WO2006103910A1 - 非破壊検査方法及び装置 - Google Patents

非破壊検査方法及び装置 Download PDF

Info

Publication number
WO2006103910A1
WO2006103910A1 PCT/JP2006/304961 JP2006304961W WO2006103910A1 WO 2006103910 A1 WO2006103910 A1 WO 2006103910A1 JP 2006304961 W JP2006304961 W JP 2006304961W WO 2006103910 A1 WO2006103910 A1 WO 2006103910A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic material
magnetic
flux density
nondestructive inspection
magnetic flux
Prior art date
Application number
PCT/JP2006/304961
Other languages
English (en)
French (fr)
Inventor
Mochimitsu Komori
Original Assignee
Kyushu Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute Of Technology filed Critical Kyushu Institute Of Technology
Priority to JP2007510365A priority Critical patent/JP4639339B2/ja
Priority to US11/909,122 priority patent/US7710111B2/en
Publication of WO2006103910A1 publication Critical patent/WO2006103910A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement

Definitions

  • the present invention nondestructively analyzes the position or corrosion state of a magnetic material such as a reinforcing bar or piping existing inside a nonmagnetic material structure such as concrete, heat insulating material or protective material.
  • the present invention relates to an inspection method and apparatus.
  • Patent Document 1 and Patent Document 2 A device for examining the condition of rebar or steel frame inside concrete that is magnetized for some reason (see Patent Document 1 and Patent Document 2), a device for measuring the amount of metal present (see Patent Document 3), etc. It is done. However, these do not necessarily use magnetization positively.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-77953
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-185636
  • Patent Document 3 Japanese Patent Application Laid-Open No. 7-151731
  • a magnetic material such as concrete, a heat insulating material, or a protective material is magnetized by magnetizing a magnetic material such as a reinforcing bar inside a nonmagnetic material structure and piping, and the magnetic flux distribution is analyzed to obtain a magnetic material.
  • the purpose is to nondestructively evaluate the corrosion state of the
  • the position of the magnetic material existing inside the nonmagnetic material structure or Nondestructive analysis of corrosion conditions is magnetized from the outside of the structure, and the magnetic flux density of the magnetized magnetic material is measured outside the structure to identify the position of the magnetic material or to determine the corrosion state of the magnetic material. To analyze.
  • the magnetic material is magnetized in two steps, and the magnetic material position is specified by measuring the magnetic flux density by the first step magnetization, and then the magnetic material is removed by applying an alternating magnetic field. Magnetize. At the position opposite to the specified magnetic material position, after the second stage magnetization, measure the magnetic flux density of the magnetized magnetic material and analyze the corrosion state of the magnetic material.
  • the nondestructive inspection apparatus of the present invention nondestructively analyzes the position or the corrosion state of the magnetic material present inside the nonmagnetic material structure.
  • This nondestructive inspection device measures the magnetic flux density of the magnetic material magnetized by the magnetizing device, with a magnetizing device having a function of generating a magnetic field that magnetizes the magnetic material from the outside of the structure, outside the structure. And a magnetic sensor. Based on the measured magnetic flux density, identify the position of the magnetic material or analyze the corrosion state of the magnetic material.
  • This magnetizing apparatus further has a function of generating an alternating magnetic field, and after specifying the position of the magnetic material by measuring the magnetic flux density of the magnetized magnetic material, the magnetic field is applied by applying the alternating magnetic field. Demagnetize the sexing material.
  • the magnetizing apparatus further magnetizes the magnetic material at the position facing the specified magnetic material position, and the magnetic sensor measures the magnetic flux density of the magnetized magnetic material to determine the corrosion state of the magnetic material. To analyze.
  • the present invention it is possible to easily and nondestructively inspect the reinforcing bars and the like in the structure, and it is possible to carry out the efficient evaluation of the corrosion reinforcing bars.
  • the present invention makes it possible to easily inspect rebars and the like in a structure, so that it is possible to evaluate the maintenance time of tunnels, bridges, buildings and the like.
  • the corrosion of the piping can be inspected without peeling off the heat insulating material or protective material, or inspection can be performed without digging underground piping or the like. It is possible to
  • FIG. 1 is a view illustrating a magnetizing device.
  • FIG. 2 is a diagram for explaining magnetic flux density measurement.
  • FIG. 3 A diagram for explaining the analysis of the rebar position.
  • FIG. 4 A graph showing the relationship between the number of times of magnetization and the magnetic flux density measured under the same conditions of applied magnetic field and applied distance, using three types of reinforcing bars having different diameters of 8, 10 and 12 mm. .
  • FIG. 5 A graph showing the measurement results of the Y-direction magnetic flux component By measured for three types of rebars with a diameter of 8, 10 and 12 mm, with the depth of the rebar being 10 cm, and changing the distance in the Y-axis direction. is there.
  • FIG. 6 Dara showing the measurement results of the magnetic flux component Bz in the Z direction measured for three types of rebar with diameters 8, 10 and 12 mm, with the depth of the rebar being 10 cm, and changing the distance in the Y axis direction. It is f.
  • FIG. 7 It is a graph showing the determined rebar depth d.
  • Fig. 8 is a graph showing the measurement results of the maximum magnetic flux density when the depth of the reinforcing bar is changed for three types of reinforcing bars with diameters of 8, 10 and 12 mm.
  • the present invention magnetizes a magnetic material (rebar) inside a structure such as concrete, measures its magnetic flux density, and analyzes the corrosion state of the rebar from its magnetic flux distribution.
  • a reinforcing bar as an example.
  • the present invention is not limited to a solid one like a reinforcing bar, but may be a "ferromagnetic material” if it is a “magnetizing material” such as hollow reinforcing bars (pipes) such as piping. It is also possible to analyze materials including “antimagnetic materials”, and also piping in plants and facilities that are only in construction and civil engineering fields, and piping in the ground.
  • nonmagnetic materials such as heat insulating materials and protective materials that thickly cover pipes.
  • the rebar is magnetized by applying a magnetizing magnetic field from the vicinity of the position where it is presumed that the rebar will be placed. Then, the magnetic flux distribution at that time is measured. Check the placement of reinforcing bars from the measured magnetic flux distribution. However, when the rebar position can be confirmed, for example, by the design surface or the previous measurement, this first step can be omitted.
  • FIG. 1 is a diagram illustrating a magnetizing device.
  • experimental rebars that simulate rebars in the structure (virtual concrete shown) are supported by nonmagnetic support pillars on both sides.
  • the magnetizing power supply shown in the figure is capable of passing a direct current (pulse current) sufficient to magnetize the rebar in the structure.
  • the power supply is capable of carrying an alternating current sufficient to generate an alternating magnetic field that demagnetizes the rebar, which has been magnetized once, if necessary.
  • Hall sensors are for measuring the applied magnetic field at the time of magnetization, and can measure the magnetic field generated from the magnetizing coil.
  • any coil (copper wire) having any configuration can be used as long as it can generate a strong magnetic field. Furthermore, when this coil is cooled by liquid nitrogen etc., the electric resistance of the coil is reduced to a fraction of a part, and heat generation can be reduced to facilitate current flow.
  • a pulse current for example, a triangular waveform pulse having a time width of about 150 ms
  • a superconducting wire can be used to generate a strong magnetic field. If a superconducting wire such as liquid nitrogen or a coolant cooled by a refrigerator is used, heat generation of the coil can be suppressed and a large current can flow, so the coil can be miniaturized.
  • a direct current can be supplied to the superconducting magnet to generate a temporally constant high magnetic field.
  • pulsed current can be used for the superconducting magnet.
  • a magnetized high-temperature superconductor disk
  • it is more than 10 times larger than existing magnets. It is also possible to constantly generate a large magnetic field of more than 10 terraces.
  • FIG. 2 is a diagram for explaining magnetic flux density measurement.
  • the direction parallel to the reinforcing bar is the X direction
  • one direction perpendicular to it is the Y direction
  • the direction perpendicular to this Y direction is the Z direction.
  • the Z direction in the figure is the direction perpendicular to the paper surface.
  • the reference of the X axis is the left end
  • the reference of the Y axis is directly above the rebar.
  • the measurement results described later show that the magnetic flux density is up to 14 cm at intervals of 2 cm in the Y direction at a 50 cm center point (magnetization point) in the X direction for reinforcing bars of 100 cm in total length. It measures and takes the distribution.
  • the direction of the magnetic flux changes around the center (magnetization point) of the reinforcing bar. That is, the magnetic flux enters the center of the rebar, and for example, the south pole near the center of the rebar becomes N pole at both ends.
  • the distribution of the poles is influenced by the magnetic field generated by the magnetizing coil.
  • the direction of the magnetic flux changes at the boundary of the rebar. This makes it possible to guess where rebar will be placed in the Y direction.
  • the magnetic flux distribution in the Z direction the magnetic flux density at the magnetization point is the strongest, and magnetic flux distributions in opposite directions are formed on both sides. Compared with the magnetic flux distribution in the other direction, the magnetic flux measured most in the Z direction is stronger and the distribution is clearer, and it is suitable for the corrosion analysis of rebar described later.
  • FIG. 3 is a diagram for explaining the analysis of the rebar depth.
  • This reinforcing bar is pre-magnetized by applying a magnetizing magnetic field. Even if it is not possible to pinpoint the exact position of the rebar in the structure, at least, if it is magnetized from the side near the position where it is supposed to be placed, analysis of the bar position will be performed. Is enough.
  • the reinforcing bar extends in the direction (X direction) perpendicular to the paper surface.
  • the direction directly above is taken as the Z axis
  • the Y axis is taken in the direction orthogonal to the Z axis.
  • the magnetic flux density in the Y direction is reversed at the Z axis. This means that the direction of penetration into the magnetic sensor of the magnetic flux density coming out radially from the rebar is reversed, and if it is reversed, it can be detected as being directly above the rebar.
  • the Y-direction distance y of the measurement point P which is laterally separated by y in the Y direction from the position just above this position, can be obtained simply by distance measurement.
  • the rebars identified as above are magnetized, the magnetic flux distribution is measured, and the corrosion state of the rebars is analyzed from this magnetic flux distribution.
  • magnetization for reinforcing bar corrosion analysis is performed.
  • a magnetizing power supply is used from the perpendicular direction such as directly below or directly to the rebar which is a magnetic material in a nonmagnetic material structure such as a concrete, etc. It is carried out by flowing sufficient DC current (pulsed current) to magnetize the rebar in the structure.
  • DC current pulsed current
  • the generated magnetic flux enters the rebar from the center part (magnetization point) opposite to the magnetizing device, passes through the inside of the rebar, and then leaves the rebar from both sides. Return to the opposite side of the magnetizing device.
  • the central part of the iron is magnetized to the N (or S) pole, and is magnetized to the opposite pole on the left and right sides.
  • two or more magnetizing devices may be disposed on the left and right sides of the reinforcing bar in the longitudinal direction, and one magnetizing device may enter the reinforcing bar, pass through the reinforcing bar, and then leave the other magnetizing device.
  • the rebar can also be magnetized by the magnetic flux returning to.
  • FIG. 4 shows that the number of times of magnetization and the magnetic flux density of the magnetizing magnetic flux density are the same, using three types of reinforcing bars having different diameters of 8, 10 and 12 mm, under the same magnetization conditions such as applied magnetic field and applied distance. It is a graph that measured the relationship. As can be seen from the figure, the magnetic flux density varies with the diameter of the reinforcing bar. Thus, by measuring the magnetic flux density, it is possible to estimate the diameter of the reinforcing bar and hence the corrosion state of the reinforcing bar. That is, if part of the rebar corrodes and its diameter is small, then it can be judged by looking at the distortion of the magnetic flux density distribution.
  • the number of times of application of the pulse applied magnetic field is increased, the magnetic flux density to be magnetized increases slightly but gradually, and as a result, the diameter of the rebar changes. Changes in the magnetization flux density also become noticeable. Therefore, it is desirable that the number of times of application of the magnetizing magnetic field be a plurality of times.
  • the measurement results described later are measured by applying a pulse magnetic field five times after demagnetizing five times.
  • the reinforcing bar (magnetic material) inside such as concrete can be magnetized, and the magnetic field generated by the magnetization distribution force can be processed separately (image), and matching of each image becomes possible.
  • the visualized magnetic field distribution it is possible to estimate * evaluate the depth of rebar and the corrosion situation of rebar.
  • the magnetized rebar can be demagnetized by applying an alternating magnetic field, and the above evaluation can be made any number of times.
  • the magnetizing power source as an example that can be used in the present invention can flow a DC pulse current of up to 20,000 A at the time of magnetizing. Furthermore, in order to demagnetize the rebar that has been magnetized once, an alternating current of up to 7,000 A can be made to flow gradually smaller.
  • the magnetic field that can be generated also changes depending on the size of the magnetizing coil and the number of turns of the coil.
  • the specifications of the magnetizing coil (air core) that can be used as an example in the present invention are as follows.
  • Inner diameter 30 mm
  • outer diameter 118 mm
  • height 86 mm
  • wire diameter 1.5 mm
  • lead number 690 Turn, coil resistance: 1.20 ⁇ (normal temperature), 0.5 ⁇ (in liquid nitrogen), bobbin material: Stainless steel
  • FIG. 7 is a graph showing the determined rebar depth d. It can be seen that, except near the value of 0 on the Y axis, it can be determined almost accurately by measuring the force and flux of 10 cm of the bar depth.
  • FIG. 8 is a graph showing the measurement results of the maximum magnetic flux density when the depth of the reinforcing bar is changed for three types of reinforcing bars having diameters of 8, 10 and 12 mm.
  • the maximum magnetic flux density is obtained as a magnetic flux (Bz) of a component in the Z-axis direction at a position in the direction (Z-axis direction) orthogonal to the magnetization point (see FIG. 3).
  • this maximum magnetic flux density corresponds to the magnetic flux generated radially from the rebar, detected as the magnetic flux of the radial direction component at the position outside the concrete closest to the magnetizing point of the rebar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 本発明は、非磁性材構造物の内部に存在する磁性材の位置或いは腐食状態を非破壊的に解析する。磁性材を構造物外部から着磁し、その磁束密度を、構造物外部で計測することにより、磁性材位置を特定し、或いは磁性材の腐食状態を解析する。磁性材の着磁は二段階で行い、第一段階の着磁による磁束密度の計測により、磁性材位置を特定した後、交番磁場を印加することにより磁性材を脱磁する。特定された磁性材位置に対向する位置で第二段階の着磁をした後、磁束密度を計測して、磁性材の腐食状態を解析する。  

Description

明 細 書
非破壊検査方法及び装置
技術分野
[0001] 本発明は、コンクリート、断熱材、又は保護材料などの非磁性材構造物の内部に存 在する鉄筋、配管などの磁性材の位置或いは腐食状態を非破壊的に解析する非破 壊検査方法及び装置に関する。
背景技術
[0002] 土木'建築分野 (建設業界)において、トンネル、橋梁、ビルなどのコンクリート構造 物内の腐食した鉄筋の位置やその程度を知ることは、メンテナンスの関係上非常に 重要である。しかし、現在では非破壊でコンクリート内部の鉄筋の腐食状況を測定 · 評価できる簡便な手法はなぐ手間とコストが掛かっている実情がある。
[0003] 何らかの原因で着磁したコンクリート内部の鉄筋または鉄骨などの状況を調べる装 置 (特許文献 1、特許文献 2参照)、金属の存在量を計測する装置 (特許文献 3参照) などが知られている。しかし、これらは着磁を積極的に利用しているわけではない。
[0004] このように様々な方法で鉄筋コンクリートの非破壊検査が行われている力 その多く は、コンクリートの劣化や空洞、亀裂などを探查するものである。より簡単に、コンクリ ート中という特殊な環境を生力、した鉄筋の腐食探查法が求められている。
特許文献 1:特開 2002-77953号公報
特許文献 2:特開 2003-185636号公報
特許文献 3 :特開平 7-151731号公報
発明の開示
発明が解決しょうとする課題
[0005] そこで、本発明は、コンクリート、断熱材、又は保護材料などの非磁性材構造物内 部の鉄筋、配管などの磁性材を着磁させ、その磁束分布を解析することで、磁性材 の腐食状態を非破壊的に評価することを目的としている。
課題を解決するための手段
[0006] 本発明の非破壊検査方法は、非磁性材構造物の内部に存在する磁性材の位置或 いは腐食状態を非破壊的に解析する。この方法は、磁性材を、構造物外部から着磁 し、着磁された磁性材の磁束密度を、構造物外部で計測することにより、磁性材位置 を特定し、或いは磁性材の腐食状態を解析する。
[0007] また、磁性材の着磁をニ段階で行い、第一段階の着磁による磁束密度の計測によ り、磁性材位置を特定した後、交番磁場を印加することにより磁性材を脱磁する。特 定された磁性材位置に対向する位置で、第二段階の着磁をした後、着磁された磁性 材の磁束密度を計測して、磁性材の腐食状態を解析する。
[0008] また、本発明の非破壊検查装置は、非磁性材構造物の内部に存在する磁性材の 位置或いは腐食状態を非破壊的に解析する。この非破壊検査装置は、磁性材を、 構造物外部から着磁する磁場を発生する機能を有する着磁装置と、着磁装置により 着磁された磁性材の磁束密度を、構造物外部で計測する磁気センサとを備える。計 測された磁束密度に基づき、磁性材位置を特定し或いは磁性材の腐食状態を解析 する。
[0009] この着磁装置は、さらに交番磁場を発生する機能を有して、着磁を行った磁性材の 磁束密度の計測により磁性材位置を特定した後に、交番磁場を印加することにより磁 性材を脱磁する。また、着磁装置は、特定された磁性材位置に対向する位置でさら に着磁をし、磁気センサは、この着磁された磁性材の磁束密度を計測して、磁性材 の腐食状態を解析する。
発明の効果
[0010] 本発明によれば、構造物内の鉄筋などの検查を、簡易にかつ非破壊的に行うこと を可能にして、腐食鉄筋の効率的な評価を行うことができる。これによつて、本発明は 土木'建築分野 (建設業界)において、構造物内の鉄筋などの検査が簡単に出来る ことから、トンネル、橋梁、ビルなどのメンテナンス時期を評価可能となる。また、配管( パイプ)が断熱材や保護材料で厚く覆われてレ、る場合も、断熱材や保護材料を剥離 しないで配管の腐食を検査したり、地中の配管などを掘り起こさないで検査すること が可能となる。
図面の簡単な説明
[0011] [図 1]着磁装置を例示する図である。 [図 2]磁束密度計測を説明する図である。
[図 3]鉄筋位置の解析を説明する図である。
[図 4]直径 8, 10, 12mmの太さの異なる 3種類の鉄筋を用いて、印加磁場及び印加 距離を同一条件にして、着磁回数と着磁磁束密度の関係を測定したグラフである。
[図 5]直径 8, 10, 12mmの 3種類の鉄筋について、かつ、鉄筋深さを 10cmにして、 Y軸方向の距離を変化させて計測した Y方向磁束成分 Byの測定結果を示すグラフ である。
[図 6]直径 8, 10, 12mmの 3種類の鉄筋について、かつ、鉄筋深さを 10cmにして、 Y軸方向の距離を変化させて計測した Z方向の磁束成分 Bzの測定結果を示すダラ フである。
[図 7]求めた鉄筋深さ dを示すグラフである。
[図 8]直径 8, 10, 12mmの 3種類の鉄筋について、鉄筋深さを変化させたときの最 高磁束密度の測定結果を示すグラフである。
発明を実施するための最良の形態
[0012] 本発明は、コンクリート等の構造物内部の磁性材 (鉄筋)を着磁させ、その磁束密度 を計測し、その磁束分布から、鉄筋の腐食状態を解析する。以下、鉄筋を例として説 明する力 本発明は、鉄筋のように中実のものに限らず、配管などの中空鉄筋 (パイ プ)等の「磁化する材料」であれば「強磁性材料」や「反磁性材料」も含む材料を解析 することができ、建築や土木分野だけでなぐプラントや設備における配管、地中の 配管なども対象に出来る。さらに、構造物としてコンクリートを例として説明するが、本 発明は、配管 (パイプ)を厚く覆う断熱材や保護材料などの非磁性材に対して適用で きる。
[0013] 鉄筋の解析のためには、構造物内部の鉄筋位置を特定する必要がある。そのため には、まず、第一工程として、鉄筋が配置されていると推測される位置の近辺から、 着磁磁場を印加して鉄筋の着磁を行う。そして、その時の磁束分布を計測する。この 計測された磁束分布から鉄筋の配置を確認する。但し、鉄筋位置が、例えば設計図 面とか前回の計測などにより確認できてレ、るときは、この第一工程を省略することがで きる。 [0014] 次に、第二工程として、上記の結果から確認された鉄筋に対して、鉄筋を中心とし て上、下、横方向等の径方向から着磁を行レ、(後述の測定は、 X= 50cm、 Z = 8〜l 5cmの範囲で行っている)、磁束分布を計測する。この磁束分布に基づいて、鉄筋 の腐食状態を解析する。
[0015] (着磁及び計測)
図 1は、着磁装置を例示する図である。この着磁装置の真上には、構造物(図示の 仮想コンクリート)内の鉄筋を模擬する実験用の鉄筋が、その両側で非磁性材の支 柱によって支持されている。図中の着磁電源は、構造物内の鉄筋を磁化させるのに 十分な直流電流 (パルス電流)を流すことができるものである。さらに、この電源は、必 要があれば一度着磁した鉄筋を脱磁させる交番磁界を発生させるのに十分な交番 電流を流すことができるものである。ホールセンサは、着磁時の印加磁場を測るため のもので、着磁コイルから発生した磁場を計測することができる。
[0016] 本発明の着磁電源としては、強磁場を発生できるものであればどのような構成のコ ィル (銅線)も用いることができる。さらに、このコイルは、液体窒素などによる冷却を 行うとコイルの電気抵抗が数分の 1程度に小さくなり,発熱を小さくして電流を流れ易 くすることができる。例示の装置においては、コイルに流す直流電流として、パルス電 流 (例えば、 150ms程度の時間幅を有する三角形状波形のパルス)を流す。これに よって、瞬間的に強力な磁場 (例えば、約 5テスラ (Wb/m2) )を発生させ、その磁場 を対象物に印加することで物体を磁化することが可能となる。パルス着磁法は、電流 を瞬間的に流して磁場を発生させるので、大電流を流すことができ、高磁場を発生す ること力 Sできる。また、装置のコンパクト化、低コスト化を図ることができ、機器に組み込 んだ状態でも着磁が可能であるなどの利点もある。
[0017] また、強力な磁場を発生させるために、超電導線材を用いることができる。液体窒 素などの冷媒あるいは冷凍機によって冷却された超電導線材を用いれば、コイルの 発熱を抑えて大電流を流せるので、コイルを小型化できる。この超電導マグネットに、 直流電流を流して時間的に一定の高磁場を発生させることができる。或いは超電導 マグネットにパルス電流を用いることもできる。
[0018] さらには、着磁した高温超電導体(円盤)を用いれば、既存の磁石より 10倍以上大 きな 10テラス以上の大きな磁場を定常的に発生させることも可能となる。
[0019] 図 2は、磁束密度計測を説明する図である。座標系は鉄筋に平行な方向を X方向、 それに垂直な一つの方向を Y方向、この Y方向に垂直な方向を Z方向としている。図 示の Z方向は、紙面に垂直な方向である。 X軸の基準は左端で、 Y軸の基準は鉄筋 の直上である。後述する計測結果(図 5及び図 6参照)は、全長 100cmの鉄筋に対し て、 X方向に中央の 50cmの点(着磁点)で、 Y方向に 2cm間隔で最大 14cmまで、 磁束密度を測定しその分布を取ったものである。
[0020] X方向の磁束分布は、鉄筋の中央 (着磁点)を境目にして磁束の向きが変わる。即 ち、磁束が鉄筋中央に入って、鉄筋の中央付近が、例えば S極、両端が N極になる。 この極の分布は着磁コイルの発生する磁場に影響を受ける。 Y方向の磁束分布は、 鉄筋を境に磁束の方向が変化する。これによつて、鉄筋が Y方向のどこに配置されて レ、るかが推測できる。 Z方向の磁束分布は、着磁点の磁束密度が最も強く両側に反 対向きの磁束分布が形成される。他方向の磁束分布に比べ、 Z方向が最も計測され る磁束が強く分布がはっきりとしており、後述の鉄筋の腐食解析に適している。
[0021] (鉄筋位置解析)
図 3は、鉄筋深さの解析を説明する図である。この鉄筋は、着磁磁場を印加するこ とにより予め着磁したものである。構造物内にある鉄筋の正確な位置を特定すること ができない場合であっても、少なくとも、それが配置されていると推測される位置の近 辺から着磁を行えば、鉄筋位置の解析には十分である。
[0022] 図示したように、鉄筋が紙面と垂直方向(X方向とする)に伸びていると仮定する。そ の真上方向を Z軸とし、 Z軸と直交する方向に Y軸を取る。図から明らかなように、 Y方 向の磁束密度は、 Z軸を境として反転する。これは、鉄筋から放射状に出ている磁束 密度の磁気センサに入り込む方向が逆になつたことを意味しており、その反転すると ころが鉄筋の直上であるとして検出できる。この真上の位置を基準として、そこから横 に Y方向に yだけ離れた測定点 Pの Y方向距離 yは、単に距離計測により求めること ができる。
[0023] 次に、この測定点 Pで、磁束の Y成分 By (Y方向の磁束密度)及び磁束の Z成分 Bz
(Z方向の磁束密度)を測定する。それらの合成方向の逆方向に鉄筋が存在する。そ れ故、磁束の Y成分と Z成分の tan Θ ( = Bz/By)を計算し、それに鉄筋直上からの 距離 yを掛けることで鉄筋の深さ dを、以下の式により求めることができる。
[0024] d= (Bz/By) -y
この際に、 tan Θの値は鉄筋直上に近づくにつれて無限大に発散するので、 yを変 えた数点の測定による平均値を取ることにより、鉄筋深さとすることができる。
[0025] (鉄筋腐食解析)
次に、上記のようにして位置の特定された鉄筋に対して、着磁して、磁束分布を計 測し、この磁束分布から鉄筋の腐食状態を解析する。磁束計測を正確なものとする ために、先ず、測定対象とする鉄筋の脱磁を行う。これは、着磁装置に交番電流を流 して、交番磁界を発生させることにより行う。
[0026] その後、鉄筋腐食解析のための着磁を行う。この着磁は、図 1に示すように、通常コ ンクリート等の非磁性材構造物内にある磁性材である鉄筋に対して、真下或いは直 上等の直交する方向から、着磁電源を用いて、構造物内の鉄筋を磁化させるのに十 分な直流電流 (パルス電流)を流すことにより行う。図示したように、 1個の着磁装置を 用いる場合、発生した磁束は、着磁装置に対向する中央部 (着磁点)から鉄筋に入り 、鉄筋内を通った後、両側から鉄筋を出て、着磁装置の反対側に戻る。それ故、鉄 筋の中央部が、 N (或いは S)極に磁化され、その左右両側で反対磁極に着磁される ことになる。或いは、 2個或いはそれ以上の着磁装置を鉄筋の長手方向の左右両側 に配置して、一つの着磁装置から鉄筋に入り、鉄筋内を通った後にそこを出て、他の 着磁装置に戻るような磁束により、鉄筋を磁化させることもできる。
[0027] 図 4は、直径 8, 10, 12mmの太さの異なる 3種類の鉄筋を用いて、印加磁場及び 印加距離等の着磁条件を同一にして、着磁回数と着磁磁束密度の関係を測定した グラフである。図から分かるように、磁束密度は、鉄筋の直径により異なるものとなる。 これによつて、磁束密度を計測することにより、鉄筋の直径、それ故に、鉄筋の腐食 状態を推測することが可能となる。即ち、鉄筋の一部が腐食して径が小さくなつてい る場合などは,磁束密度分布の歪みを見て判断できる。つまり、分布が歪んでいる場 合は腐食部分があると判断できる。さらに、鉄筋の直径そのものを計測可能にするだ けでなく、定期的に同一条件、同一場所で測定することにより、鉄筋の経時変化を解 析することも可能になる。
[0028] また、図から分かるように、パルス印加磁場をかける回数を増加させていくと着磁さ れる磁束密度が、わずかではあるが少しずつ大きくなり、その結果、鉄筋の直径の違 いによる着磁磁束密度の変化も顕著になってくる。そのため、着磁磁場の印加回数 は、複数回とすることが望ましい。後述の計測結果 (実施例 3)は、 5回の脱磁をした 後、 5回のパルス磁場を印加して測定したものである。
[0029] また、本発明は、コンクリートなどの内部の鉄筋 (磁性材料)を着磁して、磁化分布 力 生じる磁場を成分別に(画像)処理でき、各画像のマッチングが可能となる。可視 化した磁場分布を用いることによって、鉄筋などの深さ及び鉄筋などの腐食状況が 推定 *評価できる。着磁した鉄筋などは交番磁界を加えることで脱磁でき、何度でも 上記評価が出来る。
[0030] なお、構造物内に 1本の鉄筋がある場合を例として本発明を説明したが、複数鉄筋 が並んでいる場合や、格子状に鉄筋が並んでいる場合も、基本的には 1本の鉄筋か ら得られる分布を重ね合わせることで対処することができる。
実施例 1
[0031] 本発明に用いることのできる一例としての着磁電源は、着磁の際は最大 20, 000A の直流パルス電流を流すことができる。さらに、一度着磁した鉄筋を脱磁させるため に、最大 7, 000Aの交番電流を、次第に小さくなるように流すことができる。
[0032] 着磁コイルは、その大きさやコイルの卷き数によって、発生できる磁場も変わってく る。本発明において一例として用いることのできる着磁コイル (空芯)の仕様は、以下 の通りである。
[0033] 内径: 30mm、外径: 118mm、高さ: 86mm、線径: 1.5mm、卷数: 690 Turn,コイル抵 抗: 1.20 Ω (常温)、 0.5 Ω (液体窒素中)、ボビン材質:ステンレス
実施例 2
[0034] 図 5及び図 6はそれぞれ、直径 8, 10, 12mmの 3種類の鉄筋について、かつ、鉄 筋深さを 10cmにして、 Y軸方向の距離を変化させて計測した Y方向及び Z方向の磁 束成分 By及び Bzの測定結果を示すグラフである。この測定結果から、鉄筋深さ dは 、図 3を参照して前述したように、 d= (Bz/By) 'yにより求めることができる。 [0035] 図 7は、求めた鉄筋深さ dを示すグラフである。 Y軸の値 0近くを除けば、 10cmの鉄 筋深さ力 磁束計測によりほぼ正確に求められていることが分かる。
実施例 3
[0036] 図 8は、直径 8, 10, 12mmの 3種類の鉄筋について、鉄筋深さを変化させたときの 最高磁束密度の測定結果を示すグラフである。最高磁束密度は、着磁点に直交する 方向(Z軸方向)の位置で(図 3参照)、 Z軸方向成分の磁束 (Bz)として得られる。この 最高磁束密度は、言い換えると、鉄筋から放射状に発生する磁束を、鉄筋の着磁点 に最も近いコンクリート外部の位置で、放射方向成分の磁束として検出したものに相 当する。図から分かるように、鉄筋深さが浅いうちは鉄筋の直径によって差異が見ら れる力 鉄筋深さが深くなつてくると差が減少していることが分かる。これは、鉄筋の 着磁距離と計測距離が増加しているため、着磁磁場と測定磁場が両方とも弱くなつ ていることが原因として考えられる。し力 これは、着磁磁場をより強くすることで解決 すること力 Sできる。
[0037] 以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなぐ 特許請求の範囲の記載の範囲内で当業者が容易に改変し得る他の構成をも含むも のである。

Claims

請求の範囲
[1] 非磁性材構造物の内部に存在する磁性材の位置或いは腐食状態を非破壊的に解 析する非破壊検査方法において、
前記磁性材を、構造物外部から着磁し、
着磁された前記磁性材の磁束密度を、構造物外部で計測することにより、磁性材 位置を特定し、或いは磁性材の腐食状態を解析する、
ことから成る非破壊検査方法。
[2] 前記磁性材の着磁をニ段階で行い、
第一段階の着磁による磁束密度の計測により、磁性材位置を特定した後、交番磁 場を印加することにより前記磁性材を脱磁し、
特定された磁性材位置に対向する位置で、第二段階の着磁をした後、着磁された 前記磁性材の磁束密度を計測して、前記磁性材の腐食状態を解析する、 請求項 1に記載の非破壊検査方法。
[3] 前記非磁性材構造物がコンクリート、断熱材、又は保護材料であり、かつ、前記磁性 材が鉄筋又は配管である請求項 1に記載の非破壊検査方法。
[4] 前記着磁は、コイルにパルス電流を流すことにより発生させたノ^レス磁場、或いは超 電導線材を用いる超電導マグネットにより発生させた磁場、或いは着磁した超電導体 により定常的に発生させた磁場により行う請求項 1に記載の非破壊検查方法。
[5] 前記磁性材位置の特定は、座標軸 X方向に伸びる磁性材に直交する一つの方向を
Z方向、さらに、これらに直交する方向を Y方向として、計測した磁束密度の Y方向成 分及び z方向成分から演算して、前記磁性材の構造物内の深さを求めることにより行 う請求項 1に記載の非破壊検査方法。
[6] 前記磁性材の腐食状態は、磁性材の直径に依存して変化する最大磁束密度を、着 磁点の近くで計測することにより解析する請求項 1に記載の非破壊検査方法。
[7] 非磁性材構造物の内部に存在する磁性材の位置或いは腐食状態を非破壊的に解 析する非破壊検査装置において、
前記磁性材を、構造物外部から着磁する磁場を発生する機能を有する着磁装置と 前記着磁装置により着磁された前記磁性材の磁束密度を、構造物外部で計測する 磁気センサとを備え、
計測された磁束密度に基づき、磁性材位置を特定し或いは磁性材の腐食状態を 解析する、
ことから成る非破壊検査装置。
[8] 前記着磁装置は、さらに交番磁場を発生する機能を有して、着磁を行った前記磁性 材の磁束密度の計測により磁性材位置を特定した後に、交番磁場を印加することに より前記磁性材を脱磁し、
前記着磁装置は、特定された磁性材位置に対向する位置でさらに着磁をし、 前記磁気センサは、この着磁された前記磁性材の磁束密度を計測して、前記磁性 材の腐食状態を解析する、
請求項 7に記載の非破壊検査装置。
[9] 前記非磁性材構造物がコンクリート、断熱材、又は保護材料であり、かつ、前記磁性 材が鉄筋又は配管である請求項 7に記載の非破壊検査装置。
[10] 前記着磁装置は、コイルにパルス電流を流すことにより発生させたノ^レス磁場、或い は超電導線材を用いる超電導マグネットにより発生させた磁場、或いは着磁した超電 導体により定常的に発生させた磁場により着磁を行う請求項 7に記載の非破壊検査 装置。
[11] 前記磁性材位置の特定は、座標軸 X方向に伸びる磁性材に直交する一つの方向を Z方向、さらに、これらに直交する方向を Y方向として、計測した磁束密度の Y方向成 分及び Z方向成分から演算して、前記磁性材の構造物内の深さを求めることにより行 う請求項 7に記載の非破壊検査装置。
[12] 前記磁性材の腐食状態は、磁性材の直径に依存して変化する最大磁束密度を、着 磁点の近くで計測することにより解析する請求項 7に記載の非破壊検査装置。
[13] 前記着磁装置は、前記磁性材の長手方向に沿って複数個備えられる請求項 7に記 載の非破壊検査装置。
PCT/JP2006/304961 2005-03-25 2006-03-14 非破壊検査方法及び装置 WO2006103910A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007510365A JP4639339B2 (ja) 2005-03-25 2006-03-14 非破壊検査方法及び装置
US11/909,122 US7710111B2 (en) 2005-03-25 2006-08-08 Nondestructive inspection method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-087757 2005-03-25
JP2005087757 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006103910A1 true WO2006103910A1 (ja) 2006-10-05

Family

ID=37053173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304961 WO2006103910A1 (ja) 2005-03-25 2006-03-14 非破壊検査方法及び装置

Country Status (3)

Country Link
US (1) US7710111B2 (ja)
JP (1) JP4639339B2 (ja)
WO (1) WO2006103910A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292572A (ja) * 2006-04-25 2007-11-08 Kyushu Institute Of Technology 非破壊検査方法及び装置
JP2008216163A (ja) * 2007-03-07 2008-09-18 Japan Atomic Energy Agency 局所着磁・磁場測定装置
JP2021009116A (ja) * 2019-07-03 2021-01-28 Necプラットフォームズ株式会社 出力装置、出力方法及び出力プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294850A (ja) * 1993-04-06 1994-10-21 Nippon Hihakai Keisoku Kenkyusho:Kk 微弱磁気測定方法及びその装置並びにそれを用いた非破壊検査方法
JPH1025658A (ja) * 1996-05-10 1998-01-27 Ykk Corp 非磁性製品中の磁性体の検知方法及び検知装置
JP3089593B2 (ja) * 1993-10-20 2000-09-18 清水建設株式会社 Squidセンサを利用した鉄筋探査方法
JP2001194341A (ja) * 2000-01-17 2001-07-19 Toda Constr Co Ltd 鉄筋コンクリートの健全性判定装置
JP2005003405A (ja) * 2003-06-10 2005-01-06 Utaro Fujioka コンクリート構造物の鉄筋破断検知方法
JP3734822B1 (ja) * 2004-12-22 2006-01-11 株式会社四国総合研究所 非破壊検査方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151731A (ja) 1993-11-30 1995-06-16 Minebea Co Ltd 金属検出装置
JP2002077953A (ja) 2000-08-25 2002-03-15 Shimizu Corp 磁気センサテレビ
JP2003185636A (ja) 2001-12-14 2003-07-03 Shimizu Corp 磁気センサテレビ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294850A (ja) * 1993-04-06 1994-10-21 Nippon Hihakai Keisoku Kenkyusho:Kk 微弱磁気測定方法及びその装置並びにそれを用いた非破壊検査方法
JP3089593B2 (ja) * 1993-10-20 2000-09-18 清水建設株式会社 Squidセンサを利用した鉄筋探査方法
JPH1025658A (ja) * 1996-05-10 1998-01-27 Ykk Corp 非磁性製品中の磁性体の検知方法及び検知装置
JP2001194341A (ja) * 2000-01-17 2001-07-19 Toda Constr Co Ltd 鉄筋コンクリートの健全性判定装置
JP2005003405A (ja) * 2003-06-10 2005-01-06 Utaro Fujioka コンクリート構造物の鉄筋破断検知方法
JP3734822B1 (ja) * 2004-12-22 2006-01-11 株式会社四国総合研究所 非破壊検査方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292572A (ja) * 2006-04-25 2007-11-08 Kyushu Institute Of Technology 非破壊検査方法及び装置
JP2008216163A (ja) * 2007-03-07 2008-09-18 Japan Atomic Energy Agency 局所着磁・磁場測定装置
JP2021009116A (ja) * 2019-07-03 2021-01-28 Necプラットフォームズ株式会社 出力装置、出力方法及び出力プログラム

Also Published As

Publication number Publication date
JP4639339B2 (ja) 2011-02-23
US20090058406A1 (en) 2009-03-05
US7710111B2 (en) 2010-05-04
JPWO2006103910A1 (ja) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4876248B2 (ja) 非破壊検査方法及び装置
Suresh et al. Development of magnetic flux leakage measuring system for detection of defect in small diameter steam generator tube
Wang et al. Development of a remote coil magnetoelastic stress sensor for steel cables
CN107850570B (zh) 缺陷测定方法、缺陷测定装置及检查探头
US11016060B2 (en) Method and apparatus for evaluating damage to magnetic linear body
KR101590830B1 (ko) 역자기변형 현상과 유도자기장을 이용한 프리스트레스트 강재의 긴장응력 및 부식정도의 측정방법 및 이를 위한 전자석 장치
Zhang et al. A new judging criterion for corrosion testing of reinforced concrete based on self-magnetic flux leakage
JP2008032575A (ja) 渦電流測定用プローブ及びそれを用いた探傷装置
Zakaria et al. Simulation of magnetic flux leakage (MFL) analysis using FEMM software
JP6660487B2 (ja) 磁性線状体の損傷評価方法および損傷評価装置
WO2006103910A1 (ja) 非破壊検査方法及び装置
JP2005292111A (ja) 鉄筋コンクリートの鉄骨材の非破壊検査装置
JPWO2019220953A1 (ja) 磁性体検査装置および磁性体検査方法
Yan et al. Increasing detection resolution of wire rope metallic cross-sectional area damage based on magnetic aggregation structure
CN107576720B (zh) 铁磁细长构件浅层损伤磁发射检测方法及磁发射检测系统
JP2006010646A (ja) 鋼管内面劣化検知方法およびその装置
Carriatore et al. Experience and technologies in NDT of ropes
Kumar et al. Sensor systems for corrosion monitoring in concrete structures
Lijian et al. Sensor development and application on the oil-gas pipeline magnetic flux leakage detection
WO2020027028A1 (ja) 非破壊検査装置、非破壊検査システム及び非破壊検査方法
Horai et al. Flux-focusing eddy current sensor with magnetic saturation for detection of water pipe defects
JP2024054885A (ja) 非破壊検査方法
JP6565849B2 (ja) 漏洩磁束探傷装置
JP2016197085A (ja) 磁気探傷方法
Bergamini et al. A simple approach to the localization of flaws in large diameter steel cables

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007510365

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11909122

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715633

Country of ref document: EP

Kind code of ref document: A1