WO2006101007A1 - Method for adjusting tilt of information recording medium and information recording/reproducing device for such method - Google Patents

Method for adjusting tilt of information recording medium and information recording/reproducing device for such method Download PDF

Info

Publication number
WO2006101007A1
WO2006101007A1 PCT/JP2006/305261 JP2006305261W WO2006101007A1 WO 2006101007 A1 WO2006101007 A1 WO 2006101007A1 JP 2006305261 W JP2006305261 W JP 2006305261W WO 2006101007 A1 WO2006101007 A1 WO 2006101007A1
Authority
WO
WIPO (PCT)
Prior art keywords
tilt
information recording
recording medium
signal
snr
Prior art date
Application number
PCT/JP2006/305261
Other languages
French (fr)
Japanese (ja)
Inventor
Masatsugu Ogawa
Shuichi Ohkubo
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2006101007A1 publication Critical patent/WO2006101007A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc

Definitions

  • the present invention relates to a tilt adjustment method for a high-density optical disc and a recording / reproducing apparatus thereof.
  • an optical disc apparatus information is recorded on an optical disc or recorded information is read using an optical head.
  • the tilt angle between the optical disk and the optical head greatly affects the performance of the optical disk device. If there is no tilt between the optical disc and the optical head, a good laser beam is applied to the information recording surface of the optical disc and good recording and reproduction is performed. However, if tilt occurs between the optical disc and the optical head, the information recording surface of the optical disc Aberrations occur in the laser beam applied to the recording medium, degrading recording / reproducing performance.
  • Tilt is generally defined by the normal of the recording surface of the optical disk and the tilt of the optical axis of the light beam. The tilt in the radial direction of the optical disk is called radial tilt and the tilt in the track direction is called tangential tilt.
  • FIG. 2 is a graph showing the relationship between error rate and radial tilt. Referring to Fig. 2, when radial tilt occurs, the error rate increases and the recording / reproduction performance deteriorates significantly. Therefore, several methods for correcting the tilt and improving the reproduction signal have been considered so far.
  • Japanese Patent Application Laid-Open No. 2003-157553 discloses a method of controlling an optical disk or an optical head by beam splitting. This method first generates one main beam and two sub-beams from the reflected light received from the optical disk force. Next, the tilt is detected based on the detection results of these beams. The optical disk or the optical head is controlled so that the tilt is eliminated by using the tilt detection signal.
  • Japanese Patent Application Laid-Open No. 09-054953 discloses a method using a plurality of beams.
  • the optical head irradiates the optical disc with three or five beams. Tilt is detected using the reflected intensity of each irradiated beam. Depending on the degree of tilt detected, the 3 or 5 beams with the best playback signal quality are selected. The signal is played back.
  • the output of either 3 or 5 beams is used as a reproduction signal, the light intensity of each beam must be reasonably high from the viewpoint of increasing the signal-to-noise ratio (SNR). . Therefore, it is necessary to use a laser diode with a very high output, which is difficult to realize.
  • SNR signal-to-noise ratio
  • JP 2000-149298 A discloses a method for detecting a radial tilt angle of an optical disc.
  • a DPP Different Push-Pull
  • DPD Different Phase Detection
  • Japanese Patent Application Laid-Open No. 2003-16677 discloses a method for controlling tilt using a quadrant photodetector.
  • the tilt is detected by the light quantity balance of detectors (detectors divided in the radial direction) on the left and right with respect to the optical head scanning direction.
  • the tilt is detected by the light quantity balance of the detectors (detectors divided in the scanning direction) that are in front of and behind the optical head scanning direction.
  • This is a method of controlling the tilt based on these tilt detection results.
  • This method has a relatively simple configuration, but in reality, such a tilt detection cannot obtain a tilt detection signal with sufficient accuracy.
  • Japanese Patent Laid-Open No. 2001-256652 discloses a method for eliminating the adverse effects of tilt in terms of signal processing.
  • the outputs of the detectors on the left and right of the optical head scanning direction (detectors divided in the radial direction) are added together by changing the ratio in conjunction with the tilt. In this way, adverse effects due to tilt in signal processing are eliminated without performing mechanical tilt control.
  • a tilt detection device is disclosed in Japanese Patent Laid-Open No. 2001-84621.
  • a data string having data having a pulse width smaller than the minimum pulse width formed on a normal disk is formed on the optical disk.
  • the reproduction unit reproduces the RF signal from the optical detector, and the tilt detection unit detects the tilt based on the data signal having a small pulse width out of the reproduction RF signal from the reproduction unit.
  • An optical disk device is disclosed in Japanese Patent Laid-Open No. 2001-266382.
  • the optical unit simultaneously irradiates a light beam onto the target track on the optical disc and the three adjacent tracks on both sides of the target track, and detects the reflected light reflecting the information recorded on these three tracks.
  • the reproduction unit converts information reflected in the reflected light detected by the optical unit into an electrical signal and provides it as a reproduction signal.
  • the delay unit delays the playback signals of the three tracks for a predetermined time.
  • the equalization unit has a transversal filter and corrects the frequency characteristics of the playback signals of the three tracks provided from the delay unit.
  • the control unit controls the correction amount of the frequency characteristic by the equalization unit.
  • the tilt calculation unit calculates the tilt amount of the optical disc based on the control of the correction amount of the frequency characteristic of the equalization unit by the control unit.
  • the control unit controls the correction amount of the frequency characteristic by changing the tap coefficient group of the transversal filter. That When the signal value sequence reproduced from the three tracks is an observation value sequence, a predetermined signal value sequence corresponding to the signal value sequence reproduced from the target track is an ideal value sequence, and the control unit A relational expression for tap coefficient groups, which satisfies the condition that the sum of squares over multiple channel bits of the residual of the measured value series and ideal value series obtained by the linear expression of the tap coefficient group is minimized.
  • the tap coefficient group is obtained by batch processing.
  • the tilt calculator obtains the relative inclination between the optical disc and the optical means by calculating between tap coefficient groups.
  • An optical recording medium evaluation system is disclosed in Japanese Patent Application Laid-Open No. 2004-303356.
  • the reproduction signal read out via the optical pickup head is amplified by the amplifier.
  • the amplified reproduction signal is AZD converted, and the processing device numerically processes the reproduction waveform after AZD conversion.
  • the amplitude data of the reproduction signal is obtained, the amplitude data is normalized by the average value, and the standard deviation is calculated.
  • the amplitude data is Fourier transformed and the subsequent SZN ratio is also calculated.
  • An object of the present invention is to provide an accurate tilt detection method that directly uses a reproduction signal, and an information recording / reproducing apparatus therefor.
  • Another object of the present invention is to provide a tilt detection method capable of further reducing the adjustment time and an information recording / reproducing apparatus therefor.
  • the information recording medium in the information recording medium tilt adjustment method, includes parallel tracks, and a part thereof is set as a measurement track group. Information recorded on tracks arranged at both ends of the measurement track group is reproduced and a reproduction signal is output. A tilt indicating a relative inclination between the information recording medium and the optical head is calculated based on the reproduction signal. The relative tilt is corrected based on the calculated tilt. Information is recorded in the track or track group adjacent to the measurement track group.
  • predetermined information is recorded on tracks arranged at both ends of the measurement track group.
  • a tilt indicating the tilt of the information recording medium is calculated based on the SNR (ratio of signal component to noise component) calculated based on the reproduction signal.
  • ( ⁇ 1, ⁇ 2, ..., ⁇ m)
  • the symbol representing the expected value is E [].
  • this SNR may be selected as a medium force calculated for a plurality of vectors ⁇ .
  • the minimum value of the results is taken as the SNR.
  • ⁇ 2 (1, 2, 1, 0, -1, -2, —1)
  • ⁇ 3 (1, 2, 1, 0, 0, 0, 1, 2, 1)
  • This SNR is P RSNR defined as SNR in PR (Partial Response) method.
  • an information recording / reproducing apparatus in another aspect of the present invention, includes a reproducing unit and a tilt detecting unit.
  • the information recording medium includes parallel tracks.
  • a measurement track group is set on the information recording medium.
  • the reproduction unit reproduces information recorded on the tracks arranged at both ends of the measurement track group and outputs a reproduction signal.
  • the tilt detection unit calculates a tilt indicating the tilt of the information recording medium based on the reproduction signal.
  • This information recording / reproducing apparatus includes a tilt correction unit.
  • the tilt correction unit corrects the relative tilt between the information recording medium and the optical head based on the calculated tilt.
  • the information recording / reproducing apparatus of the present invention further includes a recording unit for recording predetermined information on tracks arranged at both ends.
  • the tilt detector of the present invention calculates the tilt based on the SNR (ratio of signal component to noise component) calculated based on the reproduction signal.
  • this SNR may be selected as a medium force calculated for a plurality of vectors ⁇ .
  • the minimum value of the results is taken as the SNR.
  • ⁇ 2 (1, 2, 1, 0, -1, -2, —1)
  • ⁇ 3 (1, 2, 1, 0, 0, 0, 1, 2, 1)
  • This SNR is P RSNR defined as SNR in PR (Partial Response) method.
  • FIG. 1 is a block diagram showing a configuration of an information recording / reproducing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the radial tilt dependence of the error rate.
  • FIG. 3 is a diagram showing a signal recording form according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing the reproduction characteristics of a recording signal by the information recording / reproducing apparatus in the example of the present invention.
  • FIG. 5 is a diagram showing a difference in reproduction characteristics of recorded signals by the information recording / reproducing apparatus according to the embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration of an RF circuit unit of the information recording / reproducing apparatus in the example of the present invention.
  • FIG. 7 is an information recording medium used in the information recording / reproducing apparatus according to the embodiment of the present invention. It is sectional drawing of (disk).
  • FIG. 8 is a diagram showing a processing procedure when tilt correction is performed using the information recording / reproducing apparatus according to the embodiment of the present invention.
  • FIG. 9 is a diagram showing the radial dependence of radial tilt in an information recording medium (disc) used in the information recording / reproducing apparatus in the example of the present invention.
  • FIG. 10 is a diagram showing the dependence of the error rate on the radius of the information recording medium (disk) when tilt correction is performed using the information recording / reproducing apparatus according to the embodiment of the present invention and when the tilt correction is not performed.
  • FIG. 10 is a diagram showing the dependence of the error rate on the radius of the information recording medium (disk) when tilt correction is performed using the information recording / reproducing apparatus according to the embodiment of the present invention and when the tilt correction is not performed.
  • FIGS. 11A to 11C are some examples of signal recording forms.
  • the crosstalk of the adjacent track force (signal leakage from the adjacent track) is used, and the shift of the radial tilt is detected by observing the shift of the crosstalk balance.
  • guide grooves for scanning with a laser beam are formed on a recording type optical disc.
  • the part of the hill as seen from the laser beam is called a group, and the part of the groove is called a land.
  • FIG. 3 is a diagram showing an example of a data recording state on the optical disc in the embodiment of the present invention.
  • group Gl, land L2, group G3, land L4, group G5, land L6, and group G7 are formed from the inner periphery to the outer periphery.
  • the recording marks 17 are formed in the group G5 and the group G3, and the measurement track group is constituted by the group G5, the land L4, and the group G3.
  • Group G5 is called Track 1 and Group G3 is called Track 2.
  • data is recorded only in two groups G3 and G5 adjacent to each other with the land L4 interposed therebetween, and at least the land L6 and the group G7 adjacent to the outside of the track 1 and the land L2 and the group G1 adjacent to the inside of the track 2 are recorded. No data is recorded. That is, no data is recorded on the track adjacent to the measurement track group.
  • the present invention creates a track in which the crosstalk (signal leakage) balance from the adjacent track is lost, and sees the deviation of the balance to see the deviation of the radial tilt.
  • track 1 shown in Fig. 3 is in a state where crosstalk enters only the inner track force
  • track 2 is in a state where crosstalk enters only from the outer track. Therefore, at least data is not recorded in the adjacent land L6 and the adjacent group G7 on the outer peripheral side of the track 1 and in the adjacent land L2 and the adjacent group G1 on the inner peripheral side of the track 2.
  • PR SNR Physical Response Maximum Likelihood
  • PR SNR is ISOM2003 (International Symposium Optical Memory 2003 S. OHKUBO et al. "Signal-to-Noise Ratio in a PRML Section, (Japanese Journal of Applied Physics Vol. 43, No. 7B, 2 004, pp 4859— 4862), and also ⁇ oma JP 2004-213862
  • SNR Signal to Noise Ratio
  • ( ⁇ , ⁇ ,..., ⁇ ) is a vector representing the difference between the paths
  • ( ⁇ , ⁇ , ⁇ ,
  • ⁇ , ⁇ represents noise representing the difference between the ideal signal waveform and the actual signal waveform
  • ⁇ [] represents the expected value.
  • the expected value is a value expected when the following formula (2) is calculated at each time, and may be considered as an average value.
  • the numerator is exactly the Euclidean distance between paths.
  • the Euclidean distance between paths represents a time-series difference in signal level.
  • a path with a signal level time series of (—4, -3, -1, 1, 3) (in this case, five times are shown) and (1, 3, — 1, 1, 3, 4)
  • the difference between both time series is (1, 2, 2, 2, 1) or (1, 1, -2, -2, -2, 1).
  • the distance of this time series difference is called the Euclidean distance, which is a vector distance.
  • the force at which PRSNR is measured for Track 1 and Track 2 Basically the normal SNR may be measured. Also, instead of SNR, an index close to SNR, for example, jitter on both tracks may be measured.
  • Fig. 3 two groups G3 and G5 are adjacent to each other with two lands 4 in between. Although recording was performed, recording may be performed on two tracks on adjacent lands. At this time, even if there is a recording mark on land L4 (or a group between two tracks of adjacent lands) sandwiched between two tracks of adjacent groups, the crosstalk balance relationship does not change. Therefore, there is no problem even if data is recorded on the land L4 (or a group between two adjacent land tracks).
  • FIG. 3 shows an example of a land / groove * format.
  • the present invention can be applied to an in-groove 'format (recording only in a group) or an on-groove' format (recording only in a land) in which recording is performed only on a group or land. In that case, data is recorded on the adjacent two tracks of the group or the adjacent two tracks of the land, and the same measurement is performed.
  • FIG. 1 is a block diagram showing a configuration of an information recording / reproducing apparatus according to an embodiment of the present invention.
  • the information recording / reproducing apparatus records information on optical disc 10 and reproduces information from optical disc 10.
  • the information recording / reproducing apparatus includes a spindle drive system 9, an optical head unit 20, an RF circuit unit 30, a tilt detector 3, a demodulator 4, a system controller 5, a modulator 6, an LD drive unit 7, and a servo controller 8.
  • the spindle drive system 9 drives the optical disc 10.
  • the optical head unit 20 includes a laser diode (LD) 26, a beam splitter 25, an objective lens 28, and a light receiving unit 22, and irradiates the optical disc 10 with laser light and detects the reflected light.
  • the laser light is emitted from a laser diode (LD) 26, reflected by the beam splitter 25, and applied to the optical disc 10 through the objective lens 28.
  • the reflected light reflected by the optical disk 10 is collected by the objective lens 28, passes through the beam splitter 25, and is detected by the light receiving unit 22.
  • the input signal detected by the light receiving unit 22 is output to the RF circuit unit 30.
  • the RF circuit unit 30 performs processing such as filtering on the input signal, outputs the equalized reproduction signal and the data string signal to the tilt detector 3, and outputs the data string signal to the demodulator 4.
  • the configuration of the RF circuit unit 30 will be described later.
  • the tilt detector 3 calculates a signal for tilt detection based on the equalized reproduction signal and the data string signal input to the RF circuit unit 30 and outputs the result to the system controller 5.
  • the demodulator 4 demodulates the data string signal output from the RF circuit unit 30 and outputs it to the system controller 5.
  • the modulator 6 modulates the signal to be recorded input from the system controller 5 and outputs it to the LD driver 7 To do.
  • the LD drive unit 7 drives the laser diode 26 based on the modulated signal to be recorded input from the modulator 6 and records it on the optical disc 10.
  • the servo controller 8 controls a servo signal that controls the optical head unit 20. This includes a tilt correction mechanism.
  • the system controller 5 takes in demodulated data from the demodulator 4 and outputs data to be recorded in the modulator 6.
  • the system controller 5 takes over the tilt detection signal from the tilt detector 3, instructs the servo controller 8 to perform tilt correction, and controls the spindle drive system 9 and the servo controller 8. .
  • a feature of the present invention lies in the tilt detector 3 that calculates a signal for tilt detection using the output of the RF circuit 30. In this embodiment, PRSNR is also calculated here. As shown in FIG.
  • the RF circuit unit 30 includes a pre-filter 31, an auto gain control (AGC) 32, an AZD converter (ADC) 34, a phase-locked loop (PLL) 35, an adaptive equalizer 37, and a Viterbi decoding.
  • a vessel 38 is provided.
  • An input signal input from the optical head unit 20 is filtered by the prefilter 31, subjected to amplitude control by the auto gain control 32, and then digitized by the AZD converter 34. From the digitalized input signal, a clock signal is extracted by the phase lock droop 35 and output to the adaptive equalizer 37 in synchronization with the channel frequency of the input signal.
  • the adaptive equalizer 37 corrects the frequency characteristic so that the frequency characteristic of the input signal approaches the PR characteristic.
  • the equalized reproduction signal whose frequency characteristics have been corrected by the adaptive equalizer 37 is output to the Viterbi decoder 38 and also to the tilt detector 3.
  • the Viterbi decoder 38 receives the equalized reproduction signal from the adaptive equalizer 37 and converts it into binary information. The converted binary information is fed back to the adaptive equalizer 37 and output to the tilt detector 3 and the demodulator 4 as a data string signal.
  • the equalized reproduction signal that is a signal after adaptive equalization output from the adaptive equalizer 37 and the data string signal after Viterbi decoding output from the Viterbi decoder 38 are input to the tilt detector 3.
  • the tilt detector 3 calculates PRSNR based on the equalized reproduction signal and the data string signal.
  • the noise at each time required for PRSNR calculation is calculated as the difference between the ideal signal waveform obtained based on the data string signal after Viterbi decoding and the actual signal waveform that is the signal after adaptive equalization. .
  • the ideal signal waveform is obtained by the convolution product of the data string signal after Viterbi decoding and the vector (1, 2, 2, 2, 1).
  • the tilt detector 3 is equipped with memories for track 1 and track 2. This memory can temporarily hold the PRSNR of each track. If the PRSNR of track 1 and track 2 can be calculated, the difference between the two can be found. The difference between the two is output to the system controller 5 as a tilt detection signal. Since the tilt detection signal changes monotonously with respect to the tilt as shown in FIG. 5, the system controller 5 controls the tilt in the direction toward the tilt detection signal force. Thus, the tilt is always controlled to be optimal.
  • the RF circuit unit 30 is exemplified as having a Viterbi decoder for PR (12221).
  • the optical disk 10 having a structure as shown in FIG. 7 was used.
  • a dielectric film 12, a phase change recording film 13, a dielectric film 14, and a reflective film 15 are laminated on a substrate 11.
  • the substrate 11 is made of polycarbonate and has a transparent disk shape with a thickness of 0.6 mm and a diameter of 12 cm.
  • Guide grooves (not shown) called pre-groups are formed on the substrate 11. At the time of recording and reproduction, an optical beam of an optical information recording apparatus, that is, an optical disk drive can be scanned along this guide groove.
  • a dielectric film 12 made of ZnS—SiO 2 On this substrate 11, a dielectric film 12 made of ZnS—SiO 2, a phase change recording film 13 made of AglnSbTe, a dielectric film 14 made of ZnS—Si02, and a reflective film 15 made of AlTi are laminated in this order.
  • the dielectric films 12 and 14 are for protecting the phase change recording film 13 and controlling a laser beam interference condition to obtain a larger signal.
  • the phase state of the phase change recording film 13 is a crystalline state in the initial state, and information is recorded by being irradiated with a recording laser beam to be in an amorphous state.
  • a protective film such as an ultraviolet curable resin may be provided on the reflective film 15.
  • the format used was a land 'group' format with a bit pitch of 0.13 ⁇ m and a track pitch of 0.34 ⁇ m.
  • the land 'groove' format refers to a format in which recording is performed on both the hill (group) and the groove (land) when viewed from the incident light side of the guide groove.
  • the information recording / reproducing apparatus corrects the radial tilt according to the processing procedure shown in FIG.
  • Step SI 1 A recording state as shown in FIG. 3, that is, a measurement track group is created.
  • group G3, land L4, and group G5 are measurement tracks.
  • Predetermined data is recorded only in groups G3 and G5, which are the tracks at both ends of the measurement track group. That is, in the optical disk 10, data is recorded only in two groups G3 and G5 adjacent to each other across the land L4, and at least the land L6 adjacent to the outside of the track 1 and the group G7 and the inside of the track 2 are adjacent.
  • the recording state is reached (step S12).
  • Tilt detector 3 calculates PRSNR based on the signal reproduced from track 1, and sets the value as S1.
  • the PRSNR is calculated based on the signal reproduced from track 2, and the value is S2.
  • the difference Sl—S2 (or S2—S1) of PRSNR of each track is calculated (step S15).
  • the tilt detector 3 estimates the radial tilt amount by using this differential SI-S2 (or S2-S1) force (step S16).
  • the estimated radial tilt amount is sent to the system controller 5 and held together with the radial position (step S18).
  • step S19—YES When measuring the state of the other radial position of the optical disc 10, the process returns to step S11, and the radial tilt amount is estimated at another radius (step S19—YES).
  • step S19—NO When the tilt state of the entire disk surface can be estimated (step S19—NO), the tilt detector 3 waits for a recording command from the system controller 5 (waiting for the next measurement).
  • the above-described treatment was performed at three locations with a radius of 25 mm, 45 mm, and 57 mm.
  • Radial tilt at locations other than the above three radii is estimated by the system controller 5 from the radial tilt amount at the above three radii.
  • Figure 9 shows the radius dependence of the radial tilt of the newly created disc.
  • the radial tilt at a position with a radius of 50 mm or more exceeds 0.3 degrees (deg), and there is a concern that the error rate will rise rapidly.
  • radial tilt occurs even at the innermost radius of the disk (in this case, about 0.15 degrees (deg)), and the radial tilt margin is improved. It turns out that it is urgent.
  • the tilt measurement may be performed appropriately in the meantime without first performing force recording that grasps the state of the tilt of the entire surface of the optical disc. Further, the recording may be temporarily interrupted to measure the tilt. At that time, the data to be recorded should be stored in the buffer of the system controller 5.
  • FIG. 11A shows a recording state when a recording signal is also present in the track (land L4) between track 1 (group G5) and track 2 (group G3).
  • Land L6 and group G7 adjacent to the outer periphery of track 1 and land 2 and group 1 adjacent to the inner periphery of track 2 have no recording signal.
  • Fig. 11B shows the recording status when track 1 (group G6) and track 2 (group G4) should be recorded on the outer and inner tracks, and only the track is unrecorded. Indicated. That is, group G6 is recorded as track 1, and group G4 is recorded as track 2.
  • the land L7 and the group G8 adjacent to the outer peripheral side of the track 1 do not record signals as tracks that should not be recorded, but there is a recording mark 17 on the further outer land L9, where signals are recorded.
  • land L3 and groove G2 adjacent to the inner periphery of track 2 should not be recorded, and no signal is recorded as a track. Further, a recording signal is present on the inner land L1. Signals may or may not be recorded on land 5 between track 1 and track 2.
  • lands and groups are interchangeable, and the recording states for measurement exemplified so far can reverse the descriptions of lands and groups.
  • Fig. 11C shows the recording state shown in Fig. 3 with the grooves replaced with lands. That is, a signal is recorded on the land L5 as the track 1, and a signal is recorded on the land L3 as the track 2. Sandwiched between track 1 and track 2 There are no signals recorded in group 4. Also, signals are recorded on the outer periphery of track 1 and the inner periphery of track 2.
  • the class PR (12221) is used, but other classes such as PR (1221) can be used in the same manner.
  • the PRSNR is used as the SNR.
  • the present invention is applicable to any wavelength and NA without being limited to a wavelength of 405 nm and NAO.
  • the power exemplified for the optical disk apparatus can be used as a method of correcting the signal quality deterioration due to the tilt of the magnetic head with respect to the disk surface in the magnetic disk apparatus.
  • a signal for tilt detection is obtained directly from the reproduction signal itself, so that a change due to the tilt of the reproduction signal is very small. It can be detected with high accuracy.
  • the adjustment time that does not require the use of the hill-climbing method can be shortened.

Abstract

Ina method for adjusting a tilt of an information recoding medium, the information recording medium is provided with tracks in parallel and some of the tracks are set as a measuring track group. A reproduction signal is outputted by reproducing information recorded in the tracks arranged at both ends of the measuring track group. Based on the reproduction signal, a tilt indicating the tilt of the information recording medium is calculated. Based on the calculated tilt, the tilt of the information recording medium is corrected. In the track or the track group adjacent to the measuring track group, information is not recorded. Thus, the tilt can be accurately detected by directly using the reproduction signal.

Description

明 細 書  Specification
情報記録媒体の傾き調整方法と、そのための情報記録再生装置 技術分野  Information recording medium tilt adjustment method and information recording / reproducing apparatus therefor
[0001] 本発明は、高密度光ディスクの傾き調整方法およびその記録再生装置に関する。  The present invention relates to a tilt adjustment method for a high-density optical disc and a recording / reproducing apparatus thereof.
背景技術  Background art
[0002] 光ディスク装置では、光ヘッドを用いて、光ディスクに情報を記録したり、記録された 情報を読みだしたりする。そのような光ディスク装置において、光ディスクと光ヘッドの 傾き角(チルト)は光ディスク装置の性能に大きく影響を与える。光ディスクと光ヘッド 間に傾きがなければ、良好なレーザビームが光ディスクの情報記録面に照射され、 良好な記録再生が行われるが、光ディスクと光ヘッド間に傾きが生じると、光ディスク の情報記録面に照射されるレーザビームに収差が発生し、記録再生性能を劣化させ る。チルトは一般的に、光ディスクの記録面の法線と光ビームの光軸の傾きにより定 義され、光ディスクの半径方向の傾きをラジアルチルト、トラック方向の傾きをタンジェ ンシャルチルトと呼ぶ。  In an optical disc apparatus, information is recorded on an optical disc or recorded information is read using an optical head. In such an optical disk device, the tilt angle between the optical disk and the optical head greatly affects the performance of the optical disk device. If there is no tilt between the optical disc and the optical head, a good laser beam is applied to the information recording surface of the optical disc and good recording and reproduction is performed. However, if tilt occurs between the optical disc and the optical head, the information recording surface of the optical disc Aberrations occur in the laser beam applied to the recording medium, degrading recording / reproducing performance. Tilt is generally defined by the normal of the recording surface of the optical disk and the tilt of the optical axis of the light beam. The tilt in the radial direction of the optical disk is called radial tilt and the tilt in the track direction is called tangential tilt.
[0003] 図 2は、エラーレートとラジアルチルトの関係を示すグラフである。図 2を参照して、 ラジアルチルトが発生するとエラーレートが上昇し、記録再生性能が著しく劣化するこ とを表している。したがって、現在までにこのチルトを補正し、再生信号を改善する方 法が 、くつか考えられてきて 、る。  FIG. 2 is a graph showing the relationship between error rate and radial tilt. Referring to Fig. 2, when radial tilt occurs, the error rate increases and the recording / reproduction performance deteriorates significantly. Therefore, several methods for correcting the tilt and improving the reproduction signal have been considered so far.
[0004] 例えば、特開 2003— 157553号公報には、ビーム分割による光ディスク又は光へ ッドを制御するという方法が示されている。この方法は、まず光ディスク力ゝら受光する 反射光からメインとなるビームひとつとサブビームふたつを生成する。次にこれらのビ ームの検出結果をもとにチルトを検出する。光ディスク又は光ヘッドは、そのチルト検 出信号を用いてチルトがなくなるように制御される。  [0004] For example, Japanese Patent Application Laid-Open No. 2003-157553 discloses a method of controlling an optical disk or an optical head by beam splitting. This method first generates one main beam and two sub-beams from the reflected light received from the optical disk force. Next, the tilt is detected based on the detection results of these beams. The optical disk or the optical head is controlled so that the tilt is eliminated by using the tilt detection signal.
[0005] また、特開平 09— 054953号公報には、複数のビームを使用した方法が示されて いる。光ヘッドは、 3つまたは 5つのビームを光ディスクに照射する。この照射された各 ビームの反射強度を利用してチルトの検出が行われる。検出されたチルトの程度によ つて 3つまたは 5つのビームのうちで最も再生信号品質のすぐれたものが選択されて 信号が再生される。この方法によれば、 3つまたは 5つのビームのいずれかの出力を 再生信号として使用するため、シグナル ·ノイズレシオ (SNR)を稼ぐという観点から、 各ビームの光強度がそれなりに大きくなければならない。したがって、非常に大出力 のレーザダイオードを使用する必要があり、実現性に難点がある。 [0005] Further, Japanese Patent Application Laid-Open No. 09-054953 discloses a method using a plurality of beams. The optical head irradiates the optical disc with three or five beams. Tilt is detected using the reflected intensity of each irradiated beam. Depending on the degree of tilt detected, the 3 or 5 beams with the best playback signal quality are selected. The signal is played back. According to this method, since the output of either 3 or 5 beams is used as a reproduction signal, the light intensity of each beam must be reasonably high from the viewpoint of increasing the signal-to-noise ratio (SNR). . Therefore, it is necessary to use a laser diode with a very high output, which is difficult to realize.
[0006] また、特開 2000— 149298号公報〖こは、光ディスクのラジアルチルト角度の検出 方法が示されている。この光ディスク傾き検出方法は、メインスポットおよび両サイドス ポット、または、両サイドスポットの検出信号を利用してトラッキングエラー信号である DPP (Differential Push— Pull)および DPD (Differential Phase Detection )信号を生成する。これら両信号の差分演算値に基づ 、て光ディスクの傾き角の検 出が行われ、光ディスクのラジアルチルトが制御される。  [0006] JP 2000-149298 A discloses a method for detecting a radial tilt angle of an optical disc. In this optical disk tilt detection method, a DPP (Differential Push-Pull) and DPD (Differential Phase Detection) signals, which are tracking error signals, are generated by using a main spot and both side spots, or detection signals of both side spots. Based on the difference calculation value of these two signals, the tilt angle of the optical disc is detected, and the radial tilt of the optical disc is controlled.
[0007] し力しながら、これらの方法では複数のビームを照射或いは生成する必要があり、 光ヘッドが複雑になるという大きなデメリットを抱えている。また、チルト検出信号は記 録された信号又は再生信号とは直接関係なぐチルト検出信号が得られたとしても、 必ずしも記録、再生特性が最適に改善されるわけではな 、。  However, with these methods, it is necessary to irradiate or generate a plurality of beams, which has a great demerit that the optical head becomes complicated. In addition, even if a tilt detection signal is obtained that is directly related to the recorded signal or the reproduction signal, the recording and reproduction characteristics are not necessarily improved optimally.
[0008] また、特開 2003— 16677号公報には、 4分割フォトディテクタを用いたチルトを制 御する方法が示されている。ラジアルチルトならば、光ヘッド走査方向に対して左右 にあるディテクタ(半径方向に分割したディテクタ)の光量バランスによりチルトが検出 される。タンジュンシャルチルトならば光ヘッド走査方向に対して前後にあるディテク タ(走査方向に分割したディテクタ)の光量バランスによりチルトが検出される。これら のチルト検出結果に基づ 、てチルトを制御する方法である。この方法は比較的簡単 な構成となっているが、実際には、このようなチルト検出では充分な精度のチルト検 出信号を得ることはできな 、。  [0008] Further, Japanese Patent Application Laid-Open No. 2003-16677 discloses a method for controlling tilt using a quadrant photodetector. In the case of radial tilt, the tilt is detected by the light quantity balance of detectors (detectors divided in the radial direction) on the left and right with respect to the optical head scanning direction. In the case of tangential tilt, the tilt is detected by the light quantity balance of the detectors (detectors divided in the scanning direction) that are in front of and behind the optical head scanning direction. This is a method of controlling the tilt based on these tilt detection results. This method has a relatively simple configuration, but in reality, such a tilt detection cannot obtain a tilt detection signal with sufficient accuracy.
[0009] また、特開 2001— 256652号公報には、信号処理的にチルトによる悪影響を排除 する方法が示されて 、る。光ヘッド走査方向に対して左右にあるディテクタ(半径方 向に分割したディテクタ)の出力をチルトに連動させて割合を変化させて足し合わせ る。このようにして機械的なチルト制御を行わずに信号処理的にチルトによる悪影響 が排除される。  [0009] In addition, Japanese Patent Laid-Open No. 2001-256652 discloses a method for eliminating the adverse effects of tilt in terms of signal processing. The outputs of the detectors on the left and right of the optical head scanning direction (detectors divided in the radial direction) are added together by changing the ratio in conjunction with the tilt. In this way, adverse effects due to tilt in signal processing are eliminated without performing mechanical tilt control.
[0010] 特開 2001— 357537号公報では、 3本の記録済みトラックを用いて再生信号のジ ッタを測定し、その極小値が得られるチルトに光ヘッドを補正すると 、う方法が示され ている。この方法は実際の再生に近ぐ再生信号と相関の高いジッタを用いた調整を 行うため、良好な精度が得られる。しかしながら、ジッタは極性のない値である。その ため、このようなパラメータを調整に使うと、例えばチルト制御であればどちらにチルト を動力せば最適になるか不明である。したがって、チルトを正負に変化させて信号が 最良となる位置を探しながら調整していぐいわゆる山登り法が必要となる。これは学 習に時間がかかり、光ディスク装置としては非常に大きな総合性能劣化となる。 [0010] In Japanese Patent Laid-Open No. 2001-357537, a reproduction signal is generated using three recorded tracks. A method is shown in which the optical head is corrected to a tilt that can be measured to obtain the minimum value. Since this method performs adjustment using jitter that has a high correlation with the reproduction signal that is close to the actual reproduction, good accuracy can be obtained. However, jitter is a value with no polarity. For this reason, when such parameters are used for adjustment, for example, in tilt control, it is unclear which is optimal for driving the tilt. Therefore, there is a need for a so-called hill-climbing method in which the tilt is changed positively and negatively to adjust while searching for the best signal position. This takes time to learn and results in a very large overall performance degradation for an optical disc device.
[0011] このように、現在知られているチルト検出法の殆どは、チルト検出自体を実際の再 生信号とは別の信号を用いて間接的に行っている。したがって、再生信号品質の最 適チルト点とチルト検出信号で見つけた最適チルト点がずれていることが多ぐ再生 特性を最適に改善する目的に対して充分な検出精度を持っているとは言えない。ま た、再生信号品質自体を使ったものであっても、山登り法などの時間の力かる方法が 使われており、光ディスク装置の総合性能劣化を引き起こして!/ヽる。  As described above, most of the currently known tilt detection methods indirectly perform tilt detection using a signal different from the actual reproduction signal. Therefore, the optimal tilt point of the playback signal quality is often misaligned with the optimal tilt point found from the tilt detection signal. Absent. Also, even if the playback signal quality itself is used, time-consuming methods such as hill climbing are used, which causes the overall performance degradation of the optical disc device!
[0012] 上記説明と関連して、チルト検出装置が特開 2001— 84621号公報に開示されて いる。この従来例では、光ディスクには、通常のディスクに形成されている最小パルス 幅より小さいパルス幅のデータを有するデータ列が形成されている。再生部は、光デ イスタカゝら RF信号を再生し、チルト検出部は、」再生部からの再生 RF信号のうち、小 なるパルス幅のデータの信号に基づいてチルトを検出する。  In relation to the above description, a tilt detection device is disclosed in Japanese Patent Laid-Open No. 2001-84621. In this conventional example, a data string having data having a pulse width smaller than the minimum pulse width formed on a normal disk is formed on the optical disk. The reproduction unit reproduces the RF signal from the optical detector, and the tilt detection unit detects the tilt based on the data signal having a small pulse width out of the reproduction RF signal from the reproduction unit.
また、光ディスク装置が特開 2001— 266382号公報に開示されている。この従来 例では、光学部は、光ディスク上の目標トラックとその両側隣接トラックの 3トラックに 光ビームを同時に照射し、これら 3トラックに記録された情報が反映された反射光を検 出する。再生部は、光学部により検出された反射光に反映された情報を電気信号に 変換し、再生信号として提供する。遅延部は、 3トラックの再生信号をそれぞれ所定 の時間遅延させる。等化部は、トランスバーサルフィルタを有し、遅延部から提供され る 3トラックの再生信号の周波数特性をそれぞれ補正する。制御部は、等化部による 周波数特性の補正量を制御する。チルト演算部は、制御部による等化部の周波数特 性の補正量制御に基づき、光ディスクのチルト量を算出する。制御部は、トランスバ ーサルフィルタのタップ係数群を変化させて周波数特性の補正量を制御する。その とき、 3トラックより再生された信号値系列を観測値系列とし、目標トラックより再生され た信号値系列に対応した予め決められた信号値系列を理想値系列として、制御部 は、観測値系列とタップ係数群の関係式であって、タップ係数群の一次結合で表さ れる関係式によって求まる測定値系列と理想値系列との残差の複数チャネルビット に渡る二乗和が最小となる条件を満たすタップ係数群を一括処理により求める。チル ト演算部は、タップ係数群間の演算により光ディスクと光学手段との相対的な傾きを 求める。 An optical disk device is disclosed in Japanese Patent Laid-Open No. 2001-266382. In this conventional example, the optical unit simultaneously irradiates a light beam onto the target track on the optical disc and the three adjacent tracks on both sides of the target track, and detects the reflected light reflecting the information recorded on these three tracks. The reproduction unit converts information reflected in the reflected light detected by the optical unit into an electrical signal and provides it as a reproduction signal. The delay unit delays the playback signals of the three tracks for a predetermined time. The equalization unit has a transversal filter and corrects the frequency characteristics of the playback signals of the three tracks provided from the delay unit. The control unit controls the correction amount of the frequency characteristic by the equalization unit. The tilt calculation unit calculates the tilt amount of the optical disc based on the control of the correction amount of the frequency characteristic of the equalization unit by the control unit. The control unit controls the correction amount of the frequency characteristic by changing the tap coefficient group of the transversal filter. That When the signal value sequence reproduced from the three tracks is an observation value sequence, a predetermined signal value sequence corresponding to the signal value sequence reproduced from the target track is an ideal value sequence, and the control unit A relational expression for tap coefficient groups, which satisfies the condition that the sum of squares over multiple channel bits of the residual of the measured value series and ideal value series obtained by the linear expression of the tap coefficient group is minimized. The tap coefficient group is obtained by batch processing. The tilt calculator obtains the relative inclination between the optical disc and the optical means by calculating between tap coefficient groups.
また、光記録媒体の評価システムが特開 2004— 303356号公報に開示されてい る。この従来例では、光ピックアップヘッドを介して読み出された再生信号は増幅器 により増幅される。増幅された再生信号は、 AZD変換され、処理装置は AZD変換 後の再生波形を数値処理する。数値処理では、再生信号の振幅データが求められ、 平均値で振幅データは規格化され、標準偏差が計算される。また、振幅データはフ 一リエ変換され、その後の SZN比も計算される。  An optical recording medium evaluation system is disclosed in Japanese Patent Application Laid-Open No. 2004-303356. In this conventional example, the reproduction signal read out via the optical pickup head is amplified by the amplifier. The amplified reproduction signal is AZD converted, and the processing device numerically processes the reproduction waveform after AZD conversion. In numerical processing, the amplitude data of the reproduction signal is obtained, the amplitude data is normalized by the average value, and the standard deviation is calculated. In addition, the amplitude data is Fourier transformed and the subsequent SZN ratio is also calculated.
発明の開示  Disclosure of the invention
[0013] 本発明の目的は、再生信号を直接使用する精度の良いチルト検出方法と、そのた めの情報記録再生装置を提供することである。  [0013] An object of the present invention is to provide an accurate tilt detection method that directly uses a reproduction signal, and an information recording / reproducing apparatus therefor.
また、本発明の他の目的は、より調整時間を短縮することのできるチルト検出方法と 、そのための情報記録再生装置を提供することである。  Another object of the present invention is to provide a tilt detection method capable of further reducing the adjustment time and an information recording / reproducing apparatus therefor.
[0014] 本発明の観点では、情報記録媒体の傾き調整方法では、情報記録媒体は、並行 するトラックを備え、その一部が測定トラック群に設定される。測定トラック群の両端に 配置されるトラックに記録される情報を再生して再生信号が出力される。再生信号に 基づいて情報記録媒体と光ヘッドの間の相対的な傾きを示すチルトが算出される。 算出されたチルトに基づいて相対的な傾きを補正する。この測定トラック群に隣接す るトラックまたはトラック群は、情報が記録されて 、な 、。 In an aspect of the present invention, in the information recording medium tilt adjustment method, the information recording medium includes parallel tracks, and a part thereof is set as a measurement track group. Information recorded on tracks arranged at both ends of the measurement track group is reproduced and a reproduction signal is output. A tilt indicating a relative inclination between the information recording medium and the optical head is calculated based on the reproduction signal. The relative tilt is corrected based on the calculated tilt. Information is recorded in the track or track group adjacent to the measurement track group.
また、本発明の情報記録媒体の傾き調整方法では、測定トラック群の両端に配置さ れるトラックに所定の情報が記録される。  In addition, in the information recording medium tilt adjustment method of the present invention, predetermined information is recorded on tracks arranged at both ends of the measurement track group.
また、再生信号に基づいて算出される SNR (信号成分とノイズ成分の比)に基づい て情報記録媒体の傾きを示すチルトを算出する。ベクトル εを ε = ( ε 1, ε 2, · · · , ε m)とし、理想信号波形と実際信号波形の差を表すノイズ nを n= (nl, n2, ···, n m)とし、期待値を表す記号を E[ ]とすると、この SNRは、次式から算出される。 Also, a tilt indicating the tilt of the information recording medium is calculated based on the SNR (ratio of signal component to noise component) calculated based on the reproduction signal. Ε = (ε 1, ε 2, ..., ε m), the noise n representing the difference between the ideal signal waveform and the actual signal waveform is n = (nl, n2, ..., nm), and the symbol representing the expected value is E []. Calculated from the following equation.
[数 1] [Number 1]
また、この SNRは、複数のベクトル εに対して算出された結果の中力 選択されて もよい。その場合、結果のうち最小値がその SNRとされる。その複数のベクトル εは、 ε 1=(1, 2, 2, 2, 1)、 Further, this SNR may be selected as a medium force calculated for a plurality of vectors ε. In that case, the minimum value of the results is taken as the SNR. The multiple vectors ε are ε 1 = (1, 2, 2, 2, 1),
ε 2=(1, 2, 1, 0, -1, -2, —1)、  ε 2 = (1, 2, 1, 0, -1, -2, —1),
ε 3=(1, 2, 1, 0, 0, 0, 1, 2, 1)  ε 3 = (1, 2, 1, 0, 0, 0, 1, 2, 1)
の 3種類とする。 There are three types.
また、この SNRは、 PR (Partial Response)方式における SNRとして定義される P RSNRである。  This SNR is P RSNR defined as SNR in PR (Partial Response) method.
本発明の他の観点では、情報記録再生装置は、再生部とチルト検出部とを具備す る。情報記録媒体は、並行するトラックを備える。その情報記録媒体に測定トラック群 が設定される。再生部は、測定トラック群の両端に配置されるトラックに記録されてい る情報を再生して再生信号を出力する。チルト検出部は、再生信号に基づいて情報 記録媒体の傾きを示すチルトを算出する。この情報記録再生装置は、チルト補正部 を具備する。チルト補正部)は、算出されたチルトに基づいて情報記録媒体と光へッ ドの間の相対的な傾きを補正する。  In another aspect of the present invention, an information recording / reproducing apparatus includes a reproducing unit and a tilt detecting unit. The information recording medium includes parallel tracks. A measurement track group is set on the information recording medium. The reproduction unit reproduces information recorded on the tracks arranged at both ends of the measurement track group and outputs a reproduction signal. The tilt detection unit calculates a tilt indicating the tilt of the information recording medium based on the reproduction signal. This information recording / reproducing apparatus includes a tilt correction unit. The tilt correction unit) corrects the relative tilt between the information recording medium and the optical head based on the calculated tilt.
測定トラック群に隣接するトラックまたはトラック群は、情報が記録されていない。ま た、本発明の情報記録再生装置は、両端に配置されるトラックに所定の情報を記録 する記録部を具備する。  No information is recorded in the track or track group adjacent to the measurement track group. The information recording / reproducing apparatus of the present invention further includes a recording unit for recording predetermined information on tracks arranged at both ends.
本発明のチルト検出部は、再生信号に基づいて算出される SNR (信号成分とノイズ 成分の比)に基づいてチルトを算出する。ベクトル εを ε = ( ε 1, ε 2, ···, ε m)と し、理想信号波形と実際信号波形の差を表すノイズ nを n=(nl, n2, ···, nm)としThe tilt detector of the present invention calculates the tilt based on the SNR (ratio of signal component to noise component) calculated based on the reproduction signal. The vector ε is expressed as ε = (ε 1, ε 2, ..., ε m) The noise n that represents the difference between the ideal signal waveform and the actual signal waveform is n = (nl, n2, ..., nm).
、期待値を表す記号を E[ ]とすると、 SNRは、次式で算出される。 If the symbol representing the expected value is E [], SNR is calculated by the following equation.
[数 2] [Equation 2]
また、この SNRは、複数のベクトル εに対して算出された結果の中力 選択されて もよい。その場合、結果のうち最小値がその SNRとされる。その複数のベクトル εは、 ε 1=(1, 2, 2, 2, 1)、 Further, this SNR may be selected as a medium force calculated for a plurality of vectors ε. In that case, the minimum value of the results is taken as the SNR. The multiple vectors ε are ε 1 = (1, 2, 2, 2, 1),
ε 2=(1, 2, 1, 0, -1, -2, —1)、  ε 2 = (1, 2, 1, 0, -1, -2, —1),
ε 3=(1, 2, 1, 0, 0, 0, 1, 2, 1)  ε 3 = (1, 2, 1, 0, 0, 0, 1, 2, 1)
の 3種類とする。 There are three types.
また、この SNRは、 PR (Partial Response)方式における SNRとして定義される P RSNRである。  This SNR is P RSNR defined as SNR in PR (Partial Response) method.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の実施例に係る情報記録再生装置の構成を示すブロック図であ る。 FIG. 1 is a block diagram showing a configuration of an information recording / reproducing apparatus according to an embodiment of the present invention.
[図 2]図 2は、エラーレートのラジアルチルト依存性を示す図である。  FIG. 2 is a diagram showing the radial tilt dependence of the error rate.
[図 3]図 3は、本発明の実施例に係る信号の記録形態を示す図である。  FIG. 3 is a diagram showing a signal recording form according to an embodiment of the present invention.
[図 4]図 4は、本発明の実施例に係る情報記録再生装置による記録信号の再生特性 を示す図である。  FIG. 4 is a diagram showing the reproduction characteristics of a recording signal by the information recording / reproducing apparatus in the example of the present invention.
[図 5]図 5は、本発明の実施例に係る情報記録再生装置による記録信号の再生特性 の差を示す図である。  FIG. 5 is a diagram showing a difference in reproduction characteristics of recorded signals by the information recording / reproducing apparatus according to the embodiment of the present invention.
[図 6]図 6は、本発明の実施例に係る情報記録再生装置の RF回路部の構成を示す ブロック図である。  FIG. 6 is a block diagram showing a configuration of an RF circuit unit of the information recording / reproducing apparatus in the example of the present invention.
[図 7]図 7は、本発明の実施例に係る情報記録再生装置で使用される情報記録媒体 (ディスク)の断面図である。 FIG. 7 is an information recording medium used in the information recording / reproducing apparatus according to the embodiment of the present invention. It is sectional drawing of (disk).
[図 8]図 8は、本発明の実施例に係る情報記録再生装置を用いてチルト補正を行う場 合の処理手順を示す図である。  FIG. 8 is a diagram showing a processing procedure when tilt correction is performed using the information recording / reproducing apparatus according to the embodiment of the present invention.
[図 9]図 9は、本発明の実施例に係る情報記録再生装置で使用される情報記録媒体 (ディスク)におけるラジアルチルトの半径依存性を示す図である。  FIG. 9 is a diagram showing the radial dependence of radial tilt in an information recording medium (disc) used in the information recording / reproducing apparatus in the example of the present invention.
[図 10]図 10は、本発明の実施例に係る情報記録再生装置を用いてチルト補正を実 施した場合と実施しな ヽ場合の情報記録媒体 (ディスク)によるエラーレートの半径依 存性を示す図である。  [FIG. 10] FIG. 10 is a diagram showing the dependence of the error rate on the radius of the information recording medium (disk) when tilt correction is performed using the information recording / reproducing apparatus according to the embodiment of the present invention and when the tilt correction is not performed. FIG.
[図 11]図 11Aから 11Cは、信号の記録形態のいくつかの例である。  [FIG. 11] FIGS. 11A to 11C are some examples of signal recording forms.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下に、添付図面を参照して、本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
まず、本発明の原理について説明する。本発明では隣接トラック力ものクロストーク( 隣接トラックからの信号の漏れこみ)を利用し、そのクロストークバランスのずれを観測 することによりラジアルチルトのずれを検出する。一般的に記録型の光ディスクにはレ 一ザビームが走査するための案内溝が形成されている。レーザビームから見て丘の 部分はグループ、溝の部分はランドと称する。  First, the principle of the present invention will be described. In the present invention, the crosstalk of the adjacent track force (signal leakage from the adjacent track) is used, and the shift of the radial tilt is detected by observing the shift of the crosstalk balance. Generally, guide grooves for scanning with a laser beam are formed on a recording type optical disc. The part of the hill as seen from the laser beam is called a group, and the part of the groove is called a land.
[0018] 図 3は、本発明の実施例における光ディスク上のデータ記録状態の一例を示す図 である。図 3を参照して、光ディスクの内周側から外周側に向かって、グループ Gl、 ランド L2、グループ G3、ランド L4、グループ G5、ランド L6、グループ G7が形成され ている。そのうち、グループ G5とグループ G3とに記録マーク 17が形成され、グルー ブ G5とランド L4とグループ G3とにより測定トラック群が構成される。グループ G5をト ラック 1、グループ G3をトラック 2と称することにする。即ち、ランド L4を挟んで隣接す る 2つのグループ G3、 G5にのみデータが記録され、少なくともトラック 1の外側に隣 接するランド L6とグループ G7、トラック 2の内側に隣接するランド L2とグループ G1に はデータが記録されていない。即ち、測定トラック群に隣接するトラックにデータが記 録されていない。  FIG. 3 is a diagram showing an example of a data recording state on the optical disc in the embodiment of the present invention. Referring to FIG. 3, group Gl, land L2, group G3, land L4, group G5, land L6, and group G7 are formed from the inner periphery to the outer periphery. Among them, the recording marks 17 are formed in the group G5 and the group G3, and the measurement track group is constituted by the group G5, the land L4, and the group G3. Group G5 is called Track 1 and Group G3 is called Track 2. That is, data is recorded only in two groups G3 and G5 adjacent to each other with the land L4 interposed therebetween, and at least the land L6 and the group G7 adjacent to the outside of the track 1 and the land L2 and the group G1 adjacent to the inside of the track 2 are recorded. No data is recorded. That is, no data is recorded on the track adjacent to the measurement track group.
[0019] このように記録されたトラック 1における PRSNRとトラック 2における PRSNRのラジ アルチルト依存性を測定すると、図 4に示されるような結果が得られる。 PRSNRにつ いては後述する。図 4を参照すると、ラジアルチルトの度合いに応じてトラック 1におけ る PRSNRの変化の様子とトラック 2における PRSNRの変化様子は異なることがわか る。即ち、ラジアルチルトが発生すると、トラック 1における PRSNRとトラック 2における PRSNRに差が生じ、且つ、ラジアルチルトの極性によってそれぞれの PRSNRの大 小関係が逆転する。この場合、ラジアルチルト 0度 (deg)が記録再生特性の最良チ ルトである。 When the radial tilt dependence of the PRSNR in track 1 and the PRSNR in track 2 recorded in this way is measured, the result shown in FIG. 4 is obtained. About PRSNR This will be described later. Referring to Fig. 4, it can be seen that the change in PRSNR in track 1 and the change in PRSNR in track 2 differ depending on the degree of radial tilt. In other words, when radial tilt occurs, there is a difference between the PRSNR in track 1 and the PRSNR in track 2, and the magnitude relationship of each PRSNR is reversed depending on the polarity of the radial tilt. In this case, a radial tilt of 0 degrees (deg) is the best tilt for recording / reproducing characteristics.
[0020] トラック 1の PRSNRとトラック 2の PRSNRとの差をラジアルチルトに対応させてプロ ットすると、図 5に示されるようになる。ラジアルチルト最良点 0度(deg)においてその 差が 0となる。また、その差分値は、ラジアルチルト量に対応する値と極性を持つこと がわかる。したがって、トラック 1の PRSNRとトラック 2の PRSNRとの差を知ることがで きれば、チルトの方向と程度(チルト量)が瞬時にわかる。この差分値に基づいてフィ ードバック制御することにより光ヘッドと光ディスクとのチルトを常に最適に制御するこ とがでさる。  [0020] When the difference between the PRSNR of track 1 and the PRSNR of track 2 is plotted corresponding to the radial tilt, the result is as shown in FIG. The difference is 0 at the best radial tilt point of 0 degrees (deg). It can also be seen that the difference value has a value and polarity corresponding to the radial tilt amount. Therefore, if the difference between the PRSNR of track 1 and the PRSNR of track 2 can be known, the direction and degree of tilt (tilt amount) can be determined instantly. By performing feedback control based on this difference value, it is possible to always optimally control the tilt between the optical head and the optical disk.
即ち、本発明は、隣接トラックからのクロストーク (信号の漏れこみ)バランスを崩した トラックを作り、そのバランスのずれを見ることでラジアルチルトのずれをみている。つ まり、図 3に示されるトラック 1では内周側のトラック力ものみクロストークが入ってくる状 態、トラック 2では外周側のトラックからのみクロストークが入ってくる状態になっている 。したがって、トラック 1の外周側の隣接ランド L6と隣接グループ G7、トラック 2の内周 側の隣接ランド L2と隣接グループ G1には、少なくともデータが記録されな 、ようにし ている。  In other words, the present invention creates a track in which the crosstalk (signal leakage) balance from the adjacent track is lost, and sees the deviation of the balance to see the deviation of the radial tilt. In other words, track 1 shown in Fig. 3 is in a state where crosstalk enters only the inner track force, and track 2 is in a state where crosstalk enters only from the outer track. Therefore, at least data is not recorded in the adjacent land L6 and the adjacent group G7 on the outer peripheral side of the track 1 and in the adjacent land L2 and the adjacent group G1 on the inner peripheral side of the track 2.
[0021] 次に PRSNRについて説明する。最近、光ディスクにおいても PRML (Partial Re sponse Maximum Likelihood)信号処理が使用されるようになってきている。 PR SNRとは、 ISOM2003 (International Symposium Optical Memory 2003 S. OHKUBO et al.による" Signal— to— Noise Ratio in a PRML De tection , (Japanese Journal of Applied Physics Vol. 43, No. 7B, 2 004, pp. 4859— 4862)、また ίま特開 2004— 213862号公報【こお!ヽて説明され ている力 PR (Partial Response)システムにおける SNR (Signal to Noise Ra tio)を定義したものである。 PRSNRとは、ユークリッド距離が短くシステムのネックと なっているパスに関して、以下に示される式(1)を計算したものである。ネックとなるパ スが複数個ある場合は、各パス間に対して以下の式を個別に計算し、その中で値が 最も小さくなるパスの値をその PRMLシステムの SNRとして規定したものである。 [0021] Next, PRSNR will be described. Recently, PRML (Partial Response Maximum Likelihood) signal processing is also used in optical disks. PR SNR is ISOM2003 (International Symposium Optical Memory 2003 S. OHKUBO et al. "Signal-to-Noise Ratio in a PRML Section, (Japanese Journal of Applied Physics Vol. 43, No. 7B, 2 004, pp 4859— 4862), and also ίoma JP 2004-213862 [This is the definition of SNR (Signal to Noise Ratio) in the PR (Partial Response) system described above. With the short Euclidean distance and the bottleneck of the system The following equation (1) is calculated for the path. When there are multiple paths that become the bottleneck, the following formula is calculated separately for each path, and the path value with the smallest value is defined as the SNR of the PRML system. .
[数 3] [Equation 3]
ここで、 ε =(ε , ε , ···, ε )はパス間の差を表わすベクトルであり、 η= (η , η , Here, ε = (ε, ε,..., Ε) is a vector representing the difference between the paths, and η = (η, η,
1 2 m 1 2 1 2 m 1 2
···, η )は理想信号波形と実際信号波形の差を表すノイズを示し、 Ε[ ]は期待値を 表している。期待値とは各時刻において、次に示される式(2)を計算した場合に期待 される値であり、平均値と考えても良い。分子はまさにパス間のユークリッド距離であ る。 ···, η) represents noise representing the difference between the ideal signal waveform and the actual signal waveform, and Ε [] represents the expected value. The expected value is a value expected when the following formula (2) is calculated at each time, and may be considered as an average value. The numerator is exactly the Euclidean distance between paths.
[数 4] [Equation 4]
∑smna (2) ここで、パス間のユークリッド距離とは信号レベルの時系列の差を表すものである。例 えば、(—4, -3, -1, 1, 3)という信号レベルの時系列(この場合 5時刻分を表記) を持つパスと(一 3, — 1, 1, 3, 4)という信号レベルの時系列を持つパスの差を求め ると、両時系列の差は(1, 2, 2, 2, 1)あるいは(一 1, -2, -2, -2, 1)となる。 この時系列の差の距離をユークリッド距離といい、ベクトル距離である。この場合、ュ ークリツド距離は、 IX 1 + 2X2 + 2X2 + 2X2+ IX 1 = 14と計算される。 ∑s m n a (2) Here, the Euclidean distance between paths represents a time-series difference in signal level. For example, a path with a signal level time series of (—4, -3, -1, 1, 3) (in this case, five times are shown) and (1, 3, — 1, 1, 3, 4) When the difference between paths with signal level time series is obtained, the difference between both time series is (1, 2, 2, 2, 1) or (1, 1, -2, -2, -2, 1). . The distance of this time series difference is called the Euclidean distance, which is a vector distance. In this case, the short distance is calculated as IX 1 + 2X2 + 2X2 + 2X2 + IX 1 = 14.
図 4では、トラック 1とトラック 2に関して、 PRSNRが測定された力 基本的には通常 の SNRが測定されても良い。また、 SNRの代わりに、 SNRに近い指標、例えば、両ト ラックのジッタを測定しても良 、。  In Fig. 4, the force at which PRSNR is measured for Track 1 and Track 2 Basically the normal SNR may be measured. Also, instead of SNR, an index close to SNR, for example, jitter on both tracks may be measured.
また、図 3ではランド 4を間に挟んで隣接する 2つのグループ G3、 G5の 2トラックに 記録を行ったが、隣接するランドの 2トラックに記録を行ってもよい。このとき、隣接す るグループの 2トラックに挟まれるランド L4 (または隣接するランドの 2トラックの間のグ ループ)に記録マークがあってもクロストークバランスの関係は変わらない。そのため 、ランド L4 (または隣接するランド 2トラックの間のグループ)にデータが記録されてい ても問題はない。 In Fig. 3, two groups G3 and G5 are adjacent to each other with two lands 4 in between. Although recording was performed, recording may be performed on two tracks on adjacent lands. At this time, even if there is a recording mark on land L4 (or a group between two tracks of adjacent lands) sandwiched between two tracks of adjacent groups, the crosstalk balance relationship does not change. Therefore, there is no problem even if data is recorded on the land L4 (or a group between two adjacent land tracks).
また、図 3では、ランド'グルーブ*フォーマットの例を示した。グループまたはランド だけに記録するイングルーブ 'フォーマット(グループのみに記録)またはオングルー ブ 'フォーマット (ランドのみに記録)の場合でも、本願発明は適用できる。その場合は 、隣接するグループ 2トラック、または隣接するランド 2トラックにデータの記録がなされ 、同様の測定が行われる。  In addition, FIG. 3 shows an example of a land / groove * format. The present invention can be applied to an in-groove 'format (recording only in a group) or an on-groove' format (recording only in a land) in which recording is performed only on a group or land. In that case, data is recorded on the adjacent two tracks of the group or the adjacent two tracks of the land, and the same measurement is performed.
[0023] 図 1は、本発明の実施例に係る情報記録再生装置の構成を示すブロック図である。  FIG. 1 is a block diagram showing a configuration of an information recording / reproducing apparatus according to an embodiment of the present invention.
図 1を参照して、情報記録再生装置は、光ディスク 10に情報を記録し、光ディスク 10 から情報の再生を行う。情報記録再生装置は、スピンドル駆動系 9、光ヘッド部 20、 RF回路部 30、チルト検出器 3、復調器 4、システムコントローラ 5、変調器 6、 LD駆動 部 7、サーボコントローラ 8を具備する。  Referring to FIG. 1, the information recording / reproducing apparatus records information on optical disc 10 and reproduces information from optical disc 10. The information recording / reproducing apparatus includes a spindle drive system 9, an optical head unit 20, an RF circuit unit 30, a tilt detector 3, a demodulator 4, a system controller 5, a modulator 6, an LD drive unit 7, and a servo controller 8.
[0024] スピンドル駆動系 9は、光ディスク 10を駆動する。光ヘッド部 20は、レーザダイォー ド(LD) 26、ビームスプリッタ 25、対物レンズ 28、受光部 22を備え、光ディスク 10に レーザ光を照射し、その反射光を検出する。レーザ光は、レーザダイオード (LD) 26 が発光し、ビームスプリッタ 25によって反射されて対物レンズ 28を介して光ディスク 1 0に照射される。光ディスク 10で反射された反射光は、対物レンズ 28で集光され、ビ 一ムスプリッタ 25を通過して受光部 22で検出される。受光部 22で検出した入力信号 は、 RF回路部 30に出力される。 RF回路部 30は、入力信号にフィルタリング等の処 理を行い、等化再生信号とデータ列信号とをチルト検出器 3に出力し、データ列信号 を復調器 4に出力する。 RF回路部 30の構成は、後述する。チルト検出器 3は、 RF回 路部 30入力される等化再生信号とデータ列信号とに基づいてチルト検出用の信号 を算出し、結果をシステムコントローラ 5に出力する。復調器 4は、 RF回路部 30から 出力されるデータ列信号を復調し、システムコントローラ 5に出力する。変調器 6は、 システムコントローラ 5から入力される記録すべき信号を変調し、 LD駆動部 7に出力 する。 LD駆動部 7は、変調器 6から入力される変調された記録すべき信号に基づい てレーザダイオード 26を駆動し、光ディスク 10に記録させる。サーボコントローラ 8は 、光ヘッド部 20を制御するサーボ信号をコントロールする。ここには、チルト補正機構 も含まれる。システムコントローラ 5は、復調器 4から復調データを取り込み、変調器 6 に記録すべきデータを出力する。システムコントローラ 5は、チルト検出器 3からチルト 検出用の信号を取り込んでサーボコントローラ 8にチルト補正を指示し、スピンドル駆 動系 9とサーボコントローラ 8を制御するなど、情報記録再生装置全体を統括する。 本発明の特徴は、 RF回路 30の出力を用いてチルト検出用の信号を算出するチル ト検出器 3にあり、本実施例ではここで PRSNRも計算している。 RF回路部 30は、図 6に示されるように、プリフィルタ 31、オートゲインコントロール (AGC) 32、 AZDコン バータ(ADC) 34、フェーズロックドループ(PLL) 35、適応等化器 37、ビタビ復号器 38を備える。光ヘッド部 20から入力される入力信号は、プリフィルタ 31によりフィルタ リングされ、オートゲインコントロール 32により振幅制御された後、 AZDコンバータ 3 4によってデジタル化される。デジタル信号化された入力信号は、フェーズロックドル ープ 35でクロック信号が抽出されるとともに、入力信号のチャネル周波数に同期化さ れて適応等化器 37に出力される。適応等化器 37は、入力信号の周波数特性が PR 特性に近づくように周波数特性を修正する。適応等化器 37で周波数特性が修正さ れた等化再生信号は、ビタビ復号器 38に出力されるとともに、チルト検出器 3に出力 される。ビタビ復号器 38は、適応等化器 37から等化再生信号を入力し、 2値情報に 変換する。変換された 2値情報は、適応等化器 37にフィードバックされるとともに、デ ータ列信号としてチルト検出器 3と復調器 4とに出力される。適応等化器 37から出力 される適応等化後の信号である等化再生信号と、ビタビ復号器 38から出力されるビ タビ復号後のデータ列信号は、チルト検出器 3に入力される。チルト検出器 3は、等 化再生信号とデータ列信号とに基づ 、て PRSNRを計算する。 PRSNR計算時に必 要な各時刻のノイズは、ビタビ復号後のデータ列信号に基づ 、て求められる理想信 号波形と、適応等化後の信号である実際信号波形との差として算出される。理想信 号波形は、ビタビ復号後のデータ列信号と、ベクトル(1, 2, 2, 2, 1)との畳み込み積 分により求められる。 [0026] チルト検出器 3には、トラック 1用とトラック 2用のメモリが搭載される。このメモリは、各 トラックの PRSNRを一時的に保持することができる。トラック 1とトラック 2の PRSNRが 計算できたら両者の差が求められる。この両者の差がチルト検出信号としてシステム コントローラ 5に出力される。チルト検出信号は、図 5に示されるように、チルトに対し て単調に変化していることから、システムコントローラ 5は、チルト検出信号力^に向か う方向にチルトを制御する。これにより、チルトが常に最適になるように制御される。 The spindle drive system 9 drives the optical disc 10. The optical head unit 20 includes a laser diode (LD) 26, a beam splitter 25, an objective lens 28, and a light receiving unit 22, and irradiates the optical disc 10 with laser light and detects the reflected light. The laser light is emitted from a laser diode (LD) 26, reflected by the beam splitter 25, and applied to the optical disc 10 through the objective lens 28. The reflected light reflected by the optical disk 10 is collected by the objective lens 28, passes through the beam splitter 25, and is detected by the light receiving unit 22. The input signal detected by the light receiving unit 22 is output to the RF circuit unit 30. The RF circuit unit 30 performs processing such as filtering on the input signal, outputs the equalized reproduction signal and the data string signal to the tilt detector 3, and outputs the data string signal to the demodulator 4. The configuration of the RF circuit unit 30 will be described later. The tilt detector 3 calculates a signal for tilt detection based on the equalized reproduction signal and the data string signal input to the RF circuit unit 30 and outputs the result to the system controller 5. The demodulator 4 demodulates the data string signal output from the RF circuit unit 30 and outputs it to the system controller 5. The modulator 6 modulates the signal to be recorded input from the system controller 5 and outputs it to the LD driver 7 To do. The LD drive unit 7 drives the laser diode 26 based on the modulated signal to be recorded input from the modulator 6 and records it on the optical disc 10. The servo controller 8 controls a servo signal that controls the optical head unit 20. This includes a tilt correction mechanism. The system controller 5 takes in demodulated data from the demodulator 4 and outputs data to be recorded in the modulator 6. The system controller 5 takes over the tilt detection signal from the tilt detector 3, instructs the servo controller 8 to perform tilt correction, and controls the spindle drive system 9 and the servo controller 8. . A feature of the present invention lies in the tilt detector 3 that calculates a signal for tilt detection using the output of the RF circuit 30. In this embodiment, PRSNR is also calculated here. As shown in FIG. 6, the RF circuit unit 30 includes a pre-filter 31, an auto gain control (AGC) 32, an AZD converter (ADC) 34, a phase-locked loop (PLL) 35, an adaptive equalizer 37, and a Viterbi decoding. A vessel 38 is provided. An input signal input from the optical head unit 20 is filtered by the prefilter 31, subjected to amplitude control by the auto gain control 32, and then digitized by the AZD converter 34. From the digitalized input signal, a clock signal is extracted by the phase lock droop 35 and output to the adaptive equalizer 37 in synchronization with the channel frequency of the input signal. The adaptive equalizer 37 corrects the frequency characteristic so that the frequency characteristic of the input signal approaches the PR characteristic. The equalized reproduction signal whose frequency characteristics have been corrected by the adaptive equalizer 37 is output to the Viterbi decoder 38 and also to the tilt detector 3. The Viterbi decoder 38 receives the equalized reproduction signal from the adaptive equalizer 37 and converts it into binary information. The converted binary information is fed back to the adaptive equalizer 37 and output to the tilt detector 3 and the demodulator 4 as a data string signal. The equalized reproduction signal that is a signal after adaptive equalization output from the adaptive equalizer 37 and the data string signal after Viterbi decoding output from the Viterbi decoder 38 are input to the tilt detector 3. The tilt detector 3 calculates PRSNR based on the equalized reproduction signal and the data string signal. The noise at each time required for PRSNR calculation is calculated as the difference between the ideal signal waveform obtained based on the data string signal after Viterbi decoding and the actual signal waveform that is the signal after adaptive equalization. . The ideal signal waveform is obtained by the convolution product of the data string signal after Viterbi decoding and the vector (1, 2, 2, 2, 1). [0026] The tilt detector 3 is equipped with memories for track 1 and track 2. This memory can temporarily hold the PRSNR of each track. If the PRSNR of track 1 and track 2 can be calculated, the difference between the two can be found. The difference between the two is output to the system controller 5 as a tilt detection signal. Since the tilt detection signal changes monotonously with respect to the tilt as shown in FIG. 5, the system controller 5 controls the tilt in the direction toward the tilt detection signal force. Thus, the tilt is always controlled to be optimal.
[0027] 本実施例では、光ヘッド部 20として、 LD波長 405nm、 NA (開口数) 0. 65のもの を使用した例を示した。また、 RF回路部 30には PR(12221)用のビタビ復号器を有 するものを例示した。  In this embodiment, an example in which an optical head unit 20 having an LD wavelength of 405 nm and NA (numerical aperture) of 0.65 has been shown. Further, the RF circuit unit 30 is exemplified as having a Viterbi decoder for PR (12221).
また、光ディスク 10は、図 7に示されるような構造のものを使用した。光ディスク 10は 、基板 11に誘電体膜 12と相変化記録膜 13と誘電体膜 14と反射膜 15とが積層され ている。基板 11は、ポリカーボネイトからなり、厚さ 0. 6mm、直径 12cmの透明な円 板状をしている。基板 11には、プリグループと呼ばれる案内溝(図示せず)が形成さ れている。記録及び再生時には、光情報記録装置即ち、光ディスクドライブの光ビー ムがこの案内溝に沿って走査できるようになつている。この基板 11上に、 ZnS -SiO 2からなる誘電体膜 12、 AglnSbTeからなる相変化記録膜 13、 ZnS— Si02からなる 誘電体膜 14、 AlTiからなる反射膜 15がこの順に積層されている。誘電体膜 12、 14 は、相変化記録膜 13を保護すると共に、レーザ光の干渉条件を制御し、より大きな 信号を得るためのものである。相変化記録膜 13の相状態は初期状態においては結 晶状態であり、記録用のレーザ光が照射されて非晶質状態となることにより、情報が 記録される。なお、反射膜 15上に紫外線硬化榭脂等カゝらなる保護膜を設けてもよい  Further, the optical disk 10 having a structure as shown in FIG. 7 was used. In the optical disk 10, a dielectric film 12, a phase change recording film 13, a dielectric film 14, and a reflective film 15 are laminated on a substrate 11. The substrate 11 is made of polycarbonate and has a transparent disk shape with a thickness of 0.6 mm and a diameter of 12 cm. Guide grooves (not shown) called pre-groups are formed on the substrate 11. At the time of recording and reproduction, an optical beam of an optical information recording apparatus, that is, an optical disk drive can be scanned along this guide groove. On this substrate 11, a dielectric film 12 made of ZnS—SiO 2, a phase change recording film 13 made of AglnSbTe, a dielectric film 14 made of ZnS—Si02, and a reflective film 15 made of AlTi are laminated in this order. The dielectric films 12 and 14 are for protecting the phase change recording film 13 and controlling a laser beam interference condition to obtain a larger signal. The phase state of the phase change recording film 13 is a crystalline state in the initial state, and information is recorded by being irradiated with a recording laser beam to be in an amorphous state. A protective film such as an ultraviolet curable resin may be provided on the reflective film 15.
[0028] フォーマットは、ビットピッチが 0. 13 μ m、トラックピッチが 0. 34 μ mのランド'グル ーブ 'フォーマットを使用した。ランド'グルーブ'フォーマットとは、前述の案内溝の入 射光側からみて丘 (グループ)と溝 (ランド)の両方の部分に記録を行うフォーマットの ことを言う。 [0028] The format used was a land 'group' format with a bit pitch of 0.13 µm and a track pitch of 0.34 µm. The land 'groove' format refers to a format in which recording is performed on both the hill (group) and the groove (land) when viewed from the incident light side of the guide groove.
[0029] 上記情報記録再生装置は、図 8に示される処理手順でラジアルチルトを補正する。  [0029] The information recording / reproducing apparatus corrects the radial tilt according to the processing procedure shown in FIG.
まず、光ディスク 10が装置に挿入されたら、所望の半径位置まで光ヘッドを移動する (ステップ SI 1)。図 3に示されるような記録状態、即ち測定トラック群を作成する。この 場合、グループ G3、ランド L4、グループ G5が測定トラック群となる。測定トラック群の 両端のトラックとなるグループ G3、 G5にのみ所定のデータを記録する。即ち、光ディ スク 10は、ランド L4を挟んで隣接する 2つのグループ G3、 G5にのみデータが記録さ れ、少なくともトラック 1の外側に隣接するランド L6とグループ G7、トラック 2の内側に 隣接するランド L2とグループ G1にはデータが記録されて ヽな 、と 、う記録状態にな る(ステップ S 12)。 First, when the optical disk 10 is inserted into the apparatus, the optical head is moved to a desired radial position. (Step SI 1). A recording state as shown in FIG. 3, that is, a measurement track group is created. In this case, group G3, land L4, and group G5 are measurement tracks. Predetermined data is recorded only in groups G3 and G5, which are the tracks at both ends of the measurement track group. That is, in the optical disk 10, data is recorded only in two groups G3 and G5 adjacent to each other across the land L4, and at least the land L6 adjacent to the outside of the track 1 and the group G7 and the inside of the track 2 are adjacent. When the data is recorded in the land L2 and the group G1, the recording state is reached (step S12).
その後、データが記録されているトラック 1とトラック 2とが再生される (ステップ S14) 。チルト検出器 3は、トラック 1から再生された信号に基づいて PRSNRを算出し、その 値を S1とする。トラック 2から再生された信号に基づいて PRSNRを算出し、その値を S2とする。それぞれのトラックの PRSNRの差分 Sl— S2 (または S2— S1)を算出す る(ステップ S15)。チルト検出器 3は、この差分 SI— S2 (または S2— S1)力もラジア ルチルト量を見積もる(ステップ S 16)。見積もられたラジアルチルト量は、システムコ ントローラ 5に送られ、半径位置とともに保持される (ステップ S18)。  Thereafter, track 1 and track 2 in which data is recorded are reproduced (step S14). Tilt detector 3 calculates PRSNR based on the signal reproduced from track 1, and sets the value as S1. The PRSNR is calculated based on the signal reproduced from track 2, and the value is S2. The difference Sl—S2 (or S2—S1) of PRSNR of each track is calculated (step S15). The tilt detector 3 estimates the radial tilt amount by using this differential SI-S2 (or S2-S1) force (step S16). The estimated radial tilt amount is sent to the system controller 5 and held together with the radial position (step S18).
光ディスク 10の他の半径位置の状態を測定する場合、ステップ S11に戻り、ラジア ルチルト量の見積を他の半径でも行う(ステップ S 19— YES)。ディスク全面のチルト の状態が推定できると (ステップ S19— NO)、チルト検出器 3はシステムコントローラ 5 からの記録の命令待ち状態 (次の測定待ち)となる。  When measuring the state of the other radial position of the optical disc 10, the process returns to step S11, and the radial tilt amount is estimated at another radius (step S19—YES). When the tilt state of the entire disk surface can be estimated (step S19—NO), the tilt detector 3 waits for a recording command from the system controller 5 (waiting for the next measurement).
[0030] 本実施例では、半径 25mm、 45mm, 57mmの 3箇所で上記処理を行った。上記 3 つの半径以外の場所のラジアルチルトは上記 3つの半径でのラジアルチルト量から システムコントローラ 5が概算する。 [0030] In the present example, the above-described treatment was performed at three locations with a radius of 25 mm, 45 mm, and 57 mm. Radial tilt at locations other than the above three radii is estimated by the system controller 5 from the radial tilt amount at the above three radii.
[0031] 次に、本発明の装置としての実用的な検証をする。今回作成したディスクのラジア ルチルトの半径依存性が図 9に示される。半径 50mm以上の位置におけるラジアル チルトが 0. 3度 (deg)を超えており、エラーレートの急激な上昇が懸念される。また、 図 9で示されるように、実際の装置では、ディスクの最内角半径位置においてもラジア ルチルトが発生しており(この場合、 0. 15度(deg)程度)、ラジアルチルトマージンの 向上が急務であることがわかる。 Next, practical verification as the apparatus of the present invention is performed. Figure 9 shows the radius dependence of the radial tilt of the newly created disc. The radial tilt at a position with a radius of 50 mm or more exceeds 0.3 degrees (deg), and there is a concern that the error rate will rise rapidly. In addition, as shown in Fig. 9, in the actual device, radial tilt occurs even at the innermost radius of the disk (in this case, about 0.15 degrees (deg)), and the radial tilt margin is improved. It turns out that it is urgent.
この装置に上記ディスクを挿入し、エラーレートの半径依存性を観測する。図 10〖こ その結果が示される。チルト補正を行うと、外周でもエラーレートの劣化を抑えること が可能であり、この装置でも再生信号品質のマージンを大幅に向上出来ることが確 f*i¾ れ 。 Insert the disk into this device and observe the radius dependence of the error rate. Figure 10 The result is shown. By performing tilt correction, it is possible to suppress the deterioration of the error rate even at the outer periphery, and it is certain that this device can greatly improve the margin of the reproduced signal quality.
このように、本実施例では、光ディスク 10が挿入されたときに、最初に光ディスク全 面のチルトの様子を把握した力 記録を行わな 、合間に適宜チルトの測定を行って も良い。また、記録を一時中断し、チルトの測定を行っても良い。その際、記録すべき データはシステムコントローラ 5のバッファに貯めておけばよい。  As described above, in this embodiment, when the optical disc 10 is inserted, the tilt measurement may be performed appropriately in the meantime without first performing force recording that grasps the state of the tilt of the entire surface of the optical disc. Further, the recording may be temporarily interrupted to measure the tilt. At that time, the data to be recorded should be stored in the buffer of the system controller 5.
また、光ディスク 10に既に多くのデータが記録されている場合は、記録済みデータ の端や、記録されて 、な!、ところを適宜利用し実施すればょ 、。  If a large amount of data has already been recorded on the optical disc 10, the end of the recorded data or the recorded data should be used appropriately.
測定用のデータ記録位置は、図 3に示されるように、隣接する 2つのグループとして 説明したが、図 11Aから 11Cに示されるように、図 3以外の測定用の記録状態であつ てもよい。図 11Aには、トラック 1 (グループ G5)とトラック 2 (グループ G3)との間のトラ ック (ランド L4)にも記録信号がある場合の記録状態が示される。トラック 1の外周側に 隣接するランド L6、グループ G7と、トラック 2の内周側に隣接するランド 2、グループ 1 には記録信号はない。  The data recording position for measurement has been described as two adjacent groups as shown in FIG. 3, but as shown in FIGS. 11A to 11C, it may be in a recording state for measurement other than FIG. . FIG. 11A shows a recording state when a recording signal is also present in the track (land L4) between track 1 (group G5) and track 2 (group G3). Land L6 and group G7 adjacent to the outer periphery of track 1 and land 2 and group 1 adjacent to the inner periphery of track 2 have no recording signal.
図 11Bには、トラック 1 (グループ G6)、トラック 2 (グループ G4)の外周側、内周側に 設定される記録すべきでな 、トラックだけが未記録になって 、る場合の記録状態が 示される。即ち、グループ G6はトラック 1、グループ G4はトラック 2として信号が記録さ れる。トラック 1の外周側に隣接するランド L7、グループ G8は記録すべきでないトラッ クとして信号は記録されないが、さらに外周側のランド L9には記録マーク 17があり、 信号が記録されている。同じように、トラック 2の内周側に隣接するランド L3、グルー ブ G2は記録すべきでな 、トラックとして信号が記録されな 、。さらに内周側のランド L 1には記録信号がある。トラック 1とトラック 2とに挟まれるランド 5には信号が記録され ても、されなくてもよい。  Fig. 11B shows the recording status when track 1 (group G6) and track 2 (group G4) should be recorded on the outer and inner tracks, and only the track is unrecorded. Indicated. That is, group G6 is recorded as track 1, and group G4 is recorded as track 2. The land L7 and the group G8 adjacent to the outer peripheral side of the track 1 do not record signals as tracks that should not be recorded, but there is a recording mark 17 on the further outer land L9, where signals are recorded. Similarly, land L3 and groove G2 adjacent to the inner periphery of track 2 should not be recorded, and no signal is recorded as a track. Further, a recording signal is present on the inner land L1. Signals may or may not be recorded on land 5 between track 1 and track 2.
また、ランドとグループは可換であり、今まで例示された測定用の記録状態はすべ てランドとグループの記述を逆にすることができる。図 3に示される記録状態でグルー ブをランドに換えたものが図 11Cに示される。即ち、トラック 1としてランド L5に信号が 記録され、トラック 2としてランド L3に信号が記録される。トラック 1とトラック 2とに挟ま れるグループ 4には信号が記録されていない。また、トラック 1の外周側、トラック 2の 内周側には信号が記録されて 、な 、。 Also, lands and groups are interchangeable, and the recording states for measurement exemplified so far can reverse the descriptions of lands and groups. Fig. 11C shows the recording state shown in Fig. 3 with the grooves replaced with lands. That is, a signal is recorded on the land L5 as the track 1, and a signal is recorded on the land L3 as the track 2. Sandwiched between track 1 and track 2 There are no signals recorded in group 4. Also, signals are recorded on the outer periphery of track 1 and the inner periphery of track 2.
[0033] また、本実施例では、 PR (12221)というクラスを使用したが PR (1221)など他のク ラスでも同様に使用することができる。 [0033] In this embodiment, the class PR (12221) is used, but other classes such as PR (1221) can be used in the same manner.
また、本実施例では、 SNRとして PRSNRを用いて説明したが、 ε = (1)として算出 されるシンプルな SNRを使用するなど、様々な SNRを使用して、本発明を実施する ことも可能である。  In this embodiment, the PRSNR is used as the SNR. However, the present invention can also be implemented using various SNRs, such as using a simple SNR calculated as ε = (1). It is.
また、本実施例では、 PRMLを使用した場合について記載したが、 PRMLを使用 しない系でも同様に使用することができる。  In this embodiment, the case where PRML is used has been described. However, a system that does not use PRML can be used in the same manner.
また、本発明は、波長 405nm、 NAO. 6〖こ限定されることなく、あらゆる波長、およ び NAにお 、て適用可能である。  Further, the present invention is applicable to any wavelength and NA without being limited to a wavelength of 405 nm and NAO.
[0034] 以上のように、光ディスク装置について例示した力 本発明は、磁気ディスク装置に おける磁気ヘッドのディスク面に対する傾きによる信号品質劣化を補正する方法とし ても使用可能である。 As described above, the power exemplified for the optical disk apparatus can be used as a method of correcting the signal quality deterioration due to the tilt of the magnetic head with respect to the disk surface in the magnetic disk apparatus.
[0035] 本発明によれば、間接的な信号によりチルトを補正している従来例と異なり、再生 信号そのものから直接的にチルト検出用の信号を得るため、再生信号のチルトによる 変化を非常に精度良く検出できる。  [0035] According to the present invention, unlike the conventional example in which the tilt is corrected by an indirect signal, a signal for tilt detection is obtained directly from the reproduction signal itself, so that a change due to the tilt of the reproduction signal is very small. It can be detected with high accuracy.
また、本発明によれば、チルトの方向、大きさがわ力るため、どちらの方向にどれだ け傾いたかが瞬時にわかる。したがって、山登り法を使う必要がなぐ調整時間を短 縮することが可能となる。  In addition, according to the present invention, since the direction and magnitude of the tilt are strong, it is possible to instantly know which direction the tilt is made. Therefore, the adjustment time that does not require the use of the hill-climbing method can be shortened.

Claims

請求の範囲 The scope of the claims
[1] 並行するトラックを備える情報記録媒体に設定される測定トラック群の両端に配置さ れるトラックに記録される情報を再生して再生信号を出力するステップと、  [1] Reproducing information recorded on tracks arranged at both ends of a measurement track group set on an information recording medium having parallel tracks and outputting a reproduction signal;
前記再生信号に基づいて前記情報記録媒体と光ヘッドとの間の相対的な傾きを示 すチルトを算出するステップと、  Calculating a tilt indicating a relative tilt between the information recording medium and the optical head based on the reproduction signal;
前記チルトに基づいて前記相対的な傾きを補正するステップと  Correcting the relative tilt based on the tilt; and
を具備する情報記録媒体の傾き調整方法。  An inclination adjustment method for an information recording medium comprising:
[2] 前記測定トラック群に隣接するトラックまたはトラック群には、情報が記録されていな い  [2] No information is recorded on the track or track group adjacent to the measurement track group.
請求の範囲 1に記載の情報記録媒体の傾き調整方法。  The method for adjusting the inclination of the information recording medium according to claim 1.
[3] 前記測定トラック群の両端に配置されるトラックに所定の情報を記録する記録ステツ プを具備する [3] A recording step for recording predetermined information on tracks arranged at both ends of the measurement track group is provided.
請求の範囲 1または 2に記載の情報記録媒体の傾き調整方法。  The method of adjusting the tilt of the information recording medium according to claim 1 or 2.
[4] 前記チルト検出ステップは、前記再生信号に基づいて算出される SNR (信号成分 とノイズ成分の比)に基づいて前記チルトを算出する [4] In the tilt detection step, the tilt is calculated based on SNR (ratio of signal component to noise component) calculated based on the reproduction signal.
請求の範囲 1乃至 3のいずれかに記載の情報記録媒体の傾き調整方法。  The method for adjusting the tilt of the information recording medium according to any one of claims 1 to 3.
[5] ベクトル εを ε = ( ε 1, ε 2, · · · , ε m)とし、理想信号波形と実際信号波形の差 を表すノイズ nを n= (nl, n2, · · · , nm)とし、期待値を表す記号 E[ ]とすると、前 記 SNRは、以下の式 [5] Let the vector ε be ε = (ε 1, ε 2, ···, ε m), and the noise n representing the difference between the ideal signal waveform and the actual signal waveform be n = (nl, n2, ···, nm ) And the symbol E [] representing the expected value, the SNR is given by
[数 5]  [Equation 5]
から算出される Calculated from
請求の範囲 4に記載の情報記録媒体の傾き調整方法。  The method for adjusting the inclination of the information recording medium according to claim 4.
複数のベクトル εに対して算出された結果のうちの最小値を前記 SNRとする 請求の範囲 5に記載の情報記録媒体の傾き調整方法。 The minimum value among the results calculated for multiple vectors ε is the SNR. The method for adjusting the inclination of the information recording medium according to claim 5.
[7] 前記複数のベクトル εは、 [7] The plurality of vectors ε are
ε 1=(1, 2, 2, 2, 1)、  ε 1 = (1, 2, 2, 2, 1),
ε 2=(1, 2, 1, 0, -1, -2, —1)、  ε 2 = (1, 2, 1, 0, -1, -2, —1),
ε 3=(1, 2, 1, 0, 0, 0, 1, 2, 1)  ε 3 = (1, 2, 1, 0, 0, 0, 1, 2, 1)
である  Is
請求の範囲 6に記載の情報記録媒体の傾き調整方法。  The method for adjusting the inclination of the information recording medium according to claim 6.
[8] 前記 SNRは、 PR (Partial Response)方式における SNRとして定義される PRS[8] The SNR is a PRS defined as an SNR in PR (Partial Response) method.
NRである NR
請求の範囲 4乃至 7のいずれかに記載の情報記録媒体の傾き調整方法。  The method for adjusting the inclination of the information recording medium according to any one of claims 4 to 7.
[9] 並行するトラックを備える情報記録媒体に設定される測定トラック群の両端に配置さ れるトラックに記録されている情報を再生して再生信号を出力する再生部と、 前記再生信号に基づいて前記情報記録媒体の傾きを示すチルトを算出するチルト 検出部と [9] A reproduction unit that reproduces information recorded on tracks arranged at both ends of a measurement track group set in an information recording medium including parallel tracks and outputs a reproduction signal, and based on the reproduction signal A tilt detector for calculating a tilt indicating the tilt of the information recording medium;
を具備する情報記録再生装置。  An information recording / reproducing apparatus comprising:
[10] 前記チルトに基づ 、て前記情報記録媒体の傾きを補正するチルト補正部を更に具 備する [10] The apparatus further includes a tilt correction unit that corrects the tilt of the information recording medium based on the tilt.
請求の範囲 9に記載の情報記録再生装置。  The information recording / reproducing apparatus according to claim 9.
[11] 前記測定トラック群に隣接するトラックまたはトラック群は、情報が記録されていない 請求の範囲 9または 10に記載の情報記録再生装置。 [11] The information recording / reproducing apparatus according to claim 9 or 10, wherein no information is recorded in a track or a track group adjacent to the measurement track group.
[12] 前記両端に配置されるトラックに所定の情報を記録する記録部を更に具備する 請求の範囲 9乃至 11のいずれかに記載の情報記録再生装置。 12. The information recording / reproducing apparatus according to any one of claims 9 to 11, further comprising a recording unit that records predetermined information on the tracks arranged at both ends.
[13] 前記チルト検出部は、前記再生信号に基づいて算出される SNR (信号成分とノィ ズ成分の比)に基づいて前記チルトを算出する [13] The tilt detection unit calculates the tilt based on SNR (ratio of signal component to noise component) calculated based on the reproduction signal.
請求の範囲 9乃至 12のいずれかに記載の情報記録再生装置。  The information recording / reproducing apparatus according to claim 9.
[14] ベクトル εを ε = ( ε 1, ε 2, ···, ε m)とし、理想信号波形と実際信号波形の差 を表すノイズ nを n= (nl, n2, ···, nm)とし、期待値を表す記号 E[ ]とすると、前 記 SNRは、以下の式 [数 6] [14] Let the vector ε be ε = (ε 1, ε 2, ..., ε m), and the noise n representing the difference between the ideal signal waveform and the actual signal waveform be n = (nl, n2, ..., nm ) And the symbol E [] representing the expected value, the SNR is given by [Equation 6]
から算出される Calculated from
請求の範囲 13に記載の情報記録再生装置。  14. The information recording / reproducing apparatus according to claim 13.
複数のベクトル εに対して算出された結果のうちの最小値を前記 SNRとする 請求の範囲 14に記載の情報記録再生装置。  15. The information recording / reproducing apparatus according to claim 14, wherein the minimum value among the results calculated for a plurality of vectors ε is the SNR.
前記複数のベクトル εは、  The vectors ε are
ε 1=(1, 2, 2, 2, 1)、  ε 1 = (1, 2, 2, 2, 1),
ε 2=(1, 2, 1, 0, -1, -2, —1)、  ε 2 = (1, 2, 1, 0, -1, -2, —1),
ε 3=(1, 2, 1, 0, 0, 0, 1, 2, 1)  ε 3 = (1, 2, 1, 0, 0, 0, 1, 2, 1)
である  Is
請求の範囲 15に記載の情報記録再生装置。  16. The information recording / reproducing apparatus according to claim 15.
前記 SNRは、 PR (Partial Response)方式における SNRとして定義される PRS NRである  The SNR is a PRS NR defined as an SNR in a PR (Partial Response) scheme
請求の範囲 13乃至 16のいずれかに記載の情報記録再生装置。  The information recording / reproducing apparatus according to any one of claims 13 to 16.
PCT/JP2006/305261 2005-03-18 2006-03-16 Method for adjusting tilt of information recording medium and information recording/reproducing device for such method WO2006101007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-079011 2005-03-18
JP2005079011 2005-03-18

Publications (1)

Publication Number Publication Date
WO2006101007A1 true WO2006101007A1 (en) 2006-09-28

Family

ID=37023668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305261 WO2006101007A1 (en) 2005-03-18 2006-03-16 Method for adjusting tilt of information recording medium and information recording/reproducing device for such method

Country Status (1)

Country Link
WO (1) WO2006101007A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011084571A2 (en) 2009-12-16 2011-07-14 Mallinckrodt Inc. Azide derivatives for phototherapy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845093A (en) * 1994-07-29 1996-02-16 Matsushita Electric Ind Co Ltd Tilt control circuit
JPH0855341A (en) * 1994-08-12 1996-02-27 Matsushita Electric Ind Co Ltd Optical disk medium and optical disk device
JP2004213862A (en) * 2002-12-17 2004-07-29 Nec Corp Optical disk, optical disk recording/reproduction apparatus, and optical disk signal quality evaluation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845093A (en) * 1994-07-29 1996-02-16 Matsushita Electric Ind Co Ltd Tilt control circuit
JPH0855341A (en) * 1994-08-12 1996-02-27 Matsushita Electric Ind Co Ltd Optical disk medium and optical disk device
JP2004213862A (en) * 2002-12-17 2004-07-29 Nec Corp Optical disk, optical disk recording/reproduction apparatus, and optical disk signal quality evaluation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011084571A2 (en) 2009-12-16 2011-07-14 Mallinckrodt Inc. Azide derivatives for phototherapy

Similar Documents

Publication Publication Date Title
US20050237873A1 (en) Method for adjusting focus or tracking detection unit, and optical disc device
WO2006013978A1 (en) Optical recording medium, optical recording medium information recording/reproducing method and information recording/reproducing device
US7542385B2 (en) Optical disk unit and aberration correcting method used for this
US8873358B2 (en) Skew detection method and optical disc device
US20080205248A1 (en) Optimization Spherical Aberration to Determine Current Layer
JP4423670B2 (en) Information recording medium reproducing method and information recording or reproducing apparatus
JP3762356B2 (en) Optical disk device
US20040246864A1 (en) Apparatus and method for controlling recording or reproduction, apparatus for performing recording or reproduction, and information recording medium identification apparatus
WO2007083642A1 (en) Information recording/reproduction device and information recording medium track offset adjusting method
WO2006101007A1 (en) Method for adjusting tilt of information recording medium and information recording/reproducing device for such method
US7796484B2 (en) Tilt adjusting method and information recording/reproducing apparatus using the same
US7298683B2 (en) Optical information recording/reproducing apparatus with mechanism for correcting spherical aberration and method using same
US9911450B1 (en) Optical storage system divider based draw verification with automatic bias or delay adjustment
JP4725793B2 (en) Method of adjusting tilt angle between vertical axis of optical disc surface and optical axis of objective lens, optical disc apparatus and program
US8228771B2 (en) Optical disc recording apparatus and optical disc recording method
WO2005029478A1 (en) Optical recording medium tilt compensating apparatus and method, and optical information processing apparatus
JP4234042B2 (en) Multi-value information recording medium, multi-value information waveform equalizer, multi-value information reproducing device
JP2005251255A (en) Optical information recording and reproducing apparatus
JP2008181579A (en) Optical disk device
US20050195719A1 (en) Optical recording medium tilt compensating device, tilt compensating method, and optical recording device and optical reproducing device utilizing the tilt compensating method
JP2000156041A (en) Optical information reproducing device and optical information reproducing method
JP2008282511A (en) Optical disk device and optical disk playback method
JP2006351063A (en) Tangential tilt detector and optical disk device
KR20000059606A (en) Method for recording/playback of optical disc and apparatus for the same
Ichimura et al. Radial tilt adjustment method with partial response signal-to-noise ratio in high-density optical recording

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP