WO2006103172A1 - Process for preparing crystalline ethylene (co)polymers - Google Patents

Process for preparing crystalline ethylene (co)polymers Download PDF

Info

Publication number
WO2006103172A1
WO2006103172A1 PCT/EP2006/060740 EP2006060740W WO2006103172A1 WO 2006103172 A1 WO2006103172 A1 WO 2006103172A1 EP 2006060740 W EP2006060740 W EP 2006060740W WO 2006103172 A1 WO2006103172 A1 WO 2006103172A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
ethylene
process according
catalyst
catalyst component
Prior art date
Application number
PCT/EP2006/060740
Other languages
French (fr)
Inventor
Giampiero Morini
Isabella Maria Vittoria Camurati
Tiziano Dall'occo
Dario Liguori
Gianni Vitale
Original Assignee
Basell Poliolefine Italia S.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basell Poliolefine Italia S.R.L. filed Critical Basell Poliolefine Italia S.R.L.
Priority to EP06725065.4A priority Critical patent/EP1863856B1/en
Priority to CN2006800098709A priority patent/CN101151283B/en
Priority to ES06725065T priority patent/ES2435101T3/en
Priority to US11/887,527 priority patent/US7834117B2/en
Priority to JP2008503474A priority patent/JP2008534724A/en
Priority to BRPI0611462-8A priority patent/BRPI0611462A2/en
Publication of WO2006103172A1 publication Critical patent/WO2006103172A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44

Definitions

  • the process of the invention is suitable to prepare, in high yields, ethylene (copolymers having narrow Molecular Weight Distribution (MWD) and showing a good comonomer distribution in and among the polymer chains.
  • MWD is an important characteristic of ethylene polymers in that it affects both the rheological behaviour, and therefore the processability, and the final mechanical properties.
  • melt flow ratio F/E is the ratio between the melt index measured by a load of 21.6 Kg (melt index F) and that measured with a load of 2.16 Kg (melt index E).
  • the measurements of melt index are carried out according to ASTM D- 1238 and at 190°C.
  • a catalyst component for preparing ethylene (co)polymers having narrow MWD is described in the European patent application EP-A-553805.
  • the catalyst comprising Ti, Mg, halogen, OR 1 groups is characterized by a ratio OR/Ti of at least 0.5, by a porosity (determined with mercury porosimeter) of from 0.35 to 0.7 which furthermore has a specific pore distribution.
  • Said catalyst is obtained by a rather long process which comprises the preparation of a MgCl2-alcohol adduct having about 3 moles of alcohol which is first thermally dealcoholated up to an intermediate alcohol content and then chemically dealcoholated up to an almost complete extent. The so created porous precursor is then reacted with a titanium alkoxy compound in the presence of a halogenating agent and, optionally, of a reducing agent.
  • the catalyst so obtained is able to produce ethylene (co)polymers with a narrow MWD but the polymerization activities are low.
  • a polymerization process for the preparation of ethylene homopolymer is also described in USP 4,220,554.
  • the catalysts used are obtained by reacting a large excess of TiCl 4 with catalyst precursors of general formula MgCl n (OR)2 -n in the presence of an internal electron donor compound at high temperatures (120°C).
  • the hydrogen response of the final catalyst component however, is not satisfactory and therefore with the disclosed process a too high amount of molecular weight regulator would be needed to produce, in satisfactory yields, ethylene polymers with relatively low molecular weight. This would be a disadvantage when multimodal ethylene polymers should be produced.
  • a catalyst comprising Ti, Mg, halogen, OR groups (R is an aliphatic, aromatic or cycloaliphatic hydrocarbon radical) in which the Mg/Ti molar ratio is from 0.5 to 50 and the ORTi is from 1.5 to 5, is used for the preparation of amorphous ethylene copolymers. All the examples are directed to the production of amorphous copolymers and terpolymers with no indication about the suitability for the production of crystalline ethylene polymers with narrow molecular weight distribution.
  • the ratio I A /I B is higher than 1 and more preferably in the range 1-5.
  • the activity of the catalyst component is higher particularly when the ratio I A /I B is higher than 1.2.
  • the hydrogen response is improved particularly when the ratio I A /I B is from 1 to 2.
  • the amount of titanium, with respect to the total weight of said solid catalyst component is higher than 5% and preferably higher than 6% by wt.
  • the catalyst components (a) to be used in the process of the invention comprising Ti, Mg, halogen, OR 1 groups, where R 1 is a Cl -C 12 hydrocarbon group optionally containing heteroatoms, and at least 4% wt of Ti atoms, can also be characterized by the fact that are obtainable by reacting a titanium compound having at least a Ti-Cl bond with a catalyst precursors of formula MgCl n (ORVn, where n is from 0.5 to 1.5 and R 1 has the meaning given above, under conditions such that the said product has a OR 1 ZTi molar ratio of at least 0.5.
  • R 1 is a C1-C8 hydrocarbon group selected from alkyl groups. Among them particularly preferred are methyl, ethyl, n-propyl, n-butyl, i- butyl, and tert-butyl.
  • said OR 1 ZTi molar ratio is preferably higher than 1, very preferably higher than 1.5 and, especially higher than 2.
  • titanium compounds containing at least one Ti-halogen bond those having the formula T ⁇ OR ⁇ p- y Cl y , wherein R 1 has the meaning given above, p is the titanium valence and y is a number comprised between 1 and p, are preferred. Particularly preferred are the titanium compounds in which y ranges from 2 to 4.
  • the catalyst precursors particularly preferred are those in which R 1 is selected among a C1-C8 hydrocarbon group, preferably ethyl, and n ranges from 0.6 to 1.4, in particular from 0.7 to 1.3 and especially from 0.8 to 1.2.
  • the said catalyst precursors can be generated by exchange reaction between organometallic compounds of formula Cl m MgR2 -m , where m is from 0.5 to 1.5, and R is a hydrocarbon group, with an appropriate OR 1 group source.
  • the OR 1 sources are for example R 1 OH alcohols or, preferably, a silicon compound of formula (R 1 O) 1 -SiR 4-1 - where r is from 1 to 4 and R 1 has the meaning given above.
  • organometallic compounds of formula Cl m MgR2 -m can be obtained by the reaction between Mg metal and an organic chloride RCl, in which R is as defined above, optionally in the presence of suitable promoters.
  • R is as defined above
  • the formation of Cl m MgR 2-m and the further exchange with the OR 1 source takes place in one single step.
  • the reaction can be carried out in a liquid inert medium such as hydrocarbon that is liquid at room temperature.
  • the catalyst precursors precipitate and can be easily isolated.
  • the reaction between titanium compound having at least a Ti-Cl bond and the catalyst precursor should be carried out under conditions such that the reaction product has a final OR 1 ZTi molar ratio of at least 0.5 and preferably higher than 1. It is within the ordinary knowledge of the skilled in the art that there are several ways of obtaining the same results. Given that the titanium compound acts as a halogenating agent with respect to the precursor, it is in principle possible to obtain the desired final ratio either by using a limited molar amount of titanium compound or by keeping conditions such that the halogenation activity is depressed.
  • the catalyst component is obtained by reacting the catalyst precursor with a titanium compound, preferably TiCl 4 , used in an amount such that the molar ratio between the titanium compound and the OR 1 groups of the catalyst precursor is 4 or less.
  • a titanium compound preferably TiCl 4
  • the reaction temperature is not particularly critical and can range from room temperature up to 150°C preferably in the range 40-120°C.
  • Preferred inert medium are liquid aliphatic or aromatic hydrocarbons, optionally chlorinated, and among them those having from 3 to 20 carbon atoms.
  • Mixture of two or more of said hydrocarbons can be used.
  • the reaction medium can also comprise chlorinated compounds having a chlorinating ability inferior to that OfTiCl 4 such as SiCl 4 , SnCl 4 and the like.
  • the catalyst component is obtained by reacting the catalyst precursor with a titanium compound, preferably TiCl 4 , used in amounts such the molar ratio between the titanium compound and the OR 1 groups of the catalyst precursor is higher than 4.
  • the ratio can be higher than 6 and even higher than 10.
  • the reaction temperature is kept at values lower than 100°C and preferably in the range 20- 80°C.
  • a liquid inert medium can be omitted as the titanium compound acts simultaneously as halogenating agent and reaction medium.
  • a liquid inert medium as those disclosed above can be used also in this embodiment.
  • the solid catalyst components according to the present invention are converted into catalysts for the polymerization of olefins by reacting them with organoaluminum compounds according to known methods.
  • a catalyst for the polymerization of olefins CH 2 CHR, in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, comprising the product of the reaction between:
  • the alkyl-Al compound can be preferably selected from the trialkyl aluminum compounds such as for example trimethylaluminum (TMA), triethylaluminum (TEA), triisobutylaluminum (TIBA)), tri-n-butylaluminum, tri-n-hexylaluminum, tri-n- octylaluminum.
  • TMA trimethylaluminum
  • TEA triethylaluminum
  • TIBA triisobutylaluminum
  • alkylaluminum halides and in particular alkylaluminum chlorides such as diethylaluminum chloride (DEAC), diisobutylalumunum chloride, Al-sesquichloride and dimethylaluminum chloride (DMAC) can be used.
  • DEAC diethylaluminum chloride
  • DMAC dimethylaluminum chloride
  • the external electron donor compound can be equal to or different from the ED used in the solid catalyst component.
  • the above mentioned components (a)-(c) can be fed separately into the reactor where, under the polymerization conditions can exploit their activity.
  • the so formed catalyst system can be used directly in the main polymerization process or alternatively, it can be pre-polymerized beforehand.
  • a pre-polymerization step is usually preferred when the main polymerization process is carried out in the gas phase.
  • pre-polymerize ethylene or mixtures thereof with one or more ⁇ -olef ⁇ ns said mixtures containing up to 20% in moles of ⁇ -olefin, forming amounts of polymer from about 0.1 g per gram of solid component up to about 1000 g per gram of solid catalyst component.
  • the pre-polymerization step can be carried out at temperatures from 0 to 80°C, preferably from 5 to 70°C, in the liquid or gas phase.
  • the pre-polymerization step can be performed in-line as a part of a continuous polymerization process or separately in a batch process.
  • the batch pre-polymerization of the catalyst of the invention with ethylene in order to produce an amount of polymer ranging from 0.5 to 20 g per gram of catalyst component is particularly preferred.
  • gas- phase processes wherein it is possible to use the catalysts of the invention are described in WO 92/21706, USP 5,733,987 and WO 93/03078. These processes comprise a pre-contact step of the catalyst components, a pre-polymerization step and a gas phase polymerization step in one or more reactors in a series of fluidized or mechanically stirred bed.
  • the gas-phase process can be suitably carried out according to the following steps:
  • the catalysts of the invention are particularly suited for slurry polymerization in an inert medium such as propane, butane, pentane, hexane, heptane and mixtures thereof.
  • the catalysts of the present invention are suitable for preparing crystalline ethylene polymers having the desired balance of catalyst activity, hydrogen response and suitable MWD.
  • a very narrow molecular weight distribution which is characterized by a F/E ratio of lower than 35 and in some cases lower than 30.
  • an alpha olefin as comonomer selected from propylene, butene-1, hexene-1 and octene-1
  • a linear low density polyethylene having a density lower than 0.940 g/cm 3 with a very good quality is obtained which is indicated by the low ratio among weight of xilene soluble fraction and weight of comonomer in the chain.
  • the catalyst of the invention also show a very good hydrogen response, i.e., the capability of producing low molecular weight polymers in dependence of a given content of molecular weight regulator (usually hydrogen) in the polymerization system.
  • molecular weight regulator usually hydrogen
  • This feature is particularly useful when polymers with a bimodal molecular weight distribution are to be prepared in sequential polymerization steps.
  • it is suitable to have a catalyst with a good hydrogen response because low molecular weight polymers are produced with a minor amount of Mw regulator and, as a consequence, with a higher activity.
  • Non limitative examples of other polymers that can be prepared with the catalyst of the invention are very-low-density and ultra-low-density polyethylenes (VLDPE and ULDPE, having a density lower than 0.920 g/cm 3 , to 0.880 g/cm 3 ) consisting of copolymers of ethylene with one or more alpha-olefins having from 3 to 12 carbon atoms, having a mole content of units derived from ethylene of higher than 80%; high density ethylene polymers (HDPE, having a density higher than 0.940 g/cm 3 ), comprising ethylene homopolymers and copolymers of ethylene with alpha-olefins having 3-12 carbon atoms;
  • VLDPE and ULDPE having a density lower than 0.920 g/cm 3 , to 0.880 g/cm 3
  • HDPE high density ethylene polymers
  • HDPE high density ethylene polymers
  • the properties are determined according to the following methods:
  • Fraction soluble in xylene The solubility in xylene at 25°C was determined according to the following method: About 2.5 g of polymer and 250 cm 3 of o-xylene were placed in a round- bottomed flask provided with cooler and a reflux condenser and kept under nitrogen. The mixture obtained was heated to 135°C and was kept under stirring for about 60 minutes. The final solution was allowed to cool to 25°C under continuous stirring, and was then filtered. The filtrate was then evaporated in a nitrogen flow at 140°C to reach a constant weight. The content of said xylene-soluble fraction is expressed as a percentage of the original 2.5 grams. Comonomer content
  • the weighted sample (5-10 mg), obtained from the Melt Index determination, was sealed into aluminum pans, thermostatted at 5°C for 3 minutes, heated to 200°C at 20°C/min and kept at that temperature for a time long enough (5 minutes) to allow a complete melting of all the crystallites. Successively, after cooling at 20°C/min to -20°C, the peak temperature was assumed as crystallization temperature (Tc). After standing 5 minutes at 0°C, the sample was heated to 200°C at a rate of 20°C/min. In this second heating run, the peak temperature was assumed as melting temperature (Tm) and the area as the global melting hentalpy ( ⁇ H).
  • Solid State NMR analysis Solid state 13 C-NMR spectra were recorded on a Bruker DPX-
  • the rotors were prepared under nitrogen atmosphere.
  • Crystalline polyethylene in orthorhombic phase was taken as an external reference at 32.85 ppm from tetramethylsilane (TMS)
  • I A is defined as the integral of the signals having the maximum in region between 60 and 75 ppm.
  • I B is defined as the integral of the signals having the maximum in the region between 78 and 108 ppm.
  • TEA Tris-Ethyl-Aluminum
  • TiBA Tris-isoButyl- Aluminum
  • the so obtained support has the following composition:
  • Example 1 The procedure reported in Example 1 was repeated changing the solvent, TiCl 4 amount and temperature/time of treatment as reported in table 1.
  • Example 11 In a 500 cm 3 four-necked round flask equipped with a mechanical stirrer and purged with nitrogen, 220 cm 3 Of TiCl 4 were charged. The temperature was set at 0°C and 15.3 g (127 mg.at. of Mg)of the solid support were slowly fed. The temperature was raised to 40 °C and the mixture was stirred for 4 hours. Then, the stirring was discontinued, the solid product was allowed to settle and the supernatant liquid was siphoned off.
  • a catalyst component was prepared according to the description of Example 2(a) of USP
  • Example 11 The procedure reported in Example 11 was repeated changing the temperature and time of treatment as reported in table 1.
  • the solid catalyst was used in the ethylene/1 -butene copolymerization in a fluidized gas- phase reactor as described in the following.
  • the gas-phase apparatus was purified by fluxing pure nitrogen at 40°C for 12 hours and then was circulated a propane (10 bar, partial pressure) mixture containing 1.5 g of the same Aluminum alkyl used in polymerization, at 80°C for 30 minutes.
  • the activated catalyst was then injected into the gas-phase reactor by using a propane overpressure (1 bar increase in the gas-phase reactor).
  • the final pressure, in the fluidized reactor, was maintained constant at 80°C for 120 minutes by feeding a 7 wt.% 1-butene/ethylene mixture.
  • the reactor was depressurised and the temperature was dropped to 30°C.
  • the recovered polymer was dried at 70°C under a nitrogen flow and weighted. 117O g were achieved providing a mileage of 16.2 kg/gcat with the following characteristics: MI E, 0.7 dg/min MFR (MI F/MI E), 32.3 1-butene content, 7.2 wt.% Xylene Soluble content, 3.7 wt.% Tm, 120.5 °C
  • Polym. Cond (1) Propane 800 g; TEA, 6.1 mmol; C 2 H 4 7 bar; Temper. 75°C;.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A process for preparing crystalline ethylene (co)polymers comprising (co)polymerizing ethylene in the presence of carried out in the presence catalyst system comprising (a) a solid catalyst component comprising Ti, Mg, halogen, ORI groups, where RI is a C1-C12 hydrocarbon group optionally containing heteroatoms, having ORI/Ti molar ratio of at least 0.5, an amount of titanium, with respect to the total weight of said solid catalyst component, higher than 4% by weight, and showing a specific pattern of the SS-NMR; and (b) an aluminum alkyl compound as a cocatalyst. The process allows to obtain in good yelds ethylene polymers with narrow MWD.

Description

TITLE
PROCESS FOR PREPARING CRYSTALLINE ETHYLENE (CO)POLYMERS
The present invention relates to process for preparing crystalline ethylene (copolymers comprising polymerizing ethylene, optionally in mixture with olefins CH2=CHR, wherein R is an alkyl, cycloalkyl or aryl radical having 2-12 carbon atoms, in the presence of a catalyst comprising Ti, Mg, halogen, OR1 groups in a specific ratio. The process of the invention is suitable to prepare, in high yields, ethylene (copolymers having narrow Molecular Weight Distribution (MWD) and showing a good comonomer distribution in and among the polymer chains. The MWD is an important characteristic of ethylene polymers in that it affects both the rheological behaviour, and therefore the processability, and the final mechanical properties. In particular, in the case of LLDPE, polymers with narrow MWD are suitable for films and injection molding in that deformation and shrinkage problems in the manufactured article are minimized. The width of the molecular weight distribution for the ethylene polymers is generally expressed as melt flow ratio F/E, which is the ratio between the melt index measured by a load of 21.6 Kg (melt index F) and that measured with a load of 2.16 Kg (melt index E). The measurements of melt index are carried out according to ASTM D- 1238 and at 190°C. A catalyst component for preparing ethylene (co)polymers having narrow MWD is described in the European patent application EP-A-553805. The catalyst, comprising Ti, Mg, halogen, OR1 groups is characterized by a ratio OR/Ti of at least 0.5, by a porosity (determined with mercury porosimeter) of from 0.35 to 0.7 which furthermore has a specific pore distribution. Said catalyst is obtained by a rather long process which comprises the preparation of a MgCl2-alcohol adduct having about 3 moles of alcohol which is first thermally dealcoholated up to an intermediate alcohol content and then chemically dealcoholated up to an almost complete extent. The so created porous precursor is then reacted with a titanium alkoxy compound in the presence of a halogenating agent and, optionally, of a reducing agent. The catalyst so obtained is able to produce ethylene (co)polymers with a narrow MWD but the polymerization activities are low. A polymerization process for the preparation of ethylene homopolymer is also described in USP 4,220,554. The catalysts used are obtained by reacting a large excess of TiCl4 with catalyst precursors of general formula MgCln(OR)2-n in the presence of an internal electron donor compound at high temperatures (120°C). The hydrogen response of the final catalyst component however, is not satisfactory and therefore with the disclosed process a too high amount of molecular weight regulator would be needed to produce, in satisfactory yields, ethylene polymers with relatively low molecular weight. This would be a disadvantage when multimodal ethylene polymers should be produced.
In EP 301 894 a catalyst comprising Ti, Mg, halogen, OR groups (R is an aliphatic, aromatic or cycloaliphatic hydrocarbon radical) in which the Mg/Ti molar ratio is from 0.5 to 50 and the ORTi is from 1.5 to 5, is used for the preparation of amorphous ethylene copolymers. All the examples are directed to the production of amorphous copolymers and terpolymers with no indication about the suitability for the production of crystalline ethylene polymers with narrow molecular weight distribution.
It is therefore still felt the need of a catalyst component suited to form a catalyst system showing a good balance of polymerization activity, ability to form ethylene polymers with narrow MWD, good hydrogen response and high activity.
The applicant has surprisingly found a process satisfying the above-mentioned needs comprising the use of certain catalyst components characterized by a specific pattern when analyzed through the solid state NMR (SS-NMR). In particular, said process for the preparation of crystalline ethylene (copolymers comprises polymerizing ethylene alone or in mixture with of olefins CH2=CHR, in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, in the presence of a catalyst system comprising (a) a solid catalyst component comprising Ti, Mg, halogen, OR1 groups, where R1 is a Cl -C 12 hydrocarbon group optionally containing heteroatoms, having OR1ZTi molar ratio of at least 0.5, an amount of titanium, with respect to the total weight of said solid catalyst component, higher than 4% by weight, and showing in the pattern of the SS-NMR recorded under the conditions set forth below one or more signals (A) having a maximum in the region 60-75 (ppm) and one or more signals (B) having a maximum in the region 78-108 such that the ratio IA/IB, in which IA is the integral of signals having the maximum in the region between 60 and 75 ppm and IB is the integral of signals having the maximum of the region between 78 and 108 ppm, is higher than 0.8; and (b) an aluminum alkyl compound as a cocatalyst.
Preferably, the ratio IA/IB is higher than 1 and more preferably in the range 1-5. Generally, in correspondence with OR/Ti molar ratios in the range 0.5-2 the activity of the catalyst component is higher particularly when the ratio IA/IB is higher than 1.2. Generally, for values of OR/Ti molar ratios higher than 2 the hydrogen response is improved particularly when the ratio IA/IB is from 1 to 2.
In a preferred aspect the amount of titanium, with respect to the total weight of said solid catalyst component, is higher than 5% and preferably higher than 6% by wt.
The applicant has also found that the catalyst components (a) to be used in the process of the invention, comprising Ti, Mg, halogen, OR1 groups, where R1 is a Cl -C 12 hydrocarbon group optionally containing heteroatoms, and at least 4% wt of Ti atoms, can also be characterized by the fact that are obtainable by reacting a titanium compound having at least a Ti-Cl bond with a catalyst precursors of formula MgCln(ORVn, where n is from 0.5 to 1.5 and R1 has the meaning given above, under conditions such that the said product has a OR1ZTi molar ratio of at least 0.5.
In a preferred embodiment of the invention R1 is a C1-C8 hydrocarbon group selected from alkyl groups. Among them particularly preferred are methyl, ethyl, n-propyl, n-butyl, i- butyl, and tert-butyl.
Moreover, said OR1ZTi molar ratio is preferably higher than 1, very preferably higher than 1.5 and, especially higher than 2.
Among the titanium compounds containing at least one Ti-halogen bond, those having the formula T^OR^p-yCly, wherein R1 has the meaning given above, p is the titanium valence and y is a number comprised between 1 and p, are preferred. Particularly preferred are the titanium compounds in which y ranges from 2 to 4.
Among the catalyst precursors particularly preferred are those in which R1 is selected among a C1-C8 hydrocarbon group, preferably ethyl, and n ranges from 0.6 to 1.4, in particular from 0.7 to 1.3 and especially from 0.8 to 1.2. The said catalyst precursors can be generated by exchange reaction between organometallic compounds of formula ClmMgR2-m, where m is from 0.5 to 1.5, and R is a hydrocarbon group, with an appropriate OR1 group source. The OR1 sources are for example R1OH alcohols or, preferably, a silicon compound of formula (R1O)1-SiR4-1- where r is from 1 to 4 and R1 has the meaning given above. In turn, as generally known in the art, organometallic compounds of formula ClmMgR2-m can be obtained by the reaction between Mg metal and an organic chloride RCl, in which R is as defined above, optionally in the presence of suitable promoters. Preferably, the formation of ClmMgR2-m and the further exchange with the OR1 source takes place in one single step. The reaction can be carried out in a liquid inert medium such as hydrocarbon that is liquid at room temperature. Usually, upon a substantial amount of exchange with the OR source occurred, the catalyst precursors precipitate and can be easily isolated.
As mentioned above the reaction between titanium compound having at least a Ti-Cl bond and the catalyst precursor should be carried out under conditions such that the reaction product has a final OR1ZTi molar ratio of at least 0.5 and preferably higher than 1. It is within the ordinary knowledge of the skilled in the art that there are several ways of obtaining the same results. Given that the titanium compound acts as a halogenating agent with respect to the precursor, it is in principle possible to obtain the desired final ratio either by using a limited molar amount of titanium compound or by keeping conditions such that the halogenation activity is depressed.
According to one preferred embodiment, the catalyst component is obtained by reacting the catalyst precursor with a titanium compound, preferably TiCl4, used in an amount such that the molar ratio between the titanium compound and the OR1 groups of the catalyst precursor is 4 or less. Preferably said ratio is lower than 3, and more preferably it ranges from 0.1 to 2.5. In this embodiment the reaction temperature is not particularly critical and can range from room temperature up to 150°C preferably in the range 40-120°C. In view of the limited amount of titanium compound, preferably TiCl4, it is preferred carrying out the reaction in an inert medium, that is liquid at least at the reaction temperature. Preferred inert medium are liquid aliphatic or aromatic hydrocarbons, optionally chlorinated, and among them those having from 3 to 20 carbon atoms. Especially preferred are propane, n-butane, n-pentane, n-hexane, n-heptane, benzene, toluene and isomers thereof. Mixture of two or more of said hydrocarbons can be used. Provided that the final OR1ZTi molar ratio of at least 0.5 is maintained, the reaction medium can also comprise chlorinated compounds having a chlorinating ability inferior to that OfTiCl4 such as SiCl4, SnCl4 and the like.
According to one preferred embodiment the catalyst component is obtained by reacting the catalyst precursor with a titanium compound, preferably TiCl4, used in amounts such the molar ratio between the titanium compound and the OR1 groups of the catalyst precursor is higher than 4. The ratio can be higher than 6 and even higher than 10. In this embodiment the reaction temperature is kept at values lower than 100°C and preferably in the range 20- 80°C. When using sufficient excess of liquid titanium compound, preferably TiCl4, a liquid inert medium can be omitted as the titanium compound acts simultaneously as halogenating agent and reaction medium. However, if desired, a liquid inert medium as those disclosed above can be used also in this embodiment.
The solid catalyst components according to the present invention are converted into catalysts for the polymerization of olefins by reacting them with organoaluminum compounds according to known methods.
In particular, it is an object of the present invention a catalyst for the polymerization of olefins CH2=CHR, in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, comprising the product of the reaction between:
(a) a solid catalyst component as described above,
(b) an alkylaluminum compound and, optionally,
(c) an external electron donor compound.
The alkyl-Al compound can be preferably selected from the trialkyl aluminum compounds such as for example trimethylaluminum (TMA), triethylaluminum (TEA), triisobutylaluminum (TIBA)), tri-n-butylaluminum, tri-n-hexylaluminum, tri-n- octylaluminum. Also alkylaluminum halides and in particular alkylaluminum chlorides such as diethylaluminum chloride (DEAC), diisobutylalumunum chloride, Al-sesquichloride and dimethylaluminum chloride (DMAC) can be used. It is also possible to use, and in certain cases preferred, mixtures of trialkylaluminum's with alkylaluminum halides. Among them mixtures between TEA and DEAC are particularly preferred.
The external electron donor compound can be equal to or different from the ED used in the solid catalyst component.
The above mentioned components (a)-(c) can be fed separately into the reactor where, under the polymerization conditions can exploit their activity. The so formed catalyst system can be used directly in the main polymerization process or alternatively, it can be pre-polymerized beforehand. A pre-polymerization step is usually preferred when the main polymerization process is carried out in the gas phase. The prepolymerization can be carried out with any of the olefins CH2=CHR, where R is H or a Cl-ClO hydrocarbon group. In particular, it is especially preferred to pre-polymerize ethylene or mixtures thereof with one or more α-olefϊns, said mixtures containing up to 20% in moles of α-olefin, forming amounts of polymer from about 0.1 g per gram of solid component up to about 1000 g per gram of solid catalyst component. The pre-polymerization step can be carried out at temperatures from 0 to 80°C, preferably from 5 to 70°C, in the liquid or gas phase. The pre-polymerization step can be performed in-line as a part of a continuous polymerization process or separately in a batch process. The batch pre-polymerization of the catalyst of the invention with ethylene in order to produce an amount of polymer ranging from 0.5 to 20 g per gram of catalyst component is particularly preferred. Examples of gas- phase processes wherein it is possible to use the catalysts of the invention are described in WO 92/21706, USP 5,733,987 and WO 93/03078. These processes comprise a pre-contact step of the catalyst components, a pre-polymerization step and a gas phase polymerization step in one or more reactors in a series of fluidized or mechanically stirred bed. In a particular embodiment, the gas-phase process can be suitably carried out according to the following steps:
(i) pre-polymerizing with one or more olefins of formula CH2=CHR, where R is H or a Cl-ClO hydrocarbon group, up to forming amounts of polymer from about 0.1 up to about 1000 g per gram of solid catalyst component (a); and
(ii) polymerizing in the gas-phase ethylene, or mixtures thereof with α-olefins CH2=CHR in which R is a hydrocarbon radical having 1-10 carbon atoms, in one or more fluidized or mechanically stirred bed reactors, in the presence of the product coming from (i).
However, the catalysts of the invention are particularly suited for slurry polymerization in an inert medium such as propane, butane, pentane, hexane, heptane and mixtures thereof.
As already mentioned, the catalysts of the present invention are suitable for preparing crystalline ethylene polymers having the desired balance of catalyst activity, hydrogen response and suitable MWD. In particular it is possible to obtain a very narrow molecular weight distribution which is characterized by a F/E ratio of lower than 35 and in some cases lower than 30. When the ethylene is polymerized together with a minor amount of an alpha olefin as comonomer, selected from propylene, butene-1, hexene-1 and octene-1, a linear low density polyethylene having a density lower than 0.940 g/cm3 with a very good quality is obtained which is indicated by the low ratio among weight of xilene soluble fraction and weight of comonomer in the chain. In addition, the catalyst of the invention also show a very good hydrogen response, i.e., the capability of producing low molecular weight polymers in dependence of a given content of molecular weight regulator (usually hydrogen) in the polymerization system. This feature is particularly useful when polymers with a bimodal molecular weight distribution are to be prepared in sequential polymerization steps. In this case, it is suitable to have a catalyst with a good hydrogen response because low molecular weight polymers are produced with a minor amount of Mw regulator and, as a consequence, with a higher activity.
Non limitative examples of other polymers that can be prepared with the catalyst of the invention are very-low-density and ultra-low-density polyethylenes (VLDPE and ULDPE, having a density lower than 0.920 g/cm3, to 0.880 g/cm3) consisting of copolymers of ethylene with one or more alpha-olefins having from 3 to 12 carbon atoms, having a mole content of units derived from ethylene of higher than 80%; high density ethylene polymers (HDPE, having a density higher than 0.940 g/cm3), comprising ethylene homopolymers and copolymers of ethylene with alpha-olefins having 3-12 carbon atoms; The following examples are given in order to further describe the present invention in a non-limiting manner.
CHARACTERIZATION
The properties are determined according to the following methods:
Melt Index: measured at 190°C according to ASTM D-1238 condition "E" (load of 2.16 Kg), "P" (load of 5.0 Kg) and "F" (load of 21.6 Kg);
Fraction soluble in xylene. The solubility in xylene at 25°C was determined according to the following method: About 2.5 g of polymer and 250 cm3 of o-xylene were placed in a round- bottomed flask provided with cooler and a reflux condenser and kept under nitrogen. The mixture obtained was heated to 135°C and was kept under stirring for about 60 minutes. The final solution was allowed to cool to 25°C under continuous stirring, and was then filtered. The filtrate was then evaporated in a nitrogen flow at 140°C to reach a constant weight. The content of said xylene-soluble fraction is expressed as a percentage of the original 2.5 grams. Comonomer content
1 -Butene or α-olefins were determined via Infrared Spectrometry.
Effective density: ASTM-D 1505
Thermal analysis: Calorimetric measurements were performed by using a differential scanning calorimeter DSC Perkin-Elmer. The instrument is calibrated with indium and tin standards.
The weighted sample (5-10 mg), obtained from the Melt Index determination, was sealed into aluminum pans, thermostatted at 5°C for 3 minutes, heated to 200°C at 20°C/min and kept at that temperature for a time long enough (5 minutes) to allow a complete melting of all the crystallites. Successively, after cooling at 20°C/min to -20°C, the peak temperature was assumed as crystallization temperature (Tc). After standing 5 minutes at 0°C, the sample was heated to 200°C at a rate of 20°C/min. In this second heating run, the peak temperature was assumed as melting temperature (Tm) and the area as the global melting hentalpy (ΔH).
Determination of Mg, Ti: has been carried out via inductively coupled plasma emission spectroscopy (ICP).
Determination of Cl: has been carried out via potentiometric tritration.
Determination of alkoxides (as ROH): via Gas-Chromatography analysis after hydrolysis of the catalyst.
Solid State NMR analysis. Solid state 13C-NMR spectra were recorded on a Bruker DPX-
200 spectrometer operating at 50.32 MHz in the Fourier transform mode. Samples were measured at room temperature in a 7 mm ZrO2 rotor using a spinning speed of 4 KHz.
Transients were accumulated using the cross polarization magic angle spinning technique
(CP-MAS) with a recycle delay of 5 sec. and a contact time of 1 msec. All NMR experiments employed a proton decoupling field of sufficient magnitude to ensure full decoupling over the entire spectral width.
The rotors were prepared under nitrogen atmosphere.
Crystalline polyethylene in orthorhombic phase was taken as an external reference at 32.85 ppm from tetramethylsilane (TMS)
IA is defined as the integral of the signals having the maximum in region between 60 and 75 ppm.
IB is defined as the integral of the signals having the maximum in the region between 78 and 108 ppm.
EXAMPLES All the solvent were deoxygenated, dried over LiAlH4 and distilled under nitrogen atmosphere before the use.
TEA is Tris-Ethyl-Aluminum
TiBA is Tris-isoButyl- Aluminum
General preparation of the precursor
The synthesis of the precursor was performed as described in Example 1 of USP 4,220,554.
The so obtained support has the following composition:
Mg, 20.2 wt.%
Cl, 29.8 wt.%
EtO groups 41.5 wt.%
Example 1:
Into a 500 cm3 four-necked round flask, purged with nitrogen, 280 cm3 of heptane and 17.7 g (147 mg.at. of Mg) of the support previously prepared, were introduced at 25°C. Then, at the same temperature, 17 cm3 (0.154 mol.) of TiCl4 were added under stirring. The temperature was raised to 50°C in 1 h and maintained for 2 hours. Then, the stirring was discontinued, the solid product was allowed to settle for 30 minutes and the supernatant liquid was siphoned off.
The solid was washed twice with anhydrous heptane (2 x 100 cm3) at 50 °C and three times at 25°C. Finally, the solid was dried under vacuum and analyzed. The results are reported in table 1.
Example 2-9
The procedure reported in Example 1 was repeated changing the solvent, TiCl4 amount and temperature/time of treatment as reported in table 1.
Example 10
15.5 g of the support (129 mg.at. of Mg) were charged, under stirring at 0°C, to a 500 cm3 reactor containing 220 cm3 of pure SiCl4 and 6.9 cm3 of pure TiCl4 (62.5 mmol). The temperature was slowly raised to 40°C, then the temperature was kept constant for 4 hours.
The stirring was discontinued, settling was allowed to occur and the liquid phase was removed at the temperature of 40°C. The residue was washed with anhydrous heptane, 150 cm3 at 40°C (twice) then 3 times (150 cm3 each time) with anhydrous heptane at room temperature. The residual solid component was vacuum dried at 50°Cand analyzed. The catalyst characteristics are reported in table 1.
Example 11 In a 500 cm3 four-necked round flask equipped with a mechanical stirrer and purged with nitrogen, 220 cm3 Of TiCl4 were charged. The temperature was set at 0°C and 15.3 g (127 mg.at. of Mg)of the solid support were slowly fed. The temperature was raised to 40 °C and the mixture was stirred for 4 hours. Then, the stirring was discontinued, the solid product was allowed to settle and the supernatant liquid was siphoned off.
The solid was washed twice with anhydrous heptane (2 x 100 cm3) at 40°C and twice at 25
°C, recovered, dried under vacuum and analyzed . The characteristics are collected in table
1.
Comparative Example 1
A catalyst component was prepared according to the description of Example 2(a) of USP
4,220,554. The catalyst was used in the polymerization of ethylene according to the general polymerization procedure under the specific conditions reported in table 1.
Examples 12-14
The procedure reported in Example 11 was repeated changing the temperature and time of treatment as reported in table 1.
Examples 15-26 and comparison Example 2
Ethylene Polymerization: general procedure.
A 4.5 liter stainless-steel autoclave equipped with a stirrer, temperature and pressure indicator, feeding line for hexane, ethylene, and hydrogen, was used and purified by fluxing pure nitrogen at 70°C for 60 minutes. Then, 1550 cm3 of hexane containing 4.9 cm3 of 10
% by wt/vol TEA/hexane solution, was introduced at a temperature of 30°C under nitrogen flow. In a separate 200 cm3 round bottom glass bottle were successively introduced, 50 cm3 of anhydrous hexane, 1 cm3 of 10 % by wt/vol, TEA/hexane solution and about
0.010÷0.025g of the solid catalyst of table 1. They were mixed together, aged 10 minutes at room temperature and introduced under nitrogen flow into the reactor. The autoclave was closed, then the temperature was raised to 85°C, hydrogen (partial pressure as indicated in table 2) and ethylene (7.0 bars partial pressure) were added.
Under continuous stirring, the total pressure was maintained at 85°C for 120 minutes by feeding ethylene. At the end the reactor was depressurised and the temperature was dropped to 30°C. The recovered polymer was dried at 70°C under a nitrogen flow.
The amount of recovered polyethylene and the polymer characteristics are reported in table
2.
Example 27-31 Ethylene/α-olefin copolymerization: general procedure
A 4.5 liter stainless-steel autoclave equipped with a stirrer, temperature, pressure indicator, feeding line for ethylene, propane, 1-butene, hydrogen, and a steel vial for the injection of the catalyst, was purified by fluxing pure nitrogen at 70°C for 60 minutes. It was then washed with propane, heated to 75°C and finally loaded with 800 g of propane, 1-butene (the amount reported in table 3), ethylene (7.0 bar, partial pressure) and hydrogen (as in table 3).
In a 100 cm3 three neck glass flask were introduced in the following order, 50 cm3 of anhydrous hexane, the Al-alkyl/hexane solution (as reported in Table 3), optionally the external electron donor compound (table 3) and the solid catalyst 0.005-0.015 g (reported in table 3). They were mixed together and stirred at room temperature for 5 minutes and then introduced in the reactor through the steel vial by using a nitrogen overpressure. Under continuous stirring, the total pressure was maintained constant at 75°C for 60 minutes by feeding ethylene. At the end the reactor was depressurized and the temperature was dropped to 30°C. The recovered polymer was dried at 70°C under a nitrogen flow and weighted. The polymer was the characterized as reported in table 3. Example 32
Following the procedure of example 1 and under the conditions of example 3, a solid catalyst component was achieved:
Mg, 15.5 wt.%; Ti, 7.8 wt.%; EtOH, 22.9 wt.% (EtO/Ti= 3.1 molar ratio) IA/IB (SS-NMR) = 1.34.
The solid catalyst was used in the ethylene/1 -butene copolymerization in a fluidized gas- phase reactor as described in the following.
A 15.0 liter stainless-steel fluidized reactor equipped with gas-circulation system, cyclone separator, thermal exchanger, temperature and pressure indicator, feeding line for ethylene, propane, 1-butene, hydrogen, and a 1 L steel reactor for the catalyst pre-activation (prepolymerization if needed) and injection. The gas-phase apparatus was purified by fluxing pure nitrogen at 40°C for 12 hours and then was circulated a propane (10 bar, partial pressure) mixture containing 1.5 g of the same Aluminum alkyl used in polymerization, at 80°C for 30 minutes. It was then depressurized and the reactor washed with pure propane, heated to 75°C and finally loaded with propane (14.3 bar partial pressure), 1-butene (1.4 bar partial pressure), ethylene (3.8 bar, partial pressure) and hydrogen (0.5 bar, partial pressure). In a 100 cm3 three neck glass flask were introduced in the following order, 20 cm3 of anhydrous hexane, 8.4 mmol of TiBA as hexane solution and 0.072 g of the solid component upper described. They were mixed together and stirred at room temperature for 5 minutes and then introduced in the preactivation reactor maintained in a propane flow. The autoclave was closed and 100 g of propane were introduced at 40°C. The mixture was allowed stirring at 50°C for 30 minutes. The activated catalyst was then injected into the gas-phase reactor by using a propane overpressure (1 bar increase in the gas-phase reactor). The final pressure, in the fluidized reactor, was maintained constant at 80°C for 120 minutes by feeding a 7 wt.% 1-butene/ethylene mixture.
At the end, the reactor was depressurised and the temperature was dropped to 30°C. The recovered polymer was dried at 70°C under a nitrogen flow and weighted. 117O g were achieved providing a mileage of 16.2 kg/gcat with the following characteristics: MI E, 0.7 dg/min MFR (MI F/MI E), 32.3 1-butene content, 7.2 wt.% Xylene Soluble content, 3.7 wt.% Tm, 120.5 °C
Table 1
Figure imgf000014_0001
— not determined
Table 2
Figure imgf000015_0001
Table 3
Figure imgf000016_0001
Polym. Cond (1).: Propane 800 g; TEA, 6.1 mmol; C2H47 bar; Temper. 75°C;.
Polym. Cond. (2): Propane 800 g; TEA, 5.7 mmol; DEAC, 2.7 mmol; THF, 1.7 mmol; C2H47 bar; Temper. 75°C;.

Claims

1. Process for the preparation of crystalline ethylene (copolymers comprising polymerizing ethylene alone or in mixture with olefins CH2=CHR, in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, in the presence of a catalyst system comprising (a) a solid catalyst component comprising Ti, Mg, halogen, OR1 groups, where R1 is a Cl -C 12 hydrocarbon group optionally containing heteroatoms, having ORVTi molar ratio of at least 0.5, an amount of titanium, with respect to the total weight of said solid catalyst component, higher than 4% by weight, and showing in the pattern of the SS-NMR recorded under the conditions set forth in the description one or more signals (A) having a maximum in the region 60-75 (ppm) and one or more signals (B) having a maximum in the region 78-108 (ppm) such that the ratio IA/IB, in which IA is the integral of the signals having the maximum in the region between 60 and 75 ppm and IB is the integral of the signals having the maximum in the region between 78 and 108 ppm, is higher than 0.8; and (b) an aluminum alkyl compound as a cocatalyst.
2. Process according to claim 1 in which the ratio IA/IB is higher than 1.
3. Process according to claim 1 in which the OR1ATi molar ratio is higher than 1
4. Process according to claim 1 in which R1 is a C1-C8 hydrocarbon group selected from alkyl groups.
5. Process according to claim 1 in which the amount of titanium, with respect to the total weight of said solid catalyst component, is higher than 5%.
6. Process for the preparation of crystalline ethylene (copolymers comprising polymerizing ethylene alone or in mixture with olefins CH2=CHR, in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, in the presence of a catalyst system comprising (a) a solid catalyst component comprising Ti, Mg, halogen, OR1 groups, where R1 is a Cl -C 12 hydrocarbon group optionally containing heteroatoms, having ORVTi molar ratio of at least 0.5, an amount of titanium, with respect to the total weight of said solid catalyst component, higher than 4% by weight, obtained by reacting a titanium compound having at least a Ti-Cl bond with a catalyst precursors of formula MgCl^OR1)^ where n is from 0.5 to 1.5 and R1 has the meaning given above, and (b) an aluminum alkyl compound as a cocatalyst.
7. Process according to claim 6 in which the titanium compounds are those having the formula
Figure imgf000018_0001
wherein R1 has the meaning given above, p is the titanium valence and y is a number comprised between 1 and p.
8. Process according to claim 6 obtained by reacting the catalyst precursor with a titanium compound, used in an amount such that the molar ratio between the titanium compound and the OR1 groups of the catalyst precursor is 4 or less.
9. Process according to claim 6 obtained by reacting the catalyst precursor with a titanium compound, used in amounts such the molar ratio between the titanium compound and the OR1 groups of the catalyst precursor is higher than 4 and the reaction temperature is lower than 100°C.
10. Process for the preparation of crystalline ethylene (copolymers according to claim 1 or 6 comprising carrying out the slurry polymerization of ethylene alone or in mixture with olefins CH2=CHR, in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, in an inert medium.
PCT/EP2006/060740 2005-03-30 2006-03-15 Process for preparing crystalline ethylene (co)polymers WO2006103172A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06725065.4A EP1863856B1 (en) 2005-03-30 2006-03-15 Process for preparing crystalline ethylene (co)polymers
CN2006800098709A CN101151283B (en) 2005-03-30 2006-03-15 Process for preparing crystalline ethylene (co) polymers
ES06725065T ES2435101T3 (en) 2005-03-30 2006-03-15 Method of obtaining (co) crystalline ethylene polymers
US11/887,527 US7834117B2 (en) 2005-03-30 2006-03-15 Process for preparing crystalline ethylene (co)polymers
JP2008503474A JP2008534724A (en) 2005-03-30 2006-03-15 Method for producing crystalline ethylene (co) polymer
BRPI0611462-8A BRPI0611462A2 (en) 2005-03-30 2006-03-15 process for preparing (co) crystalline ethylene polymers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP05102480 2005-03-30
EP05102480.0 2005-03-30
US66726905P 2005-04-01 2005-04-01
US60/667,269 2005-04-01

Publications (1)

Publication Number Publication Date
WO2006103172A1 true WO2006103172A1 (en) 2006-10-05

Family

ID=39251240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/060740 WO2006103172A1 (en) 2005-03-30 2006-03-15 Process for preparing crystalline ethylene (co)polymers

Country Status (9)

Country Link
US (1) US7834117B2 (en)
EP (1) EP1863856B1 (en)
JP (1) JP2008534724A (en)
KR (1) KR20070118150A (en)
CN (1) CN101151283B (en)
BR (1) BRPI0611462A2 (en)
ES (1) ES2435101T3 (en)
RU (1) RU2007139937A (en)
WO (1) WO2006103172A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2246369A1 (en) * 2009-04-30 2010-11-03 Borealis AG Linear low density polyethylene with uniform or reversed comonomer composition distribution
US7879959B2 (en) 2005-03-30 2011-02-01 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins
WO2014007765A1 (en) * 2012-07-02 2014-01-09 Irpc Public Company Limited A catalyst for olefin polymerization and a method for the preparation thereof
WO2017186623A1 (en) 2016-04-29 2017-11-02 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070118143A (en) * 2005-03-30 2007-12-13 바셀 폴리올레핀 이탈리아 에스.알.엘 Catalyst components for the polymerization of olefins

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423786A2 (en) * 1989-10-18 1991-04-24 Montell North America Inc. Polymetallic catalysts, method of preparing and polymers produced thereby
EP0444606A1 (en) * 1990-02-27 1991-09-04 Mitsui Petrochemical Industries, Ltd. Ethylene/pentene-1 copolymer, process for the preparation of the same, and ethylene/pentene-1 copolymer composition
US5118768A (en) * 1990-05-11 1992-06-02 Shell Oil Company Process for the production of elastomeric, primarily isotactic polyolefins and catalysts for use in said process
EP0553805A1 (en) * 1992-01-31 1993-08-04 Montell Technology Company bv Components and catalysts for the polymerization of olefins

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1603724A (en) * 1977-05-25 1981-11-25 Montedison Spa Components and catalysts for the polymerisation of alpha-olefins
DE3435389A1 (en) 1984-09-27 1986-04-03 Basf Ag, 6700 Ludwigshafen Process for the preparation of a titanium-containing catalyst component for Ziegler catalyst systems
IT1222393B (en) 1987-07-30 1990-09-05 Ausimont Spa Catalysts for the preparation of elastomeric, saturated and unsaturated olefin copolymers and terpolymers
US5219961A (en) * 1987-07-30 1993-06-15 Ausimont S.P.A. Catalysts for preparing saturated elastomeric olefinic copolymers and terpolymers
SG42868A1 (en) 1989-05-08 1997-10-17 Sumitomo Chemical Co Process for producing solid catalyst for use in polymerization of olefins
IT1246614B (en) * 1991-06-03 1994-11-24 Himont Inc PROCEDURE FOR THE GAS PHASE POLYMERIZATION OF OLEFINS
IT1250731B (en) 1991-07-31 1995-04-21 Himont Inc LOW DENSITY LINEAR POLYETHYLENE PREPARATION PROCEDURE
IT1262934B (en) * 1992-01-31 1996-07-22 Montecatini Tecnologie Srl COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINE
IT1254279B (en) * 1992-03-13 1995-09-14 Montecatini Tecnologie Srl PROCEDURE FOR THE GAS PHASE POLYMERIZATION OF OLEFINS
JP2584189B2 (en) * 1993-11-26 1997-02-19 三井石油化学工業株式会社 Method for polymerizing olefins
IT1277684B1 (en) * 1995-12-21 1997-11-11 Montell North America Inc COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINS
WO2006103171A1 (en) 2005-03-30 2006-10-05 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins
KR20070118143A (en) * 2005-03-30 2007-12-13 바셀 폴리올레핀 이탈리아 에스.알.엘 Catalyst components for the polymerization of olefins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423786A2 (en) * 1989-10-18 1991-04-24 Montell North America Inc. Polymetallic catalysts, method of preparing and polymers produced thereby
EP0444606A1 (en) * 1990-02-27 1991-09-04 Mitsui Petrochemical Industries, Ltd. Ethylene/pentene-1 copolymer, process for the preparation of the same, and ethylene/pentene-1 copolymer composition
US5118768A (en) * 1990-05-11 1992-06-02 Shell Oil Company Process for the production of elastomeric, primarily isotactic polyolefins and catalysts for use in said process
EP0553805A1 (en) * 1992-01-31 1993-08-04 Montell Technology Company bv Components and catalysts for the polymerization of olefins

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879959B2 (en) 2005-03-30 2011-02-01 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins
EP2246369A1 (en) * 2009-04-30 2010-11-03 Borealis AG Linear low density polyethylene with uniform or reversed comonomer composition distribution
WO2010125022A1 (en) * 2009-04-30 2010-11-04 Borealis Ag Linear low density polyethylene with uniform or reversed comonomer composition distribution
US8546499B2 (en) 2009-04-30 2013-10-01 Borealis Ag Linear low density polyethylene with uniform or reversed comonomer composition distribution
WO2014007765A1 (en) * 2012-07-02 2014-01-09 Irpc Public Company Limited A catalyst for olefin polymerization and a method for the preparation thereof
US9617357B2 (en) 2012-07-02 2017-04-11 Irpc Public Company Limited. Catalyst for olefin polymerization and a method for the preparation thereof
WO2017186623A1 (en) 2016-04-29 2017-11-02 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins

Also Published As

Publication number Publication date
EP1863856A1 (en) 2007-12-12
CN101151283B (en) 2011-06-08
KR20070118150A (en) 2007-12-13
ES2435101T3 (en) 2013-12-18
EP1863856B1 (en) 2013-09-18
US20090054608A1 (en) 2009-02-26
BRPI0611462A2 (en) 2010-09-08
CN101151283A (en) 2008-03-26
RU2007139937A (en) 2009-05-10
US7834117B2 (en) 2010-11-16
JP2008534724A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
US7592286B2 (en) Process for the preparation of a catalyst component and components therefrom obtained
CA2510679C (en) Polymerization catalysts comprising titanium and magnesium
US20100222528A1 (en) Catalyst for the polymerization of olefins
US9200094B2 (en) Catalyst components for the polymerization of olefins
US7651969B2 (en) Catalyst system for producing ethylene (co) polymer with improved branch distribution
US7834117B2 (en) Process for preparing crystalline ethylene (co)polymers
US20090143549A1 (en) Catalyst Components for the Polymerization of Olefins
US7879959B2 (en) Catalyst components for the polymerization of olefins
EP1863853B1 (en) Catalyst components for the polymerization of olefins
US20100210798A1 (en) Catalyst for the polymerization of olefins
US20120220739A1 (en) Catalyst for the Polymerization of Olefins
CA2485168A1 (en) Mixed catalyst compositions for the production of polyolefins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006725065

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680009870.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11887527

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008503474

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077025014

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007139937

Country of ref document: RU

Ref document number: 4880/CHENP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2006725065

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0611462

Country of ref document: BR

Kind code of ref document: A2