WO2006101567A1 - Systeme de refrigeration/degivrage de bouteille et procedes - Google Patents

Systeme de refrigeration/degivrage de bouteille et procedes Download PDF

Info

Publication number
WO2006101567A1
WO2006101567A1 PCT/US2005/047529 US2005047529W WO2006101567A1 WO 2006101567 A1 WO2006101567 A1 WO 2006101567A1 US 2005047529 W US2005047529 W US 2005047529W WO 2006101567 A1 WO2006101567 A1 WO 2006101567A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
mode
refrigerant
compressor
flowpath
Prior art date
Application number
PCT/US2005/047529
Other languages
English (en)
Inventor
Yu Chen
Tobias H. Sienel
Parmesh Verma
Hans-Joachim Huff
Original Assignee
Carrier Commercial Refrigeration, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Commercial Refrigeration, Inc. filed Critical Carrier Commercial Refrigeration, Inc.
Priority to JP2008501867A priority Critical patent/JP2008533429A/ja
Priority to US11/908,623 priority patent/US20080184715A1/en
Priority to EP05856009A priority patent/EP1859211A4/fr
Publication of WO2006101567A1 publication Critical patent/WO2006101567A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/02Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors plug-in type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/803Bottles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/006Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
    • F25D31/007Bottles or cans

Definitions

  • the invention relates to refrigeration. More particularly, the invention relates to beverage coolers.
  • the CO 2 bottle cooler utilizes a compressor, a gas cooler, an expansion device, and an evaporator to transfer heat energy from a low temperature energy reservoir to a high temperature energy sink. This transfer is achieved with the aid of electrical energy input at the compressor.
  • a temperature difference between the outdoor air and the refrigerant drives the thermal energy transfer from the interior air to the refrigerant as it passes through the lower temperature heat exchanger (e.g., evaporator).
  • the fan continues to move fresh air across the evaporator surface, maintaining the temperature difference, and evaporating the refrigerant. If the surface temperature of the evaporator is below the dew-point temperature of the moist air stream, water will condense onto the fins.
  • the existing method is to shut off the compressor and higher temperature (at least in a normal mode) heat exchanger (e.g., condenser) fan while still keep the evaporator fan running.
  • a heat exchanger e.g., condenser
  • the frostWffie'tJ'b'il c&belaBstddi Since the temperature of the air in the cabinet (nominally
  • a bottle cooler system includes means for switching the system to a second mode of operation wherein refrigerant in the evaporator defrosts an ice buildup on the evaporator.
  • FIG. 1 is a schematic of a first CO 2 bottle cooler.
  • FIG. 2 is a schematic of a first alternate CO 2 bottle cooler.
  • FIG 3 is a pressure-enthalpy diagram of the defrost cycle of the CO 2 bottle cooler of FIG. 2 in a defrost mode.
  • FIG. 4 is a schematic of a second alternate CO 2 bottle cooler in a cooling mode.
  • FIG. 5 is a schematic of the CO 2 bottle cooler of FIG. 4 in a defrost mode.
  • FIG. 6 is a side schematic view of a display case bottle cooler including a refrigeration and air management cassette.
  • FIG. 7 is a view of a refrigeration and air management cassette.
  • FIG. 1 schematically shows a transcritical vapor compression system 20 of a bottle cooler.
  • the system comprises a compressor 22, a first heat exchanger 24, an expansion device 26, and a second heat exchanger 28.
  • An accumulator 30 may also be located in a suction line portion of the refrigerant flowpath 32 between the outlet of the second heat exchanger 28 and the inlet 34 of the compressor 22.
  • a discharge line of the flowpath 32 extends from the outlet 36 of the compressor to the inlet of the first heat exchanger 24. Additional lines connect the first heat exchanger outlet to the expansion device inlet and the expansion device outlet to the second heat exchanger inlet.
  • An exemplary expansion device 26 is an electronic expansion device. Alternative devices are disclosed in the Docket 05-258-WO application identified above.
  • the heat exchangers 24 and 28 may each take the form of a refrigerant-to-air heat exchanger. Air flows across one or both of these heat exchangers may be forced. For example, one or more fans 40 and 42 may drive respective air flows 44 and 46 across the coils of the two heat exchangers.
  • the system may include a controller 50 which may be coupled to one or both of the expansion device 26 and compressor 22 to control their respective operations.
  • the controller 50 may be configured to accept user input and/or may be configured to accept input from one or more sensors (e.g., temperature or pressure sensors).
  • FIG. 1 shows an exemplary pair of temperature sensors 52 and 54 (e.g., thermocouples).
  • the first temperature sensor 52 is positioned to measure a temperature of the coil of the second heat exchanger 28 (advantageously positioned to measure the air temperature entering or exiting the heat exchanger or to measure the saturation temperature refrigerant in the heat exchanger).
  • the second temperature sensor 54 is positioned to measure a temperature of refrigerant in the suction line.
  • the first heat exchanger 24 may be positioned external to the refrigerated volume of the bottle cooler.
  • the second heat exchanger 28 may be positioned internal to such volume or along a recirculating air flowpath to/from that volume.
  • a first mode of operation e.g., a normal cooling mode
  • the compressor is on and the fans 40 and 42 drive their respective air flows 44 and 46.
  • the first heat exchanger 24 acts as a gas cooler discharging heat to the air flow 44 to cool the refrigerant passing through the first heat exchanger.
  • This refrigerant is expanded passing through the expansion device 26 so that its temperature further drops.
  • the second heat exchanger 28 acts as an evaporator, cooling the air flow 46 and thus the refrigerated volume of the bottle cooler.
  • frost may accumulate on the coils of the second heat exchanger 28.
  • the first fan 40 In a sec'ond't ⁇ fefr ⁇ 'st) mode of operation the first fan 40 is shut-off, decreasing the heat extraction from the refrigerant in the first heat exchanger 24. As a result, the refrigerant entering the second heat exchanger 28 may be above O 0 C. Thus, this refrigerant may be effective to defrost the second heat exchanger. Additionally, the fan 42 may continue to operate. To the extent that the air within the beverage cooler is above 0 0 C, the air flow 46 will further facilitate defrosting of the second heat exchanger 28.
  • the expansion device 26 While in defrost mode, if the expansion device 26 is controllable, the expansion device may be opened to provide a larger opening size to prevent over pressurization within the high pressure portion of the system.
  • the need to defrost may be determined in a variety of ways. In one example, a timer is used (e.g., included in the controller) and the system switches to the defrost mode after a predetermined period of time has elapsed. If a more complicated controller is used, a temperature sensor or combination of temperature sensors can be used.
  • a first temperature measured by the temperature sensor 52 when both (1) a first temperature measured by the temperature sensor 52 is below a first predetermined value (thus indicating a potential for frosting by distinguishing a potential frosting condition from a pulldown condition; e.g.,40°F for air temperature or 33°F for a coil temperature); and (2) the difference between a second temperature measured by the temperature sensor 54 and the first temperature is above a second value, the evaporator may be assumed to be frosted and a defrost mode can be entered. [0021] The system may shift back to the cooling mode from the defrost mode in similar fashion. A fixed time is one example.
  • FIG. 2 shows an alternate system 70 having a refrigerant flowpath 72 with first and second segments/branches 74 and 76 between the compressor outlet 36 and the inlet of the second heat exchanger 28.
  • the first branch 74 may contain the first heat exchanger 24 and the expansion device 26 in a similar fashion to the first system 20.
  • the second branch 76 contains a switching valve 78.
  • the switching valve 78 may also be controlled by the controller 50 (not shown for this and the remaining embodiments).
  • the switching valve 78 In a first (cooling) mode of operation, the switching valve 78 is closed and operation is similar to the first mode of the system 20. In the second (defrost) mode, the switching valve 78 is open, causing at least a portion of the compressed refrigerant to bypass the first branch 74 and, thereby, lack the cooling otherwise provided by the first heat exchanger 24 (even with its fan 40 off) and expansion device 26. There may still be some tlow through the first Bfancri'74. However, the first heat exchanger 24 and the expansion device 26 may be relatively restrictive so that a majority of the system flow passes along the second branch 76.
  • the net resulting temperature of refrigerant entering the second heat exchanger 28 in the system 70 defrost mode may be higher than for the defrost mode of the system 20.
  • the heating capacity of the system during the defrost mode will essentially be the same as the input power to the compressor.
  • the input power to the compressor is a function
  • FIG. 3 is a pressure-enthalpy diagram of the defrost cycle of the system 70.
  • the refrigerant flowpath includes a first leg 90 through the compressor. During this leg 90, both the pressure and enthalpy increase to a point 91 due to the input of mechanical energy.
  • a second leg 92 is associated with the second branch 76 and refrigerant passage through the switching valve 78.
  • the switching valve 78 acts as an expansion device so that the second leg 92 is preferably close to isenthalpic ending at a reduced pressure point 93.
  • a third leg 94 represents essentially constant pressure passage through the second heat exchanger 28, giving up heat to melt the frost accumulation.
  • the exemplary third leg 94 returns to a reduced enthalpy origin 95 from which the first leg 90 resumes.
  • the origin 95 (minimum enthalpy and pressure point) is at or near the saturated vapor line 96 separating the mixed liquid-vapor region 97 ("vapor dome") from the vapor region 98.
  • the cycle may occur entirely within the vapor region 98 remote of the vapor dome. In yet other possible situations, a portion of the cycle may be along or within the vapor dome.
  • a flow reversing valve e.g., a four-way valve. This may be particularly useful for bottle coolers that will be installed outdoors. During the summer when cooling is needed, the CO 2 bottle cooler operates as a cooling device, lowering the temperature of the air inside the cabinet. In winter, by activating the four-way valve, the flow is reversed and the bottle cooler operates as a heat pump, providing heat to the air inside the cabinet.
  • This heat pump operation mode can also be used to defrost the evaporator coil.
  • FIG. 4 shows a system 100 having a flow reversing valve 102 having a flow reversing valve element 104 with two distinct flowpaths.
  • An exemplary element is a rotary element.
  • FIG. 4 shows the valve element 104 oriented in a first (cooling) mode.
  • FIG. 5 shows the valve element 104 oriented to provide a second (defrost or heat pump) mode.
  • the valve 102 links a compressor loop 110 of the refrigerant flowpath to a main loop 112.
  • the heat exchangers 24 and 28 and expansion device 26 are positioned along the main loop 112. In both modes, flow along the compressor loop 110 is in the same direction.
  • the valve serves to reverse flow along the main loop 112.
  • the second heat exchanger 28 acts as a gas cooler.
  • the hot refrigerant gas passing through the second heat exchanger 28 may be particularly effective to melt frost.
  • the first heat exchanger 24 may act as an evaporator.
  • the expansion device 26 regulates pressure in the second heat exchanger 28.
  • FIG. 6 shows an exemplary cooler 200 having a removable cassette 202 containing the refrigerant and air handling systems.
  • the exemplary cassette 202 is mounted in a compartment of a base 204 of a housing.
  • the housing has an interior volume 206 between left and right side walls, a rear wall/duct 216, a top wall/duct 218, a front door 220, and the base compartment.
  • the interior contains a vertical array of shelves 222 holding beverage containers 224.
  • the exemplary cassette 202 draws the air flow 44 through a front grille in the base 224 and discharges the air flow 44 from a rear of the base.
  • the cassette may be extractable through the base front by removing or opening the grille.
  • the exemplary cassette drives the air flow 46 on a recirculating flow path through the interior 206 via the rear duct 210 and top duct 218.
  • FIG. 7 shows further details of an exemplary cassette 202.
  • the heat exchanger 28 is positioned in a well 240 defined by an insulated wall 242.
  • the heat exchanger 28 is shown positioned mostly in an upper rear quadrant of the cassette and oriented to pass the air flow 46 generally rearwardly, with an upturn after exiting the heat exchanger so as to discharge from a rear portion o the cassette upper end.
  • a drain 250 may extend through a bottom of the wall 242 to pass water condensed from the flow 46 to a drain pan 252.
  • a water accumulation 254 is shown in the pan 252.
  • the pan 252 is along an air duct 256 passing the flow 44 dowristreanfof the"heat"eicti:ahger 24. Exposure of the accumulation 254 to the heated air in the flow 44 may encourage evaporation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Système de réfrigération de bouteille (20, 70, 100) comprenant un compresseur (22), un premier échangeur thermique (24) et un second échangeur thermique (28). En mode de réfrigération, le second échangeur thermique est en aval du premier échangeur thermique et en amont du compresseur pour la réfrigération du contenu se trouvant dans un volume interne. En mode de dégivrage, le réfrigérant du second échangeur thermique assure le dégivrage d'une formation de glace sur le second échangeur thermique.
PCT/US2005/047529 2005-03-18 2005-12-30 Systeme de refrigeration/degivrage de bouteille et procedes WO2006101567A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008501867A JP2008533429A (ja) 2005-03-18 2005-12-30 ボトル冷却器の除霜装置およびその方法
US11/908,623 US20080184715A1 (en) 2005-03-18 2005-12-30 Bottle Cooler Defroster And Methods
EP05856009A EP1859211A4 (fr) 2005-03-18 2005-12-30 Systeme de refrigeration/degivrage de bouteille et procedes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66396105P 2005-03-18 2005-03-18
US60/663,961 2005-03-18

Publications (1)

Publication Number Publication Date
WO2006101567A1 true WO2006101567A1 (fr) 2006-09-28

Family

ID=37024109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/047529 WO2006101567A1 (fr) 2005-03-18 2005-12-30 Systeme de refrigeration/degivrage de bouteille et procedes

Country Status (5)

Country Link
US (1) US20080184715A1 (fr)
EP (1) EP1859211A4 (fr)
JP (1) JP2008533429A (fr)
CN (1) CN101142454A (fr)
WO (1) WO2006101567A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2734798A1 (fr) * 2011-07-20 2014-05-28 Thermo King Corporation Dégivrage pour système de compression à vapeur transcritique
CN104665380A (zh) * 2014-12-31 2015-06-03 重庆川仪自动化股份有限公司 文物展柜内部空气环境的控制方法
CN109282542A (zh) * 2018-09-26 2019-01-29 珠海格力电器股份有限公司 一种化霜装置、热泵机组及控制方法
CN111473556A (zh) * 2019-01-24 2020-07-31 新奥数能科技有限公司 一种空气源低温热泵机组熔霜的方法
WO2020208573A1 (fr) * 2019-04-12 2020-10-15 Edwards Vacuum Llc Système de réfrigération à très basse température à cycle de fonctionnement rapide

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758902B1 (ko) * 2004-11-23 2007-09-14 엘지전자 주식회사 멀티 공기조화 시스템 및 그 제어방법
CA2820930C (fr) 2008-10-23 2016-04-26 Serge Dube Systeme frigorifique par co2
DK2417406T3 (en) * 2009-04-09 2019-04-23 Carrier Corp Coolant vapor compression system with hot gas bypass
EP2505941B1 (fr) * 2009-11-25 2019-05-15 Daikin Industries, Ltd. Dispositif de réfrigération pour contenant
EP2460927B1 (fr) * 2010-12-02 2014-02-26 Electrolux Home Products Corporation N.V. Procédé de fonctionnement de séchoir à pompe thermique et séchoir à pompe thermique
CN102788461B (zh) * 2011-05-18 2014-05-21 珠海格力电器股份有限公司 智能除霜方法
US9532660B2 (en) * 2011-06-30 2017-01-03 Pepsico, Inc. Refrigerated merchandise display system
US8695362B2 (en) 2012-01-19 2014-04-15 Hussmann Corporation Refrigerated merchandiser with door having boundary layer
CN102679646B (zh) * 2012-05-25 2014-12-24 厦门大学 安全快速除霜冷柜
EP2951524B1 (fr) * 2013-02-01 2020-07-29 Tetra Laval Holdings & Finance SA Procédé pour traitement d'un produit en utilisant un appareil de traitement thermique
WO2014183185A1 (fr) * 2013-05-13 2014-11-20 Pacific Surf Partners Corp. Distributeur automatique autonome employant un réfrigérant non réutilisable et une extraction de chaleur à base géothermique
US20150241108A1 (en) * 2013-12-04 2015-08-27 Pedro Miguel Fernandez Maldonado Minimum cavetto module portable refrigerated cabinet with one free cold passage
TWI539120B (zh) * 2013-12-06 2016-06-21 財團法人工業技術研究院 具除濕與除霜功能之裝置及其控制方法
US20160209100A1 (en) * 2015-01-20 2016-07-21 Heatcraft Refrigeration Products Llc Refrigeration System with Hot Gas Defrost Mode
CN104634019A (zh) * 2015-01-22 2015-05-20 青岛澳柯玛超低温冷冻设备有限公司 一种温湿度控制医用冷藏箱热气除霜系统
CN105571222A (zh) * 2015-12-22 2016-05-11 佛山欧思丹热能科技有限公司 热泵除霜控制方法
FR3046669B1 (fr) * 2016-01-11 2018-02-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Optimisation du degivrage d'un echangeur de chaleur de camions frigorifiques
CN106016808B (zh) * 2016-05-23 2018-08-10 珠海格力电器股份有限公司 空调系统及其控制方法
CN110836468A (zh) * 2018-08-17 2020-02-25 青岛海尔空调器有限总公司 空调器除霜控制方法
US20230071132A1 (en) * 2021-09-03 2023-03-09 Heatcraft Refrigeration Products Llc Hot gas defrost using medium temperature compressor discharge
CN115355656A (zh) * 2022-07-13 2022-11-18 青岛海尔生物医疗科技有限公司 用于控制冷藏箱的方法及装置、冷藏箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835977A (en) * 1983-11-18 1989-06-06 Teledyne Industries, Inc. Apparatus and method of air-conditioning parked aircraft
US5890370A (en) * 1996-01-25 1999-04-06 Denso Corporation Refrigerating system with pressure control valve
US6105386A (en) * 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
US6220043B1 (en) * 1998-07-23 2001-04-24 Texas Instruments Incorporated Apparatus and method for control of a heat pump system
US6745583B2 (en) * 2002-07-03 2004-06-08 Lg Electronics Inc. Defrosting apparatus of air conditioner and method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2615206A1 (de) * 1976-04-08 1977-10-27 Bosch Siemens Hausgeraete Kuehlgeraet, insbesondere zweitemperaturen-kuehlschrank o.dgl.
US4102391A (en) * 1977-03-10 1978-07-25 General Electric Company Heat pump frost control system
US5065584A (en) * 1990-07-30 1991-11-19 U-Line Corporation Hot gas bypass defrosting system
IT1247626B (it) * 1990-11-05 1994-12-28 Zanussi Elettrodomestici Apparecchio refrigerante con singolo controllo termostatico della temperatura
US5809789A (en) * 1997-05-07 1998-09-22 Baker; Philip L. Refrigeration module
KR200144985Y1 (ko) * 1997-05-21 1999-06-15 최진호 쇼케이스의 제상수 배수장치
JP3888403B2 (ja) * 1997-12-18 2007-03-07 株式会社富士通ゼネラル 空気調和機の制御方法およびその装置
DE29913807U1 (de) * 1999-08-12 2000-03-09 akf - Allgemeine Kühlmöbelbau GmbH & Co. KG, 86165 Augsburg Kühlmöbel
JP4183517B2 (ja) * 2003-01-29 2008-11-19 三洋電機株式会社 冷却装置
JP4160415B2 (ja) * 2003-02-13 2008-10-01 カルソニックカンセイ株式会社 超臨界冷媒を用いた冷凍サイクルの着霜検出方法およびその方法を利用した除霜方法
DE10332859A1 (de) * 2003-07-18 2005-02-10 Linde Kältetechnik GmbH & Co. KG Heißgasabtauverfahren für Kälteanlagen
US7028494B2 (en) * 2003-08-22 2006-04-18 Carrier Corporation Defrosting methodology for heat pump water heating system
US20050172654A1 (en) * 2003-11-20 2005-08-11 Hussmann Corporation Modular refrigeration unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835977A (en) * 1983-11-18 1989-06-06 Teledyne Industries, Inc. Apparatus and method of air-conditioning parked aircraft
US5890370A (en) * 1996-01-25 1999-04-06 Denso Corporation Refrigerating system with pressure control valve
US6105386A (en) * 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
US6220043B1 (en) * 1998-07-23 2001-04-24 Texas Instruments Incorporated Apparatus and method for control of a heat pump system
US6745583B2 (en) * 2002-07-03 2004-06-08 Lg Electronics Inc. Defrosting apparatus of air conditioner and method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1859211A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2734798A1 (fr) * 2011-07-20 2014-05-28 Thermo King Corporation Dégivrage pour système de compression à vapeur transcritique
EP2734798A4 (fr) * 2011-07-20 2015-04-29 Thermo King Corp Dégivrage pour système de compression à vapeur transcritique
US9970696B2 (en) 2011-07-20 2018-05-15 Thermo King Corporation Defrost for transcritical vapor compression system
CN104665380A (zh) * 2014-12-31 2015-06-03 重庆川仪自动化股份有限公司 文物展柜内部空气环境的控制方法
CN109282542A (zh) * 2018-09-26 2019-01-29 珠海格力电器股份有限公司 一种化霜装置、热泵机组及控制方法
CN111473556A (zh) * 2019-01-24 2020-07-31 新奥数能科技有限公司 一种空气源低温热泵机组熔霜的方法
CN111473556B (zh) * 2019-01-24 2021-12-31 新奥数能科技有限公司 一种空气源低温热泵机组熔霜的方法
WO2020208573A1 (fr) * 2019-04-12 2020-10-15 Edwards Vacuum Llc Système de réfrigération à très basse température à cycle de fonctionnement rapide

Also Published As

Publication number Publication date
EP1859211A4 (fr) 2010-08-04
CN101142454A (zh) 2008-03-12
JP2008533429A (ja) 2008-08-21
EP1859211A1 (fr) 2007-11-28
US20080184715A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US20080184715A1 (en) Bottle Cooler Defroster And Methods
AU699381B2 (en) Tandem refrigeration system
EP0583905B1 (fr) Réfrigérateur à deux évaporateurs à commande séquentielle de compresseur
US6094925A (en) Crossover warm liquid defrost refrigeration system
CA2108342C (fr) Methode de fonctionnement sequentiel d'un systeme de refrigeration comportant plusieurs evaporateurs
CN100578123C (zh) 冰箱
JPH09503289A (ja) 冷蔵庫の除霜装置およびその制御方法
KR101286436B1 (ko) 자동 판매기
WO1995013510A9 (fr) Systeme de refrigeration a deux compartiments
US20080092569A1 (en) Cooling unit with multi-parameter defrost control
AU766665B2 (en) Method of operating a refrigerated merchandiser system
US20090293514A1 (en) Cooling system for refrigerator
KR101149229B1 (ko) 자동판매기
CA2345766C (fr) Systeme de presentoir refrigere
US20070277539A1 (en) Continuously Operating Type Showcase
WO2012094594A1 (fr) Système de réfrigération à distributeur doté d'un mécanisme de commande de flux et procédé de commande d'un tel système
US20080016896A1 (en) Refrigeration system with thermal conductive defrost
JP3049425B2 (ja) 2つの蒸発器を備えた冷蔵庫
CN102997535A (zh) 冰箱
CN101424471B (zh) 冷却装置
CN113137788A (zh) 给冷冻柜除霜的方法
JP2005098605A (ja) 冷蔵庫
CN220582832U (zh) 制冷设备
CN100427855C (zh) 冷冻系统和该冷冻系统的控制方法
KR200265115Y1 (ko) 냉장고의냉동싸이클장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580049180.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005856009

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008501867

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11908623

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU