形状測定装置の ゝずれかのものであれば、従来の測定装置を用いて容易に 測定を行なうことができる評価装置となる。
[0023] また、本発明は、少なくとも、半導体インゴットを切断して得られたゥエーハを研磨す る半導体ゥエーハの製造方法であって、上記のいずれかの方法により前記ゥエーハ 表面の表面形状を評価し、該評価結果に応じて、切断条件を調整することを特徴と する半導体ゥエーハの製造方法を提供する。
[0024] このように、上記の 、ずれかの方法によりゥエーハ表面の表面形状を評価し、該評 価結果に応じて切断条件を調整すれば、研磨後の表面のナノトポグラフィ一が良好 な半導体ゥエーハを製造できる切断条件となるように、研磨前に調整を行うことがで き、より迅速に調整ができ、効率よく表面のナノトポグラフィ一が良好なゥエーハを製 造できる。
[0025] また、本発明は、少なくとも、半導体インゴットを切断して得られたゥエーハを研磨す る半導体ゥエーハの製造方法であって、上記のいずれかの方法により前記ゥエーハ 表面の表面形状を評価し、該評価結果に応じて、前記研磨後のゥエーハ表面の良 否を判定することを特徴とする半導体ゥエーハの製造方法を提供する。
[0026] このように、上記の 、ずれかの方法によりゥエーハ表面の表面形状を評価し、該評 価結果に応じて研磨後のゥエーハ表面の良否を判定すれば、研磨前に良品のゥェ ーハを選別して次工程へ進めることができ、効率よく表面のナノトポグラフィ一が良好 なゥエーハを製造できる。
[0027] 本発明に従い、少なくともゥエーハ表面の研磨の前に切断方向での表面形状を測 定し、測定した表面形状の切断方向での断面形状からゥエーハ表面のそりの変化の 傾きの最大値を求めれば、求めた最大値は研磨後のゥエーハ表面のナノトポグラフ ィ一と高い相関を有するので、研磨前の表面形状から研磨後のゥエーハ表面のナノ トポグラフィーを正確に評価することができる。
[0028] また、本発明に従い、半導体ゥエーハの切断方向での表面形状を測定する表面形 状測定手段と、該表面形状の切断方向での断面形状のデータから、ゥエーハ表面 のそりの変化の傾きの最大値を求めるデータ処理手段と、該そりの変化の傾きの最 大値を基準値と比較して前記表面のナノトポグラフィ一の良否を評価する評価手段と を具備する評価装置であれば、求めた最大値は研磨後のゥエーハ表面のナノトポグ ラフィ一と高い相関を有するので、これを基準値と比較することにより、研磨前の表面 形状から研磨後のゥエーハ表面のナノトポグラフィ一の良否を正確に評価することが できる評価装置となる。
[0029] また、本発明に従う方法によりゥエーハ表面の表面形状を評価し、該評価結果に応 じて切断条件を調整すれば、研磨後の表面のナノトポグラフィ一が良好な半導体ゥ エーハを製造できる切断条件となるようにより迅速に調整でき、効率よく表面のナノト ポグラフィ一が良好なゥエーハを製造できる。
さらに、本発明に従う方法によりゥエーハ表面の表面形状を評価し、該評価結果に 応じて研磨後のゥエーハ表面の良否を判定すれば、良品のゥエーハを選別して次 工程へ進めることができ、効率よく表面のナノトポグラフィ一が良好な研磨されたゥェ ーハを製造できる。
図面の簡単な説明
[0030] [図 1]本発明に係る半導体ゥエーハの評価装置の一例を示す概略図である。
[図 2]本発明に係る半導体ゥエーハの評価方法の一例を示す工程図である。
[図 3]ァズカットの状態で測定したシリコンゥエーハ表面の Warpと、研磨後に測定し たゥエーハ表面のナノトポグラフィ一の値との相関を示すグラフである。
[図 4] (a) Warp変化度と、(b) Line Δ Warpとを説明する説明図である。
[図 5] (a)は Warp変化度とナノトポグラフィ一との相関を示すグラフであり、 (b)は測定 区分の幅を 1 Ommとした場合の Line Δ Warpとナノトポグラフィ一との相関を示すグラ フである。
[図 6]移動平均値法を用いてスムージング処理をした場合としな!/、場合の Line Δ Wa rpと研磨後のナノトポグラフィ一との相関を示すグラフの一例である。
[図 7]Line Δ Warpを求める場合の、測定区分の幅と相関係数との関係を示すグラフ である。 [図 8]実施例における表面形状の測定結果を示し、(a)は切断条件の調整前、(b)は 切断条件の調整後のものを示す。
[図 9] (a)は、切断後の断面測定形状の一例を示すグラフであり、図 9 (b)は、図 9 (a) の測定方向を示す説明図であり、図 9 (c),図 9 (d) ·図 9 (e)は、研磨後のナノトボグラ フィー(ナノトポ)及び Warp形状の一例を示すグラフであり、それぞれ図 9 (c)はナノト ポマップ、図 9 (d)は鳥瞰図、図 9 (e)はスライスマップである。
発明を実施するための最良の形態
[0031] 以下、本発明について詳述する。
前述のように、ァズカットの状態でゥエーハの表面状態を測定し、そりや Warp等の パラメータを求めても、それらは研磨後のゥエーハ表面のナノトポグラフィ一との相関 がないので、ゥエーハ表面のナノトポグラフィーを評価するには、研磨工程まで行な つた後で評価を行なう必要があった。
一方、ゥエーハの生産性の向上のため、製造工程のなるべく早い段階でナノトポグ ラフィ一の評価を行うことができる方法が望まれていた。
[0032] (実験 1)
まず本発明者らは、従来技術の問題点を確認するため、ァズカットの状態でのシリ コンゥエーハ表面の Warpを測定し、このシリコンゥエーハを研磨した後に測定したゥ エーハ表面のナノトポグラフィ一の値との相関を求めた。
なお、ナノトポグラフィーを表す指標として HCTを用いた。 HCTとは、 Height Ch ange Thresholdの略称であり、正方形のピクセルサイズの測定領域内におけるゥ エーハ表面高さの高低差 (Height Change)が所定値を超える領域 (不合格エリア )の測定領域に対する割合 (%Area)を設定して、その設定値となるしき!、値を示す 値である。 HCTは、ピクセルサイズは 10mm角で、%Areaを 0. 5%に設定し、 ADE 社製 CR83 SQMを用いて求めた。
[0033] 図 3はその結果を示す。ここでは HCTが 125nm以下のゥエーハを合格と判定して いる。このように、ァズカットの状態での Warpと研磨後のナノトポグラフィ一との間に は相関が全くな力つた。すなわち、 Warpにより研磨後のナノトポグラフィーを評価す ることはできな 、ことを確認した。 [0034] そこで本発明者らは、ゥエーハのァズカットの状態で測定でき、しかも研磨後のゥェ ーハ表面のナノトポグラフィ一と相関のある評価パラメータについて鋭意検討した。そ して、切断方向での表面形状を測定し、測定した表面形状の切断方向での断面形 状からゥエーハ表面のそりの変化の傾きの最大値を求め、これによつて研磨後のゥ エーハ表面のナノトポグラフィーを評価すれば、研磨を行う前に研磨後のゥエーハ表 面のナノトポグラフィーを正確に評価できることを見出した。
[0035] (実験 2)
次に、上記のようにして求めたスライス後のァズカット状態でのゥエーハのそりの変 化の傾きの最大値と研磨後のゥエーハ表面のナノトポグラフィ一とを求め、それらの 相関を求めた。そりの変化の傾きの最大値としては様々な定義が考えられるが、ここ では新たに Warp変化度と Line Δ Warpと ヽぅ定義を導入した。
[0036] Warp変化度とは、図 4 (a)に示すように、ゥエーハの切り始め力 切り終わりの間に おいて、そりが変化し始めた点力 変化が終了した点までの距離でその間のそりの 変化量を割り算した値である。また、 Line Δ Warpとは、図 4 (b)に示すように、断面 形状 (図中の測定曲線)において切断方向に所定の幅の測定区分を設定し、該測定 区分を該幅より小さい距離で移動させ、該移動させる各区分内において求める表面 高さの変化量の最大値である。
[0037] 図 5 (a)は Warp変化度とナノトポグラフィ一との相関を示すグラフであり、 (b)は測 定区分の幅を 10mmとし、 0. 5mmの距離で測定区分を移動させた場合の Line Δ Warpとナノトポグラフィ一との相関を示すグラフである。このように、いずれも高い相 関を有していた。なお、一次回帰曲線の寄与率 R2はそれぞれ 0. 7157、 0. 8361で あり、 Line Δ Warpにおいて相関がより高かった。また、 Line Δ Warpの測定におい て、測定区分を移動させる距離は測定点の間隔と等しくすることがより好ましい。
[0038] このように、上記の相関関係を用いることにより、ゥエーハの研磨を行う前に研磨後 のゥエーハ表面のナノトポグラフィーを正確に評価できることを確認した。
本発明者らは、以上の結果から諸条件を精査し、本発明を完成させた。
[0039] 以下では、本発明の実施の形態について図面を用いて説明するが、本発明はこれ に限定されるものではない。 図 1は、本発明に係る半導体ゥエーハの評価装置の一例を示す概略図である。 この評価装置 10は、半導体ゥエーハの切断方向での表面形状を測定する表面形 状測定手段 1と、該表面形状の切断方向での断面形状のデータから、ゥエーハ表面 のそりの変化の傾きの最大値を求めるデータ処理手段 2と、該そりの変化の傾きの最 大値を基準値と比較してゥエーハ表面のナノトポグラフィ一の良否を評価する評価手 段 3とを具備するものである。
[0040] この場合、データ処理手段 2により求めるそりの変化の傾きの最大値には様々な定 義が考えられるが、これが断面形状において切断方向に所定の幅の測定区分を設 定し、該測定区分を該幅より小さい距離で移動させ、該移動させる各区分内におい て求める表面高さの変化量の最大値 (Line Δ Warp)、または、そりが変化し始めた 点から変化が終了した点までの距離でその間のそりの変化量を割り算した値 (Warp 変化度)であることが好ま 、。これらの値は研磨後のゥエーハ表面のナノトポグラフ ィ一と特に高い相関を有するので、研磨後のゥエーハ表面のナノトポグラフィ一の良 否をより正確に評価することができるからである。
[0041] また、データ処理手段 2は、断面形状を移動平均値法、走査中央値法、多項式適 合法などによりスムージング処理してから、そりの変化の傾きの最大値を求めるもので あれば、求めた最大値と研磨後のゥエーハ表面のナノトポグラフィ一との相関がより 高くなるので、正確な評価が行なえる。
またデータ処理手段 2が、スムージング処理を移動平均値法により行い、移動平均 のデータ区間を 20〜40mmとするものであれば、求めた最大値と研磨後のゥエーハ 表面のナノトポグラフィ一との相関がさらに高くなるので、より正確な評価が行なえる。
[0042] また、表面形状測定手段 1は、表面形状を測定できるものであれば特に限定されな いが、原子間力顕微鏡、触針式形状測定装置、静電容量式形状測定装置のいずれ かのものであれば、従来の測定装置を用いて容易に測定を行なうことができるので好 ましい。
[0043] 次に、本発明に係る半導体ゥエーハの評価方法を、図 1の評価装置 10を用いる場 合について説明する。図 2は、そのような半導体ゥエーハの評価方法の一例を示す 工程図である。 [0044] まず、シリコンやィ匕合物半導体等の半導体インゴットから切断した半導体ゥエーハ を用意する(工程 A)。
半導体インゴットは、従来の CZ法、 FZ法により育成されたものを用いることができる 力 特に限定はされない。半導体インゴットの切断は、従来のワイヤーソーを用いて 行うことができる。もちろん、内周刃スライサー、外周刃スライサーを用いることもでき る。また、切断後、必要に応じてゥエーハの洗浄を行なうことができる。
[0045] 次に、表面形状測定手段 1により、ゥエーハ表面の切断方向での表面形状を測定 する(工程 B)。
この場合、測定する表面形状は少なくともゥエーハ表面の切断方向とされればよく 、もちろん全体を測定してもよい。切断方向で測定する必要があるのは、この方向が 特にナノトポグラフィ一に大きく影響するからである。図 9 (a)は、切断後の断面測定 形状の一例を示すグラフであり、図 9 (b)は、図 9 (a)の測定方向を示す説明図であり 、図 9 (c) ·図 9 (d) ·図 9 (e)は、研磨後のナノトポグラフィー(ナノトポ)及び Warp形状 の一例を示すグラフであり、それぞれ図 9 (c)はナノトポマップ、図 9 (d)は鳥瞰図、図 9 (e)はスライスマップである。図 9 (a)〜(e)に示すように切断方向が特にナノトボグラ フィ一に影響して、悪化させている。
この表面形状の測定については、切断後であって研磨前であれば、面取り、ラッピ ング等を行った後に測定を行ってもよ!ヽが、切断されたままのァズカットの状態で行 えば、ゥエーハの製造工程の早 、段階でゥエーハ表面のナノトポグラフィ一の評価を 行うことができることになるので、この結果を迅速に切断条件等にフィードバックするこ とで、ナノトポグラフィ一が不合格になるようなものを後工程に送ることを最小限にとど めることができ、ゥエーハの生産性を向上させることができる。
また、半導体ゥエーハの表面形状を、原子間力顕微鏡法、触針法、静電容量法の いずれかで測定することにより、従来の測定装置を用いて容易に測定を行なうことが できる。
[0046] 次に、データ処理手段 2により、このように測定した表面形状の切断方向での断面 形状から、ゥエーハ表面のそりの変化の傾きの最大値を求める(工程 C)。
求めるそりの変化の傾きの最大値については様々な定義が考えられる力 これを前 述の Line Δ Warp又はワープ変化度とすれば、前述のようにこれらの値は研磨後の ゥエーハ表面のナノトポグラフィ一と特に高い相関を有するので、研磨後のゥエーハ 表面のナノトポグラフィーをより正確に評価することができる。
[0047] このとき、断面形状をスムージング処理してから、そりの変化の傾きの最大値を求め ることが好ましい。
図 6は移動平均を用いたスムージング処理をした場合としな!/、場合の Line Δ Warp と研磨後のナノトポグラフィ一との相関を示すグラフの一例である。なお、 Line Δ War Pを計算する際の測定区分の幅は 10mmとし、 0. 5mmの距離で移動させた。この例 では、移動平均のデータ区間を 30mmとして移動平均値法を用いたスムージング処 理をした場合は寄与率 R2が 0. 79であり、移動平均値法を用いたスムージング処理 をしない場合の寄与率 0. 76よりも大きぐ相関をより高いものとできるので好ましい。 他の例においても同様の傾向が見られた。
[0048] また、スムージング処理を移動平均値法により行 、、移動平均のデータ区間を 20 〜40mmとすれば、求めた最大値と研磨後のゥエーハ表面のナノトポグラフィ一との 相関をさらに高いものとできる。
表 1は、ァズカット状態で測定した Line Δ Warpと研磨後に測定した Line Δ Warpと の間の寄与率 (寄与率 A)と、ァズカット状態で測定した Line Δ Warpと研磨後に測定 した HCTとの間の寄与率 (寄与率 B)とを示す。ァズカット状態で測定した Line AWa rpにおいては、移動平均のデータ区間(移動平均区間)を 4〜60mmとし、研磨後に 測定した Line Δ Warpにおいては、移動平均区間を 4mmとした。
[0049] [表 1]
Figure imgf000014_0001
表 1からわ力るように、移動平均区間を 20〜40mmとすれば、寄与率 A、 Bとも高く 、従って求めた Line Δ Warpと研磨後のゥエーハ表面のナノトポグラフィ一との相関 をさらに高いものとできる。 [0051] また、 Line Δ Warpを求める場合は、測定区分の幅を 20mm以下とすることが好ま しい。
図 7は、測定区分の幅 (データ取り込みピッチ)と相関係数 Rとの関係を示すグラフ である。このように、測定区分の幅を 20mm以下とすれば、研磨後のナノトポグラフィ 一との相関をより高いものとできる。図 7から、好ましい測定区分の幅の下限は、設定 可能な最小値とすることができる。例えば、目的に応じて、 0. 1mm以上とできる。 さらに、必要に応じて断面形状にフィルタ処理をしてノイズを除去すれば、より相関 を高くできる。
[0052] そして、評価手段 3により、求めた最大値によって研磨後のゥエーハ表面のナノトポ グラフィーを評価する(工程 D)。
例えば、求めた Line Δ Warpから、予め求めておいた相関関数等を用いて、研磨 後のゥエーハ表面のナノトポグラフィ一の良否を評価する。あるいは、求めた Line Δ Warpを予め定めてお!、た基準値と比較して、ゥエーハ表面のナノトポグラフィ一の 良否を評価する。このようにして、研磨前の表面形状から研磨後のゥエーハ表面のナ ノトポグラフィーを正確に評価することができる。
[0053] 次に、本発明に従う半導体ゥエーハの製造方法について説明する。本発明が提供 する製造方法は、半導体インゴットを切断して得られたゥエーハを研磨して半導体ゥ エーハを製造する際に、上記の工程 (A)〜(D)によりゥエーハ表面の表面形状を評 価し、該評価結果に応じて、切断条件を調整することを特徴とする。
[0054] このようにすれば、研磨後の表面のナノトポグラフィ一が良好な半導体ゥエーハを 製造できる切断条件となるようにより迅速に調整ができ、ナノトポグラフィ一が不合格 となるようなゥエーハを製造することを少なくすることができ、効率よく表面のナノトポグ ラフィ一が良好なゥエーハを製造できる。
切断条件の調整としては、例えばワイヤーソ一のワイヤーの張力の調整、スラリーの 温度やスラリーに含まれるシリコンの量の調整等をすることができる。またワイヤーの 断線や、メインローラーの摩耗等を確認してもよい。また必要に応じてワイヤーゃスラ リーの交換を行うことが好ましい。
[0055] また、本発明が提供する別の製造方法は、半導体インゴットを切断して得られたゥ エーハを研磨して半導体ゥエーハを製造する際に、研磨前に上記の工程 (A)〜(D) によりゥエーハ表面の表面形状を評価し、該評価結果に応じて、研磨後のゥエーハ 表面の良否を判定することを特徴とする。
[0056] このように研磨後のゥエーハ表面の良否を判定すれば、研磨後に表面のナノトポグ ラフィ一が良品とならないようなゥエーハについては次工程を行わず、良品となるよう なゥエーハだけを選別して次工程へ進めることができ、効率よく表面のナノトポグラフ ィ一が良好なゥエーハを製造できる。
良否の判定は、例えば前記図 5、 6のような相関を求め、ナノトポグラフィ一が規格 内となるような判定基準となる Line Δ Warpの基準値を設定して行うことができ、基準 値よりも Line Δ Warpの小さいゥエーハは良品と判定して次工程へ進める。
[0057] 以下に本発明の実施例をあげてさらに具体的に説明する力 本発明はこれらに限 定されるものではない。
(実施例)
CZ法で育成した直径 200mmのシリコン単結晶インゴットをワイヤーソ一で切断し て作製したシリコンゥエーハに対して、触針式形状測定装置を用いてァズカット状態 での切断方向の表面形状を測定した。この測定結果を図 8 (a)に示す。このとき、測 定区分の幅を 10mmとし、 0. 5mmの距離ずつ移動させた場合の Line Δ Warpは 8 . 84 μ mであった。
[0058] この Line Δ Warpは基準値として設定した 6 μ mより大きかったので、研磨後のゥェ ーハはナノトポグラフィーに関して不良品となると判定し、次工程には進めなかった。 そして、この Line Δ Warpの評価結果に応じて、ワイヤーソ一の張力を調整すること により、切断条件を調整し最適化した。
[0059] このように最適化した切断条件により、再びシリコン単結晶インゴットを切断して作 製したシリコンゥエーハに対して、触針式形状測定装置を用いてァズカット状態での 切断方向の表面形状を測定した。この測定結果を図 8 (b)に示す。このときの Line Δ Warpは 4. 02 mと基準値より低くなり、切断工程が改善された。そこで、これらのゥ エーハに研磨工程を行ないシリコン鏡面ゥエーハを製造し、ナノトポグラフィーを測定 したところ、 HTCが全数 60nm以下であり、合格であった。 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単な る例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一 な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技 術的範囲に包含される。

Claims

請求の範囲
[1] 半導体インゴットから切断した半導体ゥエーハの表面のナノトポグラフィーを評価す る方法であって、少なくとも前記ゥエーハ表面の研磨の前に切断方向での表面形状 を測定し、該測定した表面形状の切断方向での断面形状から、ゥエーハ表面のそり の変化の傾きの最大値を求め、該求めた最大値によって研磨後のゥエーハ表面の ナノトポグラフィーを評価することを特徴とする半導体ゥエーハの評価方法。
[2] 請求項 1に記載の評価方法において、前記求めるそりの変化の傾きの最大値を、 前記切断方向に所定の幅の測定区分を設定し、該測定区分を該幅より小さい距離 で移動させ、該移動させる各区分内において求める表面高さの変化量の最大値、ま たは、そりが変化し始めた点力 変化が終了した点までの距離でその間のそりの変 化量を割り算した値とすることを特徴とする半導体ゥエーハの評価方法。
[3] 請求項 2に記載の評価方法において、前記測定区分の幅を 20mm以下とすること を特徴とする半導体ゥエーハの評価方法。
[4] 請求項 1乃至請求項 3のいずれか一項に記載の評価方法において、前記ゥエーハ の表面形状の測定を、切断されたままのァズカットの状態で行うことを特徴とする半 導体ゥエーハの評価方法。
[5] 請求項 1乃至請求項 4の 、ずれか一項に記載の評価方法にお!、て、前記断面形 状をスムージング処理してから、前記そりの変化の傾きの最大値を求めることを特徴 とする半導体ゥエーハの評価方法。
[6] 請求項 5に記載の評価方法において、前記スムージング処理を移動平均値法によ り行い、移動平均のデータ区間を 20〜40mmとすることを特徴とする半導体ゥエー ハの評価方法。
[7] 請求項 1乃至請求項 6の 、ずれか一項に記載の評価方法にお!、て、前記半導体ゥ エーハの表面形状を、原子間力顕微鏡法、触針法、静電容量法のいずれかで測定 することを特徴とする半導体ゥエーハの評価方法。
[8] 半導体ゥエーハの評価装置であって、少なくとも、半導体ゥエーハの切断方向での 表面形状を測定する表面形状測定手段と、該表面形状の切断方向での断面形状の データから、ゥエーハ表面のそりの変化の傾きの最大値を求めるデータ処理手段と、 該そりの変化の傾きの最大値を基準値と比較して前記表面のナノトポグラフィ一の良 否を評価する評価手段とを具備することを特徴とする半導体ゥヱーハの評価装置。
[9] 請求項 8に記載の評価装置において、前記求めるそりの変化の傾きの最大値は、 前記切断方向に所定の幅の測定区分を設定し、該測定区分を該幅より小さい距離 で移動させ、該移動させる各区分内において求める表面高さの変化量の最大値、ま たは、そりが変化し始めた点力 変化が終了した点までの距離でその間のそりの変 化量を割り算した値であることを特徴とする半導体ゥエーハの評価装置。
[10] 請求項 8又は請求項 9に記載の評価装置において、前記データ処理手段は、前記 断面形状をスムージング処理してから、前記そりの変化の傾きの最大値を求めるもの であることを特徴とする半導体ゥエーハの評価装置。
[11] 請求項 10に記載の評価装置において、前記データ処理手段は、前記スムージン グ処理を移動平均値法により行い、移動平均のデータ区間を 20〜40mmとするもの であることを特徴とする半導体ゥエーハの評価装置。
[12] 請求項 8乃至請求項 11のいずれか一項に記載の評価装置において、前記表面形 状測定手段は、原子間力顕微鏡、触針式形状測定装置、静電容量式形状測定装置 のいずれかのものであることを特徴とする半導体ゥエーハの評価装置。
[13] 少なくとも、半導体インゴットを切断して得られたゥエーハを研磨する半導体ゥエー ハの製造方法であって、請求項 1乃至請求項 7のいずれか一項に記載の方法により 前記ゥエーハ表面の表面形状を評価し、該評価結果に応じて、切断条件を調整する ことを特徴とする半導体ゥエーハの製造方法。
[14] 少なくとも、半導体インゴットを切断して得られたゥエーハを研磨する半導体ゥエー ハの製造方法であって、請求項 1乃至請求項 7のいずれか一項に記載の方法により 前記ゥエーハ表面の表面形状を評価し、該評価結果に応じて、前記研磨後のゥエー ハ表面の良否を判定することを特徴とする半導体ゥエーハの製造方法。
PCT/JP2006/305911 2005-04-08 2006-03-24 半導体ウエーハの評価方法及び評価装置並びに半導体ウエーハの製造方法 WO2006109502A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06729859A EP1868235A1 (en) 2005-04-08 2006-03-24 Method and apparatus for evaluating semiconductor wafer and semiconductor wafer manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-111633 2005-04-08
JP2005111633A JP4606231B2 (ja) 2005-04-08 2005-04-08 半導体ウエーハの評価方法及び評価装置並びに半導体ウエーハの製造方法

Publications (1)

Publication Number Publication Date
WO2006109502A1 true WO2006109502A1 (ja) 2006-10-19

Family

ID=37086788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305911 WO2006109502A1 (ja) 2005-04-08 2006-03-24 半導体ウエーハの評価方法及び評価装置並びに半導体ウエーハの製造方法

Country Status (4)

Country Link
EP (1) EP1868235A1 (ja)
JP (1) JP4606231B2 (ja)
KR (1) KR20080002816A (ja)
WO (1) WO2006109502A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118431103A (zh) * 2024-07-05 2024-08-02 西安奕斯伟材料科技股份有限公司 晶圆及其表面纳米形貌的预测方法、装置、设备及介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074845B2 (ja) * 2007-07-23 2012-11-14 Sumco Techxiv株式会社 半導体ウェハの研削方法、及び半導体ウェハの加工方法
JP5343409B2 (ja) * 2008-06-06 2013-11-13 株式会社Sumco 半導体ウェーハの湾曲判定方法、膜付きウェーハの製造方法
KR200457901Y1 (ko) * 2010-08-24 2012-01-12 (주)아진게네시스 모터 결합용 브라켓트
JP5862492B2 (ja) * 2012-07-09 2016-02-16 信越半導体株式会社 半導体ウェーハの評価方法及び製造方法
US10281903B2 (en) * 2015-07-27 2019-05-07 Hitachi, Ltd. Process for design and manufacture of cavitation erosion resistant components
JP6443520B1 (ja) * 2017-10-02 2018-12-26 株式会社Sumco 半導体ウェーハの評価方法および該方法を用いた半導体ウェーハの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287630A (ja) * 1998-03-31 1999-10-19 Shin Etsu Handotai Co Ltd 半導体基板の表面形状計測装置及び半導体基板の表面形状判定方法
JP2003086645A (ja) * 2001-09-13 2003-03-20 Hitachi Ltd 検査装置および検査システム並びに半導体デバイスの製造方法
JP2004020286A (ja) * 2002-06-13 2004-01-22 Shin Etsu Handotai Co Ltd 半導体ウエーハの形状評価方法及び形状評価装置
JP2004214505A (ja) * 2003-01-07 2004-07-29 Sumitomo Heavy Ind Ltd 表面形状の測定方法、表面形状の測定プログラム及び記録媒体
JP2004216485A (ja) * 2003-01-14 2004-08-05 Okamoto Machine Tool Works Ltd 基板用研削装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287630A (ja) * 1998-03-31 1999-10-19 Shin Etsu Handotai Co Ltd 半導体基板の表面形状計測装置及び半導体基板の表面形状判定方法
JP2003086645A (ja) * 2001-09-13 2003-03-20 Hitachi Ltd 検査装置および検査システム並びに半導体デバイスの製造方法
JP2004020286A (ja) * 2002-06-13 2004-01-22 Shin Etsu Handotai Co Ltd 半導体ウエーハの形状評価方法及び形状評価装置
JP2004214505A (ja) * 2003-01-07 2004-07-29 Sumitomo Heavy Ind Ltd 表面形状の測定方法、表面形状の測定プログラム及び記録媒体
JP2004216485A (ja) * 2003-01-14 2004-08-05 Okamoto Machine Tool Works Ltd 基板用研削装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118431103A (zh) * 2024-07-05 2024-08-02 西安奕斯伟材料科技股份有限公司 晶圆及其表面纳米形貌的预测方法、装置、设备及介质

Also Published As

Publication number Publication date
EP1868235A1 (en) 2007-12-19
KR20080002816A (ko) 2008-01-04
JP2006294774A (ja) 2006-10-26
JP4606231B2 (ja) 2011-01-05

Similar Documents

Publication Publication Date Title
JP5358531B2 (ja) 半導体ウェーハの製造方法
JP4420023B2 (ja) 半導体ウェーハの測定方法、その製造工程の管理方法、及び半導体ウェーハの製造方法
WO2006109502A1 (ja) 半導体ウエーハの評価方法及び評価装置並びに半導体ウエーハの製造方法
JP5862492B2 (ja) 半導体ウェーハの評価方法及び製造方法
CN112513348B (zh) SiC晶片和SiC晶片的制造方法
US9748089B2 (en) Method for producing mirror-polished wafer
CN108369895B (zh) 单晶半导体晶片和用于生产半导体晶片的方法
JP2001196334A (ja) 多数の半導体ウェーハの製造法
JP6493253B2 (ja) シリコンウェーハの製造方法およびシリコンウェーハ
JP6443520B1 (ja) 半導体ウェーハの評価方法および該方法を用いた半導体ウェーハの製造方法
JP3943869B2 (ja) 半導体ウエーハの加工方法および半導体ウエーハ
US7810383B2 (en) Method for evaluating semiconductor wafer, apparatus for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer
JP5074845B2 (ja) 半導体ウェハの研削方法、及び半導体ウェハの加工方法
JP2004022677A (ja) 半導体ウエーハ
CN102636953A (zh) 形成模板的衬底以及检测方法
EP1863077A2 (en) Substrate, substrate inspecting method and methods of manufacturing an element and a substrate
TWI774632B (zh) 晶圓的研磨方法及矽晶圓
KR101086966B1 (ko) 반도체 웨이퍼 연마방법
KR100920885B1 (ko) 에픽텍셜 웨이퍼의 제작 방법
JP7533354B2 (ja) シリコンウェーハの製造方法
KR101581469B1 (ko) 웨이퍼 연마방법
KR20080063641A (ko) 에피텍셜 웨이퍼의 제작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11886266

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077022980

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006729859

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729859

Country of ref document: EP