WO2006091463A2 - Method of making multilayered construction for use in resistors and capacitors - Google Patents
Method of making multilayered construction for use in resistors and capacitors Download PDFInfo
- Publication number
- WO2006091463A2 WO2006091463A2 PCT/US2006/005424 US2006005424W WO2006091463A2 WO 2006091463 A2 WO2006091463 A2 WO 2006091463A2 US 2006005424 W US2006005424 W US 2006005424W WO 2006091463 A2 WO2006091463 A2 WO 2006091463A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- electrically conductive
- electrical resistance
- thermosetting polymer
- resistance material
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 39
- 238000010276 construction Methods 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title description 7
- 239000000463 material Substances 0.000 claims abstract description 82
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 74
- 239000004634 thermosetting polymer Substances 0.000 claims abstract description 73
- 238000000034 method Methods 0.000 claims abstract description 54
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 15
- 238000009713 electroplating Methods 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- -1 polyethylene terephthalate Polymers 0.000 claims description 12
- 230000004888 barrier function Effects 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 238000003475 lamination Methods 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- 239000004642 Polyimide Substances 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 6
- 239000004593 Epoxy Substances 0.000 claims description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 5
- 239000011889 copper foil Substances 0.000 claims description 5
- 230000002708 enhancing effect Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- OFNHPGDEEMZPFG-UHFFFAOYSA-N phosphanylidynenickel Chemical compound [P].[Ni] OFNHPGDEEMZPFG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229920001955 polyphenylene ether Polymers 0.000 claims description 3
- 230000003746 surface roughness Effects 0.000 claims description 3
- 229910001369 Brass Inorganic materials 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 2
- 229920000877 Melamine resin Polymers 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 2
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 229920000180 alkyd Polymers 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004760 aramid Substances 0.000 claims description 2
- 229920003235 aromatic polyamide Polymers 0.000 claims description 2
- 239000010951 brass Substances 0.000 claims description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 2
- 229910001453 nickel ion Inorganic materials 0.000 claims description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 2
- 229920002530 polyetherether ketone Polymers 0.000 claims description 2
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 2
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 2
- MMABHMIOCAINNH-UHFFFAOYSA-N pyrrole-2,5-dione;triazine Chemical compound C1=CN=NN=C1.O=C1NC(=O)C=C1.O=C1NC(=O)C=C1 MMABHMIOCAINNH-UHFFFAOYSA-N 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 229920006305 unsaturated polyester Polymers 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 198
- 239000010408 film Substances 0.000 description 39
- 239000011888 foil Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000003989 dielectric material Substances 0.000 description 8
- XXSPKSHUSWQAIZ-UHFFFAOYSA-L 36026-88-7 Chemical compound [Ni+2].[O-]P=O.[O-]P=O XXSPKSHUSWQAIZ-UHFFFAOYSA-L 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 4
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910018614 Ni(H2PO2)2 Inorganic materials 0.000 description 3
- 229910018104 Ni-P Inorganic materials 0.000 description 3
- 229910018536 Ni—P Inorganic materials 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004377 microelectronic Methods 0.000 description 3
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 3
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910018100 Ni-Sn Inorganic materials 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- 229910018532 Ni—Sn Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229940032007 methylethyl ketone Drugs 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910020646 Co-Sn Inorganic materials 0.000 description 1
- 229910020709 Co—Sn Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229910020994 Sn-Zn Inorganic materials 0.000 description 1
- 229910009069 Sn—Zn Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000002998 adhesive polymer Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- NQXGLOVMOABDLI-UHFFFAOYSA-N sodium oxido(oxo)phosphanium Chemical compound [Na+].[O-][PH+]=O NQXGLOVMOABDLI-UHFFFAOYSA-N 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/20—Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
- H01G4/203—Fibrous material or synthetic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
- H01C17/065—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/162—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/167—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/036—Multilayers with layers of different types
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/03—Metal processing
- H05K2203/0361—Stripping a part of an upper metal layer to expose a lower metal layer, e.g. by etching or using a laser
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0703—Plating
- H05K2203/0723—Electroplating, e.g. finish plating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/43—Electric condenser making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/43—Electric condenser making
- Y10T29/435—Solid dielectric type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49126—Assembling bases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49128—Assembling formed circuit to base
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12556—Organic component
- Y10T428/12569—Synthetic resin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
Definitions
- the present invention relates to the formation of capacitors, resistors, printed circuit boards, microelectronic devices, and the like.
- it relates to a process for manufacturing a multilayered construction for use in preparing thin film resistor-conductor materials and the like.
- Capacitors and resistors are common elements on printed circuit boards and other microelectronic devices. Capacitors are used to steady the operational power supply of such devices.
- a capacitor is a device used for introducing capacitance into a circuit, and functions primarily to store electrical energy, block the flow of direct current, or permit the flow of alternating current. They comprise a dielectric material sandwiched between two electrically conductive metal layers, such as copper foils. In general, the dielectric material is coupled to the electrically conductive metal layers via an adhesive layer, by lamination, or by vapor deposition.
- capacitors arranged on the surface of printed circuit boards have been common. However, more recently, capacitors are formed of a thin, double-sided copper clad laminate within multilayered circuit board layers thus producing excellent characteristics.
- printed circuit board manufacturers generally form printed circuit boards within such a multilayer structure.
- the capacitance of a capacitor depends primarily on the shape and size of the capacitor layers and the dielectric constant of the insulating material.
- dielectric materials There are various known types of dielectric materials known in the art.
- the dielectric material may be a gas, such as air, a vacuum, a liquid, a solid or a combination thereof. Each material has its own particular properties.
- U.S. Patent No. 6,693,793 relates to a structure having a pair of conductive foils, a pair of thin dielectric layers, with one dielectric layer on a surface of each of the foils.
- the two conductive foils are adhered together such that the dielectric layers are attached to one another via an intermediate heat resistant film layer.
- This capacitor offer a significant improvement in performance over prior art capacitors and printed circuit boards.
- the thin dielectric layers allow for higher capacitance, greater heat conductivity and greater flexibility of the capacitor.
- the intermediate heat resistant film layer deters the formation of electrical shorts between the electrically conductive foils.
- the structure formed by this method provides high capacitance, greater heat conductivity, and greater flexibility, while also incorporating a resistor element.
- the inventive method also results in better precision and uniformity of such a structure and its component layers during assembly. This method further maximizes cost effectiveness in the manufacturing of such multilayered constructions.
- the invention provides a method of forming a multilayered construction which comprises attaching a first thermosetting polymer layer onto a surface of a first electrically conductive layer; attaching a second thermosetting polymer layer onto a first surface of a heat resistant film; providing a second electrically conductive layer having an electrical resistance material layer formed on a surface thereof; attaching the electrical resistance material layer onto the second thermosetting polymer; and attaching the first thermosetting polymer onto a second surface of the heat resistant film layer.
- the invention also provides a method of forming a multilayered construction which comprises the steps of: attaching a first thermosetting polymer layer onto a first surface of a heat resistant film; attaching a second thermosetting polymer layer onto a second surface of the heat resistant film; attaching a first electrically conductive layer onto the first thermosetting polymer; providing a second electrically conductive layer having an electrical resistance material layer formed on a surface thereof; and attaching the electrical resistance material layer onto the second thermosetting polymer.
- the invention further provides a method of forming a multilayered construction which comprises the steps of: attaching a first thermosetting polymer layer onto a first surface of a heat resistant film; attaching a second thermosetting polymer layer onto a second surface of the heat resistant film; providing a first electrically conductive layer having a first electrical resistance material layer formed on a surface thereof; providing a second electrically conductive layer having a second electrical resistance material layer formed on a surface thereof; attaching the first electrical resistance material layer onto the first thermosetting polymer layer; and attaching the second electrical resistance material layer onto the second thermosetting polymer layer.
- the invention still further provides a method of forming a capacitor, comprising the steps of: attaching a first thermosetting polymer layer onto a surface of a first electrically conductive layer; attaching a second thermosetting polymer layer onto a first surface of a heat resistant film; providing a second electrically conductive layer having an electrical resistance material layer formed on a surface thereof; attaching the electrical resistance material layer onto the second thermosetting polymer; and attaching the first thermosetting polymer onto a second surface of the heat resistant film layer.
- FIG. 1 is a schematic representation of a first embodiment of the inventive process, wherein the multilayered construction includes one electrical resistance material layer.
- FIG. 2 is a schematic representation of an additional embodiment of the inventive process, wherein the multilayered construction includes one electrical resistance material layer.
- FIG. 3 is a schematic representation of an additional embodiment of the inventive process of FIG. 2, which further includes the attaching of an additional electrical resistance material layer between the first thermosetting polymer layer and the first electrically conductive layer.
- the invention relates to a method for forming multilayered constructions suitable for forming resistors, capacitors, and the like.
- a first embodiment of the inventive process is shown in FIG. 1.
- a multilayered construction is formed by attaching a first thermosetting polymer layer 4 onto a surface of a first electrically conductive layer 2.
- a second thermosetting polymer layer 8 is attached onto a first surface of a heat resistant film layer 6.
- a second electrically conductive layer 12 is then provided, which has an electrical resistance material layer 10 formed on a surface thereof.
- the electrical resistance material layer 10 is then attached onto the second thermosetting polymer 8; and the first thermosetting polymer 4 is attached onto a second surface of the heat resistant film layer 6.
- thermosetting polymer 4 layer is attached onto a first surface of a heat resistant film layer 6, and a second thermosetting polymer layer 8 is attached onto a second surface of the heat resistant film layer 6.
- a first electrically conductive layer 2 is attached onto the first thermosetting polymer 4.
- a second electrically conductive layer 12 is then provided, which has an electrical resistance material layer 10 formed on a surface thereof. The electrical resistance material layer 10 is then attached onto the second thermosetting polymer 8.
- thermosetting polymer layer 4 is attached onto a first surface of a heat resistant film layer 6, and a second thermosetting polymer layer 8 is attached onto a second surface of the heat resistant film 6.
- a first electrically conductive layer 2 is provided, which has a first electrical resistance material layer 10 formed on a surface thereof.
- a second electrically conductive layer 12 is also provided, having a second electrical resistance material layer 14 formed on a surface thereof.
- the first electrical resistance material layer 10 is then attached onto the first thermosetting polymer layer 4, and the second electrical resistance material layer 14 is attached onto the second thermosetting polymer layer 8.
- attaching means any method of appending one layer to the next layer, non-exclusively including coating, laminating, sputtering, vapor depositing, electrodeposition, plating, or evaporating.
- the order in which the layers of the multilayered constructions are attached is an important feature of the present invention.
- the first and second thermosetting polymer layers serve as an adhesive between the heat resistant film and the other layers of the multilayered construction. It is a key feature of this invention that the adhesive polymer layer or layers are attached directly onto the heat resistant film layer, specifically on the side(s) of the heat resistant film to be attached to an electrically conductive layer having an electrical resistance material layer thereon. Attaching the adhesive onto the heat resistant film rather than the electrically conductive layer streamlines the manufacturing process, particularly in the formation of the electrical resistance material layer onto the electrically conductive layer. This also results in better precision and uniformity of the multilayered construction.
- the first electrically conductive layer 2 and the second electrically conductive layer 12 are preferably present in the form of a conductive layer or foil or the like. In a most preferred embodiment, they are each present in the form of a foil. Each electrically conductive layer may comprise either the same metal or may comprise different metals. The conductive metals appropriate for the purposes of the present invention may vary depending on the desired application.
- the electrically conductive layers 2, 12 comprise a material selected from the group consisting of copper, zinc, brass, chrome, nickel, tin, aluminum, stainless steel, iron, gold, silver, titanium, platinum and combinations and alloys thereof. Most preferably, the electrically conductive layers comprise copper.
- the electrically conductive layers preferably have a thickness of from about 0.5 to about 200 microns, more preferably from about 9 to about 70 microns.
- the conductive materials used in the capacitors of this invention may be manufactured with a shiny side surface and a matte surface. Examples of such conductive materials are disclosed in U.S. Pat. No. 5,679,230, which is incorporated herein by reference.
- the electrically conductive layers 2, 12 may be provided with a bond enhancing treatment on one or both sides.
- One or both sides of the layers may optionally be roughened, such as by micro-etching, by being electrolytically treated to form a roughened copper deposit, and/or by being electrolytically treated with a deposition of micro-nodules of a metal or metal alloy on or in the surface.
- Such include a treatment with nickel, chromium, chromates, zinc, and a silane coupling agent or combinations thereof.
- the nodules may comprise the same, or a different metal as the electrically conductive layers.
- the nodules are preferably copper or a copper alloy, and increase adhesion to the polymer film. Such nodules may be applied according to a technique described in U.S. Pat. No. 5,679,230, which is incorporated herein by reference.
- at least one of the first electrically conductive layer and the second electrically conductive layer are provided with a bond enhancing treatment on one or both sides
- the surface microstructure of the electrically conductive layers may be measured by a profilometer, such as a Perthometer model M4P or S5P, which is commercially available from Mahr Feinpruef Corporation of Cincinnati, Ohio. Topography measurements of the surface grain structure of peaks and valleys are made according to industry standard IPC-TM-650 Section 2.2.17 of the Institute for Interconnecting and Packaging Circuits of 2115 Sanders Road, Northbrook, 111. 60062.
- the surface treatments are carried out to produce a surface structure having peaks and valleys which produce roughness parameters wherein the arithmetic average roughness (Ra) ranges from about 0.2 to about 1 microns and the ten point height of irregularities according to ISO 64287-1 (Rz) surface roughness may range from about 0.5 ⁇ m to about 7 ⁇ m, more preferably from about 0.5 ⁇ m to about 5 ⁇ m, and most preferably from about 0.5 ⁇ m to about 3 ⁇ m.
- Ra arithmetic average roughness
- Rz ten point height of irregularities according to ISO 64287-1
- the first and second thermosetting polymer layers serve as an adhesive between the heat resistant film and the other layers of the multilayered construction.
- the first thermosetting polymer layer 4 and the second thermosetting polymer layer 8 may independently comprise an epoxy, a combination of epoxy and a material which polymerizes with an epoxy, a melamine, an unsaturated polyester, a urethane, alkyd, a bis-maleimide triazine, a polyimide, an ester, an allylated polyphenylene ether (or allyl- polyphenylene ether) or combinations thereof.
- the thermosetting polymer layers 4, 8 are typically in dry, solid form, and may comprise about 100% of any of the above compounds, or may comprise mixtures of these compounds, or may contain other additives.
- the most preferred dielectric is an epoxy having a glass transition temperature (Tg) from about 100 0 C to about 250 0 C, preferably from about 15O 0 C to about 200 0 C.
- the thermosetting polymer layers 4, 8 may also optionally comprise a filler material.
- Preferred fillers non-exclusively include powdered ferroelectric materials, barium titanate (BaTiO 3 ), boron nitride, aluminum oxide, strontium titanate, barium strontium titanate, and other ceramic fillers and combinations thereof.
- a filler is preferably present in the thermosetting polymer layers in an amount of from about 5% to about 80% by volume of the layer, more preferably from about 10% to about 50% by volume of the layer.
- at least one of the first thermosetting polymer layer 4, the heat resistant film layer 6, and the second thermosetting polymer layer 8 comprises such a powdered filler having a dielectric constant of about 10 or higher.
- either one or both of the thermosetting polymer layers 4, 8 may contain a dye or pigment to impart color, alter dielectric opacity or affect contrast.
- thermosetting polymer layers 4, 8 are applied to the electrically conductive layers or heat resistant film layer as liquid polymer solutions to allow for control and uniformity of the polymer thickness.
- the solution will typically have a viscosity ranging from about 50 to about 35,000 centipoise with a preferred viscosity in the range of 100 to 27,000 centipoise.
- the polymer solution will include from about 10 to about 80% and preferably 15 to 60 wt % polymer with the remaining portion of the solution comprising one or more solvents.
- Useful solvents include acetone, methyl-ethyl ketone, N-methyl pyrrolidone, N, N dimethylformamide, N 5 N dimethylacetamide and mixtures thereof.
- a most preferred single solvent is methyl-ethyl ketone.
- thermosetting polymer layers may be also applied to the electrically conductive layers 2, 12 or heat resistant film layer 6 in the form of solid sheets.
- the attaching of the first and second thermosetting polymer layers to opposite surfaces of the heat resistant film layer is done by lamination.
- Lamination may be conducted in a press at a temperature of from about 150 0 C to about 310 0 C, more preferably from about 160 0 C. to about 200 0 C.
- Lamination may be conducted for from about 30 minute to about 120 minutes, preferably from about 40 minutes to about 80 minutes.
- the press is under a vacuum of at least 70 cm (28 inches) of mercury, and maintained at a pressure of about from about 3.5 kgf/cm 2 (50 psi) to about 28 kgf/cm 2 (400 psi), preferably from about 4.9 kgf/cm 2 (70 psi) to about 14 kgf/cm 2 (200 psi).
- the thermosetting polymer layers 4, 8 have a thickness of from about 2 to about 200 microns, more preferably from about 2 to about 100 microns.
- the thermosetting polymer layers have a dielectric strength of at least about 19,685 volts/mm (500 volts/mil) thickness.
- the heat resistant film layer 6 preferably comprises a polyethylene terephthalate, a polyethylene naphthalate, a polyvinyl carbazole, a polyphenylene sulfide, an aromatic polyamide, a polyimide, a polyamide- polyimide, a polyether nitrile, a polyether-ether-ketone, or combinations thereof. It has a preferred thickness of about 12.5 ⁇ m or less.
- the combined thickness of the first thermosetting polymer layer 4, the heat resistant film layer 6, and the second thermosetting polymer layer 8 is about 25 ⁇ m or less.
- the heat resistant film layer 6 has a VICAT softening point of about 150 0 C or higher as determined by ISO 306.
- the heat resistant film layer 6 preferably has a Young's modulus of about 300 kgf/mm 2 or more, a tensile strength of about 20 kgf/mm 2 or more, an elongation of about 5% or more, and a higher softening temperature than the laminating temperature of the first thermosetting polymer layer 4 and the second thermosetting polymer layer 8.
- the dielectric constant of each of the first thermosetting polymer layer 4, the heat resistant film layer 6, and the second thermosetting polymer layer 8 is about 2.5 or more.
- the heat resistant film layer 6 preferably has a dielectric breakdown voltage of at least about 50 volts, more preferably at least about 250 volts, and most preferably at least about 500 volts.
- the heat resistant film layer 6 may have undergone a bond enhancing treatment which may comprise a plasma treatment, a corona treatment, a chemical treatment or combinations thereof.
- the electrical resistance material layer 10 preferably comprises a material selected from the group consisting of nickel, chrome, nickel-chrome, platinum, palladium, nickel-phosphorus, titanium, iridium, rutherium, silica, and combinations thereof. In a preferred embodiment of the invention, the electrical resistance material layer comprises nickel-phosphorus.
- the electrical resistance material layer 10 is preferably electroplated, using a conventional electroplating process, onto the second electrically conductive layer.
- Electroplating is a technique well known in the art which is typically conducted by placing a substrate in a liquid electrolyte solution, and applying an electrical potential between a conducting area on the substrate and a counter electrode in the liquid. A chemical process takes place resulting in the formation of a layer of material on the substrate.
- Electroplating baths used for the deposition of resistive films typically operate at a temperature significantly greater than room temperature, that is, at a temperature in excess of 100° F (38 0 C). In fact, most baths previously used to deposit resistive alloy films operate at a temperature of 150° F (65°C) to about 212° F (100 0 C).
- the thickness of the electro-deposited electrical resistance layer deposited on the conductive layer in known processes is a function of plating efficiency which is, in turn, a function of temperature.
- An example of a suitable electro-plating bath comprises an aqueous solution of hypophosphite ions, and in particular, hypophosphite ions formed from nickel hypophosphite (Ni(H 2 PO 2 ) 2 ).
- Nickel hypophosphite is easily prepared by the reaction of nickel carbonate (NiCO 3 ) with hypophosphorous acid (H 3 PO 2 ).
- nickel hypophosphite suitable for electro-deposition of a nickel- phosphorous electrical resistance layer on a conductive layer is prepared by forming an aqueous solution of about one-half mole of nickel carbonate and one mole of hypophosphorous acid with a limited amount of water thus producing a crystaline reaction product which completely dissolves when diluted with water to a concentration of about 0.67 moles per liter.
- the reaction is believed, without intending to limit the present invention, to proceed according to the following equation:
- NiCO 3 +2H 3 PO 2 Ni(H 2 PO 2 ) 2 +CO 2 +H 2 O
- an electroplating bath comprising hypophosphite ions formed from nickel hypophosphite can be produced by the reaction of nickel chloride (NiCl 2 ) and sodium hypophosphite (NaH 2 PO 2 ).
- NiCl 2 nickel chloride
- NaH 2 PO 2 sodium hypophosphite
- NiCl 2 +2NaH 2 PO 2 Ni(H 2 PO 2 ) 2 +2NaCl
- an electro-plating bath formed from nickel carbonate and hypophosphorous acid with nickel-hypophosphite as a reaction product since the reaction produces by-products of carbon dioxide and water; whereas, an electro-plating bath formed from nickel chloride and sodium hypophosphite to produce nickel hypophosphite often produces a by-product of sodium chloride which must be removed to prevent undue concentration build up over time in a continuous process.
- An electroplating bath comprising hypophosphite ions formed from nickel hypophosphite has been found to be operable at temperatures from about 2O 0 C to 50° C. It may be desirable to operate the baths at room temperature (2O 0 C to 25°C). Such baths are effectively temperature insensitive.
- the formed electrical resistance material layer contains up to about 50 percent by weight of phosphorus. In another preferred embodiment, the electrical resistance material layer contains up to 30 percent by weight of phosphorus. In another embodiment, the electrical resistance material comprises from about 30 to about 50 percent by weight of phosphorus.
- a further embodiment of the invention includes an electroplating of the second electrically conductive layer in a bath comprising an aqueous solution of a nickel ion source, H 3 PO 3 and H 3 PO 4 , wherein the bath is substantially sulfate and chloride free.
- the resistance of the electrical resistance layer of a circuit board material is dependent on both the thickness of the electrical resistance layer and the resistivity of the material employed therein. As the thickness of the electrical resistance layer decreases, the resistance of said layer increases.
- the electrical resistance material layer 10 preferably has a resistance ranging from about 0.5 ohms/square to about 10,000 ohms/square, more preferably, ranging from about 5 ohms/square to about 500 ohms/square, and most preferably ranging from about 25 ohms/square to about 250 ohms/square.
- the electrical resistance material layer preferably has a thickness ranging from about 0.02 ⁇ m to about 0.2 ⁇ m more preferably from about 0.03 ⁇ m to about 1 ⁇ m, and most preferably from about 0.04 ⁇ m to about 0.4 ⁇ m.
- At least the top about ten atomic layers of the electrical resistance material layer are free of sulfur. In another preferred embodiment, the surface of the electrical resistance material layer is substantially pit free.
- the optional additional electrical resistance material layer 14 may be the same or different from the electrical resistance material layer 10. Preferably these two layers 10, 14 are substantially the same.
- a barrier layer is adhered between said electrical resistance material layer 10 and said second electrically conductive layer 12, wherein said barrier layer has a thickness of less than about 0.1 ⁇ m, is different in composition from said electrical resistance material layer, and is capable of protecting said electrical resistance material layer 10 from attack by alkaline ammoniacal copper etchants.
- the barrier layer preferably has a thickness of less then about 0.1 ⁇ m, more preferably ranging from about 50 angsroms to about 0.1 ⁇ m, and most preferably from about 150 angstroms to about 600 angstroms.
- the barrier layer is electrodeposited using conventional techniques.
- the barrier layer can be an inorganic material which has good etchant selectivity.
- the barrier layer preferably comprises a material selected from the group consisting of Ni-Sn, Co-Sn, Cd-Sn, Cd-Ni, Ni-Cr 5 Ni-Au, Ni-Pd, Ni-Zn, Sn- Pb, Sn-Zn, Ni, Sn, and combinations thereof.
- a preferred barrier layer comprises Ni-Sn.
- the multilayered constructions formed according to the inventive method are preferably used in the formation of a resistor or capacitor. Such may be used in the formation of printed circuit boards, electronic devices, and the like.
- the preferred capacitance of a capacitor formed according to the invention is at least about 100 pF/cm 2 , more preferably from about 100 pF/cm 2 to about 4,000 pF/cm 2 .
- Capacitors formed according to the invention may be used in a variety of printed circuit applications. For example, an electrical connection may be present on the first electrically conductive layer and another electrical connection to the second electrically conductive layer.
- the capacitor may be connected to or be incorporated into a printed circuit board or other electronic device or the electronic device may comprise a printed circuit board comprising the capacitor. They may be coupled with or embedded within rigid, flexible or in rigid/flexible electrical circuits, printed circuit boards or other microelectronic devices such as chip packages.
- a second circuit pattern may be applied to the polymer surface either in the form of a conductive foil, by electrodeposition, by sputtering, by vapor phase deposition or some other means.
- circuit patterns may also be created in the electrically conductive material layer using known etching techniques.
- etching a layer of a photo-imageable resist, dry-film or liquid material is applied to the conductive foil layer.
- actinic radiation such as UV radiation creating a desired circuit pattern.
- the imaged capacitor is then exposed to film developing chemistry that selectively removes the unwanted unexposed portions.
- the capacitor with circuit image is then contacted with known chemical etchant baths to remove the exposed conductive layer, leaving the final desired conductive patterned capacitor.
- each of the conductive material layers may optionally be electrically connected by forming a hole through the entire capacitor and filling it with a conductive metal. Lamination steps are preferably conducted at a minimum of 150 0 C.
- the method of present invention offers a significant improvement in precision and uniformity of the multilayered constructions during assembly. This results in improved performance over prior art capacitors and printed circuit boards, while maximizing cost effectiveness.
- a 35 ⁇ m thick electrodeposited (ED) copper foil is provided, which foil has a surface roughness of 3 microns and has been electroplated with a layer of nickel-phosphorous. The thickness and composition of the nickel- phosphorous layer is such to result in an electrical resistance layer of 25 ohms/square.
- a layer of epoxy resin is applied to the foil with a thickness of 6 microns.
- On another 35 ⁇ m ED copper foil a layer of epoxy resin is applied to a thickness of 6 microns.
- the two coated foils are laminated together with a sheet of 12 micron polyamide Film between the two resin surfaces. Lamination occurs in a hydraulic press under 250 psi at 350 ° F for 1 hour.
- the press chamber is also under a vacuum of 25 mm Hg.
- a pattern is etched into the copper surfaces using industry standard techniques using an alkaline etchant. This chemistry etches the copper without attacking the resistance (Ni-P) layer.
- a second imaging process is conducted to form the resistor pattern by vacuum laminating a photoresist, exposing and developing it. The photoresist remains on the Ni-P layer that defines the resistor pattern. The background Ni-P is removed using an acid etchant (such as sodium persulfate or sulfuric peroxide). The photoresist is stripped and the circuits are inspected using automated optical inspection and or electrical test (including High Potential testing).
- the circuitized product goes through a process to prepare the copper for relamination. This process is a black oxide or an alternative.
- the circuitized product is laminated into a multilayer circuit board and completed using industry standard techniques.
- Example 1 is repeated except with a resistance layer of 1000 ohms/square, an epoxy resin thickness of 4 microns and polyamide film thickness of 4 microns.
- Example 1 is repeated except that both sides of the polyamide film are applied with copper foils each having a resistance layer thereon, resulting in a two sided resistor product.
- the resistances of the layers can be the same or dissimilar such as 25 ohms/square on side one and 1000 ohms/square on side two.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020077019864A KR101144480B1 (en) | 2005-02-22 | 2006-02-15 | Method of making multilayered construction for use in resistors and capacitors |
EP06735203A EP1851778B1 (en) | 2005-02-22 | 2006-02-15 | Method of making multilayered construction for use in resistors and capacitors |
JP2007556280A JP2008532270A (en) | 2005-02-22 | 2006-02-15 | Multilayer structure manufacturing method for resistors and capacitors |
CA2595302A CA2595302C (en) | 2005-02-22 | 2006-02-15 | Method of making multilayered construction for use in resistors and capacitors |
CN200680005673.XA CN101501795B (en) | 2005-02-22 | 2006-02-15 | Method of making multilayered construction for use in resistors and capacitors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/062,784 US7596842B2 (en) | 2005-02-22 | 2005-02-22 | Method of making multilayered construction for use in resistors and capacitors |
US11/062,784 | 2005-02-22 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2006091463A2 true WO2006091463A2 (en) | 2006-08-31 |
WO2006091463A8 WO2006091463A8 (en) | 2007-08-23 |
WO2006091463A3 WO2006091463A3 (en) | 2009-04-09 |
Family
ID=36911048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/005424 WO2006091463A2 (en) | 2005-02-22 | 2006-02-15 | Method of making multilayered construction for use in resistors and capacitors |
Country Status (9)
Country | Link |
---|---|
US (2) | US7596842B2 (en) |
EP (1) | EP1851778B1 (en) |
JP (1) | JP2008532270A (en) |
KR (1) | KR101144480B1 (en) |
CN (1) | CN101501795B (en) |
CA (1) | CA2595302C (en) |
MY (1) | MY142854A (en) |
TW (1) | TWI406312B (en) |
WO (1) | WO2006091463A2 (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7596842B2 (en) * | 2005-02-22 | 2009-10-06 | Oak-Mitsui Inc. | Method of making multilayered construction for use in resistors and capacitors |
FR2917231B1 (en) * | 2007-06-07 | 2009-10-02 | St Microelectronics Sa | ACHIEVING CAPACITORS WITH MEANS FOR REDUCING THE STRESSES OF THE METALLIC MATERIAL OF ITS LOWER REINFORCEMENT |
US8395053B2 (en) * | 2007-06-27 | 2013-03-12 | Stats Chippac Ltd. | Circuit system with circuit element and reference plane |
US7886414B2 (en) * | 2007-07-23 | 2011-02-15 | Samsung Electro-Mechanics Co., Ltd. | Method of manufacturing capacitor-embedded PCB |
US8069559B2 (en) * | 2007-08-24 | 2011-12-06 | World Properties, Inc. | Method of assembling an insulated metal substrate |
CN101489356B (en) * | 2008-01-16 | 2011-03-30 | 富葵精密组件(深圳)有限公司 | Circuit board and production method thereof |
KR100966638B1 (en) * | 2008-03-25 | 2010-06-29 | 삼성전기주식회사 | Printed circuit board having capacitor and manufacturing method thereof |
US7791897B2 (en) * | 2008-09-09 | 2010-09-07 | Endicott Interconnect Technologies, Inc. | Multi-layer embedded capacitance and resistance substrate core |
US9390857B2 (en) * | 2008-09-30 | 2016-07-12 | General Electric Company | Film capacitor |
US20100239871A1 (en) * | 2008-12-19 | 2010-09-23 | Vorbeck Materials Corp. | One-part polysiloxane inks and coatings and method of adhering the same to a substrate |
US8866018B2 (en) * | 2009-01-12 | 2014-10-21 | Oak-Mitsui Technologies Llc | Passive electrical devices and methods of fabricating passive electrical devices |
KR101133327B1 (en) * | 2010-04-09 | 2012-04-05 | 삼성전기주식회사 | Method for manufacturing multi-layer ceramic capacitor |
US8256078B2 (en) * | 2010-07-02 | 2012-09-04 | Faradox Energy Storage, Inc. | Method of forming long strips of dielectric coated metalized film |
JP5779250B2 (en) * | 2011-09-30 | 2015-09-16 | 株式会社メイコー | Substrate manufacturing method |
KR102038137B1 (en) * | 2012-12-21 | 2019-10-30 | 주식회사 넥스플렉스 | Multi-layer flexible metal-clad laminate and manufacturing method for thereof |
WO2015198457A1 (en) * | 2014-06-26 | 2015-12-30 | ギガフォトン株式会社 | Gas laser device and capacitor |
JP5940138B2 (en) * | 2014-12-24 | 2016-06-29 | 古河電気工業株式会社 | Insulating film for capacitor-type storage battery |
US10032751B2 (en) * | 2015-09-28 | 2018-07-24 | Invensas Corporation | Ultrathin layer for forming a capacitive interface between joined integrated circuit components |
US10811388B2 (en) | 2015-09-28 | 2020-10-20 | Invensas Corporation | Capacitive coupling in a direct-bonded interface for microelectronic devices |
US10083781B2 (en) | 2015-10-30 | 2018-09-25 | Vishay Dale Electronics, Llc | Surface mount resistors and methods of manufacturing same |
US9707738B1 (en) | 2016-01-14 | 2017-07-18 | Chang Chun Petrochemical Co., Ltd. | Copper foil and methods of use |
WO2017154167A1 (en) * | 2016-03-10 | 2017-09-14 | 三井金属鉱業株式会社 | Multilayer laminate plate and production method for multilayered printed wiring board using same |
CN106376171A (en) * | 2016-09-28 | 2017-02-01 | 昆山维嘉益材料科技有限公司 | FPC metal reinforced plate equipped with black SUS plate |
FR3059201B1 (en) * | 2016-11-18 | 2019-06-21 | Safran Electrical & Power | REINFORCED ISOLATED PRINTED CIRCUIT AND METHOD OF MANUFACTURE |
US10438729B2 (en) | 2017-11-10 | 2019-10-08 | Vishay Dale Electronics, Llc | Resistor with upper surface heat dissipation |
US10607857B2 (en) * | 2017-12-06 | 2020-03-31 | Indium Corporation | Semiconductor device assembly including a thermal interface bond between a semiconductor die and a passive heat exchanger |
KR102584993B1 (en) * | 2018-02-08 | 2023-10-05 | 삼성전기주식회사 | Capacitor component and method of manufacturing the same |
CN108323008B (en) * | 2018-03-06 | 2020-10-02 | 深圳崇达多层线路板有限公司 | Manufacturing method of embedded resistor rigid-flex board |
TWI713424B (en) * | 2018-10-15 | 2020-12-11 | 鼎展電子股份有限公司 | Copper film with buried film resistor and printed circuit board having the same |
TWI694752B (en) * | 2018-10-26 | 2020-05-21 | 鼎展電子股份有限公司 | Embedded passive device structure |
TW202114490A (en) * | 2019-09-27 | 2021-04-01 | 鼎展電子股份有限公司 | Resistor and capacitor embedded flexible copper foil structure and printed circuit board structure using the same |
CN111918427A (en) * | 2020-08-10 | 2020-11-10 | 浙江豪能新能源有限公司 | Surface heating sheet and manufacturing method thereof |
CN114583049B (en) * | 2022-05-05 | 2022-07-29 | 北京芯可鉴科技有限公司 | Manufacturing method of MIM capacitor and MIM capacitor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5679230A (en) | 1995-08-21 | 1997-10-21 | Oak-Mitsui, Inc. | Copper foil for printed circuit boards |
US6693793B2 (en) | 2001-10-15 | 2004-02-17 | Mitsui Mining & Smelting Co., Ltd. | Double-sided copper clad laminate for capacitor layer formation and its manufacturing method |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3808576A (en) * | 1971-01-15 | 1974-04-30 | Mica Corp | Circuit board with resistance layer |
US4808967A (en) * | 1985-05-29 | 1989-02-28 | Ohmega Electronics | Circuit board material |
US4888574A (en) | 1985-05-29 | 1989-12-19 | 501 Ohmega Electronics, Inc. | Circuit board material and method of making |
US4892776A (en) | 1987-09-02 | 1990-01-09 | Ohmega Electronics, Inc. | Circuit board material and electroplating bath for the production thereof |
JP3019541B2 (en) * | 1990-11-22 | 2000-03-13 | 株式会社村田製作所 | Wiring board with built-in capacitor and method of manufacturing the same |
US5261153A (en) * | 1992-04-06 | 1993-11-16 | Zycon Corporation | In situ method for forming a capacitive PCB |
US5185689A (en) * | 1992-04-29 | 1993-02-09 | Motorola Inc. | Capacitor having a ruthenate electrode and method of formation |
US5403672A (en) * | 1992-08-17 | 1995-04-04 | Hitachi Chemical Co., Ltd. | Metal foil for printed wiring board and production thereof |
EP0710177B1 (en) | 1993-07-21 | 2003-05-02 | Ohmega Electronics, Inc. | Circuit board material with barrier layer |
US6281090B1 (en) * | 1996-10-16 | 2001-08-28 | Macdermid, Incorporated | Method for the manufacture of printed circuit boards with plated resistors |
US5945257A (en) * | 1997-10-29 | 1999-08-31 | Sequent Computer Systems, Inc. | Method of forming resistors |
US6215649B1 (en) * | 1998-11-05 | 2001-04-10 | International Business Machines Corporation | Printed circuit board capacitor structure and method |
US6356455B1 (en) | 1999-09-23 | 2002-03-12 | Morton International, Inc. | Thin integral resistor/capacitor/inductor package, method of manufacture |
US6759596B1 (en) * | 2000-05-12 | 2004-07-06 | Shipley Company | Sequential build circuit board |
US6657849B1 (en) | 2000-08-24 | 2003-12-02 | Oak-Mitsui, Inc. | Formation of an embedded capacitor plane using a thin dielectric |
US6689227B2 (en) * | 2001-01-23 | 2004-02-10 | Tata Consultancy Services, Division Of Tata Sons Ltd | Eco-friendly starch quenchants |
JP3770537B2 (en) * | 2001-07-30 | 2006-04-26 | 三井金属鉱業株式会社 | Capacitor and method for producing double-sided copper-clad laminate for forming the same |
AU2002340750A1 (en) * | 2001-09-28 | 2003-04-14 | Siemens Aktiengesellschaft | Method for contacting electrical contact surfaces of a substrate and device consisting of a substrate having electrical contact surfaces |
JP2004040073A (en) * | 2002-01-11 | 2004-02-05 | Shipley Co Llc | Resistor structure |
US6870436B2 (en) | 2002-03-11 | 2005-03-22 | Hewlett-Packard Development Company, L.P. | Method and apparatus to attenuate power plane noise on a printed circuit board using high ESR capacitors |
JP2004140268A (en) * | 2002-10-18 | 2004-05-13 | Matsushita Electric Works Ltd | Manufacturing method of multilayer printed circuit board for high frequency |
JP3954958B2 (en) * | 2002-11-26 | 2007-08-08 | 古河テクノリサーチ株式会社 | Copper foil with resistive layer and circuit board material with resistive layer |
US6910264B2 (en) * | 2003-01-03 | 2005-06-28 | Phoenix Precision Technology Corp. | Method for making a multilayer circuit board having embedded passive components |
US6873219B2 (en) | 2003-01-28 | 2005-03-29 | Hewlett-Packard Development Company, L.P. | Printed circuit board noise attenuation using lossy conductors |
US7382627B2 (en) | 2004-10-18 | 2008-06-03 | E.I. Du Pont De Nemours And Company | Capacitive/resistive devices, organic dielectric laminates and printed wiring boards incorporating such devices, and methods of making thereof |
US7430128B2 (en) | 2004-10-18 | 2008-09-30 | E.I. Du Pont De Nemours And Company | Capacitive/resistive devices, organic dielectric laminates and printed wiring boards incorporating such devices, and methods of making thereof |
US7192654B2 (en) * | 2005-02-22 | 2007-03-20 | Oak-Mitsui Inc. | Multilayered construction for resistor and capacitor formation |
US7596842B2 (en) * | 2005-02-22 | 2009-10-06 | Oak-Mitsui Inc. | Method of making multilayered construction for use in resistors and capacitors |
-
2005
- 2005-02-22 US US11/062,784 patent/US7596842B2/en active Active
-
2006
- 2006-02-15 WO PCT/US2006/005424 patent/WO2006091463A2/en active Application Filing
- 2006-02-15 JP JP2007556280A patent/JP2008532270A/en active Pending
- 2006-02-15 EP EP06735203A patent/EP1851778B1/en not_active Not-in-force
- 2006-02-15 CN CN200680005673.XA patent/CN101501795B/en active Active
- 2006-02-15 KR KR1020077019864A patent/KR101144480B1/en active IP Right Grant
- 2006-02-15 CA CA2595302A patent/CA2595302C/en not_active Expired - Fee Related
- 2006-02-16 MY MYPI20060659A patent/MY142854A/en unknown
- 2006-02-20 TW TW095105629A patent/TWI406312B/en active
-
2009
- 2009-08-26 US US12/547,881 patent/US7862900B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5679230A (en) | 1995-08-21 | 1997-10-21 | Oak-Mitsui, Inc. | Copper foil for printed circuit boards |
US6693793B2 (en) | 2001-10-15 | 2004-02-17 | Mitsui Mining & Smelting Co., Ltd. | Double-sided copper clad laminate for capacitor layer formation and its manufacturing method |
Non-Patent Citations (1)
Title |
---|
See also references of EP1851778A4 |
Also Published As
Publication number | Publication date |
---|---|
EP1851778A4 (en) | 2010-03-24 |
JP2008532270A (en) | 2008-08-14 |
EP1851778B1 (en) | 2012-08-08 |
WO2006091463A3 (en) | 2009-04-09 |
TWI406312B (en) | 2013-08-21 |
MY142854A (en) | 2011-01-14 |
WO2006091463A8 (en) | 2007-08-23 |
TW200641938A (en) | 2006-12-01 |
CN101501795A (en) | 2009-08-05 |
CA2595302C (en) | 2013-07-16 |
EP1851778A2 (en) | 2007-11-07 |
KR20070104925A (en) | 2007-10-29 |
US7862900B2 (en) | 2011-01-04 |
US20060185140A1 (en) | 2006-08-24 |
CA2595302A1 (en) | 2006-08-31 |
US20090314531A1 (en) | 2009-12-24 |
CN101501795B (en) | 2015-02-25 |
KR101144480B1 (en) | 2012-05-11 |
US7596842B2 (en) | 2009-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7862900B2 (en) | Multilayered construction for use in resistors and capacitors | |
US7192654B2 (en) | Multilayered construction for resistor and capacitor formation | |
US6693793B2 (en) | Double-sided copper clad laminate for capacitor layer formation and its manufacturing method | |
CN1299544C (en) | Nickel coated copper as electrodes for embedded passive devices | |
US20100208440A1 (en) | Passive electrical article | |
KR20150070380A (en) | Surface-treated copper foil and laminate using same, copper-clad laminate, printed circuit board, and electronic device | |
US20070226998A1 (en) | Multi-layer circuit assembly and process for preparing the same | |
US20030140490A1 (en) | Multi-layer circuit assembly and process for preparing the same | |
US20030015345A1 (en) | Laminated base sheet for flexible printed circuit board | |
JP2006310531A (en) | Wiring circuit board and its manufacturing method | |
JP2003086936A (en) | Substrate for flexible printed wiring | |
JPH11340078A (en) | Film capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680005673.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006735203 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2595302 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007556280 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077019864 Country of ref document: KR |