WO2006104123A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2006104123A1
WO2006104123A1 PCT/JP2006/306225 JP2006306225W WO2006104123A1 WO 2006104123 A1 WO2006104123 A1 WO 2006104123A1 JP 2006306225 W JP2006306225 W JP 2006306225W WO 2006104123 A1 WO2006104123 A1 WO 2006104123A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum black
fluorine
treatment
gas
platinum
Prior art date
Application number
PCT/JP2006/306225
Other languages
English (en)
French (fr)
Inventor
Masayoshi Ishida
Shinji Hashiguchi
Yasutaka Tashiro
Original Assignee
Stella Chemifa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stella Chemifa Corporation filed Critical Stella Chemifa Corporation
Priority to US11/887,336 priority Critical patent/US8003561B2/en
Priority to KR1020077024868A priority patent/KR101355670B1/ko
Priority to JP2007510512A priority patent/JPWO2006104123A1/ja
Priority to EP06730173.9A priority patent/EP1867391B1/en
Priority to CN2006800103849A priority patent/CN101151098B/zh
Publication of WO2006104123A1 publication Critical patent/WO2006104123A1/ja
Priority to US13/177,260 priority patent/US8435916B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a platinum black material, a fluorination method thereof, an electrode, a one-side membrane electrode assembly, and a polymer electrolyte fuel cell.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2002-159866
  • Patent Document 2 Japanese Patent Publication No. 3350691
  • the polymer electrolyte fuel cell is a device that can directly convert chemical energy into electrical energy. It can start at room temperature, and can be made compact and lightweight. Applications are expected as a new energy source.
  • As a method of supplying hydrogen, which is the fuel required for PEFC problems such as infrastructure development are considered to be the easiest, but hydrocarbon fuel reforming is considered the simplest.
  • the PFEC anode Pt catalyst depends on the CO contained in the reformed gas It is said that it is difficult to put it to practical use because there is a problem that it is poisoned and deactivated.
  • Patent Document 1 Pt—Ru alloys are currently used as a CO poison resistant catalyst.
  • Ru is a rare metal and is expected to be a major obstacle to the dissemination of future PEFC. Therefore, the development of a new CO-resistant catalyst that replaces Pt—Ru is one of the important issues in the development of PEFC today (Patent Document 1).
  • Patent Document 2 describes a technique in which a hydrogen storage alloy is surface-treated with fluorine (fluorination treatment) as a CO-resistant catalyst technology. Fluorination treatment has a problem of deactivation due to CO adsorption, just like the PEFC anode electrode.
  • the fluorine is adsorbed on the surface using diluted fluorine gas or hydrogen fluoride as a catalyst to give a CO poisoning suppression effect.
  • This method is catalyst adjustment Since it has characteristics not found in conventional catalyst preparation methods in that its properties can be changed later, it is expected that simple and cheaper catalyst adjustment will be possible if it is put to practical use.
  • Patent Document 2 forms a film containing a metal fluoride as a main component on the surface of a hydrogen storage alloy, and forms a metal fluoride film on another metal or alloy.
  • CO poisoning suppression effect does not necessarily occur.
  • the present invention does not use expensive and rare materials such as Ru, and is not only resistant to CO but also resistant to HS, SO, and HCHO.
  • An object of the present invention is to provide a method for fluorinating a material and a platinum black material.
  • the invention according to claim 1 is a platinum black material having a surface that has been subjected to a treatment for contacting with fluorine gas or a mixed gas of fluorine gas and inert gas.
  • the invention according to claim 2 is a platinum black material characterized in that fluorine is present on the surface in a monoatomic layer.
  • the invention according to claim 3 is the platinum black material according to claim 1, wherein pretreatment for removing impurities is performed before the treatment.
  • the impurities referred to here are, for example, gaseous or liquid moisture, oxygen, and oxides.
  • the invention according to claim 4 is characterized in that a treatment for leaving platinum black in a fluorine gas atmosphere or a mixed gas atmosphere of an inert gas and fluorine is performed in a decompression chamber. It is a processing method.
  • the invention according to claim 5 is the platinum black fluorination treatment method according to claim 4, wherein the fluorine concentration in the mixed gas is 0.001% or more.
  • the invention according to claim 6 is the platinum black fluorination treatment method according to claim 5, wherein pretreatment for removing impurities present on the surface is performed before the treatment.
  • the invention according to claim 7 is the platinum black fluorination treatment method according to claim 4 or 6, wherein the treatment is performed in a heated state.
  • the invention according to claim 8 is the platinum black fluorination treatment method according to claim 7, wherein the heating temperature is 20 ° C or higher.
  • the invention according to claim 9 is the fluorination treatment method of platinum black according to claims 4 to 8, wherein the inert gas is at least one of nitrogen, He, and Ar. It is.
  • the invention according to claim 10 is a platinum black material treated by the method according to any one of claims 4 to 9.
  • the invention according to claim 11 is directed to CO poisoning resistance, Hs poisoning resistance, SO poisoning resistance to HC resistance.
  • the invention according to claim 12 is the electrode comprising the platinum black material according to any one of claims 1, 2, 10, and 11.
  • the invention according to claim 13 is a one-side membrane electrode assembly comprising the electrode according to claim 12 supported on one side.
  • An invention according to claim 14 is a solid polymer fuel cell using the one-side membrane electrode assembly according to claim 13.
  • It can be suitably used as a PFEC anode electrode.
  • FIG. 1 is a structural conceptual diagram of a PEFC half cell.
  • FIG. 2 is a graph showing hydroxide current in hydrogen gas containing CO according to an example.
  • FIG. 3 According to the example, after measuring the hydrogen oxidation current, the atmosphere was replaced with Ar atmosphere and the running speed was 10m. It is a graph which shows cv measured by VZs.
  • FIG. 4 is a graph showing the XPS measurement result of each sample according to the example.
  • fluorine is adsorbed on the surface of platinum black by leaving the platinum black in a mixed gas atmosphere of an inert gas and fluorine in a decompression chamber.
  • platinum black that is the starting material is the existing platinum black, For example, platinum black made by Tanaka Kikinzoku may be used.
  • Impurities are, for example, gaseous or liquid moisture, oxygen, and oxides. Gaseous or liquid moisture or oxygen can be removed by leaving platinum black in a vacuum chamber. Further, a purge gas may be flowed.
  • the depressurization chamber can be more effectively degassed by performing a heat treatment than simply depressurizing. Moreover, it can also process effectively by changing an inert gas several times.
  • the decompression chamber After storing platinum black in the decompression chamber, the decompression chamber is decompressed.
  • the degree of vacuum is preferably 1 Pa or less.
  • the adsorbed gas component can be reduced, and the material can be processed more efficiently.
  • the concentration of impurities (particularly moisture) in the decompression chamber during the pretreatment for removing impurities present on the surface be as low as possible.
  • lOppt or less is preferred, and lOppb or less is more preferred.
  • the impurity is an oxide
  • it can be removed by dissolving it by using hydrofluoric acid or the like. After removal, it is preferable to perform fluorination treatment without exposing to the atmosphere.
  • the fluorination treatment is performed by introducing a gas containing fluorine in the decompression chamber.
  • This fluorination treatment is a treatment for adsorbing fluorine on the surface of platinum black.
  • the force varies depending on the temperature and pressure.
  • the concentration of fluorine is preferably from 0.01 to 10%, more preferably from 0.01 to 1%.
  • the fluorination treatment temperature is preferably performed in a heated state.
  • the specific temperature is preferably 0 to 300 ° C. force S, more preferably 30 to 250 ° C. You may carry out by heating gas.
  • the post-treatment is a treatment that removes excess fluorine from the surface force. Specifically, it is a degassing treatment of surface force. Degassing the surface force so that the monoatomic layer of fluorine remains on the surface. This prevents surplus fluorine from being later decomposed and affecting the surface.
  • the surface temperature, the degree of vacuum, and the degassing time may be mainly controlled. For example, if left in a vacuum chamber at 1 Pa or less for 1 hour, the fluorine layer on the surface will desorb. However, even if this pressure is left in the decompression chamber for this time, the fluorine (monoatomic layer) directly attached to or adsorbed on the surface of platinum black is not removed. It may be left in the vacuum chamber for more than 1 hour. More specifically, for the platinum black actually subjected to the fluorination treatment, the surface temperature, the degree of vacuum, and the degassing treatment time are changed, and the conditions under which the monoatomic layer remains can be obtained in advance by experiments. .
  • Fluorine is adsorbed on the surface of platinum black by the fluorination treatment.
  • the platinum fluoride is not formed! Adsorbed in the state! /, But I prefer the monoatomic layer adsorption.
  • Pretreatment was performed under the following conditions.
  • the temperature of the mixed gas was raised to 250 ° C to perform fluorination treatment.
  • the inside of the chamber was depressurized to 1 Pa or less for 1 hour to remove excess adsorbed fluorine, and then a sample was quickly taken under an N atmosphere.
  • the cell reference electrode was RHE, and the counter electrode was a platinum plate.
  • the electrolyte used was 1M perchloric acid, and was heated to 50 ° C using a throwing heater to achieve conditions as close as possible to those of PEFC.
  • hydrogen was generated from the counter electrode, which could interfere with the reaction at the counter electrode, so Ar gas was introduced into the solution for publishing.
  • Figure 2 shows a comparison of hydrogen oxidation current curves in hydrogen gas containing lOOppm of CO on various fluorinated Pt black electrodes.
  • Pt black that has been fluorinated at a concentration of 1% and 10% compared to the untreated sample shows that the current value is high even if the CO concentration is 50 ppm or lOO ppm.
  • 1% treatment was more effective than the 1% treatment.
  • Fig. 4 shows the XPS measurement results of each sample.
  • Pt black with a treatment concentration of 1% shows almost no shift in the waveform of Pt4f
  • Pt black with 10% treatment shows a noticeable shift in Pt4f
  • the peak of Fls is also compared to that with 1% treatment. It turns out that it is shifting to the low energy side.
  • E. Bechto Id et al. Who performed fluorine adsorption on the Pt single crystal surface in a high vacuum, when the amount of fluorine adsorption on the Pt surface was small, Pt fluoride of PtF is formed when there is a large amount of adsorption.
  • impurities such as CO are caused by fluoride such as LaF produced on the surface.
  • the platinum black material of the present invention has a CO poisoning suppression effect, a H 2 S toxicity inhibition effect, a SO
  • fuel can be supplied without the need for infrastructure development, and in particular, it can be suitably used as an energy source for automobiles or household cogeneration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Description

明 細 書
燃料電池
技術分野
[0001] 本発明は白金ブラック材及びそのフッ化処理方法並びに電極、片側膜電極接合体 及び固体高分子形燃料電池に関する。
背景技術
[0002] 特許文献 1 :特開 2002— 159866号公報
特許文献 2 :特許公報第 3350691号公報
[0003] 固体高分子形燃料電池 (PEFC)は化学エネルギーを直接電気エネルギーに変換 できる装置で、常温力も始動でき、小型軽量ィ匕が可能であるといった特徴から、家庭 用コージェネレーションや自動車用などの新しいエネルギー源として応用が期待され て 、る。 PEFCに必要な燃料である水素の供給方法としてはインフラ整備などの問題 カゝら炭化水素燃料改質が最も簡便であると考えられるが、改質ガス中に含まれる CO によって PFECアノード極 Pt触媒が吸着被毒され、失活するという問題がありその実 用化を困難なものとして ヽる。
[0004] また、 CO以外においても H S、 SO、 HCHO、などのガスにより触媒能を低下させ
2 4
る可能性が挙がっている。
その対策として、現在は Pt—Ru合金が耐 CO被毒触媒として用いられている(特許 文献 1)。しかし、 Ruは希少金属であり、価格高騰などの懸念力 将来的な PEFC普 及に大きな障害となることが予想される。そのため、 Pt—Ruに代わる新たな耐 CO被 毒触媒を開発することが今日の PEFC開発での重要課題の一つとなっている(特許 文献 1)。
[0005] 耐 CO被毒触媒技術として、水素吸蔵合金をフッ素による表面処理 (フッ化処理)し た技術が特許文献 2に記載されて 、る。フッ化処理は PEFCアノード極と同様に CO 吸着による失活が問題となっている LaNi系水素吸蔵合金において、 CO被毒抑制
5
効果を発現し、この場合触媒に希釈フッ素ガスもしくはフッ化水素を用いて表面にフ ッ素を吸着させ CO被毒抑制効果を付与するというものである。この方法は触媒調整 後にその性質を変化させることができるという点で従来の触媒調整法にはない特徴を 有しているため、実用されれば簡便でより安価な触媒調整が可能になると期待される
[0006] しかし、特許文献 2記載の技術は、水素吸蔵合金の表面に金属フッ化物を主成分 とする膜を形成するものであり、他の金属あるいは合金について金属フッ化物の膜を 形成しても必ずしも CO被毒抑制効果は生じな 、。
また、耐 CO被毒性のみならず、耐 H S被毒性、耐 SO被毒性乃至耐 HCHO被毒
2 4
性にも優れた材料が望まれて 、る。
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、 Ruのような高価かつ希少な材料を用いることなく、耐 CO被毒性のみな らず、耐 H S被毒性、耐 SO被毒性乃至耐 HCHO被毒性にも優れた白金ブラック
2 4
材及び白金ブラック材のフッ化処理方法を提供することを目的とする。
課題を解決するための手段
[0008] 請求項 1に係る発明は、フッ素ガス又はフッ素ガスと不活性ガスとの混合ガスと接触 させる処理を行った表面を有することを特徴とする白金ブラック材である。
[0009] 請求項 2に係る発明は、フッ素が単原子層で表面に存在していることを特徴とする 白金ブラック材である。
[0010] 請求項 3に係る発明は、前記処理の前に、不純物を除去するための前処理が行わ れていることを特徴とする請求項 1の白金ブラック材である。なお、ここでいう不純物 は、たとえば、ガス状あるいは液状の水分あるいは酸素、酸ィ匕物などである。
[0011] 請求項 4に係る発明は、減圧室内において、フッ素ガス雰囲気又は不活性ガスとフ ッ素との混合ガス雰囲気に白金ブラックを放置する処理を行うことを特徴とする白金 ブラックのフッ化処理方法である。
[0012] 請求項 5に係る発明は、前記混合ガス中におけるフッ素濃度は 0. 001%以上であ ることを特徴とする請求項 4記載の白金ブラックのフッ化処理方法である。
[0013] 請求項 6に係る発明は、前記処理の前に、表面に存在する不純物を除去するため の前処理を行うことを特徴とする請求項 5記載の白金ブラックのフッ化処理方法であ る。
[0014] 請求項 7に係る発明は、前記処理を加熱状態で行うことを特徴とする請求項 4〜6 の!、ずれか 1項記載の白金ブラックのフッ化処理方法である。
[0015] 請求項 8に係る発明は、加熱温度が 20°C以上であることを特徴とする請求項 7記載 の白金ブラックのフッ化処理方法である。
[0016] 請求項 9に係る発明は、不活性ガスは窒素、 He、 Arのいずれか 1種以上である請 求項 4〜8の!、ずれか 1項記載の白金ブラックのフッ化処理方法である。
[0017] 請求項 10に係る発明は、請求項 4〜9のいずれか 1項記載の方法で処理した白金 ブラック材である。
[0018] 請求項 11に係る発明は、耐 CO被毒性、耐 H S被毒性、耐 SO被毒性乃至耐 HC
2 4
HO被毒性に優れた請求項 1、 2又は 10記載の白金ブラック材。
[0019] 請求項 12に係る発明は、請求項 1、 2、 10、 11記載のいずれか 1項記載の白金ブ ラック材カ なる電極である。
[0020] 請求項 13に係る発明は、請求項 12記載の電極を片側に担持してなる片側膜電極 接合体である。
[0021] 請求項 14に係る発明は、請求項 13記載の片側膜電極接合体を用いた固体高分 子形燃料電池である。
発明の効果
[0022] 本発明の白金ブラックによれば次の効果が達成される。
高価、希少な材料を用いる必要がない。
CO被毒抑制効果が優れて 、る。
また、 H S被毒性抑制効果、 SO被毒性抑制効果、 HCHO被毒性抑制効果にも
2 4
優れている。
PFECアノード極として好適に用いることができる。
図面の簡単な説明
[0023] [図 1]PEFC半セルの構造概念図である。
[図 2]実施例に係り、 COを含む水素ガス中での水素酸ィ匕電流を示すグラフである。
[図 3]実施例に係り、水素酸化電流を測定した後、 Ar雰囲気に置換し走引速度 10m VZsで測定した cvを示すグラフである。
[図 4]実施例に係り、各試料の XPS測定結果を示すグラフである。
発明を実施するための最良の形態
[0024] 本発明では、減圧室内において、不活性ガスとフッ素との混合ガス雰囲気に白金 ブラックを放置することにより白金ブラック表面にフッ素を吸着させる。
[0025] (始発材料:白金ブラック)
始発材料である白金ブラックは既存の白金ブラックを用いればょ 、。例えば、田中 貴金属製の白金ブラックを用いればよい。
[0026] (減圧室'前処理)
フッ化処理を行う前に、白金ブラックの表面力 不純物を除去しておくことが好まし い。
不純物は、たとえば、ガス状あるいは液状の水分あるいは酸素、酸ィ匕物などである 。ガス状あるいは液状の水分あるいは酸素は、白金ブラックを減圧室内に放置してお くことにより除去することができる。また、パージガスを流してもよい。
[0027] 減圧室は、単に減圧に処理するだけでなぐ加熱処理することでより効果的に脱ガ スできる。また、不活性ガスを数回入れ換えることで、効果的に処理することもできる。
[0028] 減圧室内に白金ブラックを収納後、減圧室を減圧とする。真空度としては lPa以下 が好ましい。より吸着したガス成分を低減でき、材質をより効率よく処理できるという効 果が生じる。
[0029] なお、表面に存在する不純物を除去するための前処理時における減圧室内におけ る不純物 (特に水分)濃度は可能な限り低くすることが望ましい。特に、 lOOppt以下 が好ましぐ lOppb以下がより好ましい。
[0030] 不純物が酸ィ匕物の場合においては、フッ化水素酸などを用いることで、溶解させろ 別することで除去することができる。除去後は大気にさらすことなぐフッ化処理を行う ことが好ましい。
[0031] (フッ化処理)
本発明においては、減圧室内においてフッ素を含むガスを導入することによりフッ 化処理を行う。このフッ化処理は、白金ブラック表面にフッ素を吸着させる処理である 。フッ素を吸着させるためには、温度、圧力によっても異なる力 フッ素の濃度を 0. 0 01〜10%が好ましぐ 0. 01〜1%がより好ましい。
[0032] フッ素濃度を上記範囲内とすることにより、フッ化膜の形成ではなぐフッ素の吸着 が達成される。
フッ化処理温度としては、加熱状態で行うことが好ましい。具体的温度としては 0〜 300°C力 S好ましく、 30〜250°Cがより好ましい。ガスを加熱することによって行っても 良い。
[0033] (後処理)
上記フッ化処理の後に次のような後処理を行うことが好ま 、。
後処理は、表面力 余剰のフッ素を除去する処理である。具体的には表面力 の 脱ガス処理である。表面力もの脱ガスを行 、単原子層分のフッ素が表面に残存する ようにする。これにより、余剰のフッ素が後に分解して表面に影響を与えることを防止 する。
[0034] 単原子層分のフッ素を残して脱ガスを行うためには、主に、表面温度、真空度、脱 ガス処理時間の制御を行えばよい。例えば、 lPa以下で 1時間減圧室に放置してお けば、表面のフッ素層は脱離する。しかし、この圧力でこの時間減圧室に放置してお いても白金ブラックの表面に直接付着乃至吸着しているフッ素(単原子層)は除去さ れない。 1時間以上減圧室に放置してよい。より具体的には、実際にフッ化処理を行 つた白金ブラックについて、表面温度、真空度、脱ガス処理時間を変化させて、単原 子層が残存する条件を予め実験で求めておけばよい。
[0035] (フッ素吸着白金ブラック)
上記フッ化処理により白金ブラックの表面にフッ素を吸着させる。白金フッ化物の形 成がな!、状態で吸着して!/、ればよ!、が、単原子層の吸着が好ま 、。
実施例 1
[0036] 田中貴金属製の白金ブラックを用いて実験を行った。
[0037] (前処理)
次の条件で前処理を行った。
減圧したチャンバ一内で Nを数回導入、減圧を繰り返し、 100°Cで 2時間 Nを導 入しながら処理を行った。
[0038] (フッ化処理)
前処理を行った白金ブラックを lPa以下に減圧したチャンバ一内に封入し、フッ素 体積濃度を調整した N +F混合ガス雰囲気下で 3時間放置しフッ素を吸着させると
2 2
いう方法で行った。
[0039] このとき Ptブラックへのフッ素吸着を確認するために処理後の重量変化を測定して
V、る。 250°Cに混合ガスの温度を上げてフッ化処理を行った。
[0040] (後処理)
フッ化処理を行った後、チャンバ一内を lPa以下に 1時間減圧にすることで、余剰 に吸着したフッ素を除去した後、 N雰囲気下で素早くサンプルを採取した。
2
[0041] 調整した触媒試料に 5Wt%Nafion (登録商標)溶液と純水とを混合して触媒インク を作り、 300 /z gZcm2で φ = 10. Ommのカーボンペーパー(TGP—H— 090東レ 製)に担持した。常温で乾燥させた後、 Nafionl l5 (Dupont製)膜に 135°Cで 3分 間ホットプレスにより接合させ、片側 MEAを作製した。
[0042] 作製した片側 MEAの拡散層にガスを供給できるよう MEAのホルダーにガス流路 を設け集電体と接触させて作用極とし、図 1に示すような半セルを用いて実験を行つ た。
[0043] セルの参照極は RHE、対極には白金板を用いた。電解液は 1Mの過塩素酸を用 い、 PEFCの動作条件とできるだけ近い条件が実現されるようにするために、投げ込 みヒーターを用いて 50°Cに過熱した。作用極での水素酸化の際、対極からは水素が 発生し対極での反応を阻害する恐れがあるので、その捕集の為に溶液内に Arガス を導入しパブリングを行った。
[0044] 測定はまず、片側 MEAの拡散層に Arガスを導入し Ar雰囲気下でのサイクリックボ ルタモグラム(CV)を電位 50〜1500mVvsRHE、走引速度 lOOmVZsで測定し、 電極表面のクリーニングおよびバックグラウンド測定を行った。その後、濃度 Oppm、 5 Oppm、 lOOppmの COを含む水素ガスを導入し、電睡上の COの吸着がほぼ定常に なるように 50mVvsRHEで 40分間混合ガス中に放置した後、 50〜300VvsRHEの 電位範囲において、走引速度 0. 5mVZsで水素酸化電流の測定を行い、 COの水 素酸ィ匕に与える影響を測定した。
[0045] (フッ化処理 Ptブラック触媒)
種々のフッ化処理をした Ptブラック電極において、 lOOppmの COを含む水素ガス 中での水素酸化電流曲線を比較した結果を図 2に示す。未処理のものに比べて 1% 、 10%濃度でフッ化処理をした Ptブラックでは CO濃度 50ppm、 lOOppmいずれの 場合にお ヽても電流値が高 ヽと 、うことが示されて 、るが、 1%処理のほうがよりその 効果が大き 、と 、う結果となった。
[0046] 一方で、純水素雰囲気中ではフッ化処理時のフッ素濃度が 10%の試料では水素 酸化電流が未処理 Ptブラックの 70. 2%に低下しており、 Ar雰囲気下での水素波表 面積の低下とあわせて水素酸ィ匕が阻害されて 、ると 、うことが示されて 、る(表 1)。
[0047] [表 1]
Comparison of H2 oxidation current for fluonnated
Pt black catalyst in this study
F2 H 2 酸化電流 真面積 z見掛面積
(濃度) 電流密度 / mA cm— 2 a ) (cm2 1 cm2 )
0% 470 68.9
1 % 469 69.5
10% 349 14.2
a) 200mV vs. RHE
[0048] また CO濃度 lOOppmで水素酸ィ匕電流を測定した後、 Ar雰囲気に置換し走引速度 lOmVZsで測定した CVでは、未処理の Ptブラックとフッ化処理濃度 10%の Ptブラ ックでは水素波領域力 CO被毒によって見られなくなつていた力 処理濃度 1%の Pt ブラックでは水素波領域が現れており、このことからも処理濃度 1%の Ptブラックが C Oの被毒抑制効果を有して 、ると 、うことが示唆される(図 3)。
[0049] 各試料の XPS測定結果を図 4に示す。処理濃度 1%の Ptブラックでは Pt4fの波形 にほとんどシフトが見られないのに対して、 10%処理の Ptブラックでは Pt4fの顕著な シフトが観測され、 Flsのピークも 1%処理のものに比べ低エネルギー側にシフトして いるということがわかる。高真空中で Pt単結晶面へのフッ素吸着を行った E. Bechto Idらの研究によれば、 Pt表面に対してフッ素吸着量が少ない場合にはフッ素が単原 子吸着の状態で存在し、逆に吸着量の多い場合には PtFの Ptフッ化物が形成され
4
るという結果が観測されている。 Pt多結晶面でも同様な変化が起こると考えると、フッ 化処理濃度の違いによる電気化学的性質の変化は、フッ素濃度 1%においては Pt 上へのフッ素単原子吸着、フッ素濃度 10%処理においては PtFの生成という表面
4
のフッ素状態の違 、が現れたのではな 、かと推測される。
[0050] 水素吸蔵合金では表面に生成される LaFなどのフッ化物によって COなど不純物
3
の吸着阻害効果がおきるという機構などが提案されている。一方 Pt触媒では、フッ化 物の生成によって水素酸ィ匕が妨げられる結果となった。これは水素吸蔵合金と違い アノード Pt触媒上の反応では三相界面の形成が必要であるために、フッ化物の形成 により Ptの有効活性表面積が妨げられたことによって、水素酸化が抑制されたため ではないかと推測される。
[0051] フッ化処理濃度 1%のときには顕著な効果が現れているが、処理濃度 10%の場合 では水素酸ィ匕が阻害されるという結果になった。これはフッ素の処理濃度によって、 白金表面上ではフッ素の単原子吸着あるいは白金フッ化物という二つの異なった状 態でフッ素が存在しているためであると推測される。
[0052] 耐 H S被毒性、耐 SO被毒性乃至耐 HCHO被毒性についても測定を行った。そ
2 4
の結果、これらについても優れていることが分った。
産業上の利用可能性
[0053] 本発明の白金ブラック材は、 CO被毒抑制効果、また、 H S被毒性抑制効果、 SO
2 4 被毒性抑制効果、 HCHO被毒性抑制効果にも優れており、電極特に燃料電池の電 極に好適に用いられる。
本発明の燃料電池においては、炭化水素燃料改質により得られる COを含有する 水素ガスであっても燃料ガスとして用いることが可能である。
従って、インフラ整備を必要とすることなく燃料の供給が可能となり、特に、自動車 用あるいは家庭用コージェネレーションのエネルギー源として好適に用いることが可 能となる。

Claims

請求の範囲
[I] フッ素ガス又はフッ素ガスと不活性ガスとの混合ガスと接触させる処理を行った表面 を有することを特徴とする白金ブラック材。
[2] フッ素が単原子層で表面に存在していることを特徴とする白金ブラック材。
[3] 前記処理の前に、不純物を除去するための前処理が行われていることを特徴とする 請求項 1の白金ブラック材。
[4] 減圧室内において、フッ素ガス雰囲気又は不活性ガスとフッ素との混合ガス雰囲気 に白金ブラックを放置する処理を行うことを特徴とする白金ブラックのフッ化処理方法
[5] 前記混合ガス中におけるフッ素濃度は 0. 001%以上であることを特徴とする請求項
4記載の白金ブラックのフッ化処理方法。
[6] 前記処理の前に、表面に存在する不純物を除去するための前処理を行うことを特徴 とする請求項 5記載の白金ブラックのフッ化処理方法。
[7] 前記処理を加熱状態で行うことを特徴とする請求項 4〜6の ヽずれか 1項記載の白金 ブラックのフッ化処理方法。
[8] 加熱温度が 20°C以上であることを特徴とする請求項 7記載の白金ブラックのフッ化処 理方法。
[9] 不活性ガスは窒素、 He、 Arの!、ずれ力 1種以上である請求項 4〜8の!、ずれか 1項 記載の白金ブラックのフッ化処理方法。
[10] 請求項 4〜9の 、ずれか 1項記載の方法で処理した白金ブラック材。
[II] 耐 CO被毒性、耐 H S被毒性、耐 SO被毒性乃至耐 HCHO被毒性に優れた請求項
2 4
1、 2又は 10記載の白金ブラック材。
[12] 請求項 1、 2、 10、 11記載のいずれ力 1項記載の白金ブラック材カ なる電極。
[13] 請求項 12記載の電極を片側に担持してなる片側膜電極接合体。
[14] 請求項 13記載の片側膜電極接合体を用いた固体高分子形燃料電池。
PCT/JP2006/306225 2005-03-28 2006-03-28 燃料電池 WO2006104123A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/887,336 US8003561B2 (en) 2005-03-28 2006-03-28 Fuel cell
KR1020077024868A KR101355670B1 (ko) 2005-03-28 2006-03-28 연료 전지
JP2007510512A JPWO2006104123A1 (ja) 2005-03-28 2006-03-28 燃料電池
EP06730173.9A EP1867391B1 (en) 2005-03-28 2006-03-28 Fuel cell
CN2006800103849A CN101151098B (zh) 2005-03-28 2006-03-28 铂黑材料及氟化铂黑的方法、电极及单侧膜电极组件以及聚合物电解质燃料电池
US13/177,260 US8435916B2 (en) 2005-03-28 2011-07-06 Catalyst comprising platinum black and fluorine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005092450 2005-03-28
JP2005-092450 2005-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/177,260 Continuation US8435916B2 (en) 2005-03-28 2011-07-06 Catalyst comprising platinum black and fluorine

Publications (1)

Publication Number Publication Date
WO2006104123A1 true WO2006104123A1 (ja) 2006-10-05

Family

ID=37053379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306225 WO2006104123A1 (ja) 2005-03-28 2006-03-28 燃料電池

Country Status (7)

Country Link
US (2) US8003561B2 (ja)
EP (1) EP1867391B1 (ja)
JP (1) JPWO2006104123A1 (ja)
KR (1) KR101355670B1 (ja)
CN (1) CN101151098B (ja)
TW (1) TW200639117A (ja)
WO (1) WO2006104123A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944281B1 (ja) * 2011-01-14 2012-05-30 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
WO2012096022A1 (ja) * 2011-01-14 2012-07-19 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
WO2012096023A1 (ja) * 2011-01-14 2012-07-19 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
WO2013021688A1 (ja) * 2011-08-09 2013-02-14 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
WO2013146453A1 (ja) 2012-03-26 2013-10-03 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104123A1 (ja) 2005-03-28 2006-10-05 Stella Chemifa Corporation 燃料電池
CN109449449A (zh) * 2018-10-26 2019-03-08 哈尔滨工业大学 一种抗so2毒化的燃料电池氧还原贵金属催化剂及其制备方法和应用
US11931724B2 (en) 2018-12-26 2024-03-19 Kolon Industries, Inc. Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219202A (ja) * 1996-02-09 1997-08-19 Toshiba Corp 燃料電池および燃料電池スタック
JP2689686B2 (ja) * 1990-05-07 1997-12-10 富士電機株式会社 リン酸型燃料電池用電極触媒層の製造方法
WO1998018717A1 (en) 1996-10-28 1998-05-07 Dsm N.V. Process for preparing hydroxylammonium salts
JP3242736B2 (ja) * 1993-03-10 2001-12-25 三菱電機株式会社 電気化学デバイス
JP2002151088A (ja) * 2000-11-09 2002-05-24 Asahi Glass Co Ltd 固体高分子型燃料電池の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3134732A (en) * 1953-07-17 1964-05-26 Exxon Research Engineering Co Reactivation of regenerated noble metal catalysts with gaseous halogens
US3201355A (en) * 1953-10-05 1965-08-17 Exxon Research Engineering Co Reactivation of noble metal catalysts with anhydrous gaseous halogens
US3969267A (en) * 1974-09-11 1976-07-13 Exxon Research And Engineering Company Process for redispersion of noble metal catalysts using fluorine
NL180636C (nl) * 1975-04-18 1987-04-01 Shell Int Research Werkwijze voor het fluoreren van een katalysator.
JPH03242736A (ja) 1990-02-21 1991-10-29 Nec Corp 異常処理方式
JP3291803B2 (ja) * 1992-11-06 2002-06-17 ダイキン工業株式会社 フッ化カーボン粒子およびその製法ならびに用途
TW333520B (en) 1994-03-11 1998-06-11 Daikin Ind Ltd Carbon fluoride particles, preparation process and uses of the same
JP3350691B2 (ja) 1996-04-09 2002-11-25 株式会社日本製鋼所 水素吸蔵金属材の高活性化及び安定化処理法
JP2002159866A (ja) 2000-11-29 2002-06-04 Mitsubishi Heavy Ind Ltd 合金触媒の調製方法及び固体高分子型燃料電池の製造方法
JP4036707B2 (ja) * 2002-08-12 2008-01-23 三洋電機株式会社 誘電体素子および誘電体素子の製造方法
WO2006104123A1 (ja) * 2005-03-28 2006-10-05 Stella Chemifa Corporation 燃料電池
US20070202704A1 (en) * 2006-02-28 2007-08-30 Hynix Semiconductor Inc. Method for etching platinum and method for fabricating capacitor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689686B2 (ja) * 1990-05-07 1997-12-10 富士電機株式会社 リン酸型燃料電池用電極触媒層の製造方法
JP3242736B2 (ja) * 1993-03-10 2001-12-25 三菱電機株式会社 電気化学デバイス
JPH09219202A (ja) * 1996-02-09 1997-08-19 Toshiba Corp 燃料電池および燃料電池スタック
WO1998018717A1 (en) 1996-10-28 1998-05-07 Dsm N.V. Process for preparing hydroxylammonium salts
JP2002151088A (ja) * 2000-11-09 2002-05-24 Asahi Glass Co Ltd 固体高分子型燃料電池の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1867391A4
YOSHIDA K. ET AL.: "Kotai Kobunshikei Nenryodenchi Anode Kyoku ni Okeru Fusso Shori Hakugin Shokubai no Tai CO Hidokusei", ELECTROCHEMISTRY, vol. 73, no. 4, 5 April 2005 (2005-04-05), pages 298 - 300, XP003005828 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944281B1 (ja) * 2011-01-14 2012-05-30 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
WO2012096022A1 (ja) * 2011-01-14 2012-07-19 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
WO2012096023A1 (ja) * 2011-01-14 2012-07-19 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
JP5108168B2 (ja) * 2011-01-14 2012-12-26 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
US9118083B2 (en) 2011-01-14 2015-08-25 Showa Denko K.K Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
US9350025B2 (en) 2011-01-14 2016-05-24 Showa Denko K.K. Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
WO2013021688A1 (ja) * 2011-08-09 2013-02-14 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
JP5325355B2 (ja) * 2011-08-09 2013-10-23 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
US10044045B2 (en) 2011-08-09 2018-08-07 Showa Denko K.K. Process for producing a fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof
WO2013146453A1 (ja) 2012-03-26 2013-10-03 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
JP5635212B2 (ja) * 2012-03-26 2014-12-03 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途

Also Published As

Publication number Publication date
CN101151098A (zh) 2008-03-26
JPWO2006104123A1 (ja) 2008-09-11
US8003561B2 (en) 2011-08-23
EP1867391A1 (en) 2007-12-19
KR101355670B1 (ko) 2014-02-06
EP1867391A4 (en) 2008-04-30
CN101151098B (zh) 2012-08-08
KR20080007567A (ko) 2008-01-22
US20090136810A1 (en) 2009-05-28
EP1867391B1 (en) 2017-05-10
US20120172210A1 (en) 2012-07-05
US8435916B2 (en) 2013-05-07
TW200639117A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
WO2006104123A1 (ja) 燃料電池
KR101804714B1 (ko) 고체 고분자형 연료 전지용의 담체 탄소 재료 및 금속 촉매 입자 담지 탄소 재료, 및 이들의 제조 방법
WO2006126613A1 (ja) 燃料電池用セパレータ及びその製造方法
US20040031679A1 (en) Multi-layered oxygen electrode with peroxide decomposition catalyst
Delgado et al. Air bleeding strategies to increase the efficiency of proton exchange membrane fuel cell stationary applications fuelled with CO ppm-levels
JP4492037B2 (ja) 燃料電池用電極
Prabhuram et al. Methanol adsorbates on the DMFC cathode and their effect on the cell performance
CA2533138C (en) Fuel cell
JP3850721B2 (ja) 固体高分子型燃料電池の制御方法
JPH0866632A (ja) 高分子固体電解質型燃料電池用アノード電極触媒
Rheaume et al. XPS analysis of carbon-supported platinum electrodes and characterization of CO oxidation on PEM fuel cell anodes by electrochemical half cell methods
JP3523484B2 (ja) 燃料電池
Skowroński et al. Relationship between the reactions of hydrogen sorption/desorption and methanol oxidation on bifunctional Ni/Pd electrode in alkaline solution
CN110600755A (zh) 一种负载有金属催化剂的碳载体材料的包覆方法及电池
JP2006331845A (ja) 固体高分子形燃料電池用触媒粉末およびその製造方法ならびにその触媒粉末を含む固体高分子形燃料電池用電極。
JPH0927327A (ja) 燃料電池用電極及びその製造方法
Basha et al. Understanding potential decay during OCV hold via dry recovery process
US20220255088A1 (en) Membrane electrode assembly and fuel cell
JP4501550B2 (ja) 触媒の製造方法
JP2007287598A (ja) ダイレクトメタノール燃料電池用膜/電極接合体およびその製造方法
Guo et al. Regeneration Strategies for Ruthenium-Poisoned ORR Catalysts in Reformate PEM Fuel Cells
JP2005302554A (ja) 固体高分子形燃料電池およびその製造方法
Wang et al. The effect of N2 dilution on CO poisoning in a proton exchange membrane fuel cell
JP2008108495A (ja) 燃料電池用触媒担体の製造方法、燃料電池用膜電極接合体、燃料電池、燃料電池用触媒担体の処理装置
JP2011243316A (ja) 燃料電池用電極触媒の評価方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010384.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006730173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006730173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077024868

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 11887336

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006730173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007510512

Country of ref document: JP