WO2006109117A1 - Method, device and system for effectively coding and decoding of video data - Google Patents
Method, device and system for effectively coding and decoding of video data Download PDFInfo
- Publication number
- WO2006109117A1 WO2006109117A1 PCT/IB2006/000648 IB2006000648W WO2006109117A1 WO 2006109117 A1 WO2006109117 A1 WO 2006109117A1 IB 2006000648 W IB2006000648 W IB 2006000648W WO 2006109117 A1 WO2006109117 A1 WO 2006109117A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sps
- video data
- base
- enhancement
- base layer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/187—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a scalable video layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/30—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/172—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
Definitions
- the present invention relates to the field of video encoding and decoding, and more specifically to scalable video data processing.
- each layer comprises a dependency identification and, for a coded video sequence, respectively a certain sequence parameter set (SPS).
- SPS sequence parameter set
- a coded video sequence consists of successive coded pictures from an instantaneous decoding refresh (IDR) picture to the next IDR picture, exclusively. Any picture that succeeds an IDR picture in decoding order shall not use inter prediction reference from prior to the IDR picture in decoding order.
- the sequence parameter set includes among other things data which will be used on the decoder side for a proper decoding operation.
- a second disadvantage relates to flexibility and coding efficiency.
- the maximum number of initial SPSs is 32. If a scalable presentation point with Dependencyld equal to 7 is desired, and all the lower layers with DependencyID equal to 0 to 6 are required, then in average coding the layer(s) of each value of Dependencyld may have at most only 4 SPS variations. Therefore the flexibility and possibly also coding efficiency is lowered compared to that 32 SPS variations could have been used. Updating an SPS during a video session could solve this problem. However, during a video transport session SPS updating may easily cause problem because of loss of the synchronization between the updated SPS and those NAL units referencing it. In addition, if the update is done using the in-band way, e.g. transmitted using Real-time Transport Protocol (RTP) together with the coded video slices, it may get lost.
- RTP Real-time Transport Protocol
- the object of the present invention is to provide a methodology, a device, and a system for efficiently encoding or decoding, respectively which overcomes the above mentioned problems of the state of the art and provides an effective coding avoiding redundancies.
- the constraint that a sequence parameter set (SPS) is activated for each value of Dependencyld may be removed. Rather, a new SPS is activated only when it is needed. A new sequence is only needed when at least one SPS parameter other than seq parameter set id change is required.
- the invention may be used in any application that applies scalable video coding, wherein one or more sequence parameter sets are used for coding.
- sequence parameter sets can be used more efficiently such that the initial session setup delay is reduced and more sequence parameter sets can be used for a certain scalable layer such that the scalable layer can be encoded in a more flexible way and improved coding efficiency due to the flexibility is also attained.
- encoding/decoding methods and operations according to the present invention are for specified, only the sake of simplicity, for one coded video sequence, but an adaptation for multiply coded video sequences is contemplated within the scope of the present invention.
- a method for scalable encoding of video data is provided.
- obtaining of said video data is provided.
- obtaining said video data is carried out, followed by generating a base layer based on said obtained video data, the base layer comprising at least one picture, generating at least one enhancement layer based on said obtained video data, the at least one enhancement layer comprising at least one picture, generating a dependency identifier (DependencylD) for each of said base and enhancement layers, each DependencyID being associated with a reference number; determining a respective sequence parameter set (SPS) for each of said base layer and said at least one enhancement layer having different DependencylD values, wherein for a number of base and enhancement layers having SPS parameters substantially the same, using one SPS; and encoding said base layer and said at least one enhancement layer by using determined SPS's.
- SPS sequence parameter set
- generating of said base layer and said at least one enhancement layer is based on motion information within said video data, said motion information being provided by a motion estimation process.
- said sequence parameter set comprises an SPS identifier, said SPS identifier being referred to by picture parameter set further referred in a slice header.
- said DependencylD 's for at least two of the group of said base layer and at least one enhancement layer are the same.
- said SPS further comprises at least one of the group comprising profile information, level information, chroma format information, picture size information and frame crop information.
- a method for decoding scalable encoded video data comprises a operation for: obtaining said encoded video data, identifying a base layer and at least one enhancement layer within said encoded video data, detecting a dependency identification (DependencylD) for each of said base and at least one enhancement layer, said dependency identifications having reference numerals, and for at least two layers with same SPS parameters one SPS is used, and decoding said base layer and said decoded at least one enhancement layer by using each of said determined sequence parameter sets (SPS).
- SPS sequence parameter sets
- an encoding device operative according to a method for encoding as above.
- a decoding device operative according to a method for decoding as above.
- a data transmission system including at least one encoding device and at least one decoding device.
- a computer program product comprising a computer readable storage structure embodying computer program code thereon for execution by a computer processor hosted by an electronic device, wherein said computer program code comprises instructions for performing a method for encoding as above.
- a computer program product comprising a computer readable storage structure embodying computer program code thereon for execution by a computer processor hosted by an electronic device, wherein said computer program code comprises instructions for performing a method for decoding as above.
- a computer data signal embodied in a carrier wave and representing instructions, which when executed by a processor cause the operations of anyone of the preceding encoding and/or decoding methods to be carried out.
- a module for scalable encoding of video data comprising at least : a component for obtaining said video data; a component for generating a base layer based on said obtained video data; a component for generating at least one enhancement layer comprising at least one picture, a component for generating a dependency identification (DependencylD) for each of said base and enhancement layers, each dependencyID being associated with a reference number; a component for determining the respective sequence parameter set (SPS) for each of said base and said at least one enhancement layers having different DependencylD values, wherein for a number of base and enhancement layers having SPS parameters substantially the same, using one SPS; and a component for encoding said base layer and said at least one enhancement layer by using determined SPS 's.
- SPS sequence parameter set
- a module for decoding scalable encoded video data comprising at least: a component for obtaining said encoded video data, a component for identifying a base layer and at least one enhancement layer within said encoded video data, a component for detecting a dependency identification (DependencylD) for each of said enhancement layers, said dependency identifications having reference numerals and for at least two layers with the same SPS parameters one SPS is used, a component for decoding said base layer and said decoded enhancement layers by using said determined sequence parameter sets.
- a dependency identification DependencylD
- Fig. 1 schematically illustrates an example block diagram for a portable CE device embodied exemplarily on the basis of a cellular terminal device
- Fig. 2 is a general principle of scalable coding and decoding of video data according the state of the art
- FIG. 3 depicts an operational sequence showing the encoding side in accordance with the present invention
- Fig. 4 depicts an operational sequence showing the decoding side in accordance with the present invention
- Fig. 5 a is a detailed illustration of the encoding principle in accordance with the present invention.
- Fig. 5b is a detailed illustration of the decoding principle in accordance with the present invention.
- Fig. 6 represents the encoding module in accordance with the present invention showing all components
- Fig. 7 represents the decoding module in accordance with the present invention showing all components
- Fig. 8a shows an implementation for encoding video data, wherein each DependencyID receives an SPS
- Fig. 8b shows an implementation for encoding video data, wherein one certain SPS is used for coding in accordance with the present invention.
- Fig. 1 depicts a typical mobile device according to an embodiment of the present invention.
- the mobile device 10 shown in Fig. 1 is capable for cellular data and voice communications. It should be noted that the present invention is not limited to this specific embodiment, which represents for the way of illustration one embodiment out of a multiplicity of embodiments.
- the mobile device 10 includes a (main) microprocessor or microcontroller 100 as well as components associated with the microprocessor controlling the operation of the mobile device.
- These components include a display controller 130 connecting to a display module 135, a non-volatile memory 140, a volatile memory 150 such as a random access memory (RAM), an audio input/output (I/O) interface 160 connecting to a microphone 161, a speaker 162 and/or a headset 163, a keypad controller 170 connected to a keypad 175 or keyboard, any auxiliary input/output (I/O) interface 200, and a short-range communications interface 180.
- a display controller 130 connecting to a display module 135, a non-volatile memory 140, a volatile memory 150 such as a random access memory (RAM), an audio input/output (I/O) interface 160 connecting to a microphone 161, a speaker 162 and/or a headset 163, a keypad controller 170 connected to a keypad 175 or keyboard, any auxiliary input/output (I/O) interface 200, and a short-range communications interface 180.
- Such a device also typically includes other device subsystems shown generally at 190.
- the mobile device 10 may communicate over a voice network and/or may likewise communicate over a data network, such as any public land mobile networks (PLMNs) in form of e.g. digital cellular networks, especially GSM (global system for mobile communication) or UMTS (universal mobile telecommunications system).
- PLMNs public land mobile networks
- GSM global system for mobile communication
- UMTS universal mobile telecommunications system
- the voice and/or data communication is operated via an air interface, i.e. a cellular communication interface subsystem in cooperation with further components (see above) to a base station (BS) or node B (not shown) being part of a radio access network (RAN) of the infrastructure of the cellular network.
- BS base station
- node B not shown
- RAN radio access network
- the digital signal processor (DSP) 120 sends communication signals 124 to the transmitter (TX) 122 and receives communication signals 125 from the receiver (RX) 121.
- the digital signal processor 120 also provides for receiver control signals 126 and transmitter control signal 127.
- the gain levels applied to communication signals in the receiver (RX) 121 and transmitter (TX) 122 may be adaptively controlled through automatic gain control algorithms implemented in the digital signal processor (DSP) 120.
- DSP digital signal processor
- Other transceiver control algorithms could also be implemented in the digital signal processor (DSP) 120 in order to provide more sophisticated control of the transceiver 122.
- LO local oscillator
- a plurality of local oscillators 128 can be used to generate a plurality of corresponding frequencies.
- the antenna 129 depicted in FIG. 1 or a diversity antenna system could be used (not shown), the mobile device 10 could be used with a single antenna structure for signal reception as well as transmission.
- Information which includes both voice and data information, is communicated to and from the cellular interface 110 via a data link between the digital signal processor (DSP) 120.
- DSP digital signal processor
- the mobile device 10 may then send and receive communication signals, including both voice and data signals, over the wireless network.
- Signals received by the antenna 129 from the wireless network are routed to the receiver 121, which provides for such operations as signal amplification, frequency down conversion, filtering, channel selection, and analog to digital conversion. Analog to digital conversion of a received signal allows more complex communication functions, such as digital demodulation and decoding, to be performed using the digital signal processor (DSP) 120.
- DSP digital signal processor
- signals to be transmitted to the network are processed, including modulation and encoding, for example, by the digital signal processor (DSP) 120 and are then provided to the transmitter 122 for digital to analog conversion, frequency up conversion, filtering, amplification, and transmission to the wireless network via the antenna 129.
- DSP digital signal processor
- the microprocessor / microcontroller ( ⁇ C) 110 which may also be designated as a device platform microprocessor, manages the functions of the mobile device 10.
- Operating system software 149 used by the processor 110 is preferably stored in a persistent store such as the non-volatile memory 140, which may be implemented, for example, as a Flash memory, battery backed-up RAM, any other non-volatile storage technology, or any combination thereof.
- the non- volatile memory 140 includes a plurality of high-level software application programs or modules, such as a voice communication software application 142, a data communication software application 141, an organizer module (not shown), or any other type of software module (not shown). These modules are executed by the processor 100 and provide a high-level interface between a user of the mobile device 10 and the mobile device 10.
- This interface typically includes a graphical component provided through the display 135 controlled by a display controller 130 and input/output components provided through a keypad 175 connected via a keypad controller 170 to the processor 100, an auxiliary input/output (I/O) interface 200, and/or a short-range (SR) communication interface 180.
- the auxiliary I/O interface 200 comprises especially a USB (universal serial bus) interface, serial interface, MMC (multimedia card) interface and related interface technologies/standards, and any other standardized or proprietary data communication bus technology
- the short-range communication interface may be a radio frequency (RF) low-power interface including especially WLAN (wireless local area network) and Bluetooth communication technology or an IRDA (infrared data access) interface.
- RF radio frequency
- the RF low-power interface technology referred to herein should especially be understood to include any IEEE 801.xx standard technology, which description is obtainable from the Institute of Electrical and Electronics Engineers.
- the auxiliary I/O interface 200 as well as the short-range communication interface 180 may each represent one or more interfaces supporting one or more input/output interface technologies and communication interface technologies, respectively.
- the operating system, specific device software applications or modules, or parts thereof, may be temporarily loaded into a volatile store 150 such as a random access memory (typically implemented on the basis of DRAM (direct random access memory) technology for faster operation.
- received communication signals may also be temporarily stored to volatile memory 150, before permanently writing them to a file system located in the non-volatile memory 140 or any mass storage preferably detachably connected via the auxiliary I/O interface for storing data.
- volatile memory 150 any mass storage preferably detachably connected via the auxiliary I/O interface for storing data.
- An exemplary software application module of the mobile device 10 is a personal information manager application providing PDA functionality including typically a contact manager, calendar, a task manager, and the like. Such a personal information manager is executed by the processor 100, may have access to the components of the mobile device 10, and may interact with other software application modules. For instance, interaction with the voice communication software application allows for managing phone calls, voice mails, etc., and interaction with the data communication software application enables for managing SMS (short message service), MMS (multimedia service), e-mail communications and other data transmissions.
- the non-volatile memory 140 preferably provides a file system to facilitate permanent storage of data items on the device including particularly calendar entries, contacts etc.
- the ability for data communication with networks e.g. via the cellular interface, the short-range communication interface, or the auxiliary I/O interface enables upload, download, and synchronization via such networks.
- the application modules 141 to 149 represent device functions or software applications that are configured to be executed by the processor 100.
- a single processor manages and controls the overall operation of the mobile device as well as all device functions and software applications.
- Such a concept is applicable for today's mobile devices.
- Especially the implementation of enhanced multimedia functionalities includes for example reproducing of video streaming applications, manipulating of digital images, and video sequences captured by integrated or detachably connected digital camera functionality but also gaming applications with sophisticated graphics drives the requirement of computational power.
- One way to deal with the requirement for computational power which has been pursued in the past, solves the problem for increasing computational power by implementing powerful and universal processor cores.
- Another approach for providing computational power is to implement two or more independent processor cores, which is a well known methodology in the art.
- a universal processor is designed for carrying out a multiplicity of different tasks without specialization to a pre-selection of distinct tasks
- a multi-processor arrangement may include one or more universal processors and one or more specialized processors adapted for processing a predefined set of tasks. Nevertheless, the implementation of several processors within one device, especially a mobile device such as mobile device 10, requires traditionally a complete and sophisticated redesign of the components.
- SoC system-on-a-chip
- SoC is a concept of integrating at least numerous (or all) components of a processing device into a single high-integrated chip.
- Such a system-on-a-chip can contain digital, analog, mixed-signal, and often radio-frequency functions — all on one chip.
- a typical processing device comprises a number of integrated circuits that perform different tasks.
- These integrated circuits may include especially microprocessor, memory, universal asynchronous receiver-transmitters (UARTs), serial/parallel ports, direct memory access (DMA) controllers, and the like.
- UART universal asynchronous receiver-transmitter
- DMA direct memory access
- VLSI very-large-scale integration
- said device 10 is equipped with a module for scalable encoding 105 and decoding 106 of video data according to the inventive operation of the present invention.
- said modules 105, 106 may individually be used.
- said device 10 is adapted to perform video data encoding or decoding respectively. Said video data may be received by means of the communication modules of the device or it also may be stored within any imaginable storage means within the device 10.
- FIG. 2 A very general principle of (layered) scalable coding and decoding is shown in Fig. 2, where by supplementing further building blocks of the intermediate-level type (highlighted by a dotted rectangle), an arbitrary number of scalable layers can in principle be realized.
- the spatiotemporal signal resolution to be represented by the base layer is first generated by decimation (preprocessing). In the subsequent encoding stage, an appropriate setting of the quantizer will then lead to a certain overall quality level of the base information.
- the base-layer reconstruction is an approximation of all the higher layer resolution levels and can be utilized in the decoding of the subsequent layers.
- the midprocessing unit performs up-sampling of the next lower layer signal to the subsequent layer's resolution.
- preprocessing and midprocessing are performed by decimation and interpolation throughout all stages, whereas the particular action to be taken can be quite different depending on the dimension of scalability, e.g., motion-compensated processing can be implemented for frame- rate up-sampling in temporal scalability.
- the information is propagated from the lower into the higher resolution layers both during encoding and decoding.
- Fig. 3 shows an operational sequence of the encoding method in accordance with the present invention.
- the sequence may be started. This may correspond for instance to the receiving of a video data stream from a camera or the like. Said camera may be incorporated within the above mentioned device 10.
- the encoder may generate or create, respectively the corresponding base layer (BL) and its enhancement layers (EL), as shown according to the operational operation S320. It is imaginable to implement only one EL but creating of more EL results in better encoding and thereby further increased decoding quality.
- an operation S330 follows corresponding to generating of the corresponding dependency identifications (DependencylD) of the BL and EL as well. The value of the DependencylD will increase if more then one enhancement layer will be used.
- an operation S340 determining the respective sequence parameter set (SPS) for each of said base layer and all said enhancement layers is provided, wherein for a number of base or enhancement layers if the selected SPS parameters are substantially equal, only one SPS is used. According to the inventive operation of the present invention only one SPS may be used for different Dependencyld values resulting in effective encoding operation because redundant data will be removed.
- the encoding operation S350 will start. In this operation the base layer and enhancement layers arid also optional information like motion vectors or the like are multiplexed resulting in a bit stream, or encoded video data stream which is now ready for further processing.
- the operational sequence will come to an end S390 and may be restarted according to a new iteration or if for instance a no raw video data sequence is to be encoded.
- said resulting encoded video data stream may be sent to a receiver which may be adapted to decode or store said data.
- the decoding process will be nearly described with reference to fig. 4 in the following.
- Fig. 4 depicts an encoding operational sequence in accordance with the present invention.
- the operational sequence starts S400.
- the base layer and the corresponding one or more enhancement layers may be identified according the operational operation S420.
- the DependencyID will be detected and also the sequence parameter set (SPS) which shall be used will be identified.
- SPS sequence parameter set
- decoding of said scalable encoded data will be provided under consideration of the previously determined information: BL, SPS and EL. If no further operations are needed, the method will come to end according to the operation S490 and may be restarted if necessary.
- Fig. 5a shows the principle of the scalable encoding process in accordance with the present invention. All processing may be supported by a motion estimator which is depicted with reference to fig. 5 a.
- the motion estimator uses the video data for generating motion vectors which are further necessary for encoding or picture improvement.
- the original video data is used for generating motion vectors and also for generating the base layer BL and the corresponding plurality of enhancement layers EL.
- the enhancement layers may be generated on the basis of the original video data, on the BL and also optionally on the basis of the information delivered by the motion vectors.
- the motion vectors are also encoded or combined, respectively within the scalable encoded video data stream to perform picture improvement or the like on the decoder side.
- Each BL or EL is provided with a DependencyID and with an SPS.
- the encoder first determine SPSs to be used and checks if the SPS parameters of any subset of all the base layers and enhancement layers are substantially equal and will use only one SPS for encoding of the subset of layers to avoid redundant further data traffic.
- FIG. 1 shows a possible detailed embodiment of the scalable encoding module 105 in accordance with the present invention.
- Fig. 5b illustrates a decoder of scalable encoded video data in accordance with the present invention.
- Fig. 5b is a possible embodiment of the decoding module 106 adapted to process scalable encode video data.
- the module for determining the appropriate SPS is not needed on the decoding side as it is needed on the encoding side.
- the determining module is also shown with reference to figure 5b.
- formation on which SPS is used in a picture it is signaled by referencing its ID in the picture parameter set, and the picture parameter set ID is further referenced in the slice header.
- the EL stream On the basis of the received data the EL stream, the Dependencyld's and the BL stream are identified which is symbolized by a demultiplexer DEMUX.
- the achieved data streams are now ready for further processing provided by the corresponding EL-Decoder and the BL-decoder.
- Each of the depicted modules is adapted to interact with each other if needed.
- the motion vectors are available and shall be used for decoding. According to the used SPS the decoder provides proper decoding resulting in scalable decoded video data.
- the BL data stream will also be provided as a separate data stream for a certain implementation.
- the BL data which is also decoded, may be used if problems within the decoding procedure of the EL's were detected.
- Fig. 6 represents the encoding module in accordance with the present invention showing all components needed for encoding.
- Said module for scalable encoding 105 of video data comprises: a component for obtaining 610 said video data, a component for generating 620 a base layer based on said obtained video data, a component for generating 630 a predetermined number of corresponding scalable enhancement layers based on said video data and said base layer, a component for generating 640 a dependency identification (DependencylD) for each of said base or enhancement layers, said dependency identifications having subsequent reference numerals, a component for determining 650 the respective sequence parameter set (SPS) for each of said base or enhancement layers, wherein for a number of base or enhancement layers if the selected SPS parameters are substantially equal, only one SPS is used, and a component for encoding 660 said base layer and said enhancement layers by using said respective sequence parameter set.
- SPS sequence parameter set
- Fig. 7 represents the decoding module in accordance with the present invention showing all components needed for decoding.
- Said module for decoding 105 scalable encoded video data comprises: a component for obtaining 710 said encoded video data, a component for identifying 720 a base layer and a plurality of enhancement layers within said encoded video data, a component for detecting 730 a dependency identification (DependencylD) for each of said enhancement layers, said dependency identifications having subsequent reference numerals and for at least two layers with different said dependency identifications a same SPS may be used, and a component for decoding 740 said base layer and said decoded enhancement layers by using said used sequence parameter set.
- DependencylD dependency identification
- Both modules 105 and 106 may be implemented as software modules or hardware modules or the like.
- FIG. 8a shows that each DependencylD corresponding to the base layer and the plurality of enhancement layers is provided with an individual sequence parameter set SPS.
- the encoding method in accordance with the present invention detects if the sequence parameter sets for different Dependencyld's are equal and uses only one SPS for coding. In this example only SPS 1 is used for encoding of all the enhancement layers.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2007012604A MX2007012604A (en) | 2005-04-13 | 2006-03-23 | Method, device and system for effectively coding and decoding of video data. |
CN200680018046.XA CN101180883B (en) | 2005-04-13 | 2006-03-23 | For the method, apparatus and system of Code And Decode video data effectively |
EP06710582.5A EP1869888B1 (en) | 2005-04-13 | 2006-03-23 | Method, device and system for effectively coding and decoding of video data |
BRPI0610398-7A BRPI0610398B1 (en) | 2005-04-13 | 2006-03-23 | METHOD AND APPARATUS |
KR1020077026284A KR100931870B1 (en) | 2005-04-13 | 2006-03-23 | Method, apparatus and system for effectively coding and decoding video data |
JP2008505972A JP4903195B2 (en) | 2005-04-13 | 2006-03-23 | Method, device and system for effectively encoding and decoding video data |
AU2006233279A AU2006233279C1 (en) | 2005-04-13 | 2006-03-23 | Method, device and system for effectively coding and decoding of video data |
HK08109937.9A HK1114522A1 (en) | 2005-04-13 | 2008-09-05 | Method, device and system for effectively coding and decoding of video data |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67121305P | 2005-04-13 | 2005-04-13 | |
US60/671,213 | 2005-04-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006109117A1 true WO2006109117A1 (en) | 2006-10-19 |
WO2006109117A8 WO2006109117A8 (en) | 2007-12-27 |
Family
ID=37086632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2006/000648 WO2006109117A1 (en) | 2005-04-13 | 2006-03-23 | Method, device and system for effectively coding and decoding of video data |
Country Status (13)
Country | Link |
---|---|
US (1) | US8259800B2 (en) |
EP (1) | EP1869888B1 (en) |
JP (1) | JP4903195B2 (en) |
KR (1) | KR100931870B1 (en) |
CN (1) | CN101180883B (en) |
AU (1) | AU2006233279C1 (en) |
BR (1) | BRPI0610398B1 (en) |
HK (1) | HK1114522A1 (en) |
MX (1) | MX2007012604A (en) |
MY (1) | MY145660A (en) |
RU (1) | RU2377735C2 (en) |
TW (1) | TWI383682B (en) |
WO (1) | WO2006109117A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009002061A3 (en) * | 2007-06-27 | 2009-02-19 | Samsung Electronics Co Ltd | Method, medium, and apparatus for encoding and/or decoding video data |
WO2013055808A1 (en) * | 2011-10-10 | 2013-04-18 | Qualcomm Incorporated | Adaptive frame size support in advanced video codecs |
US11122280B2 (en) | 2014-03-07 | 2021-09-14 | Sony Corporation | Transmission device, transmission method, reception device, and reception method using hierarchical encoding to allow decoding based on device capability |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004291740A (en) * | 2003-03-26 | 2004-10-21 | Nsk Ltd | Steering device |
KR20070038396A (en) * | 2005-10-05 | 2007-04-10 | 엘지전자 주식회사 | Method for encoding and decoding video signal |
CN101317460A (en) | 2005-10-11 | 2008-12-03 | 诺基亚公司 | System and method for efficient scalable stream adaptation |
US20090161762A1 (en) * | 2005-11-15 | 2009-06-25 | Dong-San Jun | Method of scalable video coding for varying spatial scalability of bitstream in real time and a codec using the same |
JP5535646B2 (en) * | 2007-01-05 | 2014-07-02 | トムソン ライセンシング | Virtual reference decoder for scalable video coding |
US9344362B2 (en) | 2007-01-12 | 2016-05-17 | University-Industry Cooperation Group Of Kyung Hee University | Packet format of network abstraction layer unit, and algorithm and apparatus for video encoding and decoding using the format, QOS control algorithm and apparatus for IPV6 label switching using the format |
WO2008127072A1 (en) * | 2007-04-16 | 2008-10-23 | Electronics And Telecommunications Research Institute | Color video scalability encoding and decoding method and device thereof |
US20140072058A1 (en) | 2010-03-05 | 2014-03-13 | Thomson Licensing | Coding systems |
US20090003431A1 (en) * | 2007-06-28 | 2009-01-01 | Lihua Zhu | Method for encoding video data in a scalable manner |
BR122012013077A2 (en) * | 2007-04-18 | 2015-07-14 | Thomson Licensing | Signal having decoding parameters for multi-view video encoding |
AU2012238297B2 (en) * | 2007-04-18 | 2015-01-22 | Dolby International Ab | Coding systems |
AU2015203559B2 (en) * | 2007-04-18 | 2017-08-10 | Dolby International Ab | Coding systems |
JP5339697B2 (en) * | 2007-08-14 | 2013-11-13 | キヤノン株式会社 | Transmission device, transmission method, and computer program |
KR100912826B1 (en) * | 2007-08-16 | 2009-08-18 | 한국전자통신연구원 | A enhancement layer encoder/decoder for improving a voice quality in G.711 codec and method therefor |
KR20140105037A (en) | 2008-08-08 | 2014-08-29 | 인터디지탈 패튼 홀딩스, 인크 | Mac reset and reconfiguration |
KR101118265B1 (en) | 2008-11-05 | 2012-03-22 | 한국전자통신연구원 | Method and Apparatus for providing the variable bit-rate service |
KR101597987B1 (en) * | 2009-03-03 | 2016-03-08 | 삼성전자주식회사 | Layer-independent encoding and decoding apparatus and method for multi-layer residual video |
CA2788946A1 (en) * | 2010-02-09 | 2011-08-18 | Nippon Telegraph And Telephone Corporation | Motion vector predictive encoding method, motion vector predictive decoding method, moving picture encoding apparatus, moving picture decoding apparatus, and programs thereof |
JP5367098B2 (en) | 2010-02-09 | 2013-12-11 | 日本電信電話株式会社 | Motion vector predictive coding method, motion vector predictive decoding method, moving picture coding apparatus, moving picture decoding apparatus, and programs thereof |
US8896715B2 (en) | 2010-02-11 | 2014-11-25 | Microsoft Corporation | Generic platform video image stabilization |
TWI419568B (en) * | 2010-05-27 | 2013-12-11 | Univ Nat Sun Yat Sen | Three dimensional image dividing method |
US9769230B2 (en) * | 2010-07-20 | 2017-09-19 | Nokia Technologies Oy | Media streaming apparatus |
CN102123299B (en) * | 2011-01-11 | 2012-11-28 | 中国联合网络通信集团有限公司 | Playing method and device of telescopic video |
MX337078B (en) * | 2011-07-02 | 2016-02-11 | Samsung Electronics Co Ltd | Method and apparatus for multiplexing and demultiplexing video data to identify reproducing state of video data. |
US9824426B2 (en) | 2011-08-01 | 2017-11-21 | Microsoft Technology Licensing, Llc | Reduced latency video stabilization |
KR20130116782A (en) * | 2012-04-16 | 2013-10-24 | 한국전자통신연구원 | Scalable layer description for scalable coded video bitstream |
US10491913B2 (en) * | 2012-04-24 | 2019-11-26 | Telefonaktiebolaget L M Ericsson (Publ) | Identifying a parameter set for decoding a multi-layer video representation |
US9161004B2 (en) * | 2012-04-25 | 2015-10-13 | Qualcomm Incorporated | Identifying parameter sets in video files |
US9451256B2 (en) * | 2012-07-20 | 2016-09-20 | Qualcomm Incorporated | Reusing parameter sets for video coding |
WO2014051396A1 (en) * | 2012-09-27 | 2014-04-03 | 한국전자통신연구원 | Method and apparatus for image encoding/decoding |
US9432664B2 (en) | 2012-09-28 | 2016-08-30 | Qualcomm Incorporated | Signaling layer identifiers for operation points in video coding |
WO2014059051A1 (en) | 2012-10-09 | 2014-04-17 | Rodriguez Arturo A | Providing a common set of parameters for sub-layers of coded video |
WO2014059049A1 (en) | 2012-10-09 | 2014-04-17 | Rodriguez Arturo A | Output management of prior decoded pictures at picture format transitions in bitstreams |
US10021388B2 (en) * | 2012-12-26 | 2018-07-10 | Electronics And Telecommunications Research Institute | Video encoding and decoding method and apparatus using the same |
KR20140092198A (en) * | 2013-01-07 | 2014-07-23 | 한국전자통신연구원 | Video Description for Scalable Coded Video Bitstream |
TWI675585B (en) * | 2013-01-07 | 2019-10-21 | Vid衡器股份有限公司 | Motion information signaling for scalable video coding |
WO2014162750A1 (en) * | 2013-04-05 | 2014-10-09 | Sharp Kabushiki Kaisha | Random access point pictures |
CN105103563B (en) * | 2013-04-08 | 2019-05-21 | 寰发股份有限公司 | Method and apparatus about scaling table data signaling |
KR20160021222A (en) | 2013-06-18 | 2016-02-24 | 브이아이디 스케일, 인크. | Inter-layer parameter set for hevc extensions |
US9756335B2 (en) * | 2013-07-02 | 2017-09-05 | Qualcomm Incorporated | Optimizations on inter-layer prediction signalling for multi-layer video coding |
CN105210370B (en) * | 2013-07-10 | 2019-04-12 | 夏普株式会社 | Moving image decoding apparatus |
US10136152B2 (en) * | 2014-03-24 | 2018-11-20 | Qualcomm Incorporated | Use of specific HEVC SEI messages for multi-layer video codecs |
CN106664445B (en) * | 2014-08-07 | 2020-04-21 | 索尼公司 | Transmission apparatus, transmission method, and reception apparatus |
CN106034260B (en) * | 2015-03-17 | 2019-08-09 | 上海交通大学 | Support the signaling and mechanism of Delamination Transmission |
EP3119086A1 (en) * | 2015-07-17 | 2017-01-18 | Thomson Licensing | Methods and devices for encoding/decoding videos |
GB2554877B (en) * | 2016-10-10 | 2021-03-31 | Canon Kk | Methods, devices, and computer programs for improving rendering display during streaming of timed media data |
US20180352240A1 (en) * | 2017-06-03 | 2018-12-06 | Apple Inc. | Generalized Temporal Sub-Layering Frame Work |
KR20220154792A (en) * | 2020-03-17 | 2022-11-22 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Encoders, decoders and corresponding methods |
CN116189310B (en) * | 2022-11-16 | 2024-01-23 | 北京理工大学 | Method for providing human motion data set and electronic equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5988863A (en) * | 1996-01-30 | 1999-11-23 | Demografx | Temporal and resolution layering in advanced television |
US20050129123A1 (en) * | 2003-12-15 | 2005-06-16 | Jizheng Xu | Enhancement layer transcoding of fine-granular scalable video bitstreams |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6173013B1 (en) * | 1996-11-08 | 2001-01-09 | Sony Corporation | Method and apparatus for encoding enhancement and base layer image signals using a predicted image signal |
RU2201654C2 (en) | 1997-12-23 | 2003-03-27 | Томсон Лайсенсинг С.А. | Low-noise coding and decoding method |
US6501797B1 (en) | 1999-07-06 | 2002-12-31 | Koninklijke Phillips Electronics N.V. | System and method for improved fine granular scalable video using base layer coding information |
US6816194B2 (en) * | 2000-07-11 | 2004-11-09 | Microsoft Corporation | Systems and methods with error resilience in enhancement layer bitstream of scalable video coding |
RU2231559C1 (en) | 2003-03-20 | 2004-06-27 | ООО "Сорби стил" | Direct method for alloying steel with complex of elements |
US7586924B2 (en) * | 2004-02-27 | 2009-09-08 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for coding an information signal into a data stream, converting the data stream and decoding the data stream |
US20050259729A1 (en) * | 2004-05-21 | 2005-11-24 | Shijun Sun | Video coding with quality scalability |
US20060013305A1 (en) * | 2004-07-14 | 2006-01-19 | Sharp Laboratories Of America, Inc. | Temporal scalable coding using AVC coding tools |
DE102004059978B4 (en) * | 2004-10-15 | 2006-09-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for generating a coded video sequence and decoding a coded video sequence using interlayer residue prediction, and a computer program and computer readable medium |
KR20060122663A (en) * | 2005-05-26 | 2006-11-30 | 엘지전자 주식회사 | Method for transmitting and using picture information in a video signal encoding/decoding |
-
2006
- 2006-03-23 BR BRPI0610398-7A patent/BRPI0610398B1/en active IP Right Grant
- 2006-03-23 EP EP06710582.5A patent/EP1869888B1/en active Active
- 2006-03-23 KR KR1020077026284A patent/KR100931870B1/en active IP Right Grant
- 2006-03-23 MX MX2007012604A patent/MX2007012604A/en active IP Right Grant
- 2006-03-23 WO PCT/IB2006/000648 patent/WO2006109117A1/en active Application Filing
- 2006-03-23 CN CN200680018046.XA patent/CN101180883B/en active Active
- 2006-03-23 JP JP2008505972A patent/JP4903195B2/en active Active
- 2006-03-23 AU AU2006233279A patent/AU2006233279C1/en active Active
- 2006-03-23 RU RU2007137805/09A patent/RU2377735C2/en active
- 2006-03-27 US US11/391,723 patent/US8259800B2/en active Active
- 2006-03-29 TW TW095110971A patent/TWI383682B/en active
- 2006-03-30 MY MYPI20061439A patent/MY145660A/en unknown
-
2008
- 2008-09-05 HK HK08109937.9A patent/HK1114522A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5988863A (en) * | 1996-01-30 | 1999-11-23 | Demografx | Temporal and resolution layering in advanced television |
US20050129123A1 (en) * | 2003-12-15 | 2005-06-16 | Jizheng Xu | Enhancement layer transcoding of fine-granular scalable video bitstreams |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009002061A3 (en) * | 2007-06-27 | 2009-02-19 | Samsung Electronics Co Ltd | Method, medium, and apparatus for encoding and/or decoding video data |
CN101690194B (en) * | 2007-06-27 | 2013-02-13 | 三星电子株式会社 | Method, medium, and apparatus for encoding and/or decoding video data |
WO2013055808A1 (en) * | 2011-10-10 | 2013-04-18 | Qualcomm Incorporated | Adaptive frame size support in advanced video codecs |
WO2013055806A1 (en) * | 2011-10-10 | 2013-04-18 | Qualcomm Incorporated | Adaptive frame size support in advanced video codecs |
US9451284B2 (en) | 2011-10-10 | 2016-09-20 | Qualcomm Incorporated | Efficient signaling of reference picture sets |
US11122280B2 (en) | 2014-03-07 | 2021-09-14 | Sony Corporation | Transmission device, transmission method, reception device, and reception method using hierarchical encoding to allow decoding based on device capability |
US11394984B2 (en) | 2014-03-07 | 2022-07-19 | Sony Corporation | Transmission device, transmission method, reception device, and reception method |
US11758160B2 (en) | 2014-03-07 | 2023-09-12 | Sony Group Corporation | Transmission device, transmission method, reception device, and reception method |
Also Published As
Publication number | Publication date |
---|---|
CN101180883A (en) | 2008-05-14 |
MY145660A (en) | 2012-03-15 |
AU2006233279A1 (en) | 2006-10-19 |
EP1869888B1 (en) | 2016-07-06 |
JP4903195B2 (en) | 2012-03-28 |
HK1114522A1 (en) | 2008-10-31 |
BRPI0610398A2 (en) | 2012-01-10 |
BRPI0610398A8 (en) | 2016-05-10 |
EP1869888A1 (en) | 2007-12-26 |
RU2007137805A (en) | 2009-05-20 |
WO2006109117A8 (en) | 2007-12-27 |
KR20080002951A (en) | 2008-01-04 |
CN101180883B (en) | 2016-02-03 |
TWI383682B (en) | 2013-01-21 |
AU2006233279B2 (en) | 2010-05-27 |
EP1869888A4 (en) | 2013-09-11 |
TW200708109A (en) | 2007-02-16 |
MX2007012604A (en) | 2008-01-11 |
AU2006233279C1 (en) | 2011-01-27 |
JP2008536425A (en) | 2008-09-04 |
US20060251169A1 (en) | 2006-11-09 |
RU2377735C2 (en) | 2009-12-27 |
US8259800B2 (en) | 2012-09-04 |
KR100931870B1 (en) | 2009-12-15 |
BRPI0610398B1 (en) | 2019-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1869888B1 (en) | Method, device and system for effectively coding and decoding of video data | |
US20060256863A1 (en) | Method, device and system for enhanced and effective fine granularity scalability (FGS) coding and decoding of video data | |
US20070201551A1 (en) | System and apparatus for low-complexity fine granularity scalable video coding with motion compensation | |
US20080240242A1 (en) | Method and system for motion vector predictions | |
US20070110159A1 (en) | Method and apparatus for sub-pixel interpolation for updating operation in video coding | |
US20070009050A1 (en) | Method and apparatus for update step in video coding based on motion compensated temporal filtering | |
US20090279602A1 (en) | Method, Device and System for Effective Fine Granularity Scalability (FGS) Coding and Decoding of Video Data | |
US20070053441A1 (en) | Method and apparatus for update step in video coding using motion compensated temporal filtering | |
KR20080006607A (en) | Method and system for motion compensated fine granularity scalable video coding with drift control | |
US20070201550A1 (en) | Method and apparatus for entropy coding in fine granularity scalable video coding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REEP | Request for entry into the european phase |
Ref document number: 2006710582 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006710582 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7807/DELNP/2007 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/012604 Country of ref document: MX Ref document number: 12007502260 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008505972 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006233279 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077026284 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007137805 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: 2006233279 Country of ref document: AU Date of ref document: 20060323 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2006233279 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200680018046.X Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2006710582 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0610398 Country of ref document: BR Kind code of ref document: A2 Effective date: 20071015 |